Actions of cofinite groups on cofinite graphs

Amrita Acharyya \& Bikash Das

To cite this article: Amrita Acharyya \& Bikash Das (2020) Actions of cofinite groups on cofinite graphs, AKCE International Journal of Graphs and Combinatorics, 17:1, 198-205, DOI: 10.1016/ j.akcej.2019.02.006

To link to this article: https://doi.org/10.1016/j.akcej.2019.02.006

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC.

Published online: 09 Jun 2020.

Submit your article to this journal

Article views: 66

View related articles

View Crossmark data \triangle

Actions of cofinite groups on cofinite graphs

Amrita Acharyya ${ }^{\text {a }}$, Bikash Das ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, University of Toledo, Main Campus, Toledo, OH 43606-3390, United States
${ }^{\text {b }}$ Department of Mathematics, University of North Georgia, Gainesville Campus, Oakwood, GA 30566, United States

Received 24 December 2017; received in revised form 13 February 2019; accepted 22 February 2019

Abstract

We defined group actions on cofinite graphs to characterize a unique way of uniformly topologizing an abstract group with profinite topology, induced by the cofinite graphs, so that the aforesaid action becomes uniformly equicontinuous.

Keywords: Profinite graph; Cofinite graph; Profinite group; Cofinite group; Equicontinuous group action

1. Introduction

1.1. Topological graphs

Definition 1.1 (Topological Graphs). A topological graph [1] is a topological space Γ that is partitioned into two closed subsets $V(\Gamma)$ and $E(\Gamma)$ together with two continuous functions $s, t: E(\Gamma) \rightarrow V(\Gamma)$ and a continuous function ${ }^{-}: E(\Gamma) \rightarrow E(\Gamma)$ satisfying the following properties: for every $e \in E(\Gamma)$,
(1) $\bar{e} \neq e$ and $\overline{\bar{e}}=e$;
(2) $t(\bar{e})=s(e)$ and $s(\bar{e})=t(e)$.

The elements of $V(\Gamma)$ are called vertices. An element $e \in E(\Gamma)$ is called a (directed) edge with source $s(e)$ and target $t(e)$; the edge \bar{e} is called the reverse or inverse of e.

A map of graphs $f: \Gamma \rightarrow \Delta$ is a function that maps vertices to vertices, edges to edges, and preserves sources, targets, and inverses of edges. Analogously, we will call a map of graphs a graph isomorphism if and only if it is a bijection.

An orientation of a topological graph Γ is a closed subset $E^{+}(\Gamma)$ consisting of exactly one edge in each pair $\{e, \bar{e}\}$. In this situation, setting $E^{-}(\Gamma)=\left\{e \in E(\Gamma) \mid \bar{e} \in E^{+}(\Gamma)\right\}$ we see that $E(\Gamma)$ is a disjoint union of the two closed (hence also open) subsets $E^{+}(\Gamma), E^{-}(\Gamma)$.

Note 1.2. Let Γ be a topological graph. The following are equivalent:

[^0](1) Γ admits an orientation;
(2) there exists a continuous map of graphs from Γ to the discrete graph with a single vertex and a single edge and its inverse;
(3) there exists a continuous map of graphs $f: \Gamma \rightarrow \Delta$ for some discrete graph Δ.

Conceivably there are topological graphs that do not admit closed orientations. However such graphs will not concern us. Therefore, unless otherwise stated, by a topological graph we will henceforth mean a topological graph that admits an orientation.

We will be interested in equivalence relations on graphs that are compatible with the graph structure:
Definition 1.3 (Compatible Equivalence Relation). An equivalence relation R on a graph Γ is compatible if the following properties hold:
(1) $R=R_{V} \cup R_{E}$ where R_{V}, R_{E} are equivalence relations on $V(\Gamma), E(\Gamma)$, precisely the restriction of R;
(2) if $\left(e_{1}, e_{2}\right) \in R$, then $\left(s\left(e_{1}\right), s\left(e_{2}\right)\right) \in R,\left(t\left(e_{1}\right), t\left(e_{2}\right)\right) \in R$, and $\left(\bar{e}_{1}, \bar{e}_{2}\right) \in R$;
(3) for all $e \in E(\Gamma),(e, \bar{e}) \notin R$;

Note 1.4. If K is a compatible equivalence relation on Γ, then there is a unique way to make Γ / K into a graph such that the canonical map $\Gamma \rightarrow \Gamma / K$ is a map of graphs. It is defined by setting $s(K[e])=K[s(e)]$, $t(K[e])=K[t(e)]$, and $\overline{K[e]}=K[\bar{e}]$.

Conversely, if Δ is a graph and $f: \Gamma \rightarrow \Delta$ is a surjective map of graphs, then $K=f^{-1} f=\{(a, b) \in$ $\Gamma \times \Gamma \mid f(a)=f(b)\}$ is a compatible equivalence relation on Γ and f induces an isomorphism of graphs such that $\Gamma / K \cong \Delta$.

Note 1.5. If R_{1} and R_{2} are compatible equivalences on Γ, then so is $R_{1} \cap R_{2}$.
Theorem 1.6. Let R be any cofinite equivalence relation on a topological graph Γ. Then there exists a compatible cofinite equivalence [2] relation S on Γ such that $S \subseteq R$.

Proof. Extend the source and target maps $s, t: E(\Gamma) \rightarrow V(\Gamma)$ to all of Γ so that they are both the identity map on $V(\Gamma)$. Then $s, t: \Gamma \rightarrow \Gamma$ are continuous maps satisfying the following properties:

- $s^{2}=s, t^{2}=t, s t=t$, and $t s=s$;
- $s(x)=x \Longleftrightarrow t(x)=x \Longleftrightarrow x \in V(\Gamma)$.

Similarly, extend the edge inversion map ${ }^{-}: E(\Gamma) \rightarrow E(\Gamma)$ to all of Γ by also letting it be the identity map on $V(\Gamma)$. Then ${ }^{-}: \Gamma \rightarrow \Gamma$ is a continuous map satisfying the following conditions for all $x \in \Gamma$:

- $\overline{\bar{x}}=x$;
- $\bar{x}=x \Longleftrightarrow x \in V(\Gamma)$;
- $s(\bar{x})=t(x)$ and $t(\bar{x})=s(x)$.

Now define $S_{1}=\{(x, y) \in \Gamma \times \Gamma \mid(s(x), s(y)) \in R\}=(s \times s)^{-1}[R], S_{2}=\{(x, y) \in \Gamma \times \Gamma \mid(t(x), t(y)) \in R\}=$ $(t \times t)^{-1}[R]$, and $S_{3}=\{(x, y) \in \Gamma \times \Gamma \mid(\bar{x}, \bar{y}) \in R)=\left({ }^{-} \times^{-}\right)^{-1}[R]$. Then, by the Correspondence Theorem [2], S_{1}, S_{2}, S_{3} are cofinite equivalence relations on Γ. Let $S_{4}=R \cap S_{1} \cap S_{2} \cap S_{3}$ and observe that
(i) S_{4} is a cofinite equivalence relation on Γ;
(ii) if $\left(e_{1}, e_{2}\right) \in S_{4}$, then $\left(s\left(e_{1}\right), s\left(e_{2}\right)\right) \in S_{4},\left(t\left(e_{1}\right), t\left(e_{2}\right)\right) \in S_{4}$, and $\left(\bar{e}_{1}, \bar{e}_{2}\right) \in S_{4}$.

Finally, choose a closed orientation $E^{+}(\Gamma)$ of Γ and form the restrictions $S_{V}=S_{4} \cap[V(\Gamma) \times V(\Gamma)]$, $S_{E^{+}}=S_{4} \cap\left[E^{+}(\Gamma) \times E^{+}(\Gamma)\right]$, and $S_{E^{-}}=S_{4} \cap\left[E^{-}(\Gamma) \times E^{-}(\Gamma)\right]$. Then it is easy to check that $S=S_{V} \cup S_{E^{+}} \cup S_{E^{-}}$ is a compatible cofinite equivalence relation on Γ and $S \subseteq R$, as required.

The previous proof actually shows a little more, which is worth noting. Given a closed orientation $E^{+}(\Gamma)$ for Γ, we say that a compatible equivalence relation R on Γ is orientation preserving if whenever $\left(e, e^{\prime}\right) \in R$ and $e \in E^{+}(\Gamma)$, then also $e^{\prime} \in E^{+}(\Gamma)$. Since the equivalence relation S that we constructed in the proof of Theorem 1.6 is also orientation preserving, we proved the following stronger result.

Corollary 1.7. Let Γ be a topological graph with a specified closed orientation $E^{+}(\Gamma)$. Then for any cofinite equivalence relation R on Γ, there exists a compatible orientation preserving cofinite equivalence relation S on Γ such that $S \subseteq R$.

Corollary 1.8. If Γ is a compact Hausdorff totally disconnected topological graph, then its compatible cofinite equivalence relations form a fundamental system of entourages for the unique uniform structure that induces the topology of Γ [3].

1.2. Cofinite graphs

Definition 1.9 (Cofinite Graph). A cofinite graph [2] is an abstract graph Γ endowed with a Hausdorff uniformity such that the compatible cofinite entourages [2] of Γ form a fundamental system of entourages (i.e. every entourage of Γ contains a compatible cofinite entourage).

A group G is said to act uniformly equicontinuously over a cofinite graph Γ if and only if for each entourage W over Γ there exists an entourage [2], V over Γ such that for all g in $G,(g \times g)[V] \subseteq W$, where $(g \times g)[V]=$ $\{(g \cdot x, g \cdot y):(x, y) \in V\}$ and $g \cdot x$ is the image of $x \in \Gamma$ under the group action of $g \in G$. In this case the group action induces a (Hausdorff) uniformity over G if and only if the aforesaid action is faithful.

Suppose that G is a group acting faithfully and uniformly equicontinuously on a cofinite graph Γ, then the action $G \times \Gamma \rightarrow \Gamma$ is uniformly continuous. Also in that case \widehat{G}, the [4] profinite completion of G, acts on $\widehat{\Gamma}$, the [2] profinite of completion of Γ, uniformly equicontinuously. Following is an example of uniform equicontinuous group action.

Example 1.10. Let Γ be an abstract graph with $V(\Gamma)=\{x: x \in \mathbb{Z}\}$, where \mathbb{Z} is the set of all integers. Let, $E^{+}(\Gamma)=\left\{e_{x}: x \in \mathbb{Z}\right\}, s\left(e_{x}\right)=x, t\left(e_{x}\right)=x+1$. Let, $E^{-}(\Gamma)$ be the set of all edges reversing the edges of $E^{+}(\Gamma)$, that is $E^{-}(\Gamma)=\left\{\overline{e_{x}}: x \in \mathbb{Z}\right\}$ and $s\left(\overline{e_{x}}\right)=t\left(e_{x}\right), t\left(\overline{e_{x}}\right)=s\left(e_{x}\right)$. Let p be any prime. Then for any positive integer n, consider Γ_{n} as the cycle of length p^{n}. One can say that $V\left(\Gamma_{n}\right)=\left\{[0]_{n},[1]_{n},[2]_{n} \ldots\left[p^{n}-1\right]_{n}\right\}$, where $[x]_{n}$ is the congruence class of x modulo p^{n} and $E^{+}\left(\Gamma_{n}\right)=\left\{e_{[x]_{n}}: x \in V\left(\Gamma_{n}\right)\right\}, s\left(e_{[x]_{n}}\right)=[x]_{n}, t\left(e_{[x]_{n}}\right)=[x+1]_{n}$. Let $E^{-}\left(\Gamma_{n}\right)$ be the set of edges reversing the edges in $E^{+}\left(\Gamma_{n}\right)$, that is $E^{-}\left(\Gamma_{n}\right)=\left\{\overline{e_{[x]}} n: x \in V\left(\Gamma_{n}\right)\right\}$ and $s\left(\overline{e_{[x]_{n}}}\right)=t\left(e_{[x]_{n}}\right), t\left(\overline{e_{[x]_{n}}}\right)=s\left(e_{[x]_{n}}\right)$. Now, consider the map of graphs $q_{n}: \Gamma \rightarrow \Gamma_{n}$ as $q_{n}[x]=[x]_{n}$ and $q_{n}\left(e_{x}\right)=e_{[x]_{n}}$. Let, $R_{n}=\operatorname{Ker} q_{n}=\left\{(\gamma, \delta) \in \Gamma \times \Gamma: q_{n}(\gamma)=q_{n}(\delta)\right\}$. Then R_{n} is a compatible equivalence relation over Γ [2]and since there is a one-one, onto map of graphs from Γ / R_{n} to $\Gamma_{n},\left|\Gamma / R_{n}\right|<\infty$. And $I=\left\{R_{n}: n \in N\right\}$ is a fundamental system of entourages over Γ. The corresponding topology induced by I is also Hausdorff, since for any two distinct $\gamma, \delta \in \Gamma$, there exists sufficiently large natural number n so that $R_{n}[x] \bigcap R_{n}[y]=\phi$. Thus Γ turns to be a cofinite graph. Consider the additive group of integers $(\mathbb{Z},+)$ and a natural group action $\mathbb{Z} \times \Gamma \mapsto \Gamma$ by translation of vertices and edges as follows: For any $g \in \mathbb{Z}, x \in V(\Gamma), g . x=g+x$ and for any $e_{x} \in E^{+}(\Gamma), g . e_{x}=e_{g+x}$, for any $\overline{e_{x}} \in E^{-}(\Gamma), g . e_{x}=\overline{e_{g+x}}$. For any entourage U over Γ, as I is a fundamental system of entourage over Γ, there exists $n \in N$ so that $R_{n} \subseteq U$ and for all $g \in \mathbb{Z},(g \times g)\left[R_{n}\right] \subseteq R_{n}$. For if $x, y \in R_{n}$, without loss of generality let us assume that $x, y \in V(\Gamma)$. So, $[x]_{n}=[y]_{n}$ which implies $[g+x]_{n}=[g+y]_{n}$ and that implies $(g . x, g . y) \in R_{n}$. Thus the above action is uniformly equicontinuous.

2. Groups acting on cofinite graphs

Let G be a group and Γ be a cofinite graph. We say that the group G acts over Γ if and only if
(1) For all x in Γ, for all g in $G, g . x$ is in Γ
(2) For all x in Γ, for all g_{1}, g_{2} in $G, g_{1} \cdot\left(g_{2} \cdot x\right)=\left(g_{1} g_{2}\right) \cdot x$
(3) For all x in $\Gamma, 1 . x=x$, where $1 \in G$ is the identity element of G.
(4) For all v in $V(\Gamma)$, for all g in $G, g . v$ is in $V(\Gamma)$ and for all e in $E(\Gamma)$, for all g in G, g.e is in $E(\Gamma)$.
(5) For all e in $E(\Gamma)$, for all g in $G, g . s(e)=s(g . e), g . t(e)=t(g e)$,
$g .(\bar{e})=\overline{g . e}$. We say, $s(e), t(e), \bar{e}$ are the source of e, target of e and inversion of e respectively, such that $s(\bar{e})=t(e), t(\bar{e})=s(e)$ and $\overline{\bar{e}}=e$.
(6) There exists a G-invariant orientation $E^{+}(\Gamma)$ of Γ.

Note that the aforesaid group action restricted to $\{\mathrm{g}\}$ can be treated as a well defined map of graphs, $\Gamma \rightarrow \Gamma$ taking $x \mapsto g . x$.

Definition 2.1 (Uniform Equicontinuous Group Action). A group G is said to act uniformly equicontinuously over a cofinite graph Γ, if and only if for each entourage W over Γ there exists an entourage V over Γ such that for all g in $G,(g \times g)[V]$ is a subset of W.

Example 2.2. Let Γ be an abstract graph with $V(\Gamma)=\{x: x \in \mathbb{Z}\}$, where \mathbb{Z} is the set of all integers. Let, $E^{+}(\Gamma)=\left\{e_{x}: x \in \mathbb{Z}\right\}, s\left(e_{x}\right)=x, t\left(e_{x}\right)=x+1$. Let, $E^{-}(\Gamma)$ be the set of all edges reversing the edges of $E^{+}(\Gamma)$, that is $E^{-}(\Gamma)=\left\{\overline{e_{x}}: x \in \mathbb{Z}\right\}$ and $s\left(\overline{e_{x}}\right)=t\left(e_{x}\right), t\left(\overline{e_{x}}\right)=s\left(e_{x}\right)$. Let \mathcal{N} be a separating filter base [2] of finite index normal subgroups of $(\mathbb{Z},+)$, the additive group of integers. Then for any subgroup $n \mathbb{Z} \in \mathcal{N}$, consider Γ_{n} as the cycle of length n. One can say that $V\left(\Gamma_{n}\right)=\left\{[0]_{n},[1]_{n},[2]_{n} \ldots[n-1]_{n}\right\}$, where $[x]_{n}$ is the congruence class of x modulo n and $E^{+}\left(\Gamma_{n}\right)=\left\{e_{[x]_{n}}: x \in V\left(\Gamma_{n}\right)\right\}, s\left(e_{[x]_{n}}\right)=[x]_{n}, t\left(e_{[x]_{n}}\right)=[x+1]_{n}$. Let $E^{-}\left(\Gamma_{n}\right)$ be the set of edges reversing the edges in $E^{+}\left(\Gamma_{n}\right)$, that is $E^{-}\left(\Gamma_{n}\right)=\left\{\overline{e_{[x] n}}: x \in V\left(\Gamma_{n}\right)\right\}$ and $s\left(\overline{e_{[x]_{n}}}\right)=t\left(e_{[x]_{n}}\right), t\left(\overline{e_{[x]_{n}}}\right)=s\left(e_{[x]_{n}}\right)$. Now, consider the map of graphs $q_{n}: \Gamma \rightarrow \Gamma_{n}$ as $q_{n}[x]=[x]_{n}$ and $q_{n}\left(e_{x}\right)=e_{[x]_{n}}$. Let, $R_{n}=\operatorname{Ker} q_{n}=\left\{(\gamma, \delta) \in \Gamma \times \Gamma: q_{n}(\gamma)=q_{n}(\delta)\right\}$. Then R_{n} is a compatible equivalence relation over Γ [2] and since there is a one-one, onto map of graphs from Γ / R_{n} to $\Gamma_{n},\left|\Gamma / R_{n}\right|<\infty$. And $I=\left\{R_{n}: n \mathbb{Z} \in \mathcal{N}\right\}$ is a fundamental system of entourages over Γ. The corresponding topology induced by I is also Hausdorff, since for any two distinct $\gamma, \delta \in \Gamma$, there exists sufficiently large natural number n so that $R_{n}[x] \bigcap R_{n}[y]=\phi$.Thus Γ turns to be a cofinite graph. Consider the additive group of integers $(\mathbb{Z},+)$ and a natural group action $\mathbb{Z} \times \Gamma \mapsto \Gamma$ by translation of vertices and edges as follows: For any $g \in \mathbb{Z}, x \in V(\Gamma), g . x=g+x$ and for any $e_{x} \in E^{+}(\Gamma), g . e_{x}=e_{g+x}$, for any $\overline{e_{x}} \in E^{-}(\Gamma), g . e_{x}=\overline{e_{g+x}}$. For any entourage U over Γ, as I is a fundamental system of entourage over Γ, there exists $n \mathbb{Z} \in \mathcal{N}$ so that $R_{n} \subseteq U$ and for all $g \in \mathbb{Z},(g \times g)\left[R_{n}\right] \subseteq R_{n}$. For if $x, y \in R_{n}$, without loss of generality let us assume that $x, y \in V(\Gamma)$. So, $[x]_{n}=[y]_{n}$ which implies $[g+x]_{n}=[g+y]_{n}$ and that implies $(g . x, g . y) \in R_{n}$. Thus the above action is uniformly equicontinuous.

Lemma 2.3. If a group G acts uniformly equicontinuously over a cofinite graph Γ, then there exists a fundamental system of entourages consisting of G-invariant compatible cofinite entourages over Γ, i.e. for any entourage U over Γ there exists a compatible cofinite entourage R over Γ such that for all $g \in G,(g \times g)[R] \subseteq R \subseteq U$.

Proof. Let U be any cofinite entourage [2] over Γ. Then as G acts uniformly equicontinuously over Γ, there exists a compatible cofinite entourage S over Γ such that for all $g \in G,(g \times g)[S] \subseteq U$. Choose a G-invariant orientation $E^{+}(\Gamma)$ of Γ. Without loss of generality, we can assume that our compatible equivalence relation S on Γ is orientation preserving i.e. whenever $\left(e, e^{\prime}\right) \in R$ and $e \in E^{+}(\Gamma)$, then also $e^{\prime} \in E^{+}(\Gamma)$. Now $S \subseteq \cup_{g \in G}(g \times g)[S] \subseteq U$. Now if $S_{0}=\cup_{g \in G}(g \times g)[S]$ and $T=\left\langle S_{0}\right\rangle$, where $\left\langle S_{0}\right\rangle$ is the smallest unique equivalence relation on Γ containing S_{0}, namely, the intersection of all equivalence relations that contains S_{0}. Note that $S \subseteq T \subseteq U$. Since for all $h \in G,(h \times h)\left[S_{0}\right]=S_{0}$ and $S_{0}^{-1}=S_{0}$ it follows that T is in the transitive closure of S_{0}. Let $(x, y) \in T$. Then there exists a finite sequence $x_{0}, x_{1}, \ldots, x_{n}$ such that $\left(x_{i}, x_{i+1}\right) \in S_{0}$, for all $i=0,1,2, \ldots, n-1$ and $x=x_{0}, y=x_{n}$. Hence $\left(g x_{i}, g x_{i+1}\right) \in S_{0}$, for all $i=0,1,2, \ldots, n-1$, for all $g \in G$. Thus $\left(g x_{0}, g x_{n}\right)=(g x, g y) \in T$, for all $g \in G$. Hence for all $g \in G,(g \times g)[T] \subseteq T$ and our claim that T is a G-invariant cofinite entourage, follows. It remains to check that T is compatible. Let $(x, y) \in T$. If $(x, y) \in S_{0}$, then there is $(t, s) \in S=S_{V} \cup S_{E}$ and $g \in G$ such that $(g t, g s)=(x, y)$. Without loss of generality let $(t, s) \in S_{V}$. Then $(t, s) \in V(\Gamma) \times V(\Gamma)$ which implies that $(x, y) \in T_{V}$. Now let $(x, y) \in T \backslash S_{0}$. Then there exists a finite sequence $x_{0}, x_{1}, \ldots, x_{n}$ such that $\left(x_{i}, x_{i+1}\right) \in S_{0}$, for all $i=0,1,2, \ldots, n-1$ and $x=x_{0}, y=x_{n}$. Hence by the previous argument if $\left(x_{0}, x_{1}\right) \in T_{V}$ then $\left(x_{i}, x_{i+1}\right) \in T_{V}$, for all $i=1,2, \ldots, n-1$. Thus $(x, y) \in T_{V}$. If $\left(x_{0}, x_{1}\right) \in T_{E}$ then $\left(x_{i}, x_{i+1}\right) \in T_{E}$, for all $i=1,2, \ldots, n-1$, which implies $(x, y) \in T_{E}$. Let $\left(e_{1}, e_{2}\right) \in T_{E}$. If $\left(e_{1}, e_{2}\right) \in S_{0}$, then there is $(p, q) \in S$ and $g \in G$ such that $(g p, g q)=\left(e_{1}, e_{2}\right)$. Then $(s(p), s(q)) \in S$. So $\left(s\left(e_{1}\right), s\left(e_{2}\right)\right)$ which equals $(g s(p), g s(q))$ is in $(g \times g)[S] \subseteq S_{0}$ so that $\left(s\left(e_{1}\right), s\left(e_{2}\right)\right) \in T$. Now let $\left(e_{1}, e_{2}\right) \in T \backslash S_{0}$. Then there exists a finite sequence $x_{0}, x_{1}, \ldots, x_{n}$ such that $\left(x_{i}, x_{i+1}\right) \in S_{0}, \forall i=0,1,2, \ldots, n-1$ and $e_{1}=x_{0}, e_{2}=x_{n}$. Hence by the previous argument $\left(s\left(x_{i}\right), s\left(x_{i+1}\right)\right) \in T, \forall i=0,1,2, \ldots, n-1$ and thus $\left(s\left(e_{1}\right), s\left(e_{2}\right)\right) \in T$. Similarly, $\left(t\left(e_{1}\right), t\left(e_{2}\right)\right) \in T$ and $\left(\overline{e_{1}}, \overline{e_{2}}\right) \in T$. Finally, to show that for any $e \in E^{+}(\Gamma),(e, \bar{e}) \notin T$, if possible let $(e, \bar{e}) \in T$. If $(e, \bar{e}) \in S_{0}$, then there is $(p, q) \in S$ and $g \in G$ such that $(g p, g q)=(e, \bar{e})$. Then $\bar{e}=\overline{g p}=g \bar{p}=g q$ which
implies that $\bar{p}=q$, so $(p, \bar{p}) \in S$, a contradiction. Now let $(e, \bar{e}) \in T \backslash S_{0}$. Then there exists a finite sequence $x_{0}, x_{1}, \ldots, x_{n}$ such that $\left(x_{i}, x_{i+1}\right) \in S_{0}$, for all $i=0,1,2, \ldots, n-1$ and $e=x_{0}, \bar{e}=x_{n}$. Now let there be $(p, q) \in S$ and $g \in G$ such that $(g p, g q)=\left(x_{0}, x_{1}\right)$. Without loss of generality we may assume $(p, q) \in E^{+}(\Gamma) \times E^{+}(\Gamma)$. Then $(g p, g q)=\left(x_{0}, x_{1}\right) \in E^{+}(\Gamma) \times E^{+}(\Gamma)$. Hence $\left(x_{i}, x_{i+1}\right) \in E^{+}(\Gamma) \times E^{+}(\Gamma)$, for all $i=1,2, \ldots, n-1$ which implies that $(e, \bar{e}) \in E^{+}(\Gamma) \times E^{+}(\Gamma)$, a contradiction. Our claim follows.

Note that in reference to Example 2.2, I is in fact a fundamental system of G-invariant compatible cofinite entourages over Γ.

Note 2.4. Let G be a group and Γ be a cofinite graph. Let S be an equivalence relation over G then $S[g]=$ $\{h \in G:(g, h) \in S\}$ is the equivalence class of $g \in G$. Similarly, if S is an equivalence relation on Γ then $S[\gamma]=\{\rho \in \Gamma:(\gamma, \rho) \in S\}$ is the equivalence class of $\gamma \in G$. Let G act on Γ. Let R be a cofinite entourage. We define $N_{R}=\left\{\left(g_{1}, g_{2}\right) \in G \times G: g_{1} R[\gamma]=g_{2} R[\gamma], \forall \gamma \in \Gamma\right\}$, and $N_{R}[1]=\left\{g \in G:(1, g) \in N_{R}\right\}$, [4]. In the following lemmas we will show that N_{R} is a congruence of G and $N_{R}[1]$ is a normal subgroup of G with finite index and we denote it by $N_{R}[1] \triangleleft_{f} G$.

Lemma 2.5. $N_{R}[1]$ is a finite index normal subgroup of G and $G / N_{R}[1]$ is isomorphic with G / N_{R}. More generally, if N is a congruence on G, then $N[1]$ is a normal subgroup of G and $G / N[1] \cong G / N$.

Proof. Let us first see that $N_{R}[1] \triangleleft_{f} G$ for all G-invariant compatible cofinite entourage R over Γ. Let $g, h \in N_{R}$ [1]. This implies $(1, g) \in N_{R}$ and hence $(g, 1),(1, h) \in N_{R}$. Thus $(g, h) \in N_{R}$. This implies $(g \cdot x, h \cdot x)$ is in R, for all $x \in \Gamma$ and so $\left(x, g^{-1} h . x\right) \in R$, for all $x \in \Gamma$. Hence, $\left(1, g^{-1} h\right)$ is in N_{R} and thus $g^{-1} h \in N_{R}[1]$. So, $N_{R}[1] \leq G$. For all $g \in G$, for all $x \in \Gamma$, $g \cdot x \in \Gamma$. Hence for all $k \in N_{R}[1],(x, k \cdot x) \in R$, hence $(k \cdot x, x)$ is in R. Thus $(k g \cdot x, g \cdot x) \in R$ and $\left(g^{-1} k g \cdot x, g^{-1} g \cdot x\right)=\left(g^{-1} k g \cdot x, x\right) \in R$. Hence $\left(g^{-1} k g, 1\right) \in N_{R}$. So, $g^{-1} k g \in N_{R}[1]$ and thus $N_{R}[1] \triangleleft G$. Now let us define η from $G / N_{R}[1]$ to G / N_{R} via $\eta\left(g N_{R}[1]\right)=N_{R}[g]$. Then, $g N_{R}$ [1] is equal to $h N_{R}$ [1] if and only if $h^{-1} g \in N_{R}$ [1] if and only if $\left(1, h^{-1} g\right) \in N_{R}$ if and only if $\left(x, h^{-1} g \cdot x\right) \in R$ if and only if $(h . x, g . x) \in R$ if and only if $(h, g) \in N_{R}$ if and only if $N_{R}[h]=N_{R}[g]$, for all x in Γ. Thus η is a well defined injection and hence $\left|G / N_{R}[1]\right| \leq\left|G / N_{R}\right|<\infty$. Hence $N_{R}[1] \triangleleft_{f} G$. It follows that G / N_{R} is a group and let us define $\zeta: G / N_{R}[1] \rightarrow G / N_{R}$ via $\zeta\left(g N_{R}[1]\right)=N_{R}[g]$. Then for g_{1}, g_{2} in $G, g_{1} N_{R}[1]=g_{2} N_{R}$ [1] if and only if $g_{2}^{-1} g_{1} \in N_{R}$ [1] if and only if $\left(1, g_{2}^{-1} g_{1}\right) \in N_{R}$ if and only if $\left(x, g_{2}^{-1} g_{1} \cdot x\right) \in R$ if and only if $\left(g_{2} \cdot x, g_{1} \cdot x\right) \in R$ if and only if $\left(g_{2}, g_{1}\right) \in N_{R}$ if and only if $N_{R}\left[g_{2}\right]$ equals $N_{R}\left[g_{1}\right]$. Hence ζ is a well defined injection. Also for all $N_{R}[g]$ in G / N_{R}, there exists $g N_{R}[1] \in G / N_{R}[1]$ such that $\zeta\left(g N_{R}[1]\right)=N_{R}[g]$. Thus ζ is surjective as well. Also for $g_{1} N_{R}[1], g_{2} N_{R}[1] \in G / N_{R}[1]$, we have $\zeta\left(g_{1} N_{R}[1] g_{2} N_{R}[1]\right)=\zeta\left(g_{1} g_{2} N_{R}[1]\right)$ and that equals $N_{R}\left[g_{1} g_{2}\right]$ which equals $N_{R}\left[g_{1}\right] N_{R}\left[g_{2}\right]=\zeta\left(g_{1} N_{R}[1]\right) \zeta\left(g_{2} N_{R}[1]\right)$. Hence ζ is a group homomorphism and thus a group isomorphism. Also, both $G / N_{R}[1], G / N_{R}$, are finite discrete topological groups, so ζ is an isomorphism of cofinite groups as well.

Lemma 2.6. Let a group G act on a cofinite graph Γ uniformly equicontinuously. Then G acts on Γ / R and G / N_{R} acts on Γ / R as well, where R is a G-invariant compatible cofinite entourage over Γ and Γ / R is the quotient graph of Γ with respect to R. If I is a fundamental system of G-invariant compatible cofinite entourages over Γ, then $\left\{N_{R} \mid R \in I\right\}$ forms a fundamental system of cofinite congruences [5] for some uniformity over G.

Proof. Let R be a G-invariant compatible cofinite entourage over Γ. Let us define a group action $G \times \Gamma / R \rightarrow \Gamma / R$ via $g . R[x]=R[g . x]$, for all $g \in G$, for all $x \in \Gamma$. Now let $R[x]=R[y]$ so $(x, y) \in R$ which implies that $(g . x, g \cdot y) \in R$. Then $R[g \cdot x]=R[g \cdot y]$. Hence the induced group action is well defined.

Let us now consider the group action $G / N_{R} \times \Gamma / R \rightarrow \Gamma / R$, defined via $N_{R}[g] \cdot R[x]=R[g \cdot x]$, for all $x \in \Gamma$, for all $g \in G$. Now let $\left(N_{R}[g], R[x]\right)=\left(N_{R}[h], R[y]\right)$ which implies that $(g, h) \in N_{R},(x, y)$ is in R. Then $(g . x, h . x) \in R$, as $h^{-1} \in G,\left(h^{-1} g \cdot x, h^{-1} h . x\right) \in R$. So $\left(h^{-1} g . x, y\right) \in R$. Thus $(g . x, h . y) \in R$ which implies that $R[g . x]$ equals $R[h . y]$. Hence the induced group action is well defined. Let us now show that N_{R} is an equivalence relation over G, for all G-invariant compatible cofinite entourage R over Γ.
(1) for all $g \in G$, for all $x \in \Gamma,(g . x, g . x) \in R$. Hence $(g, g) \in N_{R}$, for all $g \in G$ which implies that $D(G) \subseteq N_{R}$.
(2) Now $(g, h) \in N_{R} \Leftrightarrow(g . x, h . x) \in R$, for all $x \in \Gamma$
$\Leftrightarrow(h . x, g . x) \in R$, for all $x \in \Gamma$.
$\Leftrightarrow(h, g) \in N_{R}$. Thus $N_{R}^{-1}=N_{R}$.
(3) Let $(g, h),(h, k) \in N_{R}$. This implies $(g . x, h . x),(h . x, k . x)$ is in $R, \forall x \in \Gamma$. Hence $(g . x, k . x) \in R$, for all $x \in \Gamma$. So $(g, k) \in N_{R}$ which implies that $\left(N_{R}\right)^{2} \subseteq N_{R}$.
Also we now check that N_{R} is a congruence over G. For, let us take $\left(g_{1}, g_{2}\right),\left(g_{3}, g_{4}\right) \in N_{R}$. Then for all $x \in \Gamma,\left(g_{1} \cdot x, g_{2} \cdot x\right),\left(g_{3} \cdot x, g_{4} \cdot x\right) \in R$; for all $x \in \Gamma, g_{3} \cdot x \in \Gamma$ and so $\left(g_{1} g_{3} \cdot x, g_{2} g_{3} \cdot x\right) \in R$ and $\left(g_{2} g_{3} \cdot x, g_{2} g_{4} \cdot x\right)$ is in R, since R is G-invariant. Thus ($\left.g_{1} g_{3} . x, g_{2} g_{4} . x\right) \in R$, for all $x \in \Gamma$ so that $\left(g_{1} g_{3}, g_{2} g_{4}\right) \in N_{R}$. Thus our claim follows. Let us now show that G / N_{R} is finite. Furthermore, define $g: \Gamma / R \rightarrow \Gamma / R$ as g maps ($R[x]$) into $R[g . x]$. Now, $R[x]=R[y] \Longleftrightarrow(x, y) \in R$ if and only if $(g . x, g . y) \in R \Longleftrightarrow R[g . x]=R[g . y]$. Hence the map g is a well defined injection. Now for all $R[x] \in \Gamma / R$ there exists $g^{-1} R[x] \in \Gamma / R$ such that $g\left(g^{-1} R[x]\right)$ equals $R[x]$. Hence $g \in \operatorname{Sym}(\Gamma / R)$, where $\operatorname{Sym}(\Gamma / R)$ is the collection of all graph isomorphisms from $\Gamma / R \rightarrow \Gamma / R$, [2]. Now let us define a map $\theta: G / N_{R} \rightarrow \operatorname{Sym}(\Gamma / R)$ via $\theta\left(N_{R}[g]\right)=g$. Now $N_{R}\left[g_{1}\right]$ equals $N_{R}\left[g_{2}\right]$ if and only if $\left(g_{1}, g_{2}\right) \in N_{R}$ if and only if $\left(g_{1} \cdot x, g_{2} \cdot x\right) \in R$ for all $x \in \Gamma$. Hence $\left(g_{1} \cdot x, g_{2} \cdot x\right) \in R$ if and only if $R\left[g_{1} \cdot x\right]=R\left[g_{2} \cdot x\right]$ if and only if $g_{1}(R[x])=g_{2}(R[x])$ if and only if $g_{1}=g_{2}$ in $\operatorname{Sym}(\Gamma / R)$. Hence θ is a well defined injection. Thus $\left|G / N_{R}\right| \leq|\operatorname{Sym}(\Gamma / R)|<\infty$ as $|\Gamma / R|<\infty$. So, next we would like to show that $\left\{N_{R} \mid R \in I\right\}$ forms a fundamental system of cofinite congruences over G.
(1) $D(G) \subseteq N_{R}$, for all $R \in I$, as N_{R} is reflexive.
(2) Now for some $R, S \in I,\left(g_{1}, g_{2}\right) \in N_{R} \bigcap N_{S}$ if and only if $\left(g_{1} . x, g_{2} . x\right) \in R \bigcap S$, for all $x \in \Gamma \Leftrightarrow\left(g_{1}, g_{2}\right) \in$ $N_{R} \cap s$. Thus $N_{R} \bigcap N_{S}=N_{R} \cap s$.
(3) For all $N_{R}, N_{R}^{2}=N_{R}$, as N_{R} is transitive.
(4) For all $N_{R}, N_{R}^{-1}=N_{R}$, as N_{R} is symmetric.

Hence our claim follows.
Note 2.7. Let us refer back to Example 2.2 and define a group action $\mathbb{Z} \times \Gamma_{n} \mapsto \Gamma_{n}$ as following $g .[x]_{n}=[g+x]_{n}$, for any $x \in V\left(\Gamma_{n}\right), g \cdot e_{[x]_{n}}=e_{[g+x]_{n}}, g \cdot \overline{e_{[x]_{n}}}=\overline{e_{g+x}}$, for any $\overline{e_{x}} \in E^{-}\left(\Gamma_{n}\right)$. Thus for any n, where $n \mathbb{Z} \in \mathcal{N}, \mathbb{Z} / N_{R_{n}}$ is isomorphic to $\mathbb{Z} / n \mathbb{Z}$.

Definition 2.8. We say a group G acts on a cofinite graph Γ faithfully, if for all g in $G \backslash\{1\}$ there exists x in Γ such that $g x$ is not equal to x in Γ.

Lemma 2.9. The induced uniform topology over G as in Lemma 2.6 is Hausdorff if and only if G acts faithfully over Γ.

Proof. Let us first assume that G acts faithfully over Γ. Now let $g \neq h$ in G. Then $h^{-1} g \neq 1$. So there exists $x \in \Gamma$ such that $h^{-1} g . x \neq x$ implying that $g . x \neq h . x$. Then there exists a G-invariant compatible cofinite entourage R over Γ such that $(g . x, h . x) \notin R$, as Γ is Hausdorff. Hence $(g, h) \notin N_{R}$. Thus G is Hausdorff.

Conversely, let us assume that G is Hausdorff and let $g \neq 1$ in G. Then there exists some G-invariant compatible cofinite entourage R over Γ such that $(1, g) \notin N_{R}$. Hence there exists $x \in \Gamma$ such that ($\left.x, g . x\right) \notin R$. Hence $R[x] \neq R[g . x]$ so that $x \neq g . x$. Our claim follows.

Lemma 2.10. Suppose that G is a group acting uniformly equicontinuously on a cofinite graph Γ and give G the induced uniformity as in Lemma 2.6. Then the action $G \times \Gamma \rightarrow \Gamma$ is uniformly continuous.

Proof. Let R be a G-invariant cofinite entourage over Γ. If I is a fundamental system of G-invariant compatible cofinite entourages over Γ. Then $\left\{N_{R} \times R: R \in I\right\}$ ia a fundamental system of entourage for a uniform structure over $G \times \Gamma$, [2]. Now let $((g, x),(h, y)) \in N_{R} \times R$, i.e. $(g, h) \in N_{R},(x, y) \in R$. Now x in Γ and $(g x, h x) \in R$ this implies $\left(h^{-1} g x, x\right) \in R$. We have $\left(h^{-1} g x, y\right) \in R$ and hence $(g x, h y) \in R$. Thus our claim.

Let us define a directed order ' \leq ' on I, a fundamental system of G-invariant entourages on a cofinite graph Γ as in Lemma 2.6. We say, $R \leq S$ in I, then $S \subseteq R$. Let $\left(g_{1}, g_{2}\right) \in N_{S}$. Then $\left(g_{1} x, g_{2} x\right) \in S$, for all $x \in \Gamma$ and
hence $\left(g_{1} x, g_{2} x\right) \in R$, for all $x \in \Gamma$ which implies $\left(g_{1}, g_{2}\right) \in N_{R}$. Thus $N_{S} \subseteq N_{R}$. For all $R \leq S$, in I, let us define $\psi_{R S}: G / N_{S} \rightarrow G / N_{R}$ via $\psi_{R S}\left(N_{S}[g]\right)=N_{R}[g]$. Then $\psi_{R S}$ is a well defined uniformly continuous group isomorphism, as each of $G / N_{R}, G / N_{S}$ is finite discrete groups. If $R=S$, then $\psi_{R R}=i d_{G / N_{R}}$. And if $R \leq S \leq T$, then $\psi_{R S} \psi_{S T}=\psi_{R T}$. Then $\left\{G / N_{R} \mid R \in I, \psi_{R S}, R \leq S \in I\right\}$, forms an inverse system of finite discrete groups. Let $\widehat{\Gamma}=\lim _{\kappa \in I} \Gamma / R$ and $\widehat{G}=\lim _{\leftarrow \in I} G / N_{R}$, where $\psi_{R}: \widehat{G} \rightarrow G / N_{R}$ is the corresponding canonical projection map, [2]. Now if I_{1}, I_{2} are two fundamental systems of G-invariant cofinite entourages over Γ, clearly I_{1}, I_{2} will form fundamental systems of cofinite congruences, for two induced uniformities, over G. Now let $N_{R_{1}}$ be a cofinite congruence over G for some $R_{1} \in I_{1}$. Then there exists a R_{2}, cofinite entourage over Γ, such that $R_{2} \in I_{2}$ and $R_{2} \subseteq R_{1}$. Hence $N_{R_{2}} \subseteq N_{R_{1}}$. Now let $N_{S_{2}}$ be a cofinite congruence over G for some $S_{2} \in I_{2}$. Then there exists S_{1}, cofinite entourage over Γ, such that $S_{1} \in I_{1}$ and $S_{1} \subseteq S_{2}$. Hence $N_{S_{1}} \subseteq N_{S_{2}}$. Thus any cofinite congruence corresponding to the directed set I_{1} is a cofinite congruence corresponding to the directed set I_{2} and vice versa. Thus the two induced uniform structures over G are equivalent and so the completion of G with respect to the induced uniformity, from the cofinite graph Γ, is unique up to both algebraic and topological isomorphism.

Theorem 2.11. If G acts on Γ, as in Lemma 2.6 , faithfully then \widehat{G} acts on $\widehat{\Gamma}$ uniformly equicontinuously.
Proof. Let a group G act on Γ uniformly equicontinuously. We fix a G-invariant orientation $E^{+}(\Gamma)$ of Γ. By Lemma 2.10 the action is uniformly continuous as well. Let $\chi: G \times \Gamma \rightarrow \Gamma$ be this group action. Now since Γ is topologically embedded in $\widehat{\Gamma}$ by the inclusion map, say, i, the map $i \circ \chi: G \times \Gamma \rightarrow \widehat{\Gamma}$ is a uniformly continuous. Then there exists a unique uniformly continuous map $\widehat{\chi}: \widehat{G} \times \widehat{\Gamma} \rightarrow \widehat{\Gamma}$ that extends χ. We claim that $\widehat{\chi}$ is the required group action. We can take $\widehat{\Gamma}=\lim \Gamma / R$ and $\widehat{G}=\lim G / N_{R}$, where R runs throughout all G-invariant compatible cofinite entourages of Γ that are orientation preserving. Then $\widehat{G} \times \widehat{\Gamma}=$ $\underset{\leftrightarrows}{\lim }\left(G / N_{R} \times \Gamma / R\right) \cong \lim \left(G / N_{R} \times \Gamma / R\right)[6]$ and we define a group action of G over Γ coordinatewise as follows $\left(N_{R}\left[g_{R}\right]\right)_{R} \cdot\left(R\left[x_{R}\right]\right)_{R}=\left(R\left[g_{R} \cdot x_{R}\right]\right)_{R}$. If possible let, $\left(\left(N_{R}\left[g_{R}\right]\right)_{R},\left(R\left[x_{R}\right]\right)_{R}\right)=\left(\left(N_{R}\left[h_{R}\right]\right)_{R},\left(R\left[y_{R}\right]\right)_{R}\right)$. So, $N_{R}\left[g_{R}\right]$ equals $N_{R}\left[h_{R}\right]$ and $R\left[x_{R}\right]=R\left[y_{R}\right], \forall R \in I,\left(g_{R}, h_{R}\right) \in N_{R}$ and $\left(x_{R}, y_{R}\right) \in R$. This implies that $\left(g_{R} \cdot x_{R}, h_{R} \cdot x_{R}\right) \in R$ which further ensures that $\left(h_{R}^{-1} g_{R} \cdot x_{R}, x_{R}\right) \in R$. Then $\left(h_{R}^{-1} g_{R} \cdot x_{R}, y_{R}\right) \in R$ and $\left(g_{R} \cdot x_{R}, h_{R} \cdot y_{R}\right) \in R$. Hence $\left(R\left[g_{R} \cdot x_{R}\right]\right)_{R}=\left(R\left[h_{R} \cdot y_{R}\right]\right)_{R}$. So, the action is well defined. Let $g=\left(N_{R}\left[g_{R}\right]\right)_{R}$ and $h=\left(N_{R}\left[h_{R}\right]\right)_{R}$ in \widehat{G}, $x=\left(R\left[x_{R}\right]\right)_{R} \in \widehat{\Gamma}$. Now $h .(g \cdot x)=h .\left(R\left[g_{R} \cdot x_{R}\right]\right)_{R}=\left(R\left[h_{R} g_{R} \cdot x_{R}\right]\right)_{R}$ which then equals $\left(N_{R}\left[h_{R} g_{R}\right]\right)_{R} \cdot x=(h g) \cdot x$. Hence the action is associative. Now $\left(N_{R}[1]\right)_{R} \cdot\left(R\left[x_{R}\right]\right)_{R}=\left(R\left[1 x_{R}\right]\right)_{R}=\left(R\left[x_{R}\right]\right)_{R}$. Furthermore for all vertex $v=\left(R\left[v_{R}\right]\right)_{R} \in V(\widehat{\Gamma})$ and for all $g=\left(N_{R}\left[g_{R}\right]\right)_{R} \in \widehat{G}$ one can say that $g \cdot v=\left(R\left[g_{R} \cdot v_{R}\right]\right)_{R} \in V(\widehat{\Gamma})$ as each $g_{R} \cdot v_{R} \in V(\Gamma)$. Similarly, for all $e=\left(R\left[e_{R}\right]\right)_{R}$ in $E(\widehat{\Gamma})$ and for all $g=\left(N_{R}\left[g_{R}\right]\right)_{R}$ in $\widehat{G}, g \cdot e=\left(R\left[g_{R} e_{R}\right]\right)_{R}$ in $E(\widehat{\Gamma})$. For all $e=\left(R\left[e_{R}\right]\right)_{R}$ in $E(\widehat{\Gamma})$, for all $g=\left(N_{R}\left[g_{R}\right]\right)_{R}$ in \widehat{G}, we have $s(g . e)=s\left(\left(R\left[g_{R} e_{R}\right]\right)_{R}\right)$ and so $\left(R\left[g_{R} s\left(e_{R}\right)\right]\right)_{R}$ equals $\left(g .\left(R\left[s\left(e_{R}\right)\right]\right)_{R}\right)$ and that equals $g . s(e)$. Hence the properties $t(g . e)=g . t(e)$ and $\overline{g . e}=g . \bar{e}$ follow similarly. Finally, let $E^{+}(\widehat{\Gamma})$ consist of all the edges $\left(R\left[e_{R}\right]\right)_{R}$, where $e_{R} \in E^{+}(\Gamma)$. Since each R is orientation preserving, it follows that $E^{+}(\widehat{\Gamma})$ is an orientation of $\widehat{\Gamma}$. Since $E^{+}(\Gamma)$ is G-invariant, we see that $E^{+}(\widehat{\Gamma})$ is $\widehat{\Gamma}$-invariant. Hence this is a well defined group action. Also for all $g \in G$, and $x \in \Gamma,\left(N_{R}[g]\right)_{R} \cdot(R[x])_{R}$ equals $(R[g . x])_{R}$ which equals $g . x$ in Γ, (please see [6], for any further clarification on how to embed G in \widehat{G} and Γ in $\overparen{\Gamma}$. We use the notations $\left(N_{R}[g]\right)_{R}$ and $(R[x])_{R}, R[g x]_{R}$ to refer to the R th coordinates of g and $x, g x$ in \widehat{G} and $\widehat{\Gamma}$, respectively). Thus the restriction of this group action agrees with the group action χ. Now $\{R \mid R \in I\}$ is a fundamental system of cofinite entourages over Γ, and $\left\{N_{R} \mid R \in I\right\}$ is a fundamental system of cofinite congruences over G. Hence $\{\bar{R} \mid R \in I\}$ is a fundamental system of cofinite entourages over $\widehat{\Gamma}$ and $\left\{\overline{N_{R}} \mid R \in I\right\}$ is a fundamental system of cofinite congruences over \widehat{G} respectively, where \bar{R} is the topological closure of R in $\Gamma \times \Gamma$. Let us now see that the aforesaid group action is uniformly continuous. For let us consider the group action $G / N_{R} \times \Gamma / R \rightarrow \Gamma / R$ defined via $N_{R}[g] R[x]=R[g . x]$, which is uniformly continuous as both $G / N_{R} \times \Gamma / R$ and Γ / R are finite discrete uniform topological spaces. Hence the group action, $\widehat{G} \times \widehat{\Gamma} \rightarrow \widehat{\Gamma}$ is uniformly continuous. Thus the aforesaid group action is our choice of $\widehat{\chi}$, by the uniqueness of $\widehat{\chi},[2]$. So the restriction of the aforesaid action $\{\widehat{g}\} \times \widehat{\Gamma} \rightarrow \widehat{\Gamma}$ is a uniformly continuous map of graphs, for all $\widehat{g} \in \widehat{G}$. We check that for all $(x, y) \in R$ and for all $\widehat{g} \in \widehat{G}$ the ordered pair $(\widehat{g} . x, \widehat{g} . y) \in \bar{R}$. For, let $\widehat{g}=\left(N_{R}\left[g_{R}\right]\right)_{R} \in \widehat{G}$ and for $x, y \in \Gamma,\left((R[x])_{R},(R[y])_{R}\right) \in R$. Now $\bar{R}\left[\left(R\left[g_{R} \cdot x\right]\right)_{R}\right]=\bar{R}\left[g_{R} \cdot x\right]=\bar{R}\left[g_{R} \cdot y\right]=\bar{R}\left[\left(R\left[g_{R} \cdot y\right]\right)_{R}\right]$. So, $\left(\left(N_{R}\left[g_{R}\right]\right)_{R} \cdot(R[x])_{R},\left(N_{R}\left[g_{R}\right]\right)_{R} \cdot(R[y])_{R}\right) \in \bar{R}$. This implies $(\widehat{g} \times \widehat{g})[R]$ is a subset of \bar{R}. Thus for all $\widehat{g} \in \widehat{G}$ we observe that $(\widehat{g} \times \widehat{g})[\bar{R}]$ is a subset of $\widehat{\hat{g}} \times \widehat{g}[R]$ which is a subset of $\overline{\bar{R}}=\bar{R}$. Hence \bar{R} is \widehat{G} invariant.

Thus $\Phi_{1}=\left\{N_{\bar{R}} \mid R \in I\right\}$ and $\Phi_{2}=\left\{\overline{N_{R}} \mid R \in I\right\}$ form fundamental systems of cofinite congruences over \widehat{G}. Let $\tau_{\Phi_{1}}, \tau_{\Phi_{2}}$ be the topologies induced by Φ_{1}, Φ_{2} respectively.

Theorem 2.12. The uniformities on \widehat{G} obtained by Φ_{1} and Φ_{2} are equivalent.
Proof. Let us first show that $N_{\bar{R}} \cap G \times G=N_{R}$. For, let $(g, h) \in N_{R}$. Then for all $x \in \Gamma,(g . x, h . x) \in R \subseteq \bar{R}$. Now let $\left(R\left[x_{R}\right]\right)_{R} \in \widehat{\Gamma}$. Then $\bar{R}\left[g\left(R\left[x_{R}\right]\right)_{R}\right]=\bar{R}\left[g . x_{R}\right]=\bar{R}\left[h . x_{R}\right]=\bar{R}\left[h\left(R\left[x_{R}\right]\right)_{R}\right]$ which implies that $(g, h) \in N_{\bar{R}} \cap G \times G$. Thus, $N_{R} \subseteq N_{\bar{R}} \cap G \times G$. Again, if (g, h) belongs to $N_{\bar{R}} \cap G \times G$, then for all $x \in \Gamma \subseteq \widehat{\Gamma}$, and so $(g . x, h . x) \in \bar{R} \cap \Gamma \times \Gamma=R$ and this implies $(g, h) \in N_{R}$. Our claim follows. Then as uniform subgroups $\left(G, \tau_{\Phi_{1}}\right) \cong\left(G, \tau_{\Phi_{2}}\right)$, both algebraically and topologically, their corresponding completions $\left(\widehat{G}, \tau_{\Phi_{1}}\right) \cong\left(\widehat{G}, \tau_{\Phi_{2}}\right)$, both algebraically and topologically. Since for all $S \in I, \psi_{S}: G \rightarrow G / N_{S}$ is a uniform continuous group homomorphism and G / N_{S} is discrete, there exists a unique uniform continuous extension of ψ_{S}, namely, $\widehat{\psi_{S}}: \widehat{G} \rightarrow G / N_{S}$. Let us define $\lambda_{S}: \widehat{G} \rightarrow G / N_{S}$ via $\lambda_{S}(g)=N_{S}\left[g_{S}\right]$, where $g=\left(N_{R}\left[g_{R}\right]\right)_{R}$, [6]. Now let $g=\left(N_{R}\left[g_{R}\right]\right)_{R}, h=\left(N_{R}\left[h_{R}\right]\right)_{R} \in \widehat{G}$ be such that $g=h$ which implies that $N_{S}\left[g_{S}\right]=N_{S}\left[h_{S}\right]$ and hence λ_{S} is well defined. Now let $(g, h) \in N_{\bar{S}}$. First of all $N_{\bar{S}}\left[g_{S}\right]=N_{\bar{S}}[g]=N_{\bar{S}}[h]=N_{\bar{S}}\left[h_{S}\right]$. So, $\left(g_{S}, h_{S}\right) \in N_{\bar{S}} \bigcap G \times G=N_{S}$. Hence $N_{S}\left[g_{S}\right]=N_{S}\left[h_{S}\right]$ which implies that $\lambda_{S}(g)=\lambda_{S}(h)$, so $\left(\lambda_{S}(g), \lambda_{S}(h)\right) \in D\left(G / N_{R}\right)$. Thus $N_{\bar{S}}$ is a subset of $\left(\lambda_{S} \times \lambda_{S}\right)^{-1} D\left(G / N_{R}\right)$. Hence λ_{S} is uniformly continuous. Now for all $g, h \in \widehat{G}, \lambda_{S}(g h)=N_{S}\left[g_{S} h_{S}\right]=$ $N_{S}\left[g_{S}\right] N_{S}\left[h_{S}\right]=\lambda_{S}(g) \lambda_{S}(h)$ and for all $g \in G, \lambda_{S}(g)=\lambda_{S}\left(\left(N_{R}[g]\right)_{R}\right)=N_{S}[g]=\psi_{S}(g)$. Thus λ_{S} is a well defined uniformly continuous group homomorphism that extends ψ_{S}. Then by the uniqueness of the extension, $\widehat{\psi_{S}}=\lambda_{S}$. Now $N_{\bar{S}}$ is a closed subspace of \widehat{G}, then $\overline{N_{\bar{S}} \cap G \times G}=\overline{N_{S}}$ which implies that $\overline{N_{S}}$ is a subset of $\overline{N_{\bar{S}}}$ which equals $N_{\bar{S}}$. Let us define θ from $\widehat{G} / N_{\bar{S}}$ to G / N_{S} as θ takes $N_{\bar{S}}[g]$ into $N_{S}\left[g_{S}\right]$, where $g=\left(N_{R}\left[g_{R}\right]\right)_{R}$. Now $N_{\bar{S}}[g]=N_{\bar{S}}[h]$ in $\widehat{G} / N_{\bar{S}}$ will imply $\left(g_{S}, h_{S}\right)$ is in $N_{\bar{S}}$ and this implies for all x in Γ the ordered pair $\left(g_{S} x, h_{S} x\right)$ is in $\bar{S} \bigcap \Gamma \times \Gamma$ which is eventually equal to S. Thus $\left(g_{S}, h_{S}\right) \in N_{S}$. Then $\theta\left(N_{\bar{S}}[g]\right)=N_{S}\left[g_{S}\right]$ which is equal to $N_{S}\left[h_{S}\right]$ and that equals $\theta\left(N_{\bar{S}}[h]\right)$. Hence θ is well defined. On the other hand let $N_{\bar{S}}[g], N_{\bar{S}}[h]$ be such that $\theta\left(N_{\bar{S}}[g]\right)$ equals $\theta\left(N_{\bar{S}}[h]\right)$. Thus $N_{S}\left[g_{S}\right]=N_{S}\left[h_{S}\right]$ implies that $\left(g_{S}, h_{S}\right) \in N_{S} \subseteq N_{\bar{S}}$. Hence $N_{\bar{S}}[g]=N_{\bar{S}}\left[g_{S}\right]=N_{\bar{S}}\left[h_{S}\right]=N_{\bar{S}}[h]$. So, θ is injective as well. Also for all $N_{S}[g] \in G / N_{S}$ there exists $N_{\bar{S}}[g] \in \widehat{G} / N_{\bar{S}}$ such that $\theta\left(N_{\bar{S}}[g]\right)=N_{S}[g]$. So θ is surjective. Finally, $\theta\left(N_{\bar{S}}[g] N_{\bar{S}}[h]\right)$ equals $\theta\left(N_{\bar{S}}[g h]\right)$ and that equals $N_{S}\left[g_{S} h_{S}\right]$ which is $N_{S}\left[g_{S}\right] N_{S}\left[h_{S}\right]$ and finally that equals $\theta\left(N_{\bar{S}}[g]\right) \theta\left(N_{\bar{S}}[h]\right)$. So θ is a well defined group isomorphism, both algebraically and topologically. Hence $\widehat{G} / N_{\bar{S}} \cong G / N_{S} \cong \widehat{G} / \overline{N_{S}}$ which implies that $\left|\widehat{G} / N_{\bar{S}}[1]\right|$ is equal to $\left|\widehat{G} / \overline{N_{S}}[1]\right|$. But since $\overline{N_{S}} \subseteq N_{\bar{S}}$ one obtains $\overline{N_{S}}[1] \leq N_{\bar{S}}[1] \leq \widehat{G}$ and thus $\left|\widehat{G} / N_{\bar{S}}[1]\right|\left|N_{\bar{S}}[1]: \overline{N_{S}}[1]\right|$ equals $\left|\widehat{G} / \overline{N_{S}}[1]\right|$. Hence $\left|N_{\bar{S}}[1]: \overline{N_{S}}[1]\right|=1$ which implies that $N_{\bar{S}}[1]=\overline{N_{S}}[1]$ and thus $N_{\bar{S}}=\overline{N_{S}}$ as each of them is congruences. Thus our claim.

Note 2.13. Thus referring back to Example 2.2, the action $\mathbb{Z} \times \Gamma \mapsto \Gamma$ has a unique uniform equicontinuous extension from $\widehat{\mathbb{Z}} \times \widehat{\Gamma} \mapsto \widehat{\Gamma}$, where $\widehat{\Gamma}=\lim _{\leftarrow} \Gamma / R_{n}, \widehat{\mathbb{Z}}=\lim _{\leftarrow} \mathbb{Z} / N_{R_{n}}$ are the respective profinite completions of Γ and \mathbb{Z}.

References

[^1]
[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: Amrita.Acharyya@utoledo.edu (A. Acharyya), Bikash.Das@ung.edu (B. Das).

[^1]: [1] J.-P. Serre, Trees, Springer Verlag, Berlin, Heidelberg, New York, 1980.
 [2] A. Acharyya, J. Corson, B. Das, Cofinite graphs and their profinite completions, Electro. J. Graph theory Appl. 5 (2) (2017) $347-373$.
 [3] N. Bourbaki, General topology, in: Elements of Mathematics, Addison-Wesley, Reading Mass, 1966.
 [4] B. Hartley, Profinite and residually finite groups, Rocky Mountain J. Math. 7 (1977) 193-217.
 [5] J.R. Stallings, Topology of finite graphs, Invent. Math. 71 (1983) 551-565.
 [6] J. Wilson, Profinite Groups, Oxford University Press, Oxford, 1998.

