
University of North Dakota
UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2015

Refining Transformation Rules For Converting
UML Operations To Z Schema
Tamaike Brown

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact
zeineb.yousif@library.und.edu.

Recommended Citation
Brown, Tamaike, "Refining Transformation Rules For Converting UML Operations To Z Schema" (2015). Theses and Dissertations.
1747.
https://commons.und.edu/theses/1747

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F1747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F1747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/1747?utm_source=commons.und.edu%2Ftheses%2F1747&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu

REFINING TRANSFORMATION RULES FOR CONVERTING UML OPERATIONS TO Z

SCHEMA

by

Tamaike M. Brown

Bachelor of Science, University of Technology Jamaica, 2011

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

August

2015

ii

© 2015 Tamaike M. Brown

iv

PERMISSION

Title Refining Transformation Rules for Converting UML Operations

 to Z Schema

Department Computer Science

Degree Master of Science

 In presenting this thesis in partial fulfillment of the requirements for a graduate

degree from the University of North Dakota, I agree that the library of this University shall

make it freely available for inspection. I further agree that permission for extensive copying

for scholarly purposes may be granted by the professor who supervised my thesis work or,

in his absence, by the chairperson of the department or the dean of the Graduate School. It

is understood that any copying or publication or other use of this thesis or part thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of North Dakota in any

scholarly use which may be made of any material in my thesis.

 Tamaike Brown

 July 17, 2015

v

TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

ACKNOWLEDGEMENTS ... ix

ABSTRACT .. x

CHAPTER

I. INTRODUCTION ... 1

Research Definition .. 1

Benefits of the Research ... 2

Research Contribution .. 5

Research Approach ... 5

Scope and Limitations... 7

Description of Thesis / Report Organization .. 8

II. BACKGROUND ... 9

Model Driven Approach ... 9

The Unified Modeling Language .. 11

Formal Specification Techniques ... 14

vi

Model Transformation .. 17

Extended Backus Naur Form .. 18

Related Tools – Z/EVES ... 19

III. METHODOLOGY .. 20

Introduction ... 20

Extended Backus–Naur Form (BNF) Parsing rules for operations signature

 transformation ... 21

Operation Transformation Rules... 24

Transformation Rule Algorithms .. 29

IV. CASE STUDY .. 32

Description of the Aircraft System ... 32

Application of Methodology ... 35

Results and Analysis ... 42

V. CONCLUSION ... 43

 Future Work .. 45

APPENDIX .. 47

REFERENCES ... 64

vii

LIST OF FIGURES

Figure Page

1. Example of a UML class diagram ... 13

2. Structure of a Z Schema ... 15

3. A Basic Type Representation in Z ... 15

4. Example of a UAS Class Diagram... 21

5. Meta-model description of a Class Diagram ... 22

6. Algorithm for Defining Operation Basic Type Schemata .. 29

7. Algorithm for Defining Parameter Schemata ... 30

8. Algorithm for Defining Parameter Configuration Schemata .. 30

9. Algorithm for Defining Operation Schemata ... 31

10. UAS Aircraft and Radar Class Diagram ... 35

file:///C:/Users/tamaike.brown/Desktop/GSA/THESIS/Corrected%20Chapters/Thesis%20Versions/draft_for_format_checking.docx%23_Toc424126751
file:///C:/Users/tamaike.brown/Desktop/GSA/THESIS/Corrected%20Chapters/Thesis%20Versions/draft_for_format_checking.docx%23_Toc424126752
file:///C:/Users/tamaike.brown/Desktop/GSA/THESIS/Corrected%20Chapters/Thesis%20Versions/draft_for_format_checking.docx%23_Toc424126753
file:///C:/Users/tamaike.brown/Desktop/GSA/THESIS/Corrected%20Chapters/Thesis%20Versions/draft_for_format_checking.docx%23_Toc424126754

viii

LIST OF TABLES

Table Page

1. Rules for Converting UML Operations to EBNF. .. 23

2. Accident by NTSB Classification, 2008 through 2012 for U.S. Air Carriers

Operating Under CFR 121 ... 34

3. Constraints for Aircraft, Radar_Display and Aircraft_Coordinates Class Operation

Attributes ... 36

4. Notations Used to Specify Change in the State of Operation Schemas and their

description ... 37

5. Z Schemas for the UML Class Diagram of Figure 10 .. 39

ix

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisory committee for expressing

interest and agreeing to be a part of my research endeavor. I would also like to thank God for

giving me strength and the will of perseverance to reach yet another pinnacle in my life. A special

thank you to Dr. Emanuel S. Grant whose vision inspired this work and whose guidance and

expertise were crucial to the completion of my work. Thanks to Dr. Andre Kehn and Thomas

Stokke as their insightful viewpoints and discerning revisions enhanced my work.

And last but not least to family and friends for their continued support and words of

encouragement.

x

ABSTRACT

The UML (Unified Modeling Language) has its origin in mainstream software engineering

and is often used informally by software designers. One of the limitations of UML is the lack of

precision in its semantics, which makes its application to safety critical systems unsuitable. A

safety critical system is one in which any loss or misinterpretation of data could lead to injury, loss

of human lives and/or property. Safety Critical systems are usually specified by very precisely and

frequently required formal verification. With the continuous use of UML in the software industry,

there is a need to augment the informality of software models produced to remove ambiguity and

inconsistency in models for verification and validation. To overcome this well-known limitation

of UML, formal specification techniques (FSTs), which are mathematically tractable, are often

used to represent these models.

Formal methods are mathematical techniques that allow software developers to produce

softwares that address issues of ambiguity and error in complex and safety critical systems. By

building a mathematically rigorous model of a complex system, it is possible to verify the system's

properties in a more thorough fashion than empirical testing.

In this research, the author refines transformation rules for aspects of an informally defined

design in UML to one that is verifiable, i.e. a formal specification notation. The specification

language that is used is the Z Notation. The rules are applied to UML class diagram operation

signatures iteratively, to derive Z schema representation of the operation signatures. Z

representation may then be analyzed to detect flaws and determine where there is need to be more

xi

precise in defining the operation signatures. This work is an extension of previous research that

lack sufficient detail for it to be taken to the next phase, towards the implementation of a tool for

semi-automated transformation.

1

CHAPTER I

INTRODUCTION

1.1 Research Definition

The motivation for doing this work stems from research that have been conducted

previously at the University of North Dakota on unmanned aerial vehicles (UAVs). Clachar et. al.

conducted research on Formalizing UML software models of safety critical systems [1]. The

researchers used formal specification to enhance the imprecision semantics of UML and analyze

its significance to safety critical systems. As a result, a systematic process to transform ambiguous

UML class diagrams to a formal representation for verification and validation was devised. In a

follow up study conducted by Jackson et. al. the researchers conducted a case study on validation

and verification of object-oriented design using formal specification technique [2]. In that study a

preliminary set of rules were defined for transforming UML class diagrams methods to formal

specification (Z notation) [2]. The transformational rules they developed were not complete and

were at a very high level of abstraction. In order for these transformation rules to be productive,

they necessitates further elaboration and refinement. Hence, this research attempts to produce a

complete set of transformation rule for converting UML class operation signature to Z

notation/description.

2

1.2 Benefits of the Research

Unmanned Aircraft Systems (UASs) have been in existence for many years. UASs

commonly referred to as Unmanned Aerial Systems is defined as a system, whose components

include the air vehicles and corresponding hardware that do not involve a human operator, but

instead maneuver autonomously or are remotely piloted. UAS must be considered in a system

context, which encompasses the command, control and communications systems, and personnel

necessary to control the unmanned aircraft [3] [61]. However, recently, the use of UASs has

experienced immense growth and UASs play a central role in scientific research, defense, and in

certain industries [3] [4]. In recent past, the use of UASs technologies lie at the core of military

operations such as spacecrafts, aircrafts, helicopters, free-flying robots or mobile robots,

surveillance, target identification and designation, mine detection, and reconnaissance [3] [4]. As

their use continues to evolve, research has peaked on this technology to discover its applicability

to other domains. UAS technologies are categorized as safety critical systems. This is due to them

being utilized in high-risk tasks that require thorough development methodologies to guarantee

their integrity. Today, UASs are involved in high-risk tasks such as border and port surveillance

by the Department of Homeland Security, assist with scientific research and environmental

monitoring by National Aeronautics and Space Administration (NASA) and National Oceanic and

Atmospheric Administration (NOAA [54]. A system that is defined as safety critical can have

serious ramifications if an error occurs. These implications include the risk of injury, loss of life,

data, and property. Therefore, designing these systems requires: 1) thorough understanding of their

requirements, 2) precise and unambiguous specifications, and 3) metrics to verify and validate the

quality of software produced.

3

In order for safety critical aviation systems to be accepted by the Federal Aviation

Administration (FAA) and other interested parties, they must adhere to standards such as the

RTCA DO-178B and its current descendant D0-178C [5]. The DO-178B is an airworthiness

compliance standard, which governs the development and certification of aerospace systems. It is

a process-oriented evaluation of sound software engineering practices in system design [6]. The

standard focuses on all aspects of round trip engineering and requirements based testing as key

elements of software verification to uncover errors [6]. DO-178C is the latest revision to the DO-

178B guidelines, which addressed objectives for software development life cycle processes,

activities and design considerations for achieving the objects and verifying the objectives [50].

DO-178C also addresses object-oriented development concepts and specific techniques.

The University of North Dakota (UND) – UAS Risk Mitigation Project1 was awarded a

contract to develop a proof-of-concept air truth system, which monitors the operation of UAVs in

the US National Airspace (NAS). The project began with minimal requirements; however, the

timeframe for delivery was very rigid. This resulted in the rapid development of a prototype to

assist in exploring and developing additional requirements. One feature of prototypes is that they

are often poorly documented. To resolve this, concurrent definition and documentation of system

requirements were performed as the prototype evolved. This was enhanced with the design of

graphical software models. In model-driven engineering, the purposes and uses of graphical

software models are multifaceted. They represent the structural design of the system, and the flow

of data and communication between the various systems and subsystems. Its use is not only suited

for astute stakeholders but also non-technical stakeholders such as customers – to convey how

their requirements are being met. The Unified Modeling Language (UML) is an ISO standard for

1 http://www.uasresearch.com/home.aspx

4

designing and conceptualizing graphical models of software systems [7]. Since its development

by the Object Management Group (OMG)2 in the early 1990’s its use has increased in industry

and academia. Graphical software models, such as UML models, possess simplistic designs and

promote good software engineering practices. However, these models are not without limitation.

Graphical software models are often imprecise and ambiguous. In addition, they are not directly

analyzable by type checkers and proof tools. This makes it difficult to evaluate the integrity and

correctness of its models; therefore, valid assertions cannot be made with regard to meeting user

requirements.

 Formal Specification Techniques have been advocated as a supplementary approach to

amend the informality of graphical software models [8] [9]. They promote the design of

mathematically tractable systems through critical thinking and scientific reasoning. FSTs use a

specification language, for instance Z notation, to describe the components of a system and their

constraints [10]. Unlike graphical models, formal models can be analyzed directly by a proof tool

– which checks for errors and inconsistencies. Critics of FSTs claim, they increase the cost of

development, require highly trained experts, and are not used in real systems [11]. Yet, they have

been used in case studies which unveiled that, FSTs facilitate a greater understanding of the

requirements and their feasibility [1] [2] [12]. Although the use of FSTs is sometimes

controversial, their benefits to critical systems offset the disadvantages.

This work documents the transformation rules for UML class operation signature to an

analyzable representation using formal specification techniques. Equally, the specific

advancement that this work encourages is to provide a mean by which these transformation rules

can be automated. Automation is necessary because of the volume involve in such work – manual

2 www.omg.org

5

interventions can be monotonous and inaccurate. Such process will reduce the introduction of

human errors when applying transformation rules.

1.3 Research Contribution

 Previous research has demonstrated that the application of formal specifications to safety

critical systems is important for the purpose of precision. The present work is designed to define

a set of rules for transposing UML operations to Z schema, which is an extension of work done by

France et. al. [8] [12] [16] [24]. This research introduces four steps that are applicable to any

domain that is categorized as safety-critical and where formalism is necessary. The present

analysis demonstrates that it is feasible to apply formal specifications to safety-critical systems,

although the manual process is tedious and the use of notations are necessary. The present research

is therefore intended to make contributions to the literatures on formal specifications, and UML

models. In addition, this work may lead to the production of a similar tool highlighted in work

done by Gogolla et. al. for UML and OCL validation [62].

1.4 Research Approach

UML is now an ISO standard [7] and has its advantages in simplicity, intuitiveness and

recently has been considered for specification purposes. However, UML falls short in the latter

area because it utilizes some loose semantics, which leads to ambiguity among its models. In some

cases, ambiguity can be negligible, however in safety critical systems this may lead to detrimental

consequences. One technique to eliminate this ambiguity is by transforming UML models to an

analyzable representation with the use of formal specification techniques. Prior work has been

conducted in formalizing UML class diagram operation signatures at an abstract level [2]; from

that research, it requires that in order for those transformation rules to be effective, it demands

elaboration and refinement. This effort will look at how UML class diagram operation signatures

6

can be formalized by applying rules to user-defined functions using a formal specification

language, Z notation.

According to [1], formal specification techniques (FST) incorporate the use of a

specification language to describe software models with precision. As noted previously, the

specification language utilized for our research is Z. FST also permits the use of proofing tools

which identify errors in specifications executed within the proofing tool environment. The

employment of FST will look at checking and analyzing the Z schemas that have been yielded

from the system’s UML class diagram. A proof tool used to accomplish this which, has shown to

be effective in detecting syntax and semantic errors of the Z representation of our UML model is

Z/EVES. Carrying out a series of analysis of error checking using this proofing tool is a key

element in the validating system models.

In an effort to automate model transformation in the future as a byproduct of this research,

a set of model transformation rules will be highlighted throughout the methodology. Model

transformation works by accepting one or more models, by applying rules called transformation

rules, a target model is then attained which is equivalent to the input model [1]. Transformation is

currently being conducted manually however, with the establishment of detailed transformation

rules the process can be done automatically. As a byproduct of this research, automatic UML

model transformation into their equivalent Z schemas will be a focus in future works. To aid in

this potential research, the methodology aims to highlight a set of transformation rules, which will

be used to accomplish automatic model transformation.

EBNF (Extended Backus Normal Form or Backus–Naur Form) is a recursive notation

technique for describing the productions of a context-free grammar. It is developed based on the

work of John Backus with contributions by Peter Naur [17] [18]. It is often used to describe the

http://www.wikipedia.org/wiki/Metasyntax
http://www.wikipedia.org/wiki/Metasyntax
http://www.wikipedia.org/wiki/Syntax

7

syntax of languages used in computing, including computer programming languages, because of

its simple notations, recursive structures, and it is widely supported by many compiler generations

tools such as YAAC [19], LEX [20], and ANTLR[21]. BNF is applied wherever exact descriptions

of languages are needed for instance, in official language specifications, in manuals, and in

textbooks on programming language theory. It is realized in applications that the descriptive power

of BNF may be greatly improved by introducing a few extended meta-symbols, particularly those

for repetitive and optional structures of grammar rules.

Extended Backus Naur Form (EBNF) will be used to describe UML operation signature.

After which, the researcher will go through a process of systematically deriving an algorithm

definition for each transformation rule – the refinement process. Having refined the rules, testing

of each algorithmic description will be done on a case study. From the case study, conclusion will

be drawn of the result as it relates towards determining the success of the effort.

1.5 Scope and Limitations

The effort of this work is limited to defining a set of algorithms for transforming UML

operation signature that are presented in a complete UML class diagram. This research draws on

work done by [1] [2] and will not attempt to redefine any rules define by [1], but merely drawing

on the stated output of the researcher work [1]. In addition, building of an application will not be

an attempt in this study but defining a set of algorithms that could be implemented in such an

application.

Limitations encountered relate to timing constraints and available work effort. The process

of deriving formal rules is very lengthy hence, the manual efforts involved in developing them

spanned several semesters. The breakdown is as follow:

Semester 1 – Literature review as an independent topic

http://www.wikipedia.org/wiki/Syntax
http://www.wikipedia.org/wiki/Formal_language#Programming_languages
http://www.wikipedia.org/wiki/Programming_language

8

Semester 2 – Deriving rules

Semester 3 – Case study

Semester 4 – Case study

Semester 5 – Case study

Transformation rules and case study were done in two semesters iteratively and another semester

was spent writing the thesis.

1.5.1 Expected Outcome

The output of this reports include: 1) a set of rules and algorithms for transforming UML

operations to Z schema. 2) Results from the case study and a conclusion of the success of the work

and its future implementation. The algorithms will constitute the high-level pseudo-code

description that would lead to implement a system that will conduct the transformation in a semi-

automatic manner. The transformation cannot be fully automated as some operations constraints

can only be specified in English prose.

1.6 Description of Thesis / Report Organization

Chapter 2 incorporates areas that were reviewed for doing this work as well as prior

research in this sub-discipline. Chapter 3 contains a detailed description of the methodologies

performed in this research. Chapter 4 is a case study on the UAS and results of the transformation

rules to the system. The report is concluded in Chapter 5.

9

CHAPTER II

BACKGROUND

 2.1 Model Driven Approach

The focus of Model Driven Engineering (MDE) is to transform, refine, and integrate

models into the software development life cycle to support system design, evolution, and

maintenance [22]. Models serve many purposes and their use varies from investors to investors.

The purpose of modeling, from a developer’s standpoint, is to represent the proposed system by

showing: 1) the flow of data between objects and individual components of the system as well as

how they can interact with other software components, 2) Communication between internal entities

and external components, and 3) how the system behaves to stimuli.

Models should be logical, cohesive, and provide an abstract way to visualize the design of

a system and show how the proposed system will address the users’ requirements. One way in

which models can be derived is by forward engineering activities. Forward engineering is the

process of moving from high-level abstractions and implementation of independent designs to the

implementation of a system [23].

Software models facilitate:

 Abstraction - This feature allows models to be independent of any programming language,

style, or algorithm design.

 Improved understanding of the project’s goals and user’s requirements - Members of the

development team(s) can distinctly see how the proposed solution addresses the customer’s

needs, and the impact that their aspect of work has on meeting these requirements.

10

 Enhanced communication between the various stakeholders. The intent of some models is

to be conveyed to all stakeholders. The outcome is to encourage all stakeholders to play an

active role in the design of the system and to explore the feasibility of its requirements.

Various software development life cycle models are suitable for specific project related conditions,

which include organization, requirements stability, risks, budget, and duration of project. One life

cycle model theoretical may suite particular conditions and at the same time another model may

also looks fitting into the requirements but one should consider trade-offs while deciding which

model to choose.

While Software models have many benefits, their disadvantages include the following:

 On occasion, models are not updated which results in them becoming inconsistent with the

source code. This affects the maintainability of the software as the models are not a true

representation of their implementation.

 Graphical models are abstract hence the software developer is not required to explore

certain aspects of the system; for instance side effects related to variable declarations or

premature initializations.

 Failure to detect syntax, semantic and domain errors because these models cannot be

directly verified for inconsistencies without the use of an external tool.

Even though the use of software models can be unfavorable, it is still an essential step in the

design, documentation, and maintenance of software systems. The result of modeling determines

whether the models are indicative of the proposed system and if the user’s needs are adequately

addressed. There are many types of models and an excess amount of software tools used to aid in

their design. This research uses the UML to support the design of graphical models. UML is

appropriate because:

11

 It is an ISO Standard for designing models of software systems,

 It is widely used in industry and academia, and

 It is user friendly and understandable for all stakeholders.

2.2 The Unified Modeling Language

UML (Unified Modeling Language) is the de-facto standard formalism for object-oriented

software analysis and design. One of the most consequential components of UML are class

diagrams, which model the information on the domain of interest in terms of objects organized in

classes and relationships [40] [41]. UML class diagrams allow for modeling, in a declarative way,

the static structure of an application domain, in terms of concepts and relations between them.

A class in a UML class diagram represents an object or a set of objects with common

features. A class is graphically rendered as a rectangle divided into three parts (see Figure. 1). The

first part contains the name of the class, which has to be unique in the entire diagram. The second

part contains the attributes of the class, each denoted by a name, possibly followed by the

multiplicity and with an associated type for the attribute values [42]. The third part contains the

operations of the class, that is, the operations associated to the objects of the class. The argument

list is a list of parameter types (e.g., int, double, string, etc.) that is associated with operation.

Operations that does not return a value should give a return type of void.

The UML is an object-oriented modeling language for specifying, visualizing,

constructing, and documenting the artifacts of software systems [7]. The UML is used to depict a

high-level representation of the proposed system. This is achieved through the design of various

types of models, which capture the structure and behavior of the system. UML promotes some of

the best software development practices; and this very quality is among the primary reasons for its

acceptance. It serves as a blueprint for software engineers through the design of models and

12

diagrams, which are representative of various aspects of the proposed system. The benefits of

UMLs are very present in the early phase of the software development life cycle where it is used

to reproduce a high-level representation of the proposed system. This abstract representation is

achieved through the design of various types of models, which capture the structure and behavior

of the system, sub-systems, and their internal and external components.

UML models facilitate better communication among customers and developers. Customer

and developer get an opportunity to understand the project and its requirements before

implementation commences. It also assists software developers to identify whether user

requirements will be adequately addressed by the system. UML is widely accepted because of its

simplicity, which makes it easily understood by developers thereby making it easily communicated

to their customers [26].

Diagrams in UML are categorized as structure or behavior diagrams. Structure diagrams

represent the static framework of the system [27], whereas behavior diagrams illustrate the

dynamic features of the system. Examples of structure diagrams include class, component, object,

deployment, and package diagrams. Behavior diagrams depict the dynamic features of the system

by showing how the system act during execution. These diagrams include use case, activity, and

state diagrams. Interaction diagrams are an extension of behavior diagrams but focus mainly on

the internal elements of the system. Examples of interaction diagrams include sequence and

collaboration diagrams. Class diagrams and use case diagrams facilitate prioritization and

communication between nontechnical stakeholders and developers. Sequence and state chart

diagrams that are more complex UML models, and are suited for intellectual advance stakeholders

such as engineers and developers.

13

The scope of this paper will be on the static UML models – more specifically, the class

diagram. Creation of a new class diagram in UML begins with a class. In UML notation, a class is

represented as a rectangular box with three vertical compartments: the class header, list of

attributes, and list of operations. Attributes are characteristics of a class that makes it unique;

whereas operations, also called methods, performs tasks that could potentially change the state of

the class. The focus of this work is on the class operations.

Figure 1 below illustrates an example of two classes that have some mutual relationship

depicted by the line connecting them. Each has its own unique attributes (for example, Class A

has Attribute_A0 through to Attribute_An) and some operations listed below the attribute list.

Note that operation signatures may contain a list of parameters as well. For the scope of this paper,

focus will be placed on the operation signatures of classes. Previous research work done by Clachar

et al. [1] focused on defining classes and attributes; and the need for greater attention on operation

signatures should be done in order to have a complete transformation model to Z.

Figure 1. Example of a UML class diagram

Like other software development aids, as recorded before UML has its limitations. These

informal models have an advantage, such as expressiveness – which makes the objective of the

system easily conveyed to both technical and nontechnical stakeholders. However, UML lacks

precise formal semantics, which results in its models being subject to multiple interpretations. This

issue is worsened by the use of natural language annotations – as a means of clarification and

14

explanation of the modeling techniques adopted. Due to UML's inherent flexibility, developers

are given much scope when designing models. This freedom enables the developer to describe

system requirements based on the modeling technique they have adopted. However, problems

arise when these models are circulated among the development team and each developer interprets

the models in a different way – which could affect the latter stages of the software development

life cycle (SDLC) [28]. Notations are often used to alleviate this issue; however, comments can

be misinterpreted because it is expressed in natural language [16]. Furthermore, natural language

notations cannot be processed by tools – therefore they also need to be formalized for analysis

purposes [29]. Other problems arise as customer requirements unfold. These critical changes are

often not reflected in the models – albeit the source-code reflects the change; at that stage updating

the models is often considered tedious and time-consuming. This result in difficulty of software

maintenance as the UML models are often inconsistent with the source code and its significance

is lost [30].

In some systems, the disadvantages of UML and the challenge of deriving precise models

may not have a significant impact on the quality of software produced. Yet, in safety critical

systems, any inadequacy could result in the loss of property or be life threatening. The high cost

during the implementation and early test phases are often times caused by errors at the specification

and design phases [25]. Since UML is widely accepted, there is a need for methods to test the

correctness of its models. This can be achieved with the use of formal specification techniques.

2.3 Formal Specification Techniques

 Formal specification has been in existence decades afore the inception of graphical

techniques such as UML. FSTs utilize mathematical models and principles to describe software

models with accuracy through rigorous analysis [3]. The specification language chosen in this

15

work is referred to as Z notation for the following reasons. (1) It is an ISO standard, (2) There is

an excess of research on Z notation and extensive implement support (3) It is based on set theory and

predicate logic, which allows mathematical reasoning by categorizing real world entities into sets (4)

Similarity with constructs used in UML – thereby making the transformation process easier to grasp.

Developed at Oxford University, Z is a typed language based on set theory and first order

predicate logic. As well as a basic mathematical notation, Z includes a schema notation to aid the

structuring of specifications [13]. In order to develop schemas, Z language uses typed

mathematical facts including sets, relations, and functions in conjunction with first order predicate

logic. Schemas define its relevant variables and specify the relationship between the values of the

variables. A schema describes the stored data that a system accesses (variables) and alters [14]. A

basic type is like a typical data type such as integer, natural number etc. however; it is user-defined

and problem specific. A schema may include one or several basic types.

Figure 2. Structure of a Z Schema

Figure 3. A Basic Type Representation in Z

There are two [2] representation of schemas: state schemas and operation schemas. State

schemas are employed to define the static attributes of a system while operation schemas capture

16

dynamic aspects [16]. For the purpose of this research focus is placed on defining rules for user-

defined functions by formalizing UML class diagram, the operation schema is the schema of focus

to demonstrate our methodology.

A specification written in Z notation models the proposed system by specifying the

components of the system and expressing constraints between those components [10]. Because of

its formal basis it enables mathematical reasoning, and hence proves that, desired properties are

outcomes of the specification [10]. From these proofs, one can verbalize that the system is

behaving in a desirable or undesirable manner, provided the specification is precise and complete.

System behavior should always be deterministic (deterministic in the sense that all events has a

specified system response) in the domain of safety critical systems. These software systems

encompass numerous highly intricate processing components and have high demands for

reliability and accuracy. Due to the perpetual utilization of UML in software development, there

is a need to resolve the informal semantics of the models it produces [1]. To transform UML

models into Z notation also provide formal analysis to accomplish verification and validation of

software systems.

Unlike UML, the formal models produced by Z can be analyzed directly by a proof tool –

which checks for inaccuracy and inconsistencies. Possible errors that are detected include syntax and

type errors, and domain checks – such as division by zero [31]. Inconsistencies that are detected pertain

to the meanings of predefined and user-defined expressions and the appropriateness of their use in a

specification. FSTs are not utilized to replace graphical software models; rather they are

complementary. While formal models uncover inconsistencies and exclusion of requirements, the

informal model is an explainable version of the formal models [24].

17

2.4 Model Transformation

Model transformation and refinement is a process that lies at the heart of model driven

engineering (MDE), where platform independent models (PIM) are translated into platform

specific models (PSM) utilizing formal rules – additionally referred to as transformation rules [32]

[33]. The focus of MDE is to create and exploit domain models (that is, transform, refine, and

integrate models), which are conceptual models into the software development life cycle to fortify

system design, evolution and maintenance [22] [32]. The benefits of MDE was recognized and

embraced by many organizations, including the Object Management Group (OMG) [22] – an

association that creates and manages industry standards such as the UML. There are many

categories of model transformations that exist such as text-to-model transformation, model-to-

code transformation, and model-to-model transformation [22]. Although this work fixates on the

latter, it will however also highlight the process of deriving the platform independent models. The

platform independent models will be the UML class diagrams and the platform specific models

will be their representative Z schemata.

After the models are transformed, theoretical properties of the transformation such as

termination, soundness, completeness and correctness can be proven [22]. Irrespective of the

transformation approach taken, it is vital that software engineers have a good understanding of the

scope of the project, as well as the abstract syntax and semantics of the source and target models

[32]. Models can be transformed manually or automatically. A manual transformation applies

custom transformation rules to specific problems. This type of transformation was employed in

this work. Whereas automatic transformations apply predefined transformation rules that are based

on a problem domain. These rules can also be regarded as a meta-model.

18

This research seeks to derive a set of manual transformation rules for a real world

unmanned aerial system that are applicable to all problem domains. The outcome of this activity

is to determine if there are standard processes for yielding formal models from informal UML

models for the problem domain. Manually transforming these models is tedious and as such, it is

prone to human errors. Consequently, if standard processes were established, it would prove

advantageous to automate them in future work. Conducting a manual transformation will highlight

patterns that suit automation and aspects that require indispensable human intervention.

2.5 Extended Backus Naur Form

The extended Bankus-Naur form is the most rigorous way to define syntax of programming

languages. EBNF is a notation for formally describing syntax. That is, how to write entries in a

language [37] [38]. The use of EBNF will be used throughout this study to describe syntax

formally. However, there is a more compelling reason to begin the use of EBNF: it is a microcosm

of programming itself. In [39] Yong Xia and Martin Glinz have proposed a mapping from

graphical language to EBNF aiming at the elimination of inconsistencies and ambiguities in UML

diagrams. Complicated EBNF descriptions are easier to read and understand if their rules are well

named, each name helps to communicate the meaning of its definition. However, to a compiler,

names cannot change the meaning of a rule or the classification of a symbol [37].

Although, not incorporated in this work, but for future work EBNF can be used to describe

C syntax formally. First, the control forms in EBNF rules are strongly similar to the basic control

structures in C: sequence; decision, repetition, and recursion; also similar is the ability to name

descriptions and reuse these names to build structures that are more complex. There is also a strong

similarity between the process of writing descriptions in EBNF and writing programs in C: we

must synthesize a candidate solution and then analyze it - to determine whether it is correct and

19

easy to understand. In this study, EBNF will be used to define syntax as a textual meta-model for

the operation signature.

2.6 Related Tools – Z/EVES

There are many communities that are involve in developing a set of tools for editing, type

checking, animating, and proving formal specification written in the Z specification language.

However, many of them are command line tools and accept specifications in the Z Latex style

[34]. Other implementations such as Z/EVES, CZT: Community Z Tools Project and RoZ have

graphical interfaces that enable users to create Z specifications in a more user-friendly

environment, while ensuring strict correspondence between the UML model and the Z schemata

[35]. For the purpose of this study Z/EVES will be used to demonstrate the application of the

define methodology.

Z/EVES offers some powerful automatic commands for general simple theorems proving

for Z notation (e.g., prove or reduce) [51] [52]; it also has the ability to demonstrate the consistency

of specification or refinements.

20

CHAPTER III

METHODOLOGY

3.1 Introduction

This chapter contains a detailed description of the methodologies performed in our

research. The methodology involves three processes: 1) Using the operation signature description

in EBNF. The rationale for using EBNF is that it provides a meta-model that it is easier to convert

from textual (UML) to another textual format (EBNF). 2) Defining operation transformation rules,

and 3) Converting transformation rules to algorithms.

This research is based on efforts of previous work [1] [2]. These work, focused on

formalizing UML software models of safety critical systems, and validating and verifying

functional design for complex safety critical systems. In addition, rules for transforming UML

graphical models to Z notation were defined. This research completes the transformation rule by

defining a set of rules that must be followed for defining operations in a class. Figure 4 shows an

example of a class diagram base on the Unmanned Aircraft Systems (UAS) [1].

What follows in this research is a description of a series of sequential steps that will be carried out

in transforming UML operations to Z representation. As each step is defined, it will be

demonstrated by applying the rules to the operations shown in Figure 4. The operations that the

rules will be applied to are:

 convert_to_internal_speed (speed: Double): Double

 convert_to_external_speed (speed: Double): Double

 convert_heading (heading: Double): Double

21

Figure 4. Example of a UAS Class Diagram

3.2 Extended Backus–Naur Form (BNF) Parsing rules for operations signature

transformation

Extended Backus Normal Form (EBNF), a syntactic meta-language, is a notation technique

for expressing context-free grammars in computer science. It is often used where clear formal

description and definition is required to describe the syntax of languages used in computing,

including computer programming languages [55]. EBNF is applied wherever exact descriptions

of languages are needed, for instance, in official language specifications, in manuals, and in

textbooks on programming language theory [37] [38]. In this work, EBNF will be used to define

a set of formats for operation signatures. Any develop automated tool will have to implement the

EBNF operation signature format so that operation can be parsed to production rule.

While the UML model represents operation signature as textual, our work would be more

understandable if a textual meta-model representation is utilize. The scope of this meta-model is

a class diagram. The textual description that is appropriate for this work is EBNF. Adhering to

the ISO/IEC 14977: 1996 international standard, Figure 5 illustrates a meta-model class diagram

description for a class operation signature.

http://www.wikipedia.org/wiki/Metasyntax
http://www.wikipedia.org/wiki/Context-free_grammar
http://www.wikipedia.org/wiki/Syntax
http://www.wikipedia.org/wiki/Formal_language#Programming_languages
http://www.wikipedia.org/wiki/Programming_language

22

Figure 5. Meta-model description of a Class Diagram

For the purpose of this study, constraints that govern operations names are:

1. Size of operation name will follow the C standard 5.4.2.1 translation limits. 63 significant

initial characters in an internal identifier or a macro name (each universal character name

or extended source character is considered a single character and 31 significant initial

characters in an external identifier [56].

2. Words that conflict with key word in UML and Z should not be used.

The following EBNF grammar rules shown in Table 1 are adhered to when converting UML

operations to EBNF:

23

Table 1. Rules for Converting UML Operations to EBNF.

<operation_signature> :: = <return_type><operation_name>“(“<parameters>”)” <constraint>

<return_type> :: = <z_type> |<user_defined_type>

<z_type> :: = ℤ|ℕ

<user_defined_type> :: = void | char | string | short | long | float | double | signed | unsigned | char_string

<char_string> :: = <letter><more_letter>

<letter> :: = <upper_letter>|<lower_letter>

<upper_letter> :: = A | B | C | D | E | F| G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<lower_letter> :: = a | b | c | d | e | f | g | h | I | j | k | i | m | n| o | p| q | r | s | t | u | v | w | x | y| z

<more_letter> :: =<letter><more_letter> | _<more_letter> | <digit><more_letter> | <digit> | <letter>

<digit> :: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<operation_name> :: = <char_string>

<parameters> :: = <parameter_pair> “,”<parameters> | <parameter_pair>

<parameter_pair> :: = <return_type>< char_string>

<constraint> :: = < pre_condition><post_condition> | <pre_condition> | <post_condition>

<pre_condition> :: = PRE<const_string>

<post_condition> :: = POST<const_string>

<const_string> :: = <char_string> | <special_char><const_string> | <special_char>

<special_char> :: = ∀ | ∃ | ∧ | ∨ | ¬ | ⊢ | ∃1 | ∅ | ∈ | ∉ | ∪ | ∩ | ⇒ | ⇔ | ≠ | ⇸ | ⤔ |⤀ | ⤗ | → |↣ |↠ |⤖ |⇻ |⤕ |

λ | μ

24

EBNF is a grammar used for checking the parsing of operation signature description from UML

diagrams. EBNF may be used in deriving parse trees for an automated translator. A developer

may have written constraints in first order predicate logics. Here the special_char would allow for

the parsing of such constructs; with the assumption that the developer has properly defined the

format statement.

3.3 Operation Transformation Rules

In the following subsections transformation for each parts of an operation will be described.

The development of the operation signature will be governed by these rules.

3.3.1 Defining Operation Basic Types Schemata

Declare all the necessary data types before schema definitions. Data types in Z are often

referred to as basic types or given sets of the specifications. A feature of the Z notation is that it

offers a calculus for building large specifications from smaller components [9] – and basic types

facilitate this. The importance of basic types and given sets is that they allow one to categorize real

world entities into sets. These sets are an essential part of Z schemas because they are used to

represent objects and their respective attributes. In this work, basic types will be represented in

capitalized letters so that they can be easily identified. The software engineer must examine the

attributes of each UML class to identify types that do not have an equivalent representation in Z.

Presently, the Z Mathematical Toolkit only directly supports integers [44]. Therefore, other data

types needs to be defined. For any string that is not of the type INTEGER (ℤ), a basic type will

be created for it in the Z specification. The process of declaring basic types is not entirely

automatable, because some data types will require manual intervention to ensure that they are

representative of the parameters. However, the process of extracting the name of the data type and

declaring them in the Z specification can be automated. If parameter does not have an associated

25

data type, and such misrepresentations arise sporadically in UML models, the name of the

parameter will be declared and used as a Z basic type [12]. Examples of declaring an operation

basic type schemata based on the class diagram and operations {(convert_heading(heading:

double): double, convert_to_internal_speed(speed: double):double and

convert_to_external_speed(speed:double): double} found in Figure 4 is: [DOUBLE].

3.3.2 Define Parameter List Schemata

This step encompasses the description of the Z schema that will contain parameter of each

operation. Each UML operation may contain zero or more parameters. Hence, one of two possible

options must be taken:

Option 1: UML operation with no parameter

In this option, the definition of a parameter schema is nonessential and any attempt to define a

representative Z schema would be illogical and result in rejection by Z/EVES. For example, the

update_display operation in the Radar Display class diagram, Figure 4, contains no parameter.

Therefore, no parameter schema definition is necessary.

Option 2: UML operation with one or more parameters

The parameter of each operation will be declared in a parameter type schema. This step is

performed successively on each parameter of the UML operation, in two stages, to determine: 1)

the name of the parameter and the data type associated with the parameter; and 2) any constraints

(values) associated with the parameters. Initially, a one-to-one mapping must be established

between parameter /(s) and one of the previously defined basic types or a data type that exist in

the Z mathematical toolkit. For the latter phase, parameters along with their respective values will

be determined. Constraints that are either domain-specific or operational will be depicted in the

schema predicate section. The naming convention used for parameter list schemata is the name of

26

the parameter followed by the keyword ‘parameter’. For differentiation purpose, each parameter

will have an associated index/counter since the same parameter may appear in multiple operations.

With reference to Figure 4, the following constraints in Table 3 govern the parameters of each

operation. For future work, a format for expressing constraints can be developed, for instance

ATT_NAME : <value_range>. An example is given for the convert_heading operation in the

Aircraft class diagram of Figure 4, which contains one parameter. Their equivalent parameter type

schema is:

 heading_parameter_01

heading: ℙDOUBLE

∀ h : heading ⦁ 0 ≤ h ≤ 180
 0

3.3.3 Defining Parameter Configuration Schemata

Operations in a class may contain parameters as an item of their execution. This step will be

conducted only if an operation accepts parameters. The configuration schema includes all

previously defined parameter types. When creating these configuration schemata, each item in the

parameter list of an operation is included as the definition of the parameter type. Where each

parameter will be identified by its name and corresponding basic type, thus mapping each

parameter name to a Z data type or a basic type. These steps should be repeated for each operation

that utilizes parameters in their operation implementation. The naming convention used for

parameter configuration schemata is the name of the operation followed by the keyword

‘parameter’. Operations are governed by pre-conditions, post-conditions or a combination of both.

Where there is no way to automate the pre-condition or post-condition, comments will be utilized.

An Example of defining parameter configuration schemata based on the convert_heading

operation found in Figure 4 Aircraft class is:

27

 Convert_heading_Parameter_01

heading_parameter_01

The Aircraft class operations {(convert_to_internal_speed (Speed: double) double) and

Radar_Display class (move (x: integer, y: integer))} have three associated parameters of types

double, and integer. Integers are present in the Z mathematical toolkit and should not be declared

as a basic type. However, the data type called Double are native to some modeling environments

but not all; neither is it specified in the Z mathematical toolkit. The basic type parse should

therefore identify it as a new basic type. In today’s common computer processors, a data type of

Double precision is essentially a real number with a 64-bit constraint on its size. Manual

intervention could change the data types, which were declared as double to a basic type called,

real. Take into consideration that simply changing the name of the basic type from double to real

is semantically equivalent to any proof tool. Therefore, changes of this nature to a basic type will

require that constraints be enforced on the data type. Otherwise, the manual intervention would be

unproductive.

In the Z specification of the Aircraft Class Diagram, it was important to state what

constitutes a double. Since real numbers were not originally defined in the Z mathematical toolkit

and many existing implementations for real numbers are incorrect [45], there was a need for an

appropriate representation for these attributes. Previous work by [45] contains specifications for

representing floating point values in Z. However, such effort is outside the scope of this work. In

addition, the implementation is very rigid and will not evolve if the size of floating point values

increase in future processors.

There are many arguments surrounding the implementation of real numbers and other

floating point values. However, a key feature, which separates integers from floats, is that floating

point values account for both a numeric precision and a scale whereas integers are whole numbers;

28

i.e. floating points are approximated values whereas integers are their exact values. The analytical

nature of formal methods does not require such distinction to make valid assertions about the

system. Therefore, substituting real numbers for integers will suffice.

The result of the basic type parse will return the following: [INTERGER] and [DOUBLE];

manual intervention can substitute DOUBLE with integers – where necessary.

This schema definition incorporates the parameter type schemata for all parameters that exist in

an operation.

3.3.4 Define Operation Schemata

After defining parameter configuration schemata, operation schemata is declared. It is

mandatory for all methods to have a name. A method that does not have a name will result in

compilation error. Making use of schema inclusion, an operation schema is defined by

incorporating the associated parameter schema. Additionally, any other variables local to an

operation are declared and where necessary constraints on variables or parameter values are

defined in the predicate part of the schemata. Operations with the same name may appear in

different classes; therefore, a counter/index is utilized to identify each operation. The naming

convention used for operation schemata is the name of the operation followed by the keyword

‘operation’. Key notational conventions are used in the operation schema definition, which

indicates if the execution of a specific operation changes the state of the system. Δ Aircraft means

that there is a change in the state of the schema after the execution of an operation. See Table 4

that provides a list of notation and their definition that will be utilize in an operation schema. An

Example of defining operation schema based on the convert_heading operation found in Figure 4

Aircraft class is:

29

 Convert_heading_Operation_01

Δ Aircraft

Convert_heading_Parameter_01

heading ′:ℙ DOUBLE

heading ′ = heading

3.3.5 Defining Configuration Schema

This schema will incorporate operations to previously define class schemas that were defined

by Clachar et. al. Updated class schema will include operation schema.

3.4 Transformation Rule Algorithms

Below are algorithms for each transformation rule that were define in section 3.3.1 to 3.3.4

Figure 6 illustrates the steps corresponding to defining operation basic type schemata in Z.

Each operation must be associated with a basic type in Z, if the basic type is not found in Z then

one is define and is refer to as a user define type. Operations that have no associated type are

assigned a basic type, that is, the operation name. All basic types are represented in block letter.

This process is repeated until all basic types are defined.

begin

for all class in the class diagram

 for all operation in the class

 for each type

 if type! =ℤ

 if type! =blank

 basic_type is USER_DEFINE_TYPE

 else

 basic_type is OPERATION

 endif

 endif

 create basic type schema

 endfor

 endfor;

endfor;

endbegin

Figure 6. Algorithm for Defining Operation Basic Type Schemata

30

Figure 7 shows the process for defining one or more parameter found within an operation.

A counter value is ascribe to a parameter name as an index. This index value diffrentiates each

parameter in an operation, since more than one operation within a class may have the same

parameter name. Any constraints relating to a paramter are also define in the schema.

begin

int count= 0;

for all class in the class diagram

 for all operation in the class

 for each parameter in the operation

 create schema name "parameter name_PARAMETER_[count++]"

 create parameter schema

 if constraints presents

 add constraints

 endif

 endfor

 endfor;

endfor;

endbegin

Figure 7. Algorithm for Defining Parameter Schemata

begin

int count = 0;

 for all class in the class diagram

 for each operation in the class

 if parameter exist {

 create configuration schema name "operation name_PARAMETER_ [count++]"

 schema include all operations parameter schema }

 endif

 endfor;

endfor;

endbegin

 Figure 8. Algorithm for Defining Parameter Configuration Schemata

31

To define a parameter configuration schemata, the folowing steps outlined in Figure 8 must

be adhered to. The schemata incorporates all previously defined parameter schemata that is

associtaed with the operation. An index is also attached to each schema name.

Figure 9 depicts the process for defining operation schemata. An operation schema is

defined by incorporating the parameter configuration schemata with an index value join to the

name of the schema. Any constraint that is placed on the operation is added also.

begin

int count= 0;

for all class in the class diagram

 for each operation in the class

 create operation schema name "operation name_operation_[count++]"

 if paramater exist

 schema include parameter configuration schema

 endif

 if constrainrs exist

 add operation constraints

 endif

 endfor;

endfor;

endbegin

Figure 9. Algorithm for Defining Operation Schemata

32

CHAPTER IV

CASE STUDY

4.1 Description of the Aircraft System

The growing social and economic interest in new unmanned aircraft systems (UASs)

applications demands that UASs operate beyond the segregated airspace they are currently able to

fly. Unmanned aircraft are not currently permitted access to national air space (NAS) in the United

States without special permission from the Federal Aviation Administration (FAA). However,

UAS operations in non-segregated airspace should be regulated by aeronautical authorities before

UASs can share air space with manned aerial vehicles (MAV). Despite the existence of

technologies that could facilitate the integration and operation of UASs in non-segregated airspace,

several obstacles remain, mainly UAS safety conditions and airworthiness independent of

application. For example, one of the primary concerns with integrating unmanned aircraft is their

inability to robustly sense and avoid other aircraft [47]. Another current barrier to the integration

of UASs is related to the cultural perception of its risks [48]. According to National Transport

Safety Board (NTSB), injury and damage by NTSB classification for U.S. Air carriers operating

under 14 CFR 121 for the year 2012 is 16 and 11 respectively, see Table 2 [46]. Table 2 outline

accidents with four types of classifications (that is, major, serious, injury and damage) that

occurred during 2008 to 2012 irrespective of compliance to aircraft regulations. This shows that

while there are regulations that govern air carriers, some form of formalism is required to prevent

accidents or catastrophic events. In order for UASs to fly safely into civil airspace, the

33

development of vigorous testing of UASs, both in laboratory and field experimentation, are key

prerequisites.

The United States Air Force Academy (USAFA) is actively involved in unmanned aircraft

research across numerous departments involving many projects, aircraft, government agencies,

and experimental programs. The importance of these research projects to the Academy, the faculty,

the cadets, the Air Force, and to the defense of the nation cannot be understated. In an effort to be

proactive in cooperating with recent concerns from the FAA about the growth and proliferation of

UAS flights, the Air Force has implemented several new guidelines and requirements. Complying

with these guidelines, directives, and regulations has been challenging to researchers and the

conduct of research activities at USAFA. Finding ways to incorporate these new guidelines

effectively and efficiently is critical to research and participation in joint projects and exercises

[49].

To ensure the reliability of these systems, both MAVs and UASs must operate within the

same domain that is, US NAS. However, a system must be in place that deals with any form of

collision [53]. This aim led to the development of a UAS Research, Development and Design

Project at UND3. The project goal is to ascertain how practical it is for UASs to operate in an

unrestricted airspace, in low-density populated area.

The UND –UAS Research, Development, and Design Project architecture is composed of

three main components: a radar system, a data computation unit, and a displays system. The display

and data computation system operations is the focus of the work presented here in.

3 http://www.uasreasearch.com/aboutus/projects.aspx

http://www.uasreasearch.com/aboutus/projects.aspx

34

Table 2. Accident by NTSB Classification, 2008 through 2012 for U.S. Air Carriers Operating

Under CFR 121

Accidents

Year Major Serious Injury Damage

2008 4 1 8 15

2009 2 3 15 10

2010 1 0 14 14

2011 0 0 19 12

2012 0 0 16 11

Definition of NTSB Classifications:

 Major - an accident in which any of the three conditions are met:

A part 121 aircraft was destroyed or there were multiple fatalities or there was one fatality

and a part 121 aircraft was substantially damaged.

 Serious - an accident in which at least one of the two conditions are met:

There was one fatality without substantial damage to a part 121 aircraft or there was at least

one serious injury and a part 121 aircraft was substantially damaged.

 Injury - a nonfatal accident with at least one serious injury and without substantial damage

to a part 121 aircraft

 Damage - an accident in which no person was killed or seriously injured, but in which any

aircraft was substantially damaged

35

4.2 Application of Methodology

In this section, the transformations rules that were developed in Chapter III will be applied

to a subset of the UAS system. The rules will apply to all operations of Figure 10, for the complete

transformation of the case study please see Appendix A:

Figure 10.UAS Aircraft and Radar Class Diagram

The above diagram, Figure 10 is a small subset of classes from the system model currently

being formalized. This will be used to demonstrate the execution of the transformation rule on the

class operations. These transformation rules include:

1) Step 1: Defining basic types

2) Step 2: Defining Parameter Schemata

3) Step 3: Defining Parameter Configuration Schemata

4) Step 4: Defining Operation Schemata

36

4.2.1 Constraints on Class Diagrams

Table 3 represents constraints that govern each class diagram in Figure 10. As a final step

in the transformation rule, constraints are manually included in the schema of the operation.

Table 3. Constraints for Aircraft, Radar_Display and Aircraft_Coordinates Class Operation

Attributes

Constraints on Aircraft Class Attributes

The following constraints govern the Aircraft class:-

Speed: All speed have a lower and upper bound. The speed of the aircraft should not

exceed the speed of supersonic. The minimum and maximum speed for the

Aircraft are: - min_speed = 0.0 and max_speed = 250 knots

Heading: The minimum heading = 0.0; maximum = 360.0

Constraints on Radar_Display Class Attributes:

passive_mouse: The boundary for the mouse drawing on the x axis is: 0.00 to 180.00 degrees

The boundary for the mouse drawing on the y axis = 0.00 to 180.00 degrees

set_center: The center can begin from anywhere between -90.0 to 90.0 in latitude (across)

and -180.0 to 180 longitude (down).

set_scale: 1 inches = 100 foot

Constraints on Aircraft_Coordinates Class Attributes:

Latitude : Minimum latitude = -90.0; maximum latitude = 90.0

37

Longitude: minimum longitude = -180.0; maximum longitude = 180.0

Altitude: minimum altitude = -3000.0; maximum altitude = 168960.0

An important feature of formal specification is that of “state”. A system can be in one of

several different states. Z captures a system change of state base on the data that a system store

and how data are change in the schemas. Some of the notations used in this research are listed

below with their corresponding uses.

Table 4. Notations Used to Specify Change in the State of Operation Schemas and their

description

Notation Symbol Example Description

Delta Δ Δ Aircraft Shows that there is a change in the state of the schema

after the execution of an operation

Xi Ξ Ξ Radar_Display Demonstrates that there is NO change in the state of

the schema after the execution of an operation

Prime variables ′ X′ Conventionally used to represent the value of a

variable after an operation

Unprimed

variables

 X Value of a variable before execution of an operation

For all ∀ ∀ x : xed ⦁ 0 ≥ x ≤ 10 Forall x:X | P1 ⦁ P2 means: any element of X that

satisfies P1 also satisfies P2

Table 5 illustrates a subset of the operation signature schemas that were developed from

conducting the formalization techniques outlined in chapter III, on the class diagram of Figure 10.

Appendix A has the completed schema for Figure 10.

 In the example that follows three (3) basic types were defined, specifically, [DOUBLE],

[GPARS_AIRCRAFT_ DATA], and [BOOLEAN], five (5) parameter schemata, three (3)

configuration parameter schemata and four (4) operation schemata. The parameter schemas are

convert_heading_Paramaters, convert_to_internal_speed_Paramaters and

38

passive_mouse_Parameters. The operation schemas are convert_heading,

convert_to_internal_speed, update_display, and passive_mouse.

39

Table 5. Z Schemas for the UML Class Diagram of Figure 10

Operation Name: Convert_heading(heading: Double): Double

Step 1: [DOUBLE]

Step 2: heading_parameter_01

heading: ℙDOUBLE

∀ h : heading ⦁ 0 ≤ h ≤ 180

Step 3: Convert_heading_Parameter_01

heading_parameter_01

Step 4: Convert_heading_Operation_01

Ξ Radar_Display

Ξ Aircraft_Coordinates

Δ Aircraft

Convert_heading_Parameter_01

heading ′: ℙDOUBLE

heading′ = heading

40

Table 5. cont.

Operation Name: Convert_to_internal_speed(Speed: Double): Double

Step 1: [DOUBLE]

Step 2: speed_paramater_02

Speed: ℙDOUBLE

∀ s: speed ⦁ 0.0 ≤ s ≤ 250 knots

Step 3: Convert_to_internal_speed_Paramater_02

speed_parameter_02

Step 4: Convert_to_internal_speed_Operation_02

Ξ Radar_Display

Ξ Aircraft_Coordinates

Δ Aircraft

Convert_to_internal_Speed_Parameter_02

speed′: ℙDOUBLE

speed ′ = speed

Operation Name: Update_display ()

Step 1: [UPDATE_DISPLAY]

Step 2 and 3 are ignored because there is no parameter for update_display operation

Step 4: Update_display_03

Ξ Aircraft

41

Table 5. cont.

Operation Name: passive_mouse(Aircraft_data:GPARS_Aircraft_DATA, x: Integer, y: Integer): Boolean

Step 1: [GPARS_AIRCRAFT_DATA]

 [BOOLEAN]

Step 2: Aircraft_data_parameter_03

Aircraft_data: GPARS_AIRCRAFT_DATA

 x_parameter_04

x: ℙℤ

∀ X: x ⦁ 0.00 ≤ X ≤ 180.00

 y_paramater_05

y: ℙℤ

∀ Y: y ⦁ 0.00 ≤ Y ≤ 180.00

Step 3: passive_mouse_Paramater_03

air_craft_parameter_03

x_paramterer_04

y_parameter_05

Step 4: passive_mouse_Operation_04

Ξ Aircraft

Δ Radar_Display

passive_mouse_Parameter_03

Aircraft_data′: GPARS_AIRCRAFT_DATA

x′: ℙℤ

y′: ℙℤ

Aircraft_data′ = Aircraft_data

x′ = x

y′ = y

42

A basic type and parameter type schema will not be defined for the update_display

operation. The reason seeing that, this operation signature carries no data type and no parameter.

According to the define parameter list schemata rule, this step will be conducted only if an

operation accepts parameters.

4.3 Results and Analysis

In the methodology above, formal methods were applied on operations to demonstrate the

application of the refinement and transformation process. The component of subset class diagram

obtained from the UAS Risk Mitigation system contained 3 classes, and 31 operations (27 user

defined basic type, 44 parameter schemata, 29 configuration parameter schemata, and 31 operation

schemata. Operations also consist of constraints for some parameters in operations. The

application of the process defined in the methodology provides a realistic way of applying formal

methods rather than theoretical considerations. Still, the work that was involved in carrying out

this project was very tedious which introduced periodic errors. Thus, implementing a tool to

automate the formalization process would be beneficial. This would simplify the conversion

(Schema definitions), reduce the workload, and lessen the probability of human errors in the

specification.

43

CHAPTER V

CONCLUSION

This research defines and illustrates the steps involved in deriving operation schema for

UML class diagrams of a safety critical system. In many software applications such as in the safety

critical areas it is important to have correct and bug free software. Formal specification is one such

approach to produce good quality, correct and error free software. The purpose of using notation

like Z is to produce an accurate specification from initial client requirements. The notation has a

restricted syntax so it is precise but still abstract enough so as not to constrain how a developer will

go on to design application. This study supports the need for reliable development methodologies

for safety critical systems and for avionic system development to comply with industry standard,

DO-178C specification. It is an extension of previous work done by Clachar and Jackson that

concentrated on formalizing, and verifying and validating UML software models for safety critical

systems [1] [2].

One of the principal concerns with amalgamating unmanned aircraft into national air space

is their lack of ability to robustly sense and avoid other aircraft. Systems such as these must adhere

to industry standard, for instance RTCA-DO178B, because they are classified as been safety

critical. To ensure that catastrophic events (for example, loss of life) do not occur, accuracy in

safety critical systems is necessary.

Unified Modeling Language is the ISO standard for modeling systems. The class diagram

is one type of UML model used to express systems requirements of stakeholders and to discover

44

additional systems requirements. However, UML lacks precision when expressing design

decisions. Textual descriptions are used to express characteristics of the system, which cannot be

captured by UML. This further introduces another level of ambiguity in the models – since they

are usually expressed in natural language. Hence, the need for a meta- model (EBNF) that would

bring more formatting and understanding to the work conducted in this research. One method that

is used to remove ambiguity in models is to transform UML models into an analyzable

representation using formal specification techniques (FSTs). FSTs are based on mathematical

logics, which makes use of first order logics and set notation. Adopting such approach to system

development plays an important role in safety critical system.

FSTs have been in existence prior to the beginning of UML. However, unlike UML it does

not have a high level of simplicity that makes its models easily communicated to stakeholders.

Currently, the formalization process is conducted manually. To make research on FSTs more

worthy, some degree of automation is imperative. Therefore, conducting a case study in the area

of automated tools for FSTs in safety critical systems will be beneficial in enlightening researchers

on the complexity, advantages, and possible use of such software.

This case study supports research that identify the benefits of the application of formal

methods to industries such as formal specification of an oscilloscope (Tektronix) and formal

methods in safety-critical railway systems. In the former study, the researcher adopted formal

methods to gain insight into system architecture. In the latter work, the B formal method was used

in the development of platform screen door controllers. Both investigations concluded that the

application of formal specification appears to be precise, efficient, and well suited to address

projects requiring high level of safety [59] [60].

45

Besides applying this methodology to UASs, the contribution of this research may be

extended to automotive control systems (for example, factory, marine, space exploration, robotics,

and other specialist areas) where formalism is a necessity. The use of formal methods is an

effective mean to improve complex systems reliability and quality. Benzadri et. al. adopted a

formal method that utilized modeling interactions between cloud services and customers. The

researchers combined Cloud customers’ bigraph and Cloud services bigraph to formally specify

Cloud services structure. This study is applicable to formalizing Cloud computing concepts and to

overcome one of cloud computing main obstacles, specifically bugs in large scale Distributed

Systems – “one of the difficult issues in cloud computing is removing errors in these very large

scale distributes systems” [57] [58]. The main issue that still needs to be addressed is the crucial

absence of an appropriate model for cloud computing. This research may possibly be able to

support major Cloud computing concepts specification and allow formal modeling of high-level

services provided over Cloud computing architecture.

5.1 Future Work

The methodology was successfully applied to the operation of the UAS system. Other

efforts can apply the same methodology to other systems to prove the validity or accuracy of the

methodology. In addition, since the focus of this work was on refining transformation rules from

an informally defined design in UML to one that is verifiable, formal specification; subsequent

efforts can derive a process for expressing constraints. An attempt that can be made is to develop

a command-line toolkit to automate the steps outlined in the methodology for both the EBNF and

the transformation rules. Such tool would accept an operation and ensure the format abide by the

EBNF configuration. Subsequently, the tool would apply the refinement steps to each operation by

decomposing operation into small pieces (Schemas). The automated toolkit can then be added on

46

as an additional feature of Z/EVES to demonstrate the consistency of refinement and to identify

errors.

47

APPENDIX

Z Schemas

[DOUBLE]

[GPARS_AIRCRAFT_DATA]

[BOOLEAN]

[UPDATE_DISPLAY]

[VOID]

[MOVE]

[RESOLVE_LAT_LON]

[UPDATE]

[GPARS_AIRCRAFT_DATA_SET]

[USE_AIRCRAFT]

[SHOW_ALTITUDE_COLORS]

[SHOW_ALTITUDE_ICON]

[SHOW_ALTITUDE_TEXT]

[SHOW_OVERLAY]

[SHOW_RADARS]

[SHOW_OBSTRUCTION]

[SHOW_AIRPORTS]

[SHOW_HAZARDS]

[SHOW_ROAD_MAP]

[SHOW_MOA_AREAS]

[SHOW_UAV_AREAS]

[SHOW_VELOCITY_VECTORS]

[SHOW_RISK_REGIONS]

[MOVE]

[SET_CLEAR_COLOR]

[SET_CENTER]

48

[SET_SCALE]

 speed_paramater_01

speed: ℙDOUBLE

∀ s: speed ⦁ 0.0 ≤ s ≤250 knots

 Convert_to_internal_speed_Paramater_01

speed_parameter_01

 Convert_to_internal_speed_Operation_01

Ξ Radar_Display

Ξ Aircraft_Coordinates

Δ Aircraft

Convert_to_internal_Speed_Parameter_01

speed ′: ℙDOUBLE

speed ′ = speed

 speed_parameter_02

speed: ℙDOUBLE

∀ s: speed ⦁ 0.0 ≤ s ≤ 250 knots

 Convert_to_external_speed_Parameter_02

speed_paramater_02

 Convert_to_externa_speed_Operation_02

Ξ Radar_Display

ΞAircraft_Coordinates

ΔAircraft

Convert_to_external_Speed_parameter_02

speed′: ℙDOUBLE

speed′ = speed

49

 heading_parameter_03

heading: ℙDOUBLE

∀ h : heading ⦁ 0 ≤ h ≤ 180

 Convert_heading_Parameter_03

heading_parameter_03

 Convert_heading_Operation_03

Ξ Radar_Display

Ξ Aircraft_Coordinates

Δ Aircraft

Convert_heading_Parameter_03

heading ′: ℙDOUBLE

heading′ = heading

 Calculate_latitude_Operation_04

Ξ Aircraft

 Latitude_parameter_04

Latitude: ℙDOUBLE

∀ lat: latitude ⦁ -90.0 ≤ lat ≤ 90.0

 Longitude_parameter_05

Longitude: ℙDOUBLE

∀ lon: longitude ⦁ -180.0 ≤ lon ≤ 180.0

 Set_center_Parameter_04

Latitude_parameter_04

Longitude_paramater_05

50

 Set_center_Operation_05

Ξ Aircraft

Δ Aircraft_Coordinates

Set_Center_Parameter_04

Latitude ′: ℙDOUBLE

Longitude ′: ℙDOUBLE

Latitude ′= latitude

Longitude′ = longitude

 Scale_parameter_06

Scale: ℙDOUBLE

∀ s: scale ⦁ 1 inches = 1 foot

 Set_scale_parameter_05

Scale_paramater_06

 Set_Scale_Operation_06

Ξ Aircraft

ΔAircraft_Coordinates

Set_scale_parameter_05

Scale ′: ℙDOUBLE

Scale ′ = scale

 x_parameter_07

x: ℙDOUBLE

 y: parameter_08

y: ℙDOUBLE

 move_paramater_06

x_parameter_07

y_parameter_08

51

 move_Operation_07

Ξ Aircraft

Δ Aircraft_Coordinates

Move_parameter_06

X ′: ℙDOUBLE

Y ′: ℙDOUBLE

X ′ = x

Y ′ = y

 Latitude_parameter_09

Latitude: ℙDOUBLE

∀ lat: latitude ⦁ -90.0 ≤ lat ≤ 90.0

 Longitude_parameter_10

Longitude: ℙDOUBLE

∀ lon: longitude ⦁ -180.0 ≤ lon ≤ 180.0

 x_parameter_11

x : ℙDOUBLE

 y_parameter_12

y: ℙDOUBLE

 resolve_points_Parameter_07

latitude_parameter_09

longtitude_parameter_10

x_parameter_11

y_parameter_12

52

 resolve_points_Operation_08

Ξ Aircraft

Δ Aircraft_Coordinates

Resolve_points_Parameter_07

Latitude ′: ℙDOUBLE

Longitude ′: ℙDOUBLE

X ′ : ℙDOUBLE

Y ′ : ℙDOUBLE

Latitude ′= latitude

Longitude′ = longitude

X ′ = x

Y ′ = y

 x_paramater_13

x: ℙDOUBLE

 y_parameter_14

y: ℙDOUBLE

 latitude_parameter_15

latitude: ℙDOUBLE

∀ lat: latitude ⦁ -90.0 ≤ lat ≤ 90.0

 Longitude_parameter_16

Longitude: ℙDOUBLE

∀ lon: longitude ⦁ -180.0≤ lon ≤ 180.0

 Resolve_lat_lon_Parameter_08

x_parameter_13

y_parameter_14

latitude_parameter_15

longitude_parameter_16

53

 resolve_lat_lon_Operation_09

Ξ Aircraft

Δ Aircraft_Coordinates

Resolve_lat_lon_Parameter_08

X ′ : ℙDOUBLE

Y′ : ℙDOUBLE

Latitude ′: ℙDOUBLE

Longitude ′: ℙDOUBLE

X ′ = x

Y ′ = y

Latitude ′= latitude

Longitude′ =: longitude

 Update_display_Operation_10

Ξ Aircraft

 Data_set_parameter_17

Data_set: GPARS_AIRCRAFT_DATA_SET

 Update_Parameter_09

Data_set_parameter_17

 Update_Operation_11

Ξ Aircraft

Δ Radar_Display

Update_Parameter_09

DATA_SET ′ : ℙDOUBLE

DATA_SET ′ = data_Set

54

 Data_set_parameter_18

Data_set: GPARS_AIRCRAFT_DATA_SET

 Track_is_parameter_19

Track_is: ℙℤ

 Update_Parameter_10

Data_set_parameter_18

Track_is_parameter_19

 Update_Operation_12

Ξ Aircraft

Δ Radar_Display

Update_Parameter_10

Data_set ′ : GPARS_AIRCRAFT_DATA_SET

Track_is ′:ℙℤ

Data_set ′= data_set

Track_is ′= track_is

 Aircraft_data_parameter_20

Aircraft_data: GPARS_AIRCRAFT_DATA

55

 x_parameter_21

x: ℙℤ

∀ X: x ⦁ 0.00 ≤ X ≤ 180.00

 y_paramater_22

y: ℙℤ

∀ Y: y ⦁ 0.00 ≤ Y ≤ 180.00

 passive_mouse_Paramater_11

air_craft_parameter_20

x_parameter_21

y_parameter_22

 passive_mouse_Operation_13

Ξ Aircraft

Δ Radar_Display

passive_mouse_Parameter_11

Aircraft_data′: GPARS_AIRCRAFT_DATA

x′: ℙℤ

y′: ℙℤ

Aircraft_data′ = Aircraft_data

x′ = x

y′ = y

 enable_parameter_23

enable: ℙBOOLEAN

 use_aircraft_Paramater_12

enable_parameter_23

 use_aircraft_Operation_14

Ξ Aircraft

Use_aircraft_parameter_12

enable ′: ℙBOOLEAN

enable ′ = enable

56

 enable_parameter_24

enable: ℙBOOLEAN

 show_altitude_colors_Paramater_13

enable_parameter_24

 show_altitude_colors_Operation_15

Ξ Aircraft

Show_altitude_colors_parameter_13

enable ′: ℙBOOLEAN

enable ′ = enable

 enable_parameter_25

enable: ℙBOOLEAN

 show_altitude_icon_Paramater_14

enable_parameter_25

 show_altitude_icon_Operation_16

Ξ Aircraft

Show_altitude_icon_parameter_14

enable ′: ℙBOOLEAN

enable ′ = enable

57

 enable_parameter_26

enable: ℙBOOLEAN

 show_altitude_text_Paramater_15

enable_parameter_26

 show_altitude_text_Operation_17

Ξ Aircraft

Show_altitude_text_parameter_15

enable ′: ℙBOOLEAN

enable ′ = enable

 enable_parameter_27

enable: ℙBOOLEAN

 show_overlay_Paramater_16

enable_parameter

 show_overlay_Operation_18

Ξ Aircraft

show_overlay_parameter_16

enable ′: ℙBOOLEAN

enable ′ = enable

 enable_parameter_28

enable: ℙBOOLEAN

58

 show_radars_Paramater_17

enable_parameter_28

 show_radars_Operation_19

Ξ Aircraft

Show_radars_parameter_17

enable ′: ℙBOOLEAN

enable ′ = enable

 enable_parameter_29

enable: ℙBOOLEAN

 show_obstruction_Paramater_18

enable_parameter_29

 show_obstruction_Operation_20

Ξ Aircraft

Show_obstruction_parameter_18

enable ′: ℙBOOLEAN

enable ′ = enable

 enable_parameter_30

enable: ℙBOOLEAN

 show_airports_Paramater_19

enable_parameter_30

 show_airports_Operation_21

Ξ Aircraft

Show_airports_parameter_19

enable ′: ℙBOOLEAN

enable ′ = enable

59

 enable_parameter_31

enable: ℙBOOLEAN

 show_hazards_Paramater_20

enable_parameter_31

 show_hazards_Operation_22

Ξ Aircraft

Show_hazards_parameter_20

enable ′: ℙBOOLEAN

enable ′ = enable

 enable_parameter_32

enable: ℙBOOLEAN

 show_road_map_Paramater_21

enable_parameter_32

 show_road_map_Operation_23

Ξ Aircraft

Show_road_map_parameter_21

enable ′: ℙBOOLEAN

enable ′ = enable

 enable_parameter_33

enable: ℙBOOLEAN

 show_moa_areas_Paramater_22

enable_parameter_33

60

 show_moa_areas_Operation_24

Ξ Aircraft

Show_moa_areas_parameter_22

enable ′: ℙBOOLEAN

enable ′ = enable

 enable_parameter_34

enable: ℙBOOLEAN

 show_uav_areas_Paramater_23

enable_parameter_34

 show_uav_areas_Operation_25

Ξ Aircraft

Show_uav_areas_parameter_23

enable ′: ℙBOOLEAN

enable ′ = enable

 enable_parameter_35

enable: ℙBOOLEAN

 show_ velocity_vector_Paramater_24

enable_parameter_35

 show_ velocity_vector_Operation_26

Ξ Aircraft

Show_velocity_vector_parameter_24

enable ′: ℙBOOLEAN

enable ′ = enable

61

 enable_parameter_36

enable: ℙBOOLEAN

 show_risk_regions_Paramater_25

enable_parameter_36

 show_risk_regions_Operation_27

Ξ Aircraft

Show_risk_regiond_parameter_25

enable ′: ℙBOOLEAN

enable ′ = enable

 x_parameter_37

x: ℙℤ

 y_parameter_38

y: ℙℤ

 move_Paramater_26

x_parameter_37

y_parameter_38

 move_Operation_28

Ξ Aircraft

Δ Radar_Display

move_parameter_26

x ′: ℙℤ

y ′: ℙℤ

x ′ = x

y ′ = y

62

 red_parameter_39

red: ℙDOUBLE

 green_parameter_40

green: ℙDOUBLE

 blue_parameter_41

blue: ℙDOUBLE

 set_clear_color_parameter_27

red_parameter_39

green_parameter_40

blue_parameter_41

 set_clear_color_Operation_29

Ξ Aircraft

Δ Radar_Display

Set_clear_color_parameter_27

Red ′ = ℙDOUBLE

Green ′ = ℙDOUBLE

Blue ′ = ℙDOUBLE

Red ′ = red

Green ′ = green

Blue ′ = blue

 Latitude_parameter_42

Latitude: ℙDOUBLE

∀ lat: latitude ⦁ -90.0 ≤≥ lat ≤ 90.0

 Longitude_parameter_43

Longitude: ℙDOUBLE

∀ lon: longitude ⦁ -180.0 ≤ lon ≤ 180.0

63

 Set_center_parameter_28

Latitude_parameter_42

Longitude_parameter_43

 Set_center_Operation_30

Ξ Aircraft

Δ Radar_Display

Set_center_parameter_28

Latitude ′ = ℙDOUBLE

Longitude ′ = ℙDOUBLE

Latitude ′ = latitude

Longtitude ′ = longitude

 New_scale_parameter_44

New_scale: ℙℤ

 Set_scale_parameter_29

New_scale_paramater_44

 Set_scale_operation_31

Ξ Aircraft

Δ Radar_Display

Set_scale_parameter_29

New_Scale ′ : ℙℤ

New_scale ′ = new_scale

64

REFERENCES

[1] Clachar, S., Grant E. A Case Study in Formalizing UML Software Models of safety Critical

Systems. In Proceedings of the Annual International Conference on Software Engineering. Phuket,

Thailand (2010)

[2] Jackson, V., Grant, E. Verification & Validation of Object-Oriented Functional Design using

Specification Techniques, In Proceedings of the 44th Annual Midwest Instruction and Computing

Symposium, Duluth, MN (2011)

[3] U.S. Dept. of Defense: FY2009-2034: Unmanned Systems Integrated Roadmap, 2009.

[4] Sazdovski,V., Kolemishevska-Gugulovska, T., Stankovski, M.:Kalman Filter Implementation

for Unmanned Aerial Vehicles Navigation Developed with a Graduate Course. Institute of ASE

at Faculty of EE (2005) St. Cyril and Methodius University, MK-1000, Skopje, Republic of

Macedonia

[5] RTCA, Inc, EUROCAE: DO-178B, Software Considerations in Airborne Systems and

Equipment. SC-167 (1992) RTCA, Washington DC, USA

[6] Brosgol M. B.: Safety and security: Certification issues and Technologies. CrossTalk: The

Journal of Defense and Software Engineering vol. 21 (10) 9--14 (2008).

[7] ISO/IEC 19501, Information Technology - Open Distributed Processing,: Unified Modeling

Language (UML) Version 1.4.2 (2005)

[8] France, R. B., Evans, A., Lano, K., Rumpe, B.: The UML as a Formal Modeling Notation. In

Computer Standards & Interfaces, vol 19, issue 7, 325--334 (1998)

[9] Hall, A.: Using Z as a Specification Calculus for Object-Oriented Systems. In Proceedings of

the Third International Symposium of VDM Europe on VDM and Z - Formal Methods in Software

Development, 290--318 (1990)

[10] ISO/IEC 13568, Information Technology: Z Formal Specification Notation - Syntax, Type

System and Semantics. First ed. ISO/IEC 2002)

[11] Hall, A.: Seven myths of formal methods, Software, IEEE , vol.7, no.5, 11--19, (1990)

[12] France, R.B., Bruel, J., Larrondo-Petrie, M.M.: An Integrated Object-Oriented and Formal

Modeling Environment. In Proceedings of JOOP. 25--34. (1997)

65

[13] Bowen, J., (2003). Formal Specification and Documentation using Z: A Case Study

Approach. Revised 2003. pp 4-6.

[14] Pressman, R., (2005). Software Engineering: A Practitioner's Approach. Boston, Mass.:

McGraw-Hill.

[15] Snook, C. & Butler, M. (2006). UML-B: Formal Modeling and Design aided by UML. ACM

Transactions on Software Engineering and Methodology (TOSEM) Volume 15 Issue 1, New York,

NY, USA.

[16] Shroff, M., France, R. B., (1997). Towards a Formalization of UML Class Structures in Z.

COMPSAC '97 - 21st International Computer Software and Applications Conference. pp.646

[17] Naur, P. ed.: Revised Report on the Algorithmic Language Algol 60, Communications of

the ACM,6(1), 1-17,1963

[18] Naur, P.: The European Side of the Last Phase of the Development of Algol,ACM

SIGPLAN Notices,13,15-44, 1978

[19] Johnson, S.C.: Yacc - Yet Another Compiler Compiler, AT&T Bell Laboratories,

Computing Science Technical Report No.32, AT&T Bell Labs. Murray Hill, NJ, 1975.

[20] Lesk, M.E.: Lex - A Lexical Analyzer Generator, AT&T Bell Laboratories, Computing

Science Technical Report No.39, Murray Hill, NJ, 1975

[21] Parr, T.:ANTLR Reference Manual, http://www.antlr.org/, 2000

[22] Mens, T., Van Gorp, P.: A Taxonomy of Model Transformation, Electronic Notes in

Theoretical Computer Science, vol 152, In Proceedings of the International Workshop on Graph

and Model Transformation (GraMoT 2005), 125-142, ISSN 1571-0661 (2006)

[23] Chikofsky, E. J., Cross II., J. H.: Reverse Engineering and Design Recovery: A Taxonomy.

IEEE Software. Vol. 7, 1, 13—17 (1990).

[24] France, R.B., Bruel, J., Larrondo-Petrie, M.M.: An Integrated Object-Oriented and Formal

Modeling Environment. In proceedings of JOOP. 25--34. (1997)

[25] Potter, B., Sinclair J.: An Introduction to Formal Specification and Z. 2nd ed. Prentice Hall

(1996)

[26] Hai, H., Yi-fang, Z., Chi-lan, C. “Unified Modeling of Complex Real-Time Control

Systems.” in Proc Design, Automation, and Test in Europe. IEEE Computer Society, - Volume 1,

pages 498-499, March 2005.

66

[27] Bell, D. “UML Basics: The Class Diagram.” Internet:

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/ Sept. 15,

2004 [April, 2009]

[28] Sommerville, I, Software Engineering 9th Ed. Addison Wesley, Boston, Massachusetts,

2010.

[29] Dewar, R.B.K. “Integrating Formal Methods into Software Toolsets for Avionics

Certification.” Internet: http://www.defensetechbriefs.com/component/content/article/8238

August, 2010 [February 2011].

[30] Berkenkotter, K., “Using UML 2.0 in Real-Time Development: A Critical Review” in Proc

SVERTS Workshop, 2003.

[31] Saaltink, M. “The Z/EVES 2.0 User’s Guide.” Technical Report TR-99-5493-06a, ORA

Canada, One Nicholas Street, Suite 1208 - Ottawa, Ontario K1N 7B7 - CANADA, Oct. 1999.

[32] Sendall, S.; Kozaczynski, W., “Model Ttransformation: The Heart and Soul of Model-Driven

Software Development Software”, IEEE , vol.20, no.5, pp. 42-45, Sept.-Oct. 2003

[33] Poole, J. D. “Model-Driven Architecture: Vision, Standards And Emerging Technologies.” In

Workshop on Metamodeling and Adaptive Object Models, ECOOP 2001, 2001.

[34] Malik, P., Utting, M. “CZT: A framework for Z tools”. In: Treharne, H., King, S., Henson,

M.C., Schneider, S.A. (eds), ZB, LNCS, vol. 3455, pp. 65–84. Springer, Heidelberg 2005.

[35] S. Dupuy, Y. Ledru and M. Chabre-Peccoud, “An Overview of RoZ: A Tool for Integrating

UML and Z Specifications,” Proc. Advanced Information Systems Eng. Conf. (CAiSE"00), B.

Wangler and L. Bergman, eds., pp. 417-430, 2000.

[36] Dupuy, S. “RoZ version 0.3 an Environment for the Integration of UML and Z.” technical

report Laboratoire LSR-IMAG, 1999. http://www-lsr.imag.fr/Les.Groupes/PFL/RoZ/index.html

[37] Feynman, R. “EBNF: A Notation to describe Syntax” , pp 1 – 6.

http://www.ics.uci.edu/~pattis/ICS-33/lectures/ebnf.pdf

[38] ISO/IEC, EXTENDED BNF 1996.www.dataip.co.uk/Reference/EBNF.php

[39] Xia, Y., Glinz, M. Rigorous EBNF-based Definition for a graphic Modeling Language,

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03),IEEE, 2003

[40] Berardi, D., Calvanese, D., Giacomo, G.D. Reasoning on UML Class Diagrams. Published

in journal of Artificial Intelligence, Volume 168 Issue 1-2, October, 2005 , Pages 70-118

[41] Fowler, M., Scott, K. UML Distilled—Applying the Standard Object Modeling Language,

Addison-Wesley,Reading, MA, 1997

http://www.ics.uci.edu/~pattis/ICS-33/lectures/ebnf.pdf

67

[42] Evans, A.S. Reasoning with UML class diagrams, in: Second IEEE Workshop on Industrial

Strength Formal Specification Techniques (WIFT’98), IEEE Computer Society Press, 1998

[44] Spivey, J.M. The Z Notation: A reference manual. Prentice Hall International, 1998.

[45] Barrett, G., "Formal Methods Applied to a Floating-Point Number System," Software

Engineering, IEEE Transactions, vol.15, no.5, pp.611-621, May 1989 doi: 10.1109/32.24710

[46] National Transport Safety Board (2012). 2012 Aviation Statistics.

[47] Temizer, S., Kochenderfer, J. M., Kaelbling, P. L., Lozano-Perez, T., and Kuchar, K. J.

Collision Avoidance for Unmanned Aircraft using Markov Decision Processes. American Institute

of Aeronautics and Astronautics.

[48] Gimenes, A.V.R., Vismari, F.L., Avelino, F.V., Camargo Jr, B.J., Almeida Jr, R.J., Cugnasca,

S.P. Guidelines for the Integration of Autonomous UAS into the Global ATM. J Intell Robot Syst

(2014) 74:465-478.

[49] Bushey, E.D. Unmanned Aircraft Flight and Research at the United States Air Force

Academy. J Intell Robot Syst (2009) 54:79-85.

[50] Hempe, D.W., 20-115C - Airborne Software Assurance.

http://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/

documentID/1021710 , July 19, 2013

[51] Ledru, Y. Identifying pre-conditions with the Z/EVES theorem prover. In Proceeding of the

13th International Conference on Automated Software Engineering. Pp. 32-41, IEEE Computer

Society Press, Honolulu 1998

[52] Saaltink, M. The Z/EVES 2.0 User’s Guide. October 1999

[53] Magner, B. “Worries about Mid-Air Collision keep Civilian Drones Grounded” Internet:

http://www.nationaldefensemagazine.org/archive/2008/May/Pages/Worries2270.aspx May, 2008

[April 2015]

[54] Federal Aviation Administration. “ Fact Sheet – Unmanned Aircraft Systems (UAS) Internet:

https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=14153 January 2014 [April 2015]

[55] ISO/IEC 14977:1996 International Standard. Information Technology – Syntactic

metalanguage – Extended BNF

[56] Jones, D.M. “The New C Standard: An Economic and Cultural Commentary”. January 2008

[57] Armbrust, M., Fox, A., Grith, R., Joseph, A.D., Katz., Konwinski, A., Lee, G., Patterson,

D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A Berkeley view of cloud computing.

Technical Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley

(2009)

http://www.nationaldefensemagazine.org/archive/2008/May/Pages/Worries2270.aspx
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=14153

68

[58] Benzadri, Z., Belala, F., Bouanaka, C.: Towards a Formal Model for Cloud Computing.

Service-Oriented Computing – ICSOC 2013 Workshops. Volume 83777, 2014, pp 381-393

[59] Delisie, N., Garlan, D.: A Formal Specification of an Oscilloscope. IEE Software, Volume 7,

Number 5, September 1990

[60] Leconte, T., Servat, T., Pouzancre, G.: Formal Methods in Safety-Critical Railway Systems.

ClearSy, Aix en Provence, France.

[61] Gupta, S.G., Ghonge, M.M., Jawandhiya, P.M.: Review of Unmanned Aircraft Systems

(UAS). International Journal of Advanced Research in Computer Science Engineering &

Technology (IJARCET), Volume 2, Issue 4, April 2013.

[62] Gogolla, M., Buttner, F., Richters, M. USE: A UML-based specification environment for

validating UM and OCL. Science of Computer Programming 69 (2007) 27 - 34

	University of North Dakota
	UND Scholarly Commons
	January 2015

	Refining Transformation Rules For Converting UML Operations To Z Schema
	Tamaike Brown
	Recommended Citation

	tmp.1558561324.pdf.4ovg8

