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Please cite this article as: S.M. Hegde and S. Dara, Further results on Erdős–Faber–Lovász conjecture, AKCE International Journal of Graphs and Combinatorics (2019),
https://doi.org/10.1016/j.akcej.2019.03.003.
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Abstract

In 1972, Erdős–Faber–Lovász (EFL) conjectured that, if H is a linear hypergraph consisting of n edges of cardinality n,
then it is possible to color the vertices with n colors so that no two vertices with the same color are in the same edge. In
1978, Deza, Erdös and Frankl had given an equivalent version of the same for graphs: Let G =

⋃n
i=1 Ai denote a graph with

n complete graphs A1, A2, . . . , An , each having exactly n vertices and have the property that every pair of complete graphs
has at most one common vertex, then the chromatic number of G is n.

The clique degree d K (v) of a vertex v in G is given by d K (v) = |{Ai : v ∈ V (Ai ), 1 ≤ i ≤ n}|. In this paper we give
a method for assigning colors to the graphs satisfying the hypothesis of the Erdős–Faber–Lovász conjecture and every Ai
(1 ≤ i ≤ n) has atmost n

2 vertices of clique degree greater than one using Symmetric latin Squares and clique degrees of the
vertices of G.

Keywords: Chromatic number; Erdős–Faber–Lovász conjecture; Symmetric latin square

1. Introduction

One of the famous conjectures in graph theory is Erdős–Faber–Lovász conjecture. It states that, if H is a linear
hypergraph consisting of n edges of cardinality n, then it is possible to color the vertices of H with n colors so that
no two vertices with the same color are in the same edge [1]. Erdős, in 1975, offered 50 USD [2,3] and in 1981,
offered 500 USD [3,4] for the proof or disproof of the conjecture.

Vance Faber quoted: “In 1972, Paul Erdös, László Lovász and I got together at a tea party in Colorado. This was
a continuation of the discussions we had a few weeks before in Columbus, Ohio, at a conference on hypergraphs.
We talked about various conjectures for linear hypergraphs analogous to Vizing’s theorem for graphs. Finding tight
bounds in general seemed difficult, so we created an elementary conjecture that we thought that it would be easy
to prove. We called this the n sets problem: given n sets, no two of which meet more than once and each with n
elements, color the elements with n colors so that each set contains all the colors. In fact, we agreed to meet the
next day to write down the solution. Thirty-Eight years later, this problem is still unsolved in general”.
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Fig. 1. All graphs satisfying the hypothesis of the conjecture for n = 3.

Chang and Lawler [5] presented a simple proof that the edges of a simple hypergraph on n vertices can be
colored with at most [1.5n-2] colors. Kahn [6] showed that the chromatic number of H is at most n +o(n). Jackson
et al. [7] proved that the conjecture is true when the partial hypergraph S of H determined by the edges of size at
least three can be ∆S-edge-colored and satisfies ∆S ≤ 3. In particular, the conjecture holds when S is unimodular
and ∆S ≤ 3. Viji Paul and Germina [8] established the truth of the conjecture for all linear hypergraphs on n vertices
with ∆(H) ≤

√
n +

√
n + 1 . Sanchez-Arroyo [9] proved the conjecture for dense hypergraphs. We consider the

equivalent version of the conjecture for graphs given by Deza, Erdős and Frankl in 1978 [4,9–11].

Conjecture 1.1. Let G =
⋃n

i=1 Ai denote a graph with n complete graphs (A1, A2, . . . , An), each having exactly
n vertices and have the property that every pair of complete graphs has at most one common vertex, then the
chromatic number of G is n.

Example 1.2. Fig. 1 shows all the graphs for n = 3 which are satisfying the hypothesis of Conjecture 1.1.

Haddad & Tardif (2004) [12] introduced the problem with a story about seating assignment in committees:
suppose that, in a university department, there are k committees, each consisting of k faculty members, and that
all committees meet in the same room, which has k chairs. Suppose also that at most one person belongs to the
intersection of any two committees. Is it possible to assign the committee members to chairs in such a way that
each member sits in the same chair for all the different committees to which he or she belongs? In this model of the
problem, the faculty members correspond to graph vertices, committees correspond to complete graphs, and chairs
correspond to vertex colors.

S.M. Hegde and S. Dara / AKCE International Journal of Graphs and Combinatorics 17 (1) 615–631 615
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Definition 1.3. Let G =
⋃n

i=1 Ai denote a graph with n complete graphs A1, A2, . . . , An , each having exactly
n vertices and the property that every pair of complete graphs has at most one common vertex. The clique degree
d K (v) of a vertex v in G is given by d K (v) = |{Ai : v ∈ V (Ai ), 1 ≤ i ≤ n}|. The maximum clique degree ∆K (G)
of the graph G is given by ∆K (G) = maxv∈V (G)d K (v).

From the above definition, one can observe that degree of a vertex in hypergraph is same as the clique degree
of a vertex in a graph.

Definition 1.4. Let G1 and G2 be two vertex disjoint graphs, and let x1, x2 be two vertices of G1, G2 respectively.
Then, the graph G(x1x2) obtained by merging the vertices x1 and x2 into a single vertex is called the concatenation
of G1 and G2 at the points x1 and x2 (see [13]).

Definition 1.5. A Latin Square is an n × n array containing n different symbols such that each symbol appears
exactly once in each row and once in each column. Moreover, a Latin Square of order n is an n×n matrix M = [mi j ]
with entries from an n-set V = {1, 2, . . . , n}, where every row and every column is a permutation of V (see [14]).
If the matrix M is symmetric, then the Latin Square is called Symmetric Latin Square.

In this paper we give a method of coloring to the graph G satisfying the hypothesis of the conjecture using a
Symmetric Latin Square in the following steps:

• Construct the graph Hn having the minimum number of vertices among the graphs satisfying the hypothesis
of the conjecture for given n

• Construct any other graph satisfying the hypothesis of the conjecture for the same n.
• We give a coloring to the graph Hn with n colors using a Symmetric Latin Square.
• Extend the n-coloring of Hn to the other graphs satisfying the hypothesis of Conjecture 1.1 for any given n.

2. Construction of Hn

We know that a symmetric n × n matrix is determined by n(n+1)
2 scalars. Using symmetric latin squares we give

an n-coloring of Hn constructed below.

Construction of Hn:

Let n be a positive integer and B1, B2, . . . , Bn be n copies of Kn . Let the vertex set V (Bi ) = {ai,1, ai,2, ai,3,

. . . , ai,n}, 1 ≤ i ≤ n.

Step 1. Let H 1
= B1.

Step 2. Consider the vertices a1,2 of H 1 and a2,1 of B2. Let b1,2 be the vertex obtained by the concatenation of the
vertices a1,2 and a2,1. Let the resultant graph be H 2.

Step 3. Consider the vertices a1,3, a2,3 of H 2 and a3,1, a3,2 of B3. Let b1,3 be the vertex obtained by the
concatenation of vertices a1,3, a3,1 and let b2,3 be the vertex obtained by the concatenation of vertices a2,3,
a3,2. Let the resultant graph be H 3.

Continuing in the similar way, at the nth step we obtain the graph H n
= Hn (for the sake of convenience we

take H n as Hn).

By the construction of Hn one can observe the following:

1. Hn is a connected graph and also it is satisfying the hypothesis of Conjecture 1.1.
2. Hn has exactly n vertices of clique degree one and n(n−1)

2 vertices of clique degree 2 (each Bi has exactly
(n − 1) vertices of clique degree 2 and one vertex of clique degree one, 1 ≤ i ≤ n).

3. Hn =
⋃n

i=1 Bi , where Bi = Ai and Bi , B j have exactly one common vertex for 1 ≤ i < j ≤ n.
4. Hn has exactly n(n+1)

2 vertices.
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Fig. 2. 4 copies of K4.

Fig. 3. Construction of H2 from H1, B2.

5. One can observe that in a connected graph G if clique degree increases the number of vertices also increases.
From this it follows that, Hn is the graph with minimum number of vertices satisfying the hypothesis
of Conjecture 1.1. If all the vertices of G are of clique degree one, then G will have n2 vertices. Thus,
n(n+1)

2 ≤ |V (G)| ≤ n2.

Following example is an illustration of the graph Hn for n = 4

Example 2.1. Let n = 4 and B1, B2, B3, B4 be the 4 copies of K4. Let the vertex set V (Bi ) = {ai,1, ai,2, ai,3, ai,4},
1 ≤ i ≤ 4.

Step 1: Let H 1
= B1. The graph H 1 is shown in Fig. 2a.

Step 2: Consider the vertices a1,2 of H 1 and a2,1 of B2. Let b1,2 be the vertex obtained by the concatenation of
vertices a1,2, a2,1. Let the resultant graph be H 2 as shown in Fig. 3b.

Step 3: Consider the vertices a1,3, a2,3 of H 2 and a3,1, a3,2 of B3. Let b1,3 be the vertex obtained by the
concatenation of vertices a1,3, a3,1 and let b2,3 be the vertex obtained by the concatenation of vertices a2,3, a3,2. Let
the resultant graph be H 3 as shown in Fig. 4b.

Step 4: Consider the vertices a1,4, a2,4, a3,4 of H 3 and a4,1, a4,2, a4,3 of B4. Let b1,4 be the vertex obtained by
the concatenation of vertices a1,4, a4,1, let b2,4 be the vertex obtained by the concatenation of vertices a2,4, a4,2 and
let b3,4 be the vertex obtained by the concatenation of vertices a3,4, a4,3. Let the resultant graph be H 4 as shown
in Fig. 5b.

Example 2.2. For n = 6, the graph H6 is shown in Fig. 6.

Lemma 2.3. If G is a graph satisfying the hypothesis of Conjecture 1.1, then G can be obtained from Hn , n
in N.

Proof. Let G be a graph satisfying the hypothesis of Conjecture 1.1. Let bX be the new labeling to the vertices v of
clique degree greater than 1 in G, where x = {i : vertex v is in Ai }. Define Ni = {bX : |X | = i} for i = 2, 3, . . . , n.
Then the graph G is constructed from Hn as given below:

S.M. Hegde and S. Dara / AKCE International Journal of Graphs and Combinatorics 17 (1) 617–631 617
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Fig. 4. Construction of H3 from H2, B3.

Fig. 5. Construction of H4 from H3, B4.

Step 1: For every common vertex bi, j in Hn which is not in N2, split the vertex bi, j into two vertices ui, j , u j,i

such that vertex ui, j is adjacent only to the vertices of Bi and the vertex u j,i is adjacent only to the vertices of B j

in Hn .
Step 2: For every vertex bX in Ni where i = 3, 4, . . . , n, merge the vertices ul1,l2 , ul2,l3 , . . . , ulm−1,lm , ulm ,l1 into

a single vertex u X in Hn where li ∈ X and li < l j for i < j .
Let G ′ be the graph obtained in Step 2. Let V (B ′

i ), V (A′

i ) be the set of all clique degree 1 vertices of Bi of
G ′, Ai of G respectively, 1 ≤ i ≤ n. Thus, by splitting all the common vertices of Hn which are not in N2 and
merging the vertices of Hn corresponding to the vertices in Ni , i ≥ 3, we get the graph G ′. One can observe that
|V (A′

i )| = |V (B ′

i )|, 1 ≤ i ≤ n. Define a function f : V (G) → V (G ′) by

f (bi, j ) = bi, j for bi, j ∈ N2

f (bi1,i2,...ik ) = ui1,i2,...ik for bi1,i2,...ik ∈ ∪
n
i=3 Ni

f |V (A′
i ) = gi (any 1–1 map gi : V (A′

i ) → V (B ′

i )), for 1 ≤ i ≤ n

One can observe that f is an isomorphism from G to G ′. ■

S.M. Hegde and S. Dara / AKCE International Journal of Graphs and Combinatorics 17 (1) 618–631618
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Fig. 6. H6.

Fig. 7. Graph G, before and after relabeling the vertices.

From Lemma 2.3, one can observe that in G there are at most n(n−1)
2 common vertices.

Following example is an illustration of the graph G obtained from Hn for n = 4.

Example 2.4. Let G be the graph shown in Fig. 7a.
Relabel the vertices of clique degree greater than one in G by bA where A = {i : v ∈ Ai for 1 ≤ i ≤ 4}. The

labeled graph is shown in Fig. 7.
Let Ni = {bx : |x | = i} for i = 2, 3, 4, then N2 = {b1,4, b2,4, b3,4}, N3 = {b1,2,3}.
Consider the graph H4 as shown in Fig. 5b, then V (H4) = {a1,1, a2,2, a3,3, a4,4,

b1,2, b1,3, b1,4, b2,3, b2,4, b3,4} and common vertices of H4 are {b1,2, b1,3, b1,4, b2,3, b2,4,

b3,4} = A(say). Then A \ N2 = {b1,2, b1,3, b2,3}. By the construction given in the proof of Lemma 2.3 we get,
Step 1: Since A \ N2 ̸= ∅, split the common vertices of H4 which are not in N2, as shown in Fig. 8.
Step 2: Since ∪

4
i=2 Ni = {b1,2,3} ̸= ∅, merge the vertices u1,2, u2,3, u3,1 into a single vertex u1,2,3, as shown in

Fig. 9. Let the resultant graph be G ′.
The isomorphism f : V (G) → V (G ′) is given below.

f (v2) = a11 f (v3) = u13 f (v4) = u21

f (v5) = a22 f (v6) = u32 f (v7) = a33

S.M. Hegde and S. Dara / AKCE International Journal of Graphs and Combinatorics 17 (1) 619–631 619
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Fig. 8. Splitting the common vertices of H4 which are not in N2.

Fig. 9. Graph G ′.

f (v11) = a44 f (b14) = b14 f (b24) = b24

f (b34) = b34 f (b123) = u123

3. Coloring of Hn

Lemma 3.1. The chromatic number of Hn is n.

Proof. Let Hn be the graph defined as above. Let M (given below) be an n ×n matrix in which an entry mi j = bi j ,
be a vertex of Hn , belongs to both Bi , B j for i ̸= j and mi i = ai i be the vertex of Hn which belongs to Bi . i.e.,

M =

⎛⎜⎜⎜⎜⎜⎝
a11 b12 b13 . . . b1n

b12 a22 b23 . . . b2n

b13 b23 a33 . . . b3n
...

...
...

. . .
...

b1n b2n b3n . . . ann

⎞⎟⎟⎟⎟⎟⎠ .

S.M. Hegde and S. Dara / AKCE International Journal of Graphs and Combinatorics 17 (1) 620–631620
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Clearly M is a symmetric matrix. We know that, for every n in N there is a Symmetric Latin Square (see [15])
of order n×n. Bryant and Rodger [16] gave a necessary and sufficient condition for the existence of an (n−1)-edge
coloring of Kn (n even), and n-edge coloring of Kn (n odd) using Symmetric Latin Squares. Let v1, v2, . . . , vn be
the vertices of Kn and ei j be the edge joining the vertices vi and v j of Kn , where i < j , then arrange the edges
of Kn in the matrix form A = [ai j ] where ai j = ei j , a j i = ei j for i < j and ai i = 0 for 1 ≤ i ≤ n, we have

A =

⎛⎜⎜⎜⎜⎜⎝
0 e12 e13 . . . e1n

e12 0 e23 . . . e2n

e13 e23 0 . . . e3n
...

...
...

. . .
...

e1n e2n e3n . . . 0

⎞⎟⎟⎟⎟⎟⎠ and let V be a matrix given by V =

⎛⎜⎜⎜⎜⎜⎝
v1 0 0 . . . 0
0 v2 0 . . . 0
0 0 v3 . . . 0
...

...
...

. . .
...

0 0 0 . . . vn

⎞⎟⎟⎟⎟⎟⎠. Then, define a

matrix A′ as

A′
= A + V =

⎛⎜⎜⎜⎜⎜⎝
v1 e12 e13 . . . e1n

e12 v2 e23 . . . e2n

e13 e23 v3 . . . e3n
...

...
...

. . .
...

e1n e2n e3n . . . vn

⎞⎟⎟⎟⎟⎟⎠ .

Let C = [ci j ] be a matrix where ci j (i ̸= j), is the color of ei j (i.e., ci j = c(ei j )) and ci i is the color of vi .
We call C as the color matrix of A′. Then C is the Symmetric Latin Square (see [16]). As the elements of M are
the vertices of Hn , one can assign the colors to the vertices of Hn from the color matrix C , by the color ci j , for
i, j = 1, 2, . . . , n and i ̸= j to the vertex bi j in Hn and the color ci i , for i = 1, 2, . . . n to the vertex ai i in Hn .
Hence Hn is n colorable. ■

Hn is the graph satisfying the hypothesis of Conjecture 1.1. By using the coloring of Hn which is the
graph satisfying the hypothesis of Conjecture 1.1 we extend the n-coloring of all possible graphs G satisfying
the hypothesis of Conjecture 1.1.

The following example is an illustration of assigning colors to the graph Hn for n = 6.

Example 3.2. Consider the graph H6 as shown in Fig. 6. The corresponding Symmetric Latin Square C of order
6 × 6 is given below:

C =

⎛⎜⎜⎜⎜⎜⎜⎝
6 1 2 3 4 5
1 3 5 6 2 4
2 5 4 1 6 3
3 6 1 4 5 2
4 2 6 5 3 1
5 4 3 2 1 6

⎞⎟⎟⎟⎟⎟⎟⎠ .

Assign the six colors to the graph H6 using the above Symmetric Latin Square as follows:
Assign the color ci, j (where ci, j denotes the value at the (i, j)th entry in the color matrix C) for i ̸= j and

i, j = 1, 2, . . . , 6 to the vertex bi, j in H6, and assign the color ci,i (where ci,i denotes the value at the (i, i)th entry
in the color matrix C) for i = 1, 2, . . . , 6 to the vertex ai i in H6. The colors Red, Green, Cyan, Blue, Tan, Maroon
in Fig. 10 corresponds to the numbers 1, 2, 3, 4, 5, 6 respectively in the matrix C .

Then one can verify that the resultant graph is 6 colorable as shown in Fig. 10.

4. Coloring of G

Let G be the graph satisfying the hypothesis of Conjecture 1.1. Let Ĥ be the graph obtained by removing the
vertices of clique degree one from graph G. i.e. Ĥ is the induced subgraph of G having all the common vertices
of G.

Method for assigning colors to graph G satisfying the hypothesis of Conjecture 1.1 and every Ai (1 ≤ i ≤ n)
has atmost n

2 vertices of clique degree greater than one:
Let G be a graph satisfying the hypothesis of Conjecture 1.1 and every Ai (1 ≤ i ≤ n) has atmost n

2 vertices
of clique degree greater than one. Let Ĥ be the induced subgraph of G consisting of the vertices of clique degree
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Fig. 10. A coloring of H6 with six colors . (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

greater than one in G. For every vertex v of clique degree greater than one in G, label the vertex v by u A where
A = {i : v ∈ Ai ; i = 1, 2, . . . , n}. Define X = {bi, j : Ai ∩ A j = ∅}, X i = {v ∈ G : d K (v) = i} for i = 1, 2, . . . , m.

Let 1, 2, . . . , n be the n-colors and C be the color matrix (of size n × n) as defined in the proof of Lemma 3.1.
The following construction applied on the color matrix C , gives a modified color matrix CM , using which we assign
the colors to the graph Ĥ . Then this coloring can be extended to the graph G. Construct a new color matrix C1 by
putting ci, j = 0, c j,i = 0 for every bi, j in X . Also, let ci,i = 0 for each i = 1, 2, . . . , n.

Let T = ∪
n
i=3 X i , P = ∅, T ′′

= X2 and P ′′
= ∅.

Step 1: If T = ∅, let Cm be the color matrix obtained in Step 4 and go to Step 5. Otherwise, choose a vertex
ui1,i2,...,im from T , where i1 < i2 < · · · < im , and then choose

(m
2

)
vertices bi1,i2 , bi1,i3 , . . . , bi1,im , bi2,i3 , . . . ,

bim−1,im from V (Hn) corresponding to the set {i1, i2, . . . , im}. Take T ′
= {bi1,i2 , bi1,i3 , . . . , bi1,im , bi2,i3 , . . . ,

bim−1,im } and P ′
= ∅. Let T ′

1 = {bi, j : bi, j ∈ T ′, c(bi, j ) appear more than once in the i th row or j th column
in C} and T ′

2 = {bi, j : bi, j ∈ T ′, c(bi, j ) appear exactly once in the i th row and j th column in C}. If T ′

1 ̸= ∅,
choose a vertex bs,t from T ′

1 , otherwise choose a vertex bs,t from T ′

2 . Then add the vertex bs,t to P ′ and
remove it from T ′. Go to Step 2.

Step 2: If T ′

2 ̸= ∅, go to Step 3. Otherwise, choose a vertex bim−1,im from T ′

1 . Let A = {ci, j : ci, j ̸= 0; i = im−1, 1 ≤

j ≤ n}, B = {ci, j : ci, j ̸= 0; j = im, 1 ≤ i ≤ n}. If |A ∩ B| < n, then construct a new color matrix C2,
replacing cim−1,im , cim ,im−1 by x , where x ∈ {1, 2, . . . , n} \ A ∪ B. Then add the vertex bim−1,im to T ′

2 and
remove it from T ′

1 . Go to Step 3. Otherwise choose a color x which appears exactly once either in im−1th
row or in im th column of the color matrix and construct a new color matrix C2 replacing cim−1,im , cim ,im−1 by
x . Then add the vertex bim−1,im to T ′

2 and remove it from T ′

1 . Go to Step 3.

Step 3: If T ′
= ∅, then add the vertex ui1,i2,...,im to P and remove it from T , go to Step 1. Otherwise, if T ′

∩T ′

1 ̸= ∅

choose a vertex bi, j from T ′
∩ T ′

1 , if not choose a vertex bi, j from T ′
∩ T ′

2 . Go to Step 4.

Step 4: Let c(bi, j ) = x, c(bs,t ) = y. If c(bi, j ) = c(bs,t ), then add the vertex bi, j to P ′ and remove it from T ′.
Go to Step 3. Otherwise, let A = {cl,m : cl,m = x}, B = {cl,m : cl,m = y} \ {cl,m, cm,l : bl,m ∈ P ′, l < m}.
Construct a new color matrix C3 by putting cl,m = y for every cl,m in A and cl,m = x for every cl,m in B.
Then add the vertex bi, j to P ′ and remove it from T ′. Go to Step 3.

Step 5: If T ′′
= ∅, consider CM = Cm1 stop the process. Otherwise, choose a vertex ui, j from T ′′ and go to Step 6.
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Fig. 11. Graph G: before and after relabeling the vertices.

Step 6: If ci, j appears exactly once in both i th row and j th column of the color matrix Cm , then add the vertex
bi, j to P ′′ and remove it from T ′′, go to Step 5. Otherwise, let A = {ci, j : ci, j ̸= 0; 1 ≤ j ≤ n},
B = {ci, j : ci, j ̸= 0; 1 ≤ i ≤ n}. Construct a new color matrix Cm1 by putting x in ci, j , c j,i where
x ∈ {1, 2, . . . , n} \ A ∪ B (since every Ai (1 ≤ i ≤ n) has atmost n

2 vertices of clique degree greater than
one, |A ∪ B| < n). Then add the vertex ui, j to P ′′ and remove it from T ′′, go to Step 5.

Thus, in step 6, we get the modified color matrix CM . Then, color the vertex v of Ĥ by ci, j of CM , whenever
v ∈ Ai ∩ A j . Then, extend the coloring of Ĥ to G by assigning the remaining colors which are not used for Ai

from the set of n-colors, to the vertices of clique degree one in Ai , 1 ≤ i ≤ n. Thus G is n-colorable.

Remark 4.1. One can see that the above method covers the following cases:

1. G has no clique degree 2 vertices.
2. G has atmost n

2 vertices of clique degree greater than one in each Ai , 1 ≤ i ≤ n.

Following is an example illustrating the above method.

Example 4.2. Let G be the graph shown in Fig. 11a.
Let V (A1) = {v1, v2, v3, v4, v5, v6}, V (A2) = {v1, v7, v8, v9, v10, v11},
V (A3) = {v1, v12, v13, v14, v15, v16}, V (A4) = {v1, v17, v18, v19, v20, v21},
V (A5) = {v6, v7, v16, v22, v23, v24}, V (A6) = {v9, v16, v19, v25, v26, v27}.
Relabel the vertices of clique degree greater than one in G by u A where A = {i : v ∈ Ai for 1 ≤ i ≤ 6}. The

labeled graph is shown in Fig. 11b. Fig. 12 is the graph Ĥ , where Ĥ is obtained by removing the vertices of clique
degree 1 from G.

Let X = {bi j : Ai ∩ A j = ∅} = {b1,6, b4,5},

X1 = {v ∈ G : d K (v) = 1} = {v2, v3, v5, v8, v10, v11, v12, v13, v14, v15,

v17, v18, v20, v21, v22, v23, v24, v25, v26, v27},

X2 = {v ∈ G : d K (v) = 2} = {v6, v7, v9, v19} = {u1,5, u2,5, u2,6, u4,6},
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Fig. 12. Graph Ĥ .

X3 = {v ∈ G : d K (v) = 3} = {v16} = {u3,5,6},

and X4 = {v ∈ G : d K (v) = 4} = {v1} = {u1,2,3,4}.

Let 1, 2, . . . , 6 be the six colors and C =

⎛⎜⎜⎜⎜⎜⎜⎝
6 1 2 3 4 5
1 3 5 6 2 4
2 5 4 1 6 3
3 6 1 4 5 2
4 2 6 5 3 1
5 4 3 2 1 6

⎞⎟⎟⎟⎟⎟⎟⎠
be the color matrix (as well as symmetric latin square) of order 6 × 6.
Consider the sets T = X3 ∪ X4 = {u3,5,6, u1,2,3,4}, T ′′

= X2 = {u1,5, u2,5, u2,6, u4,6}, P = ∅ and P ′′
= ∅. Then,

by applying the aforementioned method we get a new color matrix C1 by putting ci, j = 0, c j,i = 0 for every bi, j
in X and ci,i = 0 for each i = 1, 2, . . . , 6 and go to Step 1.

C1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 2 3 4 0
1 0 5 6 2 4
2 5 0 1 6 3
3 6 1 0 0 2
4 2 6 0 0 1
0 4 3 2 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
Step 1: Since T ̸= ∅, choose the vertex u1,2,3,4 from T . Let T ′

= {b1,2, b1,3, b1,4, b2,3, b2,4, b3,4} and P ′
= ∅,

then T ′

1 = ∅ and T ′

2 = T ′. Since T ′

1 = ∅, choose the vertex b2,4 from T ′

2 , add it to P ′ and remove it from T ′. Then
T ′

= {b1,2, b1,3, b1,4, b2,3, b3,4} and P ′
= {b2,4}. Go to step 2.

Step 2: Since T ′

2 ̸= ∅, go to step 3.
Step 3: Since T ′

̸= ∅ and T ′
∩ T ′

1 = ∅, choose the vertex b1,2 from T ′
∩ T ′

2 and go to step 4.
Step 4: Since c(b1,2) = 1, c(b2,4) = 6 and c(b1,2) ̸= c(b2,4), interchange 1, 6 in the matrix C1 except the color

of b2,4. Add the vertex b1,2 to P ′ and remove it from T ′. Then

C2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 6 2 3 4 0
6 0 5 6 2 4
2 5 0 6 1 3
3 6 6 0 0 2
4 2 1 0 0 6
0 4 3 2 6 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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T ′
= {b1,3, b1,4, b2,3, b3,4} and P ′

= {b1,2, b2,4}. Go to step 3.
Step 3: Since T ′

̸= ∅ and T ′
∩ T ′

1 = ∅, choose the vertex b1,3 from T ′
∩ T ′

2 and go to step 4.
Step 4: Since c(b1,3) = 2, c(b2,4) = 6 and c(b1,3) ̸= c(b2,4), interchange 2, 6 in the matrix C2 except the color

of b1,2, b2,4. Add the vertex b1,3 to P ′ and remove it from T ′. Then

C3 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 6 6 3 4 0
6 0 5 6 6 4
6 5 0 2 1 3
3 6 2 0 0 6
4 6 1 0 0 2
0 4 3 6 2 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

T ′
= {b1,4, b2,3, b3,4} and P ′

= {b1,2, b1,3, b2,4}. Go to step 3.
Step 3: Since T ′

̸= ∅ and T ′
∩ T ′

1 = ∅, choose the vertex b1,4 from T ′
∩ T ′

2 and go to step 4.
Step 4: Since c(b1,4) = 3, c(b2,4) = 6 and c(b1,4) ̸= c(b2,4), interchange 3, 6 in the matrix C3 except the color

of b1,2, b1,3, b2,4. Add the vertex b1,4 to P ′ and remove it from T ′. Then

C4 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 6 6 6 4 0
6 0 5 6 3 4
6 5 0 2 1 6
6 6 2 0 0 3
4 3 1 0 0 2
0 4 6 3 2 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

T ′
= {b2,3, b3,4} and P ′

= {b1,2, b1,3, b1,4, b2,4}. Go to step 3.
Step 3: Since T ′

̸= ∅ and T ′
∩ T ′

1 = ∅, choose the vertex b2,3 from T ′
∩ T ′

2 and go to step 4.
Step 4: Since c(b2,3) = 5, c(b2,4) = 6 and c(b2,3) ̸= c(b2,4), interchange 5, 6 in the matrix C4 except the color

of b1,2, b1,3, b1,4, b2,4. Add the vertex b2,3 to P ′ and remove it from T ′. Then

C5 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 6 6 6 4 0
6 0 6 6 3 4
6 6 0 2 1 5
6 6 2 0 0 3
4 3 1 0 0 2
0 4 5 3 2 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

T ′
= {b3,4} and P ′

= {b1,2, b1,3, b1,4, b2,3, b2,4}. Go to step 3.
Step 3: Since T ′

̸= ∅ and T ′
∩ T ′

1 = ∅, choose the vertex b3,4 from T ′
∩ T ′

2 and go to step 4.
Step 4: Since c(b3,4) = 2, c(b2,4) = 6 and c(b3,4) ̸= c(b2,4), interchange 2, 6 in the matrix C5 except the color

of b1,2, b1,3, b1,4, b2,3, b2,4. Add the vertex b3,4 to P ′ and remove it from T ′. Then

C6 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 6 6 6 4 0
6 0 6 6 3 4
6 6 0 6 1 5
6 6 6 0 0 3
4 3 1 0 0 6
0 4 5 3 6 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

T ′
= ∅ and P ′

= {b1,2, b1,3, b1,4, b2,3, b2,4, b3,4}. Go to step 3.
Step 3: Since T ′

= ∅, add the vertex u1,2,3,4 to P and remove it from T , then T = {u3,5,6} and P = {u1,2,3,4}.
Go to step 1.

Step 1: Since T ̸= ∅, choose the vertex u3,5,6 from T . Let T ′
= {b3,5, b3,6, b5,6} and P ′

= ∅, then T ′

1 = ∅ and
T ′

2 = T ′. Since T ′

1 = ∅, choose the vertex b5,6 from T ′

2 , add it to P ′ and remove it from T ′. Then T ′
= {b3,5, b3,6}

and P ′
= {b5,6}. Go to step 2.

Step 2: Since T ′

2 ̸= ∅, go to step 3.
Step 3: Since T ′

̸= ∅ and T ′
∩ T ′

1 = ∅, choose the vertex b3,6 from T ′
∩ T ′

2 and go to step 4.
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Step 4: Since c(b3,6) = 5, c(b5,6) = 6 and c(b3,6) ̸= c(b5,6), interchange 5, 6 in the matrix C6 except the color
of b5,6. Add the vertex b3,6 to P ′ and remove it from T ′. Then

C7 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 5 5 5 4 0
5 0 5 5 3 4
5 5 0 5 1 6
5 5 5 0 0 3
4 3 1 0 0 6
0 4 6 3 6 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

T ′
= {b3,5} and P ′

= {b3,6, b5,6}. Go to step 3.
Step 3: Since T ′

̸= ∅ and T ′
∩ T ′

1 = ∅, choose the vertex b3,5 from T ′
∩ T ′

2 and go to step 4.
Step 4: Since c(b3,5) = 1, c(b5,6) = 6 and c(b3,5) ̸= c(b5,6), interchange 1, 6 in the matrix C7 except the color

of b3,6, b5,6. Add the vertex b3,5 to P ′ and remove it from T ′. Then

C8 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 5 5 5 4 0
5 0 5 5 3 4
5 5 0 5 6 6
5 5 5 0 0 3
4 3 6 0 0 6
0 4 6 3 6 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

T ′
= ∅ and P ′

= {b3,5, b3,6, b5,6}. Go to step 3.
Step 3: Since T ′

= ∅, add the vertex u3,5,6 to P and remove it from T , then T = ∅ and P = {u3,5,6, u1,2,3,4}.
Go to step 1.

Step 1: Since T = ∅ consider Cm = C8, go to step 5.
Step 5: Since T ′′

̸= ∅, choose the vertex u1,5 from T ′′. Go to step 6.
Step 6: Since c1,5 = 4 appears exactly once in both 1st row and 5th column of the color matrix Cm . Add the

vertex u1,5 to P ′′ and remove it from T ′′. Then T ′′
= {u2,5, u2,6, u4,6} and P ′′

= {u1,5}. Go to Step 5.
Step 5: Since T ′′

̸= ∅, choose the vertex u2,5 from T ′′. Go to step 6.
Step 6: Since c2,5 = 3 appears exactly once in both 2nd row and 5th column of the color matrix Cm . Add the

vertex u2,5 to P ′′ and remove it from T ′′. Then T ′′
= {u2,6, u4,6} and P ′′

= {u1,5, u2,5}. Go to Step 5.
Step 5: Since T ′′

̸= ∅, choose the vertex u2,6 from T ′′. Go to step 6.
Step 6: Since c2,6 = 4 appears exactly once in both 2nd row and 6th column of the color matrix Cm . Add the

vertex u2,6 to P ′′ and remove it from T ′′. Then T ′′
= {u4,6} and P ′′

= {u1,5, u2,5,u2,6}. Go to Step 5.
Step 5: Since T ′′

̸= ∅, choose the vertex u4,6 from T ′′. Go to step 6.
Step 6: Since c4,6 = 3 appears exactly once in both 4th row and 6th column of the color matrix Cm . Add the

vertex u4,6 to P ′′ and remove it from T ′′. Then T ′′
= ∅ and P ′′

= {u1,5, u2,5, u2,6, u4,6}. Go to Step 5.
Step 5: Since T ′′

= ∅, consider CM = Cm .
Stop the process.
Assign the colors to the graph Ĥ using the matrix CM , i.e., color the vertex v by the (i, j)th entry ci, j of the

matrix CM , whenever Ai ∩ A j ̸= ∅ (see Fig. 13a), where the numbers 1, 2, 3, 4, 5, 6 correspond to the colors Green,
Cyan, Blue, Maroon, Tan, Red respectively. Extend the coloring of Ĥ to G by assigning the remaining colors which
are not used for Ai from the set of 6-colors to the vertices of clique degree one in each Ai , 1 ≤ i ≤ 6. The colored
graph G is shown in Fig. 13b.

Following example shows that the aforementioned method does not work, if the graph G has more than n
2 vertices

of clique degree greater than one in some Ai , 1 ≤ i ≤ n.

Example 4.3. Let G be the graph shown in Fig. 14a.
Let V (A1) = {v1, v2, v3, v4, v5, v6}, V (A2) = {v2, v7, v8, v9, v10, v11},
V (A3) = {v3, v8, v12, v13, v14, v15}, V (A4) = {v4, v9, v16, v17, v18, v20, v21},
V (A5) = {v5, v10, v14, v18, v20, v21}, V (A6) = {v6, v10, v15, v19, v22, v23}.
Relabel the vertices of clique degree greater than one in G by u A where A = {i : v ∈ Ai for 1 ≤ i ≤ 6}. The

labeled graph is shown in Fig. 14b. Fig. 15 is the graph Ĥ , where Ĥ is obtained by removing the vertices of clique
degree 1 from G.
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Please cite this article as: S.M. Hegde and S. Dara, Further results on Erdős–Faber–Lovász conjecture, AKCE International Journal of Graphs and Combinatorics (2019),
https://doi.org/10.1016/j.akcej.2019.03.003.

Fig. 13. The graphs Ĥ and G, after colors have been assigned to their vertices . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 14. Graph G: before and after relabeling the vertices.

Let X = {bi j : Ai ∩ A j = ∅} = {b3,4},

X1 = {v ∈ G : d K (v) = 1} = {v1, v7, v11, v12, v13, v16, v17, v20, v21, v22, v23},
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Fig. 15. Graph Ĥ .

X2 = {v ∈ G : d K (v) = 2} = {v2, v3, v4, v5, v6, v8, v9, v14, v15, v18, v19}

= {u1,2, u1,3, u1,4, u1,5, u1,6, u2,3, u2,4, u3,5, u3,6, u4,5, u4,6},

and X3 = {v ∈ G : d K (v) = 3} = {v10} = {u2,5,6}.

Let 1, 2, . . . , 6 be the six colors and C =

⎛⎜⎜⎜⎜⎜⎜⎝
6 1 2 3 4 5
1 3 5 6 2 4
2 5 4 1 6 3
3 6 1 4 5 2
4 2 6 5 3 1
5 4 3 2 1 6

⎞⎟⎟⎟⎟⎟⎟⎠ be the color matrix (as well as symmetric

latin square) of order 6 × 6.
Consider the sets T = X3 = {u2,5,6},
T ′′

= X2 = {u1,2, u1,3, u1,4, u1,5, u1,6, u2,3, u2,4, u3,5, u3,6, u4,5, u4,6}, P = ∅ and P ′′
= ∅. Then by applying the

aforementioned method we get a new color matrix C1 by putting ci, j = 0, c j,i = 0 for every bi, j in X and ci,i = 0
for each i = 1, 2, . . . , 6 and go to Step 1.

C1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 2 3 4 5
1 0 5 6 2 4
2 5 0 0 6 3
3 6 0 0 5 2
4 2 6 5 0 1
5 4 3 2 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
Step 1: Since T ̸= ∅, choose the vertex u2,5,6 from T . Let T ′

= {b2,5, b2,6, b5,6} and P ′
= ∅, then T ′

1 = ∅ and
T ′

2 = T ′. Since T ′

1 = ∅, choose the vertex b5,6 from T ′

2 , add it to P ′ and remove it from T ′. Then T ′
= {b2,5, b2,6}

and P ′
= {b5,6}. Go to step 2.

Step 2: Since T ′

2 ̸= ∅, go to step 3.
Step 3: Since T ′

̸= ∅ and T ′
∩ T ′

1 = ∅, choose the vertex b2,5 from T ′
∩ T ′

2 and go to step 4.
Step 4: Since c(b2,5) = 2, c(b5,6) = 1 and c(b2,5) ̸= c(b5,6), interchange 2, 1 in the matrix C1 except the color

of b5,6. Add the vertex b2,5 to P ′ and remove it from T ′. Then

C2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 2 1 3 4 5
2 0 5 6 1 4
1 5 0 0 6 3
3 6 0 0 5 2
4 1 6 5 0 1
5 4 3 2 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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T ′
= {b2,6} and P ′

= {b2,5, b5,6}. Go to step 3.
Step 3: Since T ′

̸= ∅ and T ′
∩ T ′

1 = ∅, choose the vertex b2,6 from T ′
∩ T ′

2 and go to step 4.
Step 4: Since c(b2,6) = 4, c(b5,6) = 1 and c(b2,6) ̸= c(b5,6), interchange 4, 1 in the matrix C2 except the color

of b2,5, b5,6. Add the vertex b2,6 to P ′ and remove it from T ′. Then

C3 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 2 4 3 1 5
2 0 5 6 1 1
4 5 0 0 6 3
3 6 0 0 5 2
1 1 6 5 0 1
5 1 3 2 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

T ′
= ∅ and P ′

= {b2,5, b2,6, b5,6}. Go to step 3.
Step 3: Since T ′

= ∅, add the vertex u2,5,6 to P and remove it from T , then T = ∅ and P = {u2,5,6}. Go to
step 1.

Step 1: Since T = ∅ consider Cm = C3, go to step 5.
Step 5: Since T ′′

̸= ∅, choose the vertex u1,2 from T ′′. Go to step 6.
Step 6: Since c1,2 = 2 appears exactly once in both 1st row and 2nd column of the color matrix Cm . Add

the vertex u1,2 to P ′′ and remove it from T ′′. Then T ′′
= {u1,3, u1,4, u1,5, u1,6, u2,3, u2,4, u3,5, u3,6, u4,5, u4,6} and

P ′′
= {u1,2}. Go to Step 5.

Step 5: Since T ′′
̸= ∅, choose the vertex u1,3 from T ′′. Go to step 6.

Step 6: Since c1,3 = 4 appears exactly once in both 1st row and 3rd column of the color matrix Cm . Add
the vertex u1,3 to P ′′ and remove it from T ′′. Then T ′′

= {u1,4, u1,5, u1,6, u2,3, u2,4, u3,5, u3,6, u4,5, u4,6} and
P ′′

= {u1,2, u1,3}. Go to Step 5.
Step 5: Since T ′′

̸= ∅, choose the vertex u1,4 from T ′′. Go to step 6.
Step 6: Since c1,4 = 3 appears exactly once in both 1st row and 4th column of the color matrix Cm . Add the vertex

u1,4 to P ′′ and remove it from T ′′. Then T ′′
= {u1,5, u1,6, u2,3, u2,4, u3,5, u3,6, u4,5, u4,6} and P ′′

= {u1,2, u1,3, u1,4}.
Go to Step 5.

Step 5: Since T ′′
̸= ∅, choose the vertex u1,5 from T ′′. Go to step 6.

Step 6: Since c1,5 = 1 and it appears more than once in the 5th column of the color matrix Cm . Let
A = {c1, j : c1, j ̸= 0; 1 ≤ j ≤ 6} = {1, 2, 3, 4, 5}, B = {ci,5 : ci,5 ̸= 0; 1 ≤ i ≤ 6} = {1, 5, 6}, then A ∪ B
= {1, 2, 3, 4, 5, 6} and {1, 2, 3, 4, 5, 6} \ A ∪ B = ∅.

It cannot be go further.
In the illustration of Example 4.3, if we choose the color matrix (symmetric latin square) given below, then exists

an n-coloring of G.

Let C ′
=

⎛⎜⎜⎜⎜⎜⎜⎝
1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5

⎞⎟⎟⎟⎟⎟⎟⎠.

Applying the method in Example 4.3, we get

C ′

M =

⎛⎜⎜⎜⎜⎜⎜⎝
0 2 3 6 5 1
2 0 6 5 4 4
3 6 0 0 1 2
6 5 0 0 2 3
5 4 1 2 0 4
1 4 2 3 4 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Color the vertex v by the (i, j)th entry ci, j of the matrix C ′

M , whenever Ai ∩ A j ̸= ∅ (see Fig. 16a), where the
numbers 1, 2, 3, 4, 5, 6 correspond to the colors Blue, Red, Green, Maroon, Tan, Cyan respectively. Extend the
coloring of Ĥ to G by assigning the remaining colors which are not used for Ai from the set of 6-colors to the
vertices of clique degree one in each Ai , 1 ≤ i ≤ 6. The colored graph G is shown in Fig. 16b.
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Fig. 16. The graphs Ĥ and G, after colors have been assigned to their vertices . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Remark 4.4. From the above example, one can see that the method will work for some symmetric latin squares
and will not work for some other, for the graphs having more than n

2 vertices of clique degree greater than one in
some Ai (1 ≤ i ≤ n) in G.
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