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Abstract

In this article, we construct a submodular function using the rank function of a matroid and study induced matroid with
constructed polymatroid, then we relate some properties of connectivity of new matroid with the main matroid.
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1. Introduction

For a set E , a function f from 2E into R is submodular if f (X ) + f (Y ) ≥ f (X ∪ Y ) + f (X ∩ Y ) for all subsets X
and Y of E . Such a function is increasing if f (X ) ≤ f (Y ) whenever X ⊆ Y . As an example of a submodular function,
the rank function of a matroid M is a submodular function. Edmonds and Rota [1] proved the following result. There
is a more accessible proof in Oxley [2].

Proposition 1. Let f be an increasing submodular function from 2E into Z. Let C( f ) =
{
C ⊆ E : C is minimal

and non-empty such that f (C) < |C |
}
. Then C( f ) is the collection of circuits of a matroid on E.

This matroid is denoted by M( f ) and it is called induced matroid by f . When f (∅) = 0 the submodular function
f has been called polymatroid function. For instance, the rank function of a matroid is a polymatroid. Oxley [2] has
proved when f is a polymatroid, the rank function of M( f ) is given by;

r f (X ) = min{ f (Y ) + |X − Y | : Y ⊆ X}. (1)

In splitting matroids we choose a subset T of ground set of matroid, E , and then apply the splitting operation on M
with respect to T and attain a new matroid. For more details one can see [3,4]. We are going to use almost the same
method on the rank function of M , that means we assume a subset T ⊆ E(M) and define a function as follows;

fT (X ) =

{
r (X ) if X ∩ T = ∅

r (X ) + 1 if X ∩ T ̸= ∅
(2)
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It is not difficult to check that this function is a submodular function. Furthermore, defined function is actually a
polymatroid. Therefore by Proposition 1, fT induces a matroid that is M( fT ) where it has the same ground set with
M . Connectivity of submodular functions properties is investigated in [5], this was an inspiration to us to carry out our
investigations. First, we shall specify the collection of circuits and independent sets and determine the rank function
of the new matroid, then we shall prove some more connectivity properties related between M and M( fT ).

2. Preliminary theorems

In the next theorem, we show that the M( fT ) can be characterized in terms of circuits. The proof of this theorem
will use the following proposition.

Proposition 2 (Oxley [2]). Let X and Y be collections of subsets of a finite set E such that every member of X
contains a member of Y , and every member of Y contains a member of X . Then the minimal members of X are
precisely the minimal members of Y .

Theorem 3. Let M be a matroid and T ⊆ E. Let

C0 =
{
C ∈ C(M)|C ∩ T = ∅

}
C1 =

{
C1 ∪ C2 : it is minimal such that C1, C2 ∈ C(M), Ci ∩ T ̸= ∅ f or i ∈ {1, 2},

|(C1 ∪ C2) ∩ T | ≥ 2 and C1 ∪ C2 has no any circuit in C0
}

Then C = C0 ∪ C1 is the set of circuits of M( fT ).

Proof. We shall prove that each element of C0 ∪ C1 is a minimal dependent element of M( fT ) and each circuit of
M( fT ) contains an element of C0 ∪ C1. Suppose C ∈ C0. Since C ∩ T = ∅ and C ∈ C(M), thus fT (C) = r (C) < |C |.
Then fT (C) is a dependent set in M( fT ). Now assume X ∈ C1, where X = C1 ∪ C2. As C1 and C2 are two distinct
circuits of M , r (C1 ∪ C2) ≤ |C1 ∪ C2| − 2, also X ∩ T ̸= ∅, hence fT (C1 ∪ C2) = r (C1 ∪ C2) + 1. Therefore
fT (C1 ∪ C2) < |C1 ∪ C2|. Then X is a dependent set in M( fT ).

Conversely, let X be a circuit of M( fT ), that means fT (X ) < |X | and it is minimal with this property. First note
that, we may assume that X is a union of circuits of M , since if X contains many coloops in M , by deleting them
we attain a proper subset Y of X in which fT (Y ) < |Y | and this contradicts with minimality of X . Now if there is a
circuit C in M |X such that C ∩ T = ∅, then X contains an element of C0. Hence we can assume that, every circuit of
M |X has a non-empty intersection with T . M |X is not able to contain just a circuit of M , otherwise, let C be the only
circuit of M |X (in fact X = C), since

r (C) = |C | − 1, C ∩ T ̸= ∅ H⇒ fT (C) = |C | or fT (X ) = |X |

contradicting that fT (X ) < |X |. Then M |X contains at least two circuits of M . Suppose that C1 and C2 are two
circuits of M |X . First let C1 ∩ C2 ̸= ∅. If |(C1 ∪ C2) ∩ T | = 1 then the only element of this set, named a, belongs to
C1 ∩ C2 where a ∈ T . So by using (C3) of circuit axioms, there is a circuit C3 such that it is contained in M |X and
does not meet T , a contradiction. Thus |(C1 ∪ C2) ∩ T | ≥ 2. When C1 ∩ C2 = ∅, it is clear that |(C1 ∪ C2) ∩ T | ≥ 2.
Therefore, in any case X contains an element of C1. Now the theorem follows immediately from Proposition 2. □

We specified the collection of circuits of M( fT ). Next theorem specifies the collection of independent sets of
M( fT ). Note that a consequence of Proposition 1 is that independent sets of M( f ) are precisely those subsets of E ,
named I , such that f (I ′) ≥ |I ′

| for all non-empty subsets I ′ of I .

Theorem 4. Let M be a matroid and T ⊆ E. Let

I0 =
{

I : I ∈ I(M)
}

I1 =
{

I ∪ C : I ∈ I(M), C ∈ C(M); C ∩ T ̸= ∅ and M |(I ∪ C) just contains C as a circuit
}
.

Then I = I0 ∪ I1 is the set of independent sets of M( fT ).
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Proof. It is clear that if I ∈ I0, then I is independent in M( fT ). Let X be an element of I1. For every subset Y of X ,
fT (Y ) ≥ |Y |, therefore X is an independent set of M( fT ).

Conversely, let X be an independent set of M( fT ). If X contains at least two distinct circuits C1 and C2 of M , then
r (C1 ∪ C2) ≤ |C1 ∪ C2| − 2. So fT (Y ) < |Y |, where Y = C1 ∪ C2 is a subset of independent set X , a contradiction.
Hence every independent set of M( fT ) contains at most one circuit of M . Now if X has no circuit of M it belongs to
I0 and if it contains a circuit of M , obviously it must meet T . Thus, in this case, X ∈ I1. □

Corollary 5. The set of bases of M( fT ) is;

B
(
M( fT )

)
=

{
B ∪ {e} : B ∈ B(M), e ∈ E(M) − B; C(e, B) ∩ T ̸= ∅

}
.

Another consequence of the last theorem is the following result.

Corollary 6. Let X be a subset of E(M). The rank function of M( fT ) is given by;

rM( fT )(X ) =

{
rM (X ) + 1 if M |X contains a circuit C of M such that C ∩ T ̸= ∅

rM (X ) otherwise

In view of the last result, if an element of T lies on a circuit of M , then the rank of M( fT ) increased by one.
Therefore if M contains coloops and we choose a subset of them as T , then M( fT ) = M .

The next result specifies the set of hyperplans of constructed matroid.

Corollary 7. If M( fT ) ̸∼= M, then the set of hyperplans of M( fT ) is equal to;

H
(
M( fT )

)
=

{
B ∪ {e1, e2, . . . , en}; B ∈ B(M), ei ∈ E(M) − B and C(B, ei ) ∩ T = ∅;

i ∈ {1, . . . , n} where 1 ≤ n ≤ |E(M) − B|
}
.

The following example can illustrate last results.

Example 8. Let G be the graph shown in the following figure and let M = M(G). Suppose T = {a, b, c}. One can
easily show that, for example by Theorem 3, every 5 elements set of the ground set of M is a circuit of M( fT ) and
this is the collection of circuits of M( fT ), so M( fT ) is the uniform matroid U4,6.

2

c

ba 1
3

G

3. Main results

By definition, when T = ∅, the matroid M( fT ) is equal to M . Furthermore M( fT ) = M if and only if no circuit
of M meets T .

If |T | = 1 and M has no coloop, then M( fT ) = M \ T ⊕ Un,n , where n is the number of elements that are in the
common series class with T . It is obtained by this fact, every circuit of M contains T is not a circuit of new matroid
anymore and note that C1 will be empty.

But when |T | ≥ 2, we shall have significant results.

Example 9. Let M ∼= Um,n and m < n − 1. One can easily check that if |T | ≥ n − m then M( fT ) ∼= Um+1,n .

Theorem 10. Let M be a disconnected coloopless matroid having n connected components, called M1, M2, . . . , Mn .
Let T = {t1, t2, . . . , tn} ⊆ E(M), where ti ∈ E(Mi ) for 1 ≤ i ≤ n. Then M( fT ) is connected.
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Proof. As M is disconnected so n ≥ 2. It is sufficient to prove for each circuit C1 and C2 belonging to two different
components of M in which both of them meet T , C1 ∪ C2 is a circuit of M( fT ). Since C1 and C2 are in distinct
component, so |(C1 ∪ C2) ∩ T | = 2 and C1 ∪ C2 does not contain circuit C ′ of M where C ′

∩ T = ∅. Moreover each
proper set of C1 ∪ C2 could not be dependent in M( fT ), therefore it is a circuit of M( fT ). Now let a and b be two
distinct elements of M . It is not difficult to see that there is a circuit in M( fT ) containing both. □

The rank function of M( fT ) gives us interesting properties of k-connectedness. Next lemma specifies one of these
features.

Lemma 11. Let M be an n-connected matroid where 3 ≤ n < ∞ and let T ⊆ E such that |T | ≥ n. Then M( fT ) is
an (n − 1)-connected matroid.

Proof. If |E(M)| < 2(n − 1), then M has infinite Tutte connectivity, hence we may assume that |E(M)| ≥ 2(n − 1).
We must prove that for every k < n − 1, M( fT ) has no k-separation. For convenience we relabel M( fT ) with M ′.
Suppose (X, Y ) be a partition of E(M ′), where min{|X |, |Y |} = k for k < n − 1. Without loss of generality let
|X | = k. Since M is n-connected it has no circuit or cocircuit with less than n elements, hence X is independent in M
and so does M ′. As |T | ≥ n, then Y meets T , and M |Y does not have coloops, since if it contains coloops, as regards
|X | = k < n − 1 then M has a cocircuit with less than n elements, a contradiction. Thus rM ′ (Y ) = rM (Y ) + 1 and
rM ′ (E) = rM (E) + 1. Therefore

rM ′ (X ) + rM ′ (Y ) − rM ′ (E) = rM (X ) + rM (Y ) + 1 − rM (E) − 1 = λM (X ) ≥ k.

This means that M ′ has no k-separation for k < n − 1, then M( fT ) is (n − 1)-connected. □

We note here that the last lemma does not hold if M is a matroid with infinite Tutte connectivity. For example,
consider U4,8 and let |T | = 4, by Example 9, M( fT ) ∼= U5,8. The first matroid is a matroid with infinite Tutte
connectivity, while the Tutte connectivity of the second matroid is 4. Therefore throughout this article we assume M
has no infinite Tutte connectivity. Evidently, if n = 2, then M( fT ) might be disconnected, so with putting special
condition the lemma is true in this case.

The next theorem specifies the connectivity of M( fT ) when M is not 3-connected. We have utilized following
proposition and lemma to prove the theorem.

Proposition 12. Every matroid that is not 3-connected can be constructed from 3-connected proper minors of itself
by a sequence of the operations of direct sum and 2-sum.

Lemma 13. Let M be a matroid such that M = M1⊕2 M2 and it contains at least two circuits. Let T ⊆ E(M) in
which |T | ≥ 2 and E(Mi ) ∩ T ̸= ∅ for i ∈ {1, 2}. Then M( fT ) is connected.

Proof. The definition of 2-sum is M = M1⊕2 M2 = P(M1, M2) \ p, where P(M1, M2) is parallel connection
of M1 and M2, and {p} = E(M1) ∩ E(M2). Let Ci , i ∈ {1, 2}, be circuits of Mi containing p. By definition
C = (C1 − p) ∪ (C2 − p), is a circuit of M . If Ci ∩ T = ∅, then C is a circuit of M( fT ). Thus, if one of C1
and C2 meets T , as both of M1 and M2 are connected, we may assume that the other meets T too. Hence Ci ∩ T ̸= ∅

and |C ∩ T | ≥ 2. Since M contains at least two circuits, either M1 or M2 contains two circuits. Without loss of
generality we may assume that, it is M2. Then there is a circuit C ′

2 in M2 that contains p, such that it is distinct from
C2. So C ′

= (C1 − p) ∪ (C ′

2 − p) is a circuit of M . We shall now show that C ∪ C ′ is a circuit of M( fT ). Obviously
|(C ∪ C ′) ∩ T | ≥ 2. Let X be a circuit of M contained in C ∪ C ′, where X ∩ T = ∅. It is clear that X ∩ Ci ̸= ∅, so
X is union of two circuits X1 and X2 of M1 and M2, respectively. Hence X = (X1 − p) ∪ (X2 − p). Since X i does
not contain T but Ci does, X i are proper subsets of Ci respectively, a contradiction. Thus C ∪ C ′ does not contain an
element of C0. In a similar way, one can easily show that C ∪ C ′ is minimal. Then C ∪ C ′ is a circuit of M( fT ).

Now if a and b are two arbitrary elements of M , considering various cases one can easily see that there is a circuit
of M( fT ) that contains a and b, therefore M( fT ) is connected. □

Theorem 14. Let M be a connected matroid and contains at least two distinct circuits, then there is a subset T ⊆ E,
where |T | ≥ 2, for which M( fT ) is connected.

M. Pourbaba et al. / AKCE International Journal of Graphs and Combinatorics 17 (1) 68–6968



Please cite this article in press as: M. Pourbaba, et al., A new matroid constructed by the rank function of a matroid, AKCE International Journal of Graphs and Combinatorics
(2018), https://doi.org/10.1016/j.akcej.2018.08.007.

Proof. If M is 3-connected then by Lemma 11, M( fT ) is connected with mentioned situation, we may assume that,
M is not 3-connected. Therefore by Proposition 12, M ∼= M1 ⊕2 M2 ⊕2 . . . ⊕2 Mn , where Mi is 3-connected. We
choose an element ti of Mi and consists of subset T of M . We argue by induction on n to achieve result. If n = 2 by
Lemma 13, the result is obtained. Now let it be true for k < n. Obviously M1⊕2 M2 ⊕2 . . . ⊕2 Mk is connected. Then
by using Lemma 13 again on (M1 ⊕2 M2 ⊕2 . . . ⊕2k) ⊕2 Mk+1, the result is proven by induction. □
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