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Abstract

In this paper we deal with the problem of labeling the vertices, edges and faces of a toroidal T m
n and Klein bottle K m

n grid
graphs with mn 4-sided faces by the consecutive integers from 1 up to |V (T m

n )| + |E(T m
n )| + |F(T m

n )| and |V (K m
n )| + |E(K m

n )| +
|F(K m

n )| in such a way that the label of a 4-sided face and the labels of the vertices and edges surrounding that face all together
add up to a weight of that face. These face-weights then form an arithmetic progression with common difference d. The paper
examines the existence of such labelings for several differences d.

Keywords: Toroidal grid; Klein bottle grid; Super d-antimagic labeling

1. Introduction and definitions

Let G ∈ G be a family of 4-regular graphs embedded on the surface of a torus or Klein bottle such that each of its
face is 4-sided. Let V (G) , E(G) and F(G) be the vertex set, the edge set and the face set of a graph G ∈ G, where v,
e and f denote the cardinality of vertex, edge and face set respectively.

A labeling of type (1, 1, 1) is a bijection f : V ∪ E ∪ F → {1, 2, . . . , v + e + f }. The weight of a 4-sided face
under a labeling of type (1, 1, 1) is the sum of labels carried by that face and the edges and vertices surrounding it.

A labeling of type (1, 1, 1) of graph G ∈ G is called d-antimagic if the set of weights of all 4-sided faces is
W = {a, a + d, a + 2d, . . . , a + ( f − 1)d} for some integers a > 0 and d ≥ 0, where f is the number of the 4-sided
faces.

The concept of the d-antimagic labeling of plane graphs was defined in [1]. The d-antimagic labeling of type
(1, 1, 1) for the generalized Petersen graph P(n, 2), hexagonal planar maps and grids can be found in [2,3] and [4],
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https://doi.org/10.1016/j.akcej.2018.09.005

https://doi.org/10.1016/j.akcej.2018.09.005

© 2018 Kalasalingam University. Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS
2020, VOL. 17, NO. 1, 109–117

http://www.elsevier.com/locate/akcej
https://doi.org/10.1016/j.akcej.2018.09.005
http://www.elsevier.com/locate/akcej
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:saadihsanbutt@ciitlahore.edu.pk
mailto:numantng@gmail.com
mailto:sharafat1.28@gmail.com
mailto:andrea.fenovcikova@tuke.sk
https://doi.org/10.1016/j.akcej.2018.09.005
http://creativecommons.org/licenses/by-nc-nd/4.0/


Please cite this article in press as: S.I. Butt, et al., Face antimagic labelings of toroidal and Klein bottle grid graphs, AKCE International Journal of Graphs and Combinatorics (2018),
https://doi.org/10.1016/j.akcej.2018.09.005.

Fig. 1. Toroidal grid graph.

respectively. Lin et al. in [5] showed that prism Dn , n ≥ 3, admits d-antimagic labeling of type (1, 1, 1) for
d ∈ {2, 4, 5, 6}. The d-antimagic labeling of type (1, 1, 1) for Dn and for several d ≥ 7 are described in [6].

In particular for d = 0, Lih in [7] calls such labeling magic and describes magic (0-antimagic) labeling of type
(1, 1, 0) for wheels, friendship graphs and prisms. Kathiresan and Gokulakrishnan [8] provided the 0-antimagic
labeling of type (1, 1, 1) for the families of planar graphs with 3-sided faces, 5-sided faces, 6-sided faces and one
external infinite face.

A d-antimagic labeling of type (1, 1, 1) is called super if the smallest possible labels appear on the vertices. The
super d-antimagic labelings of type (1, 1, 1) for antiprisms and for d ∈ {0, 1, 2, 3, 4, 5, 6} are described in [9] and for
disjoint union of prisms and for d ∈ {0, 1, 2, 3, 4, 5} are given in [10]. The existence of a super d-antimagic labeling
of type (1, 1, 1) for the plane graphs containing a special Hamilton path is examined in [11] and a super d-antimagic
labeling of type (1, 1, 1) for disconnected plane graphs is given in [12]. For more details (see [13]). Plane graphs can
also be embedded on other surfaces like torus, sphere, Klein bottle and projective plane (see [14]).

Motivated by the paper [15] we deal with the super d-antimagic labelings of type (1, 1, 1) for the toroidal grid and
we describe those labelings for several values of d .

Let L be a regular square lattice and Pm
n be an m × n quadrilateral section (with n squares on the top and bottom

sides and m squares on the lateral sides,) cut from the regular square lattice L. First identify 2 lateral sides of Pm
n to

form a cylinder, and finally identify the top and bottom sides of cylinder at their corresponding points; see Fig. 1.
Thus we get a toroidal grid graph T m

n with mn 4-sided faces, mn vertices, and 2mn edges. More about toroidal
grid can be found in ([16]).

In the case of Klein bottle grid first we identify lateral side of Pm
n to form a cylinder and then identify the top and

bottom sides of the cylinder in opposite direction. By this identification of Pm
n , we get Klein bottle grid graph K m

n
with mn 4-sided faces, mn vertices, and 2mn edges. see Fig. 2.

2. Necessary conditions

In this section, we shall find bound for a feasible value of d for the super d-antimagic labeling of type (1, 1, 1) for
the toroidal grid T m

n and Klein bottle grid K m
n .

Let g be such a labeling. We consider weights of 4-sided faces of the toroidal grid separately for a vertex labeling,
an edge labeling and a face labeling. For d-antimagic vertex labeling ϕ1 : V (T m

n )→ {1, 2, . . . , |V (T m
n )|} the minimum

possible weight of a 4-sided face is at least 1+ 2+ 3+ 4 and the maximum weight of a 4-sided face is no more than
4∑

i=1

(|V (T m
n )| − i + 1) = 4nm − 6.
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Fig. 2. Klein bottle grid graph.

Thus

a4 + ( f4 − 1)d ≤ 4nm − 6

and

d ≤ 4−
12

nm − 1
.

Lemma 1. For every toroidal grid T m
n , n ≥ 3, m ≥ 3, there is no d-antimagic vertex labeling with d ≥ 4.

Assume that T m
n has a d-antimagic edge labeling ϕ2 with |E(T m

n )| values from the set {|V (T m
n )| + 1, |V (T m

n )| +
2, . . . , |V (T m

n )|+|E(T m
n )|+|F(T m

n )|}. Then the minimum possible weight of 4-sided face is at least
∑4

i=1(|V (T m
n )|+

i) = 4mn + 10 and the maximum weight of 4-sided face is no more than
4∑

i=1

(
|V (T m

n )| + |E(T m
n )| + |F(T m

n )| + 1− i
)
= 16nm − 6.

Hence

a4 + ( f4 − 1)d ≤ 16nm − 6.

It is easy to see that

d ≤ 12−
4

nm − 1
.

Lemma 2. For every toroidal grid T m
n , n ≥ 3, m ≥ 3, there is no d-antimagic edge labeling with d ≥ 12.
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According to Lemma 1, Lemma 2 and the fact that under a d-antimagic face labeling ϕ3 with f4 values from the
set {|V (T m

n )| + 1, |V (T m
n )| + 2, . . . , |V (T m

n )| + |E(T m
n )| + |F(T m

n )|} the parameter d is no more than 3, we obtain the
following theorem.

Theorem 1. Let T m
n , n ≥ 3, m ≥ 3, be a toroidal grid graph which admits d1-antimagic vertex labeling ϕ1,

d2-antimagic edge labeling ϕ2 and d3-antimagic face labeling ϕ3. If the labelings ϕ1, ϕ2 and ϕ3 combine to a super
d-antimagic labeling of type (1, 1, 1) then the parameter d ≤ 17.

Remark 1. Similarly, we can estimate the bound d ≤ 17 for the Klein bottle grid graph.

3. d-antimagic labeling of toroidal grid graph

Let V (T m
n ) = {(xs, yt ) : 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 1} be the vertex set of the graph T m

n , E(T m
n ) =

{(xs, yt )(xs+1, yt ) : 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 1} ∪ {(xs, yt )(xs, yt+1) : 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 1} be the
edge set and F(T m

n ) = {zs,t : 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 1} be the face set with indices s and t taken modulo n
and m respectively. The face zs,t is bounded by edges (xs, yt )(xs+1, yt ), (xs+1, yt )(xs+1, yt+1), (xs, yt+1)(xs+1, yt+1),
(xs, yt )(xs, yt+1). (See Fig. 3).

In this section we will use a similar idea which was used for an investigation of d-antimagic labeling of generalized
prism in [17].

Lemma 3. Let T m
n n, m ≥ 3 be toroidal grid and let α1((xs, yt )) = {tn+1+ s, 0 ≤ s ≤ n−1, 0 ≤ t ≤ m−1} and

α1((xs, yt )(xs+1, yt )) = {mn + (m − t)n − s, 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 1}. If n ≥ 3 and m ≥ 3, then the partial
weights of zs,t under the labeling α1 for every t, 0 ≤ t ≤ m−2, constitute an arithmetic sequence of difference 2 and
for t = m − 1 the partial weights zs,m−1 constitute the sequence n(5m − 1)+ 4, n(5m − 1)+ 6, . . . , n(5m + 1)+ 2.

Proof. Under the labeling α1, for every t , 0 ≤ t ≤ m − 1, the partial weights of 4-sided faces zs,t are as follows:

wtα1 (zs,t ) = α1((xs, yt ))+ α1((xs+1, yt ))
+ α1((xs, yt+1))+ α1((xs+1, yt+1))
+ α1((xs, yt )(xs+1, yt ))+ α1((xs, yt+1)(xs+1, yt+1))

wtα1 (zs,t ) =

⎧⎪⎪⎨⎪⎪⎩
n(4m + 1+ 2t)+ 6+ 2s, for 0 ≤ s ≤ n − 2, 0 ≤ t ≤ m − 2
n(4m + 1+ 2t)+ 4, for s = n − 1, 0 ≤ t ≤ m − 2
n(5m − 1)+ 6+ 2s, for 0 ≤ s ≤ n − 2, t = m − 1
n(5m − 1)+ 4, for s = n − 1, t = m − 1.

(1)

This shows that for every t, s, 0 ≤ t ≤ m − 1, 0 ≤ s ≤ n − 1, the partial weights of zs,t form the arithmetic sequence
with difference 2 from n(4m+1)+4 up to n(6m−1)+2 and for every s, 0 ≤ s ≤ n−1, the partial weights of zs,m−1
form the arithmetic sequence with difference 2 from n(5m − 1)+ 4 up to n(5m + 1)+ 2. □

Lemma 4. Let T m
n n, m ≥ 3 be toroidal grid and let for every t, 0 ≤ t ≤ m − 1

β1((xs, yt )(xs, yt+1)) =
{

n(3m − t)− 1− s, for 0 ≤ s ≤ n − 2
n(3m − t), for s = n − 1

β1(zs,t ) =

⎧⎨⎩n(3m + t)+ 3+ s, for 0 ≤ s ≤ n − 3
n(3m + t)+ 1, for s = n − 2
n(3m + t)+ 2, for s = n − 1.

If n ≥ 3 and m ≥ 3, then under the labeling β1 the partial weights of zs,t , for every t, 0 ≤ t ≤ m − 1, form
an arithmetic sequence of difference 1.

Proof. The partial weights of the 4-sided faces zs,t under the labeling β1, for every t , 0 ≤ t ≤ m − 1, admit values

wtβ1 (zs,t ) = β1((xs, yt )(xs, yt+1))+ β1(zs,t )+ β1((xs+1, yt )(xs+1, yt+1))
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Please cite this article in press as: S.I. Butt, et al., Face antimagic labelings of toroidal and Klein bottle grid graphs, AKCE International Journal of Graphs and Combinatorics (2018),
https://doi.org/10.1016/j.akcej.2018.09.005.

Fig. 3. Toroidal grid identification.

wtβ1 (zs,t ) =
{

n(9m − t)− s, for 0 ≤ s ≤ n − 2, 0 ≤ t ≤ m − 1
n(9m − t)+ 1, for s = n − 1, 0 ≤ t ≤ m − 1.

(2)

This shows that the partial weights of zs,t form the arithmetic sequence with difference 1 from 8mn + 2 up to
9mn + 1. □

Lemma 5. Let for every s, 0 ≤ s ≤ n − 1

β2((xs, yt )(xs, yt+1)) =
{

n(2m + t + 1)+ 1+ s, for 0 ≤ t ≤ m − 2
2mn + 1+ s, for t = m − 1

β2(zs,t ) = n(4m − t)− s, for 0 ≤ t ≤ m − 1.

If n ≥ 3 and m ≥ 3, then the partial weights of zs,t under the labeling β2, for every t, 0 ≤ t ≤ m − 1 constitute
an arithmetic sequence of difference 1.

Proof. The partial weights of the 4-sided faces zs,t under the labeling β2, for every t , 0 ≤ t ≤ m − 1, attain values
wtβ2 (zs,t ) = β2((xs, yt )(xs, yt+1))+ β2(zs,t )+ β2((xs+1, yt )(xs+1, yt+1))

wtβ2 (zs,t ) =

⎧⎪⎪⎨⎪⎪⎩
n(8m + 2+ t)+ 3+ s, for 0 ≤ s ≤ n − 2, 0 ≤ t ≤ m − 2
n(8m + 2+ t)+ 2, for s = n − 1, 0 ≤ t ≤ m − 2
n(7m + 1)+ 3+ s, for 0 ≤ s ≤ n − 2, t = m − 1
n(7m + 1)+ 2, for s = n − 1, t = m − 1.

(3)

Thus, under the labeling β2 the partial weights of 4-sided faces zs,k , 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 2, constitute the
arithmetic sequence of difference 1 from n(8m+ 2)+ 2 up to n(9m+ 1)+ 1 and for 0 ≤ s ≤ n− 1 the partial weights
zs,m−1 attain consecutive values n(7m + 1)+ 2, n(7m + 1)+ 3, . . . , n(7m + 2)+ 1. □

Theorem 2. For n ≥ 3 and m ≥ 3, the toroidal grid graph T m
n has a super 1-antimagic labeling and a super

3-antimagic labeling of type (1, 1, 1).
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Proof. Case d=1.
It follows from Lemmas 3 and 4 that under the labeling α1 and β1 the weights of all 4-sided faces are

wt(zs,t ) = wtα1 (zs,t )+ wtβ1 (zs,t )

=

⎧⎪⎪⎨⎪⎪⎩
n(13m + 1+ t)+ 6+ s, for 0 ≤ s ≤ n − 2, 0 ≤ t ≤ m − 2
n(13m + 1+ t)+ 5, for s = n − 1, 0 ≤ t ≤ m − 2
13mn + 6+ s, for 0 ≤ s ≤ n − 2, t = m − 1
13mn + 5, for s = n − 1, t = m − 1.

This shows that the weights of the 4-sided faces form an arithmetic sequence with difference 1 starts from 13mn + 5
up to 14mn + 4.

Case d=3.
Taking into account Lemmas 3 and 5 we can see that under the labeling α1 and β2 the weights of 4-sided faces are

wt(zs,t ) = wtα1 (zs,t )+ wtβ2 (zs,t )

=

⎧⎪⎪⎨⎪⎪⎩
n(12m + 3+ 3t)+ 9+ 3s, for 0 ≤ s ≤ n − 2, 0 ≤ t ≤ m − 2
n(12m + 3+ 3t)+ 6, for s = n − 1, 0 ≤ t ≤ m − 2
12mn + 9+ 3s, for 0 ≤ s ≤ n − 2, t = m − 1
12mn + 6, for s = n − 1, t = m − 1.

Thus the weights of all 4-sided faces constitute an arithmetic sequence of the difference 3, namely 12mn + 6 up to
15mn + 3. □

4. d-antimagic labeling of Klein bottle grid graph

Let V (K m
n ) = {(xs, yt ) : 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 1} be the vertex set, E(K m

n ) = {(xs, yt )(xs+1, yt ) : 0 ≤
s ≤ n − 1, 0 ≤ t ≤ m − 1} ∪ {(xs, yt )(xs, yt+1) : 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 2} ∪ {(xs, ym−1)(xn−s, y0) :
0 ≤ s ≤ n − 1} ∪ {(x0, ym−1)(x0, y0)} be the edge set and F(K m

n ) = {zs,t : 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 1}
be the face set. The face zs,t is bounded by edges (xs, yt )(xs+1, yt ), (xs+1, yt )(xs+1, yt+1), (xs, yt+1)(xs+1, yt+1),
(xs, yt )(xs, yt+1), for 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 2 and zs,m−1 is bounded by edges (xs, ym−1)(xs+1, ym−1),
(xs, ym−1)(xn−s, y0), (xn−s, y0)(xn−(s+1), y0), (xs+1, ym−1)(xn−(s+1), y0) for 1 ≤ s ≤ n − 1 and z0,m−1 is bounded by
edges (x0, ym−1)(x1 ym−1), (x1, ym−1)(xn−1 y0), (x0, y0)(xn−1 y0), (x0, ym−1)(x0 y0), (see Fig. 4):

Lemma 6. Let λ1((xs, yt )) = {tn + 1 + s, 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 1} and λ1((xs, yt )(xs+1, yt )) =
{n(2m− t)− s, 0 ≤ s ≤ n− 1, 0 ≤ t ≤ m− 1}. If n ≥ 3 and m ≥ 3, then under the labeling λ1 the partial weights
of zs,t for every t, s, 0 ≤ t ≤ m − 2, 0 ≤ s ≤ n − 1, constitute an arithmetic sequence of difference 2 and the partial
weights of zs,m−1 for 1 ≤ s ≤ n − 2 are 5mn + 5 and for z0,m−1 and zn−1,m−1 are n(5m − 1)+ 5.

Proof. Under the labeling λ1, for every t , 0 ≤ t ≤ m − 2, the partial weights of 4-sided faces zs,t are as follows:

wtλ1 (zs,t ) = λ1((xs, yt ))+ λ1((xs+1, yt ))
+ λ1((xs, yt+1))+ λ1((xs+1, yt+1))
+ λ1((xs, yt )(xs+1, yt ))+ λ1((xs, yt+1)(xs+1, yt+1))

wtλ1 (zs,t ) =
{

n(4m + 2t + 1)+ 6+ 2s, for 0 ≤ s ≤ n − 2, 0 ≤ t ≤ m − 2
n(4m + 2t + 1)+ 4, for s = n − 1, 0 ≤ t ≤ m − 2.

(4)

This shows that for every t and s, 0 ≤ t ≤ m − 2, 0 ≤ s ≤ n − 1, the partial weights of 4-sided faces zs,t form the
arithmetic sequence with difference 2 from n(4m+ 1)+ 4 up to n(6m− 1)+ 2. For 1 ≤ s ≤ n− 2 the partial weights
of zs,m−1 are 5mn + 5 and wtλ1 (z0,m−1) = wtλ1 (zn−1,m−1) = n(5m − 1)+ 5. □

Lemma 7. Let

µ1((xs, yt )(xs, yt+1)) =
{

n(3m − t)− s − 1, for 0 ≤ s ≤ n − 2, 0 ≤ t ≤ m − 2
n(3m − t), for s = n − 1, 0 ≤ t ≤ m − 2
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Fig. 4. Klein bottle grid identification.

µ1((xs, ym−1)(xn−s, y0)) =
{

n(2m + 1)− s − 1, for 0 ≤ s ≤ n − 2
n(2m + 1), for s = n − 1

µ1(zs,t ) =
{

n(3m + t)+ 3+ s, for 0 ≤ s ≤ n − 3, 0 ≤ t ≤ m − 2
n(3m + t − 1)+ 3+ s, for n − 2 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 2

µ1(zs,m−1) =
{

n(4m − 1)+ 3+ s, for 0 ≤ s ≤ n − 3
n(4m − 2)+ 3+ s, for n − 2 ≤ s ≤ n − 1.

If n ≥ 3 and m ≥ 3, then the partial weights of zs,t under the labeling µ1 for every t and s, 0 ≤ t ≤ m − 1,
0 ≤ s ≤ n − 1, constitute an arithmetic sequence of difference 1.

Proof. Under the given labeling µ1, for every t , 0 ≤ t ≤ m − 2, the partial weights of the 4-sided faces, admit the
following values

wtµ1 (zs,t ) = µ1((xs, yt )(xs, yt+1))+ µ1(zs,t )+ µ1((xs+1, yt )(xs+1, yt+1))

wtµ1 (zs,t ) =
{

n(9m − t)+ 1, for s = n − 1, 0 ≤ t ≤ m − 2
n(9m − t)− s, for 0 ≤ s ≤ n − 2, 0 ≤ t ≤ m − 2 (5)

wtµ1 (zs,m−1) =
{

n(8m + 1)+ 1, for s = n − 1
n(8m + 1)− s, for 0 ≤ s ≤ n − 2.

(6)

This shows that the partial weights of 4-sided faces form the arithmetic progression with difference 1 with values from
8mn + 2 up to 9mn + 1. □

Lemma 8. Let µ2((xs, yt )(xs, yt+1)) =

n(2m + t + 1)+ s + 1, for 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 2
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µ2(zs,t ) = n(4m − t)− s, for 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 2.

If n ≥ 3 and m ≥ 3, then the partial weights of zs,t under the labeling µ2, for every t, 0 ≤ t ≤ m − 2, constitute
an arithmetic sequence of difference 1.

Proof. Under the labeling µ2, for every t , 0 ≤ t ≤ m − 2, the partial weights of the 4-sided face attain values
wtµ2 (zs,t ) = µ2((xs, yt )(xs, yt+1))+ µ2(zs,t )+ µ2((xs+1, yt )(xs+1, yt+1)).

wtµ2 (zs,t ) =
{

n(8m + 2+ t)+ s + 3, for 0 ≤ s ≤ n − 2, 0 ≤ t ≤ m − 2
n(8m + 2+ t)+ 2, for s = n − 1, 0 ≤ t ≤ m − 2.

(7)

Thus partial weights of 4-sided faces under the labeling µ2, constitute the arithmetic sequence of difference 1. □

Lemma 9. Let µ2((xs, ym−1)(xn−s, y0)) ={
n(2m + 1)− s + 1, for 1 ≤ s ≤ n − 1, t = m − 1
2mn + 1, for s = 0, t = m − 1

µ2(zs,m−1) =

n(3m + 1)− s, for 0 ≤ s ≤ n − 1.

If n ≥ 3 and m ≥ 3, then the partial weights of zs,m−1 under the labeling µ2, constitute an arithmetic sequence of
difference 1.

Proof. Under the labeling µ2 defined for 0 ≤ t ≤ m − 2 in Lemma 8 and for t = m − 1 defined above, the partial
weights of the 4-sided face attain values

wtµ2 (zs,m−1) =

µ2((xs, ym−1)(xn−s, y0))+ µ2(zs,m−1)+ µ2((xs+1, ym−1)(xn−(s+1), y0)).

wtµ2 (zs,m−1) =
{

n(7m − 3s + 3)+ 1, for 1 ≤ s ≤ n − 1
n(7m + 2)+ 1, for s = 0.

(8)

Thus weights of 4-sided faces under the labeling µ2, constitute the arithmetic sequence of difference 1. □

Theorem 3. For n ≥ 3 and m ≥ 3, the Klein bottle grid graph K m
n admits a super 1-antimagic labeling and a super

3-antimagic labeling of type (1, 1, 1).

Proof. Case d=1. It follows from Lemmas 6 and 7 that under the labeling λ1 and µ1 the weights of all 4-sided faces
are

wt(zs,t ) = wtλ1 (zs,t )+ wtµ1 (zs,t )

=

⎧⎪⎪⎨⎪⎪⎩
n(13m + t + 1)+ s + 6, for 0 ≤ s ≤ n − 2, 0 ≤ t ≤ m − 2
n(13m + t + 1)+ 5, for s = n − 1, 0 ≤ t ≤ m − 2
n(13m + 1)+ 5− s, for 1 ≤ s ≤ n − 1, t = m − 1
13mn + 5, for s = 0, t = m − 1.

This shows that the weights of the 4-sided faces form an arithmetic sequence with difference 1 with values from
13mn + 5 up to 14mn + 4.

Case d=3.
Taking into account Lemmas 6, 8 and 9 along with the following swapping

• λ1((xn−3, ym−1))←→ λ1((xn−1, ym−1))
• µ2((zn−1,m−1))←→ µ2((zn−3,m−1))
• µ2((zn−2,m−1))←→ µ2((z4,m−1))
• µ2((zn−2,m−2))←→ µ2((z4,m−2))
• µ2((zn−1,m−2))←→ µ2((zn−3,m−2))
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we can see that under the labeling λ1 and µ2 the weights of 4-sided faces are

wt(zs,t ) = wtλ1 (zs,t )+ wtµ2 (zs,t )

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n(12m + 3t + 3s + 3)+ 9, for 0 ≤ s ≤ n − 2, 0 ≤ t ≤ m − 2
n(12m + 3t + 3)+ 6, for s = n − 1, 0 ≤ t ≤ m − 2
n(12m + 3)− 3s + 6, for 1 ≤ s ≤ n − 2, t = m − 1
n(12m + 1)+ 1, for s = 0, t = m − 1
n(12m + 1)− 2, for s = n − 1, t = m − 1.

Finally the weights of the all 4-sided faces of given graph form an arithmetic progression with the common difference
3, starting from 12mn + 6 up to 15mn + 3. □

5. Conclusion

In this paper we examine the existence of super d-antimagic labeling of type (1, 1, 1) for toroidal grid graph T m
n

and Klein bottle grid graph K m
n . We show that T m

n and K m
n admit a super d-antimagic labeling of type (1, 1, 1) for

d = 1,3, for all n, m ≥ 3. However we tried to describe a super d-antimagic labeling of type (1, 1, 1) of graphs T m
n

and K m
n for d = 0, 2, 4 but without success.

Therefore we conclude the paper with the following open problem.

Open problem 1. For the toroidal grid T m
n and Klein bottle grid Km

n , n, m ≥ 3, determine whether there is a super
d-antimagic labeling of type (1, 1, 1) for d = 0, 2, 4.
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