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Abstract

A k-labeling of a graph is a labeling of vertices of the graph by k-tuples of non-negative integers in such a way that two vertices
of G are adjacent if and only if their label k-tuples differ in each coordinate. The dimension of a graph G is the least k such that G
has a k-labeling.

In this paper we obtain the dimension of a lobster or close bounds for it in various cases.

Keywords: Dimension of a graph; Product dimension; Lobster; Caterpillar; Graph labeling

1. Introduction

For a given graph G (symmetric without loops), label the vertices by vectors of length n with nonnegative integer
coordinates in such a way that two vertices are joined by an edge if and only if the corresponding coordinates in
their labeling are all different. Such a labeling is called a product representation of G. The least such n is called
the dimension of G. It is also the minimal number of complete graphs whose direct product (i.e. tensor product)
contains G as an induced subgraph. This dimension is denoted as dim(G) or product dimension of G or pdim(G) in
the literature. Since dim(G) is used in other contexts too, we shall use the notation pdim(G) in this paper.

A caterpillar is a graph which reduces to a path (called spine) after removing its pendent vertices. A lobster is a
graph which reduces to a caterpillar after removing its pendent vertices. In this paper, we shall obtain dimension, or
close upper and lower bounds for the dimension, for some classes of lobster.

Remark 1.1 (A Criterion for Adjacent Vertices in Terms of an Inner Product Obtained from Labeling [1]). Put
S(n) = {A : A ⊂ {1, 2 . . . , n}}.

Then |S(n)| = 2n . For a vector x ∈ Nn define vectors x̄, x̃ ∈ NS(n) by putting

x̄(A) =

∏
i∈A

xi and x̃(A) =

∏
i ̸∈A

(−xi ). (1.1)
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Fig. 1. A lobster graph.

x̄ and x̃ have 2n coordinates corresponding to subsets A ∈ S(n). Clearly
n∏

i=1

(xi − yi ) = x̄ .ỹ (1.2)

where the notation x̄ .ỹ designates the inner product of x̄ and ỹ.
In any product representation of a graph G, two vertices are adjacent if and only if their labels x and y satisfy

x̄ .ỹ ̸= 0. This result will be used for getting a lower bound for the dimension of a lobster in Section 2.

For earlier results on the dimension of a path, cycle and caterpillar see [1–4].

2. A lower bound for the dimension of a lobster

A lobster is a tree in which the removal of leaves (pendent vertices), leaves a caterpillar. Alternatively, consider
stars Si with centers at mi , 1 ≤ i ≤ n. Let S′

i be a graph obtained from Si in which some of the legs in Si may be
further subdivided by a vertex. Next join mi to mi+1, 1 ≤ i ≤ n − 1. The resulting graph is called a Lobster. (See
Fig. 1.)
In this section and in Sections 3 and 4 we find bounds for dimension of a lobster and in certain cases, exact value
of the dimension. Throughout this paper we denote by Ln a lobster with a diametral path P = (x0, x1, . . . . . . , xn).
Obviously P contains the spine of Ln .

Note 2.1. Let Ln be a lobster with deg(x i ) ≤ 3 where 2 ≤ i ≤ n − 2. Let B = {i | 2 ≤ i ≤ n − 2, deg(x i ) = 3}.
For i ∈ B, x i is called a leg vertex or a base-leg vertex. For i ∈ B, let yi be the vertex of Ln of degree 2 joined to x i ,
and zi be the pendent vertex of Ln joined to yi . These three vertices form a leg (or path) of length 2. Call yi a mid-leg
vertex and zi a pendent-leg vertex of the lobster Ln . Thus the vertex set of Ln is

V = V (Ln) = {x i
| 0 ≤ i ≤ n} ∪ {yi

| i ∈ B} ∪ {zi
| i ∈ B}

and the edge set of Ln is

E(Ln) = {(x i , x i+1)| 0 ≤ i ≤ n − 1} ∪ {(x i , yi )| i ∈ B} ∪ {(yi , zi )| i ∈ B}.

x0, xn and zi for i ∈ B are the pendent vertices of Ln . If i ̸∈ B, x i is called a gap vertex or a non-leg vertex. Thus a
leg vertex is of degree 3 and a gap vertex x i , i ̸∈ B, is of degree ≤ 2.

Let xr+1, xr+2, . . . , xr+t be consecutive leg vertices of Ln and suppose that xr and xr+t+1 are gap vertices, i.e. i ∈ B
for r + 1 ≤ i ≤ r + t but r, r + t + 1 ̸∈ B. We call the induced subgraph on x i , yi and zi , r + 1 ≤ i ≤ r + t , a
bunch of legs. The induced subgraph (path) on all gap vertices between consecutive bunches of legs is called a bunch
of middle gap vertices. Note that, initial and final bunches of gap vertices in Ln have at least two vertices each. Let
A = {i | 0 ≤ i ≤ n}. From now on, our lobsters Ln will have all the legs of length 2.

Theorem 2.1. Let Ln , n ≥ 4, be a lobster of length n where x0, . . . , xn
∈ P and let deg(x i ), 2 ≤ i ≤ n − 2, be at

most 3. If all legs of the lobster are of length two and the initial and final bunches of non-leg vertices have at least two
vertices, then pdim(Ln) satisfies the inequality,

⌈log2(|V | − 1)⌉ ≤ pdim(Ln).
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Fig. 2. The lobster in Theorem 2.1.

Proof. Let pdim(Ln) = k. Consider Ln encoded in Nk by a product representation. For (x1, . . . , xk), (y1, . . . , yk) ∈

Nk ,
k∏

i=1

(xi − yi ) = x̄ .ỹ

where x̄ and ỹ are 2k-tuples as defined in Eq. (1.1). For a vertex x i , consider the k-tuple xi
= (x i

1, x i
2, . . . , x i

k) obtained
by the embedding of Ln in Nk and obtain 2k-tuples from this using (1.1). We denote these 2k-tuples for convenience
by x̄ i and x̃ i . Similarly, we get ȳi and ỹi from the vertex yi and z̄i and z̃i from the vertex zi . Now (x i , x i+1) ∈ E(Ln)
for i ∈ A, and for i ∈ B, (x i , yi ), (yi , zi ) ∈ E(Ln). As encodings of adjacent vertices agree in no coordinate, we get
x̄ i .x̃ i+1

=
∏k

j=1(x i
j − x i+1

j ) ̸= 0, and similarly for i ∈ B, x̄ i .ỹi
̸= 0 and ȳi .z̃i

̸= 0. Also for i, j ∈ A, x̄ i .x̃ j
= 0 if

|i − j | ̸= 1; for i ∈ B, x̄ i .z̃i
= 0 and for i ∈ A and j ∈ B, x̄ i .ỹ j

= 0, x̄ i .z̃ j
= 0 if i ̸= j , and also if i, j ∈ B,

ȳi .z̃ j
= 0 for i ̸= j , as encodings of non-adjacent vertices agree in at least one coordinate. We shall now show that

the vectors in NS(k) corresponding to the vertices x i , i ∈ A − {0} and yi , zi , i ∈ B, are R-linearly independent, so that
|V | − 1 ≤ 2k . Let∑

i∈A

ai x̄ i
+

∑
i∈B

bi ȳi
+

∑
i∈B

ci z̄i
= 0 where ai , bi , ci ∈ R. (2.1)

We shall take the dot product of Eq. (2.1) with suitable x̃ i , ỹi and z̃i to show that ai = bi = ci = 0, for all i
appearing in (2.1). Take the dot product with z̃i , i ∈ B, to get bi = 0 for i ∈ B. Now we consider the vertices x i

(i ≥ 1) of the diametral path P one by one from 1 ≤ i ≤ n. Taking dot product with x̃ i−1, we get ai = 0 for i ∈ A.
Now take the dot product with ỹi , i ∈ B, to get ci = 0 for i ∈ B. (See Fig. 2.)

Thus, we get |V | − 1 vectors in NS(k) which are R-linearly independent. Therefore |V | − 1 ≤ 2k . Hence,
⌈log2(|V | − 1)⌉ ≤ k = pdim(Ln). □ □

3. An upper bound for the dimension of a lobster

Theorem 3.1. Let Ln , n ≥ 4, be a lobster of length n and let x2, x3, . . . , xn−2 be the vertices of the spine of Ln with
deg(x i ) = 3 for 2 ≤ i ≤ n − 2, deg(x i ) = 2 for i = 1, n − 1 and deg(x i ) = 1 for i = 0, n. Let (x i , yi , zi ) be a path
of length 2, which is the leg at x i for 2 ≤ i ≤ n − 2. Then

pdim(Ln) ≤ ⌈log2n⌉ + 2.

Proof. To get the desired upper bound for pdim(Ln), we first show that the lobster L2k can be embedded in Nk+2. We
consider the diametral path of Ln given by x0-x1-· · · -xn . In analogy with a theorem of Lovász et al. ([1], Theorem
5.6), we define vectors vk(i), uk(i) and wk(i) corresponding to the vertices x i , yi , zi with

vk(i) ∈ K k+2
3 , 0 ≤ i ≤ 2k and uk(i), wk(i) ∈ K k+2

3 , 2 ≤ i < 2k
− 2

inductively as follows:
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Fig. 3. The Lobster in Theorem 3.1.

For k = 2, define v2(i), 0 ≤ i ≤ 4, by

v2(0) = 0000, v2(1) = 1111, v2(2) = 0022, v2(3) = 1110, v2(4) = 0001.

Again for k = 2, define u2(i) and w2(i) for i = 2, u2(2) = 1201, w2(2) = 0010.
Now for k = 3, define v3(i), 0 ≤ i ≤ 8, by

v3(0) = 00000, v3(1) = 11111, v3(2) = 00220, v3(3) = 11101, v3(4) = 00012,

v3(5) = 11100, v3(6) = 00221, v3(7) = 11110, v3(8) = 00001.

Again for k = 3, define u3(i) and w3(i), 2 ≤ i ≤ 6, by

u3(2) = 12011, u3(3) = 02210, u3(4) = 12201, u3(5) = 02211, u3(6) = 12000.

w3(2) = 00100, w3(3) = 10001, w3(4) = 00110, w3(5) = 10100, w3(6) = 00111.

For k ≥ 3, we now define vk(i) for 0 ≤ i ≤ 2k by

v′(i) =

{
0 if i is even,

1 if i is odd,
and v′′(i) =

{
1 if i is even,

0 if i is odd.

vk(i) =

⎧⎨⎩
vk−1(i)v′(i) if 0 ≤ i < 2k−1,

vk−1(2k−1)2 if i = 2k−1,

vk−1(2k
− i)v′′(i) if 2k−1

+ 1 ≤ i ≤ 2k .

Again for k ≥ 3, we define uk(i) and wk(i), 2 ≤ i ≤ 2k
− 2, by

Condition on i uk (i) wk (i)

2 ≤ i ≤ 2k−1
− 2 uk−1(i)v′′(i) wk−1(i)v′(i)

2k−1
+ 2 ≤ i ≤ 2k

− 2 uk−1(2k
− i)v′(i) wk−1(2k

− i)v′′(i)
i = 2k−1

− 1 0220 . . . 0 . . . 010 1001 . . . 1 . . . 101
i = 2k−1 1221 . . . 1 . . . 101 0010 . . . 0 . . . 010
i = 2k−1

+ 1 0220 . . . 0 . . . 011 1001 . . . 1 . . . 100

We see that the labeling works initially for k = 2. When we go from (k −1)th stage of induction to kth stage, it is to be
observed that we have essentially joined two L2k−1 to get an L2k ; and in this process for i = 2k−1

− 1, 2k−1, 2k−1
+ 1,

we initially have non-leg vertices which become leg-vertices in the kth step. Hence, these three vertices are to be
treated somewhat differently. From the given formulas, we see that the adjacent vertices agree in no coordinates and
the nonadjacent vertices either agree in the first k + 1 coordinates coming from induction or agree in the (new) last
coordinate. (See Fig. 3.)

This shows that the lobster L2k can be embedded in Nk+2 and pdim(L2k ) ≤ k + 2. Now if 2k−1 < n ≤ 2k , then
Ln is an induced subgraph of L2k and so pdim(Ln) ≤ pdim(L2k ) ≤ k + 2 = ⌈log2n⌉ + 2. Hence, for any n ≥ 4,
pdim(Ln) ≤ ⌈log2n⌉ + 2. □ □
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4. Dimension of a lobster

In this section we shall get upper and lower bounds for the dimension of a general lobster considered in
Theorem 2.1. Then we consider two types of lobsters for which we get dimension for most n. In the lobsters considered
in this section, for vertex x i

∈ P and having degree 3, there is a leg x i -yi -zi associated with it, with yi as a mid-vertex
and zi as a pendent vertex.

Theorem 4.1. Let Ln be a lobster of diameter n as considered in Theorem 2.1. Then

⌈log2(n + 2)⌉ ≤ pdim(Ln) ≤ ⌈log2n⌉ + 2.

Proof. In the notation of Theorem 2.1, there are n + 1 x i s and at least 1 yi and 1 zi , so |V | − 1 ≥ n + 1 + 1 + 1 − 1.
Thus |V | − 1 ≥ n + 2. Hence ⌈log2(n + 2)⌉ ≤ pdim(Ln).

Now Ln is an induced subgraph of the lobster considered in Theorem 3.1. Hence pdim(Ln) ≤ ⌈log2n⌉+2. □ □

Theorem 4.2. Let Ln , n ≥ 4, be the lobster considered in Section 3. Then

⌈log2(3(n − 2))⌉ ≤ pdim(Ln) ≤ ⌈log2n⌉ + 2.

In particular, if ⌈log2n⌉ = k, then k + 1 ≤ pdim(Ln) ≤ k + 2.

Proof. In the notation of Theorem 2.1, there are n + 1 x i s, n − 3 yi s and n − 3 zi s, so |V | − 1 = 3n − 6 = 3(n − 2).
Hence ⌈log2(3(n − 2))⌉ ≤ pdim(Ln).

On the other hand, in Theorem 3.1 we proved that dimension Ln satisfies pdim(Ln) ≤ ⌈log2n⌉ + 2. Hence,
⌈log2(3(n − 2))⌉ ≤ pdim(Ln) ≤ ⌈log2n⌉ + 2.
Now let ⌈log2n⌉ = k, so 2k−1

+ 1 ≤ n ≤ 2k . Hence, 3(n − 2) ≥ 2k
+ 1. □ □

Theorem 4.3. Let Ln , n ≥ 4, be the lobster considered in Theorem 4.2. Let k = ⌈log2n⌉. The dimension of Ln is
given by

pdim(Ln) = ⌈log2n⌉ + 2 = k + 2 i f 2k−1
+ 2k−2

− ⌊
2k−2

3
⌋ + 2 ≤ n ≤ 2k .

For 2k−1
+ 1 ≤ n < 2k−1

+ 2k−2
− ⌊

2k−2

3 ⌋ + 2, k + 1 ≤ pdim(Ln) ≤ k + 2.

Proof. If 2k−1
+2k−2

−⌊
2k−2

3 ⌋+2 ≤ n ≤ 2k , we show that, pdim(Ln) = k +2. Let m = 2k−1
+2k−2

−⌊
2k−2

3 ⌋+2, so
2(m − 2) = 2k

+ 2k−1
− 2⌊

2k−2

3 ⌋. Hence, 3(m − 2) = 2k
+ 2k−1

+ 2k−1
+ 2k−2

− 3⌊
2k−2

3 ⌋. Hence for some t ∈ {1, 2},

3(m − 2) = 2k
+ 2k−1

+ 2k−1
+ 2k−2

− 3(
2k−2

− t
3

) = 2k+1
+ t.

Now, by Theorem 4.2, ⌈log2(3(n − 2))⌉ ≤ pdim(Ln) ≤ ⌈log2n⌉ + 2. So

for m ≤ n ≤ 2k, ⌈log2(2k+1
+ t)⌉ ≤ pdim(Ln) ≤ ⌈log22k

⌉ + 2.

Thus, k + 2 ≤ pdim(Ln) ≤ k + 2, so that, pdim(Ln) = k + 2. □ □

Example 4.4. Take k = 10. For 685 ≤ n ≤ 1024, pdim(Ln) = k + 2 = 12.

Let p ≥ 2. Now we shall consider a lobster with sets of bunches with p − 1 leg vertices followed by a gap vertex,
except that for p ≥ 2, initial and final bunches of leg vertices contain p − 2 leg vertices.

Theorem 4.5. Let p ≥ 3. Let Ln , n ≥ p + 2, be a lobster of length n with x2, x3, . . . , xn−2 be the vertices of the
spine of Ln and let deg(x i ) = 3 or 2 according as p ∤ i or p|i for 2 ≤ i ≤ n − 2. Let n ≡ r (mod p), 0 ≤ r ≤ p − 1.
Let h = 2 if r = 1 and h = 4 if r = 0, 2, 3, . . . , p − 1. The dimension of Ln satisfies the inequality,
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Fig. 4. For the case n = pr .

⌈log2(3n − 2⌈
n
p
⌉ − h)⌉ ≤ pdim(Ln) ≤ ⌈log2n⌉ + 2.

Let k = ⌈log2n⌉. In particular, for n ≥ 4,

for 2k
−

(p − 2)2k

3p − 2
+ 2 < n ≤ 2k, pdim(Ln) = k + 2.

For n ≥ 6, k + 1 ≤ pdim(Ln) ≤ k + 2.
For n = 5, p = 2,3, pdim(L5) = k = 3.
For n = 6, 7, 8, pdim(Ln) = k + 1 = 4. For n = 9, 10, 11, 12, pdim(Ln) = k + 1 = 5.
For p = 2, n ≥ 5, ⌈log2(n − 2)⌉ + 1 ≤ pdim(Ln) ≤ ⌈log2n⌉ + 2. (See Fig. 4.)

Proof. Here |V | − 1 = 3n − 2⌈
n
p ⌉ − h where h = 2 if r = 1 and h = 4 if r = 0, 2, 3, . . . , p − 1. Therefore by

Theorem 2.1, ⌈log2(3n − 2⌈
n
p ⌉ − h)⌉ ≤ pdim(Ln), where h = 2 if r = 1 and h = 4 if r = 0, 2, 3, . . . , p − 1.

Now as Ln is an induced subgraph of the lobster of Theorem 3.1, say L ′
n , we get pdim(Ln) ≤ pdim(L ′

n). By
Theorem 3.1, pdim(L ′

n) ≤ ⌈log2n⌉ + 2. Thus,

⌈log2(3n − 2⌈
n
p
⌉ − h)⌉ ≤ pdim(Ln) ≤ ⌈log2n⌉ + 2. (∗)

Let p ≥ 3. Take k so that 2k−1 < n ≤ 2k . As n ≥ p + 2, we have k ≥ 3. Thus pdim(Ln) ≤ k + 2. Now
the lower and upper bounds in (∗) will be equal if 2k+1 < 3n − 2⌈

n
p ⌉ − h, i.e. 2k+1 < 3n − 2 n+r ′

p − h, where

r ′
= p.⌈ n

p ⌉ − n (0 ≤ r ′
≤ p − 1), i.e. 2k+1 < n 3p−2

p −
ph+2r ′

p , i.e. 2k+1 p
3p−2 +

ph+2r ′

3p−2 < n, i.e. 2k 2p
3p−2 +

ph+2r ′

3p−2 < n,

i.e. 2k
−

p−2
3p−2 2k

+
ph+2r ′

3p−2 < n.
Further,

ph + 2r ′

3p − 2

⎧⎪⎪⎨⎪⎪⎩
=

2p + 2(p − 1)
3p − 2

= 1 +
p

3p − 2
if r = 1, h = 2, r ′

= p − 1,

≤
4p + 2(p − 2)

3p − 2
= 2 if r ̸= 1, h = 4, 0 ≤ r ′

≤ p − 2.

Hence in any case we get equality for lower and upper bounds in (∗) if
2k

−
p−2

3p−2 2k
+ 2 < n ≤ 2k , and then pdim(Ln) = k + 2 for k = 3, 5 ≤ n ≤ 8. Here 3 ≤ p ≤ 6, so 8

7 ≤
p−2

3p−2 2k
≤ 2.

Hence for k = 3, the condition 2k
−

p−2
3p−2 2k

+ 2 < n ≤ 2k is not satisfied. Hence we take n ≥ 4.
Let A = 3n − 2⌈

n
p ⌉ − h = |V | − 1. Note that if n is replaced by n + 1, in the new lobster Ln+1, we have one

additional vertex xn+1. Also, at the vertex xn−1, there will be two new vertices yn−1, zn−1 if and only if p ∤ (n − 1).
Thus we get 1 or 3 new vertices if n is replaced by n + 1. Thus A increases with n.

Let p = 3 and 2k−1
+ 1 ≤ n ≤ 2k . Now if n = 6, then A = 10. So ⌈log2 A⌉ ≥ 4 = k + 1. Hence for 6 ≤ n ≤ 8,

we have k = 3, A ≥ 10 and so ⌈log2 A⌉ ≥ 4 = k + 1. For n = 9, k = 4, A = 17, so ⌈log2 A⌉ = 5 = k + 1 and for
n = 10, A = 20, so ⌈log2 A⌉ ≥ 5 = k + 1.
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Now let n ≥ 11, so k ≥ 4. Hence A ≥ 3n − 2⌈
n
3 ⌉ − 4 ≥ 2n + n − 2⌈

n
3 ⌉ − 4 ≥ 2(2k−1

+ 1) + n − 2( n+2
3 ) − 4 =

2k
+

n−10
3 ≥ 2k

+
1
3 , so ⌈log2 A⌉ ≥ k + 1. Thus, for n ≥ 6, k + 1 ≤ pdim(Ln) ≤ k + 2.

For n = 5, A = 7, so ⌈log2 A⌉ = 3 = k ≤ pdim(Ln). In fact pdim(Ln) = 3, as we can label L5 by triplets as
follows:

v3(0) = 000, v3(1) = 111, v3(2) = 002, v3(3) = 120, v3(4) = 011, v3(5) = 102,

u3(2) = 012, w3(2) = 101.

For 6 ≤ n ≤ 12, dim(Ln) ≥ k + 1. By a similar labeling, we have checked that pdim(Ln) = k + 1 for these n, for
3 ≤ p ≤ n − 2.
Now let p = 2. Let n ≡ r (mod 2), r = 0,1. Here, |V | − 1 = 3n − 2 n−r

2 − 4. Thus, |V | − 1 = 2n − 4 for n even, and
2n − 3 for n odd. Hence, by Theorem 2.1, for n even or odd, ⌈log2(n − 2)⌉ + 1 ≤ pdim(Ln). □ □
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[1] L. Lovász, J. Nešetřil, A. Pultr, On a product dimension of graphs, J. Combin. Theory Ser. B 29 (1980) 47–67.
[2] A.B. Evans, G.H. Fricke, C.C. Maneri, T.A. McKee, M. Perkel, Representation of graphs modulo n, J. Graph Theory 18 (1994) 801–815.
[3] A.B. Evans, G. Issak, D.A. Narayan, Representation of graphs modulo n, Discrete Math. 223 (2000) 109–123.
[4] S.A. Katre, L. Yahyaei, Dimension of a caterpillar, JCMCC 98 (2016) 3–15.

L. Yahyaei, S.A. Katre / AKCE International Journal of Graphs and Combinatorics 17 (1) 413–413 413

http://refhub.elsevier.com/S0972-8600(17)30290-6/sb1
http://refhub.elsevier.com/S0972-8600(17)30290-6/sb2
http://refhub.elsevier.com/S0972-8600(17)30290-6/sb3
http://refhub.elsevier.com/S0972-8600(17)30290-6/sb4

	Dimension of a lobster
	Introduction
	A lower bound for the dimension of a lobster
	An upper bound for the dimension of a lobster
	Dimension of a lobster
	Acknowledgment
	References


