# Graphs determined by signless Laplacian spectra 

Ali Zeydi Abdian, Afshin Behmaram \& Gholam Hossein Fath-Tabar

To cite this article: Ali Zeydi Abdian, Afshin Behmaram \& Gholam Hossein Fath-Tabar (2020) Graphs determined by signless Laplacian spectra, AKCE International Journal of Graphs and Combinatorics, 17:1, 45-50, DOI: 10.1016/j.akcej.2018.06.009

To link to this article: https://doi.org/10.1016/j.akcej.2018.06.009

© 2018 Kalasalingam University. Published with license by Taylor \& Francis Group, LLC.

Published online: 01 Jun 2020.

Submit your article to this journal

Article views: 279


View related articles


View Crossmark data $\triangle$


Citing articles: 2 View citing articles

# Graphs determined by signless Laplacian spectra 

Ali Zeydi Abdian ${ }^{\text {a,* }}$, Afshin Behmaram ${ }^{\text {b }}$, Gholam Hossein Fath-Tabar ${ }^{\text {c }}$<br>${ }^{\text {a }}$ Department of the Mathematical Science, Lorestan University, Lorestan, Khorramabad, Iran<br>${ }^{\mathrm{b}}$ Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran<br>${ }^{\text {c }}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, Iran

Received 7 January 2018; received in revised form 6 June 2018; accepted 14 June 2018


#### Abstract

In the past decades, graphs that are determined by their spectrum have received more attention, since they have been applied to several fields, such as randomized algorithms, combinatorial optimization problems and machine learning. An important part of spectral graph theory is devoted to determining whether given graphs or classes of graphs are determined by their spectra or not. So, finding and introducing any class of graphs which are determined by their spectra can be an interesting and important problem. A graph is said to be $D Q S$ if there is no other non-isomorphic graph with the same signless Laplacian spectrum. For a $D Q S$ graph $G$, we show that $G \cup r K_{1} \cup s K_{2}$ is $D Q S$ under certain conditions, where $r, s$ are natural numbers and $K_{1}$ and $K_{2}$ denote the complete graphs on one vertex and two vertices, respectively. Applying these results, some $D Q S$ graphs with independent edges and isolated vertices are obtained.


Keywords: Spectral characterization; Signless Laplacian spectrum; Cospectral graph

## 1. Introduction

Let $G=(V, E)$ be a simple graph with vertex set $V=V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E=E(G)=$ $\left\{e_{1}, \ldots, e_{m}\right\}$. Denote by $d(v)$ the degree of vertex $v$. All graphs considered here are simple and undirected. All notions on graphs that are not defined here can be found in [1-5]. The join of two graphs $G$ and $H$ is a graph formed from disjoint copies of $G$ and $H$ by connecting each vertex of $G$ to each vertex of $H$. We denote the join of two graphs $G$ and $H$ by $G \nabla H$. The complement of a graph $G$ is denoted by $\bar{G}$.

Let $A(G)$ be the $(0,1)$-adjacency matrix of graph $G$. The characteristic polynomial of $G$ is $\operatorname{det}(\lambda I-A(G))$, and it is denoted by $P_{G}(\lambda)$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the distinct eigenvalues of $G$ with multiplicities $m_{1}, m_{2}, \ldots, m_{n}$, respectively. The multi-set of eigenvalues of $Q(G)$ is called the signless Laplacian spectrum of $G$. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=S L(G)=D(G)+A(G)$ are called the Laplacian matrix and the signless

[^0]Laplacian matrix of $G$, respectively, where $D(G)$ denotes the degree matrix. Note that $D(G)$ is diagonal. The multiset $\operatorname{Spec}_{Q}(G)=\left\{\left[\lambda_{1}\right]^{m_{1}},\left[\lambda_{2}\right]^{m_{2}}, \ldots,\left[\lambda_{n}\right]^{m_{n}}\right\}$ of eigenvalues of $Q(G)$ is called the signless Laplacian spectrum of $G$, where $m_{i}$ denote the multiplicities of $\lambda_{i}$. The Laplacian spectrum is defined analogously.

For any bipartite graph, its $Q$-spectrum coincides with its $L$-spectrum. Two graphs are $Q$-cospectral (resp. $L$-cospectral, $A$-cospectral) if they have the same $Q$-spectrum (resp. $L$-spectrum, $A$-spectrum). A graph $G$ is said to be $D Q S$ (resp. $D L S, D A S$ ) if there is no other non-isomorphic graph $Q$-cospectral (resp. $L$-cospectral, $A$-cospectral) with $G$. Van Dam and Haemers [6] conjectured that almost all graphs are determined by their spectra. Nevertheless, the set of graphs that are known to be determined by their spectra is too small. So, discovering infinite classes of graphs that are determined by their spectra can be an interesting problem. About the background of the question "Which graphs are determined by their spectrum?", we refer to [6]. It is interesting to construct new $D Q S(D L S)$ graphs from known $D Q S(D L S)$ graphs. For a $D L S$ graph $G$, the join $G \cup r K_{1}$ is also $D L S$ under some conditions [7]. Actually, a graph is $D L S$ if and only if its complement is $D L S$. Hence we can obtain $D L S$ graphs from known $D L S$ graphs by adding independent edges.

Up to now, only some graphs with special structures are shown to be determined by their spectra (DS, for short) (see [1,8-30] and the references cited in them).

In this paper, we investigate signless Laplacian spectral characterization of graphs with independent edges and isolated vertices. For a $D Q S$ graph $G$, we show that $G \cup r K_{1} \cup s K_{2}$ is $D Q S$ under certain conditions. Applying these results, some $D Q S$ graphs with independent edges and isolated vertices are obtained.

## 2. Some definitions and preliminaries

Some useful established results about the spectrum are presented in this section, will play an important role throughout this paper.

Lemma 2.1 ([4,9,17]). For the adjacency matrix, the Laplacian matrix and the signless Laplacian matrix of a graph $G$, the following can be deduced from the spectrum:
(1) The number of vertices.
(2) The number of edges.
(3) Whether G is regular.

For the Laplacian matrix, the following follows from the spectrum:
(4) The number of components.

For the signless Laplacian matrix, the following follow from the spectrum:
(5) The number of bipartite components.
(6) The sum of the squares of degrees of vertices.

Lemma 2.2 ([17]). Let $G$ be a graph with $n$ vertices, $m$ edges and triangles and vertex degrees $d_{1}, d_{2}, \ldots, d_{n}$. Let $T_{k}=\sum_{i=1}^{n}\left(q_{i}(G)\right)^{k}$, then

$$
T_{0}=n, T_{1}=\sum_{i=1}^{n} d_{i}=2 m, T_{2}=2 m+\sum_{i=1}^{n} d_{i}^{2} \text { and } T_{3}=6 t+3 \sum_{i=1}^{n} d_{i}^{2}+\sum_{i=1}^{n} d_{i}^{3}
$$

For a graph $G$, let $P_{L}(G)$ and $P_{Q}(G)$ denote the product of all nonzero eigenvalues of $L_{G}$ and $Q_{G}$, respectively. We assume that $P_{L}(G)=P_{Q}(G)=1$ if $G$ has no edges.

Lemma 2.3 ([4]). For any connected bipartite graph $G$ of order n, we have $P_{Q}(G)=P_{L}(G)=n \tau(G)$, where $\tau(G)$ is the number of spanning trees of $G$.

For a connected graph $G$ with $n$ vertices and $m$ edges, $G$ is called unicyclic (resp. bicyclic) if $m=n$ (resp. $m=n+1$ ). If $G$ is a unicyclic graph that contains an odd (resp. even) cycle, then $G$ is called odd unicyclic (resp. even unicyclic).

Lemma 2.4 ([31]). For any graph $G$, $\operatorname{det}\left(Q_{G}\right)=4$ if and only if $G$ is an odd unicyclic graph. If $G$ is a non-bipartite connected graph and $|E(G)|>|V(G)|$, then $\operatorname{det}\left(Q_{G}\right)>16$, with equality if and only if $G$ is a non-bipartite bicyclic graph with $C_{4}$ as its induced subgraph.

Lemma 2.5 ([32]). Let $H$ be a proper subgraph of a connected graph $G$. Then, $q_{1}(G)>q_{1}(H)$.

## 3. Main results

We first investigate spectral characterizations of the union of a tree and several complete graphs $K_{1}$ and $K_{2}$.
Theorem 3.1. Let $T$ be a $D L S(D Q S)$ tree of order $n$. Then $T \cup r K_{1} \cup s K_{2}$ is $D L S$.
$T \cup r K_{1} \cup s K_{2}$ isDQS ifn is not divisible by 2 and $s=1$.
Proof. Let $G$ be any graph $L$-cospectral with $T \cup r K_{1} \cup s K_{2}$. By Lemma 2.1, $G$ has $n+r+2 s$ vertices, $n-1+s$ edges and $r+s+1$ components. So each component of $G$ is a tree. Suppose that $G=G_{0} \cup G_{1} \cup \cdots \cup G_{r+s}$, where $G_{i}$ is a tree with $n_{i}$ vertices and $n_{0} \geq n_{1} \geq \cdots \geq n_{s} \geq \cdots \geq n_{r+s} \geq 1$. Since $G$ is $L$-cospectral with $T \cup r K_{1} \cup s K_{2}$, by Lemma 2.3, we get $n_{0} n_{1} \cdots n_{r+s}=P_{L}(G)=n 2^{s}$. We claim that $n_{s}=2$. Suppose not and so $n_{s} \geq 3$. Therefore, $n_{0} \geq n_{1} \geq \cdots \geq n_{s} \geq 3$ and since $n_{s+1} \geq \cdots \geq n_{r+s} \geq 1$, one may deduce that $n 2^{s}=n_{0} n_{1} \cdots n_{r+s} \geq 3^{s+1}$ or $n\left(\frac{2}{3}\right)^{s} \geq 3$. Now if $s \longrightarrow \infty$, then $0 \geq 3$, a contradiction. Hence $n_{s}=2$. By a similar argument one may show that $n_{1}=n_{2}=\cdots=n_{s-1}=2$ and so $n_{0}=n$ and $n_{s+1}=n_{s+2}=\cdots=n_{s+r}=1$. Hence $G=G_{0} \cup r K_{1} \cup s K_{2}$. Since $G$ and $T \cup r K_{1} \cup s K_{2}$ are $L$-cospectral, $G_{0}$ and $T$ are $L$-cospectral. Since $T$ is $D L S$, we have $G_{0}=T$, $G=T \cup r K_{1} \cup s K_{2}$. Hence $T \cup r K_{1} \cup s K_{2}$ is $D L S$. Let $H$ be any graph $Q$-cospectral with $T \cup r K_{1} \cup s K_{2}$. By Lemma 2.1, $H$ has $n+r+2 s$ vertices, $n-1+s$ edges and $r+s+1$ bipartite components. So one of the following holds:
(i) $H$ has exactly $r+s+1$ components, and each component of $H$ is a tree.
(ii) $H$ has $r+s+1$ components which are trees, the other components of $H$ are odd unicyclic.

If (i) holds, then $H$ and $T \cup r K_{1} \cup s K_{2}$ are both bipartite, so they are also $L$-cospectral. Since $T \cup r K_{1} \cup s K_{2}$ is $D L S$, we have $H=T \cup r K_{1} \cup s K_{2}$.

If (ii) holds, then by Lemma 2.4, $P_{Q}(H)$ is divisible by 4 . Since $T$ is a tree of order $n$, by Lemma 2.3, $P_{Q}(H)=n 2^{s}$ is divisible by 4 . Hence $T \cup r K_{1} \cup s K_{2}$ is $D Q S$ when $n$ is not divisible by 2 and $s=1$.

Remark 1. Some $D L S$ trees are given in [33-38]. We can obtain $D L S(D Q S)$ graphs with independent edges and isolated vertices from Theorem 3.1.

Theorem 3.2. Let $G$ be a $D Q S$ odd unicyclic graph of order $n \geq 7$. Then $G \cup r K_{1} \cup s K_{2}$ is $D Q S$.
Proof. Let $H$ be any graph $Q$-cospectral with $G \cup r K_{1} \cup s K_{2}$. By Lemma 2.4, $P_{Q}(H)=4\left(2^{s}\right)$. By Lemma 2.1, $H$ has $n+r+2 s$ vertices, $n+r$ edges and $r+s$ bipartite components. So one of the following holds:
(i) $H$ has exactly $r+s$ components, and each component of $H$ is a tree.
(ii) $H$ has $r+s$ components which are trees, the other components of $H$ are odd unicyclic.

If (i) holds, then we can let $H=H_{1} \cup \cdots \cup H_{r+s}$, where $H_{i}$ is a tree with $n_{i}$ vertices and $n_{1} \geq \cdots \geq n_{r+s} \geq 1$. Since $P_{Q}(H)=4\left(2^{s}\right)$, by Lemma 2.3, we have $n_{1} \cdots n_{r+s}=4\left(2^{s}\right), n_{1} \leq 8$.

Since $G$ contains a cycle, we have $q_{1}(H)=q_{1}(G) \geq 4$. Let $\Delta(H)$ be the maximum degree of $H$. If $\Delta(H) \leq 2$, then all components of $H$ are paths, i.e., $q_{1}(H)<4$, a contradiction. So $\Delta(H)>3$. From $n_{1} \leq 8$ and $n_{1} \cdots n_{r+s}=4\left(2^{s}\right)=2^{(s+2)}$, we know that $H_{1}=K_{1,7}$ (without loss of generality), $H_{2}=\cdots=H_{s}=K_{2}$ and $H_{s+1}=\cdots=H_{r+s}=K_{1}$. Since $H=K_{1,7} \cup(s-1) K_{2} \cup r K_{1}$ has $n+r+2 s$ vertices, we get $n=6$, a contradiction to $n>6$.

If (ii) holds, then we can let $H=U_{1} \cup \cdots \cup U c \cup H_{1} \cup \cdots \cup H_{r}$, where $U_{i}$ is odd unicyclic, $H_{i}$ is a tree with $n_{i}$ vertices. By Lemmas 2.3 and 2.4, $4\left(2^{s}\right)=P_{Q}(H)=4^{c} n_{1} \cdots n_{r}$. So $c=1, H_{1}=\cdots=H_{s}=K_{2}$ and $H_{s+1}=\cdots=H_{r+s}=K_{1}$. Since $H=U_{1} \cup r K_{1} \cup s K_{2}$ and $G \cup r K_{1} \cup s K_{2}$ are $Q$-cospectral, $U_{1}$ and $G$ are $Q$-cospectral. Since $G$ is $D Q S$, we have $U_{1}=G, H=G \cup r K_{1} \cup s K_{2}$.

Remark 2. Some $D Q S$ unicyclic graphs are given in [39-44]. We can obtain $D Q S$ graphs with independent edges and isolated vertices from Theorem 3.2.

Theorem 3.3. Let $G$ be a non-bipartite $D Q S$ bicyclic graph with $C_{4}$ as its induced subgraph and $n \geq 5$. Then $G \cup r K_{1} \cup s K_{2}$ is $D Q S$.

Proof. Let $H$ be any graph $Q$-cospectral with $G \cup r K_{1} \cup s K_{2}$. By Lemma 2.4, we have $P_{Q}(H)=16\left(2^{r}\right)$. By Lemma 2.1, $H$ has $n+r+2 s$ vertices, $n+1+s$ edges and $r+s$ bipartite components, where $n=|V(G)|$. So $H$ has at least $r+s-1$ components which are trees. Suppose that $H_{1}, H_{2}, \ldots, H_{r+s}$ are $r+s$ bipartite components of $H$, where $H_{2}, \ldots, H_{r}$ are trees. If $H_{1}$ contains an even cycle, then by Lemma 2.3, we have $P_{Q}(H) \geq P_{Q}\left(H_{1}\right) \geq 16$, and $P_{Q}(H)=16\left(2^{s-1}\right)$ if and only if $H=C_{4} \cup(s-1) K_{2} \cup r K_{1}$. Since $H$ has $n+r+2 s$ vertices, we get $n=2$, a contradiction ( $G$ contains $C_{4}$ ). Hence $H_{1}, H_{2}, \ldots, H_{r+s}$ are trees. Since $H$ has $n+r+2 s$ vertices, $n+1+r+2 s$ edges and $r+s$ bipartite components, $H$ has a non-bipartite component $H_{0}$ which is a bicyclic graph. Lemma 2.4 implies that $P_{Q}(H)>P_{Q}\left(H_{0}\right)>16$, and $P_{Q}(H)=16\left(2^{s}\right)$ if and only if $H=H_{0} \cup r K_{1} \cup s K_{2}$ and $H_{0}$ contains $C_{4}$ as its induced subgraph. By $P Q(H)=16\left(2^{s}\right)$, we have $H=H_{0} \cup r K_{1} \cup s K_{2}$. Since $H$ and $G \cup r K_{1} \cup s K_{2}$ are $Q$-cospectral, $H_{0}$ and $G$ are $Q$-cospectral. Since $G$ is $D Q S$, we have $H_{0}=G, H=G \cup r K_{1} \cup s K_{2}$. Hence $G \cup r K_{1} \cup s K_{2}$ is $D Q S$.

Remark 3. Some $D Q S$ bicyclic graphs are given in [45-48]. We can obtain $D Q S$ graphs with independent edges and isolated vertices from Theorem 3.3.

Theorem 3.4. Let $G$ be a $D Q S$ connected non-bipartite graph with $n \geq 3$ vertices. If $H$ is $Q$-cospectral with $G \cup r K_{1} \cup s K_{2}$, then $H$ is a DQS graph.

Proof. By Lemma 2.1, $H$ has $n+r+2 s$ vertices and at least $r+s$ bipartite components. We perform the mathematical induction on $s$.
$H$ has $r+s$ components. Since $H$ has at least $r+s$ bipartite components, each component of $H$ is bipartite. Suppose that $H=H_{1} \cup \cdots \cup H_{r+s}$, where $H_{i}$ is a connected bipartite graph with $n_{i}$ vertices, and $n_{1} \geq \cdots \geq n_{s} \geq$ $\cdots \geq n_{r+s} \geq 1$. Since $H$ and $G \cup r K_{1} \cup s K_{2}$ are $Q$-cospectral, by Lemma 2.1, $G$ is a connected non-bipartite graph.

Let $s=1$. For $n \geq 3, q_{1}(G) \geq 3$, since $G$ has $K_{1,2}$ or $K_{3}$ as its subgraph. Obviously $\operatorname{Spec}_{Q}(H)$ has exactly $r+s$ eigenvalues that are zero. We show that if $H$ is $Q$-cospectral with $G \cup r K_{1} \cup K_{2}$, then $H$ is a $D Q S$ graph. First we show that there is no connected graph $Q$-cospectral with $\operatorname{Spec}_{Q}\left(G^{\prime}\right)=\operatorname{Spec}_{Q}(G) \cup\left\{[2]^{1}\right\}$. In fact we prove that $G^{\prime}$ cannot have 2 as its eigenvalue. Obviously, $\operatorname{Spec}_{Q}(H)=\operatorname{Spec}_{Q}\left(G^{\prime}\right) \cup\left\{[0]^{r+1}\right\}$. But, in this case $\left|E\left(G^{\prime}\right)\right|=|E(G)|+1$ and $\left|V\left(G^{\prime}\right)\right|=|V(G)|+1$, which means that $G^{\prime}$ must be connected. Otherwise, $G^{\prime}$ contains 0 as its signless eigenvalues, a contradiction. Therefore, $G$ is a proper subgraph of $G^{\prime}$ and so $q_{1}\left(G^{\prime}\right) \supsetneqq q_{1}(G) \geq 3$ (see Lemma 2.5), a contradiction. Therefore, $G^{\prime}$ cannot have 2 as its eigenvalue. By what was proved one can easily conclude that $\operatorname{Spec}_{Q}(H)=\operatorname{Spec}_{Q}(G) \cup \operatorname{Spec}_{Q}\left(K_{2}\right) \cup \operatorname{Spec}_{Q}\left(r K_{1}\right)$, since $G$ is not a bipartite graph and so has not 0 as an its signless Laplacian eigenvalue. Therefore, $H=G \cup K_{2} \cup r K_{1}$.

Now, let the theorem be true for $s$; that is, if $\operatorname{Spec}_{Q}\left(G_{1}\right)=\operatorname{Spec}_{Q}(G) \cup \operatorname{Spec}_{Q}\left(r K_{1} \cup s K_{2}\right)$, then $G_{1}=G \cup r K_{1} \cup s K_{2}$. We show that it follows from $\operatorname{Spec}_{Q}(K)=\operatorname{Spec}_{Q}(G) \cup \operatorname{Spec}_{Q}\left(r K_{1} \cup(s+1) K_{2}\right)$ that $K=G \cup r K_{1} \cup(s+1) K_{2}$. Obviously, $K$ has 2 vertices, one edge and one bipartite component more than $G_{1}$. So, we must have $K=G_{1} \cup K_{2}$.

Remark 4. In the following results graph $G$ in $G \cup r K_{1} \cup s K_{2}$ is a connected non-bipartite.
Corollary 3.1. The graph $K_{n} \cup r K_{1} \cup s K_{2}$ is $D Q S$.
Proof. From [6] (Proposition 7), if $n=1,2$, then $K_{n} \cup r K_{1} \cup s K_{2}$ is $D Q S$. For $n \geq 3$, by Theorem 3.4 the result follows.

In [49], Cámara and Haemers proved that a graph obtained from $K_{n}$ by deleting a matching is $D A S$. In [50], it have been shown that this graph is also $D Q S$.

Corollary 3.2. Let $G$ be the graph obtained from $K_{n}$ by deleting a matching. Then $G \cup r K_{1} \cup s K_{2}$ is $D Q S$.
Proof. From [6] (Proposition 7), if $n=1,2$, then $K_{n} \cup r K_{1} \cup s K_{2}$ is $D Q S$. For $n \geq 3$, by Theorem 3.4 the result follows.

A regular graph is $D Q S$ if and only if it is $D A S$ [6]. It is known that a $k$-regular graph of order $n$ is $D A S$ when $k=0,1,2, n-1, n-2, n-3$ [17]. Hence a $k$-regular graph of order $n$ is $D Q S$ when $k=0,1,2, n-1, n-2, n-3$.

[^1] https://doi.org/10.1016/j.akcej.2018.06.009.

Corollary 3.3. Let $G$ be a connected $(n-2)$-regular graph of order n. Then $G \cup r K_{1} \cup s K_{2}$ is $D Q S$.

Corollary 3.4. Let $G$ be a connected $(n-3)$-regular graph of order n. Then $G \cup r K_{1} \cup s K_{2}$ is $D Q S$.

Corollary 3.5. Let $G$ be a connected $(n-4)$-regular $D A S$ graph. Then $G \cup r K_{1} \cup s K_{2}$ is $D Q S$.
Remark 5. Some 3-regular $D A S$ graphs are given in [6,51]. We can obtain $D Q S$ graphs with independent edges and isolated vertices and isolated vertices from Corollary 3.4.

Corollary 3.6. Let $F_{n}$ denote the friendship graph and $G$ be $Q$-spectral with $F_{n}$, then $G \cup r K_{1} \cup s K_{2}$ is $D Q S$.

## Proof. It is well-known that $F_{n}$ is $D Q S$. By Theorem 3.4 the proof is completed.

## References

[1] X. Liu, L. Pengli, Signless Laplacian spectral characterization of some joins, Electron. J. Linear Algebra 30 (1) (2015) 30.
[2] R.B. Bapat, Graphs and Matrices, Springer-Verlag, New York, 2010.
[3] N.L. Biggs, Algebraic Graph Theory, Cambridge University press, Cambridge, 1933.
[4] D. Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, in: London Mathematical Society Student Teyts, vol. 75, Cambridge University Press, Cambridge, 2010.
[5] D.B. West, Introduction to Graph Theory, Prentice hall, Upper Saddle River, 2001.
[6] E.R. Van Dam, W.H. Haemers, Which graphs are determined by their spectrum? Linear Algebra. Appl. 373 (2003) $241-272$.
[7] X. Lizhen, C. He, On the signless Laplacian spectral determination of the join of regular graphs., Discrete Math. Algorithms Appl. 6 (04) (2014) 1450050.
[8] A.Z. Abdian, Lowell W. Beineke, A. Behmaram On the spectral determinations of the connected multicone graphs $K_{r} \nabla s K_{t}$, arXiv preprint arXiv:1806.02625.
[9] A.Z. Abdian, S.M. Mirafzal, On new classes of multicone graph determined by their spectrums, Alg. Struc. Appl. 2 (2015) 23-34.
[10] A.Z. Abdian, Graphs which are determined by their spectrum, Konuralp J. Math. 4 (2016) 34-41.
[11] A.Z. Abdian, Two classes of multicone graphs determined by their spectra, J. Math. Ext. 10 (2016) 111-121.
[12] A.Z. Abdian, Graphs cospectral with multicone graphs $K_{w} \nabla L(P)$, TWMS. J. App and Eng. Math. 7 (2017) 181-187.
[13] A.Z. Abdian, The spectral determination of the multicone graphs $K_{w} \nabla P$, 2017. arXiv preprint arXiv:1703.08728.
[14] A.Z. Abdian, S.M. Mirafzal, The spectral characterizations of the connected multicone graphs $K_{w} \nabla L H S$ and $K_{w} \nabla L G Q(3,9)$, Discrete Math. Algorithms Appl. 10 (2018) 1850019.
[15] A.Z. Abdian, S.M. Mirafzal, The spectral determinations of the connected multicone graphs $K_{w} \nabla m P_{17}$ and $K_{w} \nabla m S$, Czechoslovak Math. J. (2018) 1-14. http://dx.doi.org/10.21136/CMJ.2018.0098-17.
[16] A.Z. Abdian, The spectral determinations of the multicone graphs $K_{w} \nabla m C_{n}$, arXiv preprint arXiv:1703.08728.
[17] C. Bu, J. Zhou, Signless Laplacian spectral characterization of the cones over some regular graphs, Linear Algebra Appl. 436 (2012) 3634-3641.
[18] D. Cvetković, P. Rowlinson, S. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (1) (2007) $155-171$.
[19] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on the signless Laplacian, II, Linear Algebra Appl. 432 (2010) $2257-2272$.
[20] K.C. Das, On conjectures involving second largest signless Laplacian eigenvalue of graphs, Linear Algebra Appl. 43 (2010) 2.
[21] W.H. Haemers, X.G. Liu, Y.P. Zhang, Spectral characterizations of lollipop graphs, Linear Algebra Appl. 428 (2008) 2415-2423 3018-3029.
[22] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197 (1994) 143-176.
[23] S.M. Mirafzal, A.Z. Abdian, Spectral characterization of new classes of multicone graphs, Stud. Univ. Babeş-Bolyai Math 62 (3) (2017) 275-286.
[24] S.M. Mirafzal, A.Z. Abdian, The spectral determinations of some classes of multicone graphs, J. Discrete Math. Sci. Cryptogr. 21 (1) (2018) 179-189.
[25] R. Sharafdini, A.Z. Abdian, Signless Laplacian determinations of some graphs with independent edges, Carpathian Mathematical Publication (2018) in press.
[26] W. Yi, F. Yizheng, T. Yingying, On graphs with three distinct Laplacian eigenvalues, Appl. Math. J. Chinese Univ. Ser. A 22 (2007) $478-484$.
[27] J. Wang, H. Zhao, Q. Huang, Spectral charactrization of multicone graphs, Czechoslovak Math. J. 62 (2012) 117-126.
[28] HS.H. Günthard, H. Primas, Zusammenhang von Graph theory und Mo-Theorie von Molekeln mit Systemen konjugierter Bindungen, Helv. Chim. Acta 39 (1925) 1645-1653.
[29] M.H. Liu, B.L. Liu, Some results on the Laplacian spectrum, J. Comput. Appl. Math. 59 (2010) 3612-3616.
[30] J. Zhou, C. Bu, Laplacian spectral characterization of some graphs obtained by product operation, Discrete Math. 312 (2012) $1591-1595$.
[31] M. Mirzakhah, D. Kiani, The sun graph is determined by its signless Laplacian spectrum, Electron. J. Linear Algebra. 20 (2010) 610-620.
[32] M. Chen, B. Zhou, On the signless Laplacian spectral radius of cacti, Croat. Chem. Acta 89 (4) (2016) 1-6.
[33] G. Aalipour, S. Akbari, N. Shajari, Laplacian spectral characterization of two families of trees, Linear Multilinear Algebra 62 (2014) $965-977$.
[34] R. Boulet, The centipede is determined by its Laplacian spectrum, C. R. Acad. Sci., Paris I 346 (2008) 711-716.
[35] C. Bu, J. Zhou, H. Li, Spectral determination of some chemical graphs, Filomat 26 (2012) 1123-1131.
[36] P.L. Lu, X.D. Zhang, Y. Zhang, Determination of double quasi-star tree from its Laplacian spectrum, J. Shanghai Univ. 14 (3) (2010) $163-166$.
[37] X.L. Shen, Y.P. Hou, Some trees are determined by their Laplacian spectra, J. Nat. Sci. Hunan Norm. Univ. 29 (1) (2006) $21-24$ (in Chinese).
[38] Z. Stanić, On determination of caterpillars with four terminal vertices by their Laplacian spectrum, Linear Algebra Appl. 431 (2009) 2035-2048.
[39] C. Bu, J. Zhou, H. Li, W. Wang, Spectral characterizations of the corona of a cycle and two isolated vertices, Graphs Combin. 30 (2014) 1123-1133.
[40] M.H. Liu, Some graphs determined by their (signless) Laplacian spectra, Czechoslovak Math. J. 62 (137) (2012) $1117-1134$.
[41] M.H. Liu, H.Y. Shan, K.C. Das, Some graphs determined by their (signless) Laplacian spectra, Linear Algebra Appl. 449 (2014) 154-165.
[42] X. Liu, S. Wang, Y. Zhang, X. Yong, On the spectral characterization of some unicyclic graphs, Discrete Math. 311 (2011) $2317-2336$.
[43] J.F. Wang, F. Belardo, Q. Zhang, Signless Laplacian spectral characterization of line graphs of T-shape trees, Linear Multilinear Algebra 62 (2014) 1529-1545.
[44] Y. Zhang, X. Liu, B. Zhang, X. Yong, The lollipop graph is determined by its Q-spectrum, Discrete Math. 309 (2009) 3364-3369.
[45] G. Guo, G. Wang, On the (signless) Laplacian spectral characterization of the line graphs of lollipop graphs, Linear Algebra Appl. 438 (2013) 4595-4605.
[46] X. Liu, S. Zhou, Spectral characterizations of propeller graphs, Electron. J. Linear Algebra. 27 (2014) 19-38.
[47] J.F. Wang, Q.X. Huang, F. Belardo, E.M. Li Marzi, On the spectral characterizations of 1-graphs, Discrete Math. 310 (2010) $1845-1855$.
[48] J.F. Wang, Q.X. Huang, F. Belardo, E.M. Li Marzi, Spectral characterizations of dumbbell graphs, Electron. J. Combin. 17 (2010).
[49] M. Cámara, W.H. Haemers, Spectral characterizations of almost complete graphs, Discrete Appl. Math. 176 (2014) 19-23.
[50] S. Huang, J. Zhou, C. Bu, Signless Laplacian spectral characterization of graphs with isolated vertices, Filomat 30 (14) (2017).
[51] F.J. Liu, Q.X. Huang, H.J. Lai, Note on the spectral characterization of some cubic graphs with maximum number of triangles, Linear Algebra Appl. 438 (2013) 1393-1397.


[^0]:    Peer review under responsibility of Kalasalingam University.

    * Corresponding author.

    E-mail addresses: abdian.al@fs.lu.ac.ir (A.Z. Abdian), behmaram@tabrizu.ac.ir (A. Behmaram), fathtabar@kashanu.ac.ir (G.H. Fath-Tabar).

[^1]:    Please cite this article in press as: A.Z. Abdian, et al., Graphs determined by signless Laplacian spectra, AKCE International Journal of Graphs and Combinatorics (2018),

