Rainbow connection number of generalized composition

Fendy Septyanto \& Kiki Ariyanti Sugeng

To cite this article: Fendy Septyanto \& Kiki Ariyanti Sugeng (2020) Rainbow connection number of generalized composition, AKCE International Journal of Graphs and Combinatorics, 17:1, 367-372, DOI: 10.1016/j.akcej.2018.10.001

To link to this article: https://doi.org/10.1016/j.akcej.2018.10.001

© 2018 Kalasalingam University. Published with license by Taylor \& Francis Group, LLC.

Published online: 08 Jun 2020.

Submit your article to this journal

Article views: 69

View related articles

View Crossmark data \nearrow

Rainbow connection number of generalized composition

Fendy Septyanto*, Kiki Ariyanti Sugeng
Department of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia

Received 21 March 2018; received in revised form 6 October 2018; accepted 29 October 2018

Abstract

Let G be a connected graph with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. The rainbow connection number $r c(G)$ is the smallest k for which there is a map $\gamma: E(G) \rightarrow\{1, \ldots, k\}$ such that any two vertices can be connected by a path whose edge colors are all distinct. The generalized composition $G\left[H_{1}, \ldots, H_{n}\right]$ is obtained by replacing each v_{i} with the graph H_{i}. We prove $\operatorname{rc}\left(G\left[H_{1}, \ldots, H_{n}\right]\right)=\operatorname{diam}(G)$ if each H_{i} has at least $\operatorname{diam}(G) \geq 4$ vertices, improving known upper bounds of Basavaraju et al. and Gologranc et al. (2014). We prove the same result when $\operatorname{diam}(G)=3$ but with some additional conditions. When $\operatorname{diam}(G)=2$, we show that the largest possible value of $r c\left(G\left[H_{1}, \ldots, H_{n}\right]\right)$ is related to whether every vertex of G is contained in a triangle or not.

Keywords: Composition; Lexicographic product; Rainbow connection

1. Introduction

In 2008 Chartrand et al. [1] introduced new concepts that use edge-coloring to strengthen the connectedness property of a graph. An edge-coloring on a graph G is a map $E(G) \rightarrow\{1, \ldots, k\}$ (also called " k-coloring"). A rainbow path is a path whose edge colors are all distinct. A rainbow coloring is an edge-coloring in which any two vertices can be connected by a rainbow path. The rainbow connection number $r c(G)$ is the smallest k for which G has a rainbow k-coloring. A strong rainbow coloring is an edge-coloring in which any two vertices can be connected by a rainbow geodesic. The strong rainbow connection number $\operatorname{src}(G)$ is the smallest k for which G has a strong rainbow k-coloring.

We have [1]

$$
\begin{equation*}
\operatorname{diam}(G) \leq r c(G) \leq \operatorname{src}(G) \leq|E(G)| \tag{1}
\end{equation*}
$$

[^0]

Fig. 1. More examples, $P_{3}\left[P_{2}, C_{3}, K_{1}\right]$ (left) and $K_{1,3}\left[2 K_{1}, P_{3}, K_{1}, P_{2}\right]$ (right).

The reader is referred to [2] for a detailed survey. It is known that computing re and src is NP-hard [3]. Many studies have focused on special classes of graphs or graph operations, such as Cartesian product, strong product, lexicographic product (see [4] and [5]), and graph join (see [6]).

We study generalized composition, which can be thought of as "blowing-up" vertices into individual graphs. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$, and H_{1}, \ldots, H_{n} be any graphs. The generalized composition $G\left[H_{1}, \ldots, H_{n}\right]$ is obtained by replacing each v_{i} with H_{i} and adding a new edge between every vertex of H_{i} and every vertex of H_{j} whenever $v_{i} v_{j} \in E(G)$. We call this operation as G-composition. See Fig. 1.
Examples. $P_{2}\left[H_{1}, H_{2}\right]=H_{1}+H_{2}$ is the usual graph join, and a P_{n}-composition is known as a sequential join. The special case $G \circ H=G[H, H, \ldots, H]$ is known as composition or lexicographic product.

We always assume that G is non-trivial and connected. If $G\left[H_{1}, \ldots, H_{n}\right]$ is not a complete graph, then its diameter is $\max \{2, \operatorname{diam}(G)\}$. So

$$
\begin{equation*}
r c\left(G\left[H_{1}, \ldots, H_{n}\right]\right) \geq \operatorname{diam}(G) \tag{2}
\end{equation*}
$$

If each H_{i} has at least $\operatorname{diam}(G) \geq 4$ vertices, we show that (2) becomes an equality. When $H_{1}=\cdots=H_{n}$, this improves the results of Basavaraju et al. [4] $(r c(G \circ H) \leq 2 \operatorname{rad}(G))$ and Gologranc et al. [5] $(r c(G \circ H) \leq$ $2 \operatorname{diam}(G)+1)$.

If $\operatorname{diam}(G) \leq 3$, the bound (2) can be strict. However, we show that equality occurs when $\operatorname{diam}(G)=3$ and some conditions are met (either each H_{i} has at least one edge, or G has the property that there is a 3-walk between every pair $x, y \in V(G)$ possibly with $x=y$). When $\operatorname{diam}(G)=2$, we show that the largest possible value of $r c\left(G\left[H_{1}, \ldots, H_{n}\right]\right)$ determines whether every vertex of G is contained in a triangle or not.

2. Results

2.1. A preliminary bound

Let $Q \subseteq V(G)$. Its common neighborhood $C N(Q)$ is the intersection of $N(v)=\{w: v w \in E(G)\}$ over all $v \in Q$. A set of vertices is independent if any two are non-adjacent, or co-neighboring if $N(v)=N(w) \neq \emptyset$ for all $v, w \in Q$.

Lemma 1. Let $Q \subseteq V(G)$ be a co-neighboring set. Then
(1) $\operatorname{src}(G) \geq|Q|^{1 C^{1}(Q)}$.
(2) If moreover $C N(Q)$ is independent, then $r c(G) \geq \min \left\{4,|Q|^{\frac{1}{C N(Q) \mid}}\right\}$.

Proof. This is based on an idea in [1]. Let $C N(Q)=\left\{t_{1}, \ldots, t_{b}\right\}$. Given a k-coloring γ on G, define the color code of $v \in Q$ with respect to $C N(Q)$ as

$$
\begin{equation*}
\operatorname{code}(v)=\left(\gamma\left(v t_{1}\right), \ldots, \gamma\left(v t_{b}\right)\right) . \tag{3}
\end{equation*}
$$

Note that there are at most k^{b} distinct codes.
Claim. There is a rainbow geodesic between $v, w \in Q$ if and only if $\operatorname{code}(v) \neq \operatorname{code}(w)$.

In fact, any geodesic between v and w has the form $v-t-w$ with $t \in C N(Q)$, which is rainbow if and only if $\gamma(v t) \neq \gamma(w t)$. Now we prove the lower bounds.
(1) Let $k=\lceil\sqrt[b]{|Q|}\rceil-1$. Suppose $\operatorname{src}(G) \leq k$, so there is a strong rainbow k-coloring on G. Since $k^{b}<|Q|$, there are $v, w \in Q$ with the same code. By the claim, there are no rainbow geodesics between them, a contradiction.
(2) Let $k=\min \{3,\lceil\sqrt[b]{|Q|}\rceil-1\}$. Suppose $r c(G) \leq k$, so there is a rainbow k-coloring on G. Since $k^{b}<|Q|$, there are $v, w \in Q$ with the same code. Let $L: v-x-\cdots-y-w$ be a rainbow geodesic between v and w. Then $x, y \in C N(Q)$, since Q is co-neighboring. By the claim, L is not a rainbow geodesic. So $x \neq y$. Since $C N(Q)$ is independent, $d_{G}(x, y) \geq 2$. The length of L is at least $2+d_{G}(x, y) \geq 4$, contradicting $k \leq 3$.

Below is the reason we only study the rc of G-compositions, not the src.
Corollary 1. The src of G-compositions cannot be bounded above in terms of G alone.
Proof. Let $k, c \in \mathbb{N}$. Replace some $v \in V(G)$ with $m K_{1}$ such that $m>c^{k \operatorname{deg}(v)}$, and replace any other vertex with $k K_{1}$, to get a G-composition graph A. The set $Q=V\left(m K_{1}\right)$ is co-neighboring and $|C N(Q)|=k \operatorname{deg}(v)$, so by Lemma 1(1) we have $\operatorname{src}(A) \geq|Q|^{|C N(Q)|}>c$.

2.2. Diameter at least four

Theorem 1. Let $\operatorname{diam}(G) \geq 4$ and $n=|V(G)|$. If each H_{i} has at least diam (G) vertices, then $r c\left(G\left[H_{1}, \ldots, H_{n}\right]\right)=$ $\operatorname{diam}(G)$.

We prove the upper bound separately for later use.
Lemma 2. If each H_{i} has at least $\max \{4, \operatorname{diam}(G)\}$ vertices, then

$$
\begin{equation*}
r c\left(G\left[H_{1}, \ldots, H_{n}\right]\right) \leq \max \{4, \operatorname{diam}(G)\} . \tag{4}
\end{equation*}
$$

Proof. Let $A=G\left[H_{1}, \ldots, H_{n}\right]$ and $V\left(H_{i}\right)=\left\{(i, j) \mid 1 \leq j \leq n_{i}\right\}$. We will construct a rainbow u-coloring on A, where $u=\max \{4, \operatorname{diam}(G)\}$. Define a map $\gamma: E(A) \rightarrow\{0,1, \ldots, u-1\}$ arbitrarily on each $E\left(H_{i}\right)$, and put

$$
\begin{equation*}
\gamma\left((i, j)\left(i^{\prime}, j^{\prime}\right)\right)=j+j^{\prime}(\bmod u) \tag{5}
\end{equation*}
$$

for all i, i^{\prime} adjacent in G. We show that γ is a rainbow coloring.
Let $x=(i, j), y=\left(i^{\prime}, j^{\prime}\right)$ with i, i^{\prime} non-adjacent in G. We will find a rainbow path between x and y.
Case 1: $d_{G}\left(i, i^{\prime}\right)=0$ or 2 .
Choose a common neighbor i_{1} of i, i^{\prime}. If $j \equiv j^{\prime}(\bmod u)$, then the path $(i, j) \stackrel{2 j}{-}\left(i_{1}, j\right) \stackrel{2 j+1}{-}(i, j+1) \stackrel{2 j+3}{-}\left(i_{1}, j+\right.$ 2) $\stackrel{2 j+2}{-}\left(i^{\prime}, j^{\prime}\right)$ is rainbow. Otherwise, the path $(i, j) \stackrel{2 j}{-}\left(i_{1}, j\right) \stackrel{j+j^{\prime}}{-}\left(i^{\prime}, j^{\prime}\right)$ is rainbow.

Case 2: $d_{G}\left(i, i^{\prime}\right)=2 m+1 \geq 3$.
Choose a path $i-i_{1}-\cdots-i_{2 m}-i^{\prime}$ in G. Define the numbers $j_{1}, j_{2}, \ldots, j_{2 m} \in\{0,1, \ldots, u-1\}$ as $j_{2 k-1}=j+j^{\prime}+m-k+1(\bmod u)$ and $j_{2 k}=j-k(\bmod u)$, for each $k \in\{1,2, \ldots, m\}$. Thus

$$
\begin{equation*}
j_{1}=j+j^{\prime}+m, \quad j_{3}=j+j^{\prime}+m-1, \quad \ldots, \quad j_{2 m-1}=j+j^{\prime}+1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{2}=j-1, \quad j_{4}=j-2, \ldots, \quad j_{2 m}=j-m \tag{7}
\end{equation*}
$$

Consider the following path,

$$
\begin{equation*}
L:(i, j)-\left(i_{1}, j_{1}\right)-\left(i_{2}, j_{2}\right)-\cdots\left(i_{2 m}, j_{2 m}\right)-\left(i^{\prime}, j^{\prime}\right) \tag{8}
\end{equation*}
$$

The color sequence of this path is

$$
\begin{equation*}
2 j+j^{\prime}+m, 2 j+j^{\prime}+m-1,2 j+j^{\prime}+m-2, \ldots, 2 j+j^{\prime}-m . \tag{9}
\end{equation*}
$$

The numbers above are $2 m+1$ consecutive integers in decreasing order. Since $2 m+1 \leq u$, these numbers are all different modulo u. So L is a rainbow path.
Case 3: $d_{G}\left(i, i^{\prime}\right)=2 m \geq 4$.
Use the path in Case 2 after deleting the penultimate vertex.

2.3. Diameter three

The conclusion of Theorem 1 can fail when $\operatorname{diam}(G)=3$ even if we control the number of vertices in each H_{i}. Below is a class of such examples.

Theorem 2. If $\operatorname{diam}(G) \leq 4$ and some vertex of G is not contained in any triangle, then for any fixed $k \geq 4$ we have

$$
\begin{equation*}
\max _{k} r c\left(G\left[H_{1}, \ldots, H_{n}\right]\right)=4 \tag{10}
\end{equation*}
$$

where the maximum is taken over all possible graphs H_{1}, \ldots, H_{n} such that each H_{i} has at least k vertices.
Proof. By Lemma 2, the maximum is at most 4. To build a tight example, choose some $v \in V(G)$ not in any triangle. Replace v with $m K_{1}$ where $m>3^{k \operatorname{deg}(v)}$, and every other vertex with $k K_{1}$ to form a G-composition graph A. Then $Q=V\left(m K_{1}\right)$ is co-neighboring and $C N(Q)$ is independent (otherwise v would be in a triangle) so $r c(A) \geq \min \left\{|Q|^{\frac{1}{C N(Q) \mid}}, 4\right\}>3$ by Lemma 1 .

If some additional conditions are met, we do have an exact result.
Theorem 3. Let G be a connected graph with diam $(G)=3$, and let H_{1}, \ldots, H_{n} be arbitrary graphs with at least three vertices each. Suppose that one of the following holds,
(1) each H_{i} has at least one edge, or
(2) G contains a 3 -walk between every pair $x, y \in V(G)($ possibly with $x=y)$.

Then $r c\left(G\left[H_{1}, \ldots, H_{n}\right]\right)=3$.
Proof. Let $V(G)=\{1, \ldots, n\}$ and $A=G\left[H_{1}, \ldots, H_{n}\right]$.
First, assume that (1) holds. We will construct a rainbow 3-coloring on A. We start with the following procedure.
(1) For each $i \in\{1, \ldots, n\}$, choose a spanning forest F_{i} for H_{i}.
(2) Choose a bipartition $V\left(F_{i}\right)=V_{i} \cup W_{i}$ so that $\left|V_{i}\right| \geq 1$ and $\left|W_{i}\right| \geq 2$. This is possible since we assumed $\left|V\left(H_{i}\right)\right| \geq 3$.
(3) Put all isolated vertices of H_{i} (if any) in W_{i}.
(4) Choose a non-isolated vertex of H_{i} (which exists, because we assumed $E\left(H_{i}\right) \neq \emptyset$), and put it in W_{i}. Denote that vertex by s_{i}.

Now we define a map $\gamma: E(A) \rightarrow\{0,1,2\}$ as follows.
(1) $\gamma(e)=0$ for each $e \in E\left(H_{i}\right)$ or $e=x y$ with $x \in V_{i} \cup\left\{s_{i}\right\}$ and $y \in V_{j}$.
(2) $\gamma(x y)=1$ if $x \in W_{i} \backslash\left\{s_{i}\right\}$ and $y \in V_{j}$.
(3) $\gamma(x y)=2$ if $x \in W_{i}$ and $y \in W_{j}$.

We show that γ is a rainbow coloring. Let $x, y \in V(A)$ be non-adjacent. Then $x \in V\left(H_{i}\right)$ and $y \in V\left(H_{j}\right)$ for some non-adjacent i, j in G.
Case 1: $d_{G}(i, j)=0$ or $d_{G}(i, j)=2$.
Choose a walk $i-i_{1}-j$ in G.
Subcase 1.1: $x \in V_{i}$ and $y \in V_{j}$.
Choose $w_{1} \in W_{i} \cap N(x)$ and $w_{2} \in W_{i_{1}} \backslash\left\{s_{i_{1}}\right\}$. Then $x \stackrel{0}{-} w_{1} \stackrel{2}{-} w_{2} \stackrel{1}{-} y$ is rainbow.

Subcase 1.2: $x \in V_{i}$ and $y \in W_{j}$.
The path $x \stackrel{0}{-} s_{i_{1}}-y$ is rainbow.
Subcase 1.3: $x \in W_{i}$ is not isolated in H_{i} and $y \in W_{j}$.
Choose $v \in V_{i} \cap N(x)$ and $w \in W_{i_{1}} \backslash\left\{s_{i_{1}}\right\}$. Then $x \stackrel{0}{-} v \stackrel{1}{-} w^{2}-y$ is rainbow.
Subcase 1.4: $x \in W_{i}$ is isolated in H_{i} and $y \in W_{j}$ is isolated in H_{j}.
Choose adjacent $v \in V_{i_{1}}, w \in W_{i_{1}}$. The path $x \stackrel{1}{-} v \stackrel{0}{-} w \stackrel{2}{-} y$ is rainbow.
Case 2: $d_{G}(i, j) \geq 3$.
Choose a path $i-i_{1}-i_{2}-j$ in G.
Subcase 2.1: $x \in V_{i}$ and $y \in V_{j}$.
Choose $w \in W_{i_{2}} \backslash\left\{s_{i_{2}}\right\}$. Then the path $x \stackrel{0}{-} s_{i_{1}} \stackrel{2}{-} w \stackrel{1}{-} y$ is rainbow.
Subcase 2.2: $x \in V_{i}$ and $y \in W_{j}$.
Choose $v \in V_{i_{1}}$ and $w \in W_{i_{2}} \backslash\left\{s_{i_{2}}\right\}$. Then $x \stackrel{0}{-} v \stackrel{1}{-} w \stackrel{2}{-} y$ is rainbow.
Subcase 2.3: $x \in W_{i} \backslash\left\{s_{i}\right\}$ and $y \in W_{j}$.
Choose any $v \in V_{i_{1}}$. Then $x-\frac{1}{-} v \stackrel{0}{-} s_{i_{2}} \stackrel{2}{-} y$ is rainbow.
Subcase 2.4: $x=s_{i}$ and $y \in W_{j}$.
Choose $v \in V_{i_{1}}$ and $w \in W_{i_{2}} \backslash\left\{s_{i_{2}}\right\}$. Then $x \stackrel{0}{-} v \stackrel{1}{-} w \stackrel{2}{-} y$ is rainbow.
This proves that if (1) holds, then $r c\left(G\left[H_{1}, \ldots, H_{n}\right]\right)=3$. If (2) holds, we are done by the next lemma which we prove separately for later use.

Lemma 3. If G contains a 3-walk between any $x, y \in V(G)$ (possibly with $x=y$), and each H_{i} has at least 3 vertices, then $\operatorname{rc}\left(G\left[H_{1}, \ldots, H_{n}\right]\right) \leq 3$.

Proof. We will construct a rainbow 3-coloring on $A=G\left[H_{1}, \ldots, H_{n}\right]$. Let $V\left(H_{i}\right)=\left\{(i, j) \mid 1 \leq j \leq n_{i}\right\}$. Define a map $\gamma: E(A) \rightarrow\{0,1,2\}$ arbitrarily on each $E\left(H_{i}\right)$, and put

$$
\begin{equation*}
\gamma\left((i, j)\left(i^{\prime}, j^{\prime}\right)\right)=j+j^{\prime}(\bmod 3) \tag{11}
\end{equation*}
$$

for all i, i^{\prime} adjacent in G. We prove that γ is a rainbow coloring.
Let $x, y \in V(A)$ be non-adjacent, say $x=(i, j)$ and $y=\left(i^{\prime}, j^{\prime}\right)$ with i, i^{\prime} non-adjacent in G. Choose any walk $i-i_{1}-i_{2}-i^{\prime}$ in G. We use this walk to find a rainbow path between x and y.

If $j \equiv j^{\prime}(\bmod 3)$, use $(i, j) \stackrel{2 j+1}{-}\left(i_{1}, j+1\right) \stackrel{2 j+3}{-}\left(i_{2}, j+2\right) \stackrel{2 j+2}{-}\left(i^{\prime}, j^{\prime}\right)$. If $j \not \equiv j^{\prime}(\bmod 3)$, use $(i, j) \stackrel{2 j}{-}\left(i_{1}, j\right) \stackrel{j+j^{\prime}}{-}$ $\left(i_{2}, j^{\prime}\right){ }^{2 j^{\prime}}-\left(i^{\prime}, j^{\prime}\right)$ as a rainbow path.

2.4. Diameter two

The rc of a graph can sometimes determine the structure of that graph. For instance, $r c(G)=1$ if and only if G is a complete graph, while $r c(G)=|E(G)|$ if and only if G is a tree (see [1]). Below, we show that if $\operatorname{diam}(G)=2$ then the largest possible value of $r c\left(G\left[H_{1}, \ldots, H_{n}\right]\right)$ determines whether every vertex of G is contained in a triangle or not.

Theorem 4. If $\operatorname{diam}(G)=2$ and $k \geq 4$, then

$$
\max _{k} r c\left(G\left[H_{1}, \ldots, H_{n}\right]\right)= \begin{cases}3, & \text { if every vertex of } G \text { lies on a triangle } \tag{12}\\ 4, & \text { otherwise. }\end{cases}
$$

where the maximum is taken over all possible graphs H_{1}, \ldots, H_{n} such that each H_{i} has at least k vertices.

Proof. Suppose that every vertex is contained in a triangle. This assumption together with $\operatorname{diam}(G)=2$ implies that G has a 3-walk between any $x, y \in V(G)$ (possibly $x=y$). So by Lemma 3 we have $r c(A) \leq 3$ for any G-composition graph A.

Now we build a tight example. Replace a vertex $v \in V(G)$ with $m K_{1}$ where $m>2^{k \operatorname{deg}(v)}$, and every other vertex with $k K_{1}$, to get a G-composition graph A. Then $Q=V\left(m K_{1}\right)$ is co-neighboring and $|C N(Q)|=k \operatorname{deg}(v)$ so $\operatorname{src}(A) \geq|Q|^{\frac{1}{C N(Q) \mid}}>2$ by Lemma $1(1)$, i.e. $\operatorname{src}(A) \geq 3$. This implies $r c(A) \geq 3$, because any rainbow 2 -coloring must also be a strong rainbow coloring.

If some vertex does not lie on any triangle, we are done by Theorem 2.

3. Concluding remarks and open problems

We have proved $\operatorname{rc}\left(G\left[H_{1}, \ldots, H_{n}\right]\right)=\operatorname{diam}(G)$ when each H_{i} has at least $\operatorname{diam}(G) \geq 4$ vertices. We have also studied what happens when $\operatorname{diam}(G) \leq 3$, but we did not consider the case that some H_{i} has less than $\operatorname{diam}(G)$ vertices.

Theorem 3(2) is a partial converse to Theorem 2 because if G contains a 3-walk between any $x, y \in V(G)$ (possibly with $x=y$), then every vertex is contained in a triangle. These two statements are not equivalent, but it might be interesting to consider whether the weaker statement is enough. If it is, then the conclusion of Theorem 4 will also be true in the case $\operatorname{diam}(G)=3$.

References

[1] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[2] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer, 2012.
[3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, in: 26th International Symposium on Theoretical Aspects of Computer Science STACS, 2011, pp. 243-254.
[4] M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products, Graphs Combin. 30 (2014) 1363-1382.
[5] T. Gologranc, G. Mekiš, I. Peterin, Rainbow connection and graph products, Graphs Combin. 30 (2014) 591-607.
[6] F. Septyanto, K.A. Sugeng, Rainbow connections on graph joins, Australas. J. Combin. 69 (2017) 375-381.

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: fendy.septyanto41@sci.ui.ac.id (F. Septyanto), kiki@ sci.ui.ac.id (K.A. Sugeng).

