AKCE International Journal of Graphs and Combinatorics

Sunflowers and L-intersecting families

Gábor Hegedűs

To cite this article: Gábor Hegedüs (2020) Sunflowers and $L_{\text {-intersecting families, }}$, AKCE International Journal of Graphs and Combinatorics, 17:1, 402-406, DOI: 10.1016/ j.akcej.2019.02.005

To link to this article: https://doi.org/10.1016/j.akcej.2019.02.005

© 2018 Kalasalingam University. Published with license by Taylor \& Francis Group, LLC.

Published online: 24 Jun 2020.

Submit your article to this journal

Article views: 105

View related articles

View Crossmark data【

Sunflowers and L-intersecting families
 Gábor Hegedűs

Óbuda University, Kiscelli utca 82, Budapest, H-1032, Hungary
Received 2 February 2017; accepted 13 February 2019

Abstract

Let $f(k, r, s)$ stand for the least number so that if \mathcal{F} is an arbitrary k-uniform, L-intersecting set system, where $|L|=s$, and \mathcal{F} has more than $f(k, r, s)$ elements, then \mathcal{F} contains a sunflower with r petals.

We give an upper bound for $f(k, 3, s)$.

Keywords: Δ-system; L-intersecting families; Extremal set theory

1. Introduction

Let $[n]$ stand for the set $\{1,2, \ldots, n\}$. We denote the family of all subsets of $[n]$ by $2^{[n]}$.
Let X be a fixed subset of $[n]$. For an integer $0 \leq k \leq n$ we denote by $\binom{X}{k}$ the family of all k element subsets of X.

We call a family \mathcal{F} of subsets of [n] k-uniform, if $|F|=k$ for each $F \in \mathcal{F}$.
A family $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ of subsets of $[n]$ is a sunflower (or Δ-system) with m petals if

$$
F_{i} \cap F_{j}=\bigcap_{t=1}^{m} F_{t}
$$

for each $1 \leq i, j \leq m$.
The intersection of the members of a sunflower form its kernel. Clearly a family of disjoint sets is a sunflower with empty kernel.

Erdős and Rado gave an upper bound for the size of a k-uniform family without a sunflower with r petals in [1].
Theorem 1.1 (Sunflower Theorem). If \mathcal{F} is a k-uniform set system with more than

$$
k!(r-1)^{k}\left(1-\sum_{t=1}^{k-1} \frac{t}{(t+1)!(r-1)^{t}}\right)
$$

members, then \mathcal{F} contains a sunflower with r petals.

[^0]Kostochka improved this upper bound in [2].
Theorem 1.2. Let $r>2$ and $\alpha>1$ be fixed integers. Let k be an arbitrary integer. Then there exists a constant $D(r, \alpha)$ such that if \mathcal{F} is a k-uniform set system with more than

$$
D(r, \alpha) k!\left(\frac{(\log \log \log k)^{2}}{\alpha \log \log k}\right)^{k}
$$

members, then \mathcal{F} contains a sunflower with r petals.
Erdős and Rado gave in [1] a construction of a k-uniform set system with $(r-1)^{k}$ members such that \mathcal{F} does not contain any sunflower with r petals. Later Abbott, Hanson and Sauer improved this construction in [3] and proved the following result.

Theorem 1.3. There exists a $c>0$ positive constant and a k-uniform set system \mathcal{F} such that

$$
|\mathcal{F}|>2 \cdot 10^{k / 2-c \log k}
$$

and \mathcal{F} does not contain any sunflower with 3 petals.
Erdős and Rado conjectured also the following statement in [1].
Conjecture 1. For each r, there exists a constant C_{r} such that if \mathcal{F} is a k-uniform set system with more than C_{r}^{k} members, then \mathcal{F} contains a sunflower with r petals.

Erdős has offered 1000 dollars for the proof or disproof of this conjecture for $r=3$ (see [4]).
We prove here Conjecture 1 in the case of some special L-intersecting and ℓ-intersecting families.
A family \mathcal{F} is ℓ-intersecting, if $\left|F \cap F^{\prime}\right| \geq \ell$ whenever $F, F^{\prime} \in \mathcal{F}$. Specially, \mathcal{F} is an intersecting family, if $F \cap F^{\prime} \neq \emptyset$ whenever $F, F^{\prime} \in \mathcal{F}$.

Erdős, Ko and Rado proved the following well-known result in [5]:
Theorem 1.4. Let n, k, t be integers with $0<t<k<n$. Suppose \mathcal{F} is a t-intersecting, k-uniform family of subsets of $[n]$. Then for $n>n_{0}(k, t)$,

$$
|\mathcal{F}| \leq\binom{ n-t}{k-t}
$$

Further, $|\mathcal{F}|=\binom{n-t}{k-t}$ if and only if for some $T \in\binom{[n]}{t}$ we have

$$
\mathcal{F}=\left\{F \in\binom{[n]}{k}: T \subseteq F\right\}
$$

Let L be a set of nonnegative integers. A family \mathcal{F} is L-intersecting, if $|E \cap F| \in L$ for every pair E, F of distinct members of \mathcal{F}. In this terminology a k-uniform \mathcal{F} set system is a t-intersecting family iff it is an L-intersecting family, where $L=\{t, t+1, \ldots, k-1\}$.

The following result gives a remarkable upper bound for the size of a k-uniform L-intersecting family (see [6]).
Theorem 1.5 (Ray-Chaudhuri-Wilson). Let $0<s \leq k \leq n$ be positive integers. Let L be a set of s nonnegative integers and \mathcal{F} an L-intersecting, k-uniform family of subsets of $[n]$. Then

$$
|\mathcal{F}| \leq\binom{ n}{s}
$$

Deza proved the following result in [7].
Theorem 1.6 (Deza). Let $\lambda>0$ be a positive integer. Let $L:=\{\lambda\}$. If \mathcal{F} is an L-intersecting, k-uniform family of subsets of [n], then either

$$
|\mathcal{F}| \leq k^{2}-k+1
$$

or \mathcal{F} is a sunflower, i.e. all the pairwise intersections are the same set with λ elements.

Our main result is the following generalization of Theorem 1.6 for L-intersecting families.
Theorem 1.7. Let \mathcal{F} be a family of subsets of $[n]$ such that \mathcal{F} does not contain any sunflowers with three petals. Let $L=\left\{\ell_{1}<\cdots<\ell_{s}\right\}$ be a set of s non-negative integers. Suppose that \mathcal{F} is a k-uniform, L-intersecting family. Then

$$
|\mathcal{F}| \leq\left(k^{2}-k+1\right) 8^{(s-1)} 2^{\left(1+\frac{\sqrt{5}}{5}\right) k(s-1)}
$$

We present our proofs in Section 2. We give some concluding remarks in Section 3.

2. Proofs of our main results

We start our proof with an elementary fact.
Lemma 2.1. Let $0 \leq r \leq n$ be integers. Then

$$
\binom{n}{r} \leq\binom{ n-1}{r+1}
$$

if and only if

$$
r^{2}+(1-3 n) r+n^{2}-2 n \geq 0
$$

Corollary 2.2. Let $0 \leq r \leq n$ be integers. If $0 \leq r \leq \frac{3 n-1-\sqrt{5}(n+1)}{2}$, then

$$
\binom{n}{r} \leq\binom{ n-1}{r+1}
$$

We use the following easy lemma in the proof of our main results.
Lemma 2.3. Let $0 \leq \ell \leq k-1$ be integers. Then

$$
\binom{2 k-\ell}{\ell+1} \leq 8 \cdot 2^{\left(1+\frac{\sqrt{5}}{5}\right) k}
$$

Proof. First suppose that

$$
\ell \leq\left\lceil\left(1-\frac{\sqrt{5}}{5}\right) k-\left(1+\frac{2 \sqrt{5}}{5}\right)\right\rceil .
$$

Then

$$
\begin{gathered}
\binom{2 k-\ell}{\ell+1} \leq\binom{ 2 k-\left\lceil\left(1-\frac{\sqrt{5}}{5}\right) k-\left(1+\frac{2 \sqrt{5}}{5}\right)\right\rceil}{\left\lceil\left(2-\frac{\sqrt{5}}{5}\right) k-\left(1+\frac{2 \sqrt{5}}{5}\right)\right\rceil} \leq \\
\leq 2^{2 k-\left\lceil\left(1-\frac{\sqrt{5}}{5}\right) k-\left(1+\frac{2 \sqrt{5}}{5}\right)\right\rceil} \leq 8 \cdot 2^{\left(1+\frac{\sqrt{5}}{5}\right) k} .
\end{gathered}
$$

The first inequality follows easily from Corollary 2.2. Namely if

$$
\ell \leq\left\lceil\left(1-\frac{\sqrt{5}}{5}\right) k-\left(1+\frac{2 \sqrt{5}}{5}\right)\right\rceil,
$$

then

$$
\ell+1 \leq\left\lceil\frac{3-\sqrt{5}}{2}(2 k-\ell)-\frac{1+\sqrt{5}}{2}\right\rceil
$$

and we can apply Corollary 2.2 with the choices $r:=\ell+1$ and $n:=2 k-\ell$.
Secondly, suppose that

$$
\ell>\left\lceil\left(1-\frac{\sqrt{5}}{5}\right) k-\left(1+\frac{2 \sqrt{5}}{5}\right)\right\rceil .
$$

Then

$$
2 k-\ell \leq 2 k-\left\lceil\left(1-\frac{\sqrt{5}}{5}\right) k-\left(1+\frac{2 \sqrt{5}}{5}\right)\right\rceil \leq\left\lceil 2+\left(1+\frac{\sqrt{5}}{5}\right) k\right\rceil,
$$

hence

$$
\begin{gathered}
\binom{2 k-\ell}{\ell+1} \leq\binom{ 2 k-\left\lceil\left(1-\frac{\sqrt{5}}{5}\right) k-\left(1+\frac{2 \sqrt{5}}{5}\right)\right\rceil}{\ell+1} \leq \\
\leq 2^{2 k-\left\lceil\left(1-\frac{\sqrt{5}}{5}\right) k-\left(1+\frac{2 \sqrt{5}}{5}\right)\right\rceil} \leq 8 \cdot 2^{\left(1+\frac{\sqrt{5}}{5}\right) k} .
\end{gathered}
$$

The soul of the proof of our main result is the following lemma.
Lemma 2.4. Let \mathcal{F} be an ℓ-intersecting, k-uniform family of subsets of $[n]$ such that \mathcal{F} does not contain any sunflowers with three petals. Suppose that there exist $F_{1}, F_{2} \in \mathcal{F}$ distinct subsets such that $\left|F_{1} \cap F_{2}\right|=\ell$. Let $M:=F_{1} \cup F_{2}$. Then

$$
|F \cap M|>\ell
$$

for each $F \in \mathcal{F}$.
Proof. Clearly $F \cap F_{1} \subseteq F \cap M$ for each $F \in \mathcal{F}$, hence

$$
|F \cap M| \geq \ell
$$

for each $F \in \mathcal{F}$.
We prove by an indirect argument. Suppose that there exists an $F \in \mathcal{F}$ such that $|F \cap M|=\ell$. Clearly $F \neq F_{1}$ and $F \neq F_{2}$. Let $G:=F_{1} \cap F_{2}$. Then $|G|=\ell$ by assumption. It follows from $F \cap F_{1} \subseteq F \cap M$ and $\ell \leq\left|F \cap F_{1}\right| \leq|F \cap M|=\ell$ that $F \cap F_{1}=F \cap M$. Similarly $F \cap F_{2}=F \cap M$. Consequently $F \cap F_{1}=F \cap F_{2}$. We get that $F \cap F_{2}=F \cap G=F \cap F_{1}$. Since $\ell=\left|F \cap F_{1}\right|=|F \cap G| \leq|G|=\ell$ and $F \cap G \subseteq G$, hence $G=F \cap G=F \cap F_{2}=F \cap F_{1}$, so $\left\{F, F_{1}, F_{2}\right\}$ is a sunflower with three petals, a contradiction.

Proof of Theorem 1.7. We apply induction on $|L|=s$. If $s=1$, then our result follows from Theorem 1.6.
Suppose that Theorem 1.7 is true for $s-1$ and now we attack the case $|L|=s$.
If $\left|F \cap F^{\prime}\right| \neq \ell_{1}$ holds for each distinct $F, F^{\prime} \in \mathcal{F}$, then \mathcal{F} is actually an $L^{\prime}:=\left\{\ell_{2}, \ldots, \ell_{s}\right\}$-intersecting system and the much stronger upper bound

$$
|\mathcal{F}| \leq\left(k^{2}-k+2\right) 8^{(s-2)} 2^{\left(1+\frac{\sqrt{5}}{5}\right) k(s-2)} .
$$

follows from the induction.
Hence we can suppose that there exist $F_{1}, F_{2} \in \mathcal{F}$ such that $\left|F_{1} \cap F_{2}\right|=\ell_{1}$. Let $M:=F_{1} \cup F_{2}$. Clearly \mathcal{F} is an ℓ_{1}-intersecting family. It follows from Lemma 2.4 that

$$
\begin{equation*}
|F \cap M|>\ell_{1} \tag{1}
\end{equation*}
$$

for each $F \in \mathcal{F}$. Clearly $|M|=2 k-\ell_{1}$.
Let T be a fixed subset of M such that $|T|=\ell_{1}+1$. Define the family

$$
\mathcal{F}(T):=\{F \in \mathcal{F}: T \subseteq M \cap F\} .
$$

Let $L^{\prime}:=\left\{\ell_{2}, \ldots, \ell_{s}\right\}$. Clearly $\left|L^{\prime}\right|=s-1$. Then $\mathcal{F}(T)$ is an L^{\prime}-intersecting, k-uniform family, because \mathcal{F} is an L-intersecting family and $T \subseteq F$ for each $F \in \mathcal{F}(T)$. The following Proposition follows easily from (1).

Proposition 2.5.

$$
\mathcal{F}=\bigcup_{T \subseteq M,|T|=\ell_{1}+1} \mathcal{F}(T) .
$$

Let T be a fixed, but arbitrary subset of M such that $|T|=\ell_{1}+1$. Consider the set system

$$
\mathcal{G}(T):=\{F \backslash T: F \in \mathcal{F}(T)\} .
$$

Clearly $|\mathcal{G}(T)|=|\mathcal{F}(T)|$. Let $\bar{L}:=\left\{\ell_{2}-\ell_{1}-1, \ldots, \ell_{s}-\ell_{1}-1\right\}$. Here $|\bar{L}|=s-1$. Since $\mathcal{F}(T)$ is an $L^{\prime}-$ intersecting, k-uniform family, thus $\mathcal{G}(T)$ is an \bar{L}-intersecting, $\left(k-\ell_{1}-1\right)$-uniform family. It follows from the inductional hypothesis that

$$
|\mathcal{F}(T)|=|\mathcal{G}(T)| \leq\left(k^{2}-k+2\right) 8^{(s-2)} 2^{\left(1+\frac{\sqrt{5}}{5}\right) k(s-2)} .
$$

Finally Proposition 2.5 implies that

$$
|\mathcal{F}| \leq \sum_{T \subseteq M,|T|=\ell_{1}+1}|\mathcal{F}(T)| \leq\binom{ 2 k-\ell_{1}}{\ell_{1}+1}\left(k^{2}-k+2\right) 8^{(s-2)} 2^{\left(1+\frac{\sqrt{5}}{5}\right) k(s-2)} .
$$

But

$$
\binom{2 k-\ell}{\ell+1} \leq 8 \cdot 2^{\left(1+\frac{\sqrt{5}}{5}\right) k}
$$

by Lemma 2.3, hence

$$
\begin{aligned}
& |\mathcal{F}| \leq\left(k^{2}-k+2\right) 8^{(s-2)} 2^{\left(1+\frac{\sqrt{5}}{5}\right) k(s-2)} \cdot 8 \cdot 2^{\left(1+\frac{\sqrt{5}}{5}\right) k}= \\
& =\left(k^{2}-k+2\right) 8^{(s-1)} 2^{\left(1+\frac{\sqrt{5}}{5}\right) k(s-1)},
\end{aligned}
$$

which was to be proved.

3. Concluding remarks

Define $f(k, r, s)$ as the least number so that if \mathcal{F} is an arbitrary k-uniform, L-intersecting family, where $|L|=s$, then $|\mathcal{F}|>f(k, r, s)$ implies that \mathcal{F} contains a sunflower with r petals. In Theorem 1.7 we proved the following recursion for $f(k, r, s)$:

$$
f(k, 3, s) \leq \max _{0 \leq \ell \leq k-1}\binom{2 k-\ell}{\ell+1} f(k-1,3, s-1) .
$$

Our upper bound in Theorem 1.7 was a clear consequence of this recursion. It would be very interesting to give a similar recursion for $f(k, r, s)$ for $r>3$.

On the other hand, it is easy to prove the following Proposition from Theorem 1.3.
Proposition 3.1. Let $1 \leq s<k$ be integers. Then there exists a $c>0$ positive constant such that

$$
f(k, 3, s)>2 \cdot 10^{s / 2-c \log s}
$$

References

[1] P. Erdős, R. Rado, Intersection theorems for systems of sets, J. Lond. Math. Soc. 1 (1) (1960) 85-90.
[2] A.V. Kostochka, An intersection theorem for systems of sets, Random Struct. Alg. 9 (1-2) (1996) 213-221.
[3] H.L. Abbott, D. Hanson, N. Sauer, Intersection theorems for systems of sets, J. Comb. Theory A 12 (3) (1972) 381-389.
[4] P. Erdős, Problems and results on finite and infinite combinatorial analysis, in: Infinite and Finite Sets (Colloq. Keszthely 1973), I, in: Colloq. Math. Soc. J. Bolyai, vol. 10, North Holland, Amsterdam, 1975, pp. 403-424.
[5] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Q. J. Math. 12 (1) (1961) 313-320.
[6] D.K. Ray-Chaudhuri, R.M. Wilson, On t-designs, Osaka J. of Math. 12 (3) (1975) 737-744.
[7] M. Deza, Solution d'un problème de Erdös-Lovász, J. Comb. Theory B 16 (2) (1974) 166-167.

[^0]: Peer review under responsibility of Kalasalingam University.
 E-mail address: hegedus.gabor@nik.uni-obuda.hu.

