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Abstract

Let G be a connected graph with V (G) = {v1, . . . , vn}. The rainbow connection number rc(G) is the smallest k for
which there is a map γ : E(G) → {1, . . . , k} such that any two vertices can be connected by a path whose edge colors
are all distinct. The generalized composition G[H1, . . . , Hn] is obtained by replacing each vi with the graph Hi . We prove
rc(G[H1, . . . , Hn]) = diam(G) if each Hi has at least diam(G) ≥ 4 vertices, improving known upper bounds of Basavaraju
et al. and Gologranc et al. (2014). We prove the same result when diam(G) = 3 but with some additional conditions. When
diam(G) = 2, we show that the largest possible value of rc(G[H1, . . . , Hn]) is related to whether every vertex of G is contained
in a triangle or not.

Keywords: Composition; Lexicographic product; Rainbow connection

1. Introduction

In 2008 Chartrand et al. [1] introduced new concepts that use edge-coloring to strengthen the connectedness
property of a graph. An edge-coloring on a graph G is a map E(G) → {1, . . . , k} (also called “k-coloring”). A
rainbow path is a path whose edge colors are all distinct. A rainbow coloring is an edge-coloring in which any two
vertices can be connected by a rainbow path. The rainbow connection number rc(G) is the smallest k for which G has
a rainbow k-coloring. A strong rainbow coloring is an edge-coloring in which any two vertices can be connected by a
rainbow geodesic. The strong rainbow connection number src(G) is the smallest k for which G has a strong rainbow
k-coloring.

We have [1]

diam(G) ≤ rc(G) ≤ src(G) ≤ |E(G)|. (1)
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Fig. 1. More examples, P3[P2, C3, K1] (left) and K1,3[2K1, P3, K1, P2] (right).

The reader is referred to [2] for a detailed survey. It is known that computing rc and src is NP-hard [3]. Many
studies have focused on special classes of graphs or graph operations, such as Cartesian product, strong product,
lexicographic product (see [4] and [5]), and graph join (see [6]).

We study generalized composition, which can be thought of as “blowing-up” vertices into individual graphs. Let
V (G) = {v1, . . . , vn}, and H1, . . . , Hn be any graphs. The generalized composition G[H1, . . . , Hn] is obtained by
replacing each vi with Hi and adding a new edge between every vertex of Hi and every vertex of H j whenever
viv j ∈ E(G). We call this operation as G-composition. See Fig. 1.

Examples. P2[H1, H2] = H1 + H2 is the usual graph join, and a Pn-composition is known as a sequential join. The
special case G ◦ H = G[H, H, . . . , H ] is known as composition or lexicographic product.

We always assume that G is non-trivial and connected. If G[H1, . . . , Hn] is not a complete graph, then its diameter
is max{2, diam(G)}. So

rc(G[H1, . . . , Hn]) ≥ diam(G). (2)

If each Hi has at least diam(G) ≥ 4 vertices, we show that (2) becomes an equality. When H1 = · · · = Hn ,
this improves the results of Basavaraju et al. [4] (rc(G ◦ H ) ≤ 2 rad(G)) and Gologranc et al. [5] (rc(G ◦ H ) ≤

2 diam(G) + 1).
If diam(G) ≤ 3, the bound (2) can be strict. However, we show that equality occurs when diam(G) = 3 and

some conditions are met (either each Hi has at least one edge, or G has the property that there is a 3-walk between
every pair x, y ∈ V (G) possibly with x = y). When diam(G) = 2, we show that the largest possible value of
rc(G[H1, . . . , Hn]) determines whether every vertex of G is contained in a triangle or not.

2. Results

2.1. A preliminary bound

Let Q ⊆ V (G). Its common neighborhood C N (Q) is the intersection of N (v) = {w : vw ∈ E(G)} over all v ∈ Q.
A set of vertices is independent if any two are non-adjacent, or co-neighboring if N (v) = N (w) ̸= ∅ for all v, w ∈ Q.

Lemma 1. Let Q ⊆ V (G) be a co-neighboring set. Then

(1) src(G) ≥ |Q|
1

|C N (Q)| .
(2) If moreover C N (Q) is independent, then rc(G) ≥ min

{
4, |Q|

1
|C N (Q)|

}
.

Proof. This is based on an idea in [1]. Let C N (Q) = {t1, . . . , tb}. Given a k-coloring γ on G, define the color code
of v ∈ Q with respect to C N (Q) as

code(v) = (γ (vt1), . . . , γ (vtb)). (3)

Note that there are at most kb distinct codes.

Claim. There is a rainbow geodesic between v, w ∈ Q if and only if code(v) ̸= code(w).
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In fact, any geodesic between v and w has the form v − t − w with t ∈ C N (Q), which is rainbow if and only if
γ (vt) ̸= γ (wt). Now we prove the lower bounds.

(1) Let k =
⌈

b
√

|Q|
⌉

− 1. Suppose src(G) ≤ k, so there is a strong rainbow k-coloring on G. Since kb < |Q|,
there are v, w ∈ Q with the same code. By the claim, there are no rainbow geodesics between them, a contradiction.

(2) Let k = min{3,
⌈

b
√

|Q|
⌉

− 1}. Suppose rc(G) ≤ k, so there is a rainbow k-coloring on G. Since kb < |Q|,
there are v, w ∈ Q with the same code. Let L : v − x − · · · − y − w be a rainbow geodesic between v and w. Then
x, y ∈ C N (Q), since Q is co-neighboring. By the claim, L is not a rainbow geodesic. So x ̸= y. Since C N (Q) is
independent, dG(x, y) ≥ 2. The length of L is at least 2 + dG(x, y) ≥ 4, contradicting k ≤ 3. □

Below is the reason we only study the rc of G-compositions, not the src.

Corollary 1. The src of G-compositions cannot be bounded above in terms of G alone.

Proof. Let k, c ∈ N. Replace some v ∈ V (G) with mK1 such that m > ck deg(v), and replace any other vertex with
kK1, to get a G-composition graph A. The set Q = V (mK1) is co-neighboring and |C N (Q)| = k deg(v), so by
Lemma 1(1) we have src(A) ≥ |Q|

1
|C N (Q)| > c. □

2.2. Diameter at least four

Theorem 1. Let diam(G) ≥ 4 and n = |V (G)|. If each Hi has at least diam(G) vertices, then rc(G[H1, . . . , Hn]) =

diam(G).

We prove the upper bound separately for later use.

Lemma 2. If each Hi has at least max{4, diam(G)} vertices, then

rc(G[H1, . . . , Hn]) ≤ max{4, diam(G)}. (4)

Proof. Let A = G[H1, . . . , Hn] and V (Hi ) = {(i, j)|1 ≤ j ≤ ni }. We will construct a rainbow u-coloring on A,
where u = max{4, diam(G)}. Define a map γ : E(A) → {0, 1, . . . , u − 1} arbitrarily on each E(Hi ), and put

γ
(
(i, j)(i ′, j ′)

)
= j + j ′ (mod u) (5)

for all i, i ′ adjacent in G. We show that γ is a rainbow coloring.
Let x = (i, j), y = (i ′, j ′) with i, i ′ non-adjacent in G. We will find a rainbow path between x and y.

Case 1: dG(i, i ′) = 0 or 2.

Choose a common neighbor i1 of i, i ′. If j ≡ j ′(mod u), then the path (i, j)
2 j
− (i1, j)

2 j+1
− (i, j + 1)

2 j+3
− (i1, j +

2)
2 j+2
− (i ′, j ′) is rainbow. Otherwise, the path (i, j)

2 j
− (i1, j)

j+ j ′

− (i ′, j ′) is rainbow.

Case 2: dG(i, i ′) = 2m + 1 ≥ 3.
Choose a path i − i1 − · · · − i2m − i ′ in G. Define the numbers j1, j2, . . . , j2m ∈ {0, 1, . . . , u − 1} as

j2k−1 = j + j ′
+ m − k + 1 (mod u) and j2k = j − k (mod u), for each k ∈ {1, 2, . . . , m}. Thus

j1 = j + j ′
+ m, j3 = j + j ′

+ m − 1, . . . , j2m−1 = j + j ′
+ 1 (6)

and

j2 = j − 1, j4 = j − 2, . . . , j2m = j − m. (7)

Consider the following path,

L : (i, j) − (i1, j1) − (i2, j2) − · · · (i2m, j2m) − (i ′, j ′). (8)

The color sequence of this path is

2 j + j ′
+ m, 2 j + j ′

+ m − 1, 2 j + j ′
+ m − 2, . . . , 2 j + j ′

− m. (9)
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The numbers above are 2m + 1 consecutive integers in decreasing order. Since 2m + 1 ≤ u, these numbers are all
different modulo u. So L is a rainbow path.

Case 3: dG(i, i ′) = 2m ≥ 4.
Use the path in Case 2 after deleting the penultimate vertex. □

2.3. Diameter three

The conclusion of Theorem 1 can fail when diam(G) = 3 even if we control the number of vertices in each Hi .
Below is a class of such examples.

Theorem 2. If diam(G) ≤ 4 and some vertex of G is not contained in any triangle, then for any fixed k ≥ 4 we have

max
k

rc(G[H1, . . ., Hn]) = 4 (10)

where the maximum is taken over all possible graphs H1, . . . , Hn such that each Hi has at least k vertices.

Proof. By Lemma 2, the maximum is at most 4. To build a tight example, choose some v ∈ V (G) not in any
triangle. Replace v with mK1 where m > 3k deg(v), and every other vertex with kK1 to form a G-composition
graph A. Then Q = V (mK1) is co-neighboring and C N (Q) is independent (otherwise v would be in a triangle)
so rc(A) ≥ min

{
|Q|

1
|C N (Q)| , 4

}
> 3 by Lemma 1. □

If some additional conditions are met, we do have an exact result.

Theorem 3. Let G be a connected graph with diam(G) = 3, and let H1, . . . , Hn be arbitrary graphs with at least
three vertices each. Suppose that one of the following holds,

(1) each Hi has at least one edge, or
(2) G contains a 3-walk between every pair x, y ∈ V (G) (possibly with x = y).

Then rc(G[H1, . . . , Hn]) = 3.

Proof. Let V (G) = {1, . . . , n} and A = G[H1, . . . , Hn].
First, assume that (1) holds. We will construct a rainbow 3-coloring on A. We start with the following procedure.

(1) For each i ∈ {1, . . . , n}, choose a spanning forest Fi for Hi .
(2) Choose a bipartition V (Fi ) = Vi ∪ Wi so that |Vi | ≥ 1 and |Wi | ≥ 2. This is possible since we assumed

|V (Hi )| ≥ 3.
(3) Put all isolated vertices of Hi (if any) in Wi .
(4) Choose a non-isolated vertex of Hi (which exists, because we assumed E(Hi ) ̸= ∅), and put it in Wi . Denote

that vertex by si .

Now we define a map γ : E(A) → {0, 1, 2} as follows.

(1) γ (e) = 0 for each e ∈ E(Hi ) or e = xy with x ∈ Vi ∪ {si } and y ∈ V j .
(2) γ (xy) = 1 if x ∈ Wi \ {si } and y ∈ V j .
(3) γ (xy) = 2 if x ∈ Wi and y ∈ W j .

We show that γ is a rainbow coloring. Let x, y ∈ V (A) be non-adjacent. Then x ∈ V (Hi ) and y ∈ V (H j ) for some
non-adjacent i, j in G.

Case 1: dG(i, j) = 0 or dG(i, j) = 2.
Choose a walk i − i1 − j in G.

Subcase 1.1: x ∈ Vi and y ∈ V j .

Choose w1 ∈ Wi ∩ N (x) and w2 ∈ Wi1 \ {si1}. Then x
0
− w1

2
− w2

1
− y is rainbow.
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Subcase 1.2: x ∈ Vi and y ∈ W j .

The path x
0
− si1

2
− y is rainbow.

Subcase 1.3: x ∈ Wi is not isolated in Hi and y ∈ W j .

Choose v ∈ Vi ∩ N (x) and w ∈ Wi1 \ {si1}. Then x
0
− v

1
− w

2
− y is rainbow.

Subcase 1.4: x ∈ Wi is isolated in Hi and y ∈ W j is isolated in H j .

Choose adjacent v ∈ Vi1 , w ∈ Wi1 . The path x
1
− v

0
− w

2
− y is rainbow.

Case 2: dG(i, j) ≥ 3.
Choose a path i − i1 − i2 − j in G.

Subcase 2.1: x ∈ Vi and y ∈ V j .

Choose w ∈ Wi2 \ {si2}. Then the path x
0
− si1

2
− w

1
− y is rainbow.

Subcase 2.2: x ∈ Vi and y ∈ W j .

Choose v ∈ Vi1 and w ∈ Wi2 \ {si2}. Then x
0
− v

1
− w

2
− y is rainbow.

Subcase 2.3: x ∈ Wi \ {si } and y ∈ W j .

Choose any v ∈ Vi1 . Then x
1
− v

0
− si2

2
− y is rainbow.

Subcase 2.4: x = si and y ∈ W j .

Choose v ∈ Vi1 and w ∈ Wi2 \ {si2}. Then x
0
− v

1
− w

2
− y is rainbow.

This proves that if (1) holds, then rc(G[H1, . . . , Hn]) = 3. If (2) holds, we are done by the next lemma which we
prove separately for later use. □

Lemma 3. If G contains a 3-walk between any x, y ∈ V (G) (possibly with x = y), and each Hi has at least 3
vertices, then rc(G[H1, . . . , Hn]) ≤ 3.

Proof. We will construct a rainbow 3-coloring on A = G[H1, . . . , Hn]. Let V (Hi ) = {(i, j)|1 ≤ j ≤ ni }. Define a
map γ : E(A) → {0, 1, 2} arbitrarily on each E(Hi ), and put

γ
(
(i, j)(i ′, j ′)

)
= j + j ′ (mod 3) (11)

for all i, i ′ adjacent in G. We prove that γ is a rainbow coloring.
Let x, y ∈ V (A) be non-adjacent, say x = (i, j) and y = (i ′, j ′) with i, i ′ non-adjacent in G. Choose any walk

i − i1 − i2 − i ′ in G. We use this walk to find a rainbow path between x and y.

If j ≡ j ′(mod 3), use (i, j)
2 j+1
− (i1, j + 1)

2 j+3
− (i2, j + 2)

2 j+2
− (i ′, j ′). If j ̸≡ j ′(mod 3), use (i, j)

2 j
− (i1, j)

j+ j ′

−

(i2, j ′)
2 j ′

− (i ′, j ′) as a rainbow path. □

2.4. Diameter two

The rc of a graph can sometimes determine the structure of that graph. For instance, rc(G) = 1 if and only if G
is a complete graph, while rc(G) = |E(G)| if and only if G is a tree (see [1]). Below, we show that if diam(G) = 2
then the largest possible value of rc(G[H1, . . . , Hn]) determines whether every vertex of G is contained in a triangle
or not.

Theorem 4. If diam(G) = 2 and k ≥ 4, then

max
k

rc(G[H1, . . ., Hn]) =

{
3, if every vertex of G lies on a triangle
4, otherwise. (12)

where the maximum is taken over all possible graphs H1, . . . , Hn such that each Hi has at least k vertices.
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Proof. Suppose that every vertex is contained in a triangle. This assumption together with diam(G) = 2 implies
that G has a 3-walk between any x, y ∈ V (G) (possibly x = y). So by Lemma 3 we have rc(A) ≤ 3 for any
G-composition graph A.

Now we build a tight example. Replace a vertex v ∈ V (G) with mK1 where m > 2k deg(v), and every other vertex
with kK1, to get a G-composition graph A. Then Q = V (mK1) is co-neighboring and |C N (Q)| = k deg(v) so
src(A) ≥ |Q|

1
|C N (Q)| > 2 by Lemma 1(1), i.e. src(A) ≥ 3. This implies rc(A) ≥ 3, because any rainbow 2-coloring

must also be a strong rainbow coloring.
If some vertex does not lie on any triangle, we are done by Theorem 2. □

3. Concluding remarks and open problems

We have proved rc(G[H1, . . . , Hn]) = diam(G) when each Hi has at least diam(G) ≥ 4 vertices. We have also
studied what happens when diam(G) ≤ 3, but we did not consider the case that some Hi has less than diam(G)
vertices.

Theorem 3(2) is a partial converse to Theorem 2 because if G contains a 3-walk between any x, y ∈ V (G) (possibly
with x = y), then every vertex is contained in a triangle. These two statements are not equivalent, but it might be
interesting to consider whether the weaker statement is enough. If it is, then the conclusion of Theorem 4 will also be
true in the case diam(G) = 3.

References
[1] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.
[2] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer, 2012.
[3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, in: 26th International Symposium on

Theoretical Aspects of Computer Science STACS, 2011, pp. 243–254.
[4] M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products, Graphs

Combin. 30 (2014) 1363–1382.
[5] T. Gologranc, G. Mekiš, I. Peterin, Rainbow connection and graph products, Graphs Combin. 30 (2014) 591–607.
[6] F. Septyanto, K.A. Sugeng, Rainbow connections on graph joins, Australas. J. Combin. 69 (2017) 375–381.

F. Septyanto and K.A. Sugeng / AKCE International Journal of Graphs and Combinatorics 17 (1) 372–372372

http://refhub.elsevier.com/S0972-8600(18)30039-2/sb1
http://refhub.elsevier.com/S0972-8600(18)30039-2/sb2
http://refhub.elsevier.com/S0972-8600(18)30039-2/sb4
http://refhub.elsevier.com/S0972-8600(18)30039-2/sb4
http://refhub.elsevier.com/S0972-8600(18)30039-2/sb4
http://refhub.elsevier.com/S0972-8600(18)30039-2/sb5
http://refhub.elsevier.com/S0972-8600(18)30039-2/sb6

	Rainbow connection number of generalized composition
	Introduction
	Results
	A preliminary bound
	Diameter at least four
	Diameter three
	Diameter two

	Concluding remarks and open problems
	References


