Face antimagic labelings of toroidal and Klein bottle grid graphs

Saad Ihsan Butt, Muhammad Numan, Sharafat Ali \& Andrea SemaničováFeňovčíková

To cite this article: Saad Ihsan Butt, Muhammad Numan, Sharafat Ali \& Andrea SemaničováFeňovčíková (2020) Face antimagic labelings of toroidal and Klein bottle grid graphs, AKCE International Journal of Graphs and Combinatorics, 17:1, 109-117, DOI: 10.1016/ j.akcej.2018.09.005

To link to this article: https://doi.org/10.1016/j.akcej.2018.09.005

© 2018 Kalasalingam University. Published with license by Taylor \& Francis Group, LLC.

Published online: 01 Jun 2020.

Submit your article to this journal

Article views: 75

View related articles

View Crossmark data ${ }^{\top}$

International
Journal of
Graphs and
Combinatorics

Face antimagic labelings of toroidal and Klein bottle grid graphs

Saad Ihsan Butt ${ }^{\text {a }}$, Muhammad Numan ${ }^{\mathrm{b}, *}$, Sharafat $\mathrm{Ali}^{\text {a }}$, Andrea Semaničová-Feňovčíková ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics. COMSATS University Islamabad, Lahore Campus, Pakistan
${ }^{\mathrm{b}}$ Department of Mathematics. COMSATS University Islamabad, Attock Campus, Pakistan
${ }^{\text {c }}$ Department of Appl. Mathematics and Informatics, Technical University, Košice, Slovak Republic

Received 5 June 2018; received in revised form 18 September 2018; accepted 18 September 2018

Abstract

In this paper we deal with the problem of labeling the vertices, edges and faces of a toroidal T_{n}^{m} and Klein bottle K_{n}^{m} grid graphs with $m n 4$-sided faces by the consecutive integers from 1 up to $\left|V\left(T_{n}^{m}\right)\right|+\left|E\left(T_{n}^{m}\right)\right|+\left|F\left(T_{n}^{m}\right)\right|$ and $\left|V\left(K_{n}^{m}\right)\right|+\left|E\left(K_{n}^{m}\right)\right|+$ $\left|F\left(K_{n}^{m}\right)\right|$ in such a way that the label of a 4 -sided face and the labels of the vertices and edges surrounding that face all together add up to a weight of that face. These face-weights then form an arithmetic progression with common difference d. The paper examines the existence of such labelings for several differences d.

Keywords: Toroidal grid; Klein bottle grid; Super d-antimagic labeling

1. Introduction and definitions

Let $G \in \mathbf{G}$ be a family of 4-regular graphs embedded on the surface of a torus or Klein bottle such that each of its face is 4 -sided. Let $V(G), E(G)$ and $F(G)$ be the vertex set, the edge set and the face set of a graph $G \in \mathbf{G}$, where v, e and f denote the cardinality of vertex, edge and face set respectively.

A labeling of type $(1,1,1)$ is a bijection $f: V \cup E \cup F \rightarrow\{1,2, \ldots, v+e+f\}$. The weight of a 4 -sided face under a labeling of type $(1,1,1)$ is the sum of labels carried by that face and the edges and vertices surrounding it.

A labeling of type $(1,1,1)$ of graph $G \in \mathbf{G}$ is called d-antimagic if the set of weights of all 4 -sided faces is $W=\{a, a+d, a+2 d, \ldots, a+(f-1) d\}$ for some integers $a>0$ and $d \geq 0$, where f is the number of the 4 -sided faces.

The concept of the d-antimagic labeling of plane graphs was defined in [1]. The d-antimagic labeling of type $(1,1,1)$ for the generalized Petersen graph $P(n, 2)$, hexagonal planar maps and grids can be found in [2,3] and [4],

[^0]

Fig. 1. Toroidal grid graph.
respectively. Lin et al. in [5] showed that prism $D_{n}, n \geq 3$, admits d-antimagic labeling of type $(1,1,1)$ for $d \in\{2,4,5,6\}$. The d-antimagic labeling of type $(1,1,1)$ for D_{n} and for several $d \geq 7$ are described in [6].

In particular for $d=0$, Lih in [7] calls such labeling magic and describes magic (0 -antimagic) labeling of type $(1,1,0)$ for wheels, friendship graphs and prisms. Kathiresan and Gokulakrishnan [8] provided the 0 -antimagic labeling of type $(1,1,1)$ for the families of planar graphs with 3 -sided faces, 5 -sided faces, 6 -sided faces and one external infinite face.

A d-antimagic labeling of type $(1,1,1)$ is called super if the smallest possible labels appear on the vertices. The super d-antimagic labelings of type $(1,1,1)$ for antiprisms and for $d \in\{0,1,2,3,4,5,6\}$ are described in [9] and for disjoint union of prisms and for $d \in\{0,1,2,3,4,5\}$ are given in [10]. The existence of a super d-antimagic labeling of type $(1,1,1)$ for the plane graphs containing a special Hamilton path is examined in [11] and a super d-antimagic labeling of type $(1,1,1)$ for disconnected plane graphs is given in [12]. For more details (see [13]). Plane graphs can also be embedded on other surfaces like torus, sphere, Klein bottle and projective plane (see [14]).

Motivated by the paper [15] we deal with the super d-antimagic labelings of type $(1,1,1)$ for the toroidal grid and we describe those labelings for several values of d.

Let L be a regular square lattice and P_{n}^{m} be an $m \times n$ quadrilateral section (with n squares on the top and bottom sides and m squares on the lateral sides,) cut from the regular square lattice L. First identify 2 lateral sides of P_{n}^{m} to form a cylinder, and finally identify the top and bottom sides of cylinder at their corresponding points; see Fig. 1.

Thus we get a toroidal grid graph T_{n}^{m} with $m n 4$-sided faces, $m n$ vertices, and $2 m n$ edges. More about toroidal grid can be found in ([16]).

In the case of Klein bottle grid first we identify lateral side of P_{n}^{m} to form a cylinder and then identify the top and bottom sides of the cylinder in opposite direction. By this identification of P_{n}^{m}, we get Klein bottle grid graph K_{n}^{m} with $m n 4$-sided faces, $m n$ vertices, and $2 m n$ edges. see Fig. 2.

2. Necessary conditions

In this section, we shall find bound for a feasible value of d for the super d-antimagic labeling of type $(1,1,1)$ for the toroidal grid T_{n}^{m} and Klein bottle grid K_{n}^{m}.

Let g be such a labeling. We consider weights of 4 -sided faces of the toroidal grid separately for a vertex labeling, an edge labeling and a face labeling. For d-antimagic vertex labeling $\varphi_{1}: V\left(T_{n}^{m}\right) \rightarrow\left\{1,2, \ldots,\left|V\left(T_{n}^{m}\right)\right|\right\}$ the minimum possible weight of a 4 -sided face is at least $1+2+3+4$ and the maximum weight of a 4 -sided face is no more than

$$
\sum_{i=1}^{4}\left(\left|V\left(T_{n}^{m}\right)\right|-i+1\right)=4 n m-6
$$

Fig. 2. Klein bottle grid graph.

Thus

$$
a_{4}+\left(f_{4}-1\right) d \leq 4 n m-6
$$

and

$$
d \leq 4-\frac{12}{n m-1}
$$

Lemma 1. For every toroidal grid $T_{n}^{m}, n \geq 3, m \geq 3$, there is no d-antimagic vertex labeling with $d \geq 4$.
Assume that T_{n}^{m} has a d-antimagic edge labeling φ_{2} with $\left|E\left(T_{n}^{m}\right)\right|$ values from the set $\left\{\left|V\left(T_{n}^{m}\right)\right|+1,\left|V\left(T_{n}^{m}\right)\right|+\right.$ $\left.2, \ldots,\left|V\left(T_{n}^{m}\right)\right|+\left|E\left(T_{n}^{m}\right)\right|+\left|F\left(T_{n}^{m}\right)\right|\right\}$. Then the minimum possible weight of 4-sided face is at least $\sum_{i=1}^{4}\left(\left|V\left(T_{n}^{m}\right)\right|+\right.$ $i)=4 m n+10$ and the maximum weight of 4 -sided face is no more than

$$
\sum_{i=1}^{4}\left(\left|V\left(T_{n}^{m}\right)\right|+\left|E\left(T_{n}^{m}\right)\right|+\left|F\left(T_{n}^{m}\right)\right|+1-i\right)=16 n m-6
$$

Hence

$$
a_{4}+\left(f_{4}-1\right) d \leq 16 \mathrm{~nm}-6
$$

It is easy to see that

$$
d \leq 12-\frac{4}{n m-1}
$$

Lemma 2. For every toroidal grid $T_{n}^{m}, n \geq 3, m \geq 3$, there is no d-antimagic edge labeling with $d \geq 12$.

According to Lemma 1, Lemma 2 and the fact that under a d-antimagic face labeling φ_{3} with f_{4} values from the set $\left\{\left|V\left(T_{n}^{m}\right)\right|+1,\left|V\left(T_{n}^{m}\right)\right|+2, \ldots,\left|V\left(T_{n}^{m}\right)\right|+\left|E\left(T_{n}^{m}\right)\right|+\left|F\left(T_{n}^{m}\right)\right|\right\}$ the parameter d is no more than 3, we obtain the following theorem.

Theorem 1. Let $T_{n}^{m}, n \geq 3, m \geq 3$, be a toroidal grid graph which admits d_{1}-antimagic vertex labeling φ_{1}, d_{2}-antimagic edge labeling φ_{2} and d_{3}-antimagic face labeling φ_{3}. If the labelings φ_{1}, φ_{2} and φ_{3} combine to a super d-antimagic labeling of type $(1,1,1)$ then the parameter $d \leq 17$.

Remark 1. Similarly, we can estimate the bound $d \leq 17$ for the Klein bottle grid graph.

3. \boldsymbol{d}-antimagic labeling of toroidal grid graph

Let $V\left(T_{n}^{m}\right)=\left\{\left(x_{s}, y_{t}\right): 0 \leq s \leq n-1,0 \leq t \leq m-1\right\}$ be the vertex set of the graph $T_{n}^{m}, E\left(T_{n}^{m}\right)=$ $\left\{\left(x_{s}, y_{t}\right)\left(x_{s+1}, y_{t}\right): 0 \leq s \leq n-1,0 \leq t \leq m-1\right\} \cup\left\{\left(x_{s}, y_{t}\right)\left(x_{s}, y_{t+1}\right): 0 \leq s \leq n-1,0 \leq t \leq m-1\right\}$ be the edge set and $F\left(T_{n}^{m}\right)=\left\{z_{s, t}: 0 \leq s \leq n-1,0 \leq t \leq m-1\right\}$ be the face set with indices s and t taken modulo n and m respectively. The face $z_{s, t}$ is bounded by edges $\left(x_{s}, y_{t}\right)\left(x_{s+1}, y_{t}\right),\left(x_{s+1}, y_{t}\right)\left(x_{s+1}, y_{t+1}\right),\left(x_{s}, y_{t+1}\right)\left(x_{s+1}, y_{t+1}\right)$, $\left(x_{s}, y_{t}\right)\left(x_{s}, y_{t+1}\right)$. (See Fig. 3).

In this section we will use a similar idea which was used for an investigation of d-antimagic labeling of generalized prism in [17].

Lemma 3. Let $T_{n}^{m} n, m \geq 3$ be toroidal grid and let $\alpha_{1}\left(\left(x_{s}, y_{t}\right)\right)=\{t n+1+s, \quad 0 \leq s \leq n-1,0 \leq t \leq m-1\}$ and $\alpha_{1}\left(\left(x_{s}, y_{t}\right)\left(x_{s+1}, y_{t}\right)\right)=\{m n+(m-t) n-s, \quad 0 \leq s \leq n-1,0 \leq t \leq m-1\}$. If $n \geq 3$ and $m \geq 3$, then the partial weights of $z_{s, t}$ under the labeling α_{1} for every $t, 0 \leq t \leq m-2$, constitute an arithmetic sequence of difference 2 and for $t=m-1$ the partial weights $z_{s, m-1}$ constitute the sequence $n(5 m-1)+4, n(5 m-1)+6, \ldots, n(5 m+1)+2$.

Proof. Under the labeling α_{1}, for every $t, 0 \leq t \leq m-1$, the partial weights of 4 -sided faces $z_{s, t}$ are as follows:

$$
\begin{align*}
w t_{\alpha_{1}}\left(z_{s, t}\right) & =\alpha_{1}\left(\left(x_{s}, y_{t}\right)\right)+\alpha_{1}\left(\left(x_{s+1}, y_{t}\right)\right) \\
& +\alpha_{1}\left(\left(x_{s}, y_{t+1}\right)\right)+\alpha_{1}\left(\left(x_{s+1}, y_{t+1}\right)\right) \\
& +\alpha_{1}\left(\left(x_{s}, y_{t}\right)\left(x_{s+1}, y_{t}\right)\right)+\alpha_{1}\left(\left(x_{s}, y_{t+1}\right)\left(x_{s+1}, y_{t+1}\right)\right) \\
w t_{\alpha_{1}}\left(z_{s, t}\right)= & \begin{cases}n(4 m+1+2 t)+6+2 s, & \text { for } 0 \leq s \leq n-2, \quad 0 \leq t \leq m-2 \\
n(4 m+1+2 t)+4, & \text { for } s=n-1,0 \leq t \leq m-2 \\
n(5 m-1)+6+2 s, & \text { for } 0 \leq s \leq n-2, \quad t=m-1 \\
n(5 m-1)+4, & \text { for } s=n-1, t=m-1 .\end{cases} \tag{1}
\end{align*}
$$

This shows that for every $t, s, 0 \leq t \leq m-1,0 \leq s \leq n-1$, the partial weights of $z_{s, t}$ form the arithmetic sequence with difference 2 from $n(4 m+1)+4$ up to $n(6 m-1)+2$ and for every $s, 0 \leq s \leq n-1$, the partial weights of $z_{s, m-1}$ form the arithmetic sequence with difference 2 from $n(5 m-1)+4$ up to $n(5 m+1)+2$.

Lemma 4. Let $T_{n}^{m} n, m \geq 3$ be toroidal grid and let for every $t, 0 \leq t \leq m-1$

$$
\begin{aligned}
& \beta_{1}\left(\left(x_{s}, y_{t}\right)\left(x_{s}, y_{t+1}\right)\right)= \begin{cases}n(3 m-t)-1-s, & \text { for } 0 \leq s \leq n-2 \\
n(3 m-t), & \text { for } s=n-1\end{cases} \\
& \beta_{1}\left(z_{s, t}\right)= \begin{cases}n(3 m+t)+3+s, & \text { for } 0 \leq s \leq n-3 \\
n(3 m+t)+1, & \text { for } s=n-2 \\
n(3 m+t)+2, & \text { for } s=n-1 .\end{cases}
\end{aligned}
$$

If $n \geq 3$ and $m \geq 3$, then under the labeling β_{1} the partial weights of $z_{s, t}$, for every $t, 0 \leq t \leq m-1$, form an arithmetic sequence of difference 1 .

Proof. The partial weights of the 4-sided faces $z_{s, t}$ under the labeling β_{1}, for every $t, 0 \leq t \leq m-1$, admit values

$$
w t_{\beta_{1}}\left(z_{s, t}\right)=\beta_{1}\left(\left(x_{s}, y_{t}\right)\left(x_{s}, y_{t+1}\right)\right)+\beta_{1}\left(z_{s, t}\right)+\beta_{1}\left(\left(x_{s+1}, y_{t}\right)\left(x_{s+1}, y_{t+1}\right)\right)
$$

Fig. 3. Toroidal grid identification.

$$
w t_{\beta_{1}}\left(z_{s, t}\right)= \begin{cases}n(9 m-t)-s, & \text { for } 0 \leq s \leq n-2, \quad 0 \leq t \leq m-1 \tag{2}\\ n(9 m-t)+1, & \text { for } s=n-1, \quad 0 \leq t \leq m-1 .\end{cases}
$$

This shows that the partial weights of $z_{s, t}$ form the arithmetic sequence with difference 1 from $8 m n+2$ up to $9 m n+1$.

Lemma 5. Let for every $s, 0 \leq s \leq n-1$

$$
\begin{aligned}
& \beta_{2}\left(\left(x_{s}, y_{t}\right)\left(x_{s}, y_{t+1}\right)\right)= \begin{cases}n(2 m+t+1)+1+s, & \text { for } 0 \leq t \leq m-2 \\
2 m n+1+s, & \text { for } t=m-1\end{cases} \\
& \beta_{2}\left(z_{s, t}\right)=n(4 m-t)-s, \text { for } 0 \leq t \leq m-1 .
\end{aligned}
$$

If $n \geq 3$ and $m \geq 3$, then the partial weights of $z_{s, t}$ under the labeling β_{2}, for every $t, 0 \leq t \leq m-1$ constitute an arithmetic sequence of difference 1 .

Proof. The partial weights of the 4 -sided faces $z_{s, t}$ under the labeling β_{2}, for every $t, 0 \leq t \leq m-1$, attain values

$$
\begin{align*}
& w t_{\beta_{2}}\left(z_{s, t}\right)=\beta_{2}\left(\left(x_{s}, y_{t}\right)\left(x_{s}, y_{t+1}\right)\right)+\beta_{2}\left(z_{s, t}\right)+\beta_{2}\left(\left(x_{s+1}, y_{t}\right)\left(x_{s+1}, y_{t+1}\right)\right) \\
& w t_{\beta_{2}}\left(z_{s, t}\right)= \begin{cases}n(8 m+2+t)+3+s, & \text { for } 0 \leq s \leq n-2,0 \leq t \leq m-2 \\
n(8 m+2+t)+2, & \text { for } s=n-1,0 \leq t \leq m-2 \\
n(7 m+1)+3+s, & \text { for } 0 \leq s \leq n-2, t=m-1 \\
n(7 m+1)+2, & \text { for } s=n-1, t=m-1 .\end{cases} \tag{3}
\end{align*}
$$

Thus, under the labeling β_{2} the partial weights of 4 -sided faces $z_{s, k}, 0 \leq s \leq n-1,0 \leq t \leq m-2$, constitute the arithmetic sequence of difference 1 from $n(8 m+2)+2$ up to $n(9 m+1)+1$ and for $0 \leq s \leq n-1$ the partial weights $z_{s, m-1}$ attain consecutive values $n(7 m+1)+2, n(7 m+1)+3, \ldots, n(7 m+2)+1$.

Theorem 2. For $n \geq 3$ and $m \geq 3$, the toroidal grid graph T_{n}^{m} has a super 1-antimagic labeling and a super 3 -antimagic labeling of type ($1,1,1$).

Proof. Case $d=1$.
It follows from Lemmas 3 and 4 that under the labeling α_{1} and β_{1} the weights of all 4 -sided faces are

$$
\begin{aligned}
w t\left(z_{s, t}\right) & =w t_{\alpha_{1}}\left(z_{s, t}\right)+w t_{\beta_{1}}\left(z_{s, t}\right) \\
& = \begin{cases}n(13 m+1+t)+6+s, & \text { for } 0 \leq s \leq n-2, \quad 0 \leq t \leq m-2 \\
n(13 m+1+t)+5, & \text { for } s=n-1,0 \leq t \leq m-2 \\
13 m n+6+s, & \text { for } 0 \leq s \leq n-2, \quad t=m-1 \\
13 m n+5, & \text { for } s=n-1, t=m-1 .\end{cases}
\end{aligned}
$$

This shows that the weights of the 4 -sided faces form an arithmetic sequence with difference 1 starts from $13 m n+5$ up to $14 m n+4$.
Case $d=3$.
Taking into account Lemmas 3 and 5 we can see that under the labeling α_{1} and β_{2} the weights of 4 -sided faces are

$$
\begin{aligned}
w t\left(z_{s, t}\right) & =w t_{\alpha_{1}}\left(z_{s, t}\right)+w t_{\beta_{2}}\left(z_{s, t}\right) \\
& = \begin{cases}n(12 m+3+3 t)+9+3 s, & \text { for } 0 \leq s \leq n-2,0 \leq t \leq m-2 \\
n(12 m+3+3 t)+6, & \text { for } s=n-1,0 \leq t \leq m-2 \\
12 m n+9+3 s, & \text { for } 0 \leq s \leq n-2, t=m-1 \\
12 m n+6, & \text { for } s=n-1, t=m-1\end{cases}
\end{aligned}
$$

Thus the weights of all 4 -sided faces constitute an arithmetic sequence of the difference 3 , namely $12 m n+6$ up to $15 m n+3$.

4. \boldsymbol{d}-antimagic labeling of Klein bottle grid graph

Let $V\left(K_{n}^{m}\right)=\left\{\left(x_{s}, y_{t}\right): 0 \leq s \leq n-1,0 \leq t \leq m-1\right\}$ be the vertex set, $E\left(K_{n}^{m}\right)=\left\{\left(x_{s}, y_{t}\right)\left(x_{s+1}, y_{t}\right): 0 \leq\right.$ $s \leq n-1,0 \leq t \leq m-1\} \cup\left\{\left(x_{s}, y_{t}\right)\left(x_{s}, y_{t+1}\right): 0 \leq s \leq n-1,0 \leq t \leq m-2\right\} \cup\left\{\left(x_{s}, y_{m-1}\right)\left(x_{n-s}, y_{0}\right):\right.$ $0 \leq s \leq n-1\} \cup\left\{\left(x_{0}, y_{m-1}\right)\left(x_{0}, y_{0}\right)\right\}$ be the edge set and $F\left(K_{n}^{m}\right)=\left\{z_{s, t}: 0 \leq s \leq n-1,0 \leq t \leq m-1\right\}$ be the face set. The face $z_{s, t}$ is bounded by edges $\left(x_{s}, y_{t}\right)\left(x_{s+1}, y_{t}\right),\left(x_{s+1}, y_{t}\right)\left(x_{s+1}, y_{t+1}\right),\left(x_{s}, y_{t+1}\right)\left(x_{s+1}, y_{t+1}\right)$, $\left(x_{s}, y_{t}\right)\left(x_{s}, y_{t+1}\right)$, for $0 \leq s \leq n-1,0 \leq t \leq m-2$ and $z_{s, m-1}$ is bounded by edges $\left(x_{s}, y_{m-1}\right)\left(x_{s+1}, y_{m-1}\right)$, $\left(x_{s}, y_{m-1}\right)\left(x_{n-s}, y_{0}\right),\left(x_{n-s}, y_{0}\right)\left(x_{n-(s+1)}, y_{0}\right),\left(x_{s+1}, y_{m-1}\right)\left(x_{n-(s+1)}, y_{0}\right)$ for $1 \leq s \leq n-1$ and $z_{0, m-1}$ is bounded by edges $\left(x_{0}, y_{m-1}\right)\left(x_{1} y_{m-1}\right),\left(x_{1}, y_{m-1}\right)\left(x_{n-1} y_{0}\right),\left(x_{0}, y_{0}\right)\left(x_{n-1} y_{0}\right),\left(x_{0}, y_{m-1}\right)\left(x_{0} y_{0}\right)$, (see Fig. 4):

Lemma 6. Let $\lambda_{1}\left(\left(x_{s}, y_{t}\right)\right)=\{t n+1+s, 0 \leq s \leq n-1,0 \leq t \leq m-1\}$ and $\lambda_{1}\left(\left(x_{s}, y_{t}\right)\left(x_{s+1}, y_{t}\right)\right)=$ $\{n(2 m-t)-s, \quad 0 \leq s \leq n-1, \quad 0 \leq t \leq m-1\}$. If $n \geq 3$ and $m \geq 3$, then under the labeling λ_{1} the partial weights of $z_{s, t}$ for every $t, s, 0 \leq t \leq m-2,0 \leq s \leq n-1$, constitute an arithmetic sequence of difference 2 and the partial weights of $z_{s, m-1}$ for $1 \leq s \leq n-2$ are $5 m n+5$ and for $z_{0, m-1}$ and $z_{n-1, m-1}$ are $n(5 m-1)+5$.

Proof. Under the labeling λ_{1}, for every $t, 0 \leq t \leq m-2$, the partial weights of 4 -sided faces $z_{s, t}$ are as follows:

$$
\begin{align*}
w t_{\lambda_{1}}\left(z_{s, t}\right) & =\lambda_{1}\left(\left(x_{s}, y_{t}\right)\right)+\lambda_{1}\left(\left(x_{s+1}, y_{t}\right)\right) \\
& +\lambda_{1}\left(\left(x_{s}, y_{t+1}\right)\right)+\lambda_{1}\left(\left(x_{s+1}, y_{t+1}\right)\right) \\
& +\lambda_{1}\left(\left(x_{s}, y_{t}\right)\left(x_{s+1}, y_{t}\right)\right)+\lambda_{1}\left(\left(x_{s}, y_{t+1}\right)\left(x_{s+1}, y_{t+1}\right)\right) \\
w t_{\lambda_{1}}\left(z_{s, t}\right) & = \begin{cases}n(4 m+2 t+1)+6+2 s, & \text { for } 0 \leq s \leq n-2,0 \leq t \leq m-2 \\
n(4 m+2 t+1)+4, & \text { for } s=n-1,0 \leq t \leq m-2 .\end{cases} \tag{4}
\end{align*}
$$

This shows that for every t and $s, 0 \leq t \leq m-2,0 \leq s \leq n-1$, the partial weights of 4 -sided faces $z_{s, t}$ form the arithmetic sequence with difference 2 from $n(4 m+1)+4$ up to $n(6 m-1)+2$. For $1 \leq s \leq n-2$ the partial weights of $z_{s, m-1}$ are $5 m n+5$ and $w t_{\lambda_{1}}\left(z_{0, m-1}\right)=w t_{\lambda_{1}}\left(z_{n-1, m-1}\right)=n(5 m-1)+5$.

Lemma 7. Let

$$
\mu_{1}\left(\left(x_{s}, y_{t}\right)\left(x_{s}, y_{t+1}\right)\right)= \begin{cases}n(3 m-t)-s-1, & \text { for } 0 \leq s \leq n-2,0 \leq t \leq m-2 \\ n(3 m-t), & \text { for } s=n-1,0 \leq t \leq m-2\end{cases}
$$

Fig. 4. Klein bottle grid identification.

$$
\begin{aligned}
& \mu_{1}\left(\left(x_{s}, y_{m-1}\right)\left(x_{n-s}, y_{0}\right)\right)= \begin{cases}n(2 m+1)-s-1, & \text { for } 0 \leq s \leq n-2 \\
n(2 m+1), & \text { for } s=n-1\end{cases} \\
& \mu_{1}\left(z_{s, t}\right)= \begin{cases}n(3 m+t)+3+s, & \text { for } 0 \leq s \leq n-3,0 \leq t \leq m-2 \\
n(3 m+t-1)+3+s, & \text { for } n-2 \leq s \leq n-1,0 \leq t \leq m-2\end{cases} \\
& \mu_{1}\left(z_{s, m-1}\right)= \begin{cases}n(4 m-1)+3+s, & \text { for } 0 \leq s \leq n-3 \\
n(4 m-2)+3+s, & \text { for } n-2 \leq s \leq n-1 .\end{cases}
\end{aligned}
$$

If $n \geq 3$ and $m \geq 3$, then the partial weights of $z_{s, t}$ under the labeling μ_{1} for every t and $s, 0 \leq t \leq m-1$, $0 \leq s \leq n-1$, constitute an arithmetic sequence of difference 1 .

Proof. Under the given labeling μ_{1}, for every $t, 0 \leq t \leq m-2$, the partial weights of the 4 -sided faces, admit the following values

$$
\begin{align*}
& w t_{\mu_{1}}\left(z_{s, t}\right)=\mu_{1}\left(\left(x_{s}, y_{t}\right)\left(x_{s}, y_{t+1}\right)\right)+\mu_{1}\left(z_{s, t}\right)+\mu_{1}\left(\left(x_{s+1}, y_{t}\right)\left(x_{s+1}, y_{t+1}\right)\right) \\
& w t_{\mu_{1}}\left(z_{s, t}\right)=\left\{\begin{array}{l}
n(9 m-t)+1, \quad \text { for } s=n-1,0 \leq t \leq m-2 \\
n(9 m-t)-s, \quad \text { for } 0 \leq s \leq n-2,0 \leq t \leq m-2
\end{array}\right. \tag{5}\\
& w t_{\mu_{1}}\left(z_{s, m-1}\right)= \begin{cases}n(8 m+1)+1, & \text { for } s=n-1 \\
n(8 m+1)-s, & \text { for } 0 \leq s \leq n-2 .\end{cases} \tag{6}
\end{align*}
$$

This shows that the partial weights of 4 -sided faces form the arithmetic progression with difference 1 with values from $8 m n+2$ up to $9 m n+1$.

Lemma 8. Let $\mu_{2}\left(\left(x_{s}, y_{t}\right)\left(x_{s}, y_{t+1}\right)\right)=$
$n(2 m+t+1)+s+1, \quad$ for $0 \leq s \leq n-1, \quad 0 \leq t \leq m-2$

$$
\mu_{2}\left(z_{s, t}\right)=n(4 m-t)-s, \quad \text { for } 0 \leq s \leq n-1, \quad 0 \leq t \leq m-2 .
$$

If $n \geq 3$ and $m \geq 3$, then the partial weights of $z_{s, t}$ under the labeling μ_{2}, for every $t, 0 \leq t \leq m-2$, constitute an arithmetic sequence of difference 1 .

Proof. Under the labeling μ_{2}, for every $t, 0 \leq t \leq m-2$, the partial weights of the 4 -sided face attain values

$$
\begin{align*}
& w t_{\mu_{2}}\left(z_{s, t}\right)=\mu_{2}\left(\left(x_{s}, y_{t}\right)\left(x_{s}, y_{t+1}\right)\right)+\mu_{2}\left(z_{s, t}\right)+\mu_{2}\left(\left(x_{s+1}, y_{t}\right)\left(x_{s+1}, y_{t+1}\right)\right) . \\
& \quad w t_{\mu_{2}}\left(z_{s, t}\right)= \begin{cases}n(8 m+2+t)+s+3, & \text { for } 0 \leq s \leq n-2,0 \leq t \leq m-2 \\
n(8 m+2+t)+2, & \text { for } s=n-1,0 \leq t \leq m-2 .\end{cases} \tag{7}
\end{align*}
$$

Thus partial weights of 4 -sided faces under the labeling μ_{2}, constitute the arithmetic sequence of difference 1 .
Lemma 9. Let $\mu_{2}\left(\left(x_{s}, y_{m-1}\right)\left(x_{n-s}, y_{0}\right)\right)=$

$$
\begin{aligned}
& \begin{cases}n(2 m+1)-s+1, & \text { for } 1 \leq s \leq n-1, t=m-1 \\
2 m n+1, & \text { for } s=0, t=m-1\end{cases} \\
& \mu_{2}\left(z_{s, m-1}\right)= \\
& n(3 m+1)-s, \quad \text { for } 0 \leq s \leq n-1 .
\end{aligned}
$$

If $n \geq 3$ and $m \geq 3$, then the partial weights of $z_{s, m-1}$ under the labeling μ_{2}, constitute an arithmetic sequence of difference 1 .

Proof. Under the labeling μ_{2} defined for $0 \leq t \leq m-2$ in Lemma 8 and for $t=m-1$ defined above, the partial weights of the 4 -sided face attain values

$$
\begin{align*}
& w t_{\mu_{2}}\left(z_{s, m-1}\right)= \\
& \quad \mu_{2}\left(\left(x_{s}, y_{m-1}\right)\left(x_{n-s}, y_{0}\right)\right)+\mu_{2}\left(z_{s, m-1}\right)+\mu_{2}\left(\left(x_{s+1}, y_{m-1}\right)\left(x_{n-(s+1)}, y_{0}\right)\right) . \\
& w t_{\mu_{2}}\left(z_{s, m-1}\right)= \begin{cases}n(7 m-3 s+3)+1, & \text { for } 1 \leq s \leq n-1 \\
n(7 m+2)+1, & \text { for } s=0 .\end{cases} \tag{8}
\end{align*}
$$

Thus weights of 4 -sided faces under the labeling μ_{2}, constitute the arithmetic sequence of difference 1 .
Theorem 3. For $n \geq 3$ and $m \geq 3$, the Klein bottle grid graph K_{n}^{m} admits a super 1 -antimagic labeling and a super 3 -antimagic labeling of type ($1,1,1$).

Proof. Case $d=1$. It follows from Lemmas 6 and 7 that under the labeling λ_{1} and μ_{1} the weights of all 4 -sided faces are

$$
\begin{aligned}
w t\left(z_{s, t}\right) & =w t_{\lambda_{1}}\left(z_{s, t}\right)+w t_{\mu_{1}}\left(z_{s, t}\right) \\
& = \begin{cases}n(13 m+t+1)+s+6, & \text { for } 0 \leq s \leq n-2,0 \leq t \leq m-2 \\
n(13 m+t+1)+5, & \text { for } s=n-1,0 \leq t \leq m-2 \\
n(13 m+1)+5-s, & \text { for } 1 \leq s \leq n-1, t=m-1 \\
13 m n+5, & \text { for } s=0, t=m-1 .\end{cases}
\end{aligned}
$$

This shows that the weights of the 4 -sided faces form an arithmetic sequence with difference 1 with values from $13 m n+5$ up to $14 m n+4$.
Case $d=3$.
Taking into account Lemmas 6, 8 and 9 along with the following swapping

- $\lambda_{1}\left(\left(x_{n-3}, y_{m-1}\right)\right) \longleftrightarrow \lambda_{1}\left(\left(x_{n-1}, y_{m-1}\right)\right)$
- $\mu_{2}\left(\left(z_{n-1, m-1}\right)\right) \longleftrightarrow \mu_{2}\left(\left(z_{n-3, m-1}\right)\right)$
- $\mu_{2}\left(\left(z_{n-2, m-1}\right)\right) \longleftrightarrow \mu_{2}\left(\left(z_{4, m-1}\right)\right)$
- $\mu_{2}\left(\left(z_{n-2, m-2}\right)\right) \longleftrightarrow \mu_{2}\left(\left(z_{4, m-2}\right)\right)$
- $\mu_{2}\left(\left(z_{n-1, m-2}\right)\right) \longleftrightarrow \mu_{2}\left(\left(z_{n-3, m-2}\right)\right)$
we can see that under the labeling λ_{1} and μ_{2} the weights of 4 -sided faces are

$$
\begin{aligned}
w t\left(z_{s, t}\right) & =w t_{\lambda_{1}}\left(z_{s, t}\right)+w t_{\mu_{2}}\left(z_{s, t}\right) \\
& = \begin{cases}n(12 m+3 t+3 s+3)+9, & \text { for } 0 \leq s \leq n-2,0 \leq t \leq m-2 \\
n(12 m+3 t+3)+6, & \text { for } s=n-1,0 \leq t \leq m-2 \\
n(12 m+3)-3 s+6, & \text { for } 1 \leq s \leq n-2, t=m-1 \\
n(12 m+1)+1, & \text { for } s=0, t=m-1 \\
n(12 m+1)-2, & \text { for } s=n-1, t=m-1 .\end{cases}
\end{aligned}
$$

Finally the weights of the all 4 -sided faces of given graph form an arithmetic progression with the common difference 3 , starting from $12 m n+6$ up to $15 m n+3$.

5. Conclusion

In this paper we examine the existence of super d-antimagic labeling of type $(1,1,1)$ for toroidal grid graph T_{n}^{m} and Klein bottle grid graph K_{n}^{m}. We show that T_{n}^{m} and K_{n}^{m} admit a super d-antimagic labeling of type $(1,1,1)$ for $d=1,3$, for all $n, m \geq 3$. However we tried to describe a super d-antimagic labeling of type $(1,1,1)$ of graphs T_{n}^{m} and K_{n}^{m} for $d=0,2,4$ but without success.

Therefore we conclude the paper with the following open problem.
Open problem 1. For the toroidal grid T_{n}^{m} and Klein bottle grid $\mathbb{K}_{n}^{m}, n, m \geq 3$, determine whether there is a super d-antimagic labeling of type $(1,1,1)$ for $d=0,2,4$.

Acknowledgment

The research for this article was supported by APVV-15-0116 and by VEGA 1/0233/18.

References

[1] M. Bača, M. Miller, On d-antimagic labelings of type (1, 1, 1) for prisms, J. Combin. Math. Combin. Comput. 44 (2003) $199-207$.
[2] M. Bača, S. Jendrol', M. Miller, J. Ryan, Antimagic labelings of generalized Petersen graphs that are plane, Ars Combin. 73 (2004) 115-128.
[3] M. Bača, E.T. Baskoro, S. Jendrol', M. Miller, Antimagic labelings of hexagonal planar maps, Util. Math. 66 (2004) $231-238$.
[4] M. Bača, Y. Lin, M. Miller, Antimagic labelings of grids, Util. Math. 72 (2007) 65-75.
[5] Y. Lin, Slamin M. Bača, M. Miller, On d-antimagic labelings of prisms, Ars Combin. 72 (2004) 65-76.
[6] K.A. Sugeng, M. Miller, Y. Lin, M. Bača, Face antimagic labelings of prisms, Util. Math. 71 (2006) 269-286.
[7] K.W. Lih, On magic and consecutive labelings of plane graphs, Util. Math. 24 (1983) 165-197.
[8] K. Kathiresan, S. Gokulakrishnan, On magic labelings of type (1, 1, 1) for the special classes of plane graphs, Util. Math. 63 (2003) 25-32.
[9] M. Bača, F. Bashir, A. Semaničová, Face antimagic labelings of antiprisms, Util. Math. 84 (2011) 209-224.
[10] G. Ali, M. Bača, F. Bashir, A. Semaničová-Feňovčíková, On face antimagic labelings of disjoint union of prisms, Util. Math. 85 (2011) 97-112.
[11] M. Bača, L. Brankovic, A. Semaničová-Feňovčíková, Labelings of plane graphs containing Hamilton path, Acta Math. Sin. (Engl. Ser.) 27 (4) (2011) 701-714.
[12] M. Bača, M. Miller, O. Phanalasy, A. Semaničová-Feňovčíková, Super d-antimagic labelings of disconnected plane graphs, Acta Math. Sin. (Engl. Ser.) 26 (12) (2010) 2283-2294.
[13] J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2016) \#DS6.
[14] M. Deza, P.W. Fowler, A. Rassat, K.M. Rogers, Fullerenes as tilings of surfaces, J. Chem. Inf. Comput. Sci. 40 (2000) $550-558$.
[15] M. Bača, M. Numan, A. Shabbir, Labelings of type (1, 1, 1) for toroidal fullerenes, Turk. J. Math. 37 (2013) 899-907.
[16] Tao-Ming Wang, Toroidal grids are anti-magic, in: COCOON 2005, pp. 671-679.
[17] S.I. Butt, M. Numan, I.A. Shah, S. Ali, Face labelings of type (1, 1, 1) for generalized prism, Ars Combin. 137 (2018) 41-52.

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: saadihsanbutt@ciitlahore.edu.pk (S.I. Butt), numantng @ gmail.com (M. Numan), sharafat1.28@gmail.com (S. Ali), andrea.fenovcikova@tuke.sk (A. Semaničová-Feňovčíková).
 https://doi.org/10.1016/j.akcej.2018.09.005
 © 2018 Kalasalingam University. Published with license by Taylor \& Francis Group, LLC
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

