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Abstract

Acharya (1982) proved that every connected graph can be embedded in a graceful graph. The generalization of this result
that, any set of graphs can be packed into a graceful graph was proved by Sethuraman and Elumalai (2005). Recently,
Sethuraman et al. (2016) have shown that, every tree can be embedded in an graceful tree. Inspired by these fundamental
structural properties of graceful graphs, in this paper, we prove that any acyclic graph can be embedded in an unicyclic
graceful graph. This result is proved algorithmically by constructing graceful unicyclic graphs from a given acyclic graph. Our
result strongly supports the Truszczynski’s Conjecture that “All unicyclic graphs except the cycle Cn with n ≡ 1 or 2(mod 4)
are graceful".

Keywords: Graceful tree; Graceful unicyclic graph; Graceful tree embedding; Graceful labeling; Graph labeling

1. Introduction

All the graphs considered in this paper are finite and simple graphs. The terms which are not defined here
can be referred from [1]. In 1963, Ringel posed his celebrated conjecture, popularly called Ringel Conjecture [2],
which states that, K2n+1, the complete graph on 2n+ 1 vertices can be decomposed into 2n+ 1 isomorphic copies
of a given tree with n edges. Kotzig [3] independently conjectured the specialized version of the Ringel Conjecture
that the complete graph K2n+1 can be cyclically decomposed into 2n + 1 copies of a given tree with n edges. In
an attempt to solve both the conjectures of Ringel and Kotzig, in 1967, Rosa, in his classical paper [4] introduced
an hierarchical series of labelings called ρ, σ, β and α labelings as a tool to settle both the conjectures of Ringel
and Kotzig. Later, Golomb [5] called β-labeling as graceful labeling, and now this term is being widely used.
A function f is called graceful labeling of a graph G with q edges, if f is an injective function from V (G) to
{0, 1, 2, . . . , q} such that, when every edge (u, v) is assigned the edge label | f (u)− f (v)|, then the resulting edge
labels are distinct. A graph which admits graceful labeling is called graceful graph. Further, Rosa [4] proved that
“If a graph G with q edges has a graceful labeling then the complete graph K2q+1 can be cyclically decomposed
into 2q + 1 copies of the graph G”. This result subsequently induced the popular Graceful Tree Conjecture, which
states that “Every tree is graceful”. The Graceful Tree Conjecture appears to be hard and it remains open over 5
decades.
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Rosa [4] also proved that the cycle Cn is graceful if and only if n ≡ 0 or 3(mod 4). In 1984, Truszczynski’s [6]
conjectured that, “All unicyclic graphs except the cycle Cn with n ≡ 1 or 2(mod 4) are graceful”. The conjecture
of Truszczynski is also hard as the Graceful Tree Conjecture. Not much results have been proved to support
Truszczynski’s Conjecture. Some of the interesting results supporting Truszczynski’s Conjecture are listed below.

• Barientos [7] proved that a unicyclic graph in which the deletion of any edge on the cycle results in a caterpillar
is graceful. [A tree is called a caterpillar, in which the removal of all the pendant vertices of the tree results
in a path].
• Jaya Bagga and Arumugam [8] have constructed a graceful unicyclic graph from a special class of caterpillars.

• Figueroa-Centeno et al. [9] have provided an interesting construction to form a graceful unicyclic graph from
a set of α-labeled trees with some special property [A graceful labeling f of a graph G is called an α-labeling
if there exists an integer λ such that, min{ f (x), f (y)} ≤ λ < max{ f (x), f (y)} for each edge (x, y) in G].

For more details on the results supporting Truszczynski’s Conjecture refer the dynamic survey on graph labeling by
Gallian [10]. Structural characterization of graceful graphs appears to be one of the most difficult problems in graph
theory. However, some interesting general structural properties of graceful graphs are established. Acharya [11]
proved that every connected graph can be embedded in a graceful graph. In [12], Sethuraman and Elumalai
generalized this result and they have shown that every set of graphs can be packed into a graceful graph. Recently,
in [13] Sethuraman et al. have also shown that every tree can be embedded in a graceful tree. Inspired by these
fundamental structural properties of graceful graphs, in this paper, we prove that any acyclic graph can be embedded
in a graceful unicyclic graph. This result is proved algorithmically by constructing graceful unicyclic graphs from
a given acyclic graph. More precisely, we prove a general result that from any given acyclic graph F containing
n arbitrary trees, we construct graceful unicyclic graphs with cycle length that vary from 3 to n + 1. Our result
strongly supports the Truszczynski’s Conjecture.

2. Main result

In this section, we present our Embedding Algorithm, which generate graceful unicyclic graphs from any acyclic
graph.

Embedding Algorithm
Input: A Forest F

Find the number of components of F . If n ≥ 1 is the number of components of F , then denote the n
components of F by T1, T2, . . . , Tn .

Step 1: Construction of a Tree T from the Forest F

Consider the input forest F = ⟨T1, T2, . . . , Tn⟩. For each i, 1 ≤ i ≤ n, choose any vertex in Ti and
name that vertex by ui . For i, 1 ≤ i ≤ n − 1, join the vertex ui of Ti and the vertex ui+1 of Ti+1 by a
new edge. Denote the resulting tree thus obtained by T .

Step 2: Arrangement of vertices of T

Consider the tree T constructed by Step 1 as a rooted tree with the vertex u1 of T1 as its root. Find the
number of level of T . If l is the number of level of T , then arrange the vertices of T in the following
way.

First, arrange the children of the root vertex of T in the first level from left to right order based on
the decreasing order of their degrees. Then, arrange the children of first level vertices in the following
way.

1. If x and y are two vertices of the first level of T such that x appears to the left side of y, then
arrange all the children of the vertex x on the left side of all the children of the vertex y in the
second level.
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2. Then, for each vertex x in the first level arrange the children of x in the second level based on
the decreasing order of their degrees.

Continue the same process of arranging the children of the second level vertices and then third level
vertices and so on.

Step 3: Defining bipartition of T

Count the number of vertices which appear in all the even levels of T and count the number of
vertices which appear in all the odd levels of T . If r is the number of vertices which appear in all the
even levels of T and s is the number of vertices which appear in all the odd levels of T , then name
the vertices of T in the following way.

First name the root as x0 (note x0 = u1) and name the remaining vertices of T at each level from
left to right as follows.

For each level i, 1 ≤ i ≤ l and i is even, then name the vertices which appear in the level i of T
from left to right, as

x∑i−2
i=2 mi−2+1, x∑i−2

i=2 mi−2+2, . . . , x∑i
i=2 mi

. (1)

Similarly, for each i, 1 ≤ i ≤ l and i is odd, name the vertices which appear in the level i from left to
right, as

y∑i−2
i=1 mi−2+1, y∑i−2

i=1 mi−2+2, . . . , y∑i
i=1 mi

. (2)

Here in (1) and (2), m−1 = 0, m0 = 0 and for i , 1 ≤ i ≤ l, mi denotes the number of vertices which
appear in the level i of T .

In the above process of naming, the vertices already named with u1, u2, . . . , un also again named
either with some xi or with some y j , for some i, j , such vertices are referred to by either of these two
names according to convenience.

Collect all the vertices that appear in all the even levels of T as a set and denote it by X . Also collect
all the vertices that appear in all the odd levels of T as a set and denote it by Y . Form a bipartition
(X, Y ) of T .

Step 4: Arrangement of vertices of X and Y

In the left side, arrange the vertices of X in the following way.
If xi and x j are two vertices of A such that i < j then the vertex xi appear above to the vertex x j .
Consequently, the vertex x0 is the top most vertex and the vertex xr−1 is the bottom most vertex. Refer
this arrangement of vertices as the top to bottom order. Similarly, arrange the vertices of Y in the top
to bottom order on the right side in which the vertex y1 is the topmost vertex and the vertex ys is the
bottommost vertex.

Step 5: Labeling the vertices and edges of the tree T
Step 5.1: Labeling the vertices of T

For each xi ∈ X , 0 ≤ i ≤ r − 1, define f (xi ) = i and
for each yi ∈ Y , 1 ≤ i ≤ s, define f (yi ) = (s − i + 1)r .

Step 5.2: Labeling the edges of T

For every edge uv of T , define its edge label, f ′(uv) = | f (u)− f (v)|.

Step 6: Construction of a larger tree T ∗ containing the input tree T as its subtree
Step 6.1: Defining initial labeled sets needed for constructing the tree T ∗

For the tree T , define
Existing Vertex Label Set V = V (T ) = {0, 1, . . . , r, 2r, 3r, . . . , rs},
Existing Edge Label Set E = E(T ) = { f ′(e1), f ′(e2), . . . , f ′(es+r−1)},
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All Label Set X = {0, 1, 2, . . . , rs},
Missing Vertex Label Set V c

= X \ V ,
Missing Edge Label Set Ec

= (X \ {0}) \ E .
[Note that |V c

| = |Ec
|]

Initiate T ∗← T ,
V (T ∗)← V (T ),
E(T ∗)← E(T )

Step 6.2: If Ec
= φ and V c

= φ then go to Step 7.1.
Step 6.3: If Ec

̸= φ and V c
̸= φ then do the following.

Arrange the elements in the sets V c and Ec as
V c
= {a1, a2, . . . , ad} such that a1 < a2 < · · · < ad and

Ec
= {b1, b2, . . . , bd} such that b1 < b2 < · · · < bd .

For t , 1 ≤ t ≤ d

Find ct = at − bt , add a new vertex with label at and join a new edge (at , ct ) between the
vertex ct and the new vertex at .
Update T ∗← T ∗ + (at , ct ),

V (T ∗)← V (T ∗) ∪ {at },
E(T ∗)← E(T ∗) ∪ {(at , ct )}.

Delete at from V c and bt from Ec.
Update t ← t + 1.

Step 7: Constructing a graph G∗ form the updated tree T ∗

Step 7.1: If the updated tree T ∗ is obtained from Step 6.2 then do the following

Take a new vertex v, label it with s + 2 and join this vertex v with the vertex labeled 0 and the vertex
labeled 1 of T ∗.

G∗← T ∗ + {(s + 2, 0), (s + 2, 1)},
V (G∗)← V (T ∗) ∪ {s + 2},
E(G∗)← E(T ∗) ∪ {(s + 2, 0), (s + 2, 1)}.

Step 7.2: If the updated tree T ∗ obtained from Step 6.3 then do the following
Step 7.2.1: When n = 1, then do the following

Find the vertex, u, which is the left most vertex in the last level l of the rooted tree T = T1. Take a
new vertex v and labeled it with rs+ f (u)+1. Join the new vertex v with the vertex u1 and the vertex
u of T contained in T ∗.
Initiate G1 ← T ∗ + {(rs + f (u)+ 1, 0), (rs + f (u)+ 1, f (u))},

V (G1)← V (T ∗) ∪ {rs + f (u)+ 1},
E(G1)← E(T ∗) ∪ {(rs + f (u)+ 1, 0), (rs + f (u)+ 1, f (u))}.

Step 7.2.1.1: Construction of the graph G∗1 from the graph G1 obtained from Step 7.2.1

For the graph G1 obtained from Step 7.2.1, define
Existing Vertex Label Set V (G1) = {0, 1, 2, . . . , rs, rs + f (u)+ 1},
Existing Edge Label Set E(G1) = {1, 2, . . . , rs, rs + 1, rs + f (u)+ 1},
All Label Set X (G1) = {0, 1, 2, . . . , rs + f (u)+ 1},
Missing Vertex Label Set V (G1)c

= X (G1) \ V (G i ) = {rs + 1, rs + 2, . . . , rs + f (u)},
Missing Edge Label Set E(G1)c

= (X (G1) \ {0}) \ E(G1) = {rs + 2, rs + 3, . . . , rs + f (u)}.
Initiate G1

∗
← G1,

V (G1
∗)← V (G1),

E(G1
∗)← E(G1)

While E(G1)c
̸= φ
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Then, find minE(G1)c
= a. Take a new vertex label it with a and join this vertex a with

the vertex labeled 0 of G∗1.
Update G1

∗
← G1

∗
+ (0, a),

V (G1
∗)← V (G1

∗) ∪ {a},
E(G1

∗)← E(G1
∗) ∪ {(0, a)}.

Delete a from E(G1)c.

Step 7.2.2: When n ≥ 2, then do the following

For each i , 2 ≤ i ≤ n,

Take a new vertex v, label it with rs + f (ui )+ 1 and join this vertex v with the vertex u1

of T1 and the vertex ui of Ti contained in T ∗.
Initiate G i ← T ∗ + {(rs + f (ui )+ 1, 0), (rs + f (ui )+ 1, f (ui ))},

V (G i )← V (T ∗) ∪ {rs + f (ui )+ 1},
E(G i )← E(T ∗) ∪ {(rs + f (ui )+ 1, 0), (rs + f (ui )+ 1, f (ui ))}.

Step 7.2.2.1: Construction of the graph G∗i from the graph G i obtained from Step 7.2.2

For each i , 2 ≤ i ≤ n
For the graph G i obtained from Step 7.2, define
Existing Vertex Label Set V (G i ) = {0, 1, 2, . . . , rs, rs + f (ui )+ 1},
Existing Edge Label Set E(G i ) = {1, 2, . . . , rs, rs + 1, rs + f (ui )+ 1},
All Label Set X (G i ) = {0, 1, 2, . . . , rs + f (ui )+ 1},
Missing Vertex Label Set V (G i )c

= X (G i ) \ V (G i ) = {rs + 1, rs + 2, . . . , rs + f (ui )},
Missing Edge Label Set E(G i )c

= (X (G i ) \ {0}) \ E(G i ) = {rs + 2, rs + 3, . . . , rs + f (ui )}.
Initiate G i

∗
← G i ,

V (G i
∗)← V (G i ),

E(G i
∗)← E(G i )

While E(G i )c
̸= φ

Then, find minE(G i )c
= a. Take a new vertex label it with a and join this vertex a with the

vertex labeled 0 of G∗i .
Update G i

∗
← G i

∗
+ (0, a),

V (G i
∗)← V (G i

∗) ∪ {a},
E(G i

∗)← E(G i
∗) ∪ {(0, a)}.

Delete a from E(G i )c.

Note. For convenience hereafter a vertex in either T or T ∗ or G i or G i
∗ is referred by its label. Similarly an edge

in either T or T ∗ or G i or G i
∗ is referred by its label. We make the following observations and prove the following

lemmas to establish that the Embedding Algorithm indeed construct graceful unicyclic graphs from the input forest
as the output.

Observation 2.1. From Step 5 of the Embedding Algorithm, the vertices which appear on the left side part of the
bipartition of the tree T receive consecutive vertex labels from 0 to r − 1 and the vertices which appear on the
right side of the bipartition of the tree T receive the vertex labels of the form zr, 1 ≤ z ≤ s.

Observation 2.2. From Step 2 and Step 5 of the Embedding Algorithm, observe that, in the bipartite graph T ,
all the children of the vertex i , 1 ≤ i ≤ r − 1 are arranged consecutively from top to bottom based on decreasing
order of their degrees in the right side just below the last child of the vertex i − 1. Similarly, observe that, all the
children of the vertex zr , 1 ≤ z ≤ s − 1 are arranged consecutively from top to bottom on the left side based on
decreasing order of their degrees just below the last child of the vertex (z + 1)r .
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Observation 2.3. From Observation 2.1, the Missing Vertex Label Set V c defined in Step 6.1 consists of all the
labels (integers) that lie in the interval (zr, (z + 1)r ), for all z, 1 ≤ z ≤ s − 1. More precisely, the Missing Vertex
Label Set V c

= {r+1, r+2, . . . , 2r−1, 2r+1, . . . , 3r−1, . . . , (s−1)r+1, . . . , rs−1}. If we arrange the elements
of V c as a sequence {r + 1, r + 2, . . . , 2r − 1, 2r + 1, . . . , 3r − 1, . . . , (s − 1)r + 1, . . . , rs − 1} = (a1, a2, . . . , ad ),
then any two consecutive terms, ai−1 and ai , for 2 ≤ i ≤ d either both lie on the same interval say (zr, (z + 1)r )
for some fixed z, 1 ≤ z ≤ s− 1 or ai−1 ∈ (zr, (z+ 1)r ) and ai ∈ ((z+ 1)r, (z+ 2)r ) for some fixed z, 1 ≤ z ≤ s− 2.
Thus, either ai = ai−1 + 1 or ai = ai−1 + 2.

Observation 2.4. From Observation 2.1, the labels of the edges that are incident at the vertex zr , 1 ≤ z ≤ s must
lie on the interval [(z − 1)r, zr ]. Therefore, the maximum of the edge labels of all the edges that are incident
at the vertex zr is less than the minimum of the edge labels of all the edges that are incident at the vertex
(z + 1)r , for every z, 1 ≤ z ≤ s − 1. The missing edge labels at the vertex zr , for each z, 1 ≤ z ≤ s,
is the set of labels (integers) that lie on [(z − 1)r + 1, zr ] excluding the labels of the edges that are incident
at the vertex zr and it is denoted by M E L(zr ). More precisely the set M E L(zr ) = {(z − 1)r + 1, (z −
1)r + 2, . . . , zr} \ {set of all labels of the edges that are incident at the vertex zr}. Then we can describe the set
Ec
=

⋃s
z=1 M E L(zr ) = {b1, b2, . . . , bd}. As T is a tree, |V c

| = |Ec
|.

Lemma 2.5. The vertex labels as well as the edge labels of the tree T obtained in Step 5 of the Embedding
Algorithm are all distinct.

Proof. It follows from Observation 2.1, the labels of all the vertices of the tree T are distinct.

Claim. The labels of all the edges of the tree T are distinct

Since the labels of the vertices that lie on the left side part of the bipartition of T are consecutive from 0 to
r − 1, it follows that, the labels of the incident edges at each vertex zr , 1 ≤ z ≤ s are all distinct and these labels
lie in the set {(z − 1)r + 1, (z − 1)r + 2, . . . , zr}. Further, for any two consecutive vertices on the right side part
of the bipartition of T , say zr and (z + 1)r , we have maximum over the labels of all the edges that are incident at
the vertex zr ≤ zr < zr + 1 ≤ minimum over the labels of all the edges that are incident at the vertex (z + 1)r ,
for z, 1 ≤ z ≤ s − 1. Thus, the labels of the edges that are incident at any two distinct vertices on the right side
part of the bipartition of T are always distinct. This would imply that the labels of all the edges of the tree T are
distinct. □

Lemma 2.6. The sets V c and Ec, defined in Step 6.1 of the Embedding Algorithm are empty if and only if the
tree T is a star.

Proof. Assume that the tree T is a star with s + 1 vertices. Without loss of generality, we assume that |X | ≤ |Y |,
where (X, Y ) is the bipartition of the tree T . By Step 3 of the Embedding Algorithm, |X | = r = 1 and |Y | = s.
After the execution of Step 5 of the Embedding Algorithm, Existing Vertex Label Set V (T ) = {0, 1, 2, . . . , s} and
the Existing Edge Label Set E(T ) = {1, 2, 3, . . . , s}. As the set X = {0, 1, 2, 3, . . . , s}, the set V c

= X \ V = φ

and the set Ec
= (X \ {0}) \ E = φ.

Conversely, assume that each of the sets V c and Ec, defined in the Step 6.1 of Embedding Algorithm is empty.
We claim that the tree T is a star. Suppose that the tree T is not a star. Then, 2 ≤ |X | = r ≤ |Y |. By using Step 5
of the Embedding Algorithm, the Existing Vertex Label Set V (T ) = {0, 1, 2, . . . , r − 1, r, 2r, . . . , rs}. Since r ≥ 2,
V c
= X \ V = {r + 1, r + 2, . . . , 2r − 1, 2r + 1, . . . , 3r − 1, . . . , rs − 1} ̸= φ. A contradiction to our assumption

that V c
= φ. Hence the input tree T must be a star. □

Lemma 2.7. The label ct defined in Step 6.3 of the Embedding Algorithm is a non-negative integer for all values
of t and the label ct exists as the vertex label of a vertex of the current tree T ∗ that is being used in the current
execution of Step 6.3.

Proof. Observe that Step 6.3 of the Embedding Algorithm is executed when the sets V c and Ec are non-empty.
Hence by Lemma 2.6, the tree T is not a star. Thus, s ≥ r ≥ 2. Further, for every t , 1 ≤ t ≤ d , at ∈ V c, bt ∈ Ec,
the label ct = at − bt is found in Step 6.3.
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Fig. 1. The structure of the bipartite tree T under the Case 1.

Claim. ct is a non-negative integer

To ascertain the claim we prove that at ≥ bt , for every t , 1 ≤ t ≤ d by using induction on t .
When t = 1, from Observation 2.3, we have a1 = r + 1, r ≥ 2 and from Observation 2.4, b1 ∈ {1, 2, . . . , r}.

Hence a1 > b1.
We assume that the result is true for up to t = k− 1. That is, we assume that at ≥ bt , for each t, 1 ≤ t ≤ k− 1.
We now prove that the statement is true for t = k. More precisely, we prove that ak ≥ bk . Suppose that ak < bk .

From Observation 2.3, ak−1 and ak differ either by 1 or 2. It follows from our assumption (ak < bk) and the
inductive assumption (bk−1 ≤ ak−1), that

bk−1 ≤ ak−1 < ak < bk . (3)

Since, either ak = ak−1 + 2 or ak = ak−1 + 1, we consider the following two cases.

Case 1. ak = ak−1 + 2
Since bk−1 and bk are consecutive missing edge labels and from Eq. (3), the labels of the sequence C =

(bk−1 + 1, . . . , ak−1, ak−1 + 1, ak−1 + 2 = ak, ak + 1, . . . , bk − 1) are consecutive existing edges labels that lie
between bk−1 and bk . For whatever may be the value of k, the sequence C always contains the labels ak−1+ 1 and
ak . Since ak−1 and ak are consecutive missing vertex labels, the label ak−1+1 must be an existing vertex label which
appears on the right side of the bipartition of the tree T . From Step 5 of the Embedding Algorithm, ak−1+ 1 = zr ,
for some z, 2 ≤ z ≤ s − 1. As ak−1 + 1 belongs to C , the label ak−1 + 1 is also an existing edge label, the label
ak−1+1 appears as existing vertex label as well as existing edge label. As ak−1+1 = zr , for some z, 2 ≤ z ≤ s−1,
by Observation 2.4 the edge label ak−1 + 1 is only obtained from the edge connecting the vertex 0 and the vertex
zr . The label zr = ak−1 + 1 is the maximum edge label obtained at the vertex zr . As ak = ak−1 + 2 = zr + 1 also
belongs to C , zr + 1 is the next existing edge label just after zr . As by Observation 2.4, the edge label zr + 1 = ak

must be obtained at the edge connecting the vertex (z+1)r and the vertex r−1, for z, 2 ≤ z ≤ s−1. Since r−1 is
the bottommost vertex of the left side part of the bipartition of T and r−1 is also a child of the vertex (z+1)r , this
would imply from our construction of the tree T , the vertex pr , for each i, 1 ≤ p ≤ z are pendant. Hence the only
vertex adjacent with zr is 0. From Observation 2.4, the set M E L(zr ) = {(z−1)r+1, (z−1)r+2, . . . , zr−1 = ak−1}.
Therefore the label ak−1 is a missing edge label. Then from Eq. (3) that, bk−1 ≤ ak−1 < bk , we have bk−1 = ak−1.
(See Fig. 1.)

As k − 1 = |{b1, b2, . . . , bk−1}|. By Observation 2.4, |{b1, b2, . . . , bk−1}| = |
⋃z

p=1 M E L(pr )|. Since the vertex
pr is pendant, for each p, 1 ≤ p ≤ z, |M E L(pr )| = r−1. Thus, k−1 = z(r−1). Since k−1 = |{a1, a2, . . . , ak−1}|

and by Observation 2.3, |{a1, a2, . . . , ak−1}| = |{r + 1, r + 2, . . . , 2r − 1, 2r + 1, . . . , 3r − 1, . . . , (z − 1)r + 1,

. . . , zr − 1 = ak−1}|, we have k − 1 = (z − 1)(r − 1). But from the above discussion k − 1 = z(r − 1). This leads
to a contradiction. Therefore, our assumption that ak < bk is wrong. Hence ak ≥ bk .

Case 2. ak = ak−1 + 1
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Fig. 2. The structure of the bipartite tree T under the Case 2.

By Observation 2.3, the labels ak−1 and ak lie in the interval ((z − 1)r, zr ), for some fixed z, 2 ≤ z ≤ s.
Therefore, ak−1 = (z − 1)r + q for some q, 1 ≤ q ≤ r − 2. Since bk−1 and bk are consecutive missing edge labels
and from Eq. (3), the labels of the sequence D = (bk−1 + 1, . . . , ak−1, ak−1 + 1 = ak, ak + 1, . . . , bk − 1) are
consecutive existing edges labels that lie between the label bk−1 and the label bk . For whatever may be the value
of k the sequence D should contain the label ak−1 + 1 = ak . Hence, by Observation 2.4, the existing edge label ak

must be obtained at the edge incident with the vertices zr and j , for some j, 1 ≤ j ≤ r − 1.

Claim. The edge label bk − 1 obtained at the edge (zr, l) for some l, 1 ≤ l ≤ j ≤ r − 1

Suppose that the edge label bk − 1 is not obtained at the edge (zr, l), for any l, 1 ≤ l ≤ r − 1. Then by
Observation 2.4, bk − 1 is obtained at the edge incident at the vertex (z + i)r , for some i, 1 ≤ i ≤ s − z. Since the
labels ak, ak+1, . . . , bk−1 are consecutive existing edge labels and the edge label ak is obtained at the edge (zr, j),
for some j, 1 ≤ j ≤ r − 1, by Observation 2.4, the vertex zr must be adjacent with the vertices j, j − 1, . . . , 0
also the vertices (z+ 1)r, (z+ 2)r, . . . , (z+ i − 1)r must all be adjacent with all the vertices on the left side part of
the tree T . As zr, (z + 1)r, (z + 2)r, . . . , (z + i − 1)r , for i ≥ 1, are all adjacent with the vertices j, j − 1, . . . , 0,
there exists a cycle in T if i ≥ 2. Hence i ≤ 1. Suppose i = 1, then the vertex (z + 1)r must be adjacent with the
vertices r − 1, r − 2, . . . , x , x > j [if x ≤ j , then there exists a cycle in T ]. In this situation, all the children of the
vertex (z + 1)r lie below to all the children of the vertex zr which is not possible by our construction of the tree
T . Thus, i ̸= 1. This implies that the edge label bk − 1 is obtained at the edge (zr, l) for some l, 0 ≤ l ≤ r − 1.
As, the edge label ak is obtained at the edge (zr, j), for some j, 1 ≤ j ≤ r − 1 and as ak ≤ bk − 1, l ≤ j .

When l = 0, the vertex zr must be adjacent with the vertices j, j − 1, . . . , 0. Hence the parent of the vertex
zr is 0 and the children of zr must be 1, 2, . . . , j , for j, j ≥ 1. By construction of the tree T , the vertices
(z + 1)r, (z + 2)r, . . . , rs have a common parent vertex 0. As the vertices 1, 2, . . . , j are the children of the vertex
zr , the children of each of the vertices (z + 1)r, (z + 2)r, . . . , rs must lie between 0 and 1. But no such vertex
possibly exists which is a contradiction. Thus, l ̸= 0. Therefore the edge label bk − 1 is obtained at the edge (zr, l)
for some l, 1 ≤ l ≤ j ≤ r − 1. Hence the claim. (See Fig. 2.)

The number of missing vertex labels from a1 to ak−1 is k − 1, which is nothing but the number of all the
labels in the interval (ir, (i + 1)r ), for each i, 1 ≤ i ≤ z − 2 plus the number of labels that belong to the set
{(z−1)r +1, . . . , (z−1)r +q = ak−1}. Therefore, k−1 = (z−2)(r −1)+q . This would imply that the number of
missing edge labels from b1 to bk−1 is also k− 1 = (z− 2)(r − 1)+ q. Hence the number of existing edges that are
incident at the vertices r, 2r, . . . , (z−1)r and the number of existing edges that are incident at the vertex zr having
the other end vertices l, l+1, . . . , r−1 is equal to the number of possible edges that can be incident at the vertices
r, 2r, . . . , (z−1)r and the number of possible edges that can be incident at the vertex zr having the other end vertices
l, l + 1, . . . , r − 1 minus the number of missing edge labels from b1 to bk−1. Thus, the number of existing edges
that are incident at the vertices r, 2r, . . . , (z−1)r and the number of existing edges that are incident at the vertex zr
having the other end vertices l, l+1, . . . , r−1 is [(z−1)r+ (r− l)]− ((z−2)(r−1)+q) = z+2r− l−q−2. These
z+2r − l−q−2 edges of the tree T are nothing but the edges which are incident at the vertices r, 2r, . . . , (z−1)r
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Fig. 3. The structure of the bipartite tree T under the Case I .

and edges which are incident at the vertex zr from r − 1 to l. The graph induced by these z+ 2r − j −q− 2 edges
of T is a forest and it is denoted by H . Hence

|E(H )| = z + 2r − l − q − 2 (4)

Now we count the number of vertices that belong to the forest H in T . To count, we consider the following two
cases on the nature of the ends of the edge (zr, l). Note that, in the edge (zr, l) of the rooted tree T , either zr is a
parent of l or l is a parent of zr .

Case I : zr is a parent of l
From construction of the tree T , the structure of the tree T under this situation is given in Fig. 3.
From Fig. 3, the vertices (z− 1)r, (z− 2)r, . . . , (z−w1)r are the children of the vertices l − 1, l − 2, . . . , l − g1.

Hence, the forest H is the union of the subtrees of T rooted at zr, l − 1, l − 2, . . . , l − g1. Thus, from Fig. 3, the
total number of vertices of H , |V (H )| = z+ r − l + g1. This would imply that |E(H )| = z+ r − l − 1. By Eq. (4),
|E(H )| = z + 2r − l − q − 2. Thus, q = r − 1. Hence ak = ak−1 + 1 = (z − 1)r + q + 1 = zr . Then from
Observation 2.2, the label ak is an existing vertex label. But by Case 2, the label ak is a missing vertex label. This
is a contradiction. Hence, under this case our assumption ak < bk is wrong.

Case I I : When l is the parent of zr
Under this case, we consider the following two subcases.

Case I I a : When j ̸= l
By our construction of the tree T the structure of the tree T under this situation is given in Fig. 4. From Fig. 4,

the vertices l + 1, l + 2, . . . , j, j + 1, . . . , l + g3 are the children of the vertex zr , where g3 ≥ 1.
Then from Fig. 4, H is the subtree rooted at the vertex l. Hence, the number of vertices of H , |V (H )| = z+r−l.

This would imply that |E(H )| = z + r − l − 1. By Eq. (4), |E(H )| = z + 2r − l − q − 2. Thus, q = r − 1. Hence
ak = ak−1 + 1 = (z − 1)r + q + 1 = zr . This implies that the label ak is an existing vertex label. But by Case II,
the label ak is a missing vertex label which is a contradiction. Hence, under this case our assumption ak < bk is
wrong.

Case I I b: When j = l
By our construction of the tree T the structure of the tree T under this situation is given in Fig. 5.
From Fig. 5, the vertices l + 1, l + 2, . . . , j, j + 1, . . . , l + g4 are the children of the vertex zr, (z − 1)r, (z −

2)r, . . . , (z − w3)r , where g4 ≥ 0. Then from Fig. 5, H is the union of the subtrees rooted at l, l + 1, . . . , l + g4.
The number of vertices in H , |V (H )| = z+ r − l. This would imply that |E(H )| = z+ r − l − g4 − 1. By Eq. (4),
|E(H )| = z + 2r − l − q − 2. This would imply that q = r + g4 − 1. Hence ak = ak−1 + 1 = (z − 1)r + q + 1 =
zr + g4 ≥ zr , which leads to a contradiction to the fact that the label ak is a missing vertex label which lies in the
interval ((z − 1)r, zr ). Hence, under this case our assumption ak < bk is wrong.
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Fig. 4. The structure of the bipartite tree T under the Case I I a .

Fig. 5. The structure of the bipartite tree T under the Case I I b .

Hence from all the cases, the assumption ak < bk is wrong. Therefore, ak ≥ bk . Hence, by induction, at ≥ bt ,
for every t , 1 ≤ t ≤ m. This means that the label ct = at − bt is non-negative for every t , 1 ≤ t ≤ m.

Since the current graph T ∗ should contain all the vertex labels 0, 1, 2, . . . , at−1. As ct is a non-negative integer
and as ct = (at − bt ) < at , ct must be a label of a vertex in that current graph T ∗. □

Lemma 2.8. The graph T ∗ obtained in the Embedding Algorithm is a graceful tree.

Proof. From Lemma 2.5, it is clear that after the execution of Step 5 of the Embedding Algorithm, we obtain
the tree T in which the vertices of T are labeled with distinct labels and the edges of T are also labeled with
distinct labels. From the Embedding Algorithm, we observe that the graph T ∗ is obtained either after the complete
execution of the Step 6.2 or after the complete execution of the Step 6.3.

Case 1: The graph T ∗ obtained after the complete execution of the Step 6.2
As the Step 6.2 is executed only when Ec

= V c
= φ, by Lemma 2.6, the tree T must be a star and it remains

unchanged when Step 6.2 is executed. Consequently, the tree T ∗ should have been labeled as shown in Fig. 6. From
Fig. 6, it is clear that the graph T ∗ is a tree with distinct vertex labels and distinct edge labels. More precisely, the
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Fig. 6. The labeled tree T ∗ obtained at the end of Step 6.2 of the embedding algorithm.

vertex label set is {0, 1, 2, . . . , s} and the edge label set is {1, 2, . . . , s}. Thus, by the definition of graceful labeling
of the tree, the tree T ∗ is graceful.

Case 2: The graph T ∗ obtained after the complete execution of the Step 6.3
In Step 6.3, the tree T ∗ obtained after the execution of the Step 6.1 is taken as an input. The sets V c and Ec

are considered, where the elements of V c and that of Ec are arranged in the increasing order respectively. Then for
each t , 1 ≤ t ≤ d , the label ct = at − bt is found. By Lemma 2.7, the label ct is non-negative and there always
exists a vertex in the current graph T ∗ which has the label ct . In the Step 6.3, for every t , 1 ≤ t ≤ d, a new vertex
labeled with at is taken and it is joined with the existing vertex labeled ct of the current graph T ∗.

In Step 6.3, initially the graph T ∗ is a tree and every execution of Step 6.3 a new vertex is added with existing
vertex in T ∗ by a new pendant edge to the current graph T ∗. Therefore the current graph T ∗ must be a tree. As at is
always distinct for every t , 1 ≤ t ≤ d, and the vertex labels of the initial tree T ∗ are also distinct, the updated tree
T ∗ ← T ∗ + (ct , at ) contains distinct vertex labels in every execution. Further, note that in every execution of the
Step 6.3, the distinct edge label bt = at − ct is obtained. As the edge labels of the initial tree T ∗ are also distinct,
the final updated tree T ∗ contains distinct edge labels for all the edges. More precisely, the vertex label set of T ∗

are {0, 1, 2, . . . , rs} and the edge label set of T ∗ are {1, 2, . . . , rs}. Thus, by the definition of graceful labeling of
the tree, the tree T ∗ is graceful. □

Theorem 2.9. The output graph obtained in the Step 7 of the Embedding Algorithm is a graceful unicyclic graph.

Proof. From the Embedding Algorithm, we observe that the output graph G∗ is obtained after the complete
execution of the Step 7.1 or the output graph G i

∗ is obtained after the complete execution of the Step 7.2.

Case 1: The graph G∗ obtained after the complete execution of the Step 7.1
Step 6.1 of the Embedding Algorithm is executed only when Ec

= V c
= φ. Then by Lemma 2.6, the tree T is

a star. Thus, after the execution of Step 6.2, the labeled tree T ∗ will be as shown in Fig. 7.
Thus, the labeled graph G∗ obtained after the execution of the Step 7.1 will be as shown in Fig. 8.
It is clear from Fig. 8, the graph G∗ contains a unique cycle of length 3. Also, all the vertex labels are distinct

and range over the set {0, 1, 2, . . . , s + 2} \ {s + 1} and all the edge labels are also distinct and range over the set
{1, 2, . . . , s + 2}. Then it follows from the definition of graceful labeling, the unicyclic graph G∗ is graceful.

Case 2: The graph G∗i obtained after the complete execution of the Step 7.2, for i , 1 ≤ i ≤ n
Here we consider two subcases depending on the value of n.

Case 2.1: n = 1

Claim 1. The graph G1 is unicyclic
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Fig. 7. The labeled tree T ∗ after the execution of Step 6.2.

Fig. 8. The labeled graph G∗ obtained after the execution of Step 7.1.

In this case the input forest F contains only one component, T1. In Step 7.2.1, the fixed vertex u1 of T1 is joined
with a new vertex v and this new vertex v is again joined with a chosen vertex u(which appear in the last level) of
the tree T1 that contained in T ∗ as its subtree. Thus, after the execution of Step 7.2.1, the vertex set of the graph
G1 is updated with a new vertex v with the label rs + f (u) + 1 and the edge set of G1 is also updated with two
new edges having the labels rs + f (u)+ 1 and rs + 1. (See Fig. 9.)

Since T ∗ is a tree, the unique cycle connecting the vertex u1 of T1 to the vertex u of T1 which contained in T ∗

followed by the edge (u, v) and the edge (v, u1) form a unique cycle of length l + 2 in G1. Thus, the graph G1
is an unicyclic graph. By Lemma 2.8, the labels of all the vertices of the tree T ∗ are distinct and the labels of all
the edges of the tree T ∗ are distinct. Therefore, after the execution of Step 7.2.1, the labels of the vertices of G1,
0, 1, 2, . . . , rs, rs+ f (u)+ 1 are all distinct and edge labels of the edges of G1, 1, 2, . . . , rs, rs+ 1, rs+ f (u)+ 1
are all distinct.

Claim 2. The graph G∗1 is a graceful unicyclic graph

After the complete execution of Step 7.2.1.1, the vertex set of the graph G∗1 is updated with f (u)−3 new pendant
vertices which are labeled with rs + 2, rs + 3, . . . , rs + f (u) and the edge set of G∗1 is updated with f (u) − 3
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Fig. 9. The structure of the graceful unicyclic graph G1.

new pendant edges which get the labels rs + 2, rs + 3, . . . , rs + f (u). Thus, after the complete execution of Step
7.2.1.1, the output graph G∗1 remains unicyclic.

After the complete execution of Step 7.2.1.1, in the output graph G∗1, the newly added vertices have distinct
labels rs + 2, rs + 3, . . . , rs + f (u) that are all different from the labels of all the vertices of G1 and the newly
added edges have distinct labels rs + 2, rs + 3, . . . , rs + f (u) that are all different from the labels of all the edges
of G1. Thus, the labels of all the vertices of G∗1 are distinct and the labels of all the edges of G∗1 are also distinct.
More precisely, the set of labels of the vertices of G∗1 is {0, 1, 2, . . . , rs+ f (u)+1}\{rs+1} and the set of labels of
the edges of G∗1 is {1, 2, . . . , rs + f (u)+ 1}. Then it follows from the definition of graceful labeling, the unicyclic
graph G∗1 is graceful.

Case 2.2: n ≥ 2

Claim 3. For every i , 2 ≤ i ≤ n, the graph G i is unicyclic

In this case the input forest has at least two components. After the execution of Step 7.2, the fixed vertex ui of
Ti that is contained in T ∗ as its subtree is joined with a new vertex v and this new vertex v is again joined with
a fixed vertex u1 of T1 that is contained in T ∗ as its subtree. Thus, the vertex set of the graph G i is updated with
a new vertex v with the label rs + f (ui ) + 1 and the edge set of G i is also updated with two new edges having
the labels rs + f (ui ) + 1 and rs + 1. Since T ∗ is a tree, the unique cycle connecting the vertex u1 of T1 to the
vertex ui of Ti which is contained in T ∗ followed by the edge (ui , v) and the edge (v, u1) form a unique cycle of
length i + 1 in G i . Thus, the graph G i is unicyclic. By Lemma 2.8, the labels of all the vertices of the tree T ∗

are distinct and the labels of all the edges of the tree T ∗ are distinct. Therefore, after the execution of Step 7.2.1,
the labels of the vertices of G i , 0, 1, 2, . . . , rs, rs + f (ui )+ 1 are all distinct and edge labels of the edges of G i ,
1, 2, . . . , rs, rs + 1, rs + f (ui )+ 1 are all distinct. (See Fig. 10.)

Claim 4. The graph G∗i is a unicyclic graceful graph, for every i , 2 ≤ i ≤ n

After the complete execution of Step 7.2.2.1, the vertex set of the graph G∗i is updated with f (ui ) − 3 new
pendant vertices which are labeled with rs + 2, rs + 3, . . . , rs + f (ui ) and the edge set of G∗i is updated with
f (ui )− 3 new pendant edges which get the labels rs + 2, rs + 3, . . . , rs + f (ui ). After the complete execution of
the Step 7.2.2.1, the output graph G∗i remains as unicyclic.

After the complete execution of Step 7.2.2.1, in the output graph G∗i , the newly added vertices have distinct
labels rs + 2, rs + 3, . . . , rs + f (ui ) that are all different from the labels of all the vertices of G i and the newly
added edges have distinct labels rs+ 2, rs+ 3, . . . , rs+ f (ui ) that are all different from the labels of all the edges
of G i . Thus, the labels of all the vertices of G∗i are distinct and the labels of all the edges of G∗i are also distinct.
More precisely, the set of labels of the vertices of G∗i is {0, 1, 2, . . . , rs + f (ui ) + 1} \ {rs + 1} and the set of
labels of the edges of G∗i is {1, 2, . . . , rs+ f (ui )+ 1}. Then it follows from the definition of graceful labeling, the
unicyclic graph G∗i is graceful. □
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Fig. 10. The structure of the graceful unicyclic graph Gi .

3. Discussion

From Theorem 2.9, we observe that the Embedding Algorithm generates distinct unicyclic graceful graphs and
each unicyclic graph contains the given forest F having n arbitrary trees Ti , for 1 ≤ i ≤ n as its subgraph. Also the
Embedding Algorithm generates a unicyclic graceful graph with a fixed cycle length n if the input forest contains
n − 1 components. All these unicyclic graphs obtained from Embedding Algorithm supports the Truszczynski’s
conjecture [6], that all unicyclic graphs except cycle C4n+1 and C4n+2 are graceful.

In this paper, we have embedded a given forest in a graceful tree as well as a graceful unicyclic graph. In this
direction of graceful graph embedding, it would be interesting to explore the following questions.

• Is it possible to embed, a given unicyclic graph in a graceful unicyclic graph?
• What would be the minimum number of additional edges required for the embedding of a unicyclic graph

into a graceful unicyclic graph?
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