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Abstract

Let G be a connected graph with V(G) = {vy,...,v;}. The rainbow connection number rc(G) is the smallest k£ for
which there is a map y : E(G) — {l,...,k} such that any two vertices can be connected by a path whose edge colors
are all distinct. The generalized composition G[H{, ..., Hy] is obtained by replacing each v; with the graph H;. We prove
rc(G[Hy, ..., Hy]) = diam(G) if each H; has at least diam(G) > 4 vertices, improving known upper bounds of Basavaraju
et al. and Gologranc et al. (2014). We prove the same result when diam(G) = 3 but with some additional conditions. When
diam(G) = 2, we show that the largest possible value of rc(G[Hy, ..., Hy]) is related to whether every vertex of G is contained
in a triangle or not.

Keywords: Composition; Lexicographic product; Rainbow connection

1. Introduction

In 2008 Chartrand et al. [1] introduced new concepts that use edge-coloring to strengthen the connectedness
property of a graph. An edge-coloring on a graph G is a map E(G) — {1,...,k} (also called “k-coloring”). A
rainbow path is a path whose edge colors are all distinct. A rainbow coloring is an edge-coloring in which any two
vertices can be connected by a rainbow path. The rainbow connection number rc(G) is the smallest k for which G has
a rainbow k-coloring. A strong rainbow coloring is an edge-coloring in which any two vertices can be connected by a
rainbow geodesic. The strong rainbow connection number src(G) is the smallest k for which G has a strong rainbow
k-coloring.

We have [1]

diam(G) < re(G) < sre(G) < |E(G)). (D)
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Fig. 1. More examples, P3[ P>, C3, K1] (left) and K 3[2K1, P3, Ky, P»] (right).

The reader is referred to [2] for a detailed survey. It is known that computing rc and src is NP-hard [3]. Many
studies have focused on special classes of graphs or graph operations, such as Cartesian product, strong product,
lexicographic product (see [4] and [5]), and graph join (see [6]).

We study generalized composition, which can be thought of as “blowing-up” vertices into individual graphs. Let
V(G) = {v,...,v,}, and Hy, ..., H, be any graphs. The generalized composition G[Hy, ..., H,] is obtained by
replacing each v; with H; and adding a new edge between every vertex of H; and every vertex of H; whenever
v;v; € E(G). We call this operation as G-composition. See Fig. 1.

Examples. P,[H,, Hy] = H; + H, is the usual graph join, and a P,-composition is known as a sequential join. The
special case G o H = G[H, H, ..., H] is known as composition or lexicographic product.

We always assume that G is non-trivial and connected. If G[Hy, ..., H,] is not a complete graph, then its diameter
is max{2, diam(G)}. So

rc(G[Hy, ..., H,]) > diam(G). 2)

If each H; has at least diam(G) > 4 vertices, we show that (2) becomes an equality. When H; = - = H,,
this improves the results of Basavaraju et al. [4] (rc(G o H) < 2rad(G)) and Gologranc et al. [5] (rc(G o H) <
2diam(G) + 1).

If diam(G) < 3, the bound (2) can be strict. However, we show that equality occurs when diam(G) = 3 and
some conditions are met (either each H; has at least one edge, or G has the property that there is a 3-walk between
every pair x,y € V(G) possibly with x = y). When diam(G) = 2, we show that the largest possible value of
rc(G[Hy, ..., H,]) determines whether every vertex of G is contained in a triangle or not.

2. Results

2.1. A preliminary bound

Let Q € V(G). Its common neighborhood C N(Q) is the intersection of N(v) = {w : vw € E(G)} overall v € Q.
A set of vertices is independent if any two are non-adjacent, or co-neighboring if N(v) = N(w) # @ forall v, w € Q.

Lemma 1. Let Q € V(G) be a co-neighboring set. Then

(1) sre(G) = | Q| V@I, ]
(2) If moreover C N(Q) is independent, then rc(G) > min {4, | Q| TCN @I }

Proof. This is based on an ideain [1]. Let CN(Q) = {t1, ..., #,}. Given a k-coloring y on G, define the color code
of v € O with respect to CN(Q) as

code(v) = (y(vty), ..., y(vip)). 3)

Note that there are at most k? distinct codes.

Claim. There is a rainbow geodesic between v, w € Q if and only if code(v) # code(w).
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In fact, any geodesic between v and w has the form v — ¢ — w with t € CN(Q), which is rainbow if and only if
y (vt) # y(wt). Now we prove the lower bounds.

(1) Let k = [¥/TQ[ | — 1. Suppose src(G) < k, so there is a strong rainbow k-coloring on G. Since k” < |Q],
there are v, w € Q with the same code. By the claim, there are no rainbow geodesics between them, a contradiction.

(2) Let £ = min{3, H’/@} — 1}. Suppose rc(G) < k, so there is a rainbow k-coloring on G. Since k* < |Q],
there are v, w € Q with the same code. Let L : v —x — --- — y — w be a rainbow geodesic between v and w. Then
x,y € CN(Q), since Q is co-neighboring. By the claim, L is not a rainbow geodesic. So x # y. Since CN(Q) is
independent, d;(x, y) > 2. The length of L is at least 2 + dg(x, y) > 4, contradicting k <3. [

Below is the reason we only study the rc of G-compositions, not the src.
Corollary 1. The src of G-compositions cannot be bounded above in terms of G alone.
Proof. Let k, ¢ € N. Replace some v € V(G) with mK, such that m > c¥9€®)and replace any other vertex with

kK, to get a G-composition graph A1 The set Q = V(mK;) is co-neighboring and |CN(Q)| = kdeg(v), so by
Lemma 1(1) we have src(A) > |Q|CVOI > ¢, [

2.2. Diameter at least four

Theorem 1. Let diam(G) > 4 and n = |V(G)|. If each H; has at least diam(G) vertices, then rc(G[Hy, ..., H,]) =
diam(G).

We prove the upper bound separately for later use.

Lemma 2. Ifeach H; has at least max{4, diam(G)} vertices, then

rc(GlHy, ..., H,]) < max{4, diam(G)}. @)
Proof. Let A = G[H,, ..., H,] and V(H;) = {(i, j)|1 < j < n;}. We will construct a rainbow u-coloring on A,
where u = max{4, diam(G)}. Defineamap y : E(A) — {0, 1, ..., u — 1} arbitrarily on each E(H;), and put

v (G, DG’ jh) =j+j" (mod u) (5)

for all i, i” adjacent in G. We show that y is a rainbow coloring.
Letx = (i, j), y = (i’, j') with i, i’ non-adjacent in G. We will find a rainbow path between x and y.

Case1:dg(i,i") =0or 2.
2j 2j+1 2j+3
Choose a common neighbor iy of i,i’. If j = j'(mod u), then the path (i, j) — (i, j) — G, j+ 1) — (1, ]+
2j+2 2j j+i’
2) — (i’, j') is rainbow. Otherwise, the path (i, j) — (i1, j) — (i, j’) is rainbow.

Case2:dg(i, i) =2m + 1> 3.
Choose a path i — iy — -+ — iy, — i’ in G. Define the numbers ji, jo,..., jon € {0,1,...,u — 1} as
Ju-1=j+j +m—k+1 (mod u)and jy = j —k (mod u), foreach k € {1,2, ..., m}. Thus

h=j+j+m, js=j+j+m—1, ..., jmr=j+j +1 (6)
and

h=Jj-1L ja=j=-2 ..., pm=j—m. (7
Consider the following path,

L@, j) = G, j1) = Ga, jo) = - (o, Jom) = (@5 ). ®)
The color sequence of this path is

2j+j +m2j+j+m—1,2j+j +m—-2,...,2j+j —m. ©)
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The numbers above are 2m + 1 consecutive integers in decreasing order. Since 2m + 1 < u, these numbers are all
different modulo u#. So L is a rainbow path.

Case3:dg(i,i") =2m > 4.
Use the path in Case 2 after deleting the penultimate vertex. [

2.3. Diameter three

The conclusion of Theorem 1 can fail when diam(G) = 3 even if we control the number of vertices in each H;.
Below is a class of such examples.

Theorem 2. If diam(G) < 4 and some vertex of G is not contained in any triangle, then for any fixed k > 4 we have
max re(GHy, ..., Hy]) = 4 (10)

where the maximum is taken over all possible graphs Hy, ..., H, such that each H; has at least k vertices.

Proof. By Lemma 2, the maximum is at most 4. To build a tight example, choose some v € V(G) not in any
triangle. Replace v with mK; where m > 3¥9€®) and every other vertex with kK, to form a G-composition
graph A. Then Q = Vl(mK 1) is co-neighboring and C N(Q) is independent (otherwise v would be in a triangle)
50 r¢(A) > min {|Q|W,4} > 3 by Lemma 1. [

If some additional conditions are met, we do have an exact result.
Theorem 3. Let G be a connected graph with diam(G) = 3, and let Hy, ..., H, be arbitrary graphs with at least
three vertices each. Suppose that one of the following holds,

(1) each H; has at least one edge, or
(2) G contains a 3-walk between every pair x,y € V(G) (possibly with x = y).

Then rc(G|H,, ..., H,]) = 3.
Proof. Let V(G)={1,...,n}and A = G[H|, ..., H,].
First, assume that (1) holds. We will construct a rainbow 3-coloring on A. We start with the following procedure.
(1) Foreachi € {1, ..., n}, choose a spanning forest F; for H;.
(2) Choose a bipartition V(F;) = V; U W; so that |V;| > 1 and |W;| > 2. This is possible since we assumed
[V(H;)| = 3.

(3) Put all isolated vertices of H; (if any) in W;.
(4) Choose a non-isolated vertex of H; (which exists, because we assumed E(H;) # ), and put it in W;. Denote
that vertex by s;.

Now we define amap y : E(A) — {0, 1, 2} as follows.
(1) y(e) =0foreache € E(H;)ore =xy withx € V;U{s;}Jand y € V;.
2) yxy)=1ifx e Wi\ {s;}and y € V;.
3) y(xy)=2ifx € Wyand y € W;.
We show that y is a rainbow coloring. Let x, y € V(A) be non-adjacent. Then x € V(H;) and y € V(H;) for some
non-adjacent i, j in G.

Case 1: dg(i, j) = 0ordg(i, j) = 2.
Choose awalki —i; — jin G.
Subcase 1.1: x € V;and y € V.

0 2 1
Choose wy € W; N N(x) and w; € W;, \ {s;, }. Then x — w; — w, — y is rainbow.
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Subcase 1.2: x € V; and y € W;.
0 2
The path x —s;, — y is rainbow.

Subcase 1.3: x € W; is notisolated in H; and y € W;.
0 2
Choose v € V; N N(x) and w € W;; \ {s;,}. Then x — v — w — y is rainbow.

Subcase 1.4: x € W; is isolated in H; and y € W; is isolated in H;.
1 2
Choose adjacent v € V;;, w € W;,. The path x — v — w — y is rainbow.

Case 2: dg (i, j) = 3.
Choose apathi —i; —i, — jin G.
Subcase 2.1: x € V; and y € V;.

2 1

0
Choose w € W, \ {s;,}. Then the path x —s;, — w — y is rainbow.

Subcase 2.2: x € V; and y € W;.
0o 1 2
Choose v € V;; and w € W;, \ {s;,}. Then x — v — w — y is rainbow.

Subcase 2.3: x € W; \ {s;}Jand y € W;.
1 0 2
Choose any v € V;,. Then x — v — 53, — y is rainbow.

Subcase 2.4: x =s5; and y € W;.
0o 1 2
Choose v € V;; and w € W;, \ {s;,}. Then x — v — w — y is rainbow.

This proves that if (1) holds, then rc(G[H|, ..., H,]) = 3. If (2) holds, we are done by the next lemma which we
prove separately for later use. [

Lemma 3. If G contains a 3-walk between any x,y € V(G) (possibly with x = y), and each H; has at least 3
vertices, then rc(G[H,, ..., H,]) < 3.

Proof. We will construct a rainbow 3-coloring on A = G[H,, ..., H,]. Let V(H;) = {(i, j)|l < j < n;}. Define a
map y : E(A) — {0, 1, 2} arbitrarily on each E(H;), and put

v (G, pa', jh) =j+j" (mod 3) )

for all i, i” adjacent in G. We prove that y is a rainbow coloring.
Let x, y € V(A) be non-adjacent, say x = (i, j) and y = (i’, j’) with i, i’ non-adjacent in G. Choose any walk
i —iy —ip — i’ in G. We use this walk to find a rainbow path between x and y.
. . T 243 2j+2 . ., N A A
IfJ E J (mOd 3)’ use (la J) - (llaJ + 1) - (l27J +2) - (l > J ) IfJ % J (mOd 3)7 use (la J) - (lla j) -

2
(i2, j) ’ (i’, j') as a rainbow path. [J

2.4. Diameter two

The rc of a graph can sometimes determine the structure of that graph. For instance, rc¢(G) = 1 if and only if G
is a complete graph, while rc(G) = |E(G)| if and only if G is a tree (see [1]). Below, we show that if diam(G) = 2
then the largest possible value of rc(G[Hj, ..., H,]) determines whether every vertex of G is contained in a triangle
or not.

Theorem 4. If diam(G) = 2 and k > 4, then

3, if every vertex of G lies on a triangle
4, otherwise.

mkax rce(G[Hy, ..., Hy]) = { (12)

where the maximum is taken over all possible graphs Hy, ..., H, such that each H; has at least k vertices.
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Proof. Suppose that every vertex is contained in a triangle. This assumption together with diam(G) = 2 implies
that G has a 3-walk between any x,y € V(G) (possibly x = y). So by Lemma 3 we have rc(A) < 3 for any
G-composition graph A.

Now we build a tight example. Replace a vertex v € V(G) with mK, where m > 2k9® _and every other vertex
with kK, to getl a G-composition graph A. Then Q0 = V(mK,) is co-neighboring and |CN(Q)| = kdeg(v) so
src(A) > |Q|ICN@1 > 2 by Lemma 1(1), i.e. src(A) > 3. This implies rc(A) > 3, because any rainbow 2-coloring
must also be a strong rainbow coloring.

If some vertex does not lie on any triangle, we are done by Theorem 2. [J

3. Concluding remarks and open problems

We have proved rc(G[H, ..., H,]) = diam(G) when each H; has at least diam(G) > 4 vertices. We have also
studied what happens when diam(G) < 3, but we did not consider the case that some H; has less than diam(G)
vertices.

Theorem 3(2) is a partial converse to Theorem 2 because if G contains a 3-walk between any x, y € V(G) (possibly
with x = y), then every vertex is contained in a triangle. These two statements are not equivalent, but it might be
interesting to consider whether the weaker statement is enough. If it is, then the conclusion of Theorem 4 will also be
true in the case diam(G) = 3.
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