

AKCE International Journal of Graphs and Combinatorics

ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

Rainbow connection number of generalized composition

Fendy Septyanto & Kiki Ariyanti Sugeng

To cite this article: Fendy Septyanto & Kiki Ariyanti Sugeng (2020) Rainbow connection number of generalized composition, AKCE International Journal of Graphs and Combinatorics, 17:1, 367-372, DOI: <u>10.1016/j.akcej.2018.10.001</u>

To link to this article: https://doi.org/10.1016/j.akcej.2018.10.001

© 2018 Kalasalingam University. Published with license by Taylor & Francis Group, LLC.

0

Published online: 08 Jun 2020.

ت

Submit your article to this journal 🖸

Article views: 69

View related articles 🗹

🕨 View Crossmark data 🗹

Rainbow connection number of generalized composition

Fendy Septyanto*, Kiki Ariyanti Sugeng

Department of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia

Received 21 March 2018; received in revised form 6 October 2018; accepted 29 October 2018

Abstract

Let G be a connected graph with $V(G) = \{v_1, \ldots, v_n\}$. The rainbow connection number rc(G) is the smallest k for which there is a map $\gamma : E(G) \rightarrow \{1, \ldots, k\}$ such that any two vertices can be connected by a path whose edge colors are all distinct. The generalized composition $G[H_1, \ldots, H_n]$ is obtained by replacing each v_i with the graph H_i . We prove $rc(G[H_1, \ldots, H_n]) = diam(G)$ if each H_i has at least $diam(G) \ge 4$ vertices, improving known upper bounds of Basavaraju et al. and Gologranc et al. (2014). We prove the same result when diam(G) = 3 but with some additional conditions. When diam(G) = 2, we show that the largest possible value of $rc(G[H_1, \ldots, H_n])$ is related to whether every vertex of G is contained in a triangle or not.

Keywords: Composition; Lexicographic product; Rainbow connection

1. Introduction

In 2008 Chartrand et al. [1] introduced new concepts that use edge-coloring to strengthen the connectedness property of a graph. An edge-coloring on a graph G is a map $E(G) \rightarrow \{1, ..., k\}$ (also called "k-coloring"). A rainbow path is a path whose edge colors are all distinct. A rainbow coloring is an edge-coloring in which any two vertices can be connected by a rainbow path. The rainbow connection number rc(G) is the smallest k for which G has a rainbow k-coloring. A strong rainbow coloring is an edge-coloring in which any two vertices can be connected by a rainbow geodesic. The strong rainbow connection number src(G) is the smallest k for which G has a strong rainbow k-coloring.

We have [1]

 $diam(G) \le rc(G) \le src(G) \le |E(G)|.$

(1)

* Corresponding author.

E-mail addresses: fendy.septyanto41@sci.ui.ac.id (F. Septyanto), kiki@sci.ui.ac.id (K.A. Sugeng).

https://doi.org/10.1016/j.akcej.2018.10.001

© 2018 Kalasalingam University. Published with license by Taylor & Francis Group, LLC

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer review under responsibility of Kalasalingam University.

Fig. 1. More examples, P₃[P₂, C₃, K₁] (left) and K_{1,3}[2K₁, P₃, K₁, P₂] (right).

The reader is referred to [2] for a detailed survey. It is known that computing rc and src is NP-hard [3]. Many studies have focused on special classes of graphs or graph operations, such as Cartesian product, strong product, lexicographic product (see [4] and [5]), and graph join (see [6]).

We study generalized composition, which can be thought of as "blowing-up" vertices into individual graphs. Let $V(G) = \{v_1, \ldots, v_n\}$, and H_1, \ldots, H_n be any graphs. The generalized composition $G[H_1, \ldots, H_n]$ is obtained by replacing each v_i with H_i and adding a new edge between every vertex of H_i and every vertex of H_j whenever $v_i v_j \in E(G)$. We call this operation as G-composition. See Fig. 1.

Examples. $P_2[H_1, H_2] = H_1 + H_2$ is the usual graph join, and a P_n -composition is known as a sequential join. The special case $G \circ H = G[H, H, ..., H]$ is known as composition or lexicographic product.

We always assume that G is non-trivial and connected. If $G[H_1, \ldots, H_n]$ is not a complete graph, then its diameter is max{2, diam(G)}. So

$$rc(G[H_1, \dots, H_n]) \ge diam(G).$$
⁽²⁾

If each H_i has at least $diam(G) \ge 4$ vertices, we show that (2) becomes an equality. When $H_1 = \cdots = H_n$, this improves the results of Basavaraju et al. [4] $(rc(G \circ H) \le 2rad(G))$ and Gologranc et al. [5] $(rc(G \circ H) \le 2diam(G) + 1)$.

If $diam(G) \leq 3$, the bound (2) can be strict. However, we show that equality occurs when diam(G) = 3 and some conditions are met (either each H_i has at least one edge, or G has the property that there is a 3-walk between every pair $x, y \in V(G)$ possibly with x = y). When diam(G) = 2, we show that the largest possible value of $rc(G[H_1, ..., H_n])$ determines whether every vertex of G is contained in a triangle or not.

2. Results

2.1. A preliminary bound

Let $Q \subseteq V(G)$. Its common neighborhood CN(Q) is the intersection of $N(v) = \{w : vw \in E(G)\}$ over all $v \in Q$. A set of vertices is *independent* if any two are non-adjacent, or *co-neighboring* if $N(v) = N(w) \neq \emptyset$ for all $v, w \in Q$.

Lemma 1. Let $Q \subseteq V(G)$ be a co-neighboring set. Then

- (1) $src(G) \ge |Q|^{\frac{1}{|CN(Q)|}}$.
- (2) If moreover CN(Q) is independent, then $rc(G) \ge \min\left\{4, |Q|^{\frac{1}{|CN(Q)|}}\right\}$.

Proof. This is based on an idea in [1]. Let $CN(Q) = \{t_1, \ldots, t_b\}$. Given a *k*-coloring γ on *G*, define the *color code* of $v \in Q$ with respect to CN(Q) as

$$code(v) = (\gamma(vt_1), \dots, \gamma(vt_b)).$$
 (3)

Note that there are at most k^b distinct codes.

Claim. There is a rainbow geodesic between $v, w \in Q$ if and only if $code(v) \neq code(w)$.

In fact, any geodesic between v and w has the form v - t - w with $t \in CN(Q)$, which is rainbow if and only if $\gamma(vt) \neq \gamma(wt)$. Now we prove the lower bounds.

(1) Let $k = \lceil \sqrt[b]{|Q|} \rceil - 1$. Suppose $src(G) \le k$, so there is a strong rainbow k-coloring on G. Since $k^b < |Q|$, there are $v, w \in Q$ with the same code. By the claim, there are no rainbow geodesics between them, a contradiction.

(2) Let $k = \min\{3, \lceil \sqrt[b]{|Q|} \rceil - 1\}$. Suppose $rc(G) \le k$, so there is a rainbow k-coloring on G. Since $k^b < |Q|$, there are $v, w \in Q$ with the same code. Let $L : v - x - \cdots - y - w$ be a rainbow geodesic between v and w. Then $x, y \in CN(Q)$, since Q is co-neighboring. By the claim, L is not a rainbow geodesic. So $x \ne y$. Since CN(Q) is independent, $d_G(x, y) \ge 2$. The length of L is at least $2 + d_G(x, y) \ge 4$, contradicting $k \le 3$. \Box

Below is the reason we only study the rc of G-compositions, not the src.

Corollary 1. The src of G-compositions cannot be bounded above in terms of G alone.

Proof. Let $k, c \in \mathbb{N}$. Replace some $v \in V(G)$ with mK_1 such that $m > c^{k \deg(v)}$, and replace any other vertex with kK_1 , to get a *G*-composition graph *A*. The set $Q = V(mK_1)$ is co-neighboring and $|CN(Q)| = k \deg(v)$, so by Lemma 1(1) we have $src(A) \ge |Q|^{\frac{1}{|CN(Q)|}} > c$. \Box

2.2. Diameter at least four

Theorem 1. Let $diam(G) \ge 4$ and n = |V(G)|. If each H_i has at least diam(G) vertices, then $rc(G[H_1, ..., H_n]) = diam(G)$.

We prove the upper bound separately for later use.

Lemma 2. If each H_i has at least max{4, diam(G)} vertices, then

$$rc(G[H_1,\ldots,H_n]) \le \max\{4, diam(G)\}.$$
(4)

Proof. Let $A = G[H_1, ..., H_n]$ and $V(H_i) = \{(i, j) | 1 \le j \le n_i\}$. We will construct a rainbow *u*-coloring on *A*, where $u = \max\{4, diam(G)\}$. Define a map $\gamma : E(A) \to \{0, 1, ..., u-1\}$ arbitrarily on each $E(H_i)$, and put

$$\gamma\left((i,j)(i',j')\right) = j+j' \pmod{u} \tag{5}$$

for all *i*, *i'* adjacent in *G*. We show that γ is a rainbow coloring.

Let x = (i, j), y = (i', j') with i, i' non-adjacent in G. We will find a rainbow path between x and y.

Case 1:
$$d_G(i, i') = 0$$
 or 2.

Choose a common neighbor i_1 of i, i'. If $j \equiv j' \pmod{u}$, then the path $(i, j) \stackrel{2j}{-} (i_1, j) \stackrel{2j+1}{-} (i, j+1) \stackrel{2j+3}{-} (i_1, j+1) \stackrel{2j+3}{-}$

Case 2: $d_G(i, i') = 2m + 1 \ge 3$.

Choose a path $i - i_1 - \dots - i_{2m} - i'$ in G. Define the numbers $j_1, j_2, \dots, j_{2m} \in \{0, 1, \dots, u - 1\}$ as $j_{2k-1} = j + j' + m - k + 1 \pmod{u}$ and $j_{2k} = j - k \pmod{u}$, for each $k \in \{1, 2, \dots, m\}$. Thus

$$j_1 = j + j' + m, \quad j_3 = j + j' + m - 1, \quad \dots, \quad j_{2m-1} = j + j' + 1$$
 (6)

and

$$j_2 = j - 1, \ j_4 = j - 2, \ \dots, \ j_{2m} = j - m.$$
 (7)

Consider the following path,

$$L: (i, j) - (i_1, j_1) - (i_2, j_2) - \dots + (i_{2m}, j_{2m}) - (i', j').$$
(8)

The color sequence of this path is

$$2j + j' + m, 2j + j' + m - 1, 2j + j' + m - 2, \dots, 2j + j' - m.$$
(9)

Please cite this article in press as: F. Septyanto and K.A. Sugeng, Rainbow connection number of generalized composition, AKCE International Journal of Graphs and Combinatorics (2018), https://doi.org/10.1016/j.akcej.2018.10.001.

The numbers above are 2m + 1 consecutive integers in decreasing order. Since $2m + 1 \le u$, these numbers are all different modulo u. So L is a rainbow path.

Case 3: $d_G(i, i') = 2m \ge 4$.

Use the path in Case 2 after deleting the penultimate vertex. \Box

2.3. Diameter three

The conclusion of Theorem 1 can fail when diam(G) = 3 even if we control the number of vertices in each H_i . Below is a class of such examples.

Theorem 2. If $diam(G) \le 4$ and some vertex of G is not contained in any triangle, then for any fixed $k \ge 4$ we have

 $\max rc(G[H_1, ..., H_n]) = 4$ (10)

where the maximum is taken over all possible graphs H_1, \ldots, H_n such that each H_i has at least k vertices.

Proof. By Lemma 2, the maximum is at most 4. To build a tight example, choose some $v \in V(G)$ not in any triangle. Replace v with mK_1 where $m > 3^{k \deg(v)}$, and every other vertex with kK_1 to form a *G*-composition graph *A*. Then $Q = V(mK_1)$ is co-neighboring and CN(Q) is independent (otherwise v would be in a triangle) so $rc(A) \ge \min \left\{ |Q|^{\frac{1}{|CN(Q)|}}, 4 \right\} > 3$ by Lemma 1. \Box

If some additional conditions are met, we do have an exact result.

Theorem 3. Let G be a connected graph with diam(G) = 3, and let H_1, \ldots, H_n be arbitrary graphs with at least three vertices each. Suppose that one of the following holds,

- (1) each H_i has at least one edge, or
- (2) G contains a 3-walk between every pair $x, y \in V(G)$ (possibly with x = y).

Then $rc(G[H_1, ..., H_n]) = 3.$

Proof. Let $V(G) = \{1, ..., n\}$ and $A = G[H_1, ..., H_n]$.

First, assume that (1) holds. We will construct a rainbow 3-coloring on A. We start with the following procedure.

- (1) For each $i \in \{1, ..., n\}$, choose a spanning forest F_i for H_i .
- (2) Choose a bipartition $V(F_i) = V_i \cup W_i$ so that $|V_i| \ge 1$ and $|W_i| \ge 2$. This is possible since we assumed $|V(H_i)| \ge 3$.
- (3) Put all isolated vertices of H_i (if any) in W_i .
- (4) Choose a non-isolated vertex of H_i (which exists, because we assumed $E(H_i) \neq \emptyset$), and put it in W_i . Denote that vertex by s_i .

Now we define a map $\gamma : E(A) \rightarrow \{0, 1, 2\}$ as follows.

- (1) $\gamma(e) = 0$ for each $e \in E(H_i)$ or e = xy with $x \in V_i \cup \{s_i\}$ and $y \in V_j$.
- (2) $\gamma(xy) = 1$ if $x \in W_i \setminus \{s_i\}$ and $y \in V_j$.
- (3) $\gamma(xy) = 2$ if $x \in W_i$ and $y \in W_i$.

We show that γ is a rainbow coloring. Let $x, y \in V(A)$ be non-adjacent. Then $x \in V(H_i)$ and $y \in V(H_j)$ for some non-adjacent *i*, *j* in *G*.

Case 1: $d_G(i, j) = 0$ or $d_G(i, j) = 2$. Choose a walk $i - i_1 - j$ in G.

Subcase 1.1: $x \in V_i$ and $y \in V_j$.

Choose $w_1 \in W_i \cap N(x)$ and $w_2 \in W_{i_1} \setminus \{s_{i_1}\}$. Then $x \stackrel{0}{-} w_1 \stackrel{2}{-} w_2 \stackrel{1}{-} y$ is rainbow.

Subcase 1.2: $x \in V_i$ and $y \in W_i$. The path $x - s_{i_1} - y$ is rainbow.

Subcase 1.3: $x \in W_i$ is not isolated in H_i and $y \in W_j$. Choose $v \in V_i \cap N(x)$ and $w \in W_{i_1} \setminus \{s_{i_1}\}$. Then $x \stackrel{0}{-} v \stackrel{1}{-} w \stackrel{2}{-} y$ is rainbow.

Subcase 1.4: $x \in W_i$ is isolated in H_i and $y \in W_j$ is isolated in H_j .

Choose adjacent $v \in V_{i_1}, w \in W_{i_1}$. The path $x \stackrel{1}{-} v \stackrel{0}{-} w \stackrel{2}{-} y$ is rainbow.

Case 2: $d_G(i, j) > 3$.

Choose a path $i - i_1 - i_2 - j$ in G.

Subcase 2.1: $x \in V_i$ and $y \in V_i$.

Choose $w \in W_{i_2} \setminus \{s_{i_2}\}$. Then the path $x \stackrel{0}{-} s_{i_1} \stackrel{2}{-} w \stackrel{1}{-} y$ is rainbow.

Subcase 2.2: $x \in V_i$ and $y \in W_i$.

Choose $v \in V_{i_1}$ and $w \in W_{i_2} \setminus \{s_{i_2}\}$. Then $x \stackrel{0}{-} v \stackrel{1}{-} w \stackrel{2}{-} y$ is rainbow.

Subcase 2.3: $x \in W_i \setminus \{s_i\}$ and $y \in W_j$. Choose any $v \in V_{i_1}$. Then $x \stackrel{1}{-} v \stackrel{0}{-} s_{i_2} \stackrel{2}{-} y$ is rainbow.

Subcase 2.4: $x = s_i$ and $y \in W_i$.

Choose $v \in V_{i_1}$ and $w \in W_{i_2} \setminus \{s_{i_2}\}$. Then $x \stackrel{0}{-} v \stackrel{1}{-} w \stackrel{2}{-} y$ is rainbow.

This proves that if (1) holds, then $rc(G[H_1, \ldots, H_n]) = 3$. If (2) holds, we are done by the next lemma which we prove separately for later use. \Box

Lemma 3. If G contains a 3-walk between any $x, y \in V(G)$ (possibly with x = y), and each H_i has at least 3 vertices, then $rc(G[H_1, \ldots, H_n]) \leq 3$.

Proof. We will construct a rainbow 3-coloring on $A = G[H_1, \ldots, H_n]$. Let $V(H_i) = \{(i, j) | 1 \le j \le n_i\}$. Define a map $\gamma : E(A) \rightarrow \{0, 1, 2\}$ arbitrarily on each $E(H_i)$, and put

$$\gamma\left((i,j)(i',j')\right) = j+j' \pmod{3} \tag{11}$$

for all *i*, *i'* adjacent in G. We prove that γ is a rainbow coloring.

Let x, $y \in V(A)$ be non-adjacent, say x = (i, j) and y = (i', j') with i, i' non-adjacent in G. Choose any walk $i - i_1 - i_2 - i'$ in G. We use this walk to find a rainbow path between x and y.

If $j \equiv j' \pmod{3}$, use $(i, j) \stackrel{2j+1}{-} (i_1, j+1) \stackrel{2j+3}{-} (i_2, j+2) \stackrel{2j+2}{-} (i', j')$. If $j \neq j' \pmod{3}$, use $(i, j) \stackrel{2j}{-} (i_1, j) \stackrel{j+j'}{-} (i_1, j) \stackrel{2j+3}{-} (i_2, j+2) \stackrel{2j+3}{-} (i_1, j')$. $(i_2, j') \stackrel{2j'}{-} (i', j')$ as a rainbow path. \Box

2.4. Diameter two

The rc of a graph can sometimes determine the structure of that graph. For instance, rc(G) = 1 if and only if G is a complete graph, while rc(G) = |E(G)| if and only if G is a tree (see [1]). Below, we show that if diam(G) = 2then the largest possible value of $rc(G[H_1, \ldots, H_n])$ determines whether every vertex of G is contained in a triangle or not.

Theorem 4. If diam(G) = 2 and k > 4, then

$$\max_{k} rc(G[H_1, \dots, H_n]) = \begin{cases} 3, & \text{if every vertex of } G \text{ lies on a triangle} \\ 4, & \text{otherwise.} \end{cases}$$
(12)

where the maximum is taken over all possible graphs H_1, \ldots, H_n such that each H_i has at least k vertices.

371

Proof. Suppose that every vertex is contained in a triangle. This assumption together with diam(G) = 2 implies that G has a 3-walk between any $x, y \in V(G)$ (possibly x = y). So by Lemma 3 we have $rc(A) \leq 3$ for any G-composition graph A.

Now we build a tight example. Replace a vertex $v \in V(G)$ with mK_1 where $m > 2^{k \deg(v)}$, and every other vertex with kK_1 , to get a *G*-composition graph *A*. Then $Q = V(mK_1)$ is co-neighboring and $|CN(Q)| = k \deg(v)$ so $src(A) \ge |Q|^{\frac{1}{|CN(Q)|}} > 2$ by Lemma 1(1), *i.e.* $src(A) \ge 3$. This implies $rc(A) \ge 3$, because any rainbow 2-coloring must also be a strong rainbow coloring.

If some vertex does not lie on any triangle, we are done by Theorem 2. \Box

3. Concluding remarks and open problems

We have proved $rc(G[H_1, ..., H_n]) = diam(G)$ when each H_i has at least $diam(G) \ge 4$ vertices. We have also studied what happens when $diam(G) \le 3$, but we did not consider the case that some H_i has less than diam(G) vertices.

Theorem 3(2) is a partial converse to Theorem 2 because if G contains a 3-walk between any $x, y \in V(G)$ (possibly with x = y), then every vertex is contained in a triangle. These two statements are not equivalent, but it might be interesting to consider whether the weaker statement is enough. If it is, then the conclusion of Theorem 4 will also be true in the case diam(G) = 3.

References

- [1] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.
- [2] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer, 2012.
- [3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, in: 26th International Symposium on Theoretical Aspects of Computer Science STACS, 2011, pp. 243–254.
- [4] M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products, Graphs Combin. 30 (2014) 1363–1382.
- [5] T. Gologranc, G. Mekiš, I. Peterin, Rainbow connection and graph products, Graphs Combin. 30 (2014) 591-607.
- [6] F. Septyanto, K.A. Sugeng, Rainbow connections on graph joins, Australas. J. Combin. 69 (2017) 375–381.