
University of North Dakota

UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2018

Providing Metrics-Based Results To Student Pilots
For Critical Phases Of General Aviation Flights
Kelton Karboviak

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been

accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact

zeineb.yousif@library.und.edu.

Recommended Citation
Karboviak, Kelton, "Providing Metrics-Based Results To Student Pilots For Critical Phases Of General Aviation Flights" (2018).
Theses and Dissertations. 2249.
https://commons.und.edu/theses/2249

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2249?utm_source=commons.und.edu%2Ftheses%2F2249&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu

PROVIDING METRICS-BASED RESULTS TO STUDENT
PILOTS FOR CRITICAL PHASES OF GENERAL AVIATION

FLIGHTS

by

Kelton Olson Karboviak
Bachelor of Science, University of North Dakota, 2016

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

In partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

May
2018

mailto:kelton.karboviak@und.edu
http://und.edu

PERMISSION

Title Providing Metrics-Based Results to Student Pilots for Critical
Phases of General Aviation Flights

Department Department of Computer Science

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a
graduate degree from the University of North Dakota, I agree that the library of
this University shall make it freely available for inspection. I further agree that
permission for extensive copying for scholarly purposes may be granted by the
professor who supervised my thesis work or, in his absence, by the Chairperson
of the department or the dean of the School of Graduate Studies. It is
understood that any copying or publication or other use of this thesis or part
thereof for financial gain shall not be allowed without my written permission. It
is also understood that due recognition shall be given to me and to the
University of North Dakota in any scholarly use which may be made of any
material in my thesis.

Kelton Olson Karboviak
May 2018

iii

http://cs.und.edu
http://und.edu
http://und.edu

TABLE OF CONTENTS

List of Figures vi

List of Tables ix

Acknowledgements x

Abstract xi

Nomenclature xii

1 Introduction 1

I Scope & Objectives . 2

II Motivation . 3

III Outline . 4

2 Related Work 6

I Aircraft Operations . 6

II Post-Flight Evaluation Tools . 7

III NGAFID Related Work . 9

IV Data Mining Techniques . 9

3 Methodology 11

I Phase of Flight Identification . 11

I.I Approach . 11

I.I.I Airport detection. 12

I.I.II Runway detection. 14

I.I.III Final turn detection. 14

I.II Landing . 16

II Phase of Flight Quality Analysis & Exceedance Detection 19

II.I Approach . 19

II.I.I Final turn. 22

II.I.II Self-defined glide path. 24

III Grading Metrics . 26

IV Web Interfaces . 28

IV.I Approach . 28

IV.II Final Turn . 29

IV.III Self-Defined Glide Path . 30

4 Implementation 34

I Programming Languages and Libraries 34

II Hardware Specs . 35

III Parallelization . 35

iv

5 Results 36

I Experiments . 36

II Accuracy of Phase Identification . 36

II.I Approach . 37

III Quality Analysis . 39

III.I Approach . 39

III.I.I Final turn. 40

IV Grading Metrics: Defined From Parameter Frequencies 44

IV.I Indicated Airspeed Between 55 and 75 knots 45

IV.II Vertical Speed Indicated Greater Than -1000 ft/min 46

IV.III Absolute Cross Track Error Less Than 50 ft 46

IV.IV Absolute Heading Error Less Than 10 degrees 47

V Grading Metrics: Experiment Results 48

VI Performance . 52

6 Conclusion 54

I Future Work . 55

REFERENCES 57

v

LIST OF FIGURES

Figure Page

1 Screen-shot of a flight which has an excessive roll exceedance. The
exceedance event is highlighted in red. 2

2 Example of in-browser flight reanimation using Cesium. 3

3 Example showing an airport’s traffic pattern and the subphases of
the approach. 11

4 Example showing that the closest runway to the aircraft may not
necessarily be the one they are attempting to land on. If we use
the black dot as a reference point for when we attempt to detect
the runway, it can be seen that the runway on the left may actually
be closer. However, the aircraft’s heading will match closer to the
runway on the right (the pilot’s intended target). This is the pur-
pose of searching for the closest runway with a constraint on the
heading difference. 15

5 Example showing the approach subphases and the slice of data used
in the final turn analysis. The dashed lines represent when the final
turn starts (90� heading difference) and ends (15� heading difference). 16

6 Examples showing various final turn qualities. 24

7 Example showing the self-defined glide path angle analysis. This
shows a side view of the pilot oscillating about the glide slope during
the approach phase. The calculation uses a linear regression of the
aircraft’s vertical distance over time fitted using the least squares
approach. The solid line is the aircraft’s actual glide path while the
dotted line is the ideal glide path. 27

8 A screenshot of the Approach analysis tool on the NGAFID. It is
showing the histogram for indicated airspeed error with two date
range filters: 2015-01-01 to 2015-12-31 and 2016-01-01 to 2016-12-
31. The frequency of exceedances can be seen with all values that
fall outside of the 55-75 knots range. 29

9 A screenshot of the Final Turn analysis tool on the NGAFID in
“Single Flight” mode. It is currently showing approach #1 for
Flight ID #381001. Approach #1 shown here had a Level 1 (yellow
color code) undershoot. 31

vi

10 A screenshot of the Final Turn analysis tool on the NGAFID in
“Aggregate” mode. It is currently showing all approaches at the
Warren Municipal Airport (KD37) for Runway 12 during the month
of January 2015. The many red and yellow lines coming in from
the left side mean that a majority of the turns were Level 1 & 2
undershoots. 32

11 A screenshot of the Self-Defined Approach analysis tool on the
NGAFID. It is currently showing all approaches at the Grand Forks
International Airport (KGFK) for Runway 35L during the month
of November 2017. It displays a sideways histogram with glide path
angles on the y-axis and the number of occurrences for each angle
on the x-axis. 33

12 Example of using a KML file to visualize a flight path in Google
Earth. This flight visualization is an example of a student flight
that has multiple approach phases. 37

13 Pie chart showing the manual validation results including true pos-
itives, false positives, and false negatives. 39

14 Sample set of the statistics and trends that can be found from the
automated analysis results. 41

15 Histograms showing the frequencies of values for each parameter
during all approach phases. Each graph also has a dotted best-fit
line to show how close the frequencies adhere to a normal distribution. 42

16 Pie chart showing the results from the final turn detection algorithm. 43

17 Frequency of the occurrences of each turn error type for Risk Levels
0, 1, and 2. 44

18 Histogram for indicated airspeed (µ = 64.401, � = 4.535). The safe
range is between 61 and 66 knots. The aviation expert stated that
61 knots is a hard limit according to the Cessna 172S manual [1],
thus any airspeed less than 61 knots is automatically classified as
a Risk Level 2. This means there is not a lower Risk Level 1. The
higher Risk Level 1 range is between 66 and 71 knots, and the Risk
Level 2 is anything greater than 71 knots. 45

19 Histogram for vertical speed indicated (µ = −364.528, � = 181.210).
The safe range is between -800 and -500 ft/min. The lower Risk
Level 1 range is between -1000 and -800 ft/min, and the Risk Level
2 is anything less than -1000 ft/min. The higher Risk Level 1 range
is between -500 and -250 ft/min, and the Risk Level 2 is anything
greater than -250 ft/min. 47

vii

20 Histogram for cross track error (µ = −4.542, � = 15.499). The safe
range is between -40 and 40 ft. The lower Risk Level 1 range is
between -50 and -40 ft, and the Risk Level 2 is anything less than
-50 ft. The higher Risk Level 1 range is between 40 and 50 ft, and
the Risk Level 2 is anything greater than 50 ft. 48

21 Histogram for heading error (µ = 1.958, � = 4.761). The safe range
is between -15 and 15 degrees. The lower Risk Level 1 range is
between -20 and -15 degrees, and the Risk Level 2 is anything less
than -20 degrees. The higher Risk Level 1 is between 15 and 20
degrees, and the Risk Level 2 is anything greater than 20 degrees. . 49

22 Frequency of the occurrences of each parameter for Risk Levels 0,
1, and 2 using the newly defined risk level values. 50

23 Histogram showing the results of grading approach phases. Each
grade is calculated by totaling the risk levels across all parameters
then multiplying the sum by a penalty amount per deduction. . . . 51

viii

LIST OF TABLES

Table Page

1 Landing result types and their conditions. 19

2 Stabilized approach criteria for Cessna 172S [2]. 22

3 Final turn matrix of the combinations of roll direction and cross track

error. 24

4 Defined Risk Levels during approach for a Cessna C172S 49

5 Performance of Linear v. Parallel Execution Times 53

ix

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Dr. Travis Desell. He consistently

allowed this Thesis to be my own work, but steered me in the right direction

with his expertise in many areas whenever I needed help.

I would also like to thank the numerous aviation experts who provided me

with their insights on Flight Data Analysis: Prof. Brandon Wild, John Walberg,

Dr. Mark Dusenbury, and Prof. James Higgins. Without their passionate

participation and input, my work could not have been successfully implemented.

I wholeheartedly would like to thank all of my committee members: Dr.

Travis Desell, Dr. Hassan Reza, and Prof. Brandon Wild. I consider it an honor

that they agreed to work with me, and I am gratefully indebted to them for their

very valuable comments on this Thesis.

Last but not the least, I must express my very profound gratitude to my wife,

family, and friends for their prayers, unfailing support, and continuous

encouragement throughout my graduate studies. This accomplishment would not

have been possible without them. Thank you.

x

Dedicated to my wife, Mary, for her persistent love and support.
I love you bunches!

ABSTRACT

This work details the development of the Critical Phase Analysis Tool

(CPAT), a tool for analyzing and grading the quality of approach and landing

phases of flight for the National General Aviation Flight Information Database

(NGAFID). General Aviation (GA) accounts for the highest accident rates in

Civil Aviation, and the approach and landing phases are when a majority of

these accidents occur. Since GA aircraft typically lack most of the sophisticated

technology that exists within Commercial Aviation, detecting phases of flight

can be difficult. Moreover, because of the high variability in GA operations and

abilities of the pilot, detecting unsafe flight practices is also not trivial. This

thesis details the usefulness of an event-driven approach in analyzing the quality

and risk level of an approach and landing. In particular, the application uses

several parameters from a flight data recorder (FDR) to detect the phases of

flight, detect any safety exceedances during the phases, and assign a

metrics-based grade based on the accrued number of risk levels. The goal of this

work is to improve the post-flight debriefing process for student pilots and

Certified Flight Instructors (CFI) by augmenting the currently limited feedback

with metrics and visualizations. By improving the feedback available to students,

it is believed that it will help to correct unsafe flying habits quicker, which will

also help reduce the GA accident rates in the long-term. The data was collected

from a Garmin G1000 FDR glass cockpit display on a Cessna C172 fleet. The

developed application is able to successfully detect go-arounds, touch-and-goes,

and full-stop landings as either stable or unstable with an accuracy of 98.16%.

The CPAT can be used to provide post-flight statistics and user-friendly graphs

for educational purposes. It is capable of assisting both new and experienced

pilots for the safety of themselves, their organization, and GA as a whole.

xi

NOMENCLATURE

AGL Above Ground Level

CFI Certified Flight Instructor

CPAT Critical Phase Analysis Tool

FAA Federal Aviation Administration

FDR Flight Data Recorder

GA General Aviation

GAARD General Aviation Airborne Recording Device

GPA Glide Path Angle

IAS Indicated Airspeed

KIAS Knots Indicated Airspeed

kts knots

LOC Loss of Control

NGAFID National General Aviation Flight Information Database

RPM Revolutions Per Minute

UND University of North Dakota

VSI Vertical Speed Indicated

xii

CHAPTER 1

INTRODUCTION

General Aviation (GA) is one of two branches of Civil Aviation, which

pertains to the operation of all non-scheduled and non-military aircraft [3–6].

GA includes fixed-wing airplanes, helicopters (rotorcraft), balloons, dirigibles,

gliders, etc.; and comprises 63% of all Civil Aviation activity within the

U.S. [3, 5, 7]. Performing GA flight analysis is essential for making the GA

community safer, as currently GA has the highest accident rates in Civil

Aviation [6, 8]. As of 2014, the total accident and fatality rates for GA

fixed-wing aircraft were 5.78 and 1.19 per 100,000 flight hours, respectively; and

75.3% of GA accidents were caused by pilot-related actions [6].

The National General Aviation Flight Information Database (NGAFID) has

been developed at the University of North Dakota as a joint

university-industry-FAA initiative that is responsible for the curation,

dissemination, and analysis of flight data for the General Aviation (GA) sector

of Civil Aviation [9, 10]. The objective of the NGAFID is to proactively identify

accident precursors and mitigate risks associated with unsafe flight practices and

aircraft maintenance issues within the GA community. This is achieved via

non-punitive information sharing to educate operators on risks associated with

their flights to encourage safer practices [9]. The analytical tools provided by the

NGAFID are free and available to GA pilots who participate by uploading their

flight data through the NGAFID web application1 or the GAARD mobile

application [11]. Subsequently, their flight data is preprocessed and analyzed

using various queries. Many queries are based on threshold criteria called

exceedances, which are predefined using known limitations of the make/model

1http://www.ngafid.com

1

Figure 1: Screen-shot of a flight which has an excessive roll exceedance. The
exceedance event is highlighted in red.

aircraft or the phase of flight. However, other recent work has focused on

developing more advanced analytics through machine learning and other holistic

techniques [12–18]. Upon logging into the web portal, the user is provided with

summaries of any unsafe events (see Figure 1) and is able to reanimate their

flight(s) using X-Plane2 or Cesium3 (see Figure 2). The intent is to educate

participating pilots on any unsafe practices in their flight and maintenance issues

with the aircraft which may contribute to an accident/incident. The overall goal

of this initiative is to reduce the accident and fatality rates within the GA

community.

Scope & Objectives

The goal of this research is to develop an automated grading system, the Critical

Phase Analysis Tool (CPAT), for analyzing quality of approach and landing

phases with a low error rate, reasonable run-time, and that can handle the wide

2http://www.x-plane.com
3http://www.cesiumjs.org

2

Figure 2: Example of in-browser flight reanimation using Cesium.

variation of GA flight. This application will be useful in several different areas:

• provide student pilots with a grade/metric that they can use to gauge a

flight’s quality, which helps target different student learning techniques,

• help improve the flight training process for Certified Flight Instructors

(CFI) by making post-flight evaluation more efficient,

• help reduce costs of training for the student and institution due to a lesser

need for additional training flights, and

• help further reduce GA accident and fatality rates.

Motivation

Despite many safety efforts that have been recently introduced to the GA

community, accident rates in the United States remain high. One way of

characterizing flight safety is by identifying exceedances, or events that bring the

3

aircraft into an unsafe state dependent on the phase of flight. By detecting these

exceedances, we can identify areas of improvement at the pilot- or

organizational-level and additionally educate the pilots on their unsafe practices.

In particular, this research is mainly focused on this aspect of improving

teaching feedback for Certified Flight Instructors (CFIs) and student pilots

within flight training institutions (although it may be useful to individual private

pilots as a side-effect). Furthermore, the scope of analysis is for the approach

and landing phases of flight since these are some of the most critical phases in

GA as they ranked #6 and #1, respectively, for number of pilot-related accident

types in 2014 [6]. These phases present particular challenges in detection of the

phase and exceedances due to the high variability in GA operations and flight

performance [19–21].

At the time of this writing, the feedback that a student pilot receives for their

flying performance consists of a verbal debriefing given by the student’s CFI.

This process can be prone to errors as both the CFI and student must recall the

flight from memory or utilize any notes they were able to take mid-flight.

Additionally, a cross-country flight may last anywhere from 1.5 to 2 hours, which

can be a lot to recall after they have landed and returned the aircraft. This may

work well for some students, but not for all as many people do not have a great

short-term memory. For these reasons, an automated system that can provide

metrics-based results of their flying performance and allow them to replay their

flight will benefit student pilots by providing another means of obtaining

feedback, which will cater to students who learn more efficiently with visual

materials.

Outline

This thesis is organized with related works in the areas of aircraft operations,

post-flight evaluation tools, NGAFID related work, and data mining techniques

4

in Chapter 2. Chapters 3 and 4 are a continuation of previous work presented

in [22]. The approach to phase of flight identification, exceedance detection,

grading, and web interface are discussed in Chapter 3. The implementation;

including the programming languages, libraries, and parallelization techniques

used; are discussed in Chapter 4. Results of the flight analysis are given in

Chapter 5. Finally, there is a conclusion of the research and a discussion of

future work in Chapter 6.

5

CHAPTER 2

RELATED WORK

Aircraft Operations

In Dr. Ed Wischmeyer’s paper, The Myth of the Unstable Approach [23], he

discusses how the term “unstable approach” is now becoming too vague to be

used in accident and incident reports. He argues there are too many factors that

play into an approach; therefore, labeling it solely as an “unstable approach” is

not sufficient. This aligns with one of the goals of the Critical Phase Analysis

Tool in that it was developed to detect unstable approaches and be able to state

what the specific parameter was that caused the approach to be unstable. In

doing this, it allows for finer-grained statistics to be generated, which can reveal

further patterns to be detected within an organization if it becomes a

wide-spread problem.

Nazeri et al. [24] researched accident and incident data from several different

commercial flight data sources in order to discover the factors that cause those

events. They created eight high-level categories, each with sub-factors, for

classification. They used an algorithm to analyze the data for correlations

between different attribute-value pairs across the accident and incident data sets.

A factor support ratio was calculated for each attribute-value pair and ranked in

decreasing order to find the most significant factors. The following high-level

factors were the four top ranked in order: company, air traffic control, pilot, and

aircraft. They also did a time-series analysis of the data for the ten-year period

in which the data was collected (1995-2004). This time-series data showed the

pilot and aircraft factors are generally decreasing over time, while the air traffic

control factors are generally increasing. By uncovering these patterns and

6

analyzing them over time, they were able to find the factors that are leading

causes for accidents/incidents and can address these factors for improvement.

Post-Flight Evaluation Tools

There are several software projects that have created post-flight evaluation tools,

which a pilot can use to analyze their performance during various phases of

flight. Each project has a similar methodology, but varying presentation

techniques. Knighton and Claramunt [25] created a system that included

hardware for collecting real-time flight data and an interactive graphical user

interface (GUI). The GUI is capable of 2D flight re-animation and simple plots

of the aircraft’s vertical profile throughout the flight. The flight re-animation

also has a panel with indicators showing the real-time sensor data at each time

step. They found through experiments, using volunteers, that their interface was

intuitive and encouraged exploration of different aspects of flight performance.

Despite the usefulness of the flight parameter graphs, the downside to their

research is that any analysis has to be performed manually by the user as there

are no automated analysis results provided.

Masiulionis and Stankunas [26] provide a review of several software packages

for flight analysis including IGC Flight Replay, OziExplorer, GPS TrackMaker,

and ArcGIS. They found that none of the packages provided all the aspects they

sought: interactively enabling/disabling map layers, graphing multiple flight

parameters on a single plot, and high-resolution maps. Thus, they experimented

with flight analysis and visualization using Google Earth. Google Earth met all of

their standards, but the only disadvantage is that the altitude and speed graphs

can become compressed for flights with an extended duration. It does not include

any features to resize or drill-down into the graphs to make them more viewable.

Goblet et al. [19, 20] researched into automatically classifying phases of GA

7

flights. The focus is on the climb, cruise, and descent phases as they are the

most difficult phases to identify in GA due to the variation of mission profiles

and purposes of flight when compared to Commercial Aviation. Several methods

were explored for identifying these phases: altitude-based and

smoothing-and-differentiation-based (which includes down-sampling, moving

average, and local regression). It was found the best method to use for a

particular flight is determined by specific characteristics found within that flight.

An algorithm is then given to automatically select the best method for each

flight. Although the climb, cruise, and descent phases are the most difficult to

identify, it is known that the approach, landing, and go-around phases are the

most critical and dangerous in GA (as discussed in Chapter 1), thus is the reason

this work focuses on analysis of those phases.

Fala and Marais [21] developed a method of detecting unsafe aircraft

parameters, termed “safety events”, in GA flights. Similar to phase

identification, detecting safety events in GA is difficult due to the variability in

operations. In their research, they only focus on the approach phase and provide

the numerical parameter limits for a Cirrus SR20 aircraft during the approach

phase. For each parameter, they provide a Level 1 and Level 2 limit stating that

Level 2 is more dangerous than Level 1. They analyzed the approach phases

from a sample of 23 flights using their defined thresholds and performed a

one-way ANOVA analysis to evaluate whether the average number of instances

for each type of safety event was similar. They found their initial threshold

definitions were not similar enough across the parameters. They revised the

definitions, re-analyzed the flights, and performed another ANOVA analysis to

find that they were then significantly similar. When detecting safety events, Fala

and Marais did not distinguish between sporadic exceedances of the thresholds

and a span of consecutive exceedances. This differs from the work in this project,

where an event can span multiple seconds instead of only single time steps.

8

NGAFID Related Work

Other work on the NGAFID has focused in two different areas. In the first,

Desell et al. have examined methods based on the prediction of flight data

parameters using recurrent neural networks (RNNs). They have shown that

training Jordan and Elman RNNs using evolutionary algorithms such as Particle

Swarm Optimization and Differential Evolution can provide strong predictive

results for flight data parameters such as airspeed, altitude, pitch, and roll [17];

and that these results can be further refined utilizing a novel neuroevolution

technique based on ant colony optimization (ACO) to evolve the structure of the

RNNs [14]. Further work by ElSaid et al. has utilized Long Short-Term Memory

(LSTM) RNNs to predict aircraft engine vibration events [15, 16]. They later

found the structure of the network can be optimized using ACO, which

significantly reduces the number of connections required and improves the

predictive ability of the RNN [18].

The other area has been in utilizing unsupervised machine learning methods

to detect anomalous flights. Clachar et al. have used self organizing maps

(SOMs), a type of neural network, to both cluster time series flight data and

identify anomalous flights [12, 13] based on approach phases. The SOMs

provided significant benefits in terms of parallelism and performance over other

clustering methods such as DBSCAN [27].

Data Mining Techniques

Harris et al. [28] of MITRE Corporation mined accident and incident reports

provided by the International Civil Aviation Organization (ICAO) in order to

determine the specific attributes that were the cause in each kind of report and

also needed to be considered “interesting” (i.e., anything that is an exception to

commonly accepted knowledge among aviation experts) by the aviation expert

9

who collaborated with them. They discovered that using traditional data mining

methods was not sufficient enough to find “interesting” results. This is because

experts have studied the field of aviation so extensively that all the obvious rules

and correlations have already been discovered. Next, they developed their own

system called Smithers, which uses a technique called attribute focusing, that

finally uncovered an interesting correlation which shows that having an advanced

heads up display (HUD) can help reduce the amount of damage as a result of a

runway incursion1. This shows that even though aviation safety has been studied

extensively, there are still new correlations that can be made when applying

several different data mining methods.

Matthews et al. [30] performed similar research in which their goal was to find

anomalous data in flights. They differ in the fact that they used algorithms that

could analyze at both a fleet-level and flight-level. Doing this allowed them to

find anomalies for an entire organization or just a single flight, which makes it

very useful in order to find patterns of problems. This idea is similar to the

NGAFID project in which flight data can be analyzed on multiple levels while

giving statistics for each.

1Defined by the Federal Aviation Administration (FAA) as, “any occurrence at an aerodome
involving the incorrect presence of an aircraft, vehicle, or person on the protected area of a
surface designated for the landing and take off of aircraft” [29].

10

CHAPTER 3

METHODOLOGY

The Critical Phase Analysis Tool provides several features: (i) phase of flight

identification, (ii) quality analysis of each phase, (iii) grade assignment, and (iv)

a web interface to display results. Since there are three separate phases of

concern, there will be a separate subsection for each in both identification and

quality analysis. These features are discussed in more detail in the rest of this

Chapter.

Phase of Flight Identification

Approach

The approach phase is defined as the time between the aircraft entering the

airport’s traffic pattern (shown in Figure 3), or 1,000 feet above the runway

elevation, to the beginning of the landing flare under Visual Flight Rules (VFR).

For Instrument Flight Rules (IFR), it is the time from the Initial Approach Fix

(IAF) to the beginning of the landing flare [31].

9L

Pattern Entry
Downwind

Base

Final

Figure 3: Example showing an airport’s traffic pattern and the subphases of the
approach.

11

Along with detecting the approach phase (Algorithm 1), this section also

details the algorithms for detecting (i) the airport and runway that the aircraft

is approaching and (ii) the final turn so it can later be analyzed for an

undershoot or overshoot.

The algorithm for detecting an aircraft’s approach needs to iterate through all

of the time values since there can be multiple approaches within a single flight.

Once the algorithm detects the aircraft is 1 mile away from an airport and is less

than 500 feet above ground level (AGL) (Algorithm 1 Line 6), it is determined

that the pilot is beginning an approach and a unique approach identifier is

generated in order to store metadata later in the process. Next, the algorithm

continues to iterate through time values until either the aircraft goes under 200

ft AGL, or it goes back above 500 ft AGL, which will then be recorded as a

go-around later in the process (Algorithm 1 Lines 8-12). If the aircraft goes

under 200 ft AGL, then it is determined to be on the final approach. The

aircraft is considered to be on the final approach while it is within 1 mile away

from the airport and it is between 50 and 200 feet AGL inclusive (Algorithm 1

Lines 16-22).

Once the aircraft either goes above 200 feet AGL or goes below 50 feet AGL,

then the final approach is marked as finished, and the critical metadata

associated with the approach is stored. At this point, the runway that is being

approached can be detected using a combination of the aircraft’s current

geolocation and heading since the intended runway may not be closest to the

aircraft depending on the degree of the final turn (Algorithm 1 Line 24).

Airport detection.

For identifying the airport that is being approached, a QuadTree [32] data

structure was used. It was used due to the fact that a two-dimensional tree

structure is needed in order to efficiently find the closest airport latitude and

longitude point when given the aircraft’s latitude and longitude. The QuadTree

12

Algorithm 1 Pseudo-code for function which detects when an aircraft is ap-
proaching a runway.

1: airplanePoint ← data[i].geoPoint
2: airport ← detectAirport(airplanePoint)
3: airplaneAltitude ← data[i].altitude
4: heightAGL ← airplaneAltitude− airport.altitude
5: distance ← airplanePoint.distanceTo(airport.geoPoint)
6: if distance < 1mi and heightAGL < 500 ft then
7: apprID ← genNewApproachID()
8: while 200 ft < heightAGL < 500 ft and i < data.length do
9: airplaneAltitude ← data[i].altitude

10: heightAGL ← airplaneAltitude − airport.altitude
11: i ← i+ 1
12: end while
13: approachStartTime ← i

14: airplaneHdg ← data[i].hdg
15: airplanePoint ← data[i].geoPoint
16: while distance < 1mi and 50 ft ≤ heightAGL ≤ 200 ft and i < data.length

do
17: airplaneAltitude ← data[i].altitude
18: airplanePoint ← data[i].geoPoint
19: distance ← airplanePoint.distanceTo(airport.geoPoint)
20: heightAGL ← airplaneAltitude− airport.altitude
21: i ← i+ 1
22: end while
23: approachEndTime ← i

24: runway ← detectRunway(airplanePoint, airplaneHdg, airport)
25: approaches[apprID] ← store approach metadata
26: return (approachStartTime, approachEndTime)
27: end if

13

is constructed using a list of airport objects from a database then is optimized.

Both the insertion and searching algorithms yield O(log n) complexity.

Runway detection.

The algorithm used for finding the runway that is being approached is a

simple sequential search with a constraint that the difference between the

aircraft’s heading and the runway’s heading must be within an upper limit. The

reasoning for this constraint is the fact that the runway closest to the aircraft

may not necessarily be the one it is approaching depending on the arrangement

of the runways and the degree of the final turn (see Figure 4). A value of 20� was

used for the heading constraint since it is double the value used for detecting a

heading exceedance (see Table 2). Thus if the runway returned by the algorithm

is not the intended runway, it means the aircraft’s heading is significantly

off-center from the runway’s heading and the pilot will need to perform severe

corrections to get back on course.

In this case, using a sequential search is efficient enough since an airport has a

very small number of runways, whereas there are thousands of airports within

the United States which requires a more sophisticated algorithm. The runway

detection algorithm is given in Algorithm 2.

Final turn detection.

In order to detect the final turn subphase of the approach, we first get the

previous three minutes of data before the approach ends. The previous three

minutes are used to reduce the search space and because it does not make logical

sense for a final turn to occur greater than three minutes before the approach

ends. Next, the algorithm searches for the final turn start and end time. It finds

these by searching for the points at which the aircraft’s heading creates a 90�

and 15� angle, respectively, to the runway’s heading. A visualization of these

reference points can be seen in Figure 5. The search is performed backwards

14

Figure 4: Example showing that the closest runway to the aircraft may not nec-
essarily be the one they are attempting to land on. If we use the black dot as
a reference point for when we attempt to detect the runway, it can be seen that
the runway on the left may actually be closer. However, the aircraft’s heading
will match closer to the runway on the right (the pilot’s intended target). This is
the purpose of searching for the closest runway with a constraint on the heading
difference.

Algorithm 2 Pseudo-code for detectRunway function which detects the runway
an aircraft is approaching.

1: function DetectRunway(airplanePoint, airplaneHdg, airport)
2: theRunway ← NULL
3: closestDistance ← ∞

4: for runway in airport.runways do
5: if | headingDifference(runway.hdg, airplaneHdg) | ≤ 20� then
6: distance ← airplanePoint.distanceTo(runway.geoPoint)
7: if distance ≤ closestDistance then
8: theRunway ← runway
9: closestDifference ← difference

10: end if
11: end if
12: end for
13: return theRunway
14: end function

15

9L

Downwind

Base

Final

90 deg (turn start)

15 deg (turn end)

Figure 5: Example showing the approach subphases and the slice of data used in
the final turn analysis. The dashed lines represent when the final turn starts (90�

heading difference) and ends (15� heading difference).

through the slice of data in order to obtain the last occurrence of each angle

difference. Once both points have been found, they are stored for later use in the

analysis stage. If the aircraft did not have a heading difference greater than 90�

in the final three minutes, the pilot performed a straight-in approach and,

consequently, did not execute the final turn subphase. The final turn detection

algorithm is given in Algorithm 3.

Landing

The landing phase is defined as the time from the beginning of the landing flare

until the aircraft performs one of the following actions: (i) exits the landing

runway, (ii) comes to a complete stop on the runway (full-stop), or (iii) when

power is applied for takeoff in the case of a touch-and-go landing [31].

The landing phase and result detection is able to differentiate between a

full-stop, touch-and-go, and a go-around1. Pseudo-code for this process is given

1Go-around is included here as a possibility for the result of a landing phase since only one of
the full-stop, touch-and-go, and go-around maneuvers can be executed after an approach/landing
even though the aircraft does not physically contact the ground.

16

Algorithm 3 Pseudo-code for function which detects the final turn subphase of
the approach.

1: function DetectFinalTurn(approachEndTime, runway)
2: last3Mins ← get previous 3 mins of data before approachEndTime
3: turnStartTime ← NULL
4: turnStartFound ← false
5: turnEndTime ← NULL
6: turnEndFound ← false
7: i ← last3Mins.length− 1

. Loop backwards through the last 3 mins of data
8: while not turnStartFound and not turnEndFound and i ≥ 0 do
9: headingError ← | headingDifference(runway.hdg, last3Mins[i].hdg) |

10: if headingError ≥ 90 and not turnStartFound then
11: turnStartTime ← i
12: turnStartFound ← true
13: end if
14: if headingError ≥ 15 and not turnEndFound then
15: turnEndTime ← i
16: turnEndFound ← true
17: end if
18: i ← i− 1
19: end while
20: approaches[apprID] ← store final turn metadata
21: return (turnStartTime, turnEndTime)
22: end function

17

in Algorithm 4.

This detection algorithm iterates through time values starting where the final

approach detection finished (Algorithm 4 Lines 10-29). It continues to iterate

while the aircraft is below 500 feet AGL; or if it is the aircraft’s final landing and

the time values run out, then it stops analyzing. While the algorithm iterates

through the time values, it checks if the aircraft’s indicated airspeed (IAS) is less

than or equal to 35 knots (Algorithm 4 Line 13). If this is true, then it is

determined the aircraft is no longer traveling at a flying speed, thus it is making

a complete stop. The stall speed of a Cessna 172S aircraft is 40 knots IAS

(KIAS) [1]; therefore, the value of 35 knots guarantees the aircraft cannot be

flying. In order to detect a touch-and-go landing, the previous five elevation

readings are stored and their average is calculated (Algorithm 4 Lines 20-28). If

it is found the aircraft is not making a stop-and-go landing, then the average

elevation for the last five seconds is checked to see if it is less than five feet AGL

(Algorithm 4 Line 15). This means the aircraft is still at a flying speed (above 35

knots) and is also maintaining a stable elevation of five feet or less for at least

five seconds.

Once the aircraft goes above 500 feet AGL or the time values run out, then

the landing result is determined from the conditions found during the analysis

(Algorithm 4 Line 32 and Algorithm 5). If it was found the aircraft was making

a complete stop, then a value of “full-stop” is stored. If it was not making a

complete stop and had a relatively stable elevation of 5 feet or less above the

runway, then a value of “touch-and-go” is stored. The final result type,

“go-around”, is used as a fall-through since there are only three classifications, as

mentioned previously. The three landing result types and how they are detected

are summarized in Table 1.

After the landing is classified, then it is determined whether there is a takeoff

phase that follows the current landing phase. If the end of the data has been

18

Table 1: Landing result types and their conditions.

Type Condition

full-stop
Aircraft’s indicated airspeed speed (IAS) falls below 35
knots

touch-and-go
Aircraft is not making a complete stop and maintains a
stable altitude of five feet AGL or less for at least five
seconds

go-around All other cases

reached or a go-around is being performed (Algorithm 4 Line 33), there will not

be a subsequent takeoff phase. Otherwise, we need to find the transition from

landing to takeoff. This is done by finding the index of the engine’s minimum

RPM value between landingStartTime and landingEndTime (Algorithm 4 Line

36 and Algorithm 6). By using the engine’s minimum RPM value, we know all

RPM values afterwards will be greater, which means the pilot will be using more

throttle in order to takeoff. The landingEndTime is then reset to this transition

mark. Lastly, the critical metadata found during the analysis is stored.

Phase of Flight Quality Analysis & Exceedance Detection

Approach

Along with analyzing the approach phase, this section also details the algorithms

for analyzing (i) the final turn subphase for an undershoot or overshoot and (ii)

the pilot’s self-defined glide path angle.

The algorithm for analyzing an approach phase iterates through all the time

values found during the phase identification stage (Algorithm 7 Lines 4-17). For

each time value, the analysis for unstableness is performed. During this analysis,

several flight parameters are checked against predetermined thresholds to see if

any were exceeded (Algorithm 7 Lines 8-11). The values used for the thresholds

are summarized in Table 2. A true value for a condition means the parameter is

19

Algorithm 4 Pseudo-code for function which detects the landing from its asso-
ciated approach.

1: function DetectLanding(approachEndTime, runway)
2: landingStartTime ← approachEndTime
3: i ← approachEndTime
4: airplaneAltitude ← data[i].altitude
5: heightAGL ← airplaneAltitude− runway.altitude
6: isFullStop ← false
7: isTouchAndGo ← false
8: elevations ← []
9: avg5SecElevation ← 5 ft + 1 . value to guarantee first check passes

10: while heightAGL < 500 ft and i < data.length do
11: if not isFullStop then
12: airplaneIAS ← data[i].ias
13: if airplaneIAS ≤ 35 kts then
14: isFullStop ← true
15: else if avg5SecElevation ≤ 5 ft then
16: isTouchAndGo ← true
17: end if
18: end if
19: i ← i+ 1
20: airplaneAltitude ← data[i].altitude
21: heightAGL ← airplaneAltitude− runway.altitude
22: if elevations.length < 5 seconds then
23: elevations.append(heightAGL)
24: else
25: elevations.pop()
26: elevations.append(heightAGL)
27: avg5SecElevation ← avg(elevations)
28: end if
29: end while
30: landingEndTime ← i
31: isEndOfData ← landingEndTime == data.length− 1
32: landingResult ← getLandingResult(isFullStop, isTouchAndGo)
33: isFollowedByTakeoff ← not(isEndOfData or landingType == ‘go-around’)

. If landing is followed by a takeoff, then we need to find the transition
from landing to takeoff

34: if isFollowedByTakeoff then
35: landingDataSlice ← get slice of data between landingStartTime and

landingEndTime
. Marks where the pilot is transitioning from landing to takeoff

36: lastOccurrence ← getLastOccurrenceOfMinRPM(landingDataSlice)
37: landingEndTime ← lastOccurrence
38: end if
39: approaches[apprID] ← store landing metadata
40: return (landingStartTime, landingEndTime)
41: end function

20

Algorithm 5 Pseudo-code for getLandingResult helper function.

1: function GetLandingResult(isFullStop, isTouchAndGo)
2: if isFullStop then
3: landingResult ← ‘full-stop’
4: else if isTouchAndGo then
5: landingResult ← ‘touch-and-go’
6: else
7: landingResult ← ‘go-around’
8: end if
9: return landingResult

10: end function

Algorithm 6 Pseudo-code for getLastOccurrenceOfMinRPM helper function.

1: function GetLastOccurrenceOfMinRPM(dataSlice)
2: minRPM ← min(dataSlice[‘rpm’])
3: lastOccurrence ← 0
4: i ← 0
5: while i < dataSlice.length do . loop through slice of data to find last

occurrence of minimum RPM
6: if dataSlice[i].rpm == minRPM then
7: lastOccurrence ← i
8: end if
9: end while

10: return lastOccurrence
11: end function

21

Table 2: Stabilized approach criteria for Cessna 172S [2].

Parameter Description Value

F Flight path correct

Less than 10� off runway heading,
less than 50 ft left or right of the
runway center line (cross track er-
ror)

L
Landing configuration
correct

N.A.

A Airspeed proper
Indicated airspeed (IAS) within
55-75 kts

P
Power setting
appropriate

N.A.

S Sink rate appropriate
Vertical speed indicated (VSI)
does not exceed -1000 ft/min

stable. Thus, if any of the parameters are unstable, isUnstable will result to

being true, meaning the entire aircraft is in an unstable state (Algorithm 7 Line

12). If the aircraft is found to be unstable, the corresponding time value is stored

as well as the parameter values that caused the unstableness (Algorithm 7 Line

14).

Final turn.

The final turn subphase is very critical for achieving a flight path aligned with

the runway. Since the end of the turn occurs fairly late in the approach phase,

any mistakes can greatly reduce the pilot’s ability to stabilize the aircraft by 200

ft AGL. If the pilot makes a turn that is too sharp (undershoot) or too wide

(overshoot), they may have to make a large corrective maneuver to re-align

themselves, which could stall the aircraft if performed incorrectly and potentially

result in a loss of control (LOC) event. Stalls and loss of control events

contributed to 52.0% and 17.4% of all landing accidents in 2014 [6], respectively.

Analyzing this subphase only requires the end time value and runway found

during the identification stage. For this single time value, the aircraft’s cross

track error is calculated (Algorithm 8 Line 5). Next, the direction of the turn is

22

Algorithm 7 Pseudo-code for function which analyzes an approach for unstable-
ness.
1: function AnalyzeApproach(startTime, endTime, runway)
2: approachDataSlice ← get slice of data between startTime and endTime
3: i ← 0
4: while i < approachDataSlice.length do
5: airplaneHdg ← approachDataSlice[i].hdg
6: airplaneIAS ← approachDataSlice[i].ias
7: airplaneVSI ← approachDataSlice[i].vsi
8: airplanePoint ← approachDataSlice[i].geoPoint
9: headingIsStable ← 180�− | | runway.hdg− airplaneHdg |− 180� | ≤ 20�

10: crossTrackIsStable ← calculateCrossTrack(
airplanePoint, airplaneHdg, runway) ≤ 50 ft

11: iasIsStable ← 55 kts ≤ airplaneIAS ≤ 75 kts
12: vsiIsStable ← airplaneVSI ≥ −1000 ft/min
13: isUnstable ← not (headingIsStable and crossTrackIsStable and

iasIsStable and vsiIsStable)
14: if isUnstable then
15: approaches[apprID] ← store index as unstable and corresponding

unstable parameter values
16: end if
17: i ← i+ 1
18: end while
19: end function

determined by calculating which roll attitude direction was greater2 (Algorithm 8

Lines 6-12). The severity of the cross track error is then determined (Algorithm 8

Lines 13-19). A Risk Level 1 error is a value greater than 25 feet, while a Risk

Level 2 error is a value greater than 100 feet. The turn error is determined next

based on the roll direction and direction of the cross track error (Algorithm 8

Lines 20-32). For example, if the pilot rolled left and had a negative cross track

error3, it is considered an “undershoot”. See Table 3 for all possible

combinations of roll direction and cross track error. However, if the cross track

error is less than a Level 1 risk, then the turn is considered to be safe and a Risk

Level 0 is stored (Algorithm 8 Line 18). Lastly, the turn error and severity are

stored. See Figure 6 for visualizations of several different final turn scenarios.

2If the aircraft rolls to the left, it is recorded as a negative degree and vice versa if the aircraft
rolls to the right. This is why we find the minimum roll attitude as the highest degree in which
aircraft rolled left, and the maximum roll attitude as the highest degree in which the aircraft
rolled right.

3Meaning they are left of the runway’s centerline.

23

35L

Aligned
Cross Track Error

Turn
End

(a) Aligned.

35L

Small Undershoot
Cross Track Error

Turn
End

(b) Undershoot. In this
case, it is a small severity
(Level 1) and color-coded
as orange.

35L

Large Overshoot
Cross Track Error

Turn
End

(c) Overshoot. In this
case, it is a large severity
(Level 2) and color-coded
as red.

Figure 6: Examples showing various final turn qualities.

Table 3: Final turn matrix of the combinations of roll direction and cross track error.

Direction

Cross Track
< 0 ft > 0 ft

Left Undershoot Overshoot

Right Overshoot Undershoot

If a final turn was not found in the detection phase (due to the pilot

performing a straight-in approach), the analysis stage will be skipped.

Self-defined glide path.

A majority of runways in the U.S. publish an ideal glide slope that all pilot’s

should adhere to. However, not all runways have a published glide slope.

Therefore, a method for analyzing the aircraft’s actual glide path angle (GPA)

during the final approach is needed in order for the pilot to be able to see what

their average GPA was and how well they adhered to it. This is why we termed

24

Algorithm 8 Pseudo-code for function which analyzes the quality of a final turn
phase.

1: function AnalyzeFinalTurn(startTime, endTime, runway)
2: turnDataSlice ← get slice of data between startTime and endTime
3: airplaneHdg ← turnDataSlice[endTime].hdg
4: airplanePoint ← turnDataSlice[endTime].geoPoint
5: crossTrackError ← calculateCrossTrack(

airplanePoint, airplaneHdg, runway)
6: leftDirection ← |min(turnDataSlice[‘roll’]) |
7: rightDirection ← |max(turnDataSlice[‘roll’]) |
8: if leftDirection > rightDirection then
9: rollDirection ← ‘left’

10: else
11: rollDirection ← ‘right’
12: end if
13: if | crossTrackError | > 100 ft then . Level 2
14: severity ← 2
15: else if | crossTrackError | > 25 ft then . Level 1
16: severity ← 1
17: else
18: severity ← 0
19: end if
20: if rollDirection == ‘left’ then
21: if crossTrackError < 0 then
22: turnError ← ‘undershoot’
23: else
24: turnError ← ‘overshoot’
25: end if
26: else
27: if crossTrackError > 0 then
28: turnError ← ‘undershoot’
29: else
30: turnError ← ‘overshoot’
31: end if
32: end if
33: approaches[apprID] ← store severity and error
34: return (severity, turnError)
35: end function

25

this method a “self-defined glide path angle”. Figure 7 shows an example of

what the self-defined glide path analysis is performing.

Major deviations from the ideal glide slope can be very costly. For example, if

the pilot is approaching at a steep angle, a hard landing or a landing short of the

runway can occur. On the other hand, if the pilot is approaching at a shallow

angle, a runway overrun can occur.

First, the slice of data for the corresponding approach phase found during the

detection stage is obtained (Algorithm 9 Line 2). Next, a linear regression using

the least squares approach is calculated (Algorithm 9 Line 3) using the aircraft’s

height AGL (dependent variable) over all the time values (independent variable).

From that calculation we obtain the y-intercept, slope, and r-value (correlation

coefficient) of the linear regression model (Algorithm 9 Lines 4, 5, 15). Then, all

the necessary values for computing the pilot’s defined GPA are calculated

(Algorithm 9 Lines 6-13). Once all the supporting values are found, then the

actual GPA is calculated using the arctan of the predicted vertical distance

dropped over the traveled horizontal distance (Algorithm 9 Line 14).

Furthermore, the square of the r-value is calculated (Algorithm 9 Line 16), which

explains how well the pilot’s glide path “fit” the ideal glide path. Lastly, the

calculated values and metadata are stored in the database.

Grading Metrics

When creating the risk level metrics to be used for grading the approach analysis

data, we wanted to ensure they were backed by statistics obtained from the

results from the sample set of flights. Towards that goal, the risk level metrics

have been created from the data found during the approach quality analysis. For

each parameter of concern, the recorded values across all approach phases in the

sample set were used to create a normalized histogram showing the probability

26

Time

Di
st
an

ce

Actual Glide Path

Ideal Glide Path

Figure 7: Example showing the self-defined glide path angle analysis. This shows
a side view of the pilot oscillating about the glide slope during the approach phase.
The calculation uses a linear regression of the aircraft’s vertical distance over time
fitted using the least squares approach. The solid line is the aircraft’s actual glide
path while the dotted line is the ideal glide path.

density of each value range. From these histograms, the mean and standard

deviation were calculated in order to create a best-fit line to overlay the

histogram. The charts were then analyzed by an aviation statistics expert at the

University of North Dakota who gave his opinion on reasonable values to use for

Risk Level 1 and 2 value ranges based on each mean, standard deviation, and

best-fit line. Even though those elements were created from the analysis

statistics, the aviation expert wanted to also ensure the safe value ranges (Risk

Level 0) did not conflict with the values published in UND’s standardization

manual [2] and the Cessna C172S Pilot’s Operating Handbook (POH) [1].

After the risk level metrics have been established, the approach quality

analysis results will be re-processed and graded according to the metrics. The

resulting grade is then stored along with the other generated approach analysis

data within the database. The specific details of the grading results from using

27

Algorithm 9 Pseudo-code for function which analyzes the quality of the aircraft’s
glide path angle during the approach phase.

1: function AnalyzeGlidePath(startTime, endTime, runway)
2: approachDataSlice ← get slice of data between the approach startTime

and endTime
3: regressionResult ← linearRegression(

approachDataSlice[‘time’], approachDataSlice[‘agl’])
4: yIntercept ← regressionResult.intercept
5: slope ← regressionResult.slope
6: maxDistance ← max(approachDataSlice[‘distance’])
7: minDistance ← min(approachDataSlice[‘distance’])
8: horizontalDistance ← maxDistance−minDistance
9: maxTime ← max(approachDataSlice[‘time’])

10: minTime ← min(approachDataSlice[‘time’])
11: predictedMaxAGL ← slope ∗maxTime+ yIntercept
12: predictedMinAGL ← slope ∗minTime+ yIntercept
13: predictedVerticalDistance ← predictedMaxAGL− predictedMinAGL
14: actualGlidePathAngle ← degrees(

atan(predictedVerticalDistance / horizontalDistance))
15: pearsonsR ← regressionResult.rvalue
16: rSquared ← pearsonsR ∗ pearsonsR
17: approaches[apprID] ← store self-defined glide path metadata
18: return (actualGlidePathAngle, rSquared)
19: end function

the risk level metrics will be discussed further in Chapter 5.

Web Interfaces

This Section details the newly developed web pages for the NGAFID, which

dynamically display results based on the user’s chosen filters. At the time of this

writing, there have been new tools developed for each of the approach, final turn,

and self-defined glide path analyses. Each tool will be discussed further in the

subsequent Subsections.

Approach

A new web page was implemented in the NGAFID for the purpose of

dynamically displaying the approach analysis results produced by the Critical

28

Figure 8: A screenshot of the Approach analysis tool on the NGAFID. It is showing
the histogram for indicated airspeed error with two date range filters: 2015-01-01
to 2015-12-31 and 2016-01-01 to 2016-12-31. The frequency of exceedances can be
seen with all values that fall outside of the 55-75 knots range.

Phase Analysis Tool to users (Figure 8). The results are given in four tabs, one

for each parameter, as histograms over a specified date range. A user is able to

dynamically add additional date ranges, which will create an additional series in

the chart for comparison. This feature can be used to detect changes in trends

over time. A user is also, optionally, able to filter the results to an airport and

further filter to a single runway. This will allow users to identify trends that are

potentially occurring at a specific runway but not at any other runways.

Final Turn

The tool developed for analyzing final turn phases in the NGAFID was

implemented with two modes: (i) “Single Flight” and (ii) “Aggregate”.

For the “Single Flight” mode, the user can input an ID for a specific flight

they’d like to analyze (Figure 9). Once the user clicks the “Display Single

Flight” button, the interactive map then dynamically transitions to the first

approach for that flight. The map will only display one approach at a time;

29

although, there are tabs across the top for each approach which the user can

choose. Once a different tab is chosen, the map automatically transitions the

view to that corresponding approach. The flight path shows different color

codings for the separate final turn, approach, and landing phases as well as

different colors for the final turn specifically depending on the severity of the

turn error. A Level 1 turn error will be colored yellow, while a Level 2 turn error

will be colored red. If the turn error is less than the Level 1 criteria, it is colored

green. The user is also able to download a PNG screenshot of the map by

clicking the “Download PNG” button.

For the “Aggregate” mode; the user can choose a specific airport, runway, and

month and year combination; which will then display all the approaches that

occurred at the chosen runway during the chosen time-frame (Figure 10). This

mode allows a user to see trends in final turn phases during a given time span.

This mode displays the same color code scheme as the “Single Flight” mode.

Self-Defined Glide Path

The tool implemented in the NGAFID for displaying the results of the

self-defined glide path analysis currently only supports an aggregate mode

(Figure 11). It works similarly to the final turn tool as the user chooses an

airport, runway, and month and year combination. This will then display a

sideways histogram of all the approaches at the given runway during the given

time-frame. The y-axis shows glide path angles from 0� to 10� in 0.5�

increments, and the x-axis shows the number of occurrences that fell within each

angle bin. Lastly, the user can download an image of the displayed chart by

clicking the “hamburger” menu button.

30

Figure 9: A screenshot of the Final Turn analysis tool on the NGAFID in “Sin-
gle Flight” mode. It is currently showing approach #1 for Flight ID #381001.
Approach #1 shown here had a Level 1 (yellow color code) undershoot.

31

Figure 10: A screenshot of the Final Turn analysis tool on the NGAFID in “Ag-
gregate” mode. It is currently showing all approaches at the Warren Municipal
Airport (KD37) for Runway 12 during the month of January 2015. The many red
and yellow lines coming in from the left side mean that a majority of the turns
were Level 1 & 2 undershoots.

32

Figure 11: A screenshot of the Self-Defined Approach analysis tool on the
NGAFID. It is currently showing all approaches at the Grand Forks International
Airport (KGFK) for Runway 35L during the month of November 2017. It dis-
plays a sideways histogram with glide path angles on the y-axis and the number
of occurrences for each angle on the x-axis.

33

CHAPTER 4

IMPLEMENTATION

Programming Languages and Libraries

The Python programming language was used for implementing the flight analysis

due to its ease of use, its reputable scientific and graphing libraries, and the

ability to quickly produce a viable application. The libraries utilized are

MySQLdb1 for interacting with the MySQL database; matplotlib2 for graphing

flight parameters in the early stages of the application; NumPy3, Scipy4, and

Pandas5 for their scientific and vectorized functions; and the geodesy scripts

created by Chris Veness6. All source code is available at

https://github.com/KeltonKarboviak/NGAFID.

For the back-end of the web interface, Laravel7 was used as the PHP

framework. For the front-end, the following technologies were used: jQuery8 &

jQuery UI9, Bootstrap10 for CSS styling, OpenLayers11 for creating an

interactive map, OpenStreetMap12 for the images used by OpenLayers, and

Turf.js13 for its geodesy functions. All source code for the web interface is

available at https://github.com/travisdesell/ngafid.

1v1.3.12: http://mysql-python.sourceforge.net/MySQLdb.html
2v2.2.2: https://matplotlib.org/
3v1.14.0: http://www.numpy.org/
4v1.0.0: https://docs.scipy.org/doc/scipy/reference/index.html
5v0.22.0: https://pandas.pydata.org/
6http://www.movable-type.co.uk/scripts/latlong.html
7v5.0: https://laravel.com/
8v2.2.4: https://jquery.com/
9v1.11.2: https://jqueryui.com/

10v3: https://getbootstrap.com/docs/3.3/
11v4.6.4: http://openlayers.org/
12https://www.openstreetmap.org
13v5.1.5: http://turfjs.org/

34

https://github.com/KeltonKarboviak/NGAFID
https://github.com/travisdesell/ngafid

Hardware Specs

All experiments were performed on a 2013 Mac Pro running macOS 10.11.6 with

a 3.5 GHz 6 hyper-threaded core Intel Xeon E5 processor (for a total of 12 logical

processing cores). The machine also has 32 GBs of 1866 MHz DDR3 ECC RAM.

Parallelization

The application was originally created to process the flight data in a linear

fashion. This proved to be fairly time consuming when running the application

in batch mode with the significant number of flights contained in the NGAFID.

In order to improve the performance and efficiency of the application, Python’s

built-in multiprocessing module was used. The parallel application uses the

Producer-Consumer model in which the parent process acts at the Producer by

enqueuing all of the unique flight identifiers onto a queue and the child

subprocesses act as the Consumers by dequeuing a flight identifier then

processing it. The multiprocessing module was chosen over the built-in threading

module due to the issue with Python’s Global Interpreter Lock (GIL) effectively

restricting bytecode execution to a single core [33]. This makes the threading

module unusable for long-running CPU-bound tasks, which this application

heavily relies on.

35

CHAPTER 5

RESULTS

Experiments

The experiments were run using Cessna 172S flight data produced by students at

the University of North Dakota during the month of September 2015. Student

flight data is ideal for unstable analysis testing as it contains very noisy data,

which provides a diverse array of flying patterns. A random sample of 100 flights

was chosen for the experiments.

First, the application was run against the 100 flights to obtain the automated

analysis results. The same 100 flights were then manually analyzed in order to

get human results for the phase identification, which could be compared to the

automated results then determine the accuracy of the application. The test of

the 100 flights was also run ten times each with the single-process version and

the multi-process version as previously described. This was done in order to

compare and contrast the performance of the separate versions.

Accuracy of Phase Identification

The manual validation was performed using a combination of tools available on

the NGAFID website: the Cesium flight reanimation tool and the Keyhole

Markup Language (KML) generator to visualize the flight path in Google

Earth [34] (see Figure 12).

36

Figure 12: Example of using a KML file to visualize a flight path in Google Earth.
This flight visualization is an example of a student flight that has multiple ap-
proach phases.

Approach

The Critical Phase Analysis Tool generated a total of 380 approaches for the 100

flights that were tested. As seen in Figure 12, student flights typically consist of

multiple approaches as this is something that needs to be practiced. Out of the

total; there are 373 (98.16%) true positives, five (1.32%) false positives, and two

(0.53%) false negatives. These results can also be found in Figure 13.

In the context of this application, a true positive is a case where the tool

correctly indicates that an approach is occurring during a specified time frame.

A false positive occurs when the tool indicates that an approach is occurring

but is not in reality. Typically, a false positive occurs when the flight data has

invalid values for about the first ten rows, which then throws off the beginning of

the algorithms. This happens infrequently, but could be accounted for in a

37

future work by sanitizing the data before analysis.

A false negative is the exact opposite where the tool indicates that an

approach is not occurring but it is in reality. Typically, a false negative occurs

when the approached runway’s geological data is not contained within the

database. These types of occurrences should stop once the airport and runway

databases are expanded with more entries.

The tool misclassified the approached runway 13 times (3.42%). A runway is

misclassified when the difference between the aircraft and runway headings is

greater than 20�. This occurs during the runway detection portion of the

approach analysis algorithm, and the algorithm either returns a null runway or

an incorrect runway due to the large heading difference. Lastly, there was a total

of 42 (11.05%) approaches that were given a null runway. This number overlaps

with some of the 13 misclassifications, while the rest are due to a lack of runway

information as mentioned previously.

In this same context, it is difficult to quantify the number of true negatives

since these would be cases where the tool correctly indicates that an approach is

not occurring. The difficulty lies in how to define a single occurrence. Should a

single true negative be counted for every second the tool indicates that an

approach is not occurring? If so, then this would create a numerous amount of

true negatives and would dilute the percentages of the other statistics, which are

more important in this application.

The validation results demonstrate that the Critical Phase Analysis Tool is

exceptionally accurate in its ability to appropriately detect and classify most

approaches in a flight.

38

Figure 13: Pie chart showing the manual validation results including true positives,
false positives, and false negatives.

Quality Analysis

Approach

The results of the application have provided many possibilities for statistical

analysis since numerous statistics can be calculated from the generated approach

data. This can be seen in Figures 14a to 14d in which a sample of the possible

results were calculated from the experiments of the 100 flights used in this

research. With these various results, trends can be found in the data that has

been analyzed. For example, we can see in Figure 14a that out of the 380

approaches in the sample data, 57.11% (217) were stable and 42.89% (163) were

unstable. By drilling down into that data, we can see the frequency for each of

the landing types for stable and unstable approaches. Figure 14b depicts this

more detailed information and shows that full-stop landings occur most

frequently for both stable and unstable approaches. This result is not very

surprising for stable approaches; however, it is very undesirable for unstable

39

approaches. If we look even further into the proportions for unstable approaches

alone (Figure 14c), we see that an unstable approach resulted in a go-around

only 34.97% of the time. This is far lower than the hopeful 100%, but was

expected to be approximately 20% by our aviation safety experts. As mentioned

previously, this is largely due to pilot misjudgment since all the analyzed flights

were piloted by aviation students; meaning they are still learning and are not yet

professionals.

When looking at the unstable approaches and the parameters that caused

them (Figure 14d), additional interesting results can be found. We found the

parameter that was exceeded the most was heading with 91 occurrences.

Heading was not predicted to be the leading cause of unstable approaches, but

our safety experts believe the 10� threshold (as defined in Table 2) may be too

strict. Indicated airspeed was the second highest, but was predicted to be the

leading cause since it was stated by our aviation safety experts to be a trend for

UND’s student pilots to be going too fast on final approaches.

Another interesting set of statistics that can be drawn from the analysis are

parameter value frequencies. Creating histograms of the values for each

parameter during all approach phases can show the values that occur most

frequently (highest density). Figures 15a to 15d visualize these histograms and

give the corresponding mean and standard deviation values. These graphs are

able to show how well pilots are adhering to the published stabilized approach

criteria (see Table 2). As mentioned previously, the standard deviations will be

used in defining the grading metrics and will be discussed in more detail later in

this Chapter.

Final turn.

Out of the 380 detected approaches; 262 (68.95%) had a final turn subphase,

76 (20.00%) performed a straight-in approach, and 42 (11.05%) were not able to

detect the runway and, therefore, could not detect whether a final turn was

40

(a) Pie chart showing the number of sta-
ble approaches compared to the number
of unstable approaches.

(b) Frequency of the occurrences of each
landing type for stable and unstable ap-
proaches.

(c) Pie chart comparing the number of
occurrences for each landing type after
an unstable approach.

(d) Frequency of parameters that caused
an aircraft to be unstable during an ap-
proach. Note that a single approach
can have multiple unstable parameters,
which causes the sum of the occurrences
to not equal the total number of unsta-
ble approaches.

Figure 14: Sample set of the statistics and trends that can be found from the
automated analysis results.

41

(a) Indicated airspeed. (b) Vertical speed indicated.

(c) Cross track error. (d) Heading error.

Figure 15: Histograms showing the frequencies of values for each parameter during
all approach phases. Each graph also has a dotted best-fit line to show how close
the frequencies adhere to a normal distribution.

42

Figure 16: Pie chart showing the results from the final turn detection algorithm.

performed. Figure 16 depicts these ratios. As mentioned earlier, the 42 null

runways will be drastically reduced in the future once additional airports and

runways are added to the geological database. Once the airport and runway

databases are more complete, the runway error rate should become much more

acceptable.

Figure 17 gives a comparison of the number of occurrences for each turn error

type and Risk Level classification. This graph is displaying the subset of 262

detected final turn subphases found in Figure 16. The figure shows that 76.34%

of the final turns resulted in an undershoot and a large proportion (45.42%)

resulted in a Risk Level 2 undershoot. Those statistics are definitely interesting

and are an example of an anomaly that is worth looking into by an aviation

expert. One explanation could be that there is frequently a strong wind

component against the aircraft, which could cause the numerous undershoots.

Further analysis such as this could be performed as a future work since wind and

other meteorological factors were not taken into consideration in the analyses

within this research.

43

Figure 17: Frequency of the occurrences of each turn error type for Risk Levels 0,
1, and 2.

Grading Metrics: Defined From Parameter Frequencies

As mentioned in Chapter 3, the goal for creating the Risk Level metrics is to use

statistical results from the approach quality analysis to determine reasonable

values that still adhere to the published stable value ranges. Figures 15a to 15d

above contain normalized histograms showing the probability density for the

parameter values. These graphs were analyzed by an aviation statistics expert

from UND in order to create a safe range (Risk Level 0), a moderate risk range

(Risk Level 1), and a high risk range (Risk Level 2) for each parameter of

concern. These graphs will be re-used in the following Sections, but will have

additional information showing the value ranges that were created. The Risk

Level 1 values will be a yellow dotted line, while the Risk Level 2 values will be a

red dotted line. A summary of the defined grading metrics can be seen in

Table 4 at the end of this Section.

44

Figure 18: Histogram for indicated airspeed (µ = 64.401, � = 4.535). The safe
range is between 61 and 66 knots. The aviation expert stated that 61 knots is a
hard limit according to the Cessna 172S manual [1], thus any airspeed less than
61 knots is automatically classified as a Risk Level 2. This means there is not a
lower Risk Level 1. The higher Risk Level 1 range is between 66 and 71 knots,
and the Risk Level 2 is anything greater than 71 knots.

Indicated Airspeed Between 55 and 75 knots

The indicated airspeed values had a mean of 64.401 knots and a standard

deviation of 4.535 knots. The aviation expert stated that the UND

standardization manual [2] has a strict safe range of 61 -0/+5 knots, and thus

anything less than 61 knots should be automatically classified as a Risk Level 2.

He advised the higher Risk Level 1 should begin with any value greater than 66

knots due to the same rule. Lastly, he advised setting the higher Risk Level 2 at

71 knots in order to use the consistent 5 knots increment, which is also relatively

close to one standard deviation. As is shown in Figure 18, the graph is slightly

skewed to the right following the -0/+5 knots rule, which is more lenient towards

faster speeds than slower speeds.

45

Vertical Speed Indicated Greater Than -1000 ft/min

The vertical speed indicated values had a mean of -364.528 ft/min and a

standard deviation of 181.210 ft/min. Although the UND standardization

manual states that a vertical speed greater than -1000 ft/min should be achieved

for a stabilized approach, the aviation expert stated that a safe range of -800 to

-500 ft/min is typically suggested instead of the wide range provided in the

manual. The lower Risk Level 1 is any value that is less than -800 ft/min, and

the lower Risk Level 2 is any value less than -1000 ft/min in order to adhere to

the stable limit given in the manual. The higher Risk Level 1 is any value

greater than -500 ft/min, and the higher Risk Level 2 is any value greater than

-250 ft/min. These higher limits were chosen because if the aircraft is descending

at 250 ft/min, it will typically result in an unsafe and shallow glide slope.

Figure 19 shows these limits and shows that the values are slightly skewed to the

left, which corresponds to the risk limits that we’ve set.

Absolute Cross Track Error Less Than 50 ft

The cross track error values had a mean of -4.542 feet and a standard deviation

of 15.499 feet. Figure 20 displays the histogram for these values and it can be

seen that the graph is relatively normal with a slight skew to the left. The

aviation expert stated that a deviation in cross track error is not as risky as a

deviation in airspeed or vertical speed. Thus, a wider safe range was defined as

-40 feet to 40 feet, which is about where the tails wane on both sides.

Consequently, the lower and higher Risk Level 1 ranges are -50 feet to -40 feet

and 40 feet to 50 feet, respectively. The lower and higher Risk Level 2 values are

then -50 feet and 50 feet, respectively, in order to correspond with the original

stable limits that were used.

46

Figure 19: Histogram for vertical speed indicated (µ = −364.528, � = 181.210).
The safe range is between -800 and -500 ft/min. The lower Risk Level 1 range is
between -1000 and -800 ft/min, and the Risk Level 2 is anything less than -1000
ft/min. The higher Risk Level 1 range is between -500 and -250 ft/min, and the
Risk Level 2 is anything greater than -250 ft/min.

Absolute Heading Error Less Than 10 degrees

The heading error values had a mean of 1.958� and a standard deviation of

4.761�. Similar to cross track error, the aviation expert stated that heading error

is not as risky as error in the other parameters. He also mentioned that heading

error is slightly more difficult to judge without knowing the wind component on

the aircraft since the pilot may have to purposely direct the aircraft several

degrees off-center in order to counteract the push of the wind. Both of these

facts means that the safe range for heading error will contain a majority of

values. With that said, the expert advised using a safe range of −15� to 15�.

The lower and higher Risk Level 1 ranges are from −20� to −15� and 15� to 20�,

respectively. Consequently, the lower and higher Risk Level 2 values are −20�

and 20�, respectively. The histogram for heading error, as shown in Figure 21,

47

Figure 20: Histogram for cross track error (µ = −4.542, � = 15.499). The safe
range is between -40 and 40 ft. The lower Risk Level 1 range is between -50 and
-40 ft, and the Risk Level 2 is anything less than -50 ft. The higher Risk Level 1
range is between 40 and 50 ft, and the Risk Level 2 is anything greater than 50 ft.

appears to best fit a normal distribution.

Grading Metrics: Experiment Results

Using the metrics defined in the previous Section, the sample set of flights was

re-analyzed in order to determine the risk levels of each parameter for every

approach. This was done by taking all the values for a parameter during the

approach phase, averaging the values, and determining what risk level range the

average fell within. Figure 22 shows the frequency of each parameter grouped by

risk level as a result of the re-analysis. From the graph we can see some trends

such as the frequency of Risk Level 2 vertical speeds being abnormally higher

than the frequency of Risk Level 1. This may mean that the sample set

contained an abnormal number of approaches with too low or too high rate of

48

Figure 21: Histogram for heading error (µ = 1.958, � = 4.761). The safe range is
between -15 and 15 degrees. The lower Risk Level 1 range is between -20 and -15
degrees, and the Risk Level 2 is anything less than -20 degrees. The higher Risk
Level 1 is between 15 and 20 degrees, and the Risk Level 2 is anything greater
than 20 degrees.

Table 4: Defined Risk Levels during approach for a Cessna C172S

Event Risk Level 1 Risk Level 2

Indicated airspeed
low N.A. 61 knots

high 66 knots 71 knots

Vertical speed
low -800 ft/min -1000 ft/min

high -500 ft/min -250 ft/min

Cross track error
low -40 ft -50 ft

high 40 ft 50 ft

Heading error
low −15� −20�

high 15� 20�

49

Figure 22: Frequency of the occurrences of each parameter for Risk Levels 0, 1,
and 2 using the newly defined risk level values.

descent. We can also see that Risk Level 0 made up a majority of occurrences for

heading and cross track, which follows the fact that these parameters are

typically less risky as mentioned in their previous corresponding Subsections.

With regard to grading the approaches, the total number of deductions is

calculated by summing the risk levels across all parameters as well as the final

turn risk level. For example; if during an approach the aircraft achieved a Risk

Level 2 in indicated airspeed, a Risk Level 1 in vertical speed, a Risk Level 1

undershoot for the final turn, and a Risk Level 0 for all other parameters; the

total number of deductions is 41. Additionally, if the aircraft was unstable

during the approach and the pilot did not perform a go-around, an additional

one deduction is added to the total. The total number of deductions is then

12 (IAS) + 1 (VSI) + 1 (final turn) + 0 (cross track) + 0 (heading) = 4 deductions

50

Figure 23: Histogram showing the results of grading approach phases. Each grade
is calculated by totaling the risk levels across all parameters then multiplying the
sum by a penalty amount per deduction.

multiplied by a penalty constant. The penalty points are subtracted from a total

of 100 points in order to obtain the final grade for the approach. In this research,

a value of 4 points is used as the penalty per deduction. This value was chosen

because there is a possibility of accruing 11 total deductions2, which would

create a total of 44 penalty points. Thus, the worst possible grade to receive

would be 56 points3. Figure 23 gives a histogram of the grades calculated for the

sample set of 100 flights used during the experiments. For the grades of the

sample set, the mean was 87.168 points and a standard deviation of 7.260 points.

As the figure shows, the histogram reasonably fits a normal distribution, but

slightly skewed to the right. These results have given us good confidence that

the grading system will replicate the grading structure already used in

Universities that students are already accustomed to.

22 risk levels * 4 parameters + 2 final turn risk levels + 1 for unstable w/o go-around = 11
3If using a 90-80-70-60% grading scale, this would then correspond to an F.

51

Performance

A secondary aspect of this research is to minimize the execution time so the

analysis only adds a minimal amount of time to a flight being imported into the

NGAFID system. The results of the benchmarking tests showed that the linearly

executing application ran for an average of 127.109 seconds over the 100

randomly tested flights. On the other hand, the parallel application ran for an

average of 56.935 seconds over the same flights. This means the average

per-flight execution times for the linear and parallel applications were 1.271 and

0.569 seconds, respectively. As a result, the parallelized application had a 2.23x

speedup, which is fairly significant. A summary of the benchmarking tests and

other relevant statistics are given in Table 5.

As further evidence, the parallel application was tested on a larger subset of

flights to see if the average execution time remained stable, in which it was

tested on 5,923 flights. For this test, the parallel application was able to analyze

the data and insert all the results into the database in 2,709.577 seconds. This

gives a per-flight execution time of 0.457 seconds, which is slightly less than the

average for 100 flights. The reasoning behind this can most likely be attributed

to the fact that spinning up the sub-processes creates a substantial overhead.

Thus, the longer the application is able to execute, the greater performance gain

will be received. This will, of course, start to show diminishing returns as with

any other parallel computing application.

52

Table 5: Performance of Linear v. Parallel Execution Times

Run # Linear (sec) Parallel (sec)

1 128.275 56.726

2 130.441 56.086

3 127.878 61.263

4 121.923 55.787

5 126.418 57.964

6 125.425 55.753

7 126.123 57.945

8 128.949 55.830

9 128.161 55.497

10 127.494 56.496

Average 127.109 56.935

Latency / flight 1.271 0.569

Speedup 2.23 x

53

CHAPTER 6

CONCLUSION

This thesis presented the Critical Phase Analysis Tool, an application

designed to augment the existing features of the National General Aviation

Flight Information Database (NGAFID). The purpose of creating the application

is to provide student pilots and Certified Flight Instructors (CFI) with

metrics-based feedback on flight performance during critical phases of flight. The

desired effects of this are (i) target different student learning techniques, (ii)

improve the efficiency and reduce the cost of flight training, and (iii) reduce

General Aviation (GA) accident and fatality rates since GA is the most

dangerous branch of Civil Aviation. Additionally, the application is currently

geared towards analyzing the approach and landing phases as these phases of

flight are where a majority of pilot-related accidents occur.

Using flight data recorder (FDR) data generated by a Garmin G1000 from

Cessna C172S aircraft; the application can detect safety exceedances for

indicated airspeed, vertical speed, cross track, and heading during the approach

phase as well as classify the result of each approach as a full-stop landing,

touch-and-go landing, or a go-around during the landing phase. For the

event-driven approach to successfully characterize the safety of an approach, the

safety exceedance definitions needed to be internally consistent (i.e., the

parameter limits need to correspond to the same level of risk to the pilot). In

this research, the safety exceedances were re-defined in a way that makes them

more consistent by an aviation statistics expert who used the distributions of

parameter values found during the initial experiments. These new definitions

were then used in the newly created grading system for the purpose of scoring

the pilot’s flight performance based on any exceedances found during the

54

approach analysis stage.

Several new web tools were created which were integrated into the NGAFID.

These tools include interfaces for (i) displaying histograms of the aggregated

parameter values during approach phases within a chosen time-frame, (ii)

visualizing final turn phases for a single flight or an aggregate of flights at a

chosen runway, and (iii) displaying a histogram of self-defined glide path angles

within a chosen time-frame at a given runway.

The performance of the application run in parallel averaged 0.569 seconds per

flight for the sample set of 100 flights, while an analysis of 5,923 flights averaged

0.457 seconds per flight. This shows that the application has a reasonably short

run-time and can be used practically in the NGAFID’s production environment.

Future Work

This research has provided many avenues for further work and refinement. First,

the greatest constraint on the accuracy of the application is the accuracy of the

instrument recording the flight data, whether that be a traditional FDR or a

smartphone. This means that if data is recorded inaccurately, it is useless to the

application and cannot be recovered. For example, in several of the sample

flights, the first 10 to 20 rows of data can have missing and/or spurious values

due to the aircraft’s sensors calibrating after first starting the FDR. Invalid data

rows can occur during the middle of a flight as well; not only when the FDR is

initially turned on. Thus, further work into filtering, sanitizing, or normalizing

faulty data would be very beneficial.

Second, it would be beneficial to make the algorithms more modular in order

to analyze data from different sources. For example, a source with a limited

number of parameters it records, such as a smartphone, or a completely different

FDR brand.

55

Third, this research focused solely on the analysis of flight performance and

generation of metrics describing the performance, thus further work in the area

of UI/UX would be a great next step. This future research would ideally focus

on the most effective way to display the metrics to the user and improve upon

the user-friendliness of the web interfaces introduced in this work.

Lastly, the algorithms introduced in this research can be extended to analyze

other phases of flight (e.g., takeoff, climb, cruise, etc.). This means that new risk

level values would need to be defined as well to fit the data found in the new

analyses.

Once the Critical Phase Analysis Tool is fully integrated into the NGAFID, it

will provide even more possibilities for data visualization and be easily accessible

for both novice and experienced pilots. This will allow pilots on an individual or

organizational level to become more aware of bad flight habits so they may

correct them in future flights and help make General Aviation safer.

56

REFERENCES

[1] Pilot’s Operating Handbook and FAA Approved Airplane Flight Manual:

Cessna Model 172S, 2nd ed., Cessna Aircraft Company, November 2010.

[2] Cessna 172S Standardization Manual, UND Aerospace Foundation, Aug

2015.

[3] AOPA, “What is General Aviation?” 2009.

[4] W. B. Allen, D. L. Blond, A. J. Gellman, General Aviation Manufacturers’

Association, National Association of State Aviation Officials (U.S.), and Inc

MergeGlobal, “General Aviation’s contribution to the u.s. economy.”

General Aviation Manufacturers’ Association, May 2006.

[5] Federal Aviation Administration, “The economic impact of civil aviation on

the U.S. economy,” November 2016.

[6] D. J. Kenny, “26th Joseph T. Nall report: General Aviation accidents in

2014,” AOPA Air Safety Institute, 421 Aviation Way, Frederick, MD 21701,

Tech. Rep., 2017.

[7] K. I. Shetty and R. J. Hansman, “Current and historical trends in general

aviation in the United States,” Master’s thesis, Massachusetts Institute of

Technology, August 2012.

[8] AOPA Air Safety Institute, “2015-2016 GA accident scorecard,” AOPA Air

Safety Institute, 421 Aviation Way, Frederick, MD 21701, Tech. Rep., 2017.

[9] S. Clachar, J. Higgins, B. Wild, and T. Desell, “Large-scale data analysis for

proactive anomaly detection in heterogeneous aircraft data,” unpublished.

57

[10] National General Aviation Flight Information Database, “Welcome to the

National General Aviation Flight Information Database (NGAFID).”

[Online]. Available: http://ngafid.org/

[11] MITRE, “GAARD–General Aviation Airborne Recording Device.” [Online].

Available: https://www.mitre.org/research/technology-transfer/

technology-licensing/gaard-general-aviation-airborne-recording-device

[12] S. A. Clachar, “Identifying and analyzing atypical flights using supervised

and unsupervised approaches,” Journal of the Transportation Research

Board, 2014, published as part of an ACRP: Graduate Research Award.

[13] S. Clachar, “Novelty detection and cluster analysis in time series data using

variational autoencoder feature maps,” Ph.D. dissertation, University of

North Dakota, December 2016.

[14] T. Desell, S. Clachar, J. Higgins, and B. Wild, Evolving Deep Recurrent

Neural Networks Using Ant Colony Optimization. Cham: Springer

International Publishing, 2015, pp. 86–98.

[15] A. ElSaid, B. Wild, J. Higgins, and T. Desell, “Using LSTM recurrent

neural networks to predict excess vibration events in aircraft engines,” in

The IEEE 12th International Conference on eScience (eScience 2016),

Baltimore, Maryland, USA, October 2016.

[16] A. ElSaid, “Using long-short-term-memory recurrent neural networks to

predict aviation engine vibrations,” Master’s thesis, University of North

Dakota, December 2016.

[17] T. Desell, S. Clachar, J. Higgins, and B. Wild, Evolving Neural Network

Weights for Time-Series Prediction of General Aviation Flight Data.

Cham: Springer International Publishing, 2014, pp. 771–781.

[18] A. ElSaid, F. El Jamiy, J. Higgins, B. Wild, and T. Desell, “Using ant

colony optimization to optimize long short-term memory recurrent neural

58

http://ngafid.org/
https://www.mitre.org/research/technology-transfer/technology-licensing/gaard-general-aviation-airborne-recording-device
https://www.mitre.org/research/technology-transfer/technology-licensing/gaard-general-aviation-airborne-recording-device

networks,” in GECCO ’18: Genetic and Evolutionary Computation

Conference. New York, NY, USA: ACM, July 2018. [Online]. Available:

https://doi.org/10.1145/3205455.3205637

[19] V. Goblet, N. Fala, and K. Marais, “Identifying phases of flight in General

Aviation operations,” in 15th AIAA Aviation Technology, Integration, and

Operations Conference, 2015, p. 2851.

[20] V. P. Goblet, “Phase of flight identification in General Aviation

operations,” Ph.D. dissertation, Purdue University, 2016.

[21] N. Fala and K. Marais, “Detecting safety events during approach in General

Aviation operations,” in 16th AIAA Aviation Technology, Integration, and

Operations Conference, 2016, p. 3914.

[22] K. Karboviak, S. Clachar, T. Desell, M. Dusenbury, W. Hedrick, J. Higgins,

J. Walberg, and B. Wild, “Classifying aircraft approach type in the

National General Aviation Flight Information Database,” in International

Conference on Computational Science (ICCS), Wuxi, China, June 2018.

[23] E. Wischmeyer, “The myth of the unstable approach,” International Society

of Air Safety Investigators, August 2004.

[24] Z. Nazeri, G. Donohue, and L. Sherry, “Analyzing relationships between

aircraft accidents and incidents,” in International Conference on Research

in Air Transportation, Feb 2008.

[25] R. Knighton and C. Claramunt, “An aeronautical temporal GIS for

post-flight assessment of navigation performance.” Transactions in GIS,

vol. 5, no. 1, p. 53, 2001.

[26] T. Masiulionis and J. Stankūnas, “Review of equipment of flight analysis

and development of interactive aeronautical chart using Google Earth’s

software,” Transport, vol. 0, no. 0, pp. 1–9, 2017.

59

https://doi.org/10.1145/3205455.3205637

[27] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm

for discovering clusters in large spatial databases with noise.” in Proceedings

of Knowledge Discovery and Data Mining, vol. 96, no. 34, 1996, pp. 226–231.

[28] E. Harris Jr., E. Bloedorn, and N. J. Rothleder, “Recent experiences with

data mining in aviation safety,” in SIGMOD Record, Seattle, WA, June

1998.

[29] Federal Aviation Administration, “Runway safety: Runway incursions.”

[Online]. Available:

http://www.faa.gov/airports/runway safety/news/runway incursions/

[30] B. Matthews, S. Das, K. Bhaduri, K. Das, R. Martin, and N. Oza,

“Discovering anomalous aviation safety events using scalable data mining

algorithms,” Journal of Aerospace Information Systems, vol. 10, no. 10, pp.

467–475, 2013.

[31] CAST/ICAO Common Taxonomy Team, “Phase of flight definitions and

usage notes,” CAST/ICAO Common Taxonomy Team, Tech. Rep., 2013.

[32] R. A. Finkel and J. L. Bentley, “Quad trees: a data structure for retrieval

on composite keys,” Acta Informatica, vol. 4, no. 1, pp. 1–9, Mar 1974.

[Online]. Available: https://doi.org/10.1007/BF00288933

[33] D. Beazley, “Understanding the Python GIL,” in PyCON Python

Conference. Atlanta, Georgia, 2010.

[34] D. Nolan and D. T. Lang, Keyhole Markup Language. New York, NY:

Springer New York, 2014, pp. 581–618. [Online]. Available:

http://dx.doi.org/10.1007/978-1-4614-7900-0 17

60

http://www.faa.gov/airports/runway_safety/news/runway_incursions/
https://doi.org/10.1007/BF00288933
http://dx.doi.org/10.1007/978-1-4614-7900-0_17

	University of North Dakota
	UND Scholarly Commons
	January 2018

	Providing Metrics-Based Results To Student Pilots For Critical Phases Of General Aviation Flights
	Kelton Karboviak
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Nomenclature
	1 Introduction
	I Scope & Objectives
	II Motivation
	III Outline

	2 Related Work
	I Aircraft Operations
	II Post-Flight Evaluation Tools
	III NGAFID Related Work
	IV Data Mining Techniques

	3 Methodology
	I Phase of Flight Identification
	I.I Approach
	I.I.I Airport detection.
	I.I.II Runway detection.
	I.I.III Final turn detection.

	I.II Landing

	II Phase of Flight Quality Analysis & Exceedance Detection
	II.I Approach
	II.I.I Final turn.
	II.I.II Self-defined glide path.

	III Grading Metrics
	IV Web Interfaces
	IV.I Approach
	IV.II Final Turn
	IV.III Self-Defined Glide Path

	4 Implementation
	I Programming Languages and Libraries
	II Hardware Specs
	III Parallelization

	5 Results
	I Experiments
	II Accuracy of Phase Identification
	II.I Approach

	III Quality Analysis
	III.I Approach
	III.I.I Final turn.

	IV Grading Metrics: Defined From Parameter Frequencies
	IV.I Indicated Airspeed Between 55 and 75 knots
	IV.II Vertical Speed Indicated Greater Than -1000 ft/min
	IV.III Absolute Cross Track Error Less Than 50 ft
	IV.IV Absolute Heading Error Less Than 10 degrees

	V Grading Metrics: Experiment Results
	VI Performance

	6 Conclusion
	I Future Work

	REFERENCES

