
University of North Dakota

UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2015

Identifying Data Exchange Congestion Through
Real-Time Monitoring Of Beowulf Cluster
Infiniband Networks
Michael James Aguilar

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been

accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact

zeineb.yousif@library.und.edu.

Recommended Citation
Aguilar, Michael James, "Identifying Data Exchange Congestion Through Real-Time Monitoring Of Beowulf Cluster Infiniband
Networks" (2015). Theses and Dissertations. 1858.
https://commons.und.edu/theses/1858

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F1858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F1858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/1858?utm_source=commons.und.edu%2Ftheses%2F1858&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu

IDENTIFYING DATA EXCHANGE CONGESTION THROUGH REAL-TIME
MONITORING OF BEOWULF CLUSTER INFINIBAND NETWORKS

by

Michael J. Aguilar
Bachelor of Science, Iowa State University, 1991

A Thesis

Submitted to the Graduate Faculty of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

December
2015

ii

© 2015 Michael J. Aguilar

iii

This thesis, submitted by Michael J. Aguilar in partial fulfillment of the
requirements for the Degree of Master of Science from the University of North Dakota,
has been read by the Faculty Advisory Committee under whom the work has been done
and is hereby approved.

 Ronald Marsh, Chairperson

 Hassan Reza

 Travis Desell

 This thesis is being submitted by the appointed advisory committee as having met
all of the requirements of the School of Graduate Studies of the University of North
Dakota and is hereby approved.

Wayne E. Swisher
Dean of the School of Graduate Studies

Date

iv

PERMISSION

Title: Identifying Data Exchange Congestion Through Real-Time Monitoring of
Beowulf Cluster Infiniband Networks

Department: Computer Science

Degree: Master of Science

In preparing this thesis in partial fulfillment of the requirements for a graduate
degree from the University of North Dakota, I agree that the library of this University
shall make it freely available for inspection. I further agree that permission for extensive
copying for scholarly purposes may be granted to the professor who supervised my work,
or in his absence, by the Chairperson of the department or the dean of the School of
Graduate Studies. It is understood that any copying or publication or other use of this
thesis or part thereof for financial gain shall not be allowed without my written
permission. It is also understood that due recognition shall be given to me and the
University of North Dakota in any scholarly use which may be made of any material in
my thesis.

Michael J. Aguilar
November 19, 2015

v

TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

ACKNOWLEDGMENTS ... ix

ABSTRACT ...x

CHAPTER

 I. INTRODUCTION ..1

Relevance and Problem Definition ..1

Objectives ..3

Motivation ..4

Significance..5

Thesis Roadmap ...5

 II. BACKGROUND ..7

Analysis of Large Data Sets ...7

Beowulf High Performance Computing Clusters ..8

Popular Beowulf HPCC Network Topologies ... 11

Programming for Cohesive Threads ..13

Infiniband ...14

Using Cluster Metrics to Improve Beowulf HPCC System Performance .16

vi

 III. RELATED WORK ..20

Beowulf HPCC Code Optimization ...20

Beowulf HPCC Monitoring ...22

 IV. APPLICATION ...27

Requirements ...27

Development Platform ...30

Infiniband Metric Gathering at the Compute Nodes30

Metric Aggregation for Infiniband Monitoring System33

Heat-Map Creation...35

 V. ALGORITHM...39

Granular Metric Data Gathering ..39

 VI. CASE STUDIES ...45

Prevalence of Spin Waits and Performance Degradation on Hodor45

Review of a Known Application Using the Infiniband Monitoring

System ..52

 VII. CONCLUSION AND FUTURE WORK ..55

APPENDIX ..59

REFERENCES ..83

vii

LIST OF FIGURES

Figure Page

1. A Beowulf Cluster Flat Network Design ... 11

2. Fat Tree Network ..12

3. Beowulf HPCC System Design as a 3-Dimensional Torus Network13

4. Virtual Memory Locked During RDMA Transmission ..16

5. Matrix Computation Distributed Across Compute Nodes ..18

6. Annotated Class Diagram Showing Monitored Infiniband Metrics29

7. Socket Definitions and Sampling Interval from Metric Gathering Service41

8. Aggregation Function from Aggregate and Store Service ..42

9. Store Data Function Using Metric Data Dump From Aggregator and
Store Service ...42

10. Batch Script Used To Plot All Stored Unix Epoch Date Files43

11. Epoch Time Determination Portion of Heat Map Display Function44

12. First Example of Spin-Waits Caused By Accessing NFS Storage During
Application Run ..48

13. Second Example of Spin-Waits Caused By Accessing NFS Storage During
Application Run ..49

14. Spin-Waits Generated During IPoIB Data Exchanges ..51

15. Example of Spin-Waits Created During RDMA Data Exchanges52

16. Example of Analysis of a Batch Run for an Application Programmer
Using Hodor ..54

viii

LIST OF TABLES

Table

1. Use Case Description of the Compute Node Metric Gathering Service31

2. Use Case Description of the Aggregator and Store Service34

3. Use Case Description for Heat Map Display Function ...37

ix

ACKNOWLEDGEMENTS

This thesis would not have been possible without the help and support of many

different people. To begin with, I would like to thank a group of System Administrators

who inspired me to do the research that went into this thesis.

Secondly, I would like to thank my advisor, Dr. Ronald Marsh for providing

guidance throughout the creation of the thesis. I would not have been able to organize

my thoughts and move forward with the research without his guidance.

I feel very fortunate to have Dr. Hassan Reza and Dr. Travis Desell for members

of my committee. Both of these committee members helped keep me motivated in class,

and to do the research that was involved with this thesis. I feel I would not have made it

through the rigors of the Master’s Degree program without their support.

Finally, I would like to thank my wife, Heidi, for putting up with all of the hours

of study and for giving up her kitchen counter to my laptop computers.

x

ABSTRACT

The ability to gather data from many types of new information sources has grown

quickly using new technologies. The ability to store and retrieve large quantities of data

from these new sources has created a need for computing platforms that are able to

process the data for information. High Performance Computing Cluster systems have

been developed to fulfill a role required for fast processing of large amounts of data for

many difficult types of computing applications.

Beowulf Clusters use many separate compute nodes to create a tightly coupled

parallel HPCC system. The ability for a Beowulf Cluster HPCC system to process data

depends on the ability of the compute nodes within the HPCC system to be able to

retrieve data, share data, and store data with as little delay as possible. With many

compute nodes competing to exchange data over limited network connections, network

congestion can occur that can negatively impact the speed of computations.

With concerns about network performance optimization, and uneven distribution

of computational capacity, it is important for Beowulf HPCC System Administrators to

be able to evaluate real-time data transfer metrics for congestion within a particular

HPCC system. In this thesis, Heat-Maps will be created to identify potential issues with

Infiniband network congestion due to simultaneous data exchanges between compute

nodes.

1

CHAPTER I

INTRODUCTION

Relevance and Problem Definition

High Performance Computing Cluster (HPCC) systems are designed to process large

amounts of data as quickly as possible (Dongarra, Sterling, Simon, Strohmaier, 2005).

HPCC systems are an aggregation of processing components that can produce higher

floating-point operations per second (FLOPS) processing then normal computing

systems. While there can be many different types of designs for HPCC systems, the most

common format of HPCC system is called a Beowulf Cluster (Gropp, Lusk, & Sterling,

2003).

Beowulf HPCC systems are constructed of many separate compute nodes that run

asynchronous threads simultaneously. Applications written for Beowulf HPCC systems,

unlike other types of computing platforms, are created with ‘tight coupling’ and ‘low

cohesion’ (Mishra, & Mohanty, 2011). Thus, parallel threads running on compute nodes

within a Beowulf HPCC system are expected to rely on each other and trade information

frequently.

Networks within Beowulf HPCC systems must be fast and efficient enough so

that there is not a slow exchange of data between threads. Slow data exchanges between

compute nodes can affect overall FLOPS processing speed of an application. The ability

of Beowulf Cluster communication networks to aggregate its compute nodes and provide

2

data for tightly coupled threads determines how quickly an application running on a

Beowulf HPCC system can process data for information.

Beowulf HPCC systems are flexible in design. Beowulf systems can be designed

to be faster at processing fixed applications by providing better data exchange between

specific threads processed on individual compute nodes.

While hardware design is important to FLOPS performance of an HPCC system,

what is often overlooked is how an application can be written to distribute its threads

across the compute nodes and how an application is written in regards to thread coupling.

Applications expecting high FLOPS need to be distributed in a way that allows efficient

and fast computation taking into account the design of the Beowulf HPCC system and its

networks.

Most Beowulf HPCC systems exchange data using networks that are constructed

from Infiniband network interconnects. Infiniband provides a network interconnection

resource that is capable of quickly moving large amounts of data from compute node to

compute node. The method for movement of data on Infiniband is Remote Direct

Memory Access. Since RDMA does not require data exchange transfers to be processed

through a CPU, no memory transfers require CPU time slices.

However, when working with RDMA there are tradeoffs that must be considered.

These tradeoffs include the fact that all data moves are done as a block of data. So,

application threads doing exchanges from compute node to compute node must wait for

entire blocks of data to the transferred before an IO wait can be lifted.

3

Secondly, pages of main memory are locked out of Virtual memory paging.

While transfers are performed using a page of memory, the paged memory used cannot

be swapped out in favor of another waiting process thread.

Finally, all RDMA memory transfers are performed on a First In/First Out basis

that forces the data from other compute nodes to wait in line for transfers. So, if multiple

compute nodes are performing data exchanges over the same Infiniband network links,

each set of compute nodes can be forced into a queue to wait its turn.

When there are RDMA transfer congestion issues with Infiniband, the effective

FLOPS performance of a Beowulf HPCC system can be lowered. Application

Programmers and Researchers can be left asking why expected processing times are

increased. So, it is important to be able to identify when Infiniband network congestion

is occurring what the precise effects are to the FLOPS performance of computing an

application. Using this information, HPCC System Administrators and Application

Programmers can work to improve the processing times of applications running on

Beowulf HPCC systems.

Objectives

Infiniband is a common interconnection product used within Beowulf HPCC

systems. In an effort to improve the FLOPS performance of a Beowulf HPCC system, it

is helpful for System Administrators and Application Programmers to be able to gather

metrics that show the run-time state of Infiniband. These metrics can help identify at

what network traffic thresholds the shortcomings of Infiniband become a performance

degradation issue. The metrics that are helpful with regards to Infiniband performance

4

are the amount of network traffic congestion on specific Infiniband links and the effects

of the network congestion.

Research in this thesis will be done to identify potential effects of Infiniband

network congestion on the tightly coupled threads running on compute nodes. Once

those potential effects are found, a run-time monitoring system will be created that

provides an easy to read display format to show both System Administrators and

Application Programmers areas of concern.

Finally, the new monitoring system will be tested on a production Beowulf HPCC

system against random running applications.

Motivation

This thesis was inspired by my experience as a System Administrator with the

University of North Dakota High Performance Computing Clusters and through

collaborative discussions with other System Administrators working in the same field. A

goal for HPCC System Administrators is to provide fast computing platform with

consistent processing times for Application Programmers and Researchers.

While performing the normal functions of a System Administrator, it was

discovered that computational speed of application programs seemed to vary from day to

day. Unfortunately, the monitoring systems in use on the HPCC systems were not adequate

to allows answers to why performance would not be uniform.

A High Performance Computing System is managed to perform difficult

computations and research as quickly as possible. Not only do HPCC systems need to be

reliable and have a good ‘up time’ for users, but the computational performance of the

5

application programs performing research on an HPCC system should meet the time

expectations of the Application Programmers and Researchers.

To gain better insight into the performance variations of the HPCC system, there

was motivation to do research into various aspects of Beowulf HPCC designs that could

cause variable computing performance.

Significance

In previous products for monitoring Beowulf HPCC systems, real-time analysis of

performance metrics consisted of levels of activity of components and whether or not the

components were operational. In some cases, the monitoring system added greatly to the

CPU load on the compute nodes. It was important to create a metric gathering system

that did not significantly add CPU load to the compute nodes and added in a way to

gather and display the missing metrics regarding Infiniband congestion.

This thesis will create a monitoring system that lightly adds in the metrics needed

to identify network congestion issues with a Beowulf HPCC system, and areas of uneven

distribution of computations. The monitoring system will be a method to help improve

consistency in application run-times and overall computational speed of applications.

Another point of the research in this thesis is to gain a deeper understanding of the

interaction of very different components within an HPCC system. The research is

designed in a manner that System Administrators and Application Programmers can be

able to identify and highlight real issues with the interaction of compute node CPUs,

memory, and networks in ways that haven’t been considered before.

6

Thesis Roadmap

This thesis is written is and organized into six chapters. Chapter II provides the

background information on both Beowulf HPCC topologies and potential computational

issues with Infiniband congestion. Chapter III explores efforts and shortcomings related

to current Beowulf HPCC monitoring systems. Chapter IV explores what metrics will be

targeted for the new monitoring system and the implementation. Chapter V will contain a

detailed explanation of the algorithm used to generate the Heat Maps. Chapter VI

demonstrates a Case-Study using a production HPCC system. Chapter 7 provides a final

discussion and an evaluation of the results.

7

CHAPTER II

BACKGROUND

This chapter provides the reader of this document with a basic understanding of

the concepts and definitions used as they relate to the particular research performed for

this thesis in the field of High Performance Computing. The objective of this chapter is

to provide the reader with both background knowledge in Beowulf High Performance

Computing Clusters and performance issues relating to the networking strategies used

within most Beowulf HPCC systems. This background knowledge will help prepare the

reader to understand the benefits of this research towards improving the performance of

running applications on a Beowulf HPCC system.

Analysis of Large Data Sets

The advent of digital computing and large storage systems has brought about the

ability to assemble and analyze information in much greater detail than has been

attainable before. With the ability to process increasing quantities of data, large data set

applications are gathered together to improve human lives. For example, large data sets

have applications in science, finance, sales, and anthropology. With increased quality and

quantity of information that large data sets contain, new theories can be formulated or

tested, and new understandings and discoveries can be made of the domain that created

the data (Bell, 2013; Dubitzky, Kurowski, & Schott, 2012). To process large data sets,

newer computing platforms are continually being modified and developed. Yet,

8

computing with very large data sets can be a challenge. Large storage needs and robust

data networks are required to assemble, exchange, and organize enormous amounts of

data, plus when necessary, to process the data for information. Also, computing systems

that are designed to analyze these data sets must be able to process the data in a

consistent and reasonable amount of time.

Beowulf High Performance Computing Clusters

High Performance Computation Cluster (HPCC) systems are one type of

computing platform used to do analysis on large data sets. HPCC system designs use

tightly coupled parallel threads to process large data sets for applications that would be

cumbersome on non-parallel computing platforms. For example, HPCC computation

problems on very large sets of data might involve non-polynomial computation problems

or large simulations. While there have been a number of designs of HPCC systems, the

Beowulf Cluster design has become the dominant class of HPCC system in use today. A

Beowulf High Performance Computing Cluster is a computing system that is aggregated

out of multiple asynchronous components that work in unison together, orchestrated by a

head node.

Large data set applications are submitted as batch jobs to a Beowulf HPCC

system. A Beowulf HPCC system works by subdividing the work of computing a large

data set application and making use of multiple threads to cooperate on computing a

solution. Threads spawned from an application job on a Beowulf HPCC system are

designed to run concurrently, whenever possible. The low cohesion parallel processes

and threads from the batch jobs are distributed across a Beowulf HPCC system in

dedicated compute nodes. The compute nodes separate CPUs and memories from each

9

other. Because memories and CPUs are physically separate from each other, there is no

need for job related threads to compete for CPU scheduler time intervals and main

memory.

A typical Beowulf HPCC system is constructed of mass produced, off-the-shelf,

commodity servers that are pieced together into a computationally complete system. The

fact that commodity servers are used in the design and assembly of a Beowulf HPCC

system, reduces the per-unit cost of the overall computing system (Dongarra et al., 2005;

Gropp et al., 2003). A secondary reason for the popularity of Beowulf Cluster systems is

due to the flexibility in design that is built into the system model. Flexibility in design

comes with the fact that a complete computational system can be built and tasked to

perform dedicated research with specific types of data and applications. When a research

team is done processing computational tasks of certain set of applications, components of

a Beowulf HPCC system can be reconfigured and reprogrammed to perform an entirely

different domain of research in another area. In this manner, Beowulf HPCC systems can

be designed to insure maximum performance for a specific group of researchers then

modified to maximize performance for a completely different group of researchers.

As an example, one type of Beowulf HPCC system might be better suited to

solving sparse matrices. Sparse matrix computations require trading of information with

small amounts of processing in each compute node. Within a Beowulf HPCC system, a

design could be created that worked by increasing the number of network connections

and reducing compute node memory (Pothen & Fan, 1990). A Beowulf HPCC design

might then be modified when requirements dictate that there is less data to be exchanged

between compute nodes like a Beowulf HPCC system designed to compute nearly

10

embarrassingly parallel computations. A Beowulf HPCC system designed to fulfill the

requirements of computing nearly embarrassingly parallel computations would typically

be created with less network interconnectivity but increased local memory within the

compute nodes.

With the many advantages of the Beowulf HPCC system, there are some inherent

performance limitations to the design arrangement. Even with embarrassingly parallel

computations, a Beowulf HPCC system will simply not operate without some exchange

of data between compute nodes and across the Beowulf HPCC system. Data exchanges

occur to allow the head node to communicate the distribution of batch jobs to compute

nodes, notifications from compute nodes that a sequence of a computation thread is

completed, and data exchanges from compute node to compute node to fulfill the needs

of threads that are tightly coupled with low cohesion.

The realization that data availability is important to parallel computations can be

expanded from Gene Amdahl’s discussions related to the availability of data to

computational processes (Dubitzky et al., 2012). One of the laws, the Amdahl number

law simply states that a processor will need some I/O per second when there is a number

of instructions performed per second. In another law, the Amdahl’s IOPS Ratio law,

programs are expected to need to do I/O every 50,000 CPU instructions. Considering

that I/O is expected to occur, and that concurrent running threads are tightly coupled, it

becomes clear that Beowulf HPCC parallel systems will have network links that are

aggregating I/O data exchanges from large numbers of compute nodes. These network

links can be expected to carry a large amount of I/O and that Beowulf HPCC systems will

perform better with higher bandwidth hardware/firmware network links.

11

Popular Beowulf HPCC Network Topologies

When designing a Beowulf HPCC system to compute a certain set of applications,

a network topology is often chosen to match the application. This is done because certain

threads within an application might have a more cohesive relationship with each other, as

opposed to other threads. To attempt to provide a better way to provide data exchanges

between these cohesive threads using the flexible design features of a Beowulf HPCC

system, there are several different types of network and cluster topologies used in the

layout and design of a Beowulf HPCC cluster (Deploying HPC Cluster with Mellanox

Infiniband Interconnect Solutions, 2014). Three popular topologies used in Beowulf

HPCC designs are a ‘Flat Network’ design where every node is connected to a common

switch (Figure 1), a Fat-Tree network where tiers of switches are used for distribution of

data (Figure 2), and a Torus network (Figure 3) design in which nodes are directly

connected to one another. In a Flat network interconnection scheme, every compute node

is equal in hierarchy to one another. For access from one compute node to another,

information must traverse two network connections and one switch. This is a simple

network schema that many smaller designs for Beowulf HPCC systems use.

Figure. 1. A Beowulf Cluster Flat Network Design.

12

When large Beowulf HPCC systems are designed, network connections are

designed with redundancy and data locality in mind. In a Fat-Tree network layout, as

shown in Figure 2, the interconnections are all redundant and there is a hierarchical

structure to the network system. Neighboring compute nodes are coupled to each other

by using a local switch. Using a tiered group of switches, data locality for cohesive

threads is created for compute nodes linked to the lower level switches. Thus, faster

localized data exchanges can occur between compute nodes as they have shorter paths to

traverse for data that remains local to that region of the HPCC system.

Figure. 2. Fat Tree Network.

Finally, the 3-D Torus layout, shown in Figure 3, creates node locality by tiling

compute nodes together in the manner of a doughnut shape. Multiple paths exist for data

exchanges. However, data exchanges must traverse compute nodes. This means that

compute nodes that are in the path of a data exchange must be participants in the data

exchange. As shown later, participating in data exchanges can reduce the computational

performance of every compute node in the communication path. The advantage to the

13

Torus design is that many compute nodes are local to each other and the network

connections are fully redundant.

Figure 3. Beowulf HPCC System Design as a 3-Dimensional Torus Network.

Programming for Cohesive Threads

While data availability choices can be made in the hardware layout of a Beowulf

HPCC system, there are other choices made programmatically when applications are

created. Program choices can be made about placement of batch jobs on compute nodes

and how often compute nodes exchange data. These are choices that are made that can

create dynamic changes in connection availability and bandwidth. The ability to

visualize the dynamic changes in activity within a Beowulf HPCC system network can

aid a System Administrator and an Application programmer in creating better software.

The ability to visualize both effects and side effects of network congestion can potentially

lead to better distribution of compute node jobs and network traffic balancing. Even

though it is not common for System Administrators and Application Programmers to

concern themselves with how network activity affects their applications, software that is

14

written for Beowulf HPCC systems do suffer computational performance issues when

there is network congestion. The effects of network congestion may be more easily

understood when an explanation is given of certain network and memory usage

limitations that exist within most Beowulf HPCC cluster designs. These Beowulf HPCC

systems use a common Beowulf HPCC system interconnection product called Infiniband.

Infiniband

Infiniband is a commonly used within Beowulf HPCC systems due to the ability

of Infiniband to move data with lower latency than other types of network connections.

Infiniband data rates vary by connection type (Infiniband Fact Sheet, 2015). The latest

generation of Infiniband transmission links provide Quad Data Rate (QDR) at 10 Gb/s

and Fourteen Data Rate (FDR) at 14 Gb/s. With an Infiniband data exchange, network

communication is performed as a Remote Direct Memory Access (RDMA) data move.

To prepare for an RDMA data exchange, Beowulf HPCC systems with most versions of

Infiniband Device Drivers (Mellanox mxl4 and earlier) will lock up Virtual Memory to be

able to transfer their blocks of memory without interference from possible changes to the

main memory data integrity (Mellanox Infiniband Product Overview, 2015; Dreier, 2015;

Liu, Wiu, & Panda, 2003). The memory is ‘pinned’. The Infiniband Device Driver will

generate a Virtual Memory lock as soon as an Infiniband link becomes available for

RDMA transmission or reception on the compute nodes involved in the data exchange.

The memory lock consists of a full page size or more of memory in the Main memory.

In some cases, part or all of the Virtual Memory can be tied up while a process

thread has to wait its turn to transmit or receive data over the network. Figure 4 shows

how an example of how Virtual memory locks work while Infiniband data exchanges are

15

performed. In the example, when ‘node A’ is performing a copy to ‘node B’, the sections

of main memory being used for the transfer in both compute nodes is unavailable for

other threads to use while the data exchange occurs. In another case, ‘node D’ must wait

for a data exchange until ‘node C’ receives a data exchange from ‘node B’. The fact that

Virtual Memory is under lock becomes an issue if another pending thread requires the use

of the main memory under lock. Whether or not a process thread itself is in a blocked or

unblocked state, the Virtual Memory is unavailable for swap out when another process

thread receives a page fault (Remote Direct Memory Access, 2015). This means that

pending threads that would benefit from attention while a job thread is paged out for an

Infiniband I/O block cannot access memory since it is locked. This can lead to lowered

CPU time resource utilization on compute nodes. One other issue is that the Virtual

Memory being exchanged must fit completely within the Main Memory. This issue is

created because the data exchanges are performed as a Direct Memory Address data

transfer. Once the data exchange is complete and the transferred data is placed into main

memory at the compute node destination, the Virtual memory lock is released and main

memory within both compute nodes is readied for other threads to use.

For compatibility to Ethernet networks, Infiniband network connections have the

ability to transmit and receive simulated Internet Protocol (IP) transmissions. The

simulated IP transmissions are called Internet Protocol over Infiniband (IPoIB). IPoIB

transmissions bypass the normal IP stack functions in the Linux kernel. In fact, simulated

IP transmissions bypass the normal CPU IP controls and features because Infiniband

16

Figure 4. Virtual Memory Locked During RDMA Transmission.

IPoIB transmissions are RDMA data transfers (Rosen, 2015). IPoIB is also commonly

used in normal Beowulf HPCC systems for functional tasks such as storing data on

network connected data storage with the NFS protocol (Sandberg, 2013). IPoIB NFS

storage information interchange requires the ability to perform remote procedure server

and client calls, to pass on Access Control List information, to propagate file read and

write locks, and to provide file system quota information.

Because data transfers using IPoIB are performed with RDMA, the actual

network transmissions are single-sided. The receiving server is unaware that a

transmission has taken place. This means that no regular IP ‘handshaking’ between a

compute node that is transmitting data and compute node that is receiving data will take

place, unlike the regular IP stack. This leads to some important considerations and issues

when handling threads for processes that are involved in an IPoIB data transmission.

Using Cluster Metrics to Improve Beowulf HPCC System Performance

Improving computational performance with a Beowulf HPCC system involves

making sure that as much of an application is programmed to run in parallel, as possible,

17

that exchanged data is available when computations on each compute node need them,

and that data exchanges occur as rapidly as possible to free up main memory within each

compute node.

When applications require large quantities of data exchanges, Infiniband network

congestion can slow down entire computation applications. For example, some parallel

computations performed on Beowulf HPCC systems can consist of N-body computations,

matrix computations for differential equations, simulations, and other types of

computations (Ford, 2015). Each compute node will contain a thread that processes a

subset of the full matrix calculation, programmed as a running batch job. Both rows and

columns in a matrix computation often need to be traded multiple times before an

application program has generated a result. With a matrix computation or an N-body

simulation, a full computation often requires that each step of the computation performed

receive a row update of data or even a state update of data from peer compute nodes.

Performance that is less than optimal in computing a single parallel thread, on a single

compute node, can degrade the performance of an entire computation because of the tight

coupling between neighboring threads. Typically, as updates to computations occur,

necessary the data and information that are interchanged between computational threads

can transit one or many different compute nodes. Figure 5 shows an example of how

matrix rows between nodes can be shared in an application. In this example, an input for

a thread calculating a matrix on the current compute node might take the row of data

from an adjacent compute node.

Network congestion can limit performance on batch jobs running on a Beowulf

HPCC system. Uneven network traffic within Beowulf HPCC networks can mean that

18

compute nodes are in contention to send data across the same network connections, while

other connections may actually be available to exchange data. When a thread is running

on a compute node, the exchange of data between compute nodes can cause memory

locks and I/O waits for threads requesting a data exchange. It is important to keep

network traffic from being concentrated on specific network links on the internal

Infiniband network.

Figure 5. Matrix Computation Distributed Across Compute Nodes.

To verify that an application is balancing network traffic in a manner that prevents

network congestion, a Beowulf HPCC System Administrator and an associated

Application Programmer can gather the health and performance metrics of networks and

components that make up a Beowulf HPCC system. The method for gathering metric

performance data on Beowulf HPCC systems is through a monitoring system.

Unfortunately, while monitoring systems exist for both real-time health and performance

analysis of Beowulf HPCC systems, no monitoring systems exist to measure issues

related to Infiniband network congestion. Typical Beowulf HPCC monitoring systems

19

measure just the computational load and simple network metrics for each compute node

and throughout the HPCC system. It is important to be able to measure Infiniband

network congestion because of the potential for the congestion to degrade the

performance of an HPCC computing application.

20

CHAPTER III

RELATED WORK

The goal of the research performed in this thesis is to create a monitoring system

that will help System Administrators and Application Programmers understand the impact

of network congestion created by programs running on real production Beowulf HPCC

systems. In order to provide an analysis of Beowulf HPCC system internal networks

Application Programmers need to be able to understand how often Infiniband congestion

occurs and how to reduce the network congestion through improving the distribution of

tightly coupled threads generated within their applications. The work in this thesis is

related both to Beowulf HPCC system code optimization and previous research and

development of Beowulf HPCC monitoring systems.

Beowulf HPCC Code Optimization

Optimization of application code for computational performance is an area of

active research within the Beowulf HPCC community. For instance, at Argonne National

Laboratories, ‘optimized’ code is created often while a Beowulf HPCC system is still in

development (Messina, 2015). In some cases, enhanced programming code is developed

for a specific Beowulf HPCC system without the code actually being run and inspected

on a specific HPCC system. To save development time, often the strategy at Argonne

National Labs is to create better application code before installation in an HPCC system.

This is done by identifying portions of application code that can be run in parallel and

21

threads that are highly cohesive during development and compilation of the software.

Unfortunately, in these cases, once the application code is generated, no further analysis

and review is done to the application while it is running on the cluster. There is no effort

to determine if Infiniband network congestion might be degrading computing

performance of the application.

To optimize HPCC application code it is desirable to gain information on

deficiencies with how a particular HPCC system might be processing the code. In the

paper, “Optimizing Latency in Beowulf Clusters”, the authors discuss the effects of

networks in computational performance of Beowulf HPCC systems (Garabato, More, &

Rosales, 2012). The goal of the authors of the paper was to create recommendations for

improved network performance with applications. Actual monitoring of network

performance metrics was performed when various applications were run on Beowulf

HPCC systems. However, the authors limit the performance tuning of a Beowulf HPCC

system to the TCP/IP stack. While a cursory mention of Infiniband is given, the TCP/IP

modifications are not effective with RDMA data exchanges. Also, the changes the

authors make are general-purpose changes. There is no mention of analyzing

applications for cases where application code might create Infiniband congestion on

Beowulf HPCC systems.

Finally, in the paper, “Combining Congested-Flow Isolation and Injection

Throttling in HPC Interconnection Networks”, the authors do address network congestion

on HPC computing performance (Escuer-Sahuquillo et al., 2011). The authors of this

paper deduced that there would be effects of network congestion on Infiniband and

TCP/IP networks and by reducing the congestion they could improve computational

22

performance of applications on Beowulf HPCC systems. In the paper, the authors

attempted to reduce network congestion by using active methods of re-routing of network

traffic, queues, and injection throttling. However, there was no effort to monitor real-

time Infiniband network activity created by running applications. Such monitoring of

Infiniband traffic could have aided Application Programmers and System Administrators

in addressing possible code changes that might have also helped to reduce Infiniband

network congestion issues, as well. Code analysis of an application running on a

Beowulf HPCC system, in such an effort, would need to reflect actual network activity

changes over a portion of time to be useful.

Beowulf HPCC Monitoring

Time dependent monitoring of performance issues within Infiniband networks can

help present to both Application Programmers and System Administrators periods of time

when network congestion occurs on Infiniband networks during an application run on a

Beowulf HPCC system. It is important to this thesis, to understand why other popular

monitoring systems used in Beowulf HPCC system designs are not able to provide good

information on Infiniband network congestion. Monitoring systems are an important

element of Beowulf HPCC systems designed to provide both cluster health information

and performance statistics to both System Administrators and Application Programmers.

Because Beowulf HPCC systems are flexible in design and may contain several different

network topologies, monitoring systems for Beowulf HPCC systems must be elastic

enough to be able to gather metrics from each component of the cluster. Since there are a

large number of compute nodes and network interconnects assembled into a Beowulf

HPCC system, it is important for monitoring systems to be able to aggregate metrics from

23

all of these component sources into an easy to read display. There are currently many

different options for monitoring systems that are used for health and performance metrics

for computing systems. The importance of gaining meaningful metrics on the quality of

an HPCC system, has been an inducement for many System Administrators,

organizations, and companies to develop their own monitoring systems. Yet, because

System Administrators and Application Programmers have differing views on what

constitutes a meaningful metric, each monitoring system provides very different methods

for aggregating and displaying those metrics.

One example of a common monitoring system used in Beowulf HPCC systems is

Nagios (Kocian, 2014). Nagios is a well-developed monitoring system for distributed

computing systems. Nagios gathers metrics from individual components within a

Beowulf HPCC system through communication with a daemon service via a remote

procedure call or through the use of a secure shell connection. Nagios contains

commonly used monitoring metrics and also allows a System Administrator to create

extra metrics through the use of custom programming. While Nagios is a popular

monitoring system for Beowulf HPCC systems, when working with Nagios, it becomes

apparent that the response time for each metric gathering session is not conducive to

displaying real-time metrics from within an HPCC system. Also, increased metric

processing on each compute node and large network data traffic are required by Nagios

before it can analyze and display the metrics. Lastly, another issue with Nagios is the fact

that it can be a challenge to quickly view individual metrics for a specific compute node

due to the fact that the interface requires scrolling down a web interface to find a specific

metric.

24

In an effort to improve metric readability for dynamic web cache and database

queries, the Claspin monitoring system was created (Lynch, 2012). Claspin was

developed by a Facebook team to improve metric display issues that are prevalent in

monitoring systems like Nagios. Claspin displays it metrics via the use of Heat Maps so

that System Administrators can quickly look over the operational state of a system of

clustered components. However, while Claspin provides Heat Maps for an easy to read

interface for System Administrators, the metrics gathered do not provide System

Administrators real-time metrics for how applications are performing on their clustered

systems.

To improve data gathering performance over the entire cluster, to allow a

monitoring system to aggregate real-time metrics for processing, and to reduce the

amount of metric processing load within the compute nodes, the monitoring system

Supermon was created (J. Wang et al., 2011). Supermon concentrates on performance

load levels for both the CPU in each compute node and the network connections using

kernel modules. However, Supermon cannot isolate metrics related to degradation of

performance of Infiniband networks. Also, metrics gathered by Supermon must be

processed and displayed by an external program to generate a display of metrics.

Ganglia, Cacti, and Carbon are a group of well-developed monitoring systems for

distributed computing systems (Massie et al., 2013; Kundu & Lavlu, 2009; Dixon, 2015).

Ganglia, Cacti, and Carbon gather real-time statistics and provide graph functionality to

display the information. Activity graphs do show System Administrators activity levels

on Beowulf HPCC networks, but the information is limited to the amount of traffic on the

network and how much CPU activity is on a particular compute node. However, Ganglia,

25

Cacti, and Carbon do not provide information on data exchange performance on the

Infiniband networks. Finally, the metrics that are gathered are available for analysis for a

relatively short period.

Finally, another lightweight monitoring system, LDMS was created by Sandia

Laboratories to provide raw metric data that can be processed and aggregated by a

monitor daemon (Brandt, Devine, Gentile, & Pedretti, 2014; (Brandt, Gentile, Marzouk,

& Pebay, 2005). Like Supermon, the metrics gathered by LDMS are simple and

unprocessed raw metrics from each compute node. Thus, LDMS impacts the system as

little as possible when gathering statistics. Unlike Supermon, however, specific user-

level library modules can retrieve specific metrics that are important to System

Administrators in a time consistent manner (Agelastos et al., 2015) and the daemons

running on each compute node are fully programmable. Also, metric thresholds can be

observed and checked to determine whether a compute node is out of range of its normal

operation. LDMS is designed to provide real-time system-wide metrics for analysis of

application resource utilization metrics and can give System Administrators a good

picture of how a normal running HPCC system should look. It must be noted, however,

that the authors do not specifically target Infiniband network links for analysis, links that

can potentially cause a significant degradation of computational performance for an

application. Further, using LDMS metric data from compute nodes in a different way

could help garner HPCC System Administrators an understanding of how well

applications utilize resources within a Beowulf HPCC system.

While other Beowulf HPCC monitoring systems have benefits with regard to

verifying the current operational state of a Beowulf HPCC system, these same monitoring

26

systems are not providing Application Programmers and System Administrators with

information about why certain application programs might be slow or vary in run times.

The monitoring system provided in this thesis is designed to specifically target Infiniband

performance metrics. As has been discussed before, Infiniband network congestion has

potential to produce uneven computational times for applications. Heat Maps created for

this new monitoring system are easy to read so System Administrators and Application

Programmers can easily pinpoint links where Infiniband network congestion is occurring.

27

CHAPTER IV

APPLICATION

This chapter contains a complete explanation of the design and creation of a new

monitoring system to measure real-time Infiniband network congestion. The Infiniband

monitoring system created for this thesis is designed to create an apparatus to show both

Infiniband network congestion as it occurs and repercussions from the congestion that

can cause slower and uneven computation times for applications. System Administrators

and Application Administrators are provided with easy to read Heat Maps so that problem

areas can readily be found and evaluated.

Requirements

To create a new monitoring system for network link congestion and its effects, it

was necessary to be able to periodically gather both the amount of data in the process of

being exchanged on each Infiniband network link and the amount of data that was being

effectively blocked due to FIFO queuing. To gather the necessary Infiniband information

in an unprocessed and granular form, service scripts were created to take advantage of the

underlying metric gathering and aggregation software available from specific

components within the Lightweight Distributed Metric System (LDMS). While typical

usage of the LDMS monitoring system is to find compute nodes that are not functioning

properly in an HPCC system (Ovis, 2015; The ins and outs of HPC, 2010), it was

determined that raw statistics from LDMS metric gathering could also be used gather

28

Infiniband network statistics that this thesis was interested in. Once statistics were

gathered, the Infiniband network information could then be processed and displayed

using Heat Maps.

Infiniband statistics were acquired from each compute node Infiniband card port

connected to an Infiniband network link. Each Infiniband network card connection port

is called a Host Channel Adapter (HCA) (Infiniband Fact Sheet, 2011; (Mellanox

Infiniband Product Overview, 2015). An HCA keeps running statistics of its operation

and the statistical data that it collects can then be polled to gather granular metric

information about Infiniband network link activity. Each data metric that was acquired

and used for the new monitoring system matched a specific function of Infiniband data

exchange that could be affected by network congestion. The metrics gathered are shown

in the annotated class diagram in Figure 6. Metrics gathered from the HCAs included the

rate of transmission of data, the rate of reception of data, and the rate of transmission

waits. This was done so either a System Administrator or an Application Administrator

would be able to match the rate of transmission waits, a performance degradation metric,

to the level of Infiniband congestion on the network link.

As can be seen in Figure 6, the volume of data packets that can be transmitted, via

IPoIB, is completely dependent upon the current value of the “rate_transmit_wait_bytes”

metric value of an HCA. The rate of packet transmission and reception would be

effectively reduced in performance as a result of the HCA spin-waits. Further, since NFS

data exchanges are transmitted using IPoIB, NFS data exchanges depend upon the

bandwidth of data that can be transmitted via IPoIB. Both IPoIB metrics and NFS metrics

were recorded and displayed within the new Infiniband monitoring system as a way to

29

visually understand part of the unintended consequences of having Infiniband network

congestion.

Figure 6. Annotated Class Diagram Showing Monitored Infiniband Metrics.

30

Development Platform

The Heat Maps developed for this thesis required Infiniband network activity

from an operational Beowulf HPCC system for development. The University of North

Dakota Hodor Beowulf HPCC system, consisting of 32 compute nodes and 256 cores,

was chosen for development and testing. The Hodor Beowulf HPCC system is used by

many distinct research applications such as Gromacs, Quantum Espresso, and other

custom software. Local disk storage is used for both the compute node OS and for swap

space eliminating the need for Virtual Memory page swaps to a shared ‘diskless’ storage

server through NFS. On the Hodor system, the /home directory is mounted from a

common NFS storage using IPoIB for each compute node and a master node. Each

compute node contains either an NVidia GPU or an Intel MIC co-processor and these

cards communicate through IPoIB and RDMA, as well.

The Hodor HPCC system is designed with a Flat Infiniband network topology.

Each compute node in Hodor can reach another compute node by simply traversing a

network link to the Infiniband switch, then down another link. Each HCA on a Hodor

compute node is a Mellanox version Connect-X3 installed with Mellanox mlx4 device

drivers utilizing Fourteen Data Rate (FDR) communications. The mlx4 device drivers

used in the Hodor compute nodes are written to use Virtual memory ‘pinning’ to lock

main memory and prepare for RDMA data exchanges.

Infiniband Metric Gathering at the Compute Nodes

The objective of the new monitoring system created for this thesis was to acquire

real-time network traffic and congestion information from each Infiniband network link

for analysis. It was important to have a portion of the monitoring software be operative

31

from within each compute node so that every Infiniband network connection in the

HPCC system could be analyzed. Metric information gathered at each compute node

consisted of Infiniband HCA statistics and both IPoIB and NFS statistics from the OS

Kernel. Table 1 shows a Use Case Description of the necessary features required of the

compute node metric gathering service for the Infiniband network links. Each compute

node in Hodor contained a single active HCA, a single IPoIB network link called IB0,

and NFS statistics that would be read on one second intervals.

Table 1. Use Case Description of the Compute Node Metric Gathering Service.

Use Case Name

Gather Metrics

Actors

Infiniband HCA, OS Kernel, compute node metric
service

Descriptions Gather information from HCA, kernel IP metrics,
kernel NFS metrics on each node.

Normal Flow Start running background thread for reading
metrics on each compute node.

 Every second read HCA information, IP
information for IB0, NFS information for IB0.

 Place metrics in memory for assembly by
Aggregator.

Alternative Flow 1 Background thread cannot start because
service lock in place.

 Stop

Alternative Flow 2 Start running background thread for reading
metrics on each compute node.

 Every second read HCA information, IP
information for IB0, NFS information for IB0.

 Missing report on either HCA information, IP
information for IB0, NFS information for IB0.

 Skip missing metric and gather metrics on
other categories.

 Place metrics in memory for assembly by
Aggregator.

32

In the event that the underlying LDMS metric gathering software failed to gather

a set of IB statistics, or IPoIB statistics, or NFS statistics from a compute node, the

LDMS metric gathering software would continue to gather and report the other statistics.

Also, it was desired that the metric gathering software on each compute node would

automatically start and run as a background service whenever the compute node was

operational. A custom Red Hat Linux Operating System service program was created to

control the operation of the LDMS metric gathering software. When this custom OS

service program was started, a lock file was created in the OS process lock directory

/var/lock/subsys to insure that multiple instances of LDMS metric gathering could not be

run at the same time. When the metric gathering service was called to stop operation, a

process kill signal function would halt the underlying LDMS metric gathering and the

lock file would be removed from the process lock directory. A status call would list the

LDMS metric gathering processes in operation and would provide the Linux OS process

identifiers as an output.

The LDMS statistics were transmitted through the HPCC system’s slower 1 GB

Ethernet monitoring network so as to not interfere with Infiniband RDMA traffic. For

metric data transfer, a POSIX socket directory was created using a shortened version of

the hostname to allow later identification and matching of the metrics to a compute node.

Each type of metric, whether HCA IB data, NFS data, or IPoIB data, was given a

designated TCP/IP port and a run socket in the POSIX socket directory to be used by a

master node collection service. When assigning TCP sockets for each type of metric,

start information and errors were reported to the main Red Hat Operating System log,

33

/var/log/messages. The HCA IB metrics were transmitted through TCP port 60000. TCP

port 60001 provided IPoIB information and TCP port 60002 provided NFS metrics.

The underlying LDMS software called from the OS service script was compiled

separately into a designated compute node directory, /opt/ovis. Libevent-2.0 was

installed to provide the method by which discrete sampling periods could be programmed

into the LDMS metric gathering services. LDMS support libraries containing the

necessary Infiniband metric gathering modules, the NFS modules, and the IPoIB modules

were compiled and placed into the directory /opt/ovis/ovis.lib/. To aid LDMS in finding

the libraries used in the metric gathering, the compute node BASH library path was

modified to include the LDMS library installation path.

Metric Aggregation for Infiniband Monitoring System

In order to be able to create detailed Heat Maps of current Infiniband network

activity, it was important for the HCA statistics from each of the compute nodes to be

gathered together and stored for later data analysis. Another custom Red Hat Operating

System service was created to manage an underlying LDMS program used for metric

aggregation, then to sort, and store the data. Table 2 shows a Use Case Description of the

aggregation service for the new Infiniband monitoring system. Again, it was desirable to

have the metric aggregation start and stop automatically when the master node was

turned on or off. The service script began by creating a ‘lock file’ to be used to prevent

more than one instance of the service script. This ‘lock file’ was placed into the process

lock directory /var/lock/subsys/.

34

Table 2. Use Case Description of the Aggregator and Store Service.

Use Case Name

Aggregator and Store

Actors

compute node metric service, head node
aggregator

Description Assemble metrics from each compute
node.

 Organize the metrics into categories of
IB traffic, IPoIB traffic, and NFS traffic.

 Store each category for later retrieval
and analysis.

Normal Flow Clock detects 1 second interval.
 Open loop. Starting with first compute

node.
 Open port and read IB metrics from

compute node. Close port.
 Open port and read IPoIB metrics from

compute node. Close port.
 Open port and read NFS metrics from

compute node. Close port.
 If not last compute node, repeat.
 Update files for IB metrics, IPoIB

metrics, NFS metrics.
 Repeat.

Alternative Flow Clock detects 1 second interval.
 Open loop. Starting with first compute

node.
 Open port to read IB metrics from

compute node. Compute node not
reporting. Skip compute node.

 Open port and read IB metrics from
compute node. Close port.

 Open port and read IPoIB metrics from
compute node. Close port.

 Open port and read NFS metrics from
compute node. Close port.

 If not last compute node, repeat.
 Update files for IB metrics, IPoIB

metrics, NFS metrics.
 Repeat.

35

Important to the correct timing of LDMS storage of data to files was the amount

of metric data collected before a ‘storage dump’ occurred. By analyzing and counting the

number of metrics gathered from each compute node, using the ldms_ls function, and

multiplying that number by the number of nodes (32), the total quantity of metric data

before a storage dump was found to be 1952. In order to store data in a manner that

would be usable by the Infiniband Heat-Maps, the underlying LDMS aggregation

software was programmed to record the quantity of change in the metric data from each

compute node. Metric data was stored in files labeled by the epoch time and by the TCP

port that the metric data was retrieved from. For instance, the Infiniband metrics from

TCP port 60000, were stored in a file with ‘sysclassib’ in the name field. The IPoIB

statistics were stored in a file with ‘procnetdev’ in the title field from TCP port 60001.

NFS file metrics were stored in a file with ‘procnfs’ in the title from TCP port 60002. To

ensure that ownership of the files were not assigned to a user account that might reach a

maximum account allotment, ownership of the data files was kept under the ownership of

the Hodor local root user.

Heat-Map Creation

One of the design goals for the new Infiniband Monitoring System was to create a

high quality display that would allow System Administrators and Application

Programmers to be able to quickly identify areas of Infiniband network congestion and

the resulting degradation of computational performance during the run of an application

on a Beowulf HPCC system. Heat Maps provide a method of quantity measurement that

is easy to read. A Heat-Map is a 3-Dimensional representation of data where z=f(x,y) is a

color representation of the amplitude or quality of a measurement. Using Infiniband

36

Heat-Maps created for the new Infiniband monitoring system, the metrics retrieved from

the measurement of congestion on Infiniband network link, the amount of back-up of data

transmissions on each link, and the resulting performance degradation effects could be

quickly identified.

Gnuplot was chosen to generate the Infiniband Heat-Maps. Each plot of data was

based upon sampling of a compute node at a certain point in time. In the case of each

Heat-Map, the X axis was chosen to be the sample time of the data. The Y axis was

chosen to be the compute node measured. The metric changes to be displayed became

the Z axis temperature display. Correlation of program performance could be done by

checking both the current Heat-Map values and by checking the Heat-Map for previous

periods of time. Gnuplot was set to display the resulting Heat-Maps as JPEG pictures.

To generate the Heat-Maps, a program was created to determine the names of the

current metric files, synchronize the files to a local location for plotting, and then to drive

each separate Gnuplot plotting program with the appropriate metric information. Eight

different Heat-Maps were generated on a periodic basis to provide information on

Infiniband read and write activity, Infiniband data backup, IPoIB packet transmit and

receive rates, NFS read rates, NFS write rates, and NFS re-transmits. Table 3 provides a

Use Case Description of the design of the Heat Map Display function of the new

Infiniband Monitoring System. In order to ascertain the name of the current metric file, a

secure shell call was made to list the metric storage directory contents. It was noticed

that Linux would not complete the creation date until a file access was closed by an

application, in this case, the LDMS aggregator. In the case that a previous day of metric

files was to be examined the Heat Map software accepted the epoch name of the file set

37

Table 3. Use Case Description for Heat Map Display Function.

Use Case Name

Display Heat Maps

Actors

Local monitor node, head node.
Description Update files with Infiniband metric information.

Draw Heat Maps for IB congestion, IPoIB
retransmits, NFS backup.

Normal Flow Find out what files have the latest run-
time metrics in them.

 Synchronize local IB, IPoIB, and NFS
files with the latest metrics.

 Translate epoch date from latest files to
calendar date

 Plot IB transmit traffic Heat Map.
 Plot IB receive traffic Heat Map

 Plot IB port transmit wait Heat Map
 Plot NFS re-transmit Heat Map.
 Plot NFS receive volume Heat Map.
 Plot NFS write volume Heat Map.
 Plot IPoIB receive volume Heat Map.
 Plot IPoIB write volume Heat Map.

Alternative Flow User inputs epoch to get information on.
 Synchronize local IB, IPoIB, and NFS

files with the metrics from that epoch.
 Translate epoch date from the requested

files to calendar date

 Plot IB transmit traffic Heat Map

 Plot IB receive traffic Heat Map.
 Plot IB port transmit wait Heat Map

 Plot NFS re-transmit Heat Map.
 Plot NFS receive volume Heat Map.
 Plot NFS write volume Heat Map.
 Plot IPoIB receive volume Heat Map

38

to be examined. The Linux function Rsync was used to synchronize file data at the

monitoring node with the LDMS aggregator storage directory contained in Hodor.

It was determined by experiment that presetting the range of color bar outputs for the Heat-

Maps to a fixed value would not work because each application provided a different

quantity of congestion. Some applications generated more Infiniband network traffic in

data exchanges than others. Experimentally it was found that summing both the mean and

the mean absolute deviation of the plotted data provided an appropriate dynamic range to

Heat Maps. Also by experiment, palette values were chosen that would give the Heat-

Maps a wide color range from black, to blue, to green, to red for readability.

39

CHAPTER V

ALGORITHM

The Infiniband monitoring system created for this thesis was designed to answer

questions about how often Infiniband spin-waits occur on specific HPCC systems and the

conditions that can cause spin-waits. Another goal for the Infiniband monitoring system

was to aid Application Programmers and System Administrators in reducing the amount

of time spent computing an application by reducing the effects of Infiniband congestion

and spin-waits to running applications.

Granular Metric Data Gathering

In order to provide analysis of Infiniband network links while an application job

was being processed, the Infiniband monitoring system was required to be able to gather

real-time metric data. It was necessary be able to gather consistent and detailed metric

data while creating a small network and computational load for the Beowulf HPCC

system. Both the Metric Data Gathering and Metric Data Aggregation components were

designed and written to run as background services for the Red Hat and CentOS

Operating Systems that are commonly used in Beowulf HPCC systems. The Metric

Gathering Service (Table 1) was written to use LDMS metric gathering components but

then acquired only the metrics that were important to research in this thesis. The

Infiniband monitoring system information for each compute node was gathered in three

portions, Infiniband HCA metrics, IPoIB metrics for IB0, and NFS metrics.

40

Choices were made to avoid using the Infiniband network links that were being

studied to provide the gathered metrics. A second choice was made to provide the

gathered metric information using POSIX sockets. It was noted that nearly every

Beowulf HPCC system contains a dedicated 1Gb Ethernet monitoring network. The

slower 1Gb network was adequate to provide the unprocessed data that would be

provided by each compute node Metric Gathering Service. In order to use POSIX TCP

sockets, it was noticed that some higher and unblocked TCP port numbers were available

to convey the data across the 1GB network. Each compute node service was assigned

port 60000 for Infiniband HCA metric information, port 60001 for IPoIB metric

information, and 60002 for NFS metric information. The POSIX port numbers chosen

were kept consistent across the Beowulf HPCC system, at each compute node.

Information analysis of the Infiniband network links began by having the Metric

Gathering Services started on each compute node.

A choice was made to gather metric data in one second intervals. In doing so, the

network data congestion metrics could later be displayed as traffic level changes per

second. Figure 7 shows a portion of the program code that was used to assign ports and

gather at one second intervals. In the first portion of the displayed code, a POSIX socket

has been previously created that contains both the compute node name and the metric

type. An LDMS metric daemon has been requested to be put into service for each type of

metric gathering required and matched with the appropriate metric socket. In the event of

an error, the error is reported to the main Operating System log file. In the second

portion of the displayed code in Figure 7, the metric gathering daemons are turned on

41

with a request that data be gathered at a pace of 1,000,000 microseconds, or 1 second

intervals.

ldmsd -x sock:60000 -S /var/run/ldmsd/$nodename/infiniband –l
 /var/log/messages > /dev/null 2>&1
ldmsd -x sock:60001 -S /var/run/ldmsd/$nodename/net –l
 /var/log/messages > /dev/null 2>&1
ldmsd -x sock:60002 -S /var/run/ldmsd/$nodename/nfs –l
 /var/log/messages > /dev/null 2>&1

…
echo "load name=sysclassib" | ldmsctl –S
 /var/run/ldmsd/$nodename/infiniband

…
echo "config name=sysclassib component_id="$component_id"
 set=$nodename/sysclassib" | ldmsctl –S
 /var/run/ldmsd/$nodename/infiniband

…
echo "start name=sysclassib interval=1000000 offset=0" | ldmsctl
–S
 /var/run/ldmsd/$nodename/infiniband

Figure 7. Socket Definitions and Sampling Interval From Metric Gathering Service.

An Aggregator and Store service written to match the Use-Case description in

Table 2 to assemble and store the metric data from each compute node using Hodor’s

1Gb Ethernet monitoring network. The aggregation function portion of the Aggregate

and Store service, shown in Figure 8, gathered the metrics from each of the compute

nodes and stored them inside the underlying LDMS service. A loop was created to

associate TCP sockets from each compute node to an LDMS service that was configured

to aggregate and organize the metrics for later storage. Again, only the metrics necessary

to perform analysis related to the Infiniband network links was used. Each compute node

was given an identification that represented the compute node that the data was received

from. To allow for transmission time for each compute node metric, it was found

experimentally, that 1/10 of a second offset delay should be used. To match the metric

gathering rate, the sampling interval was set at 1,000,000 microseconds, or 1 second.

42

Aggregate() {
node=$1
echo 'add host='$node' type=active interval=1000000 offset=100000
xprt=sock port=60000 sets='$node'/sysclassib' | ldmsctl -S
/var/run/ldmsd/infiniband
echo 'add host='$node' type=active interval=1000000 offset=100000
xprt=sock port=60001 sets='$node'/procnetdev' | ldmsctl -S
/var/run/ldmsd/infiniband
echo 'add host='$node' type=active interval=1000000 offset=100000
xprt=sock port=60002 sets='$node'/procnfs' | ldmsctl -S
/var/run/ldmsd/infiniband
}

Figure 8. Aggregation Function From Aggregate and Store Service.

Once the metrics were stored in the LDMS service, a metric ‘data dump’ was

performed and the latest metric data changes were placed into storage, as is shown in

Figure 9. Again, the goal of the real-time data gathering for the Infiniband network links

and the associated IPoIB and NFS metrics was to show congestion on a per second basis.

Therefore, only delta changes were stored in the data files. This requirement was met by

assigning LDMS to only store the changes between the previous sample and the current

sample. The compute node name was placed in the data file, for correct identification, in

the first data metric position. After 1,000,000 entries, to keep the file sizes manageable,

the file was requested to roll over into a new file. These metric files were matched to the

same date and time as POSIX Epoch Time for later plotting.

ldmsctl -S /var/run/ldmsd/infiniband
echo "config name=store_derived_csv alt_header=1 id_pos=1
rolltype=3 rollover=1000000 derivedconf=/root/ldms_store.config
path="$storage_path | ldmsctl -S /var/run/ldmsd/infiniband
echo "store name=store_derived_csv comp_type=node set=sysclassib
container=sysclassib" | ldmsctl -S /var/run/ldmsd/infiniband
echo "store name=store_derived_csv comp_type=node set=procnetdev
container=procnetdev" | ldmsctl -S /var/run/ldmsd/infiniband
echo "store name=store_derived_csv comp_type=node set=procnfs
container=procnfs" | ldmsctl -S /var/run/ldmsd/infiniband

Figure 9. Store Data Function Using Metric Data Dump From Aggregator and Store
Service.

43

To plot the metrics for later analysis, a complete set of programmed batch runs

were performed on the Display Heat Maps portion of the Infiniband monitoring system to

plot the metric data samples taken over several months on a separate monitoring server.

Figure 10 shows the batch script used to plot all of the Epoch date files that were

gathered. In order to plot the files, an Epoch time listing of all of the current files within

the storage directory were gathered. Once a file list was created, the Epoch time

parameter was passed to the heatmap_plot program written to fulfill the Display Heat

Maps (Chapter 4, Table 3) portion of the Infiniband monitoring system. Using the new

Infiniband monitoring system in this manner, sample metric data was gathered from

Hodor between the months of July 2015 to October 2015 and plotted.

#Retrieve the Epoch time list from the Infiniband metric files. #

ssh root@hodor "ls /home/undmaguilar/ldms_stored_data/node | grep sysclassib | sed
's/[a-z][.]*//g'" > heatmap_file_list

Batch run the plotting of all of the Epoch files #

while read epoch ; do

 echo $epoch;./heatmap_plot $epoch

done < heatmap_file_list

Figure 10. Batch Script Used To Plot All Stored Unix Epoch Date Files.

Figure 11 shows the necessary program code used to create on-demand real-time

plots for the Heat Map Display function. Using the real-time qualities of the new

Infiniband monitoring system, on demand plotting began with an Application

Programmer present to start and test an application. While the Infiniband monitoring

system background services continued to gather data, the Display Heat Maps portion of

the monitoring system was run without a filename selected. The heatmap_plot

application then chose the latest real-time data to perform the plotting functions. This can

be seen by the use of a regular expression to check the contents of a ‘passed parameter’ to

44

the program code. In the code, upon seeing that the contents of the parameter are empty,

a listing request for the directory was parsed to determine files that were currently being

used for Aggregator and Store data dumps. Once an open file was identified, the Epoch

time parameters was passed on to each Heat Map plotting program.

if ["$#" -eq 0]
then
 epoch=`ssh root@hodor 'ls -l
/home/undmaguilar/ldms_stored_data/node/' | grep 2015 | awk
'/sysclassib/ {print $9}' | sed 's/[A-Za-z.]*//g'`
 echo $epoch
else
 epoch=$1
fi

Figure 11. Epoch Time Determination Portion of Heat Map Display Function.

The Appendix contains complete programs that were used to create the Infiniband

monitoring system. The monitoring system services will work on Red Hat and CentOS

Operating Systems containing System V init tools. In order to prepare a system to

receive metrics from each compute node and then store the metrics, the Metric Gathering

service should be installed in a compute node in the /etc/init.d directory. To activate the

Metric Gathering service, at the command prompt, type /sbin/chkconfig add

/etc/init.d/gather_metrics . This command should be executed to cause the service to start

when the compute node is operational. The Aggregator and Store service,

aggr_and_store, should be stored in the Beowulf HPCC system head node.at /etc/init.d .

Again, the service is activated at the command prompt by typing /sbin/ckconfig add

/etc/init.d/aggr_store.

45

CHAPTER VI

CASE STUDIES

Using the new Infiniband monitoring system, research was performed on the

UND Hodor Beowulf HPCC system to provide information that could be used to improve

computational performance. In addition, research on the Hodor Beowulf cluster provided

an example HPCC system to assess whether the Infiniband monitoring system Heat Map

displays could provide detailed information that could useful in other HPCC systems.

Prevalence of Spin Waits and Performance Degradation on Hodor

The Hodor computing cluster is the principal Beowulf HPCC system for

performing research at the University of North Dakota. To answer questions of how often

spin-waits could be expected to happen and how much data was backed up by spin-waits

on Hodor, the data retrieved from Hodor reflected runs of random applications created by

HPCC system programmers. To plot the metrics for later analysis, a complete set of

programmed batch runs were performed on the Display Heat Maps portion of the

Infiniband monitoring system to plot the metric data samples taken over several months

on a separate monitoring server.

After analysis of the plotted data, it was found that during the period of time that

the samples were taken, Infiniband spin-waits would occur quite frequently on the Hodor

HPCC system. In many cases, there were identifiable reasons for why the spin-waits

occurred. After sampling metrics on Infiniband network links for several months, one of

46

the most prevalent causes for Infiniband spin-waits appeared to be a high amount of run-

time NFS data storage accesses. Each compute node in Hodor shares a /home directory

through an NFS file share. The NFS storage file system provided for Hodor HPCC

system storage is linked to a flat network design through a switch with one Infiniband

connection.

In was noticed from the data gathered from Hodor that in several cases,

applications were written to exchange data, write data, and retrieve data during batch job

runs from the /home directory and thus through the NFS storage share. As an example,

figure 12 shows an application run that is backing up a large quantity of data in spin-

waits. Figure 12 contains Heat Maps to display the quantity of bytes per second of spin-

waits, the quantity per second of bytes written and read for NFS transmissions, and the

quantity of bytes transmitted over the Infiniband HCA port as RDMA communications.

Since each compute node in Hodor is connected to exactly one Infiniband network

connection through an HCA, the Y-axis contains the range of compute node Infiniband

network links associated with a quantity of network traffic. On the right side of the Spin-

Wait Heat Map, the color bar ranges from a dark red at 45,000 bytes per second to dark

blue at 0 bytes per second. At time mark 1:00, the Heat Map is mostly dark red from

compute nodes 5 to 30. In the example, at time mark 1:00, an application is continuing to

read information from the NFS file share represented in light blue to dark red to be

between 4 and 9 bytes per second, and also has begun writing information back into the

NFS file share, represented in light blue, yellow, and dark red to be between 4 and 24

bytes per second. The relatively high cost of NFS data transmissions is shown by the

amount of bytes necessary to communicate NFS over Infiniband RDMA, at 450,000 to

47

600,000 bytes per second, show on the bar at the right of the plot as the yellow range.

Overall, around 10% of the data being transferred to the NFS share is being delayed in

spin-waits.

In another example, Figure 13 shows spin-waits from another application run

being generated at the time mark 3:30 from NFS data writes. A high quantity of spin-

waits is being generated from compute nodes 0 to 32 (yellow representing 3,500 bytes

per second) with a higher concentration from nodes 15 to 25 (orange representing 4,000

bytes per second). Some of the IPoIB data traffic is being generated on the compute node

Infiniband network links in exchanges of data between compute nodes, the light blue hue

represents close to 750000 bytes per second of RDMA traffic. However, it can be seen

that at times when data is exchanged with the NFS share (yellow representing 13 bytes

per second), there is a noticeable increase in spin-waits on the Infiniband network links.

In both examples, it can be seen that despite relatively low quantities of data being

transferred to the NFS share, Infiniband network link congestion has caused spin-waits

and degradation of application computation performance. It must be remembered, while

examining the plots in Figure 12 and Figure 13, that as NFS file calls retrieve and store

data from the relatively slow secondary storage, the FIFO nature of Infiniband data

transfers require that each network link remain locked until a full block of memory data

is completely exchanged. In addition, from the Heat Maps in both Figure 12 and Figure

13, it can be seen that NFS data transmissions require a high cost in RDMA bytes

exchanged over Infiniband networks.

Further, while applications were accessing the NFS storage during a batch run, a

compute node CPU could spend a lower percentage of its time processing application

48

threads because of Virtual Memory locks. Finally, other process threads that were waiting

to exchange data with each other were not available for Virtual Memory page swaps due

to memory locking requirements written into the Mellanox mlx4 device driver.

Figure 12. First Example of Spin-Waits Cause d By Accessing NFS Storage During
Application Run.

49

Figure 13. Second Example of Spin-Waits Caused By Accessing NFS storage During
Application Run.

Message passing is a method for exchanging data from compute node to compute

node and compute nodes and an HPCC system head node. Hodor has an installation of

Message Passing Interface called OpenMPI that is used by many different applications to

trade messages from compute node to compute node through library calls. The version of

OpenMPI installed on the Hodor HPCC system performs its message passing using

IPoIB. It becomes clear from Infiniband Monitoring System Heat Maps from Hodor that

even a low data exchange rate for Message Passing IPoIB communications can lead to a

higher percentage of data spin-waits on the Infiniband network links between the

50

compute nodes. In Figure 14, an application that is performing OpenMPI data exchanges

has been started at time mark 4:45. The color bar for the Spin-Wait Heat Map ranges

from 0 (dark blue hue) to 250 bytes per second (dark red). The Heat Map for Infiniband

transmissions shows 2,800 bytes per second from compute nodes 0 to 20. The Heat Map

for Infiniband receive bytes shows 400 bytes per second on nodes 0 to 20. This

represents the small amount of IPoIB traffic that shows 9 packets per second received and

25 packets per second transmitted on the same nodes, during the same period. At the

same time, corresponding spin-waits representing around 10% of the application data

being transferred have also begun. It is clear from the Heat Map plots that despite low

packet rates of IPoIB on each active compute node, high RDMA traffic overhead and

FIFO ordering of data exchanges has caused a relatively high percentage of data spin-

waits for each compute node being used in processing the application.

Finally, assessing the data, gathered using the batch runs of the Display Heat

Maps portion of the Infiniband monitoring system from Hodor, the superiority of data

computations using RDMA to perform message passing and data transfers becomes clear.

In Figure 15, it can be seen that the percentage of data in spin-wait each Infiniband link is

relatively low. At the time mark 2:30, spin-waits of an order of magnitude much lower

relative to the Infiniband data exchanges are being created. Dark red on the Heat Map

displaying Infiniband spin-waits represents the maximum quantity of 900 bytes per

second of data held in spin-waits. No IPoIB transmission data was recorded during this

period of time on the Hodor HPCC system. However, the quantity of data being

transmitted and received by RDMA is several orders of magnitude higher as can be seen

51

Figure 14. Spin-Waits Generated During IPoIB Data Exchanges.

by the color bars to the left of the plots. Because no IPoIB transmissions were recorded it

can be quickly deduced that the data exchanges between compute nodes are strictly being

performed as RDMA exchanges. The application run in this example appears to be using

either the MVAPICH message passing interface libraries with RDMA data exchanges, or

lower level RDMA exchanges using the Infiniband Verbs libraries. RDMA memory

exchanges occur more quickly then IPoIB data exchanges and then the Infiniband

network links are released for other process thread data exchanges.

52

Figure 15. Example of Spin-Waits Created During RDMA Data Exchanges.

Review of a Known Application Using the Infiniband Monitoring System

While it was beneficial to gather information on random applications to determine

how often congestion and spin-waits were occurring on the Hodor HPCC system, the

Infiniband Monitoring System Heat Maps provide an easy to read method to analyze

programs created by Application Programmers for congestion and spin-waits. In this

manner Application Programmers can be made aware of ways to improve computational

time for their applications.

In Figure 16, an example FFT application was started on Hodor and real-time

Infiniband network performance measurements were gathered and displayed. Analysis of

the application run started at time mark 1:45 indicates that there is a wide dispersion of

53

computations spread across the HPCC system. It also is clear that RDMA is being used

to perform exchanges of data between compute nodes and NFS data exchanges are not

occurring while the application is being batch processed. Thus, the percentage of data in

spin-waits is very low (200 bytes per second) compared to the amount of data being

exchanged (90,000 bytes per second for both receive and transmit). It can be seen on the

Heat Maps that most of the data congestion is occurring between node 14 and node 30,

the dark red hue. To reduce congestion on the Infiniband network links and further

improve the computational speed of this application would require that the process

module computations being performed heavily between node 14 and node 30 be more

evenly spread out. Better balancing of the process modules between compute nodes

could then reduce the amount of Infiniband network congestion on the network links to

these compute nodes. In this manner the percentage of data in spin-waits could be

lowered and the time required to process the application could be lowered, as well.

54

Figure 16. Example of Analysis of a Batch Run for an Application Programmer Using
Hodor.

55

CHAPTER VII

CONCLUSION AND FUTURE WORK

This thesis chronicles research efforts into an area research that can be used to

reduce fluctuations in application run-times and better utilize available parallel cores to

create higher performance for a Beowulf HPCC system. After performing an analysis of

the design of a Beowulf HPCC system, Infiniband network link congestion was identified

as a possible source for application program run-time variations and a restriction on using

available Beowulf HPCC system cores. A Beowulf HPCC system computational

performance is maximized when tightly coupled parallel application process threads are

freely able to exchange data and information. When there is less network congestion, the

effective computational power of a Beowulf HPCC system is increased.

It is through Infiniband network links that several essential methods of data

storage and internode communications for computations are conveyed in a typical

Beowulf HPCC system. When an Infiniband network link becomes congested because of

exchange traffic from a computation thread, the Infiniband driver responsible for the

network link creates spin-waits for activity from other threads. This spin-wait behavior

due to congestion on Infiniband links will affect HPCC computational performance for

applications. Unfortunately, it was discovered that no available real-time monitoring

system existed that was able to gather spin-wait metric data that could show how often

Infiniband network link congestion was constricting data and information exchanges.

56

The work performed in this thesis contributed a new Infiniband monitoring system that

allowed both System Administrators and Application Programmers to be able to observe

real-time Infiniband network traffic as program batch jobs were run. A goal was to be

able to observe how often Infiniband network congestion occurred on a Beowulf HPCC

system and the specific times and the effects of the congestion on RDMA

communications, IPoIB communications, and NFS storage transfers.

The new monitoring system was installed into the University of North Dakota

Hodor Beowulf HPCC system. Samples of random running applications were taken for

several months from Hodor. From these samples, it was found that Infiniband congestion

would occur frequently on the Hodor HPCC system. From the samples taken, it could be

seen that congestion was caused not only by high quantities of data transmissions but also

from high quantities of slower data transmissions. The information gathered from Hodor

demonstrated that slower IPoIB data exchanges would generate higher quantities of spin-

waits and were responsible for much of the slow computational processing and much of

the variations in run-time computational performance on the Hodor HPCC system. In

fact it was found that IPoIB congestion would occur as a higher percentage of the

transmission data with both frequent OpenMPI data exchanges between compute nodes

and with frequent NFS storage data exchanges.

The fact that IPoIB data exchange rates are lower than data exchange rates for

RDMA data transfers exacerbated the congestion problems with the Infiniband network

links. When IPoIB transmissions were occurring other data traffic was required to wait

its turn due to the fact that all Infiniband data traffic occurs in FIFO order. These

Infiniband network link data transmissions queued and backed up appeared as Infiniband

57

spin-waits. Curiously, the quantity of data backed up in spin-waits during IPoIB data

exchanges stayed around 10% of the data being transferred.

While it could be concluded from the data gathered from Hodor that RDMA and

MVAPICH definitively proved to be a better way to perform data exchanges, there

remained many instances where small quantities of spin-waits still occurred. The plots

showed that time periods when high concentration of computations occurred on a few

nodes, network congestion to the compute nodes would often lead to Infiniband spin-

waits. From the samples, it can be concluded that a wider dispersal of the computational

load, in these time periods, across many compute nodes would lead to faster application

run-times, as well.

Although the information gathered from sampling Hodor network traffic proved

valuable to understanding how congestion occurred during an application program run,

more research would be valuable. Future use of the Hodor Infiniband Monitoring System

can be to provide Application Programmers with information on their running

applications so that modifications can be made to the applications to improve run-times.

These changes would be made to attempt to reduce the amount of IPoIB traffic and to

balance the computational load across the compute nodes. Actual calculation of the

application run-times could then be used to verify more consistent and faster run-time

performance for each application program. These calculations would be made with the

aid of the HPCC Application Programmers. Another area of research involving Hodor

could be done to determine why the amount of data in Infiniband spin-wait queues

represents 10% of the transmission levels of the data.

58

Much as the research into the Hodor HPCC system would benefit both Beowulf

HPCC applications and system design, the ‘flat design’ of Hodor is a small subset of the

available topologies that can be employed in construction of an HPCC system. Other

research should be done with Beowulf HPCC systems using other topologies such as Fat-

Tree networks, separate data storage networks that allow connections between compute

nodes to be dedicated to data exchanges, and parallel file systems for faster data retrieval.

The data gathered could then be used to learn what Beowulf HPCC cluster topologies are

optimum and the actual computational time improvement that could be made to the

application run-times.

Finally, with new HPCC system topologies, sample measurements could then be

taken to insure that better parallel programming practices are employed and that a

consistent wide distribution of processes are assured within the Beowulf HPCC systems.

59

APPENDIX

gather_metrics

#!/bin/bash

Gather Metrics Service

/etc/rc.d/init.d/gather_metrics

For Redhat and CentOS with System V init

Metric collector startup/shutdown script for compute nodes.

chkconfig: 2345 83 25

description: Gather Metrics uses underlying LDMS services to gather targeted
Infiniband
and NFS metrics.

processname: gather_metric

processname='ldmsd'
lockfile=/var/lock/subsys/$processname # create a lockfile for system check
nodename=`hostname -s` # current short nodename

component_id=`echo $nodename | sed 's/[^0-9]//g' | sed 's/^0*//g'`
 # strip out letters for node component id

if [-f $lockfile]; then # verify lockfile isn't in place

 echo "LDMS collector already running? process: "`pgrep ldmsd`
 exit
 fi

 if [-f /opt/ovis/ldms.usr/sbin/ldmsd]; then # check for ldms

60

touch $lockfile #install a file lock so we know that the LDMS daemon should be running

 # Log messages are stored in /var/log/messages #

 ldmsd -x sock:60000 -S /var/run/ldmsd/$nodename/infiniband -l /var/log/messages \
 > /dev/null 2>&1

 ldmsd -x sock:60001 -S /var/run/ldmsd/$nodename/net -l /var/log/messages \
 > /dev/null 2>&1

 ldmsd -x sock:60002 -S /var/run/ldmsd/$nodename/nfs -l /var/log/messages \
 > /dev/null 2>&1

 echo "load name=sysclassib" | ldmsctl -S /var/run/ldmsd/$nodename/infiniband

 echo "config name=sysclassib component_id="$component_id" \
 set=$nodename/sysclassib" | ldmsctl -S /var/run/ldmsd/$nodename/infiniband

 echo "start name=sysclassib interval=1000000 offset=0" | ldmsctl –S \
 /var/run/ldmsd/$nodename/infiniband

 echo "LDMS Infiniband collection is started with port 60000" >> /var/log/messages

 echo "load name=procnetdev" | ldmsctl -S /var/run/ldmsd/$nodename/net
 echo "config name=procnetdev component_id="$component_id" \
 set=$nodename/procnetdev ifaces=ib0" | ldmsctl -S /var/run/ldmsd/$nodename/net
 echo "start name=procnetdev interval=1000000 offset=0" | ldmsctl –S \
 /var/run/ldmsd/$nodename/net
 echo "LDMS Network collection is started with port 60001" >> /var/log/messages

 echo "load name=procnfs" | ldmsctl -S /var/run/ldmsd/$nodename/nfs

 echo "config name=procnfs component_id="$component_id" \
 set=$nodename/procnfs" | ldmsctl -S /var/run/ldmsd/$nodename/nfs

 echo "start name=procnfs interval=1000000 offset=0" | ldmsctl –S \
 /var/run/ldmsd/$nodename/nfs

 echo "LDMS NFS collection is started with port 60002" >> /var/log/messages

 echo "The LDMS services are running as pid: "`pgrep ldmsd`

 else
 echo `date` "Error: Service gather_metrics is reporting that Lightweight Distributed \
 Metric System is not installed." >> /var/log/messages

 fi

}

################ End Start

61

Stop all of the LDMS daemons currently running

Stop () {

 echo "Stopping LDMS......."

 pkill ldmsd

 rm -f $lockfile # Remove our lockfile

}

################ End Stop

case "$1" in

'start')

 Start # start up the LDMS daemons for our chosen metrics sysclassib, \
 # procnetdev, and procnfs

 ;;

'stop')

 Stop # stop all of the ldms daemons, at once

 ;;

'status')
 if pgrep ldmsd > /dev/null 2>&1

 then
 echo "LDMS is running as pid: "`pgrep ldmsd`
 else
 echo "LDMS is not running."

 fi
 ;;

'clean') # In case of a lock file and socket file currently in place, that shouldn't be

if pgrep ldmsd > /dev/null 2>&1

 then
 echo "LDMS is runnning, so the file locks must stay in"

 exit 1;
 else

 echo "Removing the lock file and socket file"

62

 rm -f $lockfile # drop the lock file

 rm -f /var/run/ldmsd/$nodename/infiniband # drop the socket file

 exit 1;
 fi
 ;;

'restart')

 Stop # stop allu currently running LDMS daemons

 sleep 1

 Start # restart our metric checks

 ;;

*)
 echo "Usage: $0 { start | stop | status | restart | clean }"

 exit 1

 ;;

esac

exit 0

63

aggr_store

#!/bin/bash

Aggregate and Store Service

/etc/rc.d/init.d/aggr_store

For Redhat and CentOS with System V init

Aggregator startup/shutdown script for head node.

chkconfig: 2345 83 25

description: Aggregator and Store assembles metrics from each compute node and \
stores the
data for later processing and display.

processname: aggr_store

processname='ldms'
lockfile=/var/lock/subsys/$processname

nodename='hodor'
node_quantity=32 #There are 32 nodes in service right now in the Hodor cluster
metrics=71 # sysclassib has 22 lines of values + 16 (procnetdev) + 23 (procnfs)
 # metric quantity comes from a compute node using #>ldms_ls -h <node_name> \
 # -p <port> -v

total_metrics=node_quantity*metrics #Metrics to dump by Aggregator on a pass

storage_path=/home/undmaguilar/ldms_stored_data #LDMS stored data path

Aggregate metrics we want across HPC cluster
Aggregate() {

64

 node=$1

 echo 'add host='$node' type=active interval=1000000 offset=100000 xprt=sock \
 port=60000 sets='$node'/sysclassib' | ldmsctl -S /var/run/ldmsd/infiniband

 echo 'add host='$node' type=active interval=1000000 offset=100000 xprt=sock \
 port=60001 sets='$node'/procnetdev' | ldmsctl -S /var/run/ldmsd/infiniband

 echo 'add host='$node' type=active interval=1000000 offset=100000 xprt=sock \
 port=60002 sets='$node'/procnfs' | ldmsctl -S /var/run/ldmsd/infiniband

}

############### Load our metrics from across the HPC cluster
######################

Storage will be done with id_pos printing out the component_id from the node metrics
as #

an identifying label.

Start() {

 echo "Starting Aggregate and Store Services." >> /var/log/messages

 if [-f $lockfile]; then

 echo "LDMS collector already running? process: "`pgrep ldmsd`
 exit
 fi

 if [-f /opt/ovis/ldms.usr/sbin/ldmsd]; then

 mkdir -p /var/run/ldmsd/ #make sure that run directory is installed

 # Start ldms daemon that will aggregate from samplers

 # -D says flush data to output file whenever total metric values outstanding

 ldmsd -x sock:60010 -S /var/run/ldmsd/infiniband -D $metrics –l \
 /var/log/messages > /dev/null 2>&1

 # Add host and metric set combinations to aggregate from

 # Collection interval is 1 second and offset is 0.1 second

################ Broken into 2 parts for node ranges #####################

 for i in {1..9}

 do
 current_node=`echo "node00"$i`
 Aggregate $current_node

 done

65

 for i in {10..32}

 do
 current_node=`echo "node0"$i`
 Aggregate $current_node

 done

############################# Store data ###########################

Load and configure csv store plugin

echo "load name=store_derived_csv" | ldmsctl -S /var/run/ldmsd/infiniband

echo "config name=store_derived_csv alt_header=1 id_pos=1 rolltype=3 \
 rollover=1000000 derivedconf=/root/ldms_store.config path="$storage_path | \
 ldmsctl -S /var/run/ldmsd/infiniband

echo "store name=store_derived_csv comp_type=node set=sysclassib \
 container=sysclassib" | ldmsctl -S /var/run/ldmsd/infiniband

echo "store name=store_derived_csv comp_type=node set=procnetdev \
 container=procnetdev" | ldmsctl -S /var/run/ldmsd/infiniband

echo "store name=store_derived_csv comp_type=node set=procnfs container=procnfs" | \
 ldmsctl -S /var/run/ldmsd/infiniband

 touch $lockfile # install a file lock so we know that the
 # LDMS daemon should be running

 echo "The LDMS service is running as pid: "`pgrep ldmsd`

 else
 echo `date` "Error: Service start_ldms is reporting that \
 Lightweight Distributed Metric System is not installed." >> /var/log/messages

 fi

}

############################ End Start ##################################

########################## Kill Aggregate and Store #######################

Stop() {

 echo "Stopping LDMS......."

 pkill ldmsd

 rm -f $lockfile # Remove our lockfile

}

case "$1" in

66

'start')

 Start # Start the LDMS daemon and begin aggregation of our values

 ;;

'stop')

 Stop # Kill LDMS Aggregate daemon

 ;;

'status')
 if pgrep ldmsd > /dev/null 2>&1

 then
 echo "LDMS is running as pid: "`pgrep ldmsd`
 else
 echo "LDMS is not running."

 fi
 ;;

########### Clean up in case of an unclean shutdown of LDMS Aggregate ##########

'clean')
 if pgrep ldmsd > /dev/null 2>&1

 then
 echo "LDMS is runnning, so the file locks must stay in"

 exit 1;
 else

 echo "Removing the lock file"

 rm -f $lockfile

 rm -f /var/run/ldmsd/infiniband # remove the socket file
 exit 1;
 fi
 ;;

'restart')

 Stop

 sleep 2

 Start
 ;;

*)
 echo "Usage: $0 { start | stop | status | restart | clean }"

 exit 1

67

 ;;

esac

exit 0

68

ldms_store_config

ib.port_xmit_data#mlx4_0.1,1,1

ib.port_rcv_data#mlx4_0.1,1,1

ib.port_xmit_packets#mlx4_0.1,1,1

ib.port_rcv_packets#mlx4_0.1,1,1

ib.port_xmit_wait#mlx4_0.1,1,1

numcalls,1,1

retransmitts,1,1

getattr,1,1

setattr,1,1

lookup,1,1

access,1,1

readlink,1,1

read,1,1

write,1,1

readdir,1,1

readdirplus,1,1

rx_bytes#ib0,1,1

rx_packets#ib0,1,1

tx_bytes#ib0,1,1

tx_packets#ib0,1,1

69

heatmap_plot

#!/bin/bash

##

Heat Map Plotter Program for Creating Plots for System Admins and Application

Programmers.

##

################ Based on user input is this a real-time plot or a batched plot?

If it is a batched plot, there with be an Epoch Time entered.

if ["$#" -eq 0]
then
 epoch=`ssh root@hodor 'ls -l /home/undmaguilar/ldms_stored_data/node/' | \
 grep 2015 | awk '/sysclassib/ {print $9}' | sed 's/[A-Za-z.]*//g'`
 echo $epoch

else

 epoch=$1

fi

############## Create User readable time and a folder for the plots #########

output_period=`date -d @$epoch | sed 's/ /_/g'`
period=`date -d @$epoch`
echo $period

mkdir -p ~/hodor_performance/$output_period

Lets gather the plot data from source and temporarily store it in the local /tmp directory

name="/tmp/sysclassib."$epoch

Up to date data and appended to any current data for real-time use

rsync -avz root@hodor:/home/undmaguilar/ldms_stored_data/node/sysclassib.$epoch
/tmp/sysclassib.$epoch

rsync -avz root@hodor:/home/undmaguilar/ldms_stored_data/node/procnfs.$epoch
/tmp/procnfs.$epoch

70

rsync -avz root@hodor:/home/undmaguilar/ldms_stored_data/node/procnetdev.$epoch
/tmp/procnetdev.$epoch

##

Plotting Begins!

##

################### Hodor IB Run-Time Statistics
#############################

####### IB Stats Filename #########

name="/tmp/sysclassib."$epoch

########## IB Transmit #############

type="Infiniband Transmit Bytes Per Sec Starting At: "$period

outfile='~/hodor_performance/'$output_period'/infiniband_transmit_bytes.jpg'
#########Auto Range the Color Bar ################

mean=`awk '{ar[NR]=$6; sum+=$6;} END{m=sum/NR; printf "%.4f", m}' $name`
mabdev=`awk '{ar[NR]=$6; sum+=$6;} END{m=sum/NR; for (i in ar) {mcol+= \
 sqrt((ar[i]-m)^2)}; mabdev=(mcol/NR); printf "%.4f",mabdev}' $name`
mabdev=`echo "($mabdev) +$mean" | bc`

if [$(echo "$mabdev < 1" | bc) -eq 1]
then
 mabdev=1

fi
####### Call ib_transmit Gnuplot program written for this plot #################

gnuplot -e "filename='$name'" -e "date='$period'" -e "type='$type'" -e "outfile='$outfile'"
\
 -e "sdev='$mabdev'" ib_transmit

########## IB Receive ##############

type="Infiniband Receive Bytes Per Sec Starting At: "$period

outfile='~/hodor_performance/'$output_period'/infiniband_receive_bytes.jpg'
mean=`awk '{ar[NR]=$7; sum+=$7;} END{m=sum/NR; printf "%.4f", m}' $name`
mabdev=`awk '{ar[NR]=$7; sum+=$7;} END{m=sum/NR; for (i in ar) \
 {mcol+= sqrt((ar[i]-m)^2)}; mabdev=(mcol/NR); printf "%.4f",mabdev}'
$name` mabdev=`echo "($mabdev) +$mean" | bc`

71

if [$(echo "$mabdev < 1" | bc) -eq 1]
then
 mabdev=1

fi

gnuplot -e "filename='$name'" -e "date='$period'" -e "type='$type'" -e "outfile='$outfile'"
\
 -e "sdev='$mabdev'" ib_receive

########### IB Spin Waits ############

type="Infiniband Spin Wait Bytes Per Sec Starting At: "$period

outfile='~/hodor_performance/'$output_period'/infiniband_spin_wait_bytes.jpg'
mean=`awk '{ar[NR]=$10; sum+=$10;} END{m=sum/NR; printf "%.4f", m}' $name`
mabdev=`awk '{ar[NR]=$10; sum+=$10;} END{m=sum/NR; for (i in ar) \
 {mcol+= sqrt((ar[i]-m)^2)}; mabdev=(mcol/NR); printf "%.4f",mabdev}'
$name`
mabdev=`echo "($mabdev) +$mean" | bc`

if [$(echo "$mabdev < 1" | bc) -eq 1]
then
 mabdev=1

fi

gnuplot -e "filename='$name'" -e "date='$period'" -e "type='$type'" -e "outfile='$outfile'"
-e "sdev='$mabdev'" ib_port_xmit_wait

############################# NFS Statistics
################################

########## NFS Stats Filename ########

name="/tmp/procnfs."$epoch

######## NFS Retransmits ##############

mean=`awk '{ar[NR]=$7; sum+=$7;} END{m=sum/NR; printf "%.4f", m}' $name`
mabdev=`awk '{ar[NR]=$7; sum+=$7;} END{m=sum/NR; for (i in ar) \
 {mcol+= sqrt((ar[i]-m)^2)}; mabdev=(mcol/NR); printf "%.4f",mabdev}'
$name` mabdev=`echo "($mabdev) +$mean" | bc`

if [$(echo "$mabdev < 1" | bc) -eq 1]
then
 mabdev=1

fi

72

type="NFS Retransmit Bytes Per Sec Starting At: "$period

outfile='~/hodor_performance/'$output_period'/nfs_retransmit.jpg'
gnuplot -e "filename='$name'" -e "date='$period'" -e "type='$type'" -e \
 "outfile='$outfile'" -e "sdev='$mabdev'" nfs_retx

########### NFS Bytes Received #######

mean=`awk '{ar[NR]=$13; sum+=$13;} END{m=sum/NR; printf "%.4f", m}' $name`
mabdev=`awk '{ar[NR]=$13; sum+=$13;} END{m=sum/NR; \
 for (i in ar) {mcol+= sqrt((ar[i]-m)^2)}; mabdev=(mcol/NR); \
 printf "%.4f",mabdev}' $name`
mabdev=`echo "($mabdev) +$mean" | bc`

if [$(echo "$mabdev < 1" | bc) -eq 1]
then
 mabdev=1

fi

type="NFS Receive Bytes Per Sec Starting At: "$period

outfile='~/hodor_performance/'$output_period'/nfs_receive.jpg'
gnuplot -e "filename='$name'" -e "date='$period'" -e "type='$type'" -e \
 "outfile='$outfile'" -e "sdev='$mabdev'" nfs_rec

########### NFS Bytes Written #########

mean=`awk '{ar[NR]=$14; sum+=$14;} END{m=sum/NR; printf "%.4f", m}' $name`
mabdev=`awk '{ar[NR]=$14; sum+=$14;} END{m=sum/NR; \
 for (i in ar) {mcol+= sqrt((ar[i]-m)^2)}; \
 mabdev=(mcol/NR); printf "%.4f",mabdev}' $name`
mabdev=`echo "($mabdev) +$mean" | bc`

if [$(echo "$mabdev < 1" | bc) -eq 1]
then
 mabdev=1

fi

type="NFS Write Bytes/Sec Starting At: "$period

outfile='~/hodor_performance/'$output_period'/nfs_write.jpg'
gnuplot -e "filename='$name'" -e "date='$period'" -e "type='$type'" \
 -e "outfile='$outfile'" -e "sdev='$mabdev'" nfs_wri

########################## IPoIB Statistics ##############################

IPoIB Stats Filename ##########

73

name="/tmp/procnetdev."$epoch

####### IPoIB Packets received #######

mean=`awk '{ar[NR]=$7; sum+=$7;} END{m=sum/NR; printf "%.4f", m}' $name`
mabdev=`awk '{ar[NR]=$7; sum+=$7;} END{m=sum/NR; for (i in ar) \
 {mcol+= sqrt((ar[i]-m)^2)}; mabdev=(mcol/NR); printf "%.4f",mabdev}'
$name`
mabdev=`echo "($mabdev) +$mean" | bc`

if [$(echo "$mabdev < 1" | bc) -eq 1]
then
 mabdev=1

fi

type="IPoIB Receive Packets Per Sec Starting At: "$period

outfile='~/hodor_performance/'$output_period'/rec_ipoib.jpg'
gnuplot -e "filename='$name'" -e "date='$period'" -e "type='$type'" \
 -e "outfile='$outfile'" -e "sdev='$mabdev'" rc_ipoib

####### IPoIB Packets transmitted ####

mean=`awk '{ar[NR]=$9; sum+=$9;} END{m=sum/NR; printf "%.4f", m}' $name`
mabdev=`awk '{ar[NR]=$9; sum+=$9;} END{m=sum/NR; for (i in ar) \
 {mcol+= sqrt((ar[i]-m)^2)}; mabdev=(mcol/NR); printf "%.4f",mabdev}'
$name`
mabdev=`echo "($mabdev) +$mean" | bc`

if [$(echo "$mabdev < 1" | bc) -eq 1]
then
 mabdev=1

fi

type="IPoIB Transmit Packets Per Sec Starting At: "$period

outfile='~/hodor_performance/'$output_period'/trx_ipoib.jpg'
gnuplot -e "filename='$name'" -e "date='$period'" -e "type='$type'" \
 -e "outfile='$outfile'" -e "sdev='$mabdev'" tx_ipoib

74

ib_port_xmit_wait

#!/usr/bin/gnuplot

set terminal jpeg
set output outfile

set view map
set title type

set xlabel "Time" offset 0,-1

set ylabel "Compute Nodes"

set xtics rotate offset 0,-.4

set dgrid3d

set yrange[0:32]
set cbrange[0:sdev]
set pm3d interpolate 20,20

set xdata time

set timefmt "%s"

set format x "%H:%M:%S"

set dgrid3d

set palette defined (0 0 0 0.5, 1 0 0 1, 2 0 0.5 1, 3 0 1 1, 4 0.5 1 0.5, 5 1 1 0, 6 1 0.5 0, 7 1
0 0, 8 0.5 0 0)

splot filename using ($0/3600):5:10 with pm3d

75

ib_receive

#!/usr/bin/gnuplot

set terminal jpeg
set output outfile

set view map
set title type

set xlabel "Time" offset 0,-1

set ylabel "Compute Nodes"

set xtics rotate offset 0,-.4

set dgrid3d

set yrange[0:32]
set cbrange[0:sdev]
set pm3d interpolate 20,20

set xdata time

set timefmt "%s"

set format x "%H:%M:%S"

set dgrid3d

set palette defined (0 0 0 0.5, 1 0 0 1, 2 0 0.5 1, 3 0 1 1, 4 0.5 1 0.5, 5 1 1 0, 6 1 0.5 0, 7 1
0 0, 8 0.5 0 0)

splot filename using ($0/3600):5:7 with pm3d

76

ib_transmit

#!/usr/bin/gnuplot

set terminal jpeg
set output outfile

set view map
set title type

set xlabel "Time" offset 0,-1

set ylabel "Compute Nodes"

set xtics rotate offset 0,-.4

set dgrid3d

set yrange[0:32]
set cbrange[0:sdev]
set pm3d interpolate 20,20

set xdata time

set timefmt "%s"

set format x "%H:%M:%S"

set dgrid3d

set palette defined (0 0 0 0.5, 1 0 0 1, 2 0 0.5 1, 3 0 1 1, 4 0.5 1 0.5, 5 1 1 0, 6 1 0.5 0, 7 1
0 0, 8 0.5 0 0)

splot filename using ($0/3600):5:6 with pm3d

77

nfs_rec

#!/usr/bin/gnuplot

set terminal jpeg
set output outfile

set view map
set title type

set xlabel "Time" offset 0,-1

set ylabel "Compute Nodes"

set xtics rotate offset 0,-.4

set dgrid3d

set yrange[0:32]
set cbrange[0:sdev]
set pm3d interpolate 20,20

set xdata time

set timefmt "%s"

set format x "%H:%M:%S"

set dgrid3d

set palette defined (0 0 0 0.5, 1 0 0 1, 2 0 0.5 1, 3 0 1 1, 4 0.5 1 0.5, 5 1 1 0, 6 1 0.5 0, 7 1
0 0, 8 0.5 0 0)

splot filename using ($0/3600):5:13 with pm3d

78

nfs_retx

#!/usr/bin/gnuplot

set terminal jpeg
set output outfile

set view map
set title type

set xlabel "Time" offset 0,-1

set ylabel "Compute Nodes"

set xtics rotate offset 0,-.4

set dgrid3d

set yrange[0:32]
set cbrange[0:sdev]
set pm3d interpolate 20,20

set xdata time

set timefmt "%s"

set format x "%H:%M:%S"

set dgrid3d

set palette defined (0 0 0 0.5, 1 0 0 1, 2 0 0.5 1, 3 0 1 1, 4 0.5 1 0.5, 5 1 1 0, 6 1 0.5 0, 7 1
0 0, 8 0.5 0 0)

splot filename using ($0/3600):5:7 with pm3d

79

nfs_wri

#!/usr/bin/gnuplot

set terminal jpeg
set output outfile

set view map
set title type

set xlabel "Time" offset 0,-1

set ylabel "Compute Nodes"

set xtics rotate offset 0,-.4

set dgrid3d

set yrange[0:32]
set cbrange[0:sdev]
set pm3d interpolate 20,20

set xdata time

set timefmt "%s"

set format x "%H:%M:%S"

set dgrid3d

set palette defined (0 0 0 0.5, 1 0 0 1, 2 0 0.5 1, 3 0 1 1, 4 0.5 1 0.5, 5 1 1 0, 6 1 0.5 0, 7 1
0 0, 8 0.5 0 0)

splot filename using ($0/3600):5:14 with pm3d

80

rc_ipoib

#!/usr/bin/gnuplot

set terminal jpeg
set output outfile

set view map
set title type

set xlabel "Time" offset 0,-1

set ylabel "Compute Nodes"

set xtics rotate offset 0,-.4

set dgrid3d

set yrange[0:32]
set cbrange[0:sdev]
set pm3d interpolate 20,20

set xdata time

set timefmt "%s"

set format x "%H:%M:%S"

set dgrid3d

set palette defined (0 0 0 0.5, 1 0 0 1, 2 0 0.5 1, 3 0 1 1, 4 0.5 1 0.5, 5 1 1 0, 6 1 0.5 0, 7 1
0 0, 8 0.5 0 0)

splot filename using ($0/3600):5:7 with pm3d

81

tx_ipoib

#!/usr/bin/gnuplot

set terminal jpeg
set output outfile

set view map
set title type

set xlabel "Time" offset 0,-1

set ylabel "Compute Nodes"

set xtics rotate offset 0,-.4

set dgrid3d

set yrange[0:32]
set cbrange[0:sdev]
set pm3d interpolate 20,20

set xdata time

set timefmt "%s"

set format x "%H:%M:%S"

set dgrid3d

set palette defined (0 0 0 0.5, 1 0 0 1, 2 0 0.5 1, 3 0 1 1, 4 0.5 1 0.5, 5 1 1 0, 6 1 0.5 0, 7 1
0 0, 8 0.5 0 0)

splot filename using ($0/3600):5:9 with pm3d

82

read_heatmap_list

#Retrieve the Epoch time list from the Infiniband metric files. #

ssh root@hodor "ls /home/undmaguilar/ldms_stored_data/node | grep sysclassib | \
 sed 's/[a-z][.]*//g'" > heatmap_file_list
Batch run the plotting of all of the Epoch files #

while read epoch ; do

 echo $epoch;./heatmap_plot $epoch

done < heatmap_file_list

83

REFERENCES

Agelastos, A., Allan, B., Brandt, J., Gentile, A., Lefatzi, S., Monk, S., Ogden, J., Ogden,

J., Rajan, M. & Stevenson, J. (2015). Toward Rapid Understanding of Production

HPC Applications and Systems, IEEE International Conference on Cluster

Computing, pp. 464-473.

Bell, G., [Intel], (2013, November 18). The Secret Life of Big Data [Video file], Retrieved

from https://www.youtube.com/watch?v=CNoi-XqwJnA

Brandt, J., Devine, K., Gentile, A., & Pedretti, K. (2014). Demonstrating Improved

Application Performance Using Dynamic Monitoring and Task Mapping, IEEE

International Conference on Cluster Computing, pp. 408-415.

Brandt, J., Gentile, A., Marzouk, Y., Pebay, P. (July, 2005). Meaningful Automated

Statistical Analysis of Computational Clusters, IEEE International Conference on

Cluster Computing, pp. 1-2.

Deploying HPC Cluster with Mellanox Infiniband Interconnect Solutions, (June, 2014).

Retrieved from: http://www.mellanox.com/related-docs/solutions/deploying-hpc-

cluster-with-mellanox-infiniband-interconnect-solutions.pdf

Dixon, J. (2015). In, Monitoring with Graphite, O’Reilly Media, Inc.

Dongarra, J., Sterling, T. Simon, H., & Strohmeier, E. (March, 2005). High-Performance

Computing: Clusters, Constellations, MPPs, and Future Directions, IEEE

Computing in Science & Engineering, 7(2), pp. 51-59.

https://www.youtube.com/watch?v=CNoi-XqwJnA
http://www.mellanox.com/related-docs/solutions/deploying-hpc-cluster-with-mellanox-infiniband-
http://www.mellanox.com/related-docs/solutions/deploying-hpc-cluster-with-mellanox-infiniband-

84

Dreier, R. (2015), device.c, (2015). Retrieved from: lxr.free-

electrons.com/source/drivers/infiniband/core/device.c

Dubitzky, W., Kurowski, K., & Schott, B. (2012). In, Large Scale Computing Techniques

for Complex System Simulations (pp. 133), J. Wiley & Sons.

Escuder-Sahuquilio, J., Gran, E., Garcia, P., Flich, J., Skeie, T., Lysne, O., Qules, F., &

Duato, J. (Sept 2011). Combining Congested-Flow and Injection Throttling in

HPC Interconnection Networks, IEEE International Conference on Parallel

Processing, pp. 662-672.

Ford, W. (2015) In P. Vassilevski (Ed.), Numerical Linear Algebra with Applications, (pp.

157-166), Academic Press

Garabato, R., More, A., & Rosales, V. (2012). Optimizing Latency in Beowulf Clusters,

CLEI Electronic Journal 15(3). Retrieved From: http://www.scielo.edu.uy/

scielo.php?pid=S071750002012000300004&script=sci_arttext

Gropp, W., Lusk, E., & Sterling, T. (2003). In J. Kowalik (Ed.), Beowulf Cluster

Computing with Linux (pp.12), MIT Press

Infiniband Fact Sheet, (2011). Retrieved from:

https://cw.infinibandta.org/document/dl/7260

Kocian, W. (2014). In A. Albuquerque & N. Chinnari (Eds.), Learning Nagios 4, Packt

Publishing Ltd.

Kundu, D., & Lavlu, S. (2009). In R. Phadnis (Ed.), Cacti 0.8 Network Monitoring, Packt

Publishing Ltd.

https://cw.infinibandta.org/document/dl/7260

85

Liu, J., Wiu, J., & Panda, D. (June, 2004). High Performance RDMA-Based MPI

Implementation over Infiniband, International Journal of Parallel Programming –

Special issue 1: The 17th annual international conference on supercomputing

(ICS’03) 32(3), pp.167-198.

Lynch, S. (2012). Monitoring Cache with Claspin, Retrieved From:

https://www.facebook.com/notes/facebook-engineering/monitoring-cache-with-

claspin/10151076705703920

Massie, M., Li, B. Nicholes, B., Vuksan, V., Alexander, R., Buchbinder, J., Costa, F.,

Dean, A., Josehsen, D., Phasi, P., & Pocock, D. (2013) In M. Loukides & M.

Blanchette (Eds.), Monitoring with Ganglia, O’Reilly Media, Inc.

Mellanox Infiniband Product Overview, (2015). Retrieved from:

http://www.mellanox.com/page/infiniband_cards_overview

Messina, P. (2015). Paul Messina on the Code Optimization Path to Exascale, Retrieved

From: http://www.hpcwire.com/2015/09/14/alcfs-paul-messina-on-the-code-

optimization-path-to-exascale

Mishra, J. (Ed.), & Mohanty (2011), Software Engineering, Pearson India, 2011.

Pothen, A. & C. Fan (December, 1990). Computing the Block Triangular Form of a

Sparse Matrix, ACM Transactions on Mathematical Software, 16(4), pp. 301-324.

Remote Direct Memory Access (2015), Retrieved from: http://en.wikipedia.org/

wiki/Remote_direct_memory_access

Rosen, R. (2014). In M. Lowman (Ed.), Linux Kernel Networking, (pp. 373-404), Apress

https://www.facebook.com/notes/facebook-engineering/monitoring-cache-with-
https://www.facebook.com/notes/facebook-engineering/monitoring-cache-with-
http://www.mellanox.com/page/infiniband_cards_overview
http://www.hpcwire.com/2015/09/14/alcfs-paul-messina-on-the-code-optimization-path-to-exascale
http://www.hpcwire.com/2015/09/14/alcfs-paul-messina-on-the-code-optimization-path-to-exascale
http://en.wikipedia.org/%20wiki/Remote_direct_memory_access
http://en.wikipedia.org/%20wiki/Remote_direct_memory_access

86

Sandberg, M. (2013). The Sun Network Filesystem: Design, Implementation, and

Experience, Retrieved From: http://www.cse.buffalo.edu/faculty/tkosar/

cse710_spring13/papers/nfs.pdf

Wang, L., Ranjan, R., Chen. J., & Bentallah, B. (2011). In L. Wang (Ed.), Cloud

Computing: Methodology, Systems, and Applications, CRC Press.

	University of North Dakota
	UND Scholarly Commons
	January 2015

	Identifying Data Exchange Congestion Through Real-Time Monitoring Of Beowulf Cluster Infiniband Networks
	Michael James Aguilar
	Recommended Citation

	tmp.1558649525.pdf.Sh_XA

