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ABSTRACT 

Parkinson’s disease (PD) is a common neurodegenerative disorder affecting more than 

one million people in the United States and seven million people worldwide. Motor 

symptoms such as tremor, slowness of movements, rigidity, postural instability, and gait 

impairment are commonly observed in PD patients. Currently, Parkinsonian symptoms are 

usually assessed in clinical settings, where a patient has to complete some predefined motor 

tasks. Then a physician assigns a score based on the United Parkinson’s Disease Rating 

Scale (UPDRS) after observing the motor task. However, this procedure suffers from inter 

subject variability. Also, patients tend to show fewer symptoms during clinical visit, which 

leads to false assumption of the disease severity. The objective of this study is to overcome 

this limitations by building a system using Inertial Measurement Unit (IMU) that can be 

used at clinics and in home to collect PD symptoms data and build algorithms that can 

quantify PD symptoms more effectively. Data was acquired from patients seen at 

movement disorders Clinic at Sanford Health in Fargo, ND. Subjects wore Physilog IMUs 

and performed tasks for tremor, bradykinesia and gait according to the protocol approved 

by Sanford IRB. The data was analyzed using modified algorithm that was initially 

developed using data from normal subjects emulating PD symptoms. For tremor 

measurement, the study showed that sensor signals collected from the index finger more 

accurately predict tremor severity compared to signals from a sensor placed on the wrist. 
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For finger tapping, a task measuring bradykinesia, the algorithm could predict with more 

than 80% accuracy when a set of features were selected to train the prediction model. 

Regarding gait, three different analysis were done to find the effective parameters 

indicative of severity of PD. Gait speed measurement algorithm was first developed using 

treadmill as a reference. Then, it was shown that the features selected could predict PD gait 

with 85.5% accuracy. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation  

 Since I started my education in Electrical Engineering, it has always been my utmost desire 

to use the knowledge I gained to improve human health and quality of life. Some fascinating 

discovery in technology over the years to solve human health issue have inspired me to work 

and contribute on this area. From our early life, we have been exposed to different medical 

device system (e.g., X-Ray, Magnetic resonance imaging (MRI), Electrocardiogram (ECG), a 

smart blood glucose meter). Whenever I encountered with those technologies, I always got 

intrigued about how the system operates or what the internal mechanism of the system is. Path-

breaking advances have been made to diagnose different critical disease using technology. 

However, assessing the severity of Parkinson’s Disease (PD) objectively remains a challenge. 

Very few devices have been introduced to diagnose and monitor PD and symptoms. By 

personally observing the sufferings of PD patient, I decided to dig deep into the possible 

solutions for diagnosing and monitoring PD symptoms using technology. 

1.2 Parkinson’s Disease (PD) 

 PD is a disorder of the nervous system, which is the result of the loss of brain cells that are 

responsible for the production of dopamine [1]. The disease affects the movement of the people 

suffering the from it. The primary symptoms of PD are 1) tremor, or shaking of different body 
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parts; 2) rigidity or stiffness of the muscles and trunk; 3) bradykinesia or slowness of movement; 

and 4) postural instability, or impaired balance and coordination. As these symptoms become more 

prominent, patients may face trouble during walking, talking or completing any simple errands. 

PD usually affects older people with age over 60 years old [2]. Usually, early symptoms are not 

much noticeable and it progresses gradually. The rate of progression of the disease is patient 

specific as it may spread faster in some patients compared to others. As the disease progresses, the 

tremor symptoms, which affects most of the people with PD may begin to cause difficulties in 

doing daily activities. PD patients usually suffer from non-motor symptoms that may include 

depression and anxiety disorder; hardship in eating and speaking; constipation; skin disease; and 

sleep disorder [3]. 

Almost one million people in United States are suffering from PD [4]. Each year, approximately 

60,000 Americans are diagnosed with PD each year. Actual number might be more as thousands 

of numbers go undetected which do not reflect in the overall numbers. Worldwide, almost 10 

million people are living with PD. Although, occurrence of PD rises with age, as high as four 

percent of the PD patients are diagnosed before the age of 50. Another important statistic is that 

men are one and a half times more likely to diagnose with PD than women [4]. There is a direct 

and indirect cost associated with the various aspect of PD such as treatment, payments regarding 

social security and lost income from inability to work. The whole price in the United States alone 

estimated to be approximately $25 billion per year [1]. 
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Figure 1. Parkinson’s disease symptoms [5]  

 The disease develops gradually but usually starts with a low severity tremor in just one hand 

[3]. It also causes rigidity and slowness of movement in the patient. There are several signs 

occurred in people suffering from early stages of PD disease. The face of the subject may show 

little or no expression, or exhibit reduces arm swing during walking. Speech may be distorted to 

become soft or slurred. PD symptoms worsen as your condition progresses over time. PD is a 

chronic disease. A variety of medications can control and reduce the effects of the symptoms but, 
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the disease is not curable at the moment  [6]. Usually, levodopa in combination with carbidopa is 

generally given to affected PD patients  [7][8]. Carbidopa delays the conversion of levodopa into 

dopamine until it reaches the brain [7]. Levodopa improves the nerve cells ability to produce 

dopamine and restores the brain's dwindling supply. Although levodopa helps at least three-

quarters of PD cases, not all symptoms respond equally to the drug [7]. Among the primary 

symptoms, bradykinesia and rigidity respond better, while tremor symptoms effect may be slightly 

reduced. However, the levodopa may not improve balance and other symptoms at all. In some 

cases, Deep Brain Stimulation surgery approved by the U.S. Food and Drug Administration may 

be the right choice if the disease doesn't respond to medication [9]. In DBS, doctor implant 

electrodes into the brain. Electrodes are connected to a tiny electrical device called a pulse 

generator that can be programmed [10]. DBS can lower the need for levodopa and similar drugs, 

thus reducing the side effect (e.g., dyskinesia) associated with those medicines. DBS requires 

cautious programming of the stimulator device to work correctly. In occasional cases, doctor may 

suggest surgery to regulate specific regions of the brain and improve PD symptoms. 

    In this study, we have investigated three main PD symptoms which are tremor, bradykinesia 

and gait described as follows. 

1.2.1 Tremor 

 Tremor in hand is the most noticeable feature in PD. In early stages of the disease, almost 70% 

of patients show signs of tremor or shaking in one hand or one foot on one side of the body [11] . 

PD patients exhibit different types of tremor. Usually, tremor in rest is most predominant type of 

tremor happens in PD patients. Rest tremor has average amplitude and frequency range in 3.5-7.5 

Hz [12]. Postural tremor is another types of tremor which can be tested on PD patients where 

subjects required to hold their hand outstretched which also has a dominant frequency in range 
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same as rest tremor. Essential tremor which is not PD tremor may have frequency in the range 4-

12 Hz [13]. Action tremor is less frequent in PD patients. Many PD patients experience less severe 

tremor while actually using their hands to do something. This characteristic is actually opposite of 

essential tremor which is more dominant in the active state of the limbs.  

 

 

Figure 2. Rest and postural tremor [14]. Subjects on left hand side is performing resting 

tremor tasks. Subjects on the right is performing postural tremor task. 

 The pathophysiology of resting tremor is mostly unknown, but evidence suggests that it differs 

from that of bradykinesia symptoms [15]. It is known that severely affected side of rest tremor can 

be opposite to the bradykinesia affected side. Also, the intensity of shaking is not related to 

dopamine deficiency [16]. Some study indicates a role of dopaminergic loss in the midbrain 

retrorubral A8 region, which points to the pallidum and is separate from the nigrostriatal pathways, 

is the origin of rest tremor [15]. It was also found that the severity of rest tremor correlated with a 

decrease in median raphe serotonin receptor binding [17]. The finding suggests that serotoninergic 

neuron loss might be more closely connected to the focalization of this symptom. However,  

serotoninergic drugs do not usually improve tremor in PD which makes the above finding 

controversial [16].  
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1.2.2 Bradykinesia 

 Bradykinesia is the primary symptom of PD [3]. It causes slowness of movement in patients 

[18]. PD patients with these symptoms faces difficulties in preparing, originating and executing 

movements. The initial sign includes slowness in performing activities of daily living and slow 

reaction times. The usually greater difficulty lies with tasks that require fine motor controls, e.g., 

buttoning. Bradykinesia may cause a person to take shuffling steps and have a problem with 

walking. Other manifestations of bradykinesia include reduction of facial expression, drooling due 

to impaired swallowing, decreasing eye blink rate and reduced arm swing during walking [18]. 

    The person with advanced bradykinesia may feel that are unable to move their feet as they think 

the body would not respond to their brain. The emotional state of a PD patient may also change 

bradykinesia symptoms. It is observed that people with bradykinesia sometimes respond well in 

emergency cases like in case of fire they may get up and run [17]. This phenomenon suggests that 

PD patients may have motor programs undamaged but having difficulty retrieving them. 

    The pathophysiology behind this symptom is not completely understood. However, much 

significant research has been done to understand the mechanism of bradykinesia symptoms. 

According to the classical model of the prevalence of the indirect pathway to the direct ones in BG 

[19] [20], initiation of the movement or its execution may be affected by the failure of the BG 

output to support the cortical mechanisms. EEG studies have shown abnormalities in pre-

movement potential in PD patients. Causes of bradykinesia were also investigated by Dick et al. 

[21]. His research shows bradykinesia or slower movement is related to a slower increase in 

cortical excitability before movement [21]. 

    In clinical settings, there are various ways to measure bradykinesia. Usually, a patient is required 

to perform finger tapping and hand grasping task according to instructions given by the clinicians. 
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In finger tapping task a subject has to tap index finger with thumb as fast as possible. At the same 

time amplitude of tapping should be as high as possible. This repetitive task can make patients 

show different signs essential of bradykinesia if the patient is suffering from the symptoms [22]. 

Hand grasping task consists of opening and closing of hand [23]. Like finger tapping task, usually 

patients have to open and close hand with maximum speed and amplitude.  

1.2.3 Gait 

One of the most severe challenges in dealing with the advancement of PD is an increase in 

gait instabilities. Gait disturbances include freezing of gait, difficulty in gait initiation, hesitation 

and shuffling and slow steps [24][25]. Continuous gait disorders affect the step-to-step 

spatiotemporal dynamics of gait, resulting in increased spatiotemporal gait variability (GV) [26]. 

The most prevalent outcome measures of GV are second-moment statistics (i.e., standard deviation 

or coefficient of variation) of a series of step or stride durations or lengths. Generally, during 

normal walking, the heel strikes the ground before the toes. However, in PD gait, patients walk 

with flat foot motion (the entire foot is placed on the ground at the same time). Sometimes toe 

touches before heel for PD patients with advanced stage of the disease. Also, PD patients have 

reduced foot lifting during the swing phase of gait, which produces a smaller clearance between 

the toes and the field.  
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Figure 3. Gait disorder symptoms in PD patients [27] 

1.3 Inertial Measurement Unit 

 An inertial measurement unit (IMU) is an electro-mechanical device that measures an object’s 

acceleration, angular rate, and sometimes the magnetic field surrounding the object. IMU usually 

has a combination of accelerometers, gyroscopes, and magnetometer to measure these values.  

    IMU has various applications in many fields. In Inertial Navigation Systems (INS) Angular 

velocity, attitude, acceleration is often calculated by IMU which is integrated into the system [28]. 

This INS is the most vital unit of many commercial and military vehicles and navigation such as 

manned or unmanned aircraft, advanced missiles, ships, submarines, and satellites [29]. They are 

also essential components in the guidance and control of unmanned systems such as Unmanned 

Aerial Vehicle (UAVs), Unmanned Ground Vehicle (UGVs), and Unmanned Underwater Vehicle 

(UUV) [29]. In latest vehicles, an IMU is usually integrated into the navigation system which is 
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GPS based. By collecting data related to vehicle's speed, acceleration, heading, inclination IMU 

helps to build today's modern vehicle. 

    Besides its use for the navigational system, IMUs also has use case as orientation sensors in 

many vital products. IMUs as orientation sensors are integrated into most of the smartphones and 

tablet. Fitness trackers and other wearables may also include IMUs to measure motion [29]. 

    IMUs used in the navigational system usually suffer from accumulation error [30] which is its 

major disadvantage. Because the navigational system is continually integrating acceleration with 

respect to time for measurement of velocity and position, any calculation errors, however small, 

are accumulated over time. This leads to a sensor error called drift. 

 

Figure 4. Example of inertial measurement unit. [31] 
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1.3.1 Accelerometer 

An accelerometer is an electromechanical device. It mainly measures static and dynamic 

acceleration forces. An example of static force is gravity pulling at feet. It also measures dynamic 

forces which are caused by moving the accelerometer [32]. An accelerometer can be built in 

different ways. Some accelerometers use the mechanism of piezoelectric effect. When a 

microscopic crystal structure gets stressed by accelerative forces, a voltage is generated. It is called 

piezoelectric effect [33]. Accelerometer contains this crystal structure to produce this effect. 

Another way to do it is by sensing changes in capacitance [33]. An accelerometer may contain two 

microstructures adjacent to each other to sense the change of capacitance [34]. 

1.3.2 Gyroscope 

 Nowadays gyroscopes are widely used in IMU due to its high performance and reduced 

footprint. Micro-electro-mechanical systems (MEMS) gyroscopes are also becoming very 

proficient in power consumption. Because of low production cost, gyroscopes are being integrated 

into consumer electronics. MEMS gyroscopes measure the angular velocity of an object using 

Coriolis Effect mechanism. If angular rotation velocity Ω is applied to mass (m) moving in 

direction v, a force is experienced by the object in the direction of the arrow because of the Coriolis 

force [35]. Capacitive sensing structure in Gyroscope can sense the resulting displacement caused 

by the effect of Coriolis force [35]. 

1.4 MDS-UPDRS Parkinson disease rating scale 

Popular rating scale for Parkinson symptoms UPDRS was established during 1980s. 

Movement Disorder Society (MDS) revised the criteria of original UPDRS rating scale and thus a 
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new version MDS-UPDRS emerged. MDS-UPDRS scoring rules for three cardinal symptoms of 

PD [78].  

1.4.1 Tremor 

Table 1 illustrates the scoring criteria for different severities of tremor [36] 

able 1. Tremor scoring criteria for different severity of symptoms according to MDS-UPDRS 
rating scale [36].  

Score Severity Symptoms 

0 Normal No shaking of any limbs 

1 Slight 
Occurrence of tremor but not create difficulty with any 

activities 

2 Mild Occurrence of tremor causes problems with a few activities 

3 Moderate Shaking or tremor create difficulty with many daily activities 

4 Severe Tremor causes difficulty with all activities 

 

1.4.2 Bradykinesia: 

The following table illustrates the scoring criteria for different severities of bradykinesia 

[36] 

Table 2. Bradykinesia scoring criteria for different severity of symptoms according to 

MDS-UPDRS rating scale [36] 

Score  Severity  Symptoms 

0 Normal No problems during finger tapping or hand grasping 

1 Slight One or two hesitation or slight slowing 
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2 Mild 3 to 5 interruptions or mild slowing 

3 Moderate More than 5 interruptions or moderate slowing 

4 Severe Cannot perform the task because of slowing 

 

1.4.3 Gait 

The following table illustrates the scoring criteria for different severities of bradykinesia 

[36] 

Table 3. Gait scoring criteria  for different severity of symptoms according to MDS-

UPDRS rating scale [36] 

Score  Severity  Symptoms 

0 Normal No difficulty during walking 

1 Slight Can walk independently with minor gait impairment. 

2 Mild Can walk independently with substantial gait impairment 

3 Moderate Require assistance for walking 

4 Severe Cannot walk 

1.5 Current Practice and Quantification Methods in PD Symptoms 

1.5.1 Tremor 

Currently, PD tremor is usually assessed in clinical settings where a patient has to complete 

predefined motor tasks. A physician assigns a score based on the Unified Parkinson’s Disease 

Rating Scale (UPDRS) after observing the motor task [36]. However, this procedure suffers from 

intersubject variability. Also, patients tend to show fewer symptoms during clinical visits 
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potentially skewing assessment of their disease severity [37][38]. A study conducted by Giuliano 

on interobserver reproducibility of the score for most frequently used PD rating scale. The 

experiment involved 48 patients. Their study concluded that the clinician’s score for PD symptoms 

varied substantially among them.  

To overcome this limitation, various attempts to quantify PD tremor have been made. These 

include the use of electromyography (EMG) [39], electromagnetic tracking [40] and laser-based 

displacement transducer, and infrared cameras for objective assessment of tremors [41]. In 

Bacher’s study [15], PD and essential tremors were recorded continuously using surface EMG 

recording from forearm. Electromagnetic tracking system for tremor quantification [16] was 

validated with a sample of 23 patients. The accuracy of the device and algorithm was confirmed 

by mechanically generating oscillations of known magnitudes and frequencies. Although these 

approaches do quantify tremor, they are often of large dimension and bulky making them 

uncomfortable for patients to use.  

Recently, the use of micro-electro-mechanical system (MEMS) inertial measurement units 

has been deployed for assessment of tremor in several studies. Nizmant et al. quantitatively 

assessed tremor using a sensor system integrated into a smart glove [42]. The glove had two touch 

sensors, two 3D accelerometer and one force sensor to measure primary motor symptoms tremor 

and bradykinesia. Although they claim the prototype is easy to wear, tremor and bradykinesia 

assessment algorithm needs to be expanded to consider more parameters. Only tremor frequency 

and movement time between finger tapping were the parameters considered for tremor and 

bradykinesia symptoms evaluation using their prototype. Salarian et al. placed a three-dimensional 

gyroscope on the wrist for continuous monitoring of tremor [12]. This was one of the first studies 

which established the use of inertial measurement unit to quantify PD symptoms. Here, the sensors 
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was placed on each of the forearms. An algorithm to detect and quantify tremor and another 

algorithm to quantify bradykinesia have been proposed and validated. In addition, Salarian et al. 

presented a continuous tremor symptoms monitoring system with 3D gyroscope placed on the 

wrist position [4]. The Motus Movement Monitor (Motus Bioengineering Inc., Benicia, CA, USA), 

was used to quantify tremor and other symptoms [43]. The system was based on three axis 

gyroscopes. They also assessed dyskinesia using their rotation sensitive movement monitor and 

evaluate the asymmetry of the dyskinesia between the right and left side. Pierleoni et al. used 

combination of an accelerometer and a gyroscope on wrist, to determine type and severities of 

tremors [44]. Their study can detect types of tremor (resting, postural, kinetic) and correlation with 

UPDRS score stated to be satisfactory.  

Khan et al. developed a wearable senssor system based on accelerometer to predict and 

classify tremors based on several machine learning algorithms, especially the non-linear radial 

basis function kernel [32]. In their study, they first developed the program of a detection system 

to distinguish between normal and Parkinsonian signal in the accelerometer data, as well as to 

classify different types of PD symptoms. The system was then evaluated in 12 patients suffering 

from PD. Zhang et al. developed an accelerometer sensing system to assess tremor signal in real 

time during daily life activities. The method combines the time and frequency domain analysis of 

signals. The frequency domain analysis is performed using short-time Fourier transform to reduce 

the instability of the tremor signals [45]. Furthermore, the combination of an accelerometer and a 

gyroscope in a wrist module was used to objectively measure and classify tremor in another study 

in order to achieve more effective results [44]. Most recent study for automatic tremor scoring 

system using Inertial measurement unit was done by Jeon et al. [46]  Here Parkinson tremor was 

assessed for 84 subjects using fingers placed on sensor and 85.5% prediction accuracy was 
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achieved using Decision tree algorithm. Following this strategy of assessment of tremor, 

placement of the sensors is also an important factor in determining the accuracy of the system. 

Currently, the finger and wrist have been examined as sensitive locations to quantify tremor in 

several studies [44]. However, whether placing sensors on the finger and wrist at the same time 

leads to better identification and classification of tremor needs to be explored further. 

Feature extraction from sensor data is another important aspect of tremor quantification and 

severity classification. Giuffrida’s research showed that the logarithm of the summation of 

accelerometer and gyroscope peak power around the dominant frequency correlates well with 

UPDRS ratings [47]. This study also presented that the logarithm of RMS summation of angular 

velocity and linear acceleration signals along all axes linked best with the UPDRS scores. However 

standard deviation of angular velocity and linear acceleration is an important parameter that is 

missing from their analysis. 

1.5.2 Bradykinesia 

The current method of assessing bradykinesia requires patients to perform certain motor tasks 

in clinical settings [46]. An UPDRS score is assigned to each task based on the observation by a 

physician. However, patients do not always show natural PD symptoms during a clinical visit. 

Also, subjective bias occurs during such assessment of bradykinesia. To overcome these 

limitations, several attempts have been made to quantify bradykinesia using wearable sensors [48]. 

Accelerometer, gyroscope or a combination of both have been employed for acquisition of 

movement data to evaluate bradykinesia [48].  

Salarian et al. presented a gyroscope-based continuous monitoring system for objective 

assessment of wrist bradykinesia [11]. The system reported in the study was easy to use and record 

movement signal from wrist. The study recorded signals continuously for up to 14 hours during 
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daily activities of patients. Range, periods of movement and amplitude parameters correlated well 

with the UPDRS scores of bradykinesia (r = −0.73 to −0.83, p = 0.001) [12]. 

 Kim et al. quantified bradykinesia during finger taps by using a gyroscope [48]. Forty PD 

patients and 14 age-matched control subjects participated in the experiments conducted by Kim et 

al. [48]. Subjects' finger taps in both right and left hands were scored by two independent 

neurologists according to the unified PD rating scale and were also measured by a gyrosensor. 

Among the analyzed features, RMS (root-mean-square) velocity, RMS angle, and the average 

power around the dominant frequency correlated well with clinical UPDRS scores of finger 

tapping (r = −0.73 to −0.80, p = 0.001) [49].  

Heldman et al. presented a wearable sensor system to assess lower extremity bradykinesia 

[49]. The Kinesia Home View system developed by Heldman et al. which include a touch-screen 

tablet computer, a finger worn motion sensor unit and docking station was attached to heel-clip for 

lower extremity bradykinesia evaluation [50]. Heldman et al. also developed a hand bradykinesia 

assessment system, whose correlation coefficient is 0.67 with modified bradykinesia rating scale. 

Fifty patients with PD performed UPDRS–directed finger tapping, hand grasping, and pronation–

supination while wearing motion sensors [51].  

Printy et al. developed a smart phone application for quantifying bradykinesia of finger (r = 

−0.48, p = 0.04) [52]. Modern smart phones have IMU integrated into it thus having the capability 

to serve as widely available medical diagnostic devices. By keeping this thing in mind, their study 

developed an iPhone application that recorded data from small sample of PD patients during 

guided bradykinesia assessment task. [52]. Dunnewold et al. tested subjects with PD disease for 

objective evaluation of Parkinson bradykinesia. A total of 33 patients with Parkinson's disease and 

29 healthy controls performed a predefined task consisting of a tap rate test and movement time 
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test [53]. Accelerometers were placed on wrist to capture movement signal during wrist taping. 

They concluded as mean acceleration of movement as reliable parameter to evaluate bradykinesia 

[53]. Zwartjes et al. designed an accelerometer-based ambulatory monitoring system to classify 

symptoms severity [54]. Their algorithm provided a detailed assessment of tremor and 

bradykinesia symptoms. Besides evaluation of symptom severity, their system could also 

differentiate between different activity done by patients [54].  

Most recent works on bradykinesia quantification has been done by Martinez et al. [48]. In 

his study, a system for objective assessment of bradykinesia was developed to eliminate ambiguity 

of an evaluator as different evaluators might score movement features differently. Therefore, the 

features selection procedure was performed using the scores of four clinical evaluators, separately. 

Support Vector Machine (SVM) classifier was finally used to classify symptoms of different 

severity using selected features.  

Time-domain parameters derived from sensor signals for characterizing bradykinesia which 

includes speed, amplitude, hesitations, and halt have been evaluated in previous studies [48][12]. 

However, the effect of frequency domain parameters and non-linear features extracted from sensor 

signals for evaluating the severity of bradykinesia is unknown. Whether or not it leads to an 

improvement in the assessment of bradykinesia needs to be investigated. It is known that the 

patients suffering from severe bradykinesia have their movement signal distorted due to 

unpredictable movement or hesitation [55]. Nonlinear features can characterize the degree of 

complexity and provide further relevant insights regarding the severity of bradykinesia.. 

1.5.3 Gait  

Analyzing gait parameter has been widely studied for both healthy and disease populations 

[56]. Gait speed is the most common gait characteristic that is widely used to diagnose disease or 
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monitor progress of gait rehabilitation [57]. In spite of various implementation of gait 

measurement system, there is always rooms for improvement to make the system more 

comfortable and efficient to measure gait parameter and assist clinicians in decision making. There 

are a number of gait analysis systems currently in use to measure gait. The more traditional 

approach in clinical setting is to use a stopwatch to measure time to finish a predefined walking 

through a known distance. Optical motion capture technology is industry standard for analysis of 

gait [58]. Although it is very accurate in measurement, the cost and size of the machine make it 

unsuitable for environment outside laboratory settings. That’s why ambulatory gait monitoring 

system has been of much interest lately [59]. 

Different wearable sensors have been used in literature for ambulatory estimation of gait speed 

[59]. Pressure insoles integrated into shoes have been used to accurately detect the different phase 

of gait which is key to extract different characteristics of gait such as stride length and gait 

speed[59][60]. To obtain more information from gait, the use of accelerometer and gyroscope has 

been gradually increased in last decade[61][62][63][40]. Increasing efficiency and low cost of 

miniature inertial sensors are also helping to make it an easy choice for gait speed measurement 

experiment. The spatio-temporal parameters measured by inertial measurement unit (IMU) 

reported in these studies include walking speed, stride length, and total walked distance. 

There is a repeated cyclic movement of body segments during walking in every stride cycle. 

Inertial sensor attached to body can analyze the movement and measure change of acceleration 

and angular velocity during walking. Based on application, inertial sensor can be placed at different 

parts of the body. Different methods of obtaining gait speed have been proposed by many 

researchers lately. Aminian et al. developed a walking speed estimation algorithm from 

accelerometer signal as inputs where artificial Neural network (ANN) with four input layers and 
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two hidden layers was used for data processing [64]. However, the accuracy of the estimation was 

very low due to use of abstraction model instead of actual physical system. Human gait model has 

also been adopted by some researchers to estimate parameters like gait velocity, stride length and 

total walking distance. Simplified gait model based on human walking motion and biomechanics 

had been applied in several studies to reduce sensor configuration and computational complexity. 

Miyazaki proposed a symmetric gait model to calculate stride length and walking speed estimation 

method using a gyroscope attached to the thigh [65]. Tong et al. also did a significant work in 

using human gait model for estimation of gait speed where he modeled each leg as an individual 

segment and shank attached gyroscope was used for data collection [66]. The relative error 

achieved by both of the studies were 15% which is not acceptable for clinical diagnosis and 

rehabilitation applications.  

In recent years, the use of direct integration technique to estimate walking speed has become 

more popular. To the best of our knowledge, the first direct integration method used for walking 

speed approximation was proposed by Sabatini et al. in 2005, which used an IMU (biaxial 

accelerometer and biaxial gyroscope) placed on the instep of the foot [67]. The average error rate 

of their proposed system was 0.18 km/h. Alvarez extended Sabatini's analysis and presented a 

technique to combine the information gained from multiple sensors that potentially improved the 

walking speed approximation accuracy [68]. However, the distance covered by subjects during 

those measurements is 10 m only. The algorithm performance for relatively long distance is 

unknown.  

PD patients tend to have specific walking pattern in comparison to normal subjects. Variability 

from stride to stride can be seen in a patient from early stage to advanced stage of PD. The 

magnitude of variations can be directly correlated to disease severity. Among different PD 
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symptoms, gait variability is closely linked to risk of falls on elderly PD patients. Inability to 

sustain steady gait with greater gait cycle to cycle variations also is dependent on gait speed and 

healthy aging effects [69]. Gait variability of PD with link to disease severity and falls are 

investigated in several studies [70][71][72]. PD patients also considered to have contact with floor 

more than normal subjects. This characteristic leads to more average stance time and less average 

swing time compared to normal patients. Swing and stance phase of PD patients with respect to 

disease severity have been investigated by Shyam et al. [73]. Generally, during normal walking, 

the heel strikes the ground before the toes. However, in PD gait, patients walk with flat foot motion 

(the entire foot is placed on the ground at the same time). Sometimes toe touches before heel for 

PD patients with advanced stage of the disease [74]. Luca et al. conducted a study to find gait 

pattern before Freezing of Gait episode using Inertial Measurement unit. [75] 

In addition, PD patients usually can't lift foot like normal people during the swing phase of 

gait thus producing smaller clearance between the toes and the surface [76]. During heel strike, 

patients with PD have reduced impact. Intensity of the impact keeps decreasing with the 

progression of the disease [77].  

 . 
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CHAPTER 2  

PROPOSED METHODS 

 In this chapter, we would first discuss the protocol, demographic of the subjects recruited. Then 

proposed methodology to process sensor signal, extract and analyze parameters would be 

described. Last part of the chapter includes a brief introduction to different classifier we used. 

2.1 Data Acquisition 

2.1.1 Subjects 

    To develop preliminary algorithm and test the feasibility of the system, data was acquired from 

14 subjects who did not have PD or any neurodegenerative disorder but were educated about PD 

symptoms (tremor, bradykinesia, gait) and shown how to emulate it appropriately. Subject testing 

was approved by University of North Dakota IRB, and each subject signed a consent form. Each 

subject emulated rest and postural tremor for 25 to 30 seconds for low, medium, and high 

intensities. These intensities were intended to mimic UPDRS scores 1, 2, and 3, respectively. For 

resting tremor, subjects had to sit still and place their hand in their lap. To mimic postural tremor, 

subjects had to extend their hand in front of their body. The Physilog Gold wireless inertial 

measurement unit made by Gait Up was used to collect data. For bradykinesia measurement, eight 

subjects who did not have PD or neurodegenerative disorders were trained by an expert physician 

to emulate bradykinesia for different UPDRS scores. They were asked to tap interphalangeal joint 

of thumb using their index finger. Each subject did four trials to mimic UPDRS scores of 0, 1, 2 

and 3 and their performance were scored by a physician trained in UPDRS assessment. Subjects 

were instructed to stop after completing 10 finger tapping task. For gait speed measurement, Total 
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5 subjects participated in the trial of treadmill walking. All the participants were healthy and did 

not have any motor or neurological disorder. Each subject was instructed to walk on a treadmill 

for one minute for four different selected speeds: 0.5, 1, 2 and 3 miles/hour. 

     Nineteen Patients with PD participated in the study using the Physilog Gold wireless 

inertial measurement unit to assess tremor, bradykinesia and gait.  The Sanford Health IRB 

approved the study. Subject 1 was excluded from the study because the UPDRS scores were not 

obtained. Subject 17 was excluded because the patient took medicine the morning of the study 

visit.. Table 4 includes the demographics of the subjects recruited for the experiment whereas 

Table 5 listed the medication information and doses used by the patients. The UPDRS scores while 

off and on PD medications are listed in the Table 6 and Table 7 respectively. Details about the data 

collection process is described in the protocol section.     

 

    

 

 

 

 

 

 

Table 4. Demographics of subjects attended in the clinical trial. 

Subject# Date Gender Age MOCA Date of 

MOCA 

UPDRS 

Pre 

UPDRS 

Post 
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1 4/14/2017 M 73 25 11/10/2016 n/a n/a 

2 4/28/2017 F 61 28 4/28/2017 3 0 

3 5/5/2017 F 59 28 2/28/2017 15 8 

4 5/5/2017 M 81 24 5/5/2017 22 11 

5 5/12/2017 F 79 28 10/28/2016 12 6 

6 5/12/2017 F 65 27 12/19/2016 25 14 

7 5/19/2017 F 65 27 2/10/2017 5 5 

8 5/25/2017 M 64 25 12/13/2016 33 28 

9 5/26/2017 M 69 29 2/24/2017 11 13 

10 6/2/2017 M 82 24 6/2/2017 2 22 

11 6/8/2017 M 61 28 2/27/2017 3 37 

12 6/16/2017 F 64 25 6/16/2017 1 33 

13 6/26/2017 F 57 28 4/10/2017 3 47 

14 7/6/2017 M 75 28 7/6/2017 2 42 

15 7/20/2017 F 68 28 5/23/2017 2 32 

16 7/21/2017 F 67 26 7/21/2017 1 6 

18 7/28/2017 M 64 27 6/30/2017 1 14 

19 8/18/2017 M 65 26 8/18/2017 2 31 

 

 

 

Table 5. Medication information of Parkinson patients 
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Subject 

No 
Date Age DBS Medication Class Times/Day Dosage 

LEDD 

(mg) 

1 4/14/2017 73 No      

2 4/28/2017 61 No Sinemet Carb/Levo 

2 tablets 
4x/day, 1 
at bedtime 

and 1 
middle of 

night 

25-100 1000 

3 5/5/2017 59 No Sinemet Carb/Levo 
2 tablets 
6x/day 

25-100 1200 

4 5/5/2017 81 No Sinemet Carb/Levo 
1.5 tablets 

3x/day 
25-100 450 

5 5/12/2017 79 No Sinemet Carb/Levo 
1.5 tablets 

4x/day 
25-100 600 

6 5/12/2017 65 No Sinemet Carb/Levo 
1 tablet 
4x/day 

25-100 400 

7 5/19/2017 65 No Azilect 
MAO-B 
Inhibitor 

1/day 1 100 

8 5/25/2017 64 Yes Sinemet Carb/Levo 

1 tablets 
5x/day. 

add'l .5 if 
needed 

25-100 650 

9 5/26/2017 69 No Sinemet Carb/Levo 
2.5 tablets 

4x/day 
25-100 1000 

10 6/2/2017 82 No Sinemet Carb/Levo 
2 tablets 
3x/day 

25-100 600 

11 6/8/2017 61 No Sinemet Carb/Levo 
2 tablets 
3x/day 

25-100 600 

12 6/16/2017 64 Yes Rytary Carb/Levo 
1 tablet 
5x/day 

48.75-
195 

975 

13 6/26/2017 57 Yes Rytary Carb/Levo 
2 capsules 

4x/day 
36.25-

145 
696 

14 7/6/2017 75 No Requip dopaminergic 
3 tablets 
3x/day 

2 360 

15 7/20/2017 68 No Sinemet Carb/Levo 
1 tablet 
3x/day 

25-100 300 
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16 7/21/2017 67 No Sinemet Carb/Levo 
1 tablet 
3x/day 

25-100 300 

18 7/28/2017 64 No Sinemet Carb/Levo 
3 tablets 
3x/day 

25-100 900 

19 8/18/2017 65 No Sinemet Carb/Levo 
1.5 tablets 

6x/day 
25-100 900 

 

Premedication: 

Table 6. Off-medication UPDRS scores for different tasks 

Subject# Date Side Rest 

Tremor 

Postural 

Tremor 

Finger 

Tap 

Hand 

Grasp 

Gait Total 

1 4/14/2017  N/A 

2 4/28/2017 L 0 0 0 0 1 1 

3 5/5/2017 L 0 0 1 0 2 3 

4 5/5/2017 L 1 0 2 2 0 5 

5 5/12/2017 L 1 0 1 0 0 2 

6 5/12/2017 L 0 0 1 1 2 4 

7 5/19/2017 L 0 0 2 0 0 2 

8 5/25/2017 R 0 0 1 1 1 3 

9 5/26/2017 R 0 0 1 0 1 2 

10 6/2/2017 L 0 0 2 0 1 3 

11 6/8/2017 R 2 2 1 2 3 10 

12 6/16/2017 L 0 0 3 3 2 8 

13 6/26/2017 R 0 1 2 1 4 8 

14 7/6/2017 L 2 0 3 2 1 8 

15 7/20/2017 L 2 1 2 2 1 8 
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16 7/21/2017 R 0 0 0 0 0 0 

18 7/28/2017 L 1 0 2 0 1 4 

19 8/18/2017 R 1 1 3 2 0 7 

  

Post-medication: 

Table 7. On-medication UPDRS scores for different tasks 

Subject# Date Side Rest 

Tremor 

Postural 

Tremor 

Finger 

Tap 

Hand 

Grasp 

Gait Total 

1 4/14/2017   N/A 

2 4/28/2017 L 0 0 0 0 0 0 

3 5/5/2017 L 0 0 0 0 0 0 

4 5/5/2017 L 0 0 1 0 1 2 

5 5/12/2017 L 0 0 0 0 0 0 

6 5/12/2017 L 0 0 1 0 1 2 

7 5/19/2017 L 0 0 0 0 0 0 

8 5/25/2017 R 0 0 1 2 0 3 

9 5/26/2017 R 0 1 2 1 0 4 

10 6/2/2017 L 0 0 1 0 1 2 

11 6/8/2017 R 1 2 1 1 3 8 

12 6/16/2017 L 0 0 3 3 2 8 

13 6/26/2017 R 0 1 1 1 4 7 

14 7/6/2017 L 1 0 2 2 1 6 

15 7/20/2017 L 1 0 1 1 0 3 

16 7/21/2017 R 0 0 0 0 0 0 
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18 7/28/2017 L 1 0 1 0 0 2 

19 8/18/2017 R 1 1 3 1 0 6 

2.1.2 Measurement System 

The Physilog®4 is a lightweight (19g) and fully stand-alone wireless inertial measurement 

unit [79]. Physilog®4 Silver contains 10 MEMS sensors (3D accelerometer + 3D gyroscope + 3D 

magnetometer + 1 barometric pressure sensor) [79]. Physilog®4 Gold records, in addition, either 

GPS, ECG data, or other Analogic signals. Sampling frequency is programmable between 50Hz 

and 1KHz. In this study, sampling frequency was set to 100 Hz. Unlimited number of sensors can 

be synchronized wirelessly for multi-segment motion capture. Raw data can be extracted and 

processed with a library of functions provided by Gait Up and/or third-parties [79]. This stand-

alone system is comfortable to wear, and provides truly reliable motion data indoor and outdoor. 

 

Figure 5. Physilog device attached to the subject for measurement [79]. 
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2.1.3 Protocol 

Subjects came to the laboratory before they took the first dose of their PD medications (i.e. 

the last dose of their medication was the night before). We obtained MDS-UPDRS motor scores. 

We then used the Physilog Gold Inertial Measurement (PGIM) to assess tremor, bradykinesia, and 

gait. During the visit, the patient took their first dose of prescribed medication of the day after the 

initial PGIM assessment. Delaying the dose until the dose during research testing caused minimal 

clinical risks. The patient might experience more tremor, rigidity, and bradykinesia. These 

symptoms are common at the end of each dose, even during the days when they were not 

participating in the study. Exact time intervals between these two doses depended on when a 

patient takes the last dose of medicine the night before. Typically, a patient takes their last dose 

for the day at 6-7 pm and takes the first dose of the day when wakes up, usually 6-7 am. Because 

we scheduled the patient for the testing first thing in the morning (about 8 am), they were able to 

take their regular medicine no later than 930 am. A second PGIM assessment of tremor, 

bradykinesia, and gait  were taken 45 minutes after taking their medication. 45 minutes would be 

enough time to wait after taking the PD medication because it takes Sinemet 

(Carbidopa/Levodopa), the most commonly prescribed meds for PD, 30 minutes to kick in. A PD 

patient may take one or more of the following medicines: Commonly used:Carbidopa/levodopa 

(Sinemet); Pramipexole (Mirapex); Ropinolol (Requip); Less commonly used: Amantidine 

(Symmetrel); Selegiline (Eldepryl); Rasagiline (Azilect); trihexyphenidyl (Artane). 

  

1. Tremor. For tremor analysis, we have placed the sensors at the distal end of the third 

metatarsal bone, the extensor surface of the forearm 10 cm proximal to the wrist, and extensor 

surface of the upper arm 10 cm to the elbow of the more affected hand. The hand was splinted to 
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prevent movement of the metacarpal joints, proximal interphalangeal joints, and distal 

interphalangeal joints of the second, third, fourth, and fifth fingers. Tremor activity was measured 

with the arm and the hand resting on the thigh for 30 seconds to measure rest tremor and with the 

arm outstretched in a horizontal position for 30 seconds to measure posture tremor.  

 

2. Bradykinesia. For bradykinesia analysis, a sensor was placed at the dorsum of the tip of the 

index finger of the more affected hand. The subject used the index finger to tap the interphalangeal 

joint of the thumb as fast as possible for 30 seconds. In a separate trial, they opened and closed 

their palm as fast as possible for 30 seconds.  

 

3. Gait analysis. For gait analysis, sensors were attached to the heel cap and the toe cap of the 

shoe on the more affected side. Another sensor was placed at the wrist to measure the amplitudes 

of arm swing. The subjects walked as fast as possible for 10 meters, turned around, and walked 

back to the starting point. A research personnel walked with the patients and catch the patients in 

case they lose their balance. 

  

Data were then transferred from the sensors to Laptop. The signal processing program 

developed in our laboratory analyzed the data collected and generated the primary outcome 

measures listed above.  

2.2 Tremor Signal Processing 

We first developed algorithm for mock patients who were instructed to emulate the resting 

and postural tremor for different severities. Next, the algorithm were tuned when the algorithm 

was tested with patients before and after medication. 
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In the algorithm developed to analyze mock patients data, the preprocessing and tremor 

detection process (used to validate appropriate emulation of tremor) used was similar to that used 

in the study done by Salarian et al. [12]. The notable differences in the process used for this study 

are the inclusion of the accelerometer signals, multiple locations (wrist and finger), no dominant 

frequency amplitude threshold used for the detection process, and the use of Welch’s method of 

spectrum analysis. For the preprocessing and tremor detection, MATLAB software as used, and 

each axis was analyzed separately. In the first step, the drift present in the signals was removed 

using a high pass Butterworth infinite impulse response (IIR) filter with a cutoff frequency of 

0.25Hz. Next, the signal was divided into 3-second windows in order to optimize tremor detection. 

For each window, the frequency spectrum of the signal was calculated using Welch’s method. 

Next, the pole with the highest amplitude was considered the dominant pole. If its frequency was 

between 3.5 and 7.5 Hz (PD tremor range) [42][80], the window was classified as a tremor 

window. 

After this preprocessing and tremor detection, the results for each trial were analyzed to 

determine if the emulated tremor was confirmed to be adequate. This was done by using a tremor 

detection threshold of 80%. Therefore, of the six windows from each signal, over 80% had to have 

a dominant frequency in the PD range in any of the three axes of both the accelerometer and 

gyroscope. If this was the case, the entire 20-second window was considered PD tremor and it was 

used for quantification analysis. The power spectral density of subject 1 is shown in Figure 3 as a 

reference of adequately emulated tremor. Using this process, two sets of resting tremor trials and 

three sets of postural tremor trials were excluded. 
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One noticeable difference we used is determination of dominant axis using principal 

component to determine dominant axis of tremor. Overall system to predict tremor score is shown 

in the Figure 7. 

Detrending method was used to detrend the signal using Matlab detrend command. The 

MATLAB® function detrend subtracts the mean or a best-fit line (in the least-squares sense) from 

the data [81]. Removing a trend from the data enables to focus our analysis on meaningful 

fluctuations in the data. A linear trend points to increase or decrease in the information 

systematically [81]. In case of Inertial Measurement Unit, a systematic shift results from sensor 

drift. For example, a IMU signal before and after detrending is shown in Figure 8. From the figure 

it is seen that signal after detrending operation centered around 0 value which was not the case 

before detrending operation because of sensor drift.  While trends can be meaningful, here analyses 

yield better insight once you remove trends [81].  

Median filter was used to smooth the signal by suppressing noise. The median filter works by 

running through the signal value by value, replacing each value with the median of neighboring 

entry values [82]. The median filter window slides over the entire signal and filters each element 

of the signal. Butterworth filtering was used in the same way it was used for first experiment. 

However, instead of 3 second window 10 second window was used to analyze the tremor signal 

more efficiently. 10-second window gives 1000 sample where we can run welch's algorithm to 

compute Power Spectral Density. If the input signal is x, the function used for PSD calculation 

returns PSD estimate, pxx. Welch's overlapped window averaging estimator was used to compute 

pxx. x is considered a single channel when it is a vector. For x as a matrix, each column is 

considered a channel and the PSD is computed for each column of input signal matrix and stored 

in the corresponding column of PSD signal. If x is real-valued, output pxx is a one-sided estimate 
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of power spectral density. If x is complex-valued, output pxx is a two-sided estimate of power 

spectral density. According to welch's algorithm to obtain PSD, x is divided into the 50% 

overlapping segments. Segments were chosen such that total no of segments gets close to but not 

exceed 8. Hamming window is used for each segment. The average of modified period-grams are 

taken to obtain the PSD estimate. So in case, input vector x can not exactly get divided into an 

integer number, x would be truncated accordingly. The function also returns f as a frequency 

vector, f (cycles/unit time). The sampling frequency, fs, can also be given as an input parameter to 

the function. The number of samples per unit time is called sampling frequency [83]. 

Flowchart for signal processing algorithm is shown below in Figure 6

 

Figure 6. Flowchart for signal processing algorithm 

 

 

Figure 7. Flowchart for operation 
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(a) 

 

(b) 

Figure 8. Detrended signal (a) before the detrend operation and (b) after the detrend 

operation. The signal centered around 0 after detrending operation. 
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Figure 9. Power calculation using Pwelch. The PSD curve has a peak around 5 Hz. 

2.3 Gait Analysis 

For Gait analysis Software provided by GaitUp was used to collect spatio-temporal parameters 

from Inertial measurement Unit [84]. All the parameters obtained before and after medication 

would be discussed later. We first experimented with healthy patients data to come for an algorithm 

for speed measurement. Total 5 subjects participated in the trial of treadmill walking. All the 

participants were healthy and did not have any motor or neurological disorder. Each subject was 

instructed to walk on a treadmill for one minute for four different selected speeds: 0.5, 1, 2 and 3 

miles/hour. As the speed would be measured on real world coordinate, acceleration in sensor axis 

is converted to real world axis form orientation information extracted from gyroscope signal. Foot 

acceleration can be projected from sensor acceleration using following equations:  
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where Ax and Az foot acceleration in X and Z axis and ax and az are sensor outputs. 
 is angle 

computed by integration of gyroscope signal around Y axis. After this step, gait cycle was divided 

in four different phases by analyzing peaks of angular velocity signals obtained from gyroscope 

(Figure 10). Four detected points were: stance, heel-off, swing and heel-strike (HS). The 

segmentation procedure was developed in MATLAB following the works done by Sabatini [67]. 

As treadmill speed is aligned with x direction of foot sensor, velocity in x direction is considered 

as gait speed. To accomplish that, strap-down integration of foot acceleration was done using the 

following equations on foot moving period of a gait cycle: 

�� = ��� �� ��	�����������  ………..……………………..(3) 

where vx is velocity in x direction, Tstart is the point of beginning of toe off and t is end of heel 

strike. As human gait is cyclical, integration is started when foot started moving from foot flat 

position in each gait cycle and integration stops at the beginning of next foot flat period. A zero-

velocity update method was applied to estimate initial velocity before each gait cycle.  

 

 

Figure 10. Detection of peaks in angular velocity signal for gait phase segmentation.  
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2.3.1 Kalman filter 

 Kalman filtering (KF) was used to reduce the noise of a signal by removing uncertainty 

[85]. The velocity calculation by integrating the acceleration signal tends to produce noisy results. 

To fix this, KF can be used to fine tune the estimated velocity and improve the result. KF is also 

used for predicting the future states. In our study, a KF was implemented to estimate current 

velocity by reducing the effect of integration error. The estimation process through KF mainly 

works based on prediction equation and update equation. The prediction equation estimates the 

current state based on the previous state of the system while update equation is used to check the 

prediction accuracy.  

2.4 Bradykinesia 

For our setup, during finger-tapping and hand-grasping task albeit, the angular velocity is 

dominant along y-axis. But due to the existence of movement in other axes and also to reduce axis 

bias of sensors, angular velocity data from other axes were also considered. Any drift that might 

have gotten incorporated due to sensor noise was filtered by using a band pass filtering with a 

bandwidth of 0.3 Hz-20 Hz. Next, we developed an automatic segmentation algorithm to segment 

each cycle of finger tapping or hand grasping angular velocity signal based on frequency of taping 

or grasping. The average time for each finger tapping was calculated. Then the width of the 

minimum peak distance to detect peak in angular velocity signal was set as 0.7 multiplied by the 

width of the tapping interval. The minimum height of peak was set as 0.20 multiplied by the length 

of highest peak. These thresholds were selected based on trial and error basis on available datasets. 

If a patients have severe PD, these values may have to be adjusted. Findpeaks function of 
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MATLAB was then applied to detect peaks that indicate completion of each cycle of a task (finger 

tapping or hand grasping). 

 

Figure 11. Before medication finger tapping. Peaks are detected using automatic peak 

detection algorithm. 2.5 seconds of data with a sampling frequency of 100 Hz is shown in 

the figure 

After signal processing stage, signals were passed into the feature extraction algorithm. As we 

distinguished each finger or hand palm closing points using peak detection techniques, we 

segmented the interval between each peaks to a separate matrix. After that the maximum value of 

each segment signal was calculated which indicates the maximum opening velocity of finger or 

hand palm. We also calculated the mean and standard deviation of each tapping interval and took 
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it as a feature. Hesitations was quantified when tap time was well below and above mean tap time 

of the signal. 

 

Figure 12. After medication finger tapping. Peaks are detected using automatic peak 

detection algorithm. 2.5 seconds of data with a sampling frequency of 100 Hz is shown in 

the figure 

2.4.1 Classification 

The accuracy of a classification technique is judged based on prediction accuracy. There are three 

common techniques to evaluate the prediction accuracy. First technique is to split a certain portion 

(generally two third) of whole dataset to use as training set to train the classifier while using the 

rest data as test set to evaluate the prediction performance. Another technique is known as cross 
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validation where the dataset is divided into equal sized mutually exclusive subsets and for one 

subset, classifier is trained by the union of other subsets. The average of error rate is than used as 

the error rate of the classifier. The third technique is leave one out method which is mainly used 

for small dataset. This is a special form of cross validation where only one instance is used as test 

set while all other data are used for training the classifier. This is the most computationally 

expensive method but useful for a more accurate estimation of classifier performance. For our 

system, we used five-fold cross validation method to predict the accuracy of the proposed system. 

The most critical step for classification is to find out the specific machine learning algorithm which 

will result in highest accuracy for the given dataset. As a result, we evaluated a handful of 

classification techniques including logical/symbolic technique like decision trees, ensembles of 

classifiers techniques using random forest, instance based learning technique named k-nearest 

neighbor and finally the supervised machine learning technique named Support Vector machine 

(SVM). 

•  Support Vector Machine (SVM) 

  First, we have applied the  widely used and state-of the art classifier, named SVM classifier, 

which is the newest supervised machine learning classification technique. In binary classification, 

SVM creates a hyperplane that separates data from two different classes. The largest possible 

distance is created between the separating hyperplane by maximizing the margin, thus creating the 

separation [86]. 

  The choice of kernel determines the separation boundary of the classes. Radial Basis Function 

(RBF) or Gaussian kernel are popular algorithms to use as default kernels for any non-linear model. 

RBF is defined as:  

!	", "$� = exp 	−()|" − "′|)² ………………………………….(5)                           
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where " and "′ are two training samples of the feature space and γ determines the influence of the 

squared Euclidian distance between the feature vectors x and x’ to build the hyperplane. Quadratic 

and cubic kernels are polynomial kernels with degrees of 2 and 3, respectively. Polynomial kernels 

are defined by 

!	", -� = 	".- + 0�1………………………………………(6) 

where " and - are vectors in the input space (i.e., vectors of features computed from training or 

test samples) and c (> 0) is a free parameter trading off the influence of higher-order versus lower-

order terms in the polynomial. It is generally not advised to consider higher order polynomials 

because they tend to over-fit the data. 

 

•  K Nearest Neighbor 

  The next classification technique applied was an instance-based statistical method, kNN. 

This technique is based on the principle that the instances of a dataset will exist in close proximity 

to other instances that have similar properties [87][86][89][95][94][94][94][95]. In this method, a 

test example is classified by observing the class label of its nearest neighbors. The kNN locates 

the k nearest instances to the query instance and determines its class by identifying the single most 

frequent class label. A distance metric is generated by calculating the relative distance between the 

objects. The objects under the same classification label will have the minimum distance while the 

distance will be maximum for objects under different classes.  A list of distance metrics calculation 

approaches is shown in table II. 
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Table 8 Distance matrices for kNN 

Methods Equation 

Minkowsky 2	", -� = 34|"5 − -5|
6

578
ʳ:

8 ;<
 

Manhattan 2	", -� = 4|"5 − -5|6

578
 

Chebychev 

 

2	", -� = =�"5786 |"5 − -5| 
 

Euclidean 2	", -� = 34|"5 − -5|
6

578
²:

8 ><
 

Camberra 2	", -� = 4 |"5 − -5||"5 + -5|
6

578
 

Kendall’s Rank 

Correlation: 

2	", -� = 1 − 2=	= − 1� 4 4 AB�CD"5 − "EFAB�CD-5 − -EF
5G8

E78

6

57E
 

 

 The performance of the KNN classifier depends on the choice of k. Since there is no principled 

way to choose k, sometimes the algorithm can run poorly. Also another major disadvantage of this 

system is large computational time. 

 

•  Decision Tree 

  Decision trees, a hierarchical classifier method, is the simplest and most widely used logic-

based classification technique. In this approach, the test data is classified by sorting as trees based 
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on their feature values. The node of the decision tree is the feature of the test data to be classified 

and the branches represent a value that the node can predict. Various efficient algorithms have 

been developed to construct a reasonably accurate decision tree such as Hunt’s algorithm [88], 

Gini’s diversity index method, and relief algorithm [89]. Once the decision tree is developed, the 

unknown feature values from test data is then passed down to all branches of the node to detect 

the unknown class distribution. The output is the combination of different class distribution that 

sum to 1. Decision tree mainly performs better for categorical features but does not perform well 

when classes have multimodal distribution.   

  

•  Random Forest  

  A random forest is composed of a large number of decision trees which are mainly used to 

correct the overfitting problem of decision trees [90]. In this technique, multiple decision trees, 

trained from different subsets of the same training set, are averaged and overfitting is avoided by 

reducing the variance of the system, which eventually increases the performance of the final model. 

The training algorithm works by applying bootstrap aggregating, or bagging techniques, to tree 

learners. For example, if a training set x = x1, ..., xn has responses y = y1, ..., yn, applying bagging 

will repeatedly  select a random sample with replacement of the training set for B different times 

and will fit the trees to these samples. Now for b = 1,..., B, if we call each different samples from 

n training examples of x and y as xa and xb, then the decision tree need to be trained for these xb 

and yb. Once the model is trained, predictions for unseen samples or test set x’ can be generated 

by calculating the average of the predictions from all the individual decision trees using (2): 

HI = 1J 4 HKL 	"$�
M

K78
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CHAPTER 3  

RESULTS AND DISCUSSION 

3.1 Results 

3.1.1 Tremor Measurement 

As we have done two different study for tremor, results with subjects emulating tremor 

following by results with clinical trial where 19 PD patients have been participated. 

3.1.1.1 Study with subjects emulating tremor 

The results from the calculation of extracted features for the different severities of resting and 

postural tremor are listed in Fig 14. It is shown in the figure that the value of every feature increases 

as tremor severity increases. The first two and second two columns depict resting and postural 

tremor results, respectively. The position of the sensor (index finger or wrist) alternates with each 

column starting with the finger position. Rows one to three are gyroscope feature results: 1. Natural 

logarithm of the root mean square of angular velocity; Log(RMS (Ang. Vel.)) 2. Natural logarithm 

of gyroscope peak power; Log(Gyro Power) 3. The standard deviation of angular velocity; 

Stdev(Ang. Vel.). Rows four to six are accelerometer feature results: 4. Natural logarithm of the 

root mean square of linear acceleration; Log(RMS (L. Accel.)) 5. Natural logarithm of 
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accelerometer peak power; Log(Accel Power) 6. The standard deviation of linear acceleration; 

Stdev(L. Accel.). 

The classification accuracy of the resting and postural tremor severity quantification models 

for different combinations of features are shown in Table 8. The different combinations of features 

were selected based on the placement of sensor on the body (index finger and wrist) as well as 

sensor type (gyroscope and accelerometer). For example, when the features calculated from both 

sensors fixed on the index finger were used to train the classifier, it achieved a classification 

accuracy of 88.9% (column 3, row 4) for resting tremor and 82.1% (column 4, row 4) for postural 

tremor. However, when the classifier was trained with all the features calculated from both sensors 

on both the index finger and wrist, the accuracy was 83.3% (column 3, row 10) for resting tremor 

and 79.5% (column 4, row 10) for postural tremor. In total, the classifier performance for all the 

sensors and locations were computed separately and together (Table 8). 
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Figure 13. Severities of resting and postural tremor. Tremor severity variation of the 12 

features extracted when the sensor is placed on both the wrist and finger position are 

displayed in the figure range a-l and m-x for rest and postural tremor, respectively. 
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Table 9. Resting and postural tremor severity quantification 

SENSOR 

PLACEMENT 
SENSOR 

REST 

TREMOR 

POSTURAL 

TREMOR 

Finger 
 

Accelerometer 80.6% 79.5% 

Gyroscope 88.9% 59.0% 

Accelerometer + 
Gyroscope 

88.9% 82.1% 

Wrist 
 

Accelerometer 77.8% 48.7% 

Gyroscope 50% 53.8% 

Accelerometer + 
Gyroscope 

80.6% 53.8% 

Finger + Wrist 
 

Accelerometer 86.1% 84.6% 

Gyroscope 86.1% 69.2% 

Accelerometer + 
Gyroscope 

83.3% 79.5% 

 

Furthermore, the effect of standard deviation of accelerometer and gyroscope values on 

overall classification accuracy was determined. When the standard deviation feature was excluded 

from the index finger analysis, the classifier achieved a classification accuracy of 86.1% and 

78.8%, compared to the 88.9% and 81.8% accuracy achieved when it was included for resting and 

postural tremor, respectively. 

3.1.1.2 Results with clinical trial of PD patients 

3.1.1.2.1 Resting Tremor 

All the parameter value computed for each of the subjects are shown in Table 10 . Each feature 

has two values computed while signals acquired before and signals captured after medication 

resting tremor task. UPDRS scores of the resting tremor for both before and after taking medication 

had been taken by a clinician. As shown in Table 10 , each feature values (before medication and 
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after medication) were colored either green or red. Feature values were colored green on when 

changes in On medication value is consistent with changes in UPDRS scores. It could happen in 

two possible scenarios. First, when there is a change of less than 10 % for On medication value 

with Off medication value and UPDRS scores are same for both before and after medication. Also, 

the feature values remained green if On medication value changes more than 10 % with respect on 

Off medication value and there is a change in UPDRS scores for before and after medication. From 

the table 10, it can be seen that dominant frequency parameter values for finger resting tremor are 

colored red for several subjects as the feature values are not consistent with UPDRS scores for 5 

subjects. So it is colored red for that values in rows corresponding to those subjects..  

 Also, classification diagram for finger tremor is listed in figure 15. Rows 0, 1, 2 specifies the 

number of subjects that has tremor of UPDRS scores of 0, 1 and 2 respectively. Column 0, 1 and 

2 indicates the number of subjects that has been predicted as UPDRS scores of 0, 1 and 2 

respectively. Green color in the rectangle box in the figure means UPDRS score has been reported 

perfectly while red score means the subject tremor severity score predicted does not match with 

ground truth.  
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Table 10. Before and after medication feature values for finger tremor (resting). Feature 

values were colored green on when changes in On medication value is consistent with changes 

in UPDRS scores. Features were colored red when when changes in On medication value is 

not consistent with changes in UPDRS scores 

Subject 

Number 

Number of Tremor 

Window 
Peak Power/Total Power 

(Ratio) 
Dominant Frequency Amplitude UPDRS Score 

Before 

Medication 
After 

Medication 
Before 

Medication 
After 

Medication 
Before 

Medication 
After 

Medication 
Before 

Medication 
After 

Medication 
Before 

Medication 
After 

Medication 
2 0 0 0.43 0.43 4.96 5.11 1.07 1.01 0 0 

3 0 0 0.40 0.44 2.12 3.94 1.6 1.53 0 0 

4 3 0 0.70 0.52 3.96 3.40 2.12 1.91 1 0 

5 1 0 0.58 0.47 4.51 3.12 2.12 1.87 1 0 

6 0 1 0.49 0.52 3.96 4.11 1.45 1.39 0 0 

7 0 0 0.47 0.51 3.94 4.64 1.29 1.23 0 0 

8 0 0 0.41 0.42 3.42 3.51 1.44 1.38 0 0 

9 0 0 0.44 0.47 3.12 4.90 1.46 1.61 0 0 

10 0 0 0.39 0.42 2.69 2.73 1.63 1.58 0 0 

11 9 9 0.92 0.88 5.07 5.07 2.9 2.85 2 2 

12 0 0 0.39 0.49 3.81 4.59 1.59 1.78 0 0 

13 0 0 0.46 0.44 3.36 3.4 1.39 1.44 0 0 

14 6 4 0.71 0.68 4.29 4.03 2.62 1.61 2 1 

15 9 5 0.88 0.75 4.42 3.94 3.3 1.93 2 1 

16 0 0 0.41 0.40 2.51 2.58 1.61 1.49 0 0 

18 2 2 0.61 0.61 3.40 3.27 1.78 1.66 1 1 

19 6 9 0.65 0.67 5.46 5.55 3.22 3.45 1 1 
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Figure 14. Finger tremor classification with SVM 5 fold cross validation 

Table 11 : Classification accuracy across different classifier for finger tremor 

Classifier Accuracy Sensitivity Specificity AUC 

SVM (Linear) 97.10% 96.33% 97.87% 0.99 

kNN 91.20% 90.67% 91.73% 0.94 

Decision tree 88.20% 88.33% 88.07% 0.93 

Random Forest 82.40% 69.33% 95.47% 0.9 

 

Different extracted Parameter values for tremor analyzed from wrist position are shown in 

Table 12. Classification results based on the selected features are presented in Figure 16. 

Table 12. Before and after medication feature values for wrist tremor (resting). Feature 

values were colored green on when changes in On medication value is consistent with changes 

in UPDRS scores. Features were colored red when when changes in On medication value is 

not consistent with changes in UPDRS scores 

Subject 

Number 
Number of Tremor 

Window 
Peak Power/Total Power 

(Ratio) 
Dominant Frequency Amplitude UPDRS Score 
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Before 

Medication 
After 

Medication 
Before 

Medication 
After 

Medication 
Before 

Medication 
After 

Medication 
Before 

Medication 
After 

Medication 
Before 

Medication 
After 

Medication 
2 0 0 0.56 0.53 3.59 3.77 1.17 1.09 0 0 

3 0 0 0.38 0.40 3.52 3.68 1.16 1.13 0 0 

4 1 0 0.56 0.43 4.42 3.94 1.32 1.18 1 0 

5 3 0 0.50 0.43 3.67 3.10 2.02 1.37 1 0 

6 8 2 0.73 0.52 4.29 4.16 1.49 1.37 0 0 

7 1 0 0.47 0.48 4.49 4.54 1.21 1.13 0 0 

8 0 0 0.40 0.39 4.33 3.94 1.37 1.33 0 0 

9 0 0 0.44 0.40 2.95 4.29 2.04 2.01 0 0 

10 0 0 0.39 0.47 2.60 2.76 1.13 1.18 0 0 

11 9 9 0.95 0.95 5.11 5.07 2.67 2.65 2 2 

12 0 0 0.45 0.46 4.20 5.07 1.45 1.5 0 0 

13 0 0 0.37 0.39 3.11 3.27 1.11 1.17 0 0 

14 4 3 0.54 0.51 5.11 4.29 1.3 0.9 2 1 

15 8 4 0.81 0.75 4.51 3.86 2.91 2.45 2 1 

16 0 0 0.46 0.40 4.81 3.81 0.88 0.93 0 0 

18 2 2 0.54 0.52 3.51 3.48 1.13 1.08 1 1 

19 2 2 0.55 0.52 4.60 3.48 1.15 1.08 1 1 

 

 

Figure 15. Wrist tremor classification with 5 fold cross validation 

Table 13 Classification accuracy across different classifier for wrist tremor 
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Classifier Accuracy Sensitivity Specificity AUC 

SVM (Linear) 85.30% 86.00% 84.60% 0.93 

kNN 82.40% 83.67% 81.13% 0.86 

Decision tree 79.40% 72.33% 86.47% 0.77 

Random Forest 79.40% 81.67% 77.13% 0.8 

 

3.1.2 Bradykinesia 

 Like tremor analysis two different study has been done and results from two studies would be 

mentioned here: 

3.1.2.1 Results with Subjects Emulating PD Bradykinesia 

 Table 14 shows the statistically significant features of x-axis gyroscope data for all 4 UPDRS 

scores. Sample entropy, and Lyapunov exponents were not significantly different. 

 Figure 17 represents the 4 UPDRS score trials based on the two most significant features 

named the activity and Hurst component. 
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Figure 16. Four UPDRS scores representation based on activity and Hurst exponent. 

 Table 15 shows the classification accuracy achieved through multiclass SVM classification 

using a Gaussian kernel function: 

Table 14. Statistically significant features of x-axis gyroscope data 

UPDRS 

Score 

Approximate 

Entropy 

Activity Mobility Complexity 

Hurst 

exponent 

Maximum Power Total Power 

0 0.23±0.029* 68.9±29.0* 0.29±0.03* 0.82±0.09* 0.47±0.004* 206872.8±2008.7* 887506.5±45521.9* 

1 0.26±0.012* 31.4±32.2* 0.24±0.01* 0.73±0.07* 0.49±0.005* 95601.2±1819.1* 706666.5±16902.4* 

2 0.31±0.022* 14.1±35.4* 0.22±0.01* 0.73±0.05 0.51±0.007* 59060.5±1998.2* 411477.2±81817.9* 

3 0.34±0.052* 5.41±16.5* 0.21±0.01 0.67±0.05* 0.54±0.013* 21031.8±676.4* 244139.6±84753.7* 

 

Table 15. Classification accuracy with multiclass SVM classification  

UPDRS 

Score 
Accuracy Sensitivity Specificity AUC 

0 100% 100% 100% 1 
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1 100% 100% 100% 1 

2 94% 100% 88% 0.99 

3 95% 90% 100% 0.99 

Overall 97.25% 97.5% 97% 0.995 

 

3.1.2.2 Trial with PD patients 

 Bradykinesia parameter for finger tapping task is shown in table 16. Also classification 

diagram for the finger-tapping is listed in figure 18 Rows 0,1,2 and 3 lists the number of subjects 

that has tremor of UPDRS scores of 0, 1, 2 and 3 respectively. Column 0, 1, 2 and 3 lists the 

number of subjects that has been predicted as UPDRS scores of 0, 1 and 2 and 3 respectively. As 

like Table 10, green color in Table 16 and Table 18 means UPDRS score has been reported 

perfectly. Red color indicates that feature values are not consistent with UPDRS scores. 

 

Table 16. Bradykinesia finger-tapping features. Feature values were colored green on when 

changes in On medication value is consistent with changes in UPDRS scores. Features were 

colored red when when changes in On medication value is not consistent with changes in 

UPDRS scores 

No. 

Number of 

Tapping 
Tap time(s) 

Average 

Closing 

Acceleration 

(m/s^2) 

Average 

Opening 

Angular Velocity 

(degree/second) 

Average Closing 

Angular Velocity 

(degree/second) 

Standard 

Deviation 

of Tap time 

(s) 

Number of 

hesitation 

UPDRS 

Score 

BM AM BM AM BM AM BM AM BM AM BM AM BM AM BM AM 

2 64 71 0.45 0.41 0.85 0.55 318 243 342 245 0.04 0.04 3 0 0 0 

3 90 104 0.33 0.28 5.04 5.33 1017 1530 1246 1294 0.04 0.02 3 3 1 0 

4 37 53 0.81 0.6 2.14 3.1 404 835 548 841 0.18 0.06 4 4 2 1 

5 70 68 0.42 0.44 4.38 5.88 778 1248 871 972 0.03 0.03 9 6 1 0 

6 95 127 0.31 0.23 5.39 4.31 369 240 762 524 0.07 0.08 6 5 1 1 
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7 99 88 0.26 0.32 2.65 3.88 529 1021 574 1015 0.15 0.03 3 2 2 0 

8 87 114 0.33 0.25 4.93 5.73 549 921 1002 1369 0.07 0.08 4 4 1 1 

9 87 105 0.33 0.28 6.8 6.4 657 582 1167 964 0.09 0.19 1 2 1 2 

10 34 51 0.91 0.57 1.41 1.84 1556 1861 1206 1503 0.14 0.05 2 5 2 1 

11 57 84 0.51 0.34 3.39 5.19 1201.1 1225.5 1212.6 1088.33 0.08 0.06 2 0 1 1 

12 31 26 0.99 1.22 0.71 0.8 276.08 260.47 164.63 171.81 0.45 0.26 2 2 3 3 

13 39 48 0.76 0.64 2.31 3.14 534 768 670 867 0.15 0.1 3 1 2 1 

14 56 42 0.48 0.67 3.13 1.24 426.01 208.93 501.54 226.54 0.44 0.19 3 0 3 2 

15 70 39 0.43 0.77 0.833 1.61 239.49 834.98 315.85 1039.34 0.25 0.15 4 2 2 1 

16 96 81 0.3 0.37 4.23 7.4 898.52 1191.8 1013.3 1242.3 0.03 0.01 2 0 0 0 

18 64 71 0.46 0.41 2.64 2.83 717.64 761 649.95 727 0.18 0.06 2 1 2 1 

19 47 53 0.64 0.56 1.38 2.31 499.72 460.74 393.95 427.41 0.48 0.5 1 1 3 3 

* BM: Before Medication; AM: After Medication 

 

 

Figure 17. Finger tapping classification with 5 fold cross validation 
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Table 17 Classification accuracy across different classifier for finger tapping 

Classifier Accuracy Sensitivity Specificity AUC 

SVM (Linear) 88.20% 90.75% 85.65% 0.89 

kNN 64.70% 70.75% 58.65% 0.66 

Decision tree 58.80% 67.00% 50.60% 0.59 

Random Forest 82.45% 80.25% 84.65% 0.84 

 

Table 18. Bradykinesia hand grasping features. Feature values were colored green on when 

changes in On medication value is consistent with changes in UPDRS scores. Features were 

colored red when when changes in On medication value is not consistent with changes in 

UPDRS scores 

No. 

Number 

of 

Grasping 

Grasp 

time (sec) 

Average 

Closing 

Acceleration 

(m/s^2) 

Average 

Opening 

Angular 

Velocity 

(deg/sec) 

Average Closing 

Angular 

Velocity(deg/sec) 

Standard 

Deviation 

of Grasp 

time (sec) 

Number 

of 

hesitation 

UPDRS 

Score 

BM AM BM AM BM AM BM AM BM AM BM AM BM AM BM AM 

2 65 42 0.46 0.6 5.04 2.94 1009 849 1499 1385 0.05 0.04 1 1 0 0 

3 46 51 0.64 0.58 1.32 1.68 1171 1446 856 994 0.05 0.04 1 3 0 0 

4 36 53 0.56 0.38 1.6 1.78 1647 1992 1593 1637 0.12 0.06 4 2 2 0 

5 42 55 0.66 0.49 1.88 3.55 928 951 1183 1360 0.05 0.07 3 2 0 0 

6 53 77 0.53 0.41 2.01 1.48 422 602 601 792 0.05 0.06 6 2 1 0 

7 75 119 0.4 0.25 2.25 3.88 756 1162 773 1201 0.05 0.05 3 2 0 0 

8 56 60 0.53 0.5 1.98 2.97 1245 1426 768 850 0.17 0.08 2 2 1 0 

9 63 59 0.45 0.5 3.79 3.04 1167 1042 1515 1260 0.09 0.06 1 2 0 1 

10 50 53 0.64 0.57 2 1.97 1818 1766 1643 1637 0.04 0.05 2 7 0 0 

11 59 69 0.48 0.42 1.47 1.99 1524 1754 1483 1853 0.08 0.07 2 0 2 1 

12 17 20 1.71 1.55 0.47 0.76 294 472 129 284 0.33 0.13 2 2 3 3 
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13 58 61 0.51 0.48 2.06 2.08 594 588 634 654 0.11 0.1 1 1 1 1 

14 40 50 0.56 0.46 3.04 2.81 644 664 903 892 0.43 0.38 3 0 2 2 

15 31 42 0.99 0.71 1.14 1.27 1063 1684 1313 1808 0.2 0.15 4 2 2 1 

16 85 87 0.35 0.33 2.05 2.13 1055 1101 1237 1261 0.08 0.02 2 0 0 0 

18 57 57 0.52 0.51 0.73 0.59 1513 1875 1438 1802 0.18 0.06 2 1 0 0 

19 34 42 0.98 0.72 1.18 1.28 1052 1701 1300 1826 0.20 0.15 4 3 2 1 

* BM: Before Medication; AM: After Medication 

 During the trial PD patients showed different severities of bradykinesia symptoms both before 

and after taking medication. There were total 32 trials for 16 subjects if we count both before 

taking PD medication and after medication trial. UPDRS score 0, 1, 2, 3 scores were observed by 

clinician during finger tapping task. Four class classification was performed. For training the 

classifier, 7 subjects showing no symptoms of bradykinesia are classified as zero. Class 1 and 

Class 2 consists of features extracted from 14 subjects and 8 subjects respectively. Class 3 consists 

of 3 subjects parameters. Then five-fold cross validation accuracy was performed on the feature 

dataset and initially 65.5% classification accuracy was achieved. Features included in the training 

dataset was: Number of tapping, mean tap time, average closing acceleration, average opening 

angular velocity and average closing angular velocity. 
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Figure 18. Hand grasping classification with 5 fold cross validation  

 After this number of tapping feature was removed and hesitation and standard deviation of tap 

time was included in the feature training dataset and accuracy was increased from 65.1% to 85.5%. 

The classification result is shown in figure. 

 As similar with finger tapping, table 18 highlights the feature values for hand grasping. 

Table 19 Classification accuracy across different classifier for hand grasping 

Classifier Accuracy Sensitivity Specificity AUC 

SVM (Linear) 88.20% 88.25% 88.15% 0.89 

kNN 82.40% 83.50% 81.30% 0.87 

Decision tree 85.30% 83.25% 87.35% 0.83 

Random Forest 85.30% 82.50% 88.10% 0.85 

 

3.1.3 Gait 

Three different study has been done for gait analysis of PD patients. Results section would 

include results for each of the study. 

3.1.3.1 Gait Speed Measurement. 

The estimation accuracy of KF for various values of ∈, O, P and Q is shown in Table 20. The values 

were changed from 1e-2 to 1e-6 gradually. As illustrated in Table I, the best estimation accuracy was 

obtained while the values of ∈, O, P and Q were set to 1e-5.  

 Once the best performance of KF was deduced, the system performance for various speeds 

was examined. The results obtained for various speeds are listed in Table 21, which shows the 

calculated speed before and after Kalman filter along with the measured mean squared error. 
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Table 20. Performance of KF for different G and Q matrices 

Case G and Q Matrices Mean 

Square 

Error 

Estimation 

Performance 

1 ∈= O = P=Q=1e-2 5.76 Poor 

2 ∈= O = P=Q=1e-3 1.96 Poor 

3 ∈= O = P=Q=1e-4 1.21 Poor 

4 ∈= O = P=Q=1e-6 0.36 Good 

5 ∈= O = P=Q=1e-5 0.18 Very Good 

 

Table 21.  Speed estimation from inertial measurement unit data 

Actual 

Speed 

(mile/hour) 

Time 

(second) 

Distance 

Traveled 

(meter) 

Estimated Speed 

(mile/hour) 

Mean 

square 

Error 

Estimated Speed 

with Kalman 

Filter  (mile/hour) 

Mean 

Square 

Error 

0.50 60 13.38±0.35 0.60±0.086 1.60 0.55±0.087 0.40 

1.00 60 26.82±0.71 0.92±0.080 1.02 0.97±0.055 0.10 

2.00 60 53.64±1.41 1.93±0.056 1.10 1.96±0.071 0.25 

3.00 60 80.46±2.12 2.91±0.091 1.30 2.94±0.067 0.18 

   
Average MSE 

Error = 
1.26 

Average MSE 

Error = 
0.23 

 

Table 16 shows that the implementation of KF helps to reduce noise on the estimated speed 

for all four sets of speeds. The MSE was reduced by 75% for 0.5 mile/hour; 90% for 1 mile/hour; 

77% for 2 mile/hour and 86% for 3 mile/hour. The best estimation accuracy was exhibited by 1 

mile/hour speed with a mean squared error of estimation equal to 0.10 only. The average mean 

square error reduced by 82% for all four different speeds. 
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3.1.3.2 Parkinson gait using Physilog 

 Table 22 shows the features extracted from patients gait signal using Physilog software. As 

like previous case, Value colored green are for those parameters whose change in value after 

medication is consistent with change in UPDRS scores after medication. 

 

Table 22. Gait feature values before and after medication. Feature values were colored green 

on when changes in On medication value is consistent with changes in UPDRS scores. 

Features were colored red when when changes in On medication value is not consistent with 

changes in UPDRS scores 

No. 

Speed (m/s) 
Variability 

(%) 

Stance (% of 

gait cycle) 

Swing (% 

of gait 

cycle) 

Foot Flat 

(% of 

stance) 

Strike angle 

(deg) 

Lift -off 

Angle (deg) 

UPDRS 

Score 

BM AM BM AM BM AM BM AM BM AM BM AM BM AM BM AM 

2 0.77 0.89 2.69 3.65 67.38 63.68 32.62 36.02 61.03 53.55 23.47 28.16 53.22 59.14 2.88 1.82 

3 1.28 1.67 3.56 4.22 58.96 51.68 33.04 43.32 61.58 53.84 22.29 28.65 59.64 70.15 3.29 1.36 

4 0.95 1 3.8 4.61 62.71 67.29 33.29 37.71 59.36 59.71 12.39 8.75 56.75 51.71 1.83 2.29 

5 1.16 1.21 2.59 4.57 63.55 63.98 32.45 34.02 57.54 56.29 22.6 22.79 62.7 64.48 1.82 1.15 

6 0.92 0.98 3.85 1.93 67.24 65.5 32.76 34.6 64.27 60.33 17.49 19.15 62.19 67.65 3.93 2.52 

7 1.49 1.52 1.5 1.36 59.14 58.36 40.86 41.64 56.93 56.57 24.25 26.39 59.57 61.15 1.35 1.27 

8 1.2 1.34 1.79 1.4 58.38 51.07 39.62 47.93 60.11 68.24 13.2 17.38 49.56 57.36 2.46 2.03 

9 1.14 1.15 5.73 5.33 59.07 58.44 40.93 41.56 67.07 64.67 24.87 24.44 63.21 63.99 2.44 1.41 

10 1.04 0.99 3.3 2.94 66.26 66.76 33.74 33.24 58.11 58.53 17 15.13 64.3 61.41 2.10 2.89 

11 0.86 0.87 2.11 2.92 60.2 60.52 39.8 39.48 53.83 52.58 17.68 18.32 61.42 63.75 4.32 4.29 

12 0.91 0.97 4.1 1.9 61.7 56.51 38.3 43.49 50.71 52.65 10.97 19.05 55.59 49.49 3.62 3.12 

13 0.54 0.86 2.89 5.15 65.74 59.1 34.26 40.9 69.47 55.62 4.1 7.47 47.99 57.86 3.98 5.51 

14 1.13 1.15 0.95 2.86 63.71 64.26 36.29 35.74 59.36 57.63 17.74 19.87 58.37 58.35 2.56 2.70 

15 1.01 1.14 4.59 3.85 69.56 61.63 42.31 38.37 64.53 61.02 27.67 32.45 63.71 72.44 2.59 1.42 
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16 1.53 1.56 1.57 1.56 54.57 54.26 45.43 45.74 51.07 54.1 24.22 23.49 72.89 72.43 1.33 1.30 

18 1.28 1.25 3.23 9.39 56.09 57.25 43.91 42.75 64.53 64.38 25.44 26.49 55 56.47 2.52 2.14 

19 1.52 1.56 1.57 1.36 59.31 58.9 40.69 42.7 49.63 47.08 41.71 42.19 73.97 73.19 1.90 1.41 

* BM: Before Medication; AM: After Medication 

Classification performance of the extracted parameters are shown in figure Classification 

accuracy of 85.2% is achieved after excluding features average swing time and variability. 

 

Figure 19. Gait classification accuracy with SVM 5 fold cross validation 

Table 23 Classification accuracy across different classifier for Gait 

Classifier Accuracy Sensitivity Specificity AUC 

SVM (Linear) 87.50% 86.50% 88.50% 0.89 

kNN 65.70% 62.50% 68.90% 0.69 

Decision tree 84.40% 85.75% 83.05% 0.88 

Random Forest 84.40% 84.50% 84.30% 0.86 
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3.2 Discussion 

In this report, signal processing and machine learning method for tremor, bradykinesia and 

gait analysis were discussed.  

3.2.1 Tremor  

Tremor verification was performed in two different setting. First with mock patients to 

design the algorithm, and with actual PD patients.  

For the mock patient tremor quantification study, different features derived from multiple 

sensor signals and the effect of sensor placement on tremor severity classification was investigated. 

From Table 9, it is seen that in case of both resting and postural tremor, classifier performance was 

increased when it was trained on features extracted from only the index finger tremor signal rather 

than the combination of the index finger and the wrist tremor signals. This leads to the conclusion 

that the index finger is a significant appendage for tremor data classification when considering that 

both the index finger and the wrist are the main affected body locations. 

Furthermore, two of the features used had been shown to correlate well with UPDRS tremor 

scores according to previous work [47]. In addition, this study investigated the standard deviations 

of angular velocities or linear accelerations as a metric to classify tremor severity which gave 

encouraging results. In both resting and postural tremor categories, classification accuracy was 

reduced when it was excluded as a parameter in the analysis. 

In the second step of tremor quantification, we have verified our algorithm performance by 

collecting signals from actual PD patients. Features that were used to quantify resting tremor are 

mentioned in table 10 and table 12. As green colors were indicate that the feature values for before 

and after medication trend consistently with UPDRS scores obtained from the clinician before and 

after medication, we can see that almost all the features except average dominant frequency 
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trended according to UPDRS scores. So Dominant frequency was excluded from the machine 

learning training dataset. However, dominant frequency is an important parameter which is 

required to find out the number of tremor window as to be qualified as a tremor window, dominant 

frequency has to be in the range from 3-7 Hz. For only subject 12, three out of four parameters did 

not trend with UPDRS score as after medication value for those parameters changed more than 

10% while UPDRS score before and after medication remains zero. Classification accuracy of 

resting tremor for signals acquired from finger position is shown in Figure 11 and wrist position 

is shown in Figure 13. It can be observed that more prediction accuracy is achieved (more than 

9%) case of resting tremor for finger position than for wrist position. We believe prediction 

accuracy of finger tremor 96.9% is actually quite high although UPDRS scores obtained from 

clinician may also suffer from subjective bias which may vary the prediction accuracy slight 

upwards or downwards. Also, from Figure 13 we can see that only one subjects misclassified 

however with scale of one and in PD, difference of UPDRS score is just one is not much 

significant. with finger tremor. Also it can be noted that finger is more sensitive limb than wrist 

for tremor severity prediction.  

Same parameter was also obtained for postural tremor. However, very few patients exhibits 

postural tremor according to UPDRS score obtained by clinician. It is consistent with the 

knowledge that resting tremor is more evident in PD tremor and postural tremor is more dominant 

in essential tremor patients. As can be seen from feature table, very few patients showed trend with 

UPDRS score. However, Only patients who showed significant tremor (UPDRS score of 2) both 

before and after medication, the parameter trend very well for the subject which showed the 

extracted features effectiveness. One important point to add that our method of finding dominant 

axis has achieved our calculation to be insensitive to placement of sensor axis in limb. As the 
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algorithm would always choose axis that shows maximum change in value with time, need for 

combining all axis value is eliminated. If all the axis value was instead combined important 

information would be lost. 

3.2.2 Bradykinesia 

Bradykinesia assessment was also done with two sets of datasets.: first with the mock patients 

data and second with the real PD patients. 

For mock patient dataset analysis, the goal of the study was to develop an efficient 

bradykinesia assessment system using simulated data acquired from IMU placed on the index 

finger. Table 14 lists the set of linear and nonlinear features found to be significantly different for 

various level of bradykinesia. The approximate entropy and Hurst exponent increased significantly 

from UPDRS score 0 to 3. The observation of a gradual increase of approximate entropy implied 

a gradual rise of complexity of the signal, whereas, an increase in the Hurst exponent indicated a 

higher degree of correlation of the time series data with increasing UPDRS score from 0 to 3. The 

finding of gradual significant decrease for Hjorth parameters, maximum power, and total power 

reported in Table 14 support the clinical application of these parameters to quantify the levels of 

bradykinesia. Overall, classification accuracy provided in Table 15 shows that, a combination of 

the frequency features with nonlinear features can predict the severities of bradykinesia with high 

accuracy. The accuracy was about 10% higher than most recent works published on bradykinesia 

assessment which considered linear time domain parameters for its prediction system [3]. This can 

be justified by the notion that the classification was done selecting the features that are statistically 

significant. Also, the use of nonlinear features provided a new insight to reveal the underlying 

chaotic nature of highly complex signals like angular velocity signal of severe bradykinesia trial. 

Thus the results from this research utilizing the simulated data acquired from well-trained 
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participants known to emulate bradykinesia symptom to build a predictive system was well capable 

of scoring bradykinesia, the resulted accuracy was found to be satisfactory and ultimately 

facilitated us to develop the foundation of bradykinesia assessment system for PD patients. 

 In the second part of the bradykinesia assessment, data were collected from actual PD patients 

for finger tapping and hand grasping and the extracted features after signal processing of the data 

were tabulated in Table 16 and table 18. In the table, the green colors indicate that the feature 

values for before and after medication trend consistently with UPDRS scores obtained from the 

clinician before and after medication. As there were two types of task performed by patients: finger 

tapping and hand grasping, I would discuss about the effectiveness of our algorithm to quantify 

bradykinesia severity for these two types of task. From Table 16, we can see that no parameter 

trends consistently with the UPDRS scores for all the subjects. Sometimes people with high 

UPDRS scores has higher number of tapping with low amplitude of tapping. So the parameters 

vary from subject to subject. For Average opening velocity and closing velocity, there are 4 

subjects for which change in parameter value after medication does not trend according with 

change or no change of UPDRS scores of PD patients after medication. At first we trained our 

machine learning classifier with the parameters: number of tapping, mean tap time, average closing 

acceleration, average opening angular velocity and average closing angular velocity. However 

with 5% cross validation performed on the trained classifier with the above mentioned parameters, 

Classification accuracy was 65.5%. Later standard deviation of tap time and hesitation was added 

to the feature list. As patients affected with PD bradykinesia tends to have variation in tapping 

time over the period of the task, we believed these features are effective to predict PD tremor. 

Cross validation accuracy when these two features are added to the list proves our hypothesis. As 
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shown in figure 16, prediction accuracy increased from 65.5% to 88.20% when number of tapping 

is decreased and standard deviation of tap time and hesitation parameter was included.  

 For hand grasping, 5 fold cross validation with four extracted features resulted into an accuracy 

of 64.3%. But similar to finger tapping, addition of two new features (standard deviation of grasp 

time and number of hesitation) improved the accuracy to 88.20%. Thus the analysis interpreted 

that the number of hesitation and the variation of the grasp time could be used as biomarkers for 

the assessment of bradykinesia of PD patients. 

3.2.3 Gait 

 The gait quantification was done on three different database: first a speed on normal subjects, 

then on a database containing both PD patients and healthy matched controls and finally on a the 

sensor data collected by us from PD patients. 

 In the study of gait analysis with normal patients, we have proposed a Kalman filter based gait 

speed measurement algorithm from inertial measurement unit worn in top of a foot. Treadmill 

speed was used as reference for comparison of measured speed and actual speed. Calibrating the 

accelerometer sensor was essential preprocessing step for good measurement. For initial speed 

measurement before applying Kalman filter, Sabatini’s algorithm of strap down integration 

method was simplified to extract gait velocity parameter ignoring other parameters [12]. Kalman 

filter was implemented to better estimate the gait speed. The optimization of noise covariance and 

weight matrices was done properly by trial and error method to remove the noise from the 

estimated instantaneous speed. The average mean squared errors for four sets of speeds were found 

to be 0.23, which indicates an acceptable estimation.  

 The performance of the system on four different speeds has confirmed the efficacy of the 

proposed method to estimate gait speed from inertial measurement unit. The improvement of 
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experimental results obtained by applying Kalman filter has verified the noise removal capability 

of Kalman filter for accurate estimation of gait speed. Though the outcome of the proposed study 

is appealing, there are several limitations. The algorithm only considers movement in sagittal 

plane, not in 3D plane. Again, instead of more accurate reference system, here treadmill was used 

as reference, which may not be quite accurate for proper speed measurement. Regardless of the 

limitations, the study proposes a gait speed measurement algorithm from inertial measurement unit 

with acceptable accuracy. This algorithm can be developed to use it for monitoring the progression 

of walking ability after various neurophysiological diseases like Parkinson’s or strokes. A lot of 

research has been done to find an effective way of gait disturbance monitoring for patients 

suffering from Parkinson Disease [17]. Based on the results obtained in this study, it is possible to 

use inertial measurement data to identify the subsequent gait cycles and gait disorders by reliable 

estimation of walking speed on a treadmill.  

  Inspired from the findings of these two studies conducted by us, we have attached IMU sensors 

in the shoe of PD patients, collected the signal, analyzed the data and used a SVM based prediction 

model to predict the PD severity based on the features extracted from the signal.  

For the clinical trial of PD patients 7 parameters were extracted from PD patients while all the 

parameters in theory should indicate PD gait disorder severity [91][50] However, variability and 

swing parameter does not trend accordingly in more than occasions. As classification accuracy of 

85.2% achieved, so it can be said the combination of parameters can predict tremor severity can 

be adopted for home or remote monitoring of PD patients. 
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CHAPTER 4  

CONCLUSION AND FUTURE WORK 

4.1 Conclusion 

The current work presents a comprehensive study highlighting the efficacy of different signal 

processing and machine learning techniques towards devising an accurate prediction system PD 

symptom assessment system using both simulated data and PD patient data acquired from IMU. 

Set of meaningful features that can correctly define the tremor, bradykinesia and gait were 

extracted from respective signals. The best prediction accuracy was obtained from the extracted 

features by testing SVM, random forest, kNN, and decision tree classifiers. The results 

demonstrated by the classification accuracy of tremor, bradykinesia and gait showed the 

effectiveness of the proposed approaches for all of these PD symptoms and highlights that the 

proposed signal processing and features-based machine learning approach has the potential for 

application in clinical diagnosis and longitudinal monitoring. The results of the current study also 

underscore the ability of the IMU data obtained non-invasively from wearable devices, in 

combination with a SVM classifier trained on meticulously selected features, as a tool for diagnosis 

of PD and monitoring effectiveness of therapy post pathology.  
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4.2 Future Work  

In our future work, non-linear properties of PD symptoms will be analyzed, and fusion of non-

linear and linear features will be investigated to see whether this leads to improvement in 

classification accuracy for PD diagnosis. Also, we will improve the system to make it more user 

friendly so that the symptom assessment technique can be implemented as a real time PD symptom 

monitoring system. 

4.3 My Contribution 

My contribution to this research was to develop an algorithm to process sensor signal, 

extract and analyze parameters from the signal and quantify different PD symptoms ( Tremor, 

bradykinesia, gait) from the extracted features. As the result of research conducted in this thesis, 

the following journal and conference papers were published: 

 

1.    Alam, M.N., Garg, A., Munia, T.T.K., Fazel-Rezai, R. and Tavakolian, K., 2017. Vertical 

ground reaction force marker for Parkinson’s disease. PloS one, 12(5), p.e0175951. 

2.  Md N Alam, Tamanna T. K. Munia, Ajay K. Verma, Jau-Shin Lou, Collin Combs, 

Kouhyar Tavakolian, Reza Fazel-Rezai,  “A Quantitative Assessment of Bradykinesia Using 

Initial Measurement Unit” 2017 Design of Medical Devices Conference, Minneapolis, Minnesota, 

USA, April 10–13, 2017, ISBN: 978-0-7918-4067-2. 

3.   Alam, M.N., Tamanna T. K. Munia and Fazel-Rezai, R., 2017, July. Gait speed 

estimation using Kalman Filtering on inertial measurement unit data. In Engineering in Medicine 

and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE (pp. 

2406-2409). IEEE. 
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4. Alam, M.N., Johnson, B., Gendreau, J., Tavakolian, K., Combs, C. and Fazel-Rezai, R., 

2016, May. Tremor quantification of Parkinson's disease-a pilot study. In Electro Information 

Technology (EIT), 2016 IEEE International Conference on (pp. 0755-0759). IEEE. 

4.4 Other Contributions 

 

1. Alam, M.N., Munia, T.T.K., Tavakolian, K., Vasefi, F., MacKinnon, N. and Fazel-Rezai, 

R., 2016, August. Automatic detection and severity measurement of eczema using image 

processing. In Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual 

International Conference of the (pp. 1365-1368). IEEE. 

2.  Johnson, B., Erickson, J., Schneider, C., Alam, M.N., Glessing, D., Wilson, N., 

Tavakolian, K. and Fazel-Rezai, R., 2016, May. Aviation navigation feedback device. In Electro 

Information Technology (EIT), 2016 IEEE International Conference on (pp. 0760-0764). IEEE.
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