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ABSTRACT 

 

The UML (Unified Modeling Language) has its origin in mainstream software engineering 

and is often used informally by software designers. One of the limitations of UML is the lack of 

precision in its semantics, which makes its application to safety critical systems unsuitable. A 

safety critical system is one in which any loss or misinterpretation of data could lead to injury, loss 

of human lives and/or property. Safety Critical systems are usually specified by very precisely and 

frequently required formal verification.  With the continuous use of UML in the software industry, 

there is a need to augment the informality of software models produced to remove ambiguity and 

inconsistency in models for verification and validation. To overcome this well-known limitation 

of UML, formal specification techniques (FSTs), which are mathematically tractable, are often 

used to represent these models. 

Formal methods are mathematical techniques that allow software developers to produce 

softwares that address issues of ambiguity and error in complex and safety critical systems.  By 

building a mathematically rigorous model of a complex system, it is possible to verify the system's 

properties in a more thorough fashion than empirical testing.  

In this research, the author refines transformation rules for aspects of an informally defined 

design in UML to one that is verifiable, i.e. a formal specification notation.  The specification 

language that is used is the Z Notation. The rules are applied to UML class diagram operation 

signatures iteratively, to derive Z schema representation of the operation signatures.  Z 

representation may then be analyzed to detect flaws and determine where there is need to be more 
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precise in defining the operation signatures.  This work is an extension of previous research that 

lack sufficient detail for it to be taken to the next phase, towards the implementation of a tool for 

semi-automated transformation. 
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CHAPTER I 

INTRODUCTION 

1.1 Research Definition 

The motivation for doing this work stems from research that have been conducted 

previously at the University of North Dakota on unmanned aerial vehicles (UAVs).  Clachar et. al. 

conducted research on Formalizing UML software models of safety critical systems [1].  The 

researchers used formal specification to enhance the imprecision semantics of UML and analyze 

its significance to safety critical systems.  As a result, a systematic process to transform ambiguous 

UML class diagrams to a formal representation for verification and validation was devised.  In a 

follow up study conducted by Jackson et. al. the researchers conducted a case study on validation 

and verification of object-oriented design using formal specification technique [2].  In that study a 

preliminary set of rules were defined for transforming UML class diagrams methods to formal 

specification (Z notation) [2].  The transformational rules they developed were not complete and 

were at a very high level of abstraction.  In order for these transformation rules to be productive, 

they necessitates further elaboration and refinement.  Hence, this research attempts to produce a 

complete set of transformation rule for converting UML class operation signature to Z 

notation/description. 
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1.2 Benefits of the Research 

Unmanned Aircraft Systems (UASs) have been in existence for many years.  UASs 

commonly referred to as Unmanned Aerial Systems is defined as a system, whose components 

include the air vehicles and corresponding hardware that do not involve a human operator, but 

instead maneuver autonomously or are remotely piloted. UAS must be considered in a system 

context, which encompasses the command, control and communications systems, and personnel 

necessary to control the unmanned aircraft [3] [61].  However, recently, the use of UASs has 

experienced immense growth and UASs play a central role in scientific research, defense, and in 

certain industries [3] [4]. In recent past, the use of UASs technologies lie at the core of military 

operations such as spacecrafts, aircrafts, helicopters, free-flying robots or mobile robots,  

surveillance, target identification and designation, mine detection, and reconnaissance [3] [4]. As 

their use continues to evolve, research has peaked on this technology to discover its applicability 

to other domains. UAS technologies are categorized as safety critical systems. This is due to them 

being utilized in high-risk tasks that require thorough development methodologies to guarantee 

their integrity.   Today, UASs are involved in high-risk tasks such as border and port surveillance 

by the Department of Homeland Security, assist with scientific research and environmental 

monitoring by National Aeronautics and Space Administration (NASA) and National Oceanic and 

Atmospheric Administration (NOAA [54]. A system that is defined as safety critical can have 

serious ramifications if an error occurs. These implications include the risk of injury, loss of life, 

data, and property. Therefore, designing these systems requires: 1) thorough understanding of their 

requirements, 2) precise and unambiguous specifications, and 3) metrics to verify and validate the 

quality of software produced. 
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In order for safety critical aviation systems to be accepted by the Federal Aviation 

Administration (FAA) and other interested parties, they must adhere to standards such as the 

RTCA DO-178B and its current descendant D0-178C [5]. The DO-178B is an airworthiness 

compliance standard, which governs the development and certification of aerospace systems. It is 

a process-oriented evaluation of sound software engineering practices in system design [6]. The 

standard focuses on all aspects of round trip engineering and requirements based testing as key 

elements of software verification to uncover errors [6].  DO-178C is the latest revision to the DO-

178B guidelines, which addressed objectives for software development life cycle processes, 

activities and design considerations for achieving the objects and verifying the objectives [50].  

DO-178C also addresses object-oriented development concepts and specific techniques. 

The University of North Dakota (UND) – UAS Risk Mitigation Project1 was awarded a 

contract to develop a proof-of-concept air truth system, which monitors the operation of UAVs in 

the US National Airspace (NAS). The project began with minimal requirements; however, the 

timeframe for delivery was very rigid. This resulted in the rapid development of a prototype to 

assist in exploring and developing additional requirements. One feature of prototypes is that they 

are often poorly documented. To resolve this, concurrent definition and documentation of system 

requirements were performed as the prototype evolved. This was enhanced with the design of 

graphical software models. In model-driven engineering, the purposes and uses of graphical 

software models are multifaceted. They represent the structural design of the system, and the flow 

of data and communication between the various systems and subsystems. Its use is not only suited 

for astute stakeholders but also non-technical stakeholders such as customers – to convey how 

their requirements are being met. The Unified Modeling Language (UML) is an ISO standard for 

                                                           
1 http://www.uasresearch.com/home.aspx 
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designing and conceptualizing graphical models of software systems [7]. Since its development 

by the Object Management Group (OMG)2 in the early 1990’s its use has increased in industry 

and academia. Graphical software models, such as UML models, possess simplistic designs and 

promote good software engineering practices. However, these models are not without limitation. 

Graphical software models are often imprecise and ambiguous. In addition, they are not directly 

analyzable by type checkers and proof tools. This makes it difficult to evaluate the integrity and 

correctness of its models; therefore, valid assertions cannot be made with regard to meeting user 

requirements. 

 Formal Specification Techniques have been advocated as a supplementary approach to 

amend the informality of graphical software models [8] [9]. They promote the design of 

mathematically tractable systems through critical thinking and scientific reasoning. FSTs use a 

specification language, for instance Z notation, to describe the components of a system and their 

constraints [10]. Unlike graphical models, formal models can be analyzed directly by a proof tool 

– which checks for errors and inconsistencies. Critics of FSTs claim, they increase the cost of 

development, require highly trained experts, and are not used in real systems [11]. Yet, they have 

been used in case studies which unveiled that, FSTs facilitate a greater understanding of the 

requirements and their feasibility [1] [2] [12]. Although the use of FSTs is sometimes 

controversial, their benefits to critical systems offset the disadvantages.  

This work documents the transformation rules for UML class operation signature to an 

analyzable representation using formal specification techniques. Equally, the specific 

advancement that this work encourages is to provide a mean by which these transformation rules 

can be automated. Automation is necessary because of the volume involve in such work – manual 

                                                           
2 www.omg.org 
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interventions can be monotonous and inaccurate. Such process will reduce the introduction of 

human errors when applying transformation rules. 

1.3 Research Contribution 

 Previous research has demonstrated that the application of formal specifications to safety 

critical systems is important for the purpose of precision.  The present work is designed to define 

a set of rules for transposing UML operations to Z schema, which is an extension of work done by 

France et. al. [8] [12] [16] [24]. This research introduces four steps that are applicable to any 

domain that is categorized as safety-critical and where formalism is necessary. The present 

analysis demonstrates that it is feasible to apply formal specifications to safety-critical systems, 

although the manual process is tedious and the use of notations are necessary. The present research 

is therefore intended to make contributions to the literatures on formal specifications, and UML 

models.  In addition, this work may lead to the production of a similar tool highlighted in work 

done by Gogolla et. al. for UML and OCL validation [62].  

1.4 Research Approach 

UML is now an ISO standard [7] and has its advantages in simplicity, intuitiveness and 

recently has been considered for specification purposes. However, UML falls short in the latter 

area because it utilizes some loose semantics, which leads to ambiguity among its models. In some 

cases, ambiguity can be negligible, however in safety critical systems this may lead to detrimental 

consequences. One technique to eliminate this ambiguity is by transforming UML models to an 

analyzable representation with the use of formal specification techniques. Prior work has been 

conducted in formalizing UML class diagram operation signatures at an abstract level [2]; from 

that research, it requires that in order for those transformation rules to be effective, it demands 

elaboration and refinement. This effort will look at how UML class diagram operation signatures 
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can be formalized by applying rules to user-defined functions using a formal specification 

language, Z notation. 

According to [1], formal specification techniques (FST) incorporate the use of a 

specification language to describe software models with precision. As noted previously, the 

specification language utilized for our research is Z. FST also permits the use of proofing tools 

which identify errors in specifications executed within the proofing tool environment. The 

employment of FST will look at checking and analyzing the Z schemas that have been yielded 

from the system’s UML class diagram. A proof tool used to accomplish this which, has shown to 

be effective in detecting syntax and semantic errors of the Z representation of our UML model is 

Z/EVES. Carrying out a series of analysis of error checking using this proofing tool is a key 

element in the validating system models. 

In an effort to automate model transformation in the future as a byproduct of this research, 

a set of model transformation rules will be highlighted throughout the methodology. Model 

transformation works by accepting one or more models, by applying rules called transformation 

rules, a target model is then attained which is equivalent to the input model [1]. Transformation is 

currently being conducted manually however, with the establishment of detailed transformation 

rules the process can be done automatically. As a byproduct of this research, automatic UML 

model transformation into their equivalent Z schemas will be a focus in future works. To aid in 

this potential research, the methodology aims to highlight a set of transformation rules, which will 

be used to accomplish automatic model transformation. 

EBNF (Extended Backus Normal Form or Backus–Naur Form) is a recursive notation 

technique for describing the productions of a context-free grammar. It is developed based on the 

work of John Backus with contributions by Peter Naur [17] [18]. It is often used to describe the 

http://www.wikipedia.org/wiki/Metasyntax
http://www.wikipedia.org/wiki/Metasyntax
http://www.wikipedia.org/wiki/Syntax
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syntax of languages used in computing, including computer programming languages, because of 

its simple notations, recursive structures, and it is widely supported by many compiler generations 

tools such as YAAC [19], LEX [20], and ANTLR[21]. BNF is applied wherever exact descriptions 

of languages are needed for instance, in official language specifications, in manuals, and in 

textbooks on programming language theory. It is realized in applications that the descriptive power 

of BNF may be greatly improved by introducing a few extended meta-symbols, particularly those 

for repetitive and optional structures of grammar rules.  

Extended Backus Naur Form (EBNF) will be used to describe UML operation signature. 

After which, the researcher will go through a process of systematically deriving an algorithm 

definition for each transformation rule – the refinement process.  Having refined the rules, testing 

of each algorithmic description will be done on a case study.  From the case study, conclusion will 

be drawn of the result as it relates towards determining the success of the effort. 

1.5 Scope and Limitations 

The effort of this work is limited to defining a set of algorithms for transforming UML 

operation signature that are presented in a complete UML class diagram.  This research draws on 

work done by [1] [2] and will not attempt to redefine any rules define by [1], but merely drawing 

on the stated output of the researcher work [1].  In addition, building of an application will not be 

an attempt in this study but defining a set of algorithms that could be implemented in such an 

application.  

Limitations encountered relate to timing constraints and available work effort. The process 

of deriving formal rules is very lengthy hence, the manual efforts involved in developing them 

spanned several semesters. The breakdown is as follow: 

Semester 1 – Literature review as an independent topic 

http://www.wikipedia.org/wiki/Syntax
http://www.wikipedia.org/wiki/Formal_language#Programming_languages
http://www.wikipedia.org/wiki/Programming_language
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Semester 2 – Deriving rules 

Semester 3 – Case study 

Semester 4 – Case study 

Semester 5 – Case study 

Transformation rules and case study were done in two semesters iteratively and another semester 

was spent writing the thesis. 

1.5.1 Expected Outcome 

The output of this reports include:  1) a set of rules and algorithms for transforming UML 

operations to Z schema. 2) Results from the case study and a conclusion of the success of the work 

and its future implementation.  The algorithms will constitute the high-level pseudo-code 

description that would lead to implement a system that will conduct the transformation in a semi-

automatic manner.  The transformation cannot be fully automated as some operations constraints 

can only be specified in English prose.  

1.6 Description of Thesis / Report Organization 

Chapter 2 incorporates areas that were reviewed for doing this work as well as prior 

research in this sub-discipline. Chapter 3 contains a detailed description of the methodologies 

performed in this research. Chapter 4 is a case study on the UAS and results of the transformation 

rules to the system. The report is concluded in Chapter 5. 
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CHAPTER II 

BACKGROUND 

 2.1 Model Driven Approach  

The focus of Model Driven Engineering (MDE) is to transform, refine, and integrate 

models into the software development life cycle to support system design, evolution, and 

maintenance [22]. Models serve many purposes and their use varies from investors to investors. 

The purpose of modeling, from a developer’s standpoint, is to represent the proposed system by 

showing: 1) the flow of data between objects and individual components of the system as well as 

how they can interact with other software components, 2) Communication between internal entities 

and external components, and 3) how the system behaves to stimuli.  

Models should be logical, cohesive, and provide an abstract way to visualize the design of 

a system and show how the proposed system will address the users’ requirements. One way in 

which models can be derived is by forward engineering activities. Forward engineering is the 

process of moving from high-level abstractions and implementation of independent designs to the 

implementation of a system [23].  

Software models facilitate:  

 Abstraction - This feature allows models to be independent of any programming language, 

style, or algorithm design.  

 Improved understanding of the project’s goals and user’s requirements - Members of the 

development team(s) can distinctly see how the proposed solution addresses the customer’s 

needs, and the impact that their aspect of work has on meeting these requirements.  
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 Enhanced communication between the various stakeholders. The intent of some models is 

to be conveyed to all stakeholders. The outcome is to encourage all stakeholders to play an 

active role in the design of the system and to explore the feasibility of its requirements.  

Various software development life cycle models are suitable for specific project related conditions, 

which include organization, requirements stability, risks, budget, and duration of project. One life 

cycle model theoretical may suite particular conditions and at the same time another model may 

also looks fitting into the requirements but one should consider trade-offs while deciding which 

model to choose. 

While Software models have many benefits, their disadvantages include the following:  

 On occasion, models are not updated which results in them becoming inconsistent with the 

source code. This affects the maintainability of the software as the models are not a true 

representation of their implementation.  

 Graphical models are abstract hence the software developer is not required to explore 

certain aspects of the system; for instance side effects related to variable declarations or 

premature initializations.  

 Failure to detect syntax, semantic and domain errors because these models cannot be 

directly verified for inconsistencies without the use of an external tool.  

Even though the use of software models can be unfavorable, it is still an essential step in the 

design, documentation, and maintenance of software systems. The result of modeling determines 

whether the models are indicative of the proposed system and if the user’s needs are adequately 

addressed.  There are many types of models and an excess amount of software tools used to aid in 

their design. This research uses the UML to support the design of graphical models. UML is 

appropriate because:  
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 It is an ISO Standard for designing models of software systems,  

 It is widely used in industry and academia, and  

 It is user friendly and understandable for all stakeholders.  

2.2 The Unified Modeling Language 

UML (Unified Modeling Language) is the de-facto standard formalism for object-oriented 

software analysis and design.  One of the most consequential components of UML are class 

diagrams, which model the information on the domain of interest in terms of objects organized in 

classes and relationships [40] [41].  UML class diagrams allow for modeling, in a declarative way, 

the static structure of an application domain, in terms of concepts and relations between them. 

A class in a UML class diagram represents an object or a set of objects with common 

features. A class is graphically rendered as a rectangle divided into three parts (see Figure. 1). The 

first part contains the name of the class, which has to be unique in the entire diagram. The second 

part contains the attributes of the class, each denoted by a name, possibly followed by the 

multiplicity and with an associated type for the attribute values [42]. The third part contains the 

operations of the class, that is, the operations associated to the objects of the class. The argument 

list is a list of parameter types (e.g., int, double, string, etc.) that is associated with operation. 

Operations that does not return a value should give a return type of void. 

The UML is an object-oriented modeling language for specifying, visualizing, 

constructing, and documenting the artifacts of software systems [7]. The UML is used to depict a 

high-level representation of the proposed system. This is achieved through the design of various 

types of models, which capture the structure and behavior of the system.  UML promotes some of 

the best software development practices; and this very quality is among the primary reasons for its 

acceptance. It serves as a blueprint for software engineers through the design of models and 
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diagrams, which are representative of various aspects of the proposed system. The benefits of 

UMLs are very present in the early phase of the software development life cycle where it is used 

to reproduce a high-level representation of the proposed system.  This abstract representation is 

achieved through the design of various types of models, which capture the structure and behavior 

of the system, sub-systems, and their internal and external components.   

UML models facilitate better communication among customers and developers.  Customer 

and developer get an opportunity to understand the project and its requirements before 

implementation commences. It also assists software developers to identify whether user 

requirements will be adequately addressed by the system. UML is widely accepted because of its 

simplicity, which makes it easily understood by developers thereby making it easily communicated 

to their customers [26]. 

Diagrams in UML are categorized as structure or behavior diagrams. Structure diagrams 

represent the static framework of the system [27], whereas behavior diagrams illustrate the 

dynamic features of the system.  Examples of structure diagrams include class, component, object, 

deployment, and package diagrams. Behavior diagrams depict the dynamic features of the system 

by showing how the system act during execution. These diagrams include use case, activity, and 

state diagrams.  Interaction diagrams are an extension of behavior diagrams but focus mainly on 

the internal elements of the system. Examples of interaction diagrams include sequence and 

collaboration diagrams. Class diagrams and use case diagrams facilitate prioritization and 

communication between nontechnical stakeholders and developers. Sequence and state chart 

diagrams that are more complex UML models, and are suited for intellectual advance stakeholders 

such as engineers and developers. 
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The scope of this paper will be on the static UML models – more specifically, the class 

diagram. Creation of a new class diagram in UML begins with a class. In UML notation, a class is 

represented as a rectangular box with three vertical compartments: the class header, list of 

attributes, and list of operations. Attributes are characteristics of a class that makes it unique; 

whereas operations, also called methods, performs tasks that could potentially change the state of 

the class. The focus of this work is on the class operations.  

Figure 1 below illustrates an example of two classes that have some mutual relationship 

depicted by the line connecting them.  Each has its own unique attributes (for example, Class A 

has Attribute_A0 through to Attribute_An) and some operations listed below the attribute list.  

Note that operation signatures may contain a list of parameters as well.  For the scope of this paper, 

focus will be placed on the operation signatures of classes. Previous research work done by Clachar 

et al. [1] focused on defining classes and attributes; and the need for greater attention on operation 

signatures should be done in order to have a complete transformation model to Z.  

 

 

Figure 1. Example of a UML class diagram 

Like other software development aids, as recorded before UML has its limitations. These 

informal models have an advantage, such as expressiveness – which makes the objective of the 

system easily conveyed to both technical and nontechnical stakeholders.  However, UML lacks 

precise formal semantics, which results in its models being subject to multiple interpretations.  This 

issue is worsened by the use of natural language annotations – as a means of clarification and 
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explanation of the modeling techniques adopted.  Due to UML's inherent flexibility, developers 

are given much scope when designing models. This freedom enables the developer to describe 

system requirements based on the modeling technique they have adopted.  However, problems 

arise when these models are circulated among the development team and each developer interprets 

the models in a different way – which could affect the latter stages of the software development 

life cycle (SDLC) [28].  Notations are often used to alleviate this issue; however, comments can 

be misinterpreted because it is expressed in natural language [16]. Furthermore, natural language 

notations cannot be processed by tools – therefore they also need to be formalized for analysis 

purposes [29].  Other problems arise as customer requirements unfold.  These critical changes are 

often not reflected in the models – albeit the source-code reflects the change; at that stage updating 

the models is often considered tedious and time-consuming. This result in difficulty of software 

maintenance as the UML models are often inconsistent with the source code and its significance 

is lost [30]. 

In some systems, the disadvantages of UML and the challenge of deriving precise models 

may not have a significant impact on the quality of software produced.  Yet, in safety critical 

systems, any inadequacy could result in the loss of property or be life threatening. The high cost 

during the implementation and early test phases are often times caused by errors at the specification 

and design phases [25].  Since UML is widely accepted, there is a need for methods to test the 

correctness of its models. This can be achieved with the use of formal specification techniques. 

2.3 Formal Specification Techniques 

 Formal specification has been in existence decades afore the inception of graphical 

techniques such as UML. FSTs utilize mathematical models and principles to describe software 

models with accuracy through rigorous analysis [3].  The specification language chosen in this 
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work is referred to as Z notation for the following reasons.   (1) It is an ISO standard, (2) There is 

an excess of research on Z notation and extensive implement support (3) It is based on set theory and 

predicate logic, which allows mathematical reasoning by categorizing real world entities into sets (4) 

Similarity with constructs used in UML – thereby making the transformation process easier to grasp.  

Developed at Oxford University, Z is a typed language based on set theory and first order 

predicate logic.  As well as a basic mathematical notation, Z includes a schema notation to aid the 

structuring of specifications [13]. In order to develop schemas, Z language uses typed 

mathematical facts including sets, relations, and functions in conjunction with first order predicate 

logic. Schemas define its relevant variables and specify the relationship between the values of the 

variables. A schema describes the stored data that a system accesses (variables) and alters [14]. A 

basic type is like a typical data type such as integer, natural number etc. however; it is user-defined 

and problem specific. A schema may include one or several basic types.  

 

 

Figure 2. Structure of a Z Schema 

 

  

Figure 3. A Basic Type Representation in Z 

There are two [2] representation of schemas: state schemas and operation schemas. State 

schemas are employed to define the static attributes of a system while operation schemas capture 
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dynamic aspects [16]. For the purpose of this research focus is placed on defining rules for user-

defined functions by formalizing UML class diagram, the operation schema is the schema of focus 

to demonstrate our methodology.  

A specification written in Z notation models the proposed system by specifying the 

components of the system and expressing constraints between those components [10].  Because of 

its formal basis it enables mathematical reasoning, and hence proves that, desired properties are 

outcomes of the specification [10].  From these proofs, one can verbalize that the system is 

behaving in a desirable or undesirable manner, provided the specification is precise and complete.   

System behavior should always be deterministic (deterministic in the sense that all events has a 

specified system response) in the domain of safety critical systems. These software systems 

encompass numerous highly intricate processing components and have high demands for 

reliability and accuracy.  Due to the perpetual utilization of UML in software development, there 

is a need to resolve the informal semantics of the models it produces [1].  To transform UML 

models into Z notation also provide formal analysis to accomplish verification and validation of 

software systems. 

Unlike UML, the formal models produced by Z can be analyzed directly by a proof tool – 

which checks for inaccuracy and inconsistencies.  Possible errors that are detected include syntax and 

type errors, and domain checks – such as division by zero [31]. Inconsistencies that are detected pertain 

to the meanings of predefined and user-defined expressions and the appropriateness of their use in a 

specification.  FSTs are not utilized to replace graphical software models; rather they are 

complementary. While formal models uncover inconsistencies and exclusion of requirements, the 

informal model is an explainable version of the formal models [24]. 
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2.4 Model Transformation 

 

Model transformation and refinement is a process that lies at the heart of model driven 

engineering (MDE), where platform independent models (PIM) are translated into platform 

specific models (PSM) utilizing formal rules – additionally referred to as transformation rules [32] 

[33]. The focus of MDE is to create and exploit domain models (that is, transform, refine, and 

integrate models), which are conceptual models into the software development life cycle to fortify 

system design, evolution and maintenance [22] [32].  The benefits of MDE was recognized and 

embraced by many organizations, including the Object Management Group (OMG) [22] – an 

association that creates and manages industry standards such as the UML.  There are many 

categories of model transformations that exist such as text-to-model transformation, model-to-

code transformation, and model-to-model transformation [22]. Although this work fixates on the 

latter, it will however also highlight the process of deriving the platform independent models. The 

platform independent models will be the UML class diagrams and the platform specific models 

will be their representative Z schemata.  

After the models are transformed, theoretical properties of the transformation such as 

termination, soundness, completeness and correctness can be proven [22]. Irrespective of the 

transformation approach taken, it is vital that software engineers have a good understanding of the 

scope of the project, as well as the abstract syntax and semantics of the source and target models 

[32].  Models can be transformed manually or automatically. A manual transformation applies 

custom transformation rules to specific problems. This type of transformation was employed in 

this work. Whereas automatic transformations apply predefined transformation rules that are based 

on a problem domain. These rules can also be regarded as a meta-model.  
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This research seeks to derive a set of manual transformation rules for a real world 

unmanned aerial system that are applicable to all problem domains. The outcome of this activity 

is to determine if there are standard processes for yielding formal models from informal UML 

models for the problem domain. Manually transforming these models is tedious and as such, it is 

prone to human errors. Consequently, if standard processes were established, it would prove 

advantageous to automate them in future work. Conducting a manual transformation will highlight 

patterns that suit automation and aspects that require indispensable human intervention. 

2.5 Extended Backus Naur Form 

The extended Bankus-Naur form is the most rigorous way to define syntax of programming 

languages. EBNF is a notation for formally describing syntax. That is, how to write entries in a 

language [37] [38].  The use of EBNF will be used throughout this study to describe syntax 

formally.  However, there is a more compelling reason to begin the use of EBNF: it is a microcosm 

of programming itself.  In [39] Yong Xia and Martin Glinz have proposed a mapping from 

graphical language to EBNF aiming at the elimination of inconsistencies and ambiguities in UML 

diagrams. Complicated EBNF descriptions are easier to read and understand if their rules are well 

named, each name helps to communicate the meaning of its definition. However, to a compiler, 

names cannot change the meaning of a rule or the classification of a symbol [37]. 

Although, not incorporated in this work, but for future work EBNF can be used to describe 

C syntax formally. First, the control forms in EBNF rules are strongly similar to the basic control 

structures in C: sequence; decision, repetition, and recursion; also similar is the ability to name 

descriptions and reuse these names to build structures that are more complex. There is also a strong 

similarity between the process of writing descriptions in EBNF and writing programs in C: we 

must synthesize a candidate solution and then analyze it - to determine whether it is correct and 
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easy to understand.  In this study, EBNF will be used to define syntax as a textual meta-model for 

the operation signature.  

2.6 Related Tools – Z/EVES 

There are many communities that are involve in developing a set of tools for editing, type 

checking, animating, and proving formal specification written in the Z specification language. 

However, many of them are command line tools and accept specifications in the Z Latex style 

[34]. Other implementations such as Z/EVES, CZT: Community Z Tools Project and RoZ have 

graphical interfaces that enable users to create Z specifications in a more user-friendly 

environment, while ensuring strict correspondence between the UML model and the Z schemata 

[35]. For the purpose of this study Z/EVES will be used to demonstrate the application of the 

define methodology. 

Z/EVES offers some powerful automatic commands for general simple theorems proving 

for Z notation (e.g., prove or reduce) [51] [52]; it also has the ability to demonstrate the consistency 

of specification or refinements. 
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CHAPTER III 

METHODOLOGY 

3.1 Introduction 

This chapter contains a detailed description of the methodologies performed in our 

research. The methodology involves three processes: 1) Using the operation signature description 

in EBNF. The rationale for using EBNF is that it provides a meta-model that it is easier to convert 

from textual (UML) to another textual format (EBNF). 2) Defining operation transformation rules, 

and 3) Converting transformation rules to algorithms.  

This research is based on efforts of previous work [1] [2]. These work, focused on 

formalizing UML software models of safety critical systems, and validating and verifying 

functional design for complex safety critical systems.  In addition, rules for transforming UML 

graphical models to Z notation were defined.  This research completes the transformation rule by 

defining a set of rules that must be followed for defining operations in a class. Figure 4 shows an 

example of a class diagram base on the Unmanned Aircraft Systems (UAS) [1]. 

What follows in this research is a description of a series of sequential steps that will be carried out 

in transforming UML operations to Z representation.  As each step is defined, it will be 

demonstrated by applying the rules to the operations shown in Figure 4.   The operations that the 

rules will be applied to are:  

 convert_to_internal_speed (speed: Double): Double 

 convert_to_external_speed (speed: Double): Double 

 convert_heading (heading: Double): Double 
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Figure 4. Example of a UAS Class Diagram 

 

3.2 Extended Backus–Naur Form (BNF) Parsing rules for operations signature 

transformation 

 

Extended Backus Normal Form (EBNF), a syntactic meta-language, is a notation technique 

for expressing context-free grammars in computer science. It is often used where clear formal 

description and definition is required to describe the syntax of languages used in computing, 

including computer programming languages [55].  EBNF is applied wherever exact descriptions 

of languages are needed, for instance, in official language specifications, in manuals, and in 

textbooks on programming language theory [37] [38].  In this work, EBNF will be used to define 

a set of formats for operation signatures.   Any develop automated tool will have to implement the 

EBNF operation signature format so that operation can be parsed to production rule. 

While the UML model represents operation signature as textual, our work would be more 

understandable if a textual meta-model representation is utilize.  The scope of this meta-model is 

a class diagram.  The textual description that is appropriate for this work is EBNF.  Adhering to 

the ISO/IEC 14977: 1996 international standard, Figure 5 illustrates a meta-model class diagram 

description for a class operation signature. 

http://www.wikipedia.org/wiki/Metasyntax
http://www.wikipedia.org/wiki/Context-free_grammar
http://www.wikipedia.org/wiki/Syntax
http://www.wikipedia.org/wiki/Formal_language#Programming_languages
http://www.wikipedia.org/wiki/Programming_language
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Figure 5. Meta-model description of a Class Diagram 

For the purpose of this study, constraints that govern operations names are:  

1. Size of operation name will follow the C standard 5.4.2.1 translation limits. 63 significant 

initial characters in an internal identifier or a macro name (each universal character name 

or extended source character is considered a single character and 31 significant initial 

characters in an external identifier [56]. 

2. Words that conflict with key word in UML and Z should not be used. 

The following EBNF grammar rules shown in Table 1 are adhered to when converting UML 

operations to EBNF: 
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Table 1. Rules for Converting UML Operations to EBNF. 

<operation_signature> :: = <return_type><operation_name>“(“<parameters>”)” <constraint> 

<return_type> :: = <z_type> |<user_defined_type> 

<z_type> :: = ℤ|ℕ 

<user_defined_type> :: = void | char | string | short | long | float | double | signed | unsigned | char_string 

<char_string> :: = <letter><more_letter> 

<letter> :: = <upper_letter>|<lower_letter> 

<upper_letter> :: = A | B | C | D | E | F| G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

<lower_letter> :: = a | b | c | d | e | f | g | h | I | j | k | i | m | n| o | p| q | r | s | t | u | v | w | x | y| z 

<more_letter> :: =<letter><more_letter> | _<more_letter> | <digit><more_letter> | <digit> | <letter> 

<digit> :: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

<operation_name> :: = <char_string> 

<parameters> :: = <parameter_pair> “,”<parameters> | <parameter_pair> 

<parameter_pair> :: = <return_type>< char_string> 

<constraint> :: = < pre_condition><post_condition> | <pre_condition> | <post_condition>  

<pre_condition> :: = PRE<const_string> 

<post_condition> :: = POST<const_string> 

<const_string> :: = <char_string> | <special_char><const_string> | <special_char> 

<special_char> :: = ∀ | ∃ | ∧ | ∨ | ¬ | ⊢ | ∃1 |  ∅ | ∈ | ∉ | ∪ | ∩ | ⇒ | ⇔ | ≠ | ⇸ | ⤔ |⤀ | ⤗ | → |↣ |↠ |⤖ |⇻ |⤕ | 

λ | μ  
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EBNF is a grammar used for checking the parsing of operation signature description from UML 

diagrams.  EBNF may be used in deriving parse trees for an automated translator.  A developer 

may have written constraints in first order predicate logics. Here the special_char would allow for 

the parsing of such constructs; with the assumption that the developer has properly defined the 

format statement. 

3.3 Operation Transformation Rules 

In the following subsections transformation for each parts of an operation will be described.  

The development of the operation signature will be governed by these rules. 

3.3.1 Defining Operation Basic Types Schemata 

Declare all the necessary data types before schema definitions. Data types in Z are often 

referred to as basic types or given sets of the specifications. A feature of the Z notation is that it 

offers a calculus for building large specifications from smaller components [9] – and basic types 

facilitate this. The importance of basic types and given sets is that they allow one to categorize real 

world entities into sets. These sets are an essential part of Z schemas because they are used to 

represent objects and their respective attributes. In this work, basic types will be represented in 

capitalized letters so that they can be easily identified.  The software engineer must examine the 

attributes of each UML class to identify types that do not have an equivalent representation in Z. 

Presently, the Z Mathematical Toolkit only directly supports integers [44]. Therefore, other data 

types needs to be defined.  For any string that is not of the type INTEGER (ℤ), a basic type will 

be created for it in the Z specification. The process of declaring basic types is not entirely 

automatable, because some data types will require manual intervention to ensure that they are 

representative of the parameters. However, the process of extracting the name of the data type and 

declaring them in the Z specification can be automated.  If parameter does not have an associated 
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data type, and such misrepresentations arise sporadically in UML models, the name of the 

parameter will be declared and used as a Z basic type [12].  Examples of declaring an operation 

basic type schemata based on the class diagram and operations {(convert_heading(heading: 

double): double, convert_to_internal_speed(speed: double):double and 

convert_to_external_speed(speed:double): double} found in Figure 4 is: [DOUBLE]. 

3.3.2 Define Parameter List Schemata 

This step encompasses the description of the Z schema that will contain parameter of each 

operation.  Each UML operation may contain zero or more parameters. Hence, one of two possible 

options must be taken: 

Option 1: UML operation with no parameter 

In this option, the definition of a parameter schema is nonessential and any attempt to define a 

representative Z schema would be illogical and result in rejection by Z/EVES.  For example, the 

update_display operation in the Radar Display class diagram, Figure 4, contains no parameter. 

Therefore, no parameter schema definition is necessary. 

Option 2: UML operation with one or more parameters 

The parameter of each operation will be declared in a parameter type schema.  This step is 

performed successively on each parameter of the UML operation, in two stages, to determine: 1) 

the name of the parameter and the data type associated with the parameter; and 2) any constraints 

(values) associated with the parameters.  Initially, a one-to-one mapping must be established 

between parameter /(s) and one of the previously defined basic types or a data type that exist in 

the Z mathematical toolkit.  For the latter phase, parameters along with their respective values will 

be determined.  Constraints that are either domain-specific or operational will be depicted in the 

schema predicate section.  The naming convention used for parameter list schemata is the name of 
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the parameter followed by the keyword ‘parameter’.  For differentiation purpose, each parameter 

will have an associated index/counter since the same parameter may appear in multiple operations. 

With reference to Figure 4, the following constraints in Table 3 govern the parameters of each 

operation.  For future work, a format for expressing constraints can be developed, for instance 

ATT_NAME : <value_range>.  An example is given for the convert_heading operation in the 

Aircraft class diagram of Figure 4, which contains one parameter.  Their equivalent parameter type 

schema is: 

 heading_parameter_01  

heading: ℙDOUBLE   
 

∀ h : heading ⦁ 0 ≤ h ≤ 180 
 0 

 

3.3.3 Defining Parameter Configuration Schemata 

Operations in a class may contain parameters as an item of their execution. This step will be 

conducted only if an operation accepts parameters. The configuration schema includes all 

previously defined parameter types.  When creating these configuration schemata, each item in the 

parameter list of an operation is included as the definition of the parameter type.   Where each 

parameter will be identified by its name and corresponding basic type, thus mapping each 

parameter name to a Z data type or a basic type.  These steps should be repeated for each operation 

that utilizes parameters in their operation implementation.  The naming convention used for 

parameter configuration schemata is the name of the operation followed by the keyword 

‘parameter’.  Operations are governed by pre-conditions, post-conditions or a combination of both.  

Where there is no way to automate the pre-condition or post-condition, comments will be utilized.  

An Example of defining parameter configuration schemata based on the convert_heading 

operation found in Figure 4 Aircraft class is:  
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 Convert_heading_Parameter_01  

heading_parameter_01 
 

The Aircraft class operations {(convert_to_internal_speed (Speed: double) double) and 

Radar_Display class (move (x: integer, y: integer))} have three associated parameters of types 

double, and integer.  Integers are present in the Z mathematical toolkit and should not be declared 

as a basic type.  However, the data type called Double are native to some modeling environments 

but not all; neither is it specified in the Z mathematical toolkit. The basic type parse should 

therefore identify it as a new basic type. In today’s common computer processors, a data type of 

Double precision is essentially a real number with a 64-bit constraint on its size. Manual 

intervention could change the data types, which were declared as double to a basic type called, 

real. Take into consideration that simply changing the name of the basic type from double to real 

is semantically equivalent to any proof tool. Therefore, changes of this nature to a basic type will 

require that constraints be enforced on the data type. Otherwise, the manual intervention would be 

unproductive. 

In the Z specification of the Aircraft Class Diagram, it was important to state what 

constitutes a double. Since real numbers were not originally defined in the Z mathematical toolkit 

and many existing implementations for real numbers are incorrect [45], there was a need for an 

appropriate representation for these attributes. Previous work by [45] contains specifications for 

representing floating point values in Z. However, such effort is outside the scope of this work. In 

addition, the implementation is very rigid and will not evolve if the size of floating point values 

increase in future processors. 

There are many arguments surrounding the implementation of real numbers and other 

floating point values. However, a key feature, which separates integers from floats, is that floating 

point values account for both a numeric precision and a scale whereas integers are whole numbers; 
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i.e. floating points are approximated values whereas integers are their exact values. The analytical 

nature of formal methods does not require such distinction to make valid assertions about the 

system. Therefore, substituting real numbers for integers will suffice. 

The result of the basic type parse will return the following: [INTERGER] and [DOUBLE]; 

manual intervention can substitute DOUBLE with integers – where necessary. 

This schema definition incorporates the parameter type schemata for all parameters that exist in 

an operation.  

3.3.4 Define Operation Schemata 

After defining parameter configuration schemata, operation schemata is declared. It is 

mandatory for all methods to have a name. A method that does not have a name will result in 

compilation error.  Making use of schema inclusion, an operation schema is defined by 

incorporating the associated parameter schema.  Additionally, any other variables local to an 

operation are declared and where necessary constraints on variables or parameter values are 

defined in the predicate part of the schemata.  Operations with the same name may appear in 

different classes; therefore, a counter/index is utilized to identify each operation.  The naming 

convention used for operation schemata is the name of the operation followed by the keyword 

‘operation’.  Key notational conventions are used in the operation schema definition, which 

indicates if the execution of a specific operation changes the state of the system.  Δ Aircraft means 

that there is a change in the state of the schema after the execution of an operation. See Table 4 

that provides a list of notation and their definition that will be utilize in an operation schema.  An 

Example of defining operation schema based on the convert_heading operation found in Figure 4 

Aircraft class is: 
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 Convert_heading_Operation_01  

Δ Aircraft 

Convert_heading_Parameter_01 

heading ′:ℙ DOUBLE 
 

heading ′ = heading 
 

3.3.5 Defining Configuration Schema 

 

This schema will incorporate operations to previously define class schemas that were defined 

by Clachar et. al.  Updated class schema will include operation schema.  

3.4 Transformation Rule Algorithms 

 

Below are algorithms for each transformation rule that were define in section 3.3.1 to 3.3.4 

 

Figure 6 illustrates the steps corresponding to defining operation basic type schemata in Z.  

Each operation must be associated with a basic type in Z, if the basic type is not found in Z then 

one is define and is refer to as a user define type.  Operations that have no associated type are 

assigned a basic type, that is, the operation name.  All basic types are represented in block letter.  

This process is repeated until all basic types are defined. 

begin 

for all class in the class diagram 

  for all operation in the class 

    for each type 

     if type! =ℤ 

       if type! =blank 

        basic_type is USER_DEFINE_TYPE 

       else 

        basic_type is OPERATION 

       endif 

     endif 

       create basic type schema   

 endfor 

  endfor; 

endfor;  

endbegin 

 

Figure 6. Algorithm for Defining Operation Basic Type Schemata 
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Figure 7 shows the process for defining one or more parameter found within an operation.  

A counter value is ascribe to a parameter name as an index.  This index value diffrentiates each  

parameter in an operation, since more than one operation within a class may have the same 

parameter name.  Any constraints relating to a paramter are also define in the schema. 

 

begin 

int count= 0; 

 

for all class in the class diagram 

  for all operation in the class 

   for each parameter in the operation 

     create schema name "parameter name_PARAMETER_[count++]" 

     create parameter schema  

     if constraints presents 

      add constraints 

     endif 

   endfor 

  endfor; 

endfor;  

endbegin 

Figure 7. Algorithm for Defining Parameter Schemata 

begin 

int count = 0; 

 

  for all class in the class diagram 

    for each operation in the class 

        if parameter exist { 

             create configuration schema name "operation name_PARAMETER_ [count++]" 

           schema include all operations parameter schema } 

        endif    

    endfor; 

endfor; 

endbegin 

 

 

           

 Figure 8. Algorithm for Defining Parameter Configuration Schemata 
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To define a parameter configuration schemata, the folowing steps outlined in Figure 8 must 

be adhered to.  The schemata incorporates all previously defined parameter schemata that is 

associtaed with the operation.  An index is also attached to each schema name.  

 

Figure 9 depicts the process for defining operation schemata.  An operation schema is 

defined by incorporating the parameter configuration schemata with an index value join to the 

name of the schema.  Any constraint that is placed on the operation is added also. 

 

 

 

 

 

 

 

begin 

int count= 0; 

 

for all class in the class diagram 

  for each operation in the class 

     create operation schema name "operation name_operation_[count++]" 

  if paramater exist 

     schema include parameter configuration schema 

  endif 

  if constrainrs exist 

     add operation constraints 

   endif 

 

  endfor; 

endfor;  

endbegin 

   

   

   

   

 
Figure 9. Algorithm for Defining Operation Schemata 
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CHAPTER IV 

CASE STUDY 

4.1 Description of the Aircraft System 

The growing social and economic interest in new unmanned aircraft systems (UASs) 

applications demands that UASs operate beyond the segregated airspace they are currently able to 

fly. Unmanned aircraft are not currently permitted access to national air space (NAS) in the United 

States without special permission from the Federal Aviation Administration (FAA). However, 

UAS operations in non-segregated airspace should be regulated by aeronautical authorities before 

UASs can share air space with manned aerial vehicles (MAV).  Despite the existence of 

technologies that could facilitate the integration and operation of UASs in non-segregated airspace, 

several obstacles remain, mainly UAS safety conditions and airworthiness independent of 

application. For example, one of the primary concerns with integrating unmanned aircraft is their 

inability to robustly sense and avoid other aircraft [47].  Another current barrier to the integration 

of UASs is related to the cultural perception of its risks [48].  According to National Transport 

Safety Board (NTSB), injury and damage by NTSB classification for U.S. Air carriers operating 

under 14 CFR 121 for the year 2012 is 16 and 11 respectively, see Table 2 [46].  Table 2 outline 

accidents with four types of classifications (that is, major, serious, injury and damage) that 

occurred during 2008 to 2012 irrespective of compliance to aircraft regulations.   This shows that 

while there are regulations that govern air carriers, some form of formalism is required to prevent 

accidents or catastrophic events.  In order for UASs to fly safely into civil airspace, the 
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development of vigorous testing of UASs, both in laboratory and field experimentation, are key 

prerequisites.  

The United States Air Force Academy (USAFA) is actively involved in unmanned aircraft 

research across numerous departments involving many projects, aircraft, government agencies, 

and experimental programs. The importance of these research projects to the Academy, the faculty, 

the cadets, the Air Force, and to the defense of the nation cannot be understated. In an effort to be 

proactive in cooperating with recent concerns from the FAA about the growth and proliferation of 

UAS flights, the Air Force has implemented several new guidelines and requirements. Complying 

with these guidelines, directives, and regulations has been challenging to researchers and the 

conduct of research activities at USAFA. Finding ways to incorporate these new guidelines 

effectively and efficiently is critical to research and participation in joint projects and exercises 

[49]. 

To ensure the reliability of these systems, both MAVs and UASs must operate within the 

same domain that is, US NAS.  However, a system must be in place that deals with any form of 

collision [53].  This aim led to the development of a UAS Research, Development and Design 

Project at UND3.  The project goal is to ascertain how practical it is for UASs to operate in an 

unrestricted airspace, in low-density populated area. 

The UND –UAS Research, Development, and Design Project architecture is composed of 

three main components: a radar system, a data computation unit, and a displays system. The display 

and data computation system operations is the focus of the work presented here in. 

 

 

                                                           
3 http://www.uasreasearch.com/aboutus/projects.aspx 

 

http://www.uasreasearch.com/aboutus/projects.aspx
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Table 2. Accident by NTSB Classification, 2008 through 2012 for U.S. Air Carriers Operating 

Under CFR 121 

 

Accidents    

Year Major Serious Injury Damage 

2008 4 1 8 15 

2009 2 3 15 10 

2010 1 0 14 14 

2011 0 0 19 12 

2012 0 0 16 11 

 

Definition of NTSB Classifications: 

 Major - an accident in which any of the three conditions are met: 

A part 121 aircraft was destroyed or there were multiple fatalities or there was one fatality 

and a part 121 aircraft was substantially damaged. 

 Serious - an accident in which at least one of the two conditions are met: 

There was one fatality without substantial damage to a part 121 aircraft or there was at least 

one serious injury and a part 121 aircraft was substantially damaged. 

 Injury - a nonfatal accident with at least one serious injury and without substantial damage 

to a part 121 aircraft 

 Damage - an accident in which no person was killed or seriously injured, but in which any 

aircraft was substantially damaged 
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4.2 Application of Methodology 

In this section, the transformations rules that were developed in Chapter III will be applied 

to a subset of the UAS system.  The rules will apply to all operations of Figure 10, for the complete 

transformation of the case study please see Appendix A: 

 

Figure 10.UAS Aircraft and Radar Class Diagram 

The above diagram, Figure 10 is a small subset of classes from the system model currently 

being formalized.  This will be used to demonstrate the execution of the transformation rule on the 

class operations.  These transformation rules include: 

1) Step 1: Defining basic types 

2) Step 2: Defining Parameter Schemata 

3) Step 3: Defining Parameter Configuration Schemata 

4) Step 4: Defining Operation Schemata 
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4.2.1 Constraints on Class Diagrams 

 

Table 3 represents constraints that govern each class diagram in Figure 10.  As a final step 

in the transformation rule, constraints are manually included in the schema of the operation. 

 

Table 3. Constraints for Aircraft, Radar_Display and Aircraft_Coordinates Class Operation 

Attributes 

 

Constraints on Aircraft Class Attributes 

The following constraints govern the Aircraft class:- 

Speed: All speed have a lower and upper bound.  The speed of the aircraft should not 

exceed the speed of supersonic. The minimum and maximum speed for the 

Aircraft are: - min_speed = 0.0 and max_speed = 250 knots  

Heading: The minimum heading = 0.0; maximum = 360.0 

 

Constraints on Radar_Display Class Attributes: 

passive_mouse: The boundary for the mouse drawing on the x axis is:  0.00 to 180.00 degrees 

The boundary for the mouse drawing on the y axis = 0.00 to 180.00 degrees 

set_center: The center can begin from anywhere between -90.0 to 90.0 in latitude (across) 

and -180.0 to 180 longitude (down). 

set_scale: 1 inches = 100 foot 

 

Constraints on Aircraft_Coordinates Class Attributes: 

Latitude : Minimum latitude = -90.0; maximum latitude = 90.0 
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Longitude: minimum longitude = -180.0; maximum longitude = 180.0 

Altitude: minimum altitude = -3000.0; maximum altitude = 168960.0 

 

An important feature of formal specification is that of “state”. A system can be in one of 

several different states. Z captures a system change of state base on the data that a system store 

and how data are change in the schemas. Some of the notations used in this research are listed 

below with their corresponding uses. 

Table 4. Notations Used to Specify Change in the State of Operation Schemas and their 

description 

Notation Symbol Example Description 

Delta Δ Δ Aircraft Shows that there is a change in the state of the schema 

after the execution of an operation 

Xi Ξ Ξ Radar_Display Demonstrates that there is NO change in the state of 

the schema after the execution of an operation 

Prime variables ′ X′ Conventionally used to represent the value of a 

variable after an operation  

Unprimed 

variables 

 X Value of a variable before execution of an operation 

For all ∀ ∀ x : xed ⦁ 0 ≥ x ≤ 10 Forall x:X | P1 ⦁ P2 means: any element of X that 

satisfies P1 also satisfies P2 

 

Table 5 illustrates a subset of the operation signature schemas that were developed from 

conducting the formalization techniques outlined in chapter III, on the class diagram of Figure 10.  

Appendix A has the completed schema for Figure 10. 

 In the example that follows three (3) basic types were defined, specifically, [DOUBLE], 

[GPARS_AIRCRAFT_ DATA], and [BOOLEAN], five (5) parameter schemata, three (3) 

configuration parameter schemata and  four (4) operation schemata.  The parameter schemas are 

convert_heading_Paramaters, convert_to_internal_speed_Paramaters and 
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passive_mouse_Parameters.  The operation schemas are convert_heading, 

convert_to_internal_speed, update_display, and passive_mouse. 
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Table 5. Z Schemas for the UML Class Diagram of Figure 10 

 
Operation Name: Convert_heading(heading: Double): Double 

 

 

 

Step 1: [ DOUBLE] 

 

 

 

Step 2:   heading_parameter_01  

heading: ℙDOUBLE 

 

∀ h : heading ⦁ 0 ≤ h ≤ 180 

 

 

 

Step 3:   Convert_heading_Parameter_01  

heading_parameter_01 

 

 

 

Step 4:   Convert_heading_Operation_01  

Ξ Radar_Display 

Ξ Aircraft_Coordinates 

Δ Aircraft 

Convert_heading_Parameter_01 

heading ′: ℙDOUBLE 

 

heading′ = heading 
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Table 5. cont. 

Operation Name: Convert_to_internal_speed(Speed: Double): Double 

 

Step 1: [ DOUBLE] 

 
 
 
Step 2:    speed_paramater_02  

Speed: ℙDOUBLE 

 

∀ s: speed ⦁ 0.0 ≤ s ≤ 250 knots 

 

 
Step 3:   Convert_to_internal_speed_Paramater_02 

speed_parameter_02 

 

 

 

Step 4:   Convert_to_internal_speed_Operation_02  

Ξ Radar_Display 

Ξ Aircraft_Coordinates 

Δ Aircraft 

Convert_to_internal_Speed_Parameter_02 

speed′: ℙDOUBLE 

 

speed ′ = speed 
 

  
 

Operation Name: Update_display () 

 

 

 

Step 1: [ UPDATE_DISPLAY] 

 

 

 

Step 2 and 3 are ignored because there is no parameter for update_display operation 

 

 

 

Step 4:   Update_display_03  

Ξ Aircraft 
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Table 5. cont. 

 

Operation Name: passive_mouse(Aircraft_data:GPARS_Aircraft_DATA, x: Integer, y: Integer): Boolean 

 

Step 1: [GPARS_AIRCRAFT_DATA] 

             [BOOLEAN] 

 

 

Step 2:   Aircraft_data_parameter_03  

Aircraft_data: GPARS_AIRCRAFT_DATA 

 

 

 

 x_parameter_04  

x: ℙℤ 

 

∀ X: x ⦁ 0.00 ≤ X ≤ 180.00  

 

 y_paramater_05  

y: ℙℤ 

 

∀ Y: y ⦁ 0.00  ≤ Y ≤ 180.00  

 

 

Step 3:   passive_mouse_Paramater_03  

air_craft_parameter_03 

x_paramterer_04 

y_parameter_05 

 

 

Step 4:   passive_mouse_Operation_04  

Ξ Aircraft 

Δ Radar_Display 

passive_mouse_Parameter_03 

Aircraft_data′: GPARS_AIRCRAFT_DATA 

x′: ℙℤ 

y′: ℙℤ 

 

Aircraft_data′ = Aircraft_data 

x′ = x 

y′ = y 
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A basic type and parameter type schema will not be defined for the update_display 

operation.  The reason seeing that, this operation signature carries no data type and no parameter. 

According to the define parameter list schemata rule, this step will be conducted only if an 

operation accepts parameters.   

4.3 Results and Analysis 

In the methodology above, formal methods were applied on operations to demonstrate the 

application of the refinement and transformation process.  The component of subset class diagram 

obtained from the UAS Risk Mitigation system contained 3 classes, and 31 operations (27 user 

defined basic type, 44 parameter schemata, 29 configuration parameter schemata, and 31 operation 

schemata.  Operations also consist of constraints for some parameters in operations. The 

application of the process defined in the methodology provides a realistic way of applying formal 

methods rather than theoretical considerations.  Still, the work that was involved in carrying out 

this project was very tedious which introduced periodic errors.  Thus, implementing a tool to 

automate the formalization process would be beneficial.  This would simplify the conversion 

(Schema definitions), reduce the workload, and lessen the probability of human errors in the 

specification.    

 

 

 

 

 



 

43 
 

CHAPTER V 

CONCLUSION 

This research defines and illustrates the steps involved in deriving operation schema for 

UML class diagrams of a safety critical system.  In many software applications such as in the safety 

critical areas it is important to have correct and bug free software.  Formal specification is one such 

approach to produce good quality, correct and error free software.  The purpose of using notation 

like Z is to produce an accurate specification from initial client requirements. The notation has a 

restricted syntax so it is precise but still abstract enough so as not to constrain how a developer will 

go on to design application.  This study supports the need for reliable development methodologies 

for safety critical systems and for avionic system development to comply with industry standard, 

DO-178C specification.  It is an extension of previous work done by Clachar and Jackson that 

concentrated on formalizing, and verifying and validating UML software models for safety critical 

systems [1] [2].   

One of the principal concerns with amalgamating unmanned aircraft into national air space 

is their lack of ability to robustly sense and avoid other aircraft.  Systems such as these must adhere 

to industry standard, for instance RTCA-DO178B, because they are classified as been safety 

critical.  To ensure that catastrophic events (for example, loss of life) do not occur, accuracy in 

safety critical systems is necessary.  

Unified Modeling Language is the ISO standard for modeling systems. The class diagram 

is one type of UML model used to express systems requirements of stakeholders and to discover 
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additional systems requirements.  However, UML lacks precision when expressing design 

decisions.  Textual descriptions are used to express characteristics of the system, which cannot be 

captured by UML.  This further introduces another level of ambiguity in the models – since they 

are usually expressed in natural language.  Hence, the need for a meta- model (EBNF) that would 

bring more formatting and understanding to the work conducted in this research.  One method that 

is used to remove ambiguity in models is to transform UML models into an analyzable 

representation using formal specification techniques (FSTs).  FSTs are based on mathematical 

logics, which makes use of first order logics and set notation.  Adopting such approach to system 

development plays an important role in safety critical system.  

FSTs have been in existence prior to the beginning of UML.  However, unlike UML it does 

not have a high level of simplicity that makes its models easily communicated to stakeholders.  

Currently, the formalization process is conducted manually.  To make research on FSTs more 

worthy, some degree of automation is imperative.  Therefore, conducting a case study in the area 

of automated tools for FSTs in safety critical systems will be beneficial in enlightening researchers 

on the complexity, advantages, and possible use of such software. 

This case study supports research that identify the benefits of the application of formal 

methods to industries such as formal specification of an oscilloscope (Tektronix) and formal 

methods in safety-critical railway systems.  In the former study, the researcher adopted formal 

methods to gain insight into system architecture. In the latter work, the B formal method was used 

in the development of platform screen door controllers.  Both investigations concluded that the 

application of formal specification appears to be precise, efficient, and well suited to address 

projects requiring high level of safety [59] [60]. 
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Besides applying this methodology to UASs, the contribution of this research may be 

extended to automotive control systems (for example, factory, marine, space exploration, robotics, 

and other specialist areas) where formalism is a necessity.   The use of formal methods is an 

effective mean to improve complex systems reliability and quality.  Benzadri et. al. adopted a 

formal method that utilized modeling interactions between cloud services and customers.  The 

researchers combined Cloud customers’ bigraph and Cloud services bigraph to formally specify 

Cloud services structure.  This study is applicable to formalizing Cloud computing concepts and to 

overcome one of cloud computing main obstacles, specifically bugs in large scale Distributed 

Systems – “one of the difficult issues in cloud computing is removing errors in these very large 

scale distributes systems” [57] [58].  The main issue that still needs to be addressed is the crucial 

absence of an appropriate model for cloud computing.  This research may possibly be able to 

support major Cloud computing concepts specification and allow formal modeling of high-level 

services provided over Cloud computing architecture. 

5.1 Future Work 

The methodology was successfully applied to the operation of the UAS system.  Other 

efforts can apply the same methodology to other systems to prove the validity or accuracy of the 

methodology.  In addition, since the focus of this work was on refining transformation rules from 

an informally defined design in UML to one that is verifiable, formal specification; subsequent 

efforts can derive a process for expressing constraints.  An attempt that can be made is to develop 

a command-line toolkit to automate the steps outlined in the methodology for both the EBNF and 

the transformation rules.  Such tool would accept an operation and ensure the format abide by the 

EBNF configuration.  Subsequently, the tool would apply the refinement steps to each operation by 

decomposing operation into small pieces (Schemas).  The automated toolkit can then be added on 
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as an additional feature of Z/EVES to demonstrate the consistency of refinement and to identify 

errors. 
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APPENDIX  

 

Z Schemas 

 

 
[DOUBLE] 

[GPARS_AIRCRAFT_DATA] 

[BOOLEAN] 

[UPDATE_DISPLAY] 

[VOID] 

[MOVE] 

[RESOLVE_LAT_LON] 

[UPDATE] 

[GPARS_AIRCRAFT_DATA_SET] 

[USE_AIRCRAFT] 

[SHOW_ALTITUDE_COLORS] 

[SHOW_ALTITUDE_ICON] 

[SHOW_ALTITUDE_TEXT] 

[SHOW_OVERLAY] 

[SHOW_RADARS] 

[SHOW_OBSTRUCTION] 

[SHOW_AIRPORTS] 

[SHOW_HAZARDS] 

[SHOW_ROAD_MAP] 

[SHOW_MOA_AREAS] 

[SHOW_UAV_AREAS] 

[SHOW_VELOCITY_VECTORS] 

[SHOW_RISK_REGIONS] 

[MOVE] 

[SET_CLEAR_COLOR] 

[SET_CENTER] 
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[SET_SCALE] 

 speed_paramater_01  

speed: ℙDOUBLE 

 

∀ s: speed ⦁ 0.0 ≤ s ≤250 knots 

 

 Convert_to_internal_speed_Paramater_01  

speed_parameter_01 

 

 Convert_to_internal_speed_Operation_01  

Ξ Radar_Display 

Ξ Aircraft_Coordinates 

Δ Aircraft 

Convert_to_internal_Speed_Parameter_01 

speed ′: ℙDOUBLE 

 

speed ′ = speed 

 

 speed_parameter_02  

speed: ℙDOUBLE 

 

∀ s: speed ⦁ 0.0 ≤ s ≤ 250 knots 

 

 Convert_to_external_speed_Parameter_02  

speed_paramater_02 

 

 Convert_to_externa_speed_Operation_02  

Ξ Radar_Display 

ΞAircraft_Coordinates 

ΔAircraft 

Convert_to_external_Speed_parameter_02 

speed′: ℙDOUBLE 

 

speed′ = speed 
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 heading_parameter_03  

heading: ℙDOUBLE 

 

∀ h : heading ⦁ 0 ≤ h ≤ 180 

 

 Convert_heading_Parameter_03  

heading_parameter_03 

 

 Convert_heading_Operation_03  

Ξ Radar_Display 

Ξ Aircraft_Coordinates 

Δ Aircraft 

Convert_heading_Parameter_03 

heading ′: ℙDOUBLE 

 

heading′ = heading 
 

 

 Calculate_latitude_Operation_04  

Ξ Aircraft 

 

 

 

 

 Latitude_parameter_04  

Latitude: ℙDOUBLE 

 

∀ lat: latitude ⦁ -90.0 ≤ lat ≤ 90.0 

 

 Longitude_parameter_05  

Longitude: ℙDOUBLE 

 

∀ lon: longitude ⦁ -180.0 ≤ lon ≤ 180.0 

 

 

 Set_center_Parameter_04  

Latitude_parameter_04 

Longitude_paramater_05 
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 Set_center_Operation_05  

Ξ Aircraft 

Δ Aircraft_Coordinates 

Set_Center_Parameter_04 

Latitude ′: ℙDOUBLE 

Longitude ′: ℙDOUBLE 

 

Latitude ′= latitude 

Longitude′ =  longitude 

 

 

 Scale_parameter_06  

Scale: ℙDOUBLE 

 

∀ s: scale ⦁ 1 inches = 1 foot 

 

 Set_scale_parameter_05  

Scale_paramater_06 

 

 Set_Scale_Operation_06  

Ξ Aircraft 

ΔAircraft_Coordinates 

Set_scale_parameter_05 

Scale ′: ℙDOUBLE 

 

Scale ′ = scale 

 

 x_parameter_07  

x: ℙDOUBLE 

 

 

 

 y: parameter_08  

y: ℙDOUBLE 

 

 move_paramater_06  

x_parameter_07 

y_parameter_08 
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 move_Operation_07  

Ξ Aircraft 

Δ Aircraft_Coordinates 

Move_parameter_06 

X ′: ℙDOUBLE 

Y ′: ℙDOUBLE 

 

X ′ = x 

Y ′ = y 

 

 

 Latitude_parameter_09  

Latitude: ℙDOUBLE 

 

∀ lat: latitude ⦁ -90.0 ≤ lat ≤ 90.0 

 

 Longitude_parameter_10  

Longitude: ℙDOUBLE 

 

∀ lon: longitude ⦁ -180.0 ≤ lon ≤ 180.0 

 

 x_parameter_11  

x : ℙDOUBLE 

 

 

 

 y_parameter_12  

y: ℙDOUBLE 

 

 

 

 resolve_points_Parameter_07  

latitude_parameter_09 

longtitude_parameter_10 

x_parameter_11 

y_parameter_12 
 



52 
 

 resolve_points_Operation_08  

Ξ Aircraft 

Δ Aircraft_Coordinates 

Resolve_points_Parameter_07 

Latitude ′: ℙDOUBLE 

Longitude ′: ℙDOUBLE 

X ′ : ℙDOUBLE 

Y ′ : ℙDOUBLE 

 

Latitude ′= latitude 

Longitude′ = longitude 

X ′ = x  

Y ′ = y 

 

 x_paramater_13  

x: ℙDOUBLE 

 

 

 

 y_parameter_14  

y: ℙDOUBLE 

 

 

 

 latitude_parameter_15  

latitude: ℙDOUBLE 

 

∀ lat: latitude ⦁ -90.0 ≤ lat ≤ 90.0 

 

 Longitude_parameter_16  

Longitude: ℙDOUBLE 

 

∀ lon: longitude ⦁ -180.0≤ lon ≤ 180.0 

 

 Resolve_lat_lon_Parameter_08  

x_parameter_13 

y_parameter_14 

latitude_parameter_15 

longitude_parameter_16 
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 resolve_lat_lon_Operation_09  

Ξ Aircraft 

Δ Aircraft_Coordinates 

Resolve_lat_lon_Parameter_08 

X ′ : ℙDOUBLE 

Y′ : ℙDOUBLE 

Latitude ′: ℙDOUBLE 

Longitude ′: ℙDOUBLE 

 

X ′ = x  

Y ′ = y 

Latitude ′= latitude 

Longitude′ =: longitude 
 

 Update_display_Operation_10  

Ξ Aircraft 

 

 

 

 Data_set_parameter_17  

Data_set: GPARS_AIRCRAFT_DATA_SET 

 

 

 

 Update_Parameter_09  

Data_set_parameter_17 

 

 Update_Operation_11  

Ξ Aircraft 

Δ Radar_Display 

Update_Parameter_09 

DATA_SET ′ : ℙDOUBLE 

 

DATA_SET ′ = data_Set 
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 Data_set_parameter_18  

Data_set: GPARS_AIRCRAFT_DATA_SET 

 

 

 

 

 Track_is_parameter_19  

Track_is: ℙℤ 

 

 

 

 

 Update_Parameter_10  

Data_set_parameter_18 

Track_is_parameter_19 

 

 

 

 Update_Operation_12  

Ξ Aircraft 

Δ Radar_Display 

Update_Parameter_10 

Data_set ′ : GPARS_AIRCRAFT_DATA_SET 

Track_is ′:ℙℤ 

 

Data_set ′= data_set 

Track_is ′= track_is 

 

 

 Aircraft_data_parameter_20  

Aircraft_data: GPARS_AIRCRAFT_DATA 
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 x_parameter_21  

x: ℙℤ 

 

∀ X: x ⦁ 0.00 ≤ X ≤ 180.00  

 

 y_paramater_22  

y: ℙℤ 

 

∀ Y: y ⦁ 0.00 ≤ Y ≤ 180.00  

 

 passive_mouse_Paramater_11  

air_craft_parameter_20 

x_parameter_21 

y_parameter_22 

 

 passive_mouse_Operation_13  

Ξ Aircraft 

Δ Radar_Display 

passive_mouse_Parameter_11 

Aircraft_data′: GPARS_AIRCRAFT_DATA 

x′: ℙℤ 

y′: ℙℤ 

 

Aircraft_data′ = Aircraft_data 

x′ = x 

y′ = y 
 

 enable_parameter_23  

enable: ℙBOOLEAN 

 

 

 use_aircraft_Paramater_12  

enable_parameter_23 

 

 use_aircraft_Operation_14  

Ξ Aircraft 

Use_aircraft_parameter_12 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 
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 enable_parameter_24  

enable: ℙBOOLEAN 

 

 

 

 

 show_altitude_colors_Paramater_13  

enable_parameter_24 

 

 show_altitude_colors_Operation_15  

Ξ Aircraft 

Show_altitude_colors_parameter_13 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 

 

 

 enable_parameter_25  

enable: ℙBOOLEAN 

 

 

 

 show_altitude_icon_Paramater_14  

enable_parameter_25 

 

 show_altitude_icon_Operation_16  

Ξ Aircraft 

Show_altitude_icon_parameter_14 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 
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 enable_parameter_26  

enable: ℙBOOLEAN 

 

 

 

 show_altitude_text_Paramater_15  

enable_parameter_26 

 

 

 show_altitude_text_Operation_17  

Ξ Aircraft 

Show_altitude_text_parameter_15 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 

 

 

 enable_parameter_27  

enable: ℙBOOLEAN 

 

 

 

 show_overlay_Paramater_16  

enable_parameter 

 

 show_overlay_Operation_18  

Ξ Aircraft 

show_overlay_parameter_16 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 

  

 

 enable_parameter_28  

enable: ℙBOOLEAN 
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 show_radars_Paramater_17  

enable_parameter_28 

 

 show_radars_Operation_19  

Ξ Aircraft 

Show_radars_parameter_17 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 

 

 enable_parameter_29  

enable: ℙBOOLEAN 

 

 

 

 show_obstruction_Paramater_18  

enable_parameter_29 

 

 show_obstruction_Operation_20  

Ξ Aircraft 

Show_obstruction_parameter_18 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 

 

 enable_parameter_30  

enable: ℙBOOLEAN 

 

 

 

 show_airports_Paramater_19  

enable_parameter_30 

 

 show_airports_Operation_21  

Ξ Aircraft 

Show_airports_parameter_19 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 
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 enable_parameter_31  

enable: ℙBOOLEAN 

 

 

 

 show_hazards_Paramater_20  

enable_parameter_31 

 

 show_hazards_Operation_22  

Ξ Aircraft 

Show_hazards_parameter_20 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 

 

 enable_parameter_32  

enable: ℙBOOLEAN 

 

 

 

 show_road_map_Paramater_21  

enable_parameter_32 

 

 show_road_map_Operation_23  

Ξ Aircraft 

Show_road_map_parameter_21 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 

 

 enable_parameter_33  

enable: ℙBOOLEAN 

 

 

 

 show_moa_areas_Paramater_22  

enable_parameter_33 
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 show_moa_areas_Operation_24  

Ξ Aircraft 

Show_moa_areas_parameter_22 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 

 

 

 enable_parameter_34  

enable: ℙBOOLEAN 

 

 

 

 show_uav_areas_Paramater_23  

enable_parameter_34 

 

 show_uav_areas_Operation_25  

Ξ Aircraft 

Show_uav_areas_parameter_23 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 

 

 enable_parameter_35  

enable: ℙBOOLEAN 

 

 

 

 show_ velocity_vector_Paramater_24  

enable_parameter_35 

 

 show_ velocity_vector_Operation_26  

Ξ Aircraft 

Show_velocity_vector_parameter_24 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 
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 enable_parameter_36  

enable: ℙBOOLEAN 

 

 

 

 show_risk_regions_Paramater_25  

enable_parameter_36 

 

 show_risk_regions_Operation_27  

Ξ Aircraft 

Show_risk_regiond_parameter_25 

enable ′: ℙBOOLEAN 

 

enable ′ = enable 

 

 x_parameter_37  

x: ℙℤ 

 

 

 

 y_parameter_38  

y: ℙℤ 

 

 

 

 move_Paramater_26  

x_parameter_37 

y_parameter_38 

 

 move_Operation_28  

Ξ Aircraft 

Δ Radar_Display 

move_parameter_26 

x ′: ℙℤ 

y ′: ℙℤ 

 

x ′ = x 

y ′ = y 
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 red_parameter_39  

red: ℙDOUBLE 

 

 

 green_parameter_40  

green: ℙDOUBLE 

 

 

 blue_parameter_41  

blue: ℙDOUBLE 

 

 

 set_clear_color_parameter_27  

red_parameter_39 

green_parameter_40 

blue_parameter_41 

 

 set_clear_color_Operation_29  

Ξ Aircraft 

Δ Radar_Display 

Set_clear_color_parameter_27 

Red ′ = ℙDOUBLE 

Green ′ = ℙDOUBLE 

Blue ′ = ℙDOUBLE 

 

Red ′ = red 

Green ′ = green 

Blue ′ = blue 

 

 Latitude_parameter_42  

Latitude: ℙDOUBLE 

 

∀ lat: latitude ⦁ -90.0 ≤≥ lat ≤ 90.0 

 

 Longitude_parameter_43  

Longitude: ℙDOUBLE 

 

∀ lon: longitude ⦁ -180.0 ≤ lon ≤ 180.0 
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 Set_center_parameter_28  

Latitude_parameter_42 

Longitude_parameter_43 

 

 Set_center_Operation_30  

Ξ Aircraft 

Δ Radar_Display 

Set_center_parameter_28 

Latitude ′ = ℙDOUBLE 

Longitude ′ = ℙDOUBLE 

 

Latitude ′ = latitude 

Longtitude ′ = longitude 

 

 New_scale_parameter_44  

New_scale: ℙℤ 

 

 

 Set_scale_parameter_29  

New_scale_paramater_44 

 

 Set_scale_operation_31  

Ξ Aircraft 

Δ Radar_Display 

Set_scale_parameter_29 

New_Scale ′ : ℙℤ 

 

New_scale ′ = new_scale 
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