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Abstract

In the past decades, graphs that are determined by their spectrum have received more attention, since they have been applied
to several fields, such as randomized algorithms, combinatorial optimization problems and machine learning. An important part of
spectral graph theory is devoted to determining whether given graphs or classes of graphs are determined by their spectra or not.
So, finding and introducing any class of graphs which are determined by their spectra can be an interesting and important problem.
A graph is said to be DQS if there is no other non-isomorphic graph with the same signless Laplacian spectrum. For a DQS graph
G, we show that G ∪ r K1 ∪ sK2 is DQS under certain conditions, where r , s are natural numbers and K1 andK2 denote the
complete graphs on one vertex and two vertices, respectively. Applying these results, some DQS graphs with independent edges
and isolated vertices are obtained.

Keywords: Spectral characterization; Signless Laplacian spectrum; Cospectral graph

1. Introduction

Let G = (V, E) be a simple graph with vertex set V = V (G) = {v1, . . . , vn} and edge set E = E(G) =

{e1, . . . , em}. Denote by d(v) the degree of vertex v. All graphs considered here are simple and undirected. All notions
on graphs that are not defined here can be found in [1–5]. The join of two graphs G and H is a graph formed from
disjoint copies of G and H by connecting each vertex of G to each vertex of H . We denote the join of two graphs G
and H by G ▽ H . The complement of a graph G is denoted by G.

Let A(G) be the (0, 1)-adjacency matrix of graph G. The characteristic polynomial of G is det(λI − A(G)), and
it is denoted by PG(λ). Let λ1, λ2, . . . , λn be the distinct eigenvalues of G with multiplicities m1, m2, . . . , mn ,
respectively. The multi-set of eigenvalues of Q(G) is called the signless Laplacian spectrum of G. The matrices
L(G) = D(G) − A(G) and Q(G) = SL(G) = D(G) + A(G) are called the Laplacian matrix and the signless
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Laplacian matrix of G, respectively, where D(G) denotes the degree matrix. Note that D(G) is diagonal. The multi-
set SpecQ(G) = {[λ1]m1 , [λ2]m2 , . . . , [λn]mn } of eigenvalues of Q(G) is called the signless Laplacian spectrum of G,
where mi denote the multiplicities of λi . The Laplacian spectrum is defined analogously.

For any bipartite graph, its Q-spectrum coincides with its L-spectrum. Two graphs are Q-cospectral (resp.
L-cospectral, A-cospectral) if they have the same Q-spectrum (resp. L-spectrum, A-spectrum). A graph G is said to
be DQS (resp. DL S, D AS) if there is no other non-isomorphic graph Q-cospectral (resp. L-cospectral, A-cospectral)
with G. Van Dam and Haemers [6] conjectured that almost all graphs are determined by their spectra. Nevertheless, the
set of graphs that are known to be determined by their spectra is too small. So, discovering infinite classes of graphs
that are determined by their spectra can be an interesting problem. About the background of the question “Which
graphs are determined by their spectrum?”, we refer to [6]. It is interesting to construct new DQS (DL S) graphs from
known DQS (DL S) graphs. For a DL S graph G, the join G ∪ r K1 is also DL S under some conditions [7]. Actually,
a graph is DL S if and only if its complement is DL S. Hence we can obtain DL S graphs from known DL S graphs
by adding independent edges.

Up to now, only some graphs with special structures are shown to be determined by their spectra (DS, for short)
(see [1,8–30] and the references cited in them).

In this paper, we investigate signless Laplacian spectral characterization of graphs with independent edges and
isolated vertices. For a DQS graph G, we show that G ∪ r K1 ∪ sK2 is DQS under certain conditions. Applying these
results, some DQS graphs with independent edges and isolated vertices are obtained.

2. Some definitions and preliminaries

Some useful established results about the spectrum are presented in this section, will play an important role
throughout this paper.

Lemma 2.1 ([4,9,17]). For the adjacency matrix, the Laplacian matrix and the signless Laplacian matrix of a graph
G, the following can be deduced from the spectrum:

(1) The number of vertices.
(2) The number of edges.
(3) Whether G is regular.
For the Laplacian matrix, the following follows from the spectrum:
(4) The number of components.
For the signless Laplacian matrix, the following follow from the spectrum:
(5) The number of bipartite components.
(6) The sum of the squares of degrees of vertices.

Lemma 2.2 ([17]). Let G be a graph with n vertices, m edges and t triangles and vertex degrees d1, d2, . . . , dn . Let
Tk =

∑n
i=1(qi (G))k , then

T0 = n, T1 =

n∑
i=1

di = 2m, T2 = 2m +

n∑
i=1

d2
i and T3 = 6t + 3

n∑
i=1

d2
i +

n∑
i=1

d3
i .

For a graph G, let PL (G) and PQ(G) denote the product of all nonzero eigenvalues of LG and QG , respectively.
We assume that PL (G) = PQ(G) = 1 if G has no edges.

Lemma 2.3 ([4]). For any connected bipartite graph G of order n, we have PQ(G) = PL (G) = nτ (G), where τ (G)
is the number of spanning trees of G.

For a connected graph G with n vertices and m edges, G is called unicyclic (resp. bicyclic) if m = n (resp.
m = n + 1). If G is a unicyclic graph that contains an odd (resp. even) cycle, then G is called odd unicyclic (resp.
even unicyclic).

Lemma 2.4 ([31]). For any graph G, det(QG) = 4 if and only if G is an odd unicyclic graph. If G is a non-bipartite
connected graph and |E(G)| > |V (G)|, then det(QG) > 16, with equality if and only if G is a non-bipartite bicyclic
graph with C4 as its induced subgraph.
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Lemma 2.5 ([32]). Let H be a proper subgraph of a connected graph G. Then, q1(G) > q1(H ).

3. Main results

We first investigate spectral characterizations of the union of a tree and several complete graphs K1 and K2.

Theorem 3.1. Let T be a DL S(DQS) tree of order n. Then T ∪ r K1 ∪ sK2 is DL S.

T ∪ r K1 ∪ sK2 isDQS if n is not divisible by 2 and s = 1.

Proof. Let G be any graph L-cospectral with T ∪ r K1 ∪ sK2. By Lemma 2.1, G has n + r + 2s vertices, n − 1 + s
edges and r + s + 1 components. So each component of G is a tree. Suppose that G = G0 ∪ G1 ∪ · · · ∪ Gr+s , where
G i is a tree with ni vertices and n0 ≥ n1 ≥ · · · ≥ ns ≥ · · · ≥ nr+s ≥ 1. Since G is L-cospectral with T ∪ r K1 ∪ sK2,
by Lemma 2.3, we get n0n1 · · · nr+s = PL (G) = n2s . We claim that ns = 2. Suppose not and so ns ≥ 3. Therefore,
n0 ≥ n1 ≥ · · · ≥ ns ≥ 3 and since ns+1 ≥ · · · ≥ nr+s ≥ 1, one may deduce that n2s

= n0n1 · · · nr+s ≥ 3s+1 or
n( 2

3 )s
≥ 3. Now if s −→ ∞, then 0 ≥ 3, a contradiction. Hence ns = 2. By a similar argument one may show that

n1 = n2 = · · · = ns−1 = 2 and so n0 = n and ns+1 = ns+2 = · · · = ns+r = 1. Hence G = G0 ∪ r K1 ∪ sK2.
Since G and T ∪ r K1 ∪ sK2 are L-cospectral, G0 and T are L-cospectral. Since T is DL S, we have G0 = T ,
G = T ∪ r K1 ∪ sK2. Hence T ∪ r K1 ∪ sK2 is DL S. Let H be any graph Q-cospectral with T ∪ r K1 ∪ sK2. By
Lemma 2.1, H has n + r + 2s vertices, n − 1 + s edges and r + s + 1 bipartite components. So one of the following
holds:

(i) H has exactly r + s + 1 components, and each component of H is a tree.
(ii) H has r + s + 1 components which are trees, the other components of H are odd unicyclic.
If (i) holds, then H and T ∪ r K1 ∪ sK2 are both bipartite, so they are also L-cospectral. Since T ∪ r K1 ∪ sK2 is

DL S, we have H = T ∪ r K1 ∪ sK2.
If (ii) holds, then by Lemma 2.4, PQ(H ) is divisible by 4. Since T is a tree of order n, by Lemma 2.3, PQ(H ) = n2s

is divisible by 4. Hence T ∪ r K1 ∪ sK2 is DQS when n is not divisible by 2 and s = 1. □

Remark 1. Some DL S trees are given in [33–38]. We can obtain DL S (DQS) graphs with independent edges and
isolated vertices from Theorem 3.1.

Theorem 3.2. Let G be a DQS odd unicyclic graph of order n ≥ 7. Then G ∪ r K1 ∪ sK2 is DQS.

Proof. Let H be any graph Q-cospectral with G ∪ r K1 ∪ sK2. By Lemma 2.4, PQ(H ) = 4(2s). By Lemma 2.1, H
has n + r + 2s vertices, n + r edges and r + s bipartite components. So one of the following holds:

(i) H has exactly r + s components, and each component of H is a tree.
(ii) H has r + s components which are trees, the other components of H are odd unicyclic.
If (i) holds, then we can let H = H1 ∪ · · · ∪ Hr+s , where Hi is a tree with ni vertices and n1 ≥ · · · ≥ nr+s ≥ 1.

Since PQ(H ) = 4(2s), by Lemma 2.3, we have n1 · · · nr+s = 4(2s), n1 ≤ 8.
Since G contains a cycle, we have q1(H ) = q1(G) ≥ 4. Let ∆(H ) be the maximum degree of H . If ∆(H ) ≤ 2,

then all components of H are paths, i.e., q1(H ) < 4, a contradiction. So ∆(H ) > 3. From n1 ≤ 8 and
n1 · · · nr+s = 4(2s) = 2(s+2), we know that H1 = K1,7 (without loss of generality), H2 = · · · = Hs = K2 and
Hs+1 = · · · = Hr+s = K1. Since H = K1,7 ∪ (s − 1)K2 ∪ r K1 has n + r + 2s vertices, we get n = 6, a contradiction
to n > 6.

If (ii) holds, then we can let H = U1 ∪ · · · ∪ Uc ∪ H1 ∪ · · · ∪ Hr , where Ui is odd unicyclic, Hi is a tree
with ni vertices. By Lemmas 2.3 and 2.4, 4(2s) = PQ(H ) = 4cn1 · · · nr . So c = 1, H1 = · · · = Hs = K2 and
Hs+1 = · · · = Hr+s = K1. Since H = U1 ∪ r K1 ∪ sK2 and G ∪ r K1 ∪ sK2 are Q-cospectral, U1 and G are
Q-cospectral. Since G is DQS, we have U1 = G, H = G ∪ r K1 ∪ sK2. □

Remark 2. Some DQS unicyclic graphs are given in [39–44]. We can obtain DQS graphs with independent edges
and isolated vertices from Theorem 3.2.

Theorem 3.3. Let G be a non-bipartite DQS bicyclic graph with C4 as its induced subgraph and n ≥ 5. Then
G ∪ r K1 ∪ sK2 is DQS.
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Proof. Let H be any graph Q-cospectral with G ∪ r K1 ∪ sK2. By Lemma 2.4, we have PQ(H ) = 16(2r ). By
Lemma 2.1, H has n + r + 2s vertices, n + 1 + s edges and r + s bipartite components, where n = |V (G)|. So H
has at least r + s − 1 components which are trees. Suppose that H1, H2, . . . , Hr+s are r + s bipartite components of
H , where H2, . . . , Hr are trees. If H1 contains an even cycle, then by Lemma 2.3, we have PQ(H ) ≥ PQ(H1) ≥ 16,
and PQ(H ) = 16(2s−1) if and only if H = C4 ∪ (s − 1)K2 ∪ r K1. Since H has n + r + 2s vertices, we get n = 2, a
contradiction (G contains C4). Hence H1, H2, . . . , Hr+s are trees. Since H has n + r + 2s vertices, n + 1 + r + 2s
edges and r + s bipartite components, H has a non-bipartite component H0 which is a bicyclic graph. Lemma 2.4
implies that PQ(H ) > PQ(H0) > 16, and PQ(H ) = 16(2s) if and only if H = H0 ∪ r K1 ∪ sK2 and H0 contains
C4 as its induced subgraph. By P Q(H ) = 16(2s), we have H = H0 ∪ r K1 ∪ sK2. Since H and G ∪ r K1 ∪ sK2
are Q-cospectral, H0 and G are Q-cospectral. Since G is DQS, we have H0 = G, H = G ∪ r K1 ∪ sK2. Hence
G ∪ r K1 ∪ sK2 is DQS. □

Remark 3. Some DQS bicyclic graphs are given in [45–48]. We can obtain DQS graphs with independent edges
and isolated vertices from Theorem 3.3.

Theorem 3.4. Let G be a DQS connected non-bipartite graph with n ≥ 3 vertices. If H is Q-cospectral with
G ∪ r K1 ∪ sK2, then H is a DQS graph.

Proof. By Lemma 2.1, H has n+r +2s vertices and at least r +s bipartite components. We perform the mathematical
induction on s.

H has r + s components. Since H has at least r + s bipartite components, each component of H is bipartite.
Suppose that H = H1 ∪ · · · ∪ Hr+s , where Hi is a connected bipartite graph with ni vertices, and n1 ≥ · · · ≥ ns ≥

· · · ≥ nr+s ≥ 1. Since H and G ∪ r K1 ∪ sK2 are Q-cospectral, by Lemma 2.1, G is a connected non-bipartite graph.
Let s = 1. For n ≥ 3, q1(G) ≥ 3, since G has K1,2 or K3 as its subgraph. Obviously SpecQ(H ) has exactly

r + s eigenvalues that are zero. We show that if H is Q-cospectral with G ∪ r K1 ∪ K2, then H is a DQS graph.
First we show that there is no connected graph Q-cospectral with SpecQ(G ′) = SpecQ(G) ∪

{
[2]1}. In fact we

prove that G ′ cannot have 2 as its eigenvalue. Obviously, SpecQ(H ) = SpecQ(G ′) ∪
{
[0]r+1}. But, in this case

|E(G ′)| = |E(G)| + 1 and |V (G ′)| = |V (G)| + 1, which means that G ′ must be connected. Otherwise, G ′ contains
0 as its signless eigenvalues, a contradiction. Therefore, G is a proper subgraph of G ′ and so q1(G ′) ≩ q1(G) ≥ 3
(see Lemma 2.5), a contradiction. Therefore, G ′ cannot have 2 as its eigenvalue. By what was proved one can easily
conclude that SpecQ(H ) = SpecQ(G) ∪ SpecQ(K2) ∪ SpecQ(r K1), since G is not a bipartite graph and so has not 0
as an its signless Laplacian eigenvalue. Therefore, H = G ∪ K2 ∪ r K1.

Now, let the theorem be true for s; that is, if SpecQ(G1) = SpecQ(G)∪SpecQ(r K1∪sK2), then G1 = G∪r K1∪sK2.
We show that it follows from SpecQ(K ) = SpecQ(G) ∪ SpecQ(r K1 ∪ (s + 1)K2) that K = G ∪ r K1 ∪ (s + 1)K2.
Obviously, K has 2 vertices, one edge and one bipartite component more than G1. So, we must have K = G1∪K2. □

Remark 4. In the following results graph G in G ∪ r K1 ∪ sK2 is a connected non-bipartite.

Corollary 3.1. The graph Kn ∪ r K1 ∪ sK2 is DQS.

Proof. From [6] (Proposition 7), if n = 1, 2, then Kn ∪ r K1 ∪ sK2 is DQS. For n ≥ 3, by Theorem 3.4 the result
follows. □

In [49], Cámara and Haemers proved that a graph obtained from Kn by deleting a matching is D AS. In [50], it
have been shown that this graph is also DQS.

Corollary 3.2. Let G be the graph obtained from Kn by deleting a matching. Then G ∪ r K1 ∪ sK2 is DQS.

Proof. From [6] (Proposition 7), if n = 1, 2, then Kn ∪ r K1 ∪ sK2 is DQS. For n ≥ 3, by Theorem 3.4 the result
follows. □

A regular graph is DQS if and only if it is D AS [6]. It is known that a k-regular graph of order n is D AS when
k = 0, 1, 2, n −1, n −2, n −3 [17]. Hence a k-regular graph of order n is DQS when k = 0, 1, 2, n −1, n −2, n −3.
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Corollary 3.3. Let G be a connected (n − 2)-regular graph of order n. Then G ∪ r K1 ∪ sK2 is DQS.

Corollary 3.4. Let G be a connected (n − 3)-regular graph of order n. Then G ∪ r K1 ∪ sK2 is DQS.

Corollary 3.5. Let G be a connected (n − 4)-regular D AS graph. Then G ∪ r K1 ∪ sK2 is DQS.

Remark 5. Some 3-regular D AS graphs are given in [6,51]. We can obtain DQS graphs with independent edges and
isolated vertices and isolated vertices from Corollary 3.4.

Corollary 3.6. Let Fn denote the friendship graph and G be Q-spectral with Fn , then G ∪ r K1 ∪ sK2 is DQS.

Proof. It is well-known that Fn is DQS. By Theorem 3.4 the proof is completed. □
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