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Abstract

In this study we investigate the spectra of the family of connected multicone graphs. A multicone graph is defined to be the join
of a clique and a regular graph. Let r , t and s be natural numbers, and let Kr denote a complete graph on r vertices. It is proved that
connected multicone graphs Kr ▽ sKt , a natural generalization of friendship graphs, are determined by their adjacency spectra as
well as their Laplacian spectra. Also, we show that the complement of multicone graphs Kr ▽sKt is determined by their adjacency
spectra, where s ̸= 2.

Keywords: DS graph; Friendship graph; Multicone graph; Adjacency spectrum; Laplacian spectrum

1. Introduction

A long-standing question connecting graph theory and linear algebra has to do with the set of eigenvalues of the
adjacency matrix of a graph, called the spectrum of the graph. Although it is well known that different graphs can
have the same spectrum, it remains an open question as to whether most graphs have a spectrum shared by another
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graph or not. In fact, not many families of graphs are known that have their own spectrum, not shared by any other
graphs. In the past decades, graphs that are determined by their spectrum have received much more and more attention,
since they have been applied to several fields, such as randomized algorithms, combinatorial optimization problems
and machine learning. An important part of spectral graph theory is devoted to determining whether given graphs or
classes of graphs are determined by their spectra or not. So, finding and introducing any class of graphs which are
determined by their spectra can be an interesting and important problem. We begin with some of the notation and
terminology that will be used in the paper. All graphs considered here are simple and undirected, and, in general,
given a graph G, n will denote the number of vertices (also called its order) and m the number of edges. If its vertices
are v1, v2, . . . , vn , then its adjacency matrix A(G) is the n × n matrix with ai j = 1 if vi and v j are adjacent and 0
otherwise. Its degree matrix is defined to be the diagonal matrix D(G) = diag(d1, d2, . . . , dn), where di is the degree
of vertex vi . Two other matrices are defined in terms of these: the Laplacian matrix is L(G) = D(G) − A(G) and the
signless Laplacian matrix is S(G) = D(G) + A(G). We denote the characteristic polynomial det(xI − A) of G by
PG(x). A number λ is an eigenvalue of G if it is a root of this polynomial. Since A(G) is a symmetric matrix, all of
its eigenvalues are real. The adjacency spectrum (Laplacian spectrum) of G, denoted SpecA(G) (SpecL (G)) , is the
multiset of these eigenvalues. Two graphs G and H are said to be A-cospectral (L-cospectral) if the corresponding
adjacency spectra (Laplacian spectra) are the same. A graph G is said to be D AS (DL S) if there is no other non-
isomorphic graph A-cospectral (L-cospectral) with it, i.e., SpecA(H ) = SpecA(G) (SpecL (H ) = SpecL (G)) implies
G ∼= H . By analogy, we define determined by signless Laplacian spectrum (DQS for short) graphs. The key question
that we consider is the extent to which the spectrum (of either type) of a graph is unique; that is, whether there is only
one graph with that spectrum.

So far numerous examples of cospectral but non-isomorphic graphs have been constructed by interesting techniques
such as Seidel switching, Godsil–McKay switching, Sunada or Schwenk method. For more information, one may
see [1–3] and the references cited in them. Only a few graphs with very special structures have been reported to be
determined by their spectra (DS, for short) (see [4–11] and the references cited in them). Recently Wei Wang and
Cheng-Xian Xu have developed a new method in [10] to show that many graphs are determined by their spectrum and
the spectrum of their complement.

One of the first investigations into this question was made in 1971 by Harary, et al. [12]. They asserted that (stated
in slightly different terminology), based on the data they computed for graphs with up to seven vertices, “one is
tempted to conjecture” that the fraction of graphs with spectra that are not unique decreases as the order increases.
Technically, this is not exactly the same as the conjecture that the probability goes to 0, but the two are closely related:

Unique Spectrum Conjecture. Almost all graphs are determined by their spectrum.

One fact that makes this conjecture especially intriguing is that there is one very interesting family of graphs for
which the corresponding statement is known not to hold. In fact, Schwenk [13] proved that it is about as far off as it
could be.

Co-spectral Tree Theorem. Almost no trees are determined by their spectrum.

What this means is that, as n → ∞, the fraction of trees of order n that have the same spectrum as another tree
approaches 1.

There are of course many versions of a conjecture such as the one above, not only for the different types of spectra,
but also for different families of graphs.

The general terminology that we use may be found in standard textbooks on graph theory, but we give some
that will be used here, some of which varies from author to author. In particular, we use the following notation
on graph operations. We define the sum G + H of two vertex-disjoint graphs G and H to be their union; that is,
V (G + H ) = V (G) ∪ V (H ) and E(G + H ) = E(G) ∪ E(H ). Clearly, this can be extended to more graphs,
G1 + G2 + · · · + Gk , and the sum of k copies of the same graph G is denoted kG. The join G▽H (or G ∗ H ) is
obtained from G + H by adding an edge from each vertex of G to each vertex of H , that is, by adding the set of edges
{vw : v ∈ V (G), w ∈ V (H )}.

The graphs that we consider here are combinations of sums and joins. We begin with a special case known as
a friendship graph (also known as a (Dutch) windmill). Erdös, Rényi, and Sós [14] proved that if G is the graph
of n people for which each pair has exactly one friend in common, then G consists of t triangles (with n odd and
t =

1
2 (n − 1)), all having one common vertex. This graph is denoted Ft , and F2, F3, and F4 are shown in Fig. 1.
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Fig. 1. Three friendship graphs.

Fig. 2. A multicone graph.

As a generalization of this, a multicone graph is the join of a complete graph and multiple copies of a regular
graph H : Kr▽s H . Usually the graph H is taken to be another complete graph, and the only multicone graphs that we
consider in this paper are those of the form Kr▽sKt . The friendship graph Fs is thus the multicone K1▽sK2; another
example of a multicone is shown in Fig. 2.

It was conjectured (see Wang, et al. [11,15]) that friendship graphs are D AS. Recently, Cioabä, Haemers, Vermette,
and Wang [5] proved the conjecture for s ̸= 16; that is, if G is adjacency A-cospectral with Fs (s ̸= 16), then G ∼= Fs .
For further information about some multicone graphs which have been characterized so far see [16–25].

This paper is organized as follows. In Section 2, we review some basic information and preliminaries. Then in
Section 3, we state some algebraic properties about multicone graphs of the form Kr▽sKt , while in Section 3.1, we
show that these graphs are determined by their adjacency spectrum. In Section 4, we prove that their complements are
also D AS, and in Section 5, we prove that these graphs are also determined by their Laplacian spectrum. Finally, in
Section 6, we summarize our results and propose one conjecture for further research.

2. Preliminary results

In this section, we give some results from the literature that play important roles in the rest of the paper.
From both the adjacency spectrum and the Laplacian spectrum of a graph, one can deduce the number of vertices

and the number of edges. The two spectra also give additional information [26–29]. We defer a similar result for the
Laplacian spectrum to Section 5, where that spectrum determination is developed.

Theorem 2.1. Given a graph G, the following can be deduced from its adjacency spectrum:
(a) the number of closed walks of each length;
(b) whether or not G is bipartite;
(c) whether or not G is regular, and if so, the degree of regularity.

The next several results concern degrees and eigenvalues in graphs. Recall that ∆(G) (sometimes just ∆) denotes
the maximum degree of a vertex of a graph G, and similarly δ(G) (or just δ) denotes the minimum degree. If the two
are different and they are the only degrees in G and δ(G) is positive, then G is said to be bi-regular or bi-degreed.
Also, the largest eigenvalue of G is called the spectral radius (sometimes called the spectral index) and is denoted
ρ(G) (or just ρ).

The following result, [15–19,30] gives a bound on the spectral radius. For further information about this inequality
we refer the reader to [15] (see the first paragraph after Corollary 2.2 and also Theorem 2.1 of [15]).

Theorem 2.2. If G is a graph with n vertices, m edges, minimum degree δ, and spectral radius ρ, then

ρ ≤
δ − 1

2
+

√
2m − nδ +

(δ + 1)2

4
.

Equality holds if and only if G is either regular or is bi-regular with ∆ = n − 1.
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The next theorem gives a characterization of some graphs with three distinct eigenvalues [16,31].

Theorem 2.3 ([31]). A graph has exactly one positive eigenvalue if and only if it is a complete multipartite graph
with possibly some isolated vertices.

The next two theorems concern regular graphs; the first can be found in Knauer [32] and the second in Bapat [33].

Theorem 2.4. Let G be a graph with spectral radius ρ. Then the following statements are equivalent:
(1) G is regular.
(2) ρ is the average vertex degree in G.
(3) (1, 1, . . . , 1)T is an eigenvector for ρ.

Theorem 2.5. If G is an r-regular graph with eigenvalues λ1(= r ), λ2, . . . , λn , then n−1−λ1, −1−λ2, . . . ,−1−λn
are the eigenvalues of the complement G of G.

We turn now to a theorem on graphs that are not regular.

Theorem 2.6 ([34,35]). If G is not regular and has exactly three eigenvalues θ1 > θ2 > θ3, then:
(a) G has diameter 2;
(b) if θ1 is not an integer, then G is complete bipartite;
(c) θ2 ≥ 0 with equality if and only if G is complete bipartite;
(d) θ3 < −2.

The next theorem gives the characteristic polynomial of the join of two regular graphs in terms of their individual
polynomials (see also [16–19,27]).

Theorem 2.7 ([27]). For i = 1,2, let G i be an ri -regular graph of order ni . Then the characteristic polynomial of
their join is

PG1▽G2 (x) = PG1 (x)PG2 (x)(1 −
n1n2

(x − r1)(x − r2)
).

The next several theorems are also on the characteristic polynomial of a graph; the first can be found in [16,32]).

Theorem 2.8. The following statements are equivalent for a nontrivial graph G with characteristic polynomial
PG(x) =

∑n
i=0ci x i , spectrum λ1 ≥ λ2 ≥ · · · ≥ λn , and spectral radius ρ.

(1) G is bipartite.
(2) The coefficients ci for i odd are all 0.
(3) For each i , λn+1−i = −λi .
(4) ρ = −λn .

We note that statement (3) in this theorem implies that each eigenvalue has the same multiplicity as its negative.
The next result, including a discussion of main angles (For further information about main angles see [36]), may

be found in [16–19,27]).

Theorem 2.9. If j is a vertex of graph G, then PG− j (x) = PG(x)
∑m

i=1
α2

i j
x−µi

, where m and αi j are the number of
distinct eigenvalues and the main angle of graph G, respectively.

Proposition 2.1 ([3]). Let G be a disconnected graph that is determined by the Laplacian spectrum. Then the cone
over G, the graph H; that is, obtained from G by adding one vertex that is adjacent to all vertices of G, is also
determined by its Laplacian spectrum.

3. Connected graphs A-cospectral with a multicone graph Kr ▽ sK t

In this section, we give some results on graphs that are cospectral with a multicone graph Kr▽sKt . Note that the
order of Kr▽sKt is r +st , which we denote by n. In giving the spectrum of a graph, we often use the common notation
of [c]k for an eigenvalue c of multiplicity k ≥ 1.
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Proposition 3.1. If G is a graph A-cospectral with multicone graph Kr▽sKt , then

SpecA(G) =

{
[−1]r−1+s(t−1), [t − 1]s−1, [

a +
√

a2 − 4b
2

]1, [
a −

√
a2 − 4b
2

]1

}
,

where a = r + t − 2 and b = (r − 1)(t − 1) − rst.

Proof. We know that SpecA(Kt ) = {[−1]t−1, [t − 1]1
} (see [33]). Now, by Theorem 2.7 the proof is clear. □

3.1. Adjacency spectrum determination of the connected multicone graphs Kr▽sKt

The aim of this section is to show that multicone graphs Kr▽sKt are D AS.

Lemma 3.1. If G is a connected graph A-cospectral with a multicone graph Kr▽sKt , then δ(G) = r + t − 1.

Proof. Let x = δ(G) − (r + t − 1). It follows from Theorem 2.4 that:
G is a regular graph if and only if s = 1 if and only if G is a complete graph.
Consider the following two cases:

Case 1. s = 1. In this case δ(G) = r + t − 1 and there is nothing to prove.

Case 2. s ≥ 2 (s ̸= 1). We show that x = 0.
Suppose not and so x ̸= 0 (in this case δ(G) ̸= r + t − 1). It follows from Theorem 2.2 and Proposition 3.1 that

ρ(G) =
r + t − 2 +

√
8m − 4n(r + t − 1) + (r + t)2

2

<
r + t − 2 + x +

√
8m − 4n(r + t − 1) + (r + t)2 + x2 + (2r + 2t − 4n)x

2
,

where (as usual) n and m denote the numbers of vertices and edges in G, respectively.
For convenience, we let B = 8m−4n(r+t−1)+(r+t)2 and C = r+t−2n, and also let g(x) = x2

+2(r+t−2n)x =

x2
+ 2Cx .

Then clearly
√

B −
√

B + g(x) < x . (1)

We consider the following two subcases (we show that none of the following two subcases can happen):

Subcase 2.1. x < 0.
Then

|
√

B −
√

B + g(x)| > |x |, since x < 0.

Transposing and squaring yields

2B + g(x) − 2
√

B(B + g(x)) > x2.

Replacing g(x) by x2
+ 2Cx , we get

B + Cx >
√

B(B + x2 + 2Cx). (2)

Obviously Cx > 0, since C = r + t − 2n = r + t − 2(r + st) = −r + t(1 − 2s) < 0 and x < 0. Squaring again and
simplifying yields

C2 > B. (3)

Therefore,

m <
n(n − 1)

2
. (4)
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Therefore, if x < 0, then G is not a complete graph. Or if δ(G) < r + t − 1, then G is not a complete graph (†).
On the other hand, if x < 0 for any non-complete graph G we always have δ(G) < r + t − 1 (‡). Combining (†) and
(‡) we get: δ(G) < r + t − 1 if and only if G is not a complete graph. To put that another way, x > 0 if and only if G
is a complete graph, a contradiction, since if G is a complete graph, then x = 0.

Subcase 2.2. x > 0. In this case if G is non-complete graph, then δ(G) > r + t − 1 (*).
On the other hand by a similar argument of Subcase 2.1 for x > 0, if δ(G) > r + t − 1, then G is not a complete

graph (**). Combining (*) and (**) we have: x < 0 if and only if G is a complete graph, a contradiction. So, we must
have x = 0. Therefore, the assertion holds. □

Lemma 3.2. If G is a connected graph A-cospectral with a multicone graph Kr▽sKt , then it is either regular or
bi-degreed with degrees δ = r + t − 1 and ∆ = r + st − 1.

Proof. The result follows from Lemma 3.1 and Theorem 2.2. □

In the following, we show that any connected graph A-cospectral with the multicone graph K1▽sKt is D AS.

Lemma 3.3. If G is a connected graph A-cospectral with the multicone graph K1▽sKt , then G is D AS.

Proof. If s = 1, there is nothing to prove, since graph G in this case is a complete graph (see Theorem 2.4). Hence
we suppose that s ̸= 1. In this case, G is bi-degreed (see Lemma 3.2). By Lemma 3.2 any vertex of G is either of
degree 1 + t − 1 = t or 1 + st − 1 = st . Let G has α vertices (vertex) of degree st . Therefore, by Theorem 2.1(iii)
(sum of vertices degree of G that is sum of squares of the eigenvalues of G) and Proposition 3.1 we have:

(α)st + (st + 1 − α)t = s(t − 1)((−1)2) + (s − 1)(t − 1)2
+ (

t − 1 +
√

(t − 1)2 + 4st
2

)2

+ (
t − 1 −

√
(t − 1)2 + 4st

2
)2

= st + st(t) = st(t + 1).

By solving the equation we get α = 1. This means that G has one vertex of degree st , say j and st vertices of degree
t . It follows from Theorem 2.9 that

PG− j (x) = (x − µ3)s(t−1)−1(x − µ4)s−2(α2
1 j A1 + α2

2 j A2 + α2
3 j A3 + α2

4 j A4),

where

A1 = (x − µ2)(x − µ3)(x − µ4),
A2 = (x − µ1)(x − µ3)(x − µ4),
A3 = (x − µ1)(x − µ2)(x − µ4),
A4 = (x − µ1)(x − µ2)(x − µ3),

with µ1 =
t−1+

√
(t−1)2+4st
2 , µ2 =

t−1−

√
(t−1)2+4st
2 , µ3 = −1, and µ4 = t − 1.

As stated at the beginning of this lemma G has one vertex of degree st and st vertices of degree t . This means
that graph G − j has st vertices of degree t − 1. In other words, G − j is a (t − 1)-regular graph and it has st
eigenvalues (vertices). It is clear that by removing the vertex j the number of edges that are deleted from graph G is
st = |V (G − j)|. On the other hand, the number of the closed walks of length 2 belonging to G is:

s(t − 1)((−1)2) + (s − 1)(t − 1)2
+ (

t − 1 +
√

(t − 1)2 + 4(st)
2

)2
+ (

t − 1 −
√

(t − 1)2 + 4(st)
2

)2

= st + st(t) = st(t + 1).

This means that the number of the closed walks of length 2 belonging to G − j is st(t + 1) − 2|V (G − j)| =

st(t + 1) − 2(st) = st(t − 1). (Or one can say that since G − j is a (t − 1)-regular graph and it has st eigenvalues, so
the number of the closed walks of length 2 belonging to G − j is st(t − 1)).

Now, by computing the number of the closed walks of length 1 (sum of all eigenvalues that is equal to zero) and 2
belonging to G − j , we have:

γ + ζ + t − 1 = −[(s − 2)µ4 + (s(t − 1) − 1)µ3],
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Fig. 3. A pair of A-cospectral graphs but non-isomorphic.

γ 2
+ ζ 2

+ (t − 1)2
= st(t − 1) − [(s − 2)µ2

4 + (s(t − 1) − 1)µ2
3],

where γ and ζ are the eigenvalues of G − j . The roots are γ = t − 1 and ζ = −1. Therefore, SpecA(G − j) =

{[−1]s(t−1), [t − 1]s
} = SpecA(sKt ). Hence, G − j ∼= sKt , and so G ∼= K1▽sKt . □

Until now, we have considered only graphs A-cospectral with the multicone graph K1▽sKt (windmill-like graphs
with larger sails). The next theorem extends our result to the general multicone graph Kr▽sKt .

Theorem 3.1. If G is a connected graph A-cospectral with a multicone graph Kr▽sKt , then G is D AS.

Proof. If s = 1 the proof is clear. Take s ≥ 2. We perform the mathematical induction on r . For r = 1, the proof
follows from Lemma 3.3. Let the claim be true for r ; that is, if SpecA(M) = SpecA(Kr ▽ sKt ), then M ∼= Kr ▽ sKt ,
where M is an arbitrary graph A-cospectral with a multicone graph Kr ▽ sKt . We show that the claim is true for r +1;
that is, we show that if SpecA(G) = SpecA(Kr+1 ▽ sKt ), then G ∼= Kr+1 ▽ sKt , where G is a graph. It is clear that
G has one vertex and r + st edges more than M . By a similar argument that stated at the beginning of Lemma 3.3
one may deduce that M has r vertices of degree r + st − 1 and st vertices of degree r + t − 1 and also G has r + 1
vertices of degree r + st and st vertices of degree r + t . Hence we must have G ∼= K1 ▽ M , since by Lemma 3.2 G
is bi-degreed and has r + 1 vertices of degree r + st and st vertices of degree r + t . Now, the induction hypothesis
completes the proof. □

It is well-known that the smallest non-isomorphic cospectral graphs are Γ1 = C4 ∪ K1 and Γ2 = K1,4 (see Fig. 3).
Note that Γ1 = F2 (the complement of the windmill F2) is not a connected graph while Γ2 is connected. Thus, we see
that F2 is not D AS. However, Abdollahi, Janbaz and Oboudi [26] proved that if n ̸= 2, then Fn = K1▽nK2 is D AS.
A natural question is what happens with the complement of the general multicone graph (Kr▽sKt ). We address this
in the next section.

4. Graphs A-cospectral with complements of multicone graphs Kr▽sK t

In this section we investigate the complements of the multicone graphs Kr▽sKt . Clearly, if s = 1, then the
multicone graph is just the complete graph Kr+t , and so its complement is (r + t)K1 with spectrum {[0]r+t

}. Clearly
no other graph has this spectrum. On the other hand, the case s = 2 is much more interesting. The complement of
Kr▽2Kt is the union r K1 + Kt,t . The adjacency spectrum is {[−t], [t], [0]2t+r−2

}. Our next theorem determines which
graphs have this spectrum.

Theorem 4.1. Let G be a graph with adjacency spectrum {[−t], [t], [0]2t+r−2
}.

(a) G is not connected if and only if G ∼= (Kr▽2Kt ).
(b) If G is connected if and only if G ∼= K p,q , where p and q are the two roots of the equation x2

− (r + 2t)x +

t2
= 0.

Proof. (a) Assume that G is disconnected. Then by Theorem 2.3, there is a complete multipartite graph H for which
G ∼= H + cK1, where 0 ≤ c ≤ 2t + r − 2. We show that c = r . If t ⩾ 2, then H has precisely three different
eigenvalues (L has two distinct eigenvalues if and only if L = d Kn , where d and n are natural numbers. Also note
that SpecA(Kn) =

{
[n − 1]1, [−1]n−1}). So by Theorem 2.8 H is a bipartite graph. Hence H ∼= Kt,t , and so c = r .

Therefore, G = Kr▽2Kt . If t = 1, then H ∼= K1,1 = K2 and c = r . The converse is clear.
(b) Assume that G is connected. Then G cannot be regular, so by Theorem 2.6, it must be a complete bipartite graph

K p,q , for some p and q . The spectrum of K p,q is known to be {[
√

pq]1, [−
√

pq]1, [0]p+q−2
} (see, for example, [32]).

This is also the spectrum of G ∼= Kr▽2Kt when p+q = 2t +r and pq = t2, that is, when p (and likewise q) satisfies
x2

− (r + 2t)x + t2
= 0. The converse is straightforward. □
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As a consequence of this theorem, we have the result that the complement of a multicone graph Kr▽2Kt is not
D AS. However, these are the only graphs in this family that are not, as our next theorem shows. Before presenting
the theorem, we note that Kr▽sKt ∼= r K1 + Ks(t), where Ks(t) denotes the complete s-partite graph with each of the
partite sets being of size t . We also note that the spectrum of this graph is {[−t]s−1, [0]s(t−1)+r , [t(s − 1)]}.

Theorem 4.2. For s ≥ 3, graphs Kr▽sKt are D AS.

Proof. Let SpecA(G) = {[−t]s−1, [0]s(t−1)+r , [t(s − 1)]} = SpecA(Kr▽sKt ). It follows from Theorem 2.6 that if G
is connected, then it is a complete bipartite graph. Therefore, it follows from Theorem 2.8 that s = 2, a contradiction.
Hence G is disconnected. Now, by Theorem 2.3 there is a complete multipartite graph H for which G ∼= H + aK1,
where s(t − 1) + r ≥ a ≥ 1. We claim that H must be regular. Suppose not and so, as before, by Theorem 2.6 H
must be a complete bipartite graph, and this is impossible. Thus, H must have at least three partite sets, and since it is
regular, it must be Ks(t), and so G ∼= r K1 + Ks(t), establishing the result. □

5. Laplacian spectrum determination of multicone graphs Kr▽sK t

In this section, we consider the Laplacian spectrum of multicones. Recall that the Laplacian matrix of a graph G
is the matrix L(G) = D(G) − A(G), where A(G) is the adjacency matrix of G and D(G) is the degree matrix, and the
Laplacian spectrum of G, denoted SpecL (G), is the spectrum of L(G).

We begin with some general results of [16–19,37] on Laplacian spectra.

Theorem 5.1. Let G and H be graphs with Laplacian spectra α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βk ,
respectively. Then

(a) the Laplacian spectrum of the complement G is n − α1, n − α2, . . . , n − αn − 1, 0, and
(b) the Laplacian spectrum of the join G▽H is n+k, k+α1, k+α2, . . . , k+αn −1, n+β1, n+β2, . . . , n+βk−1, 0.

Theorem 5.2. The order n of a graph G is a Laplacian eigenvalue of G if and only if G is the join of two graphs.

The next result gives the Laplacian spectrum of multicone graphs Kr▽sKt .

Proposition 5.1. The Laplacian spectrum of multicone Kr▽sKt is:

{[r + st]r , [r + t]s(t−1), [r ]s−1, [0]1
}.

Proof. It is clear that SpecL (Kt ) = {[t]t−1, [0]1
} and so SpecL (sKt ) = {[t]s(t−1), [0]s

}. Now, By Theorem 5.1(b) the
proof is straightforward. □

Theorem 5.3. Multicone graphs Kr▽sKt are DL S.

Proof. If s = 1, the proof is clear. So, we consider s ≥ 2. The proof is by induction on r . By Proposition 2.1 the
result is clearly true when r = 1. Assume that the theorem holds for r ; that is, if SpecL (G) = SpecL (Kr▽sKt ) =

{[r + st]r , [r + t]s(t−1), [r ]s−1, [0]1
}, then G ∼= Kr▽sKt . We show that if SpecL (H ) = SpecL (Kr+1▽sKt ) =

{[r + st + 1]r+1, [r + t + 1]s(t−1), [r + 1]s−1, [0]1
}, then H ∼= Kr+1▽sKt . It follows from Theorem 5.2 that H

and G are the join of two graphs. On the other hand, H has one vertex, say e and r + st edges more than G. By
Theorem 5.1(a) SpecL (H ) = {[0]r+2, [st − t]s(t−1), [st]s−1

} and SpecL (G) = {[0]r+1, [st − t]s(t−1), [st]s−1
}. We know

that a graph is DL S if and only if its complement is DL S. Obviously, SpecL (H ) = SpecL (G) ∪ SpecL (K1). On the
other hand, H has only one vertex more than G. Therefore, H = G ∪ K1 or H = G ▽ K1. Now, by the induction
hypothesis the proof is completed. □

Since friendship graphs form a special family of multicone graphs, we have the following result.

Corollary 5.1. The friendship graph Fs = K1▽sK2 is DL S.
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6. Conclusion remarks and a conjecture

The following theorem summarizes the most important results in this paper regarding the adjacency and Laplacian
spectrum determination of multicone graphs.

Theorem 6.1. (a) For all r, s, and t, the connected multicone graph Kr▽sKt is both D AS and DL S.
(b) For all r, s, and t with s > 2, the graphs Kr▽sKt are both D AS and DL S.

Of course, friendship graphs are an interesting, and in some ways exceptional, special type of multicone, consisting
as they do, of a collection of triangles with one common vertex. Cioabä, et al. [5] proved that the friendship graph F16
is not D AS, and, as we observed earlier, neither is the complement of F2, and these are the only exceptions.

Remark 1. (a) For s ̸= 16, the friendship graph Fs = K1▽sK2 is D AS and for any s, Fs is DL S.
(b) For s ̸= 2, the friendship graph Fs = K1▽sK2 is D AS and for any s, Fs is DL S.
(c) Consider K1,3 ▽ Kr−1 = 3K1 ▽ Kr and (K3 ∪ K1) ▽ Kr−1 that have the same signless Laplacian spectrum (see

Corollary 2.2 of [38] and Theorem 2.1 of [38]) but are non-isomorphic.

As we noted at the beginning of the paper, a third type of matrix that gives the adjacencies of a graph has been
studied, the signless Laplacian matrix, defined as S(G) = D(G) + A(G) (in contrast to the ordinary Laplacian
S(G) = D(G) − A(G)), with the corresponding determined by signless Laplacian spectrum. Friendship graphs are
known to be DQS. Thus, we conclude with the following conjecture.

Conjecture 1. Multicone graphs Kr▽sKt , except in multicone graphs Kr ▽ 3K1, are DQS.
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