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Abstract

We defined group actions on cofinite graphs to characterize a unique way of uniformly topologizing an abstract group with
profinite topology, induced by the cofinite graphs, so that the aforesaid action becomes uniformly equicontinuous.

Keywords: Profinite graph; Cofinite graph; Profinite group; Cofinite group; Equicontinuous group action

1. Introduction

1.1. Topological graphs

Definition 1.1 (Topological Graphs). A topological graph [1] is a topological space Γ that is partitioned into two
closed subsets V (Γ ) and E(Γ ) together with two continuous functions s, t : E(Γ ) → V (Γ ) and a continuous
function : E(Γ )→ E(Γ ) satisfying the following properties: for every e ∈ E(Γ ),

(1) e ̸= e and e = e;
(2) t(e) = s(e) and s(e) = t(e).

The elements of V (Γ ) are called vertices. An element e ∈ E(Γ ) is called a (directed) edge with source s(e) and
target t(e); the edge e is called the reverse or inverse of e.

A map of graphs f : Γ → ∆ is a function that maps vertices to vertices, edges to edges, and preserves sources,
targets, and inverses of edges. Analogously, we will call a map of graphs a graph isomorphism if and only if it is
a bijection.

An orientation of a topological graph Γ is a closed subset E+(Γ ) consisting of exactly one edge in each pair
{e, e}. In this situation, setting E−(Γ ) = {e ∈ E(Γ ) | e ∈ E+(Γ )} we see that E(Γ ) is a disjoint union of the two
closed (hence also open) subsets E+(Γ ), E−(Γ ).

Note 1.2. Let Γ be a topological graph. The following are equivalent:
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(1) Γ admits an orientation;
(2) there exists a continuous map of graphs from Γ to the discrete graph with a single vertex and a single edge

and its inverse;
(3) there exists a continuous map of graphs f : Γ → ∆ for some discrete graph ∆.

Conceivably there are topological graphs that do not admit closed orientations. However such graphs will not
concern us. Therefore, unless otherwise stated, by a topological graph we will henceforth mean a topological graph
that admits an orientation.

We will be interested in equivalence relations on graphs that are compatible with the graph structure:

Definition 1.3 (Compatible Equivalence Relation). An equivalence relation R on a graph Γ is compatible if the
following properties hold:

(1) R = RV ∪ RE where RV , RE are equivalence relations on V (Γ ), E(Γ ), precisely the restriction of R;
(2) if (e1, e2) ∈ R, then (s(e1), s(e2)) ∈ R, (t(e1), t(e2)) ∈ R, and (e1, e2) ∈ R;
(3) for all e ∈ E(Γ ), (e, e) /∈ R;

Note 1.4. If K is a compatible equivalence relation on Γ , then there is a unique way to make Γ/K into a
graph such that the canonical map Γ → Γ/K is a map of graphs. It is defined by setting s(K [e]) = K [s(e)],
t(K [e]) = K [t(e)], and K [e] = K [e].

Conversely, if ∆ is a graph and f : Γ → ∆ is a surjective map of graphs, then K = f −1 f = {(a, b) ∈
Γ × Γ | f (a) = f (b)} is a compatible equivalence relation on Γ and f induces an isomorphism of graphs such
that Γ/K ∼= ∆.

Note 1.5. If R1 and R2 are compatible equivalences on Γ , then so is R1 ∩ R2.

Theorem 1.6. Let R be any cofinite equivalence relation on a topological graph Γ . Then there exists a compatible
cofinite equivalence [2] relation S on Γ such that S ⊆ R.

Proof. Extend the source and target maps s, t : E(Γ )→ V (Γ ) to all of Γ so that they are both the identity map
on V (Γ ). Then s, t : Γ → Γ are continuous maps satisfying the following properties:

• s2
= s, t2

= t , st = t , and ts = s;
• s(x) = x ⇐⇒ t(x) = x ⇐⇒ x ∈ V (Γ ).

Similarly, extend the edge inversion map : E(Γ )→ E(Γ ) to all of Γ by also letting it be the identity map on
V (Γ ). Then : Γ → Γ is a continuous map satisfying the following conditions for all x ∈ Γ :

• x = x ;
• x = x ⇐⇒ x ∈ V (Γ );
• s(x) = t(x) and t(x) = s(x).

Now define S1 = {(x, y) ∈ Γ ×Γ | (s(x), s(y)) ∈ R} = (s× s)−1[R], S2 = {(x, y) ∈ Γ ×Γ | (t(x), t(y)) ∈ R} =
(t × t)−1[R], and S3 = {(x, y) ∈ Γ × Γ | (x, y) ∈ R) = ( × )−1[R]. Then, by the Correspondence Theorem [2],
S1, S2, S3 are cofinite equivalence relations on Γ . Let S4 = R ∩ S1 ∩ S2 ∩ S3 and observe that

(i) S4 is a cofinite equivalence relation on Γ ;
(ii) if (e1, e2) ∈ S4, then (s(e1), s(e2)) ∈ S4, (t(e1), t(e2)) ∈ S4, and (e1, e2) ∈ S4.

Finally, choose a closed orientation E+(Γ ) of Γ and form the restrictions SV = S4 ∩ [V (Γ ) × V (Γ )],
SE+ = S4∩ [E+(Γ )× E+(Γ )], and SE− = S4∩ [E−(Γ )× E−(Γ )]. Then it is easy to check that S = SV ∪ SE+ ∪ SE−

is a compatible cofinite equivalence relation on Γ and S ⊆ R, as required. □

The previous proof actually shows a little more, which is worth noting. Given a closed orientation E+(Γ ) for
Γ , we say that a compatible equivalence relation R on Γ is orientation preserving if whenever (e, e′) ∈ R and
e ∈ E+(Γ ), then also e′ ∈ E+(Γ ). Since the equivalence relation S that we constructed in the proof of Theorem 1.6
is also orientation preserving, we proved the following stronger result.
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Corollary 1.7. Let Γ be a topological graph with a specified closed orientation E+(Γ ). Then for any cofinite
equivalence relation R on Γ , there exists a compatible orientation preserving cofinite equivalence relation S on Γ
such that S ⊆ R.

Corollary 1.8. If Γ is a compact Hausdorff totally disconnected topological graph, then its compatible cofinite
equivalence relations form a fundamental system of entourages for the unique uniform structure that induces the
topology of Γ [3].

1.2. Cofinite graphs

Definition 1.9 (Cofinite Graph). A cofinite graph [2] is an abstract graph Γ endowed with a Hausdorff uniformity
such that the compatible cofinite entourages [2] of Γ form a fundamental system of entourages (i.e. every entourage
of Γ contains a compatible cofinite entourage).

A group G is said to act uniformly equicontinuously over a cofinite graph Γ if and only if for each entourage
W over Γ there exists an entourage [2], V over Γ such that for all g in G, (g × g)[V ] ⊆ W , where (g × g)[V ] =
{(g · x, g · y) : (x, y) ∈ V } and g · x is the image of x ∈ Γ under the group action of g ∈ G. In this case the group
action induces a (Hausdorff) uniformity over G if and only if the aforesaid action is faithful.

Suppose that G is a group acting faithfully and uniformly equicontinuously on a cofinite graph Γ , then the action
G × Γ → Γ is uniformly continuous. Also in that case Ĝ, the [4] profinite completion of G, acts on Γ̂ , the [2]
profinite of completion of Γ , uniformly equicontinuously. Following is an example of uniform equicontinuous group
action.

Example 1.10. Let Γ be an abstract graph with V (Γ ) = {x : x ∈ Z}, where Z is the set of all integers. Let,
E+(Γ ) = {ex : x ∈ Z}, s(ex ) = x, t(ex ) = x + 1. Let, E−(Γ ) be the set of all edges reversing the edges of E+(Γ ),
that is E−(Γ ) = {ex : x ∈ Z} and s(ex ) = t(ex ), t(ex ) = s(ex ). Let p be any prime. Then for any positive integer
n, consider Γn as the cycle of length pn . One can say that V (Γn) = {[0]n, [1]n, [2]n...[pn

− 1]n}, where [x]n is
the congruence class of x modulo pn and E+(Γn) = {e[x]n : x ∈ V (Γn)}, s(e[x]n ) = [x]n, t(e[x]n ) = [x + 1]n .
Let E−(Γn) be the set of edges reversing the edges in E+(Γn), that is E−(Γn) = {e[x]n : x ∈ V (Γn)} and
s(e[x]n ) = t(e[x]n ), t(e[x]n ) = s(e[x]n ). Now, consider the map of graphs qn : Γ → Γn as qn[x] = [x]n and
qn(ex ) = e[x]n . Let, Rn = K er qn = {(γ, δ) ∈ Γ × Γ : qn(γ ) = qn(δ)}. Then Rn is a compatible equivalence
relation over Γ [2]and since there is a one-one, onto map of graphs from Γ/Rn to Γn , |Γ/Rn| < ∞. And
I = {Rn : n ∈ N } is a fundamental system of entourages over Γ . The corresponding topology induced by I
is also Hausdorff, since for any two distinct γ, δ ∈ Γ , there exists sufficiently large natural number n so that
Rn[x]

⋂
Rn[y] = φ.Thus Γ turns to be a cofinite graph. Consider the additive group of integers (Z,+) and a natural

group action Z× Γ ↦→ Γ by translation of vertices and edges as follows: For any g ∈ Z, x ∈ V (Γ ), g.x = g + x
and for any ex ∈ E+(Γ ), g.ex = eg+x , for any ex ∈ E−(Γ ), g.ex = eg+x . For any entourage U over Γ , as I is a
fundamental system of entourage over Γ , there exists n ∈ N so that Rn ⊆ U and for all g ∈ Z, (g × g)[Rn] ⊆ Rn .
For if x, y ∈ Rn , without loss of generality let us assume that x, y ∈ V (Γ ). So, [x]n = [y]n which implies
[g + x]n = [g + y]n and that implies (g.x, g.y) ∈ Rn . Thus the above action is uniformly equicontinuous.

2. Groups acting on cofinite graphs

Let G be a group and Γ be a cofinite graph. We say that the group G acts over Γ if and only if

(1) For all x in Γ , for all g in G, g.x is in Γ
(2) For all x in Γ , for all g1, g2 in G, g1.(g2.x) = (g1g2).x
(3) For all x in Γ , 1.x = x , where 1 ∈ G is the identity element of G.
(4) For all v in V (Γ ), for all g in G, g.v is in V (Γ ) and for all e in E(Γ ), for all g in G, g.e is in E(Γ ).
(5) For all e in E(Γ ), for all g in G, g.s(e) = s(g.e), g.t(e) = t(ge),

g.(e) = g.e. We say, s(e), t(e), e are the source of e, target of e and inversion of e respectively, such that
s(e) = t(e), t(e) = s(e) and e = e.

(6) There exists a G−invariant orientation E+(Γ ) of Γ .

A. Acharyya and B. Das / AKCE International Journal of Graphs and Combinatorics 17 (1) 200–205200



Please cite this article as: A. Acharyya and B. Das, Actions of cofinite groups on cofinite graphs, AKCE International Journal of Graphs and Combinatorics (2019),
https://doi.org/10.1016/j.akcej.2019.02.006.

Note that the aforesaid group action restricted to {g} can be treated as a well defined map of graphs, Γ → Γ
taking x ↦→ g.x .

Definition 2.1 (Uniform Equicontinuous Group Action). A group G is said to act uniformly equicontinuously over
a cofinite graph Γ , if and only if for each entourage W over Γ there exists an entourage V over Γ such that for
all g in G, (g × g)[V ] is a subset of W .

Example 2.2. Let Γ be an abstract graph with V (Γ ) = {x : x ∈ Z}, where Z is the set of all integers. Let,
E+(Γ ) = {ex : x ∈ Z}, s(ex ) = x, t(ex ) = x + 1. Let, E−(Γ ) be the set of all edges reversing the edges of
E+(Γ ), that is E−(Γ ) = {ex : x ∈ Z} and s(ex ) = t(ex ), t(ex ) = s(ex ). Let N be a separating filter base [2]
of finite index normal subgroups of (Z,+), the additive group of integers. Then for any subgroup nZ ∈ N ,
consider Γn as the cycle of length n. One can say that V (Γn) = {[0]n, [1]n, [2]n...[n − 1]n}, where [x]n is the
congruence class of x modulo n and E+(Γn) = {e[x]n : x ∈ V (Γn)}, s(e[x]n ) = [x]n, t(e[x]n ) = [x + 1]n .
Let E−(Γn) be the set of edges reversing the edges in E+(Γn), that is E−(Γn) = {e[x]n : x ∈ V (Γn)} and
s(e[x]n ) = t(e[x]n ), t(e[x]n ) = s(e[x]n ). Now, consider the map of graphs qn : Γ → Γn as qn[x] = [x]n and
qn(ex ) = e[x]n . Let, Rn = K er qn = {(γ, δ) ∈ Γ × Γ : qn(γ ) = qn(δ)}. Then Rn is a compatible equivalence
relation over Γ [2] and since there is a one-one, onto map of graphs from Γ/Rn to Γn , |Γ/Rn| < ∞. And
I = {Rn : nZ ∈ N } is a fundamental system of entourages over Γ . The corresponding topology induced by
I is also Hausdorff, since for any two distinct γ, δ ∈ Γ , there exists sufficiently large natural number n so that
Rn[x]

⋂
Rn[y] = φ.Thus Γ turns to be a cofinite graph. Consider the additive group of integers (Z,+) and a natural

group action Z× Γ ↦→ Γ by translation of vertices and edges as follows: For any g ∈ Z, x ∈ V (Γ ), g.x = g + x
and for any ex ∈ E+(Γ ), g.ex = eg+x , for any ex ∈ E−(Γ ), g.ex = eg+x . For any entourage U over Γ , as I is a
fundamental system of entourage over Γ , there exists nZ ∈ N so that Rn ⊆ U and for all g ∈ Z, (g×g)[Rn] ⊆ Rn .
For if x, y ∈ Rn , without loss of generality let us assume that x, y ∈ V (Γ ). So, [x]n = [y]n which implies
[g + x]n = [g + y]n and that implies (g.x, g.y) ∈ Rn . Thus the above action is uniformly equicontinuous.

Lemma 2.3. If a group G acts uniformly equicontinuously over a cofinite graph Γ , then there exists a fundamental
system of entourages consisting of G-invariant compatible cofinite entourages over Γ , i.e. for any entourage U over
Γ there exists a compatible cofinite entourage R over Γ such that for all g ∈ G, (g × g)[R] ⊆ R ⊆ U.

Proof. Let U be any cofinite entourage [2] over Γ . Then as G acts uniformly equicontinuously over Γ , there
exists a compatible cofinite entourage S over Γ such that for all g ∈ G, (g × g)[S] ⊆ U . Choose a G-invariant
orientation E+(Γ ) of Γ . Without loss of generality, we can assume that our compatible equivalence relation
S on Γ is orientation preserving i.e. whenever (e, e′) ∈ R and e ∈ E+(Γ ), then also e′ ∈ E+(Γ ). Now
S ⊆ ∪g∈G(g × g)[S] ⊆ U . Now if S0 = ∪g∈G(g × g)[S] and T = ⟨S0⟩, where ⟨S0⟩ is the smallest unique
equivalence relation on Γ containing S0, namely, the intersection of all equivalence relations that contains S0. Note
that S ⊆ T ⊆ U . Since for all h ∈ G, (h × h)[S0] = S0 and S−1

0 = S0 it follows that T is in the transitive
closure of S0. Let (x, y) ∈ T . Then there exists a finite sequence x0, x1, . . . , xn such that (xi , xi+1) ∈ S0, for all
i = 0, 1, 2, . . . , n − 1 and x = x0, y = xn . Hence (gxi , gxi+1) ∈ S0, for all i = 0, 1, 2, . . . , n − 1, for all g ∈ G.
Thus (gx0, gxn) = (gx, gy) ∈ T , for all g ∈ G. Hence for all g ∈ G, (g × g)[T ] ⊆ T and our claim that T is a
G-invariant cofinite entourage, follows. It remains to check that T is compatible. Let (x, y) ∈ T . If (x, y) ∈ S0, then
there is (t, s) ∈ S = SV ∪ SE and g ∈ G such that (gt, gs) = (x, y). Without loss of generality let (t, s) ∈ SV . Then
(t, s) ∈ V (Γ )× V (Γ ) which implies that (x, y) ∈ TV . Now let (x, y) ∈ T \ S0. Then there exists a finite sequence
x0, x1, . . . , xn such that (xi , xi+1) ∈ S0, for all i = 0, 1, 2, . . . , n − 1 and x = x0, y = xn . Hence by the previous
argument if (x0, x1) ∈ TV then (xi , xi+1) ∈ TV , for all i = 1, 2, . . . , n − 1. Thus (x, y) ∈ TV . If (x0, x1) ∈ TE

then (xi , xi+1) ∈ TE , for all i = 1, 2, . . . , n − 1, which implies (x, y) ∈ TE . Let (e1, e2) ∈ TE . If (e1, e2) ∈ S0,
then there is (p, q) ∈ S and g ∈ G such that (gp, gq) = (e1, e2). Then (s(p), s(q)) ∈ S. So (s(e1), s(e2)) which
equals (gs(p), gs(q)) is in (g × g)[S] ⊆ S0 so that (s(e1), s(e2)) ∈ T . Now let (e1, e2) ∈ T \ S0. Then there
exists a finite sequence x0, x1, . . . , xn such that (xi , xi+1) ∈ S0,∀i = 0, 1, 2, . . . , n − 1 and e1 = x0, e2 = xn .
Hence by the previous argument (s(xi ), s(xi+1)) ∈ T,∀i = 0, 1, 2, . . . , n − 1 and thus (s(e1), s(e2)) ∈ T . Similarly,
(t(e1), t(e2)) ∈ T and (e1, e2) ∈ T . Finally, to show that for any e ∈ E+(Γ ), (e, e) /∈ T , if possible let (e, e) ∈ T .
If (e, e) ∈ S0, then there is (p, q) ∈ S and g ∈ G such that (gp, gq) = (e, e). Then e = gp = g p = gq which
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implies that p = q , so (p, p) ∈ S, a contradiction. Now let (e, e) ∈ T \ S0. Then there exists a finite sequence
x0, x1, . . . , xn such that (xi , xi+1) ∈ S0, for all i = 0, 1, 2, . . . , n−1 and e = x0, e = xn . Now let there be (p, q) ∈ S
and g ∈ G such that (gp, gq) = (x0, x1). Without loss of generality we may assume (p, q) ∈ E+(Γ ) × E+(Γ ).
Then (gp, gq) = (x0, x1) ∈ E+(Γ )× E+(Γ ). Hence (xi , xi+1) ∈ E+(Γ )× E+(Γ ), for all i = 1, 2, . . . , n− 1 which
implies that (e, e) ∈ E+(Γ )× E+(Γ ), a contradiction. Our claim follows. □

Note that in reference to Example 2.2, I is in fact a fundamental system of G-invariant compatible cofinite
entourages over Γ .

Note 2.4. Let G be a group and Γ be a cofinite graph. Let S be an equivalence relation over G then S[g] =
{h ∈ G : (g, h) ∈ S} is the equivalence class of g ∈ G. Similarly, if S is an equivalence relation on Γ then
S[γ ] = {ρ ∈ Γ : (γ, ρ) ∈ S} is the equivalence class of γ ∈ G. Let G act on Γ . Let R be a cofinite entourage.
We define NR = {(g1, g2) ∈ G × G : g1 R[γ ] = g2 R[γ ],∀γ ∈ Γ }, and NR[1] = {g ∈ G : (1, g) ∈ NR}, [4]. In the
following lemmas we will show that NR is a congruence of G and NR[1] is a normal subgroup of G with finite
index and we denote it by NR[1] ◁ f G.

Lemma 2.5. NR[1] is a finite index normal subgroup of G and G/NR[1] is isomorphic with G/NR . More generally,
if N is a congruence on G, then N [1] is a normal subgroup of G and G/N [1] ∼= G/N.

Proof. Let us first see that NR[1]◁ f G for all G-invariant compatible cofinite entourage R over Γ . Let g, h ∈ NR[1].
This implies (1, g) ∈ NR and hence (g, 1), (1, h) ∈ NR . Thus (g, h) ∈ NR . This implies (g.x, h.x) is in R, for all
x ∈ Γ and so (x, g−1h.x) ∈ R, for all x ∈ Γ . Hence, (1, g−1h) is in NR and thus g−1h ∈ NR[1]. So, NR[1] ≤ G.
For all g ∈ G, for all x ∈ Γ , g.x ∈ Γ . Hence for all k ∈ NR[1], (x, k.x) ∈ R, hence (k.x, x) is in R. Thus
(kg.x, g.x) ∈ R and (g−1kg.x, g−1g.x) = (g−1kg.x, x) ∈ R. Hence (g−1kg, 1) ∈ NR . So, g−1kg ∈ NR[1] and
thus NR[1] ◁ G. Now let us define η from G/NR[1] to G/NR via η(gNR[1]) = NR[g]. Then, gNR[1] is equal to
hNR[1] if and only if h−1g ∈ NR[1] if and only if (1, h−1g) ∈ NR if and only if (x, h−1g.x) ∈ R if and only if
(h.x, g.x) ∈ R if and only if (h, g) ∈ NR if and only if NR[h] = NR[g], for all x in Γ . Thus η is a well defined
injection and hence |G/NR[1]| ≤ |G/NR| < ∞. Hence NR[1] ◁ f G. It follows that G/NR is a group and let us
define ζ : G/NR[1] → G/NR via ζ (gNR[1]) = NR[g]. Then for g1, g2 in G, g1 NR[1] = g2 NR[1] if and only if
g−1

2 g1 ∈ NR[1] if and only if (1, g−1
2 g1) ∈ NR if and only if (x, g−1

2 g1.x) ∈ R if and only if (g2.x, g1.x) ∈ R if
and only if (g2, g1) ∈ NR if and only if NR[g2] equals NR[g1]. Hence ζ is a well defined injection. Also for all
NR[g] in G/NR , there exists gNR[1] ∈ G/NR[1] such that ζ (gNR[1]) = NR[g]. Thus ζ is surjective as well. Also
for g1 NR[1], g2 NR[1] ∈ G/NR[1], we have ζ (g1 NR[1]g2 NR[1]) = ζ (g1g2 NR[1]) and that equals NR[g1g2] which
equals NR[g1]NR[g2] = ζ (g1 NR[1])ζ (g2 NR[1]). Hence ζ is a group homomorphism and thus a group isomorphism.
Also, both G/NR[1],G/NR , are finite discrete topological groups, so ζ is an isomorphism of cofinite groups as
well. □

Lemma 2.6. Let a group G act on a cofinite graph Γ uniformly equicontinuously. Then G acts on Γ/R and G/NR

acts on Γ/R as well, where R is a G-invariant compatible cofinite entourage over Γ and Γ/R is the quotient graph
of Γ with respect to R. If I is a fundamental system of G-invariant compatible cofinite entourages over Γ , then
{NR | R ∈ I } forms a fundamental system of cofinite congruences [5] for some uniformity over G.

Proof. Let R be a G-invariant compatible cofinite entourage over Γ . Let us define a group action G×Γ/R→ Γ/R
via g.R[x] = R[g.x], for all g ∈ G, for all x ∈ Γ . Now let R[x] = R[y] so (x, y) ∈ R which implies that
(g.x, g.y) ∈ R. Then R[g.x] = R[g.y]. Hence the induced group action is well defined.

Let us now consider the group action G/NR × Γ/R→ Γ/R, defined via NR[g].R[x] = R[g.x], for all x ∈ Γ ,
for all g ∈ G. Now let (NR[g], R[x]) = (NR[h], R[y]) which implies that (g, h) ∈ NR, (x, y) is in R. Then
(g.x, h.x) ∈ R, as h−1

∈ G, (h−1g.x, h−1h.x) ∈ R. So (h−1g.x, y) ∈ R. Thus (g.x, h.y) ∈ R which implies that
R[g.x] equals R[h.y]. Hence the induced group action is well defined. Let us now show that NR is an equivalence
relation over G, for all G-invariant compatible cofinite entourage R over Γ .

(1) for all g ∈ G, for all x ∈ Γ , (g.x, g.x) ∈ R. Hence (g, g) ∈ NR , for all g ∈ G which implies that D(G) ⊆ NR .
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(2) Now (g, h) ∈ NR ⇔ (g.x, h.x) ∈ R, for all x ∈ Γ
⇔ (h.x, g.x) ∈ R, for all x ∈ Γ .
⇔ (h, g) ∈ NR . Thus N−1

R = NR .
(3) Let (g, h), (h, k) ∈ NR . This implies (g.x, h.x), (h.x, k.x) is in R,∀x ∈ Γ . Hence (g.x, k.x) ∈ R, for all

x ∈ Γ . So (g, k) ∈ NR which implies that (NR)2
⊆ NR .

Also we now check that NR is a congruence over G. For, let us take (g1, g2), (g3, g4) ∈ NR . Then for all
x ∈ Γ , (g1.x, g2.x), (g3.x, g4.x) ∈ R; for all x ∈ Γ , g3.x ∈ Γ and so (g1g3.x, g2g3.x) ∈ R and (g2g3.x, g2g4.x) is
in R, since R is G-invariant. Thus (g1g3.x, g2g4.x) ∈ R, for all x ∈ Γ so that (g1g3, g2g4) ∈ NR . Thus our claim
follows. Let us now show that G/NR is finite. Furthermore, define g : Γ/R→ Γ/R as g maps (R[x]) into R[g.x].
Now, R[x] = R[y] ⇐⇒ (x, y) ∈ R if and only if (g.x, g.y) ∈ R ⇐⇒ R[g.x] = R[g.y]. Hence the map g is a
well defined injection. Now for all R[x] ∈ Γ/R there exists g−1 R[x] ∈ Γ/R such that g(g−1 R[x]) equals R[x].
Hence g ∈ Sym(Γ/R), where Sym(Γ/R) is the collection of all graph isomorphisms from Γ/R → Γ/R, [2].
Now let us define a map θ : G/NR → Sym(Γ/R) via θ (NR[g]) = g. Now NR[g1] equals NR[g2] if and only if
(g1, g2) ∈ NR if and only if (g1.x, g2.x) ∈ R for all x ∈ Γ . Hence (g1.x, g2.x) ∈ R if and only if R[g1.x] = R[g2.x]
if and only if g1(R[x]) = g2(R[x]) if and only if g1 = g2 in Sym(Γ/R). Hence θ is a well defined injection. Thus
|G/NR| ≤ |Sym(Γ/R)| < ∞ as |Γ/R| < ∞. So, next we would like to show that {NR | R ∈ I } forms a
fundamental system of cofinite congruences over G.

(1) D(G) ⊆ NR , for all R ∈ I , as NR is reflexive.
(2) Now for some R, S ∈ I, (g1, g2) ∈ NR

⋂
NS if and only if (g1.x, g2.x) ∈ R

⋂
S, for all x ∈ Γ ⇔ (g1, g2) ∈

NR
⋂

S . Thus NR
⋂

NS = NR
⋂

S .
(3) For all NR, N 2

R = NR , as NR is transitive.
(4) For all NR, N−1

R = NR , as NR is symmetric.

Hence our claim follows. □

Note 2.7. Let us refer back to Example 2.2 and define a group action Z×Γn ↦→ Γn as following g.[x]n = [g+ x]n ,
for any x ∈ V (Γn), g.e[x]n = e[g+x]n , g.e[x]n = eg+x , for any ex ∈ E−(Γn). Thus for any n, where nZ ∈ N ,Z/NRn

is isomorphic to Z/nZ.

Definition 2.8. We say a group G acts on a cofinite graph Γ faithfully, if for all g in G \ {1} there exists x in Γ
such that gx is not equal to x in Γ .

Lemma 2.9. The induced uniform topology over G as in Lemma 2.6 is Hausdorff if and only if G acts faithfully
over Γ .

Proof. Let us first assume that G acts faithfully over Γ . Now let g ̸= h in G. Then h−1g ̸= 1. So there exists
x ∈ Γ such that h−1g.x ̸= x implying that g.x ̸= h.x . Then there exists a G-invariant compatible cofinite entourage
R over Γ such that (g.x, h.x) /∈ R, as Γ is Hausdorff. Hence (g, h) /∈ NR . Thus G is Hausdorff.

Conversely, let us assume that G is Hausdorff and let g ̸= 1 in G. Then there exists some G-invariant compatible
cofinite entourage R over Γ such that (1, g) /∈ NR . Hence there exists x ∈ Γ such that (x, g.x) /∈ R. Hence
R[x] ̸= R[g.x] so that x ̸= g.x . Our claim follows. □

Lemma 2.10. Suppose that G is a group acting uniformly equicontinuously on a cofinite graph Γ and give G the
induced uniformity as in Lemma 2.6. Then the action G × Γ → Γ is uniformly continuous.

Proof. Let R be a G-invariant cofinite entourage over Γ . If I is a fundamental system of G-invariant compatible
cofinite entourages over Γ . Then {NR × R : R ∈ I } ia a fundamental system of entourage for a uniform structure
over G×Γ , [2]. Now let ((g, x), (h, y)) ∈ NR × R, i.e. (g, h) ∈ NR, (x, y) ∈ R. Now x in Γ and (gx, hx) ∈ R this
implies (h−1gx, x) ∈ R. We have (h−1gx, y) ∈ R and hence (gx, hy) ∈ R. Thus our claim. □

Let us define a directed order ‘≤’ on I , a fundamental system of G-invariant entourages on a cofinite graph Γ
as in Lemma 2.6. We say, R ≤ S in I , then S ⊆ R. Let (g1, g2) ∈ NS . Then (g1x, g2x) ∈ S, for all x ∈ Γ and
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hence (g1x, g2x) ∈ R, for all x ∈ Γ which implies (g1, g2) ∈ NR . Thus NS ⊆ NR . For all R ≤ S, in I , let us
define ψRS : G/NS → G/NR via ψRS(NS[g]) = NR[g]. Then ψRS is a well defined uniformly continuous group
isomorphism, as each of G/NR,G/NS is finite discrete groups. If R = S, then ψR R = idG/NR . And if R ≤ S ≤ T ,
then ψRSψST = ψRT . Then {G/NR | R ∈ I, ψRS, R ≤ S ∈ I }, forms an inverse system of finite discrete groups.
Let Γ̂ = lim

←−R∈I
Γ/R and Ĝ = lim

←−R∈I
G/NR , where ψR : Ĝ → G/NR is the corresponding canonical projection

map, [2]. Now if I1, I2 are two fundamental systems of G-invariant cofinite entourages over Γ , clearly I1, I2 will
form fundamental systems of cofinite congruences, for two induced uniformities, over G. Now let NR1 be a cofinite
congruence over G for some R1 ∈ I1. Then there exists a R2, cofinite entourage over Γ , such that R2 ∈ I2 and
R2 ⊆ R1. Hence NR2 ⊆ NR1 . Now let NS2 be a cofinite congruence over G for some S2 ∈ I2. Then there exists
S1, cofinite entourage over Γ , such that S1 ∈ I1 and S1 ⊆ S2. Hence NS1 ⊆ NS2 . Thus any cofinite congruence
corresponding to the directed set I1 is a cofinite congruence corresponding to the directed set I2 and vice versa.
Thus the two induced uniform structures over G are equivalent and so the completion of G with respect to the
induced uniformity, from the cofinite graph Γ , is unique up to both algebraic and topological isomorphism.

Theorem 2.11. If G acts on Γ , as in Lemma 2.6, faithfully then Ĝ acts on Γ̂ uniformly equicontinuously.

Proof. Let a group G act on Γ uniformly equicontinuously. We fix a G-invariant orientation E+(Γ ) of Γ .
By Lemma 2.10 the action is uniformly continuous as well. Let χ : G × Γ → Γ be this group action. Now
since Γ is topologically embedded in Γ̂ by the inclusion map, say, i , the map i ◦ χ : G × Γ → Γ̂ is a
uniformly continuous. Then there exists a unique uniformly continuous map χ̂ : Ĝ × Γ̂ → Γ̂ that extends χ .
We claim that χ̂ is the required group action. We can take Γ̂ = lim

←−
Γ/R and Ĝ = lim

←−
G/NR , where R runs

throughout all G-invariant compatible cofinite entourages of Γ that are orientation preserving. Then Ĝ × Γ̂ =
lim
←−

(G/NR × Γ/R) ∼= lim
←−

(G/NR × Γ/R) [6] and we define a group action of G over Γ coordinatewise as follows
(NR[gR])R .(R[xR])R = (R[gR .xR])R . If possible let, ((NR[gR])R, (R[xR])R) = ((NR[h R])R, (R[yR])R). So, NR[gR]
equals NR[h R] and R[xR] = R[yR],∀R ∈ I, (gR, h R) ∈ NR and (xR, yR) ∈ R. This implies that (gR .xR, h R .xR) ∈ R
which further ensures that (h−1

R gR .xR, xR) ∈ R. Then (h−1
R gR .xR, yR) ∈ R and (gR .xR, h R .yR) ∈ R. Hence

(R[gR .xR])R = (R[h R .yR])R . So, the action is well defined. Let g = (NR[gR])R and h = (NR[h R])R in Ĝ,
x = (R[xR])R ∈ Γ̂ . Now h.(g.x) = h.(R[gR .xR])R = (R[h R gR .xR])R which then equals (NR[h R gR])R .x = (hg).x .
Hence the action is associative. Now (NR[1])R .(R[xR])R = (R[1xR])R = (R[xR])R . Furthermore for all vertex
v = (R[vR])R ∈ V (Γ̂ ) and for all g = (NR[gR])R ∈ Ĝ one can say that g.v = (R[gR .vR])R ∈ V (Γ̂ ) as each
gR .vR ∈ V (Γ ). Similarly, for all e = (R[eR])R in E(Γ̂ ) and for all g = (NR[gR])R in Ĝ, g.e = (R[gReR])R in E(Γ̂ ).
For all e = (R[eR])R in E(Γ̂ ), for all g = (NR[gR])R in Ĝ, we have s(g.e) = s((R[gReR])R) and so (R[gRs(eR)])R
equals (g.(R[s(eR)])R) and that equals g.s(e). Hence the properties t(g.e) = g.t(e) and g.e = g.e follow similarly.
Finally, let E+(Γ̂ ) consist of all the edges (R[eR])R , where eR ∈ E+(Γ ). Since each R is orientation preserving, it
follows that E+(Γ̂ ) is an orientation of Γ̂ . Since E+(Γ ) is G-invariant, we see that E+(Γ̂ ) is Γ̂ -invariant. Hence
this is a well defined group action. Also for all g ∈ G, and x ∈ Γ , (NR[g])R .(R[x])R equals (R[g.x])R which
equals g.x in Γ , (please see [6], for any further clarification on how to embed G in Ĝ and Γ in Γ̂ . We use the
notations (NR[g])R and (R[x])R, R[gx]R to refer to the Rth coordinates of g and x, gx in Ĝ and Γ̂ , respectively).
Thus the restriction of this group action agrees with the group action χ . Now {R | R ∈ I } is a fundamental system
of cofinite entourages over Γ , and {NR | R ∈ I } is a fundamental system of cofinite congruences over G. Hence
{R | R ∈ I } is a fundamental system of cofinite entourages over Γ̂ and {NR | R ∈ I } is a fundamental system of
cofinite congruences over Ĝ respectively, where R is the topological closure of R in Γ × Γ . Let us now see that
the aforesaid group action is uniformly continuous. For let us consider the group action G/NR × Γ/R → Γ/R
defined via NR[g]R[x] = R[g.x], which is uniformly continuous as both G/NR×Γ/R and Γ/R are finite discrete
uniform topological spaces. Hence the group action, Ĝ × Γ̂ → Γ̂ is uniformly continuous. Thus the aforesaid
group action is our choice of χ̂ , by the uniqueness of χ̂ , [2]. So the restriction of the aforesaid action {ĝ}× Γ̂ → Γ̂
is a uniformly continuous map of graphs, for all ĝ ∈ Ĝ. We check that for all (x, y) ∈ R and for all ĝ ∈ Ĝ
the ordered pair (̂g.x, ĝ.y) ∈ R. For, let ĝ = (NR[gR])R ∈ Ĝ and for x, y ∈ Γ , ((R[x])R, (R[y])R) ∈ R. Now
R[(R[gR .x])R] = R[gR .x] = R[gR .y] = R[(R[gR .y])R]. So, ((NR[gR])R · (R[x])R, (NR[gR])R · (R[y])R) ∈ R. This
implies (̂g × ĝ)[R] is a subset of R. Thus for all ĝ ∈ Ĝ we observe that (̂g × ĝ)[R] is a subset of ĝ × ĝ[R] which

is a subset of R = R. Hence R is Ĝ invariant. □
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Thus Φ1 = {NR | R ∈ I } and Φ2 = {NR | R ∈ I } form fundamental systems of cofinite congruences over Ĝ.
Let τΦ1 , τΦ2 be the topologies induced by Φ1,Φ2 respectively.

Theorem 2.12. The uniformities on Ĝ obtained by Φ1 and Φ2 are equivalent.

Proof. Let us first show that NR ∩ G × G = NR . For, let (g, h) ∈ NR . Then for all x ∈ Γ , (g.x, h.x) ∈ R ⊆ R.
Now let (R[xR])R ∈ Γ̂ . Then R[g(R[xR])R] = R[g.xR] = R[h.xR] = R[h(R[xR])R] which implies that
(g, h) ∈ NR ∩ G × G. Thus, NR ⊆ NR ∩ G × G. Again, if (g, h) belongs to NR ∩ G × G, then for all
x ∈ Γ ⊆ Γ̂ , and so (g.x, h.x) ∈ R ∩ Γ × Γ = R and this implies (g, h) ∈ NR . Our claim follows. Then
as uniform subgroups (G, τΦ1 ) ∼= (G, τΦ2 ), both algebraically and topologically, their corresponding completions
(Ĝ, τΦ1 ) ∼= (Ĝ, τΦ2 ), both algebraically and topologically. Since for all S ∈ I , ψS : G → G/NS is a uniform
continuous group homomorphism and G/NS is discrete, there exists a unique uniform continuous extension of ψS ,
namely, ψ̂S : Ĝ → G/NS . Let us define λS : Ĝ → G/NS via λS(g) = NS[gS], where g = (NR[gR])R , [6]. Now let
g = (NR[gR])R, h = (NR[h R])R ∈ Ĝ be such that g = h which implies that NS[gS] = NS[hS] and hence λS is well
defined. Now let (g, h) ∈ NS . First of all NS[gS] = NS[g] = NS[h] = NS[hS]. So, (gS, hS) ∈ NS

⋂
G × G = NS .

Hence NS[gS] = NS[hS] which implies that λS(g) = λS(h), so (λS(g), λS(h)) ∈ D(G/NR). Thus NS is a subset
of (λS × λS)−1 D(G/NR). Hence λS is uniformly continuous. Now for all g, h ∈ Ĝ, λS(gh) = NS[gShS] =
NS[gS]NS[hS] = λS(g)λS(h) and for all g ∈ G, λS(g) = λS((NR[g])R) = NS[g] = ψS(g). Thus λS is a well
defined uniformly continuous group homomorphism that extends ψS . Then by the uniqueness of the extension,
ψ̂S = λS . Now NS is a closed subspace of Ĝ, then NS ∩ G × G = NS which implies that NS is a subset of NS
which equals NS . Let us define θ from Ĝ/NS to G/NS as θ takes NS[g] into NS[gS], where g = (NR[gR])R . Now
NS[g] = NS[h] in Ĝ/NS will imply (gS, hS) is in NS and this implies for all x in Γ the ordered pair (gS x, hS x) is in
S

⋂
Γ ×Γ which is eventually equal to S. Thus (gS, hS) ∈ NS . Then θ (NS[g]) = NS[gS] which is equal to NS[hS]

and that equals θ (NS[h]). Hence θ is well defined. On the other hand let NS[g], NS[h] be such that θ (NS[g]) equals
θ (NS[h]). Thus NS[gS] = NS[hS] implies that (gS, hS) ∈ NS ⊆ NS . Hence NS[g] = NS[gS] = NS[hS] = NS[h]. So,
θ is injective as well. Also for all NS[g] ∈ G/NS there exists NS[g] ∈ Ĝ/NS such that θ (NS[g]) = NS[g]. So θ is
surjective. Finally, θ (NS[g]NS[h]) equals θ (NS[gh]) and that equals NS[gShS] which is NS[gS]NS[hS] and finally
that equals θ (NS[g])θ (NS[h]). So θ is a well defined group isomorphism, both algebraically and topologically.
Hence Ĝ/NS

∼= G/NS ∼= Ĝ/NS which implies that
⏐⏐Ĝ/NS[1]

⏐⏐ is equal to
⏐⏐Ĝ/NS[1]

⏐⏐. But since NS ⊆ NS one
obtains NS[1] ≤ NS[1] ≤ Ĝ and thus

⏐⏐Ĝ/NS[1]
⏐⏐ ⏐⏐NS[1] : NS[1]

⏐⏐ equals
⏐⏐Ĝ/NS[1]

⏐⏐. Hence
⏐⏐NS[1] : NS[1]

⏐⏐ = 1
which implies that NS[1] = NS[1] and thus NS = NS as each of them is congruences. Thus our claim. □

Note 2.13. Thus referring back to Example 2.2, the action Z × Γ ↦→ Γ has a unique uniform equicontinuous
extension from Ẑ × Γ̂ ↦→ Γ̂ , where Γ̂ = lim

←−
Γ/Rn, Ẑ = lim

←−
Z/NRn are the respective profinite completions of Γ

and Z.
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