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ABSTRACT

This paper examines the use of feature detection and background subtraction

algorithms to classify and detect events of interest within uncontrolled outdoor

avian nesting video from the Wildlife@Home project. We tested feature

detection using Speeded Up Robust Features (SURF) and a Support Vector

Machine (SVM) along with four background subtraction algorithms — Mixture

of Guassians (MOG), Running Gaussian Average (AccAvg), ViBe, and

Pixel-Based Adaptive Segmentation (PBAS) — as methods to automatically

detect and classify events from surveillance cameras. AccAvg and modified

PBAS are shown to provide robust results and compensate for issues caused by

cryptic coloration of the monitored species. Both methods utilize the Berkeley

Open Infrastructure for Network Computing (BOINC) in order to provide the

resources to be able to analyze the 68,000+ hours of video in the Wildlife@Home

project in a reasonable amount of time. The feature detection technique failed to

handle the many challenges found in the low quality uncontrolled outdoor video.

The background subtraction work with AccAvg and the modified version of

PBAS is shown to provide more accurate detection of events.
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CHAPTER I

INTRODUCTION

Wildlife@Home1 [1, 2] is a volunteer computing project in which citizen

scientists and wildlife experts are presented videos at the nests of various species

of birds. Currently, users have the option of viewing Sharp-Tailed Grouse

(Tympanuchus phasianellus, an indicator species which can represent ecological

health), Interior Least Tern (Sternula antillarum, a federally endangered

species), or Piping Plover (Charadrius melodus, a federally threatened species).

Each of these species have different nesting behaviors and users are tasked with

classifying them. Examples of behaviors are On Nest, Off Nest, Brooding, Flying,

Foraging, and Feeding. While users are observing the nests, they create a set of

events for each video specifying when the events begin and end. Each event in

has a type, start time, and end time (see Figure 1).

Such camera studies are popular in the field of avian ecology as they can

reduce researcher impacts on animal behavior and also monitor animals in

remote locations [3, 4]. Unfortunately, many of these studies are hampered by

small sample sizes, where few have studied more than 100 nests [4], limiting the

biological inferences that can be made. In order to overcome these challenges,

Wildlife@Home has been developed to employ both volunteer computing and

crowd sourcing to quickly analyze wildlife video, as well as to investigate

automated video analysis strategies using computer vision techniques.

The Wildlife@Home project has accumulated over 85,000 hours of 24/7

uncontrolled outdoor surveillance video. This amount of data becomes

problematic for humans to classify, even with software tools to help create and

store event data. A lot of time is spent viewing regions of the video where the

birds are not present at all or where a bird is present but highly inactive for long

periods of time. Users watching video can use the scrub bar to move more

1http://volunteer.cs.und.edu/csg/wildlife/
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Figure 1: An example of Wildlife@Home’s video viewing interface. Users are
shown 30 minute to 2 hour long nesting videos, can specify the start and end time
for various events of interest, and provide tags and comments for additional detail.
Users can also specify how difficult it was to determine events for the video and
discuss segments of the video on the project’s message boards.

quickly through the video, especially uninteresting portions, and this can cause

missed events. Scientists tasked with classifying long periods of uninteresting

video can tire and lose focus.

This paper investigates the use of feature detection and background

subtraction for the detection of avian nesting behaviors. The feature detection in

Chapter III Section 1 and Chapter IV Section 1 attempts to mimic the

functionality of the human scientists by using image feature detection (SIFT [5]

& SURF [6]) and a support vector machine (SVM [7–10]) to classify video

frames. The background subtraction techniques in Chapter III Section 2 and

Chapter IV Section 2 focus on highlighting interesting or active section of video

in order to aid scientists in behavior classification.

Feature detection and machine learning are effective for detection and

classification of rigid objects [11] and have also shown success in the recognition

of pedestrians and some wildlife [12–16]. We tested the effectiveness of this

method by using scientist observations as training data and comparing algorithm

performance in recognizing bird nesting behaviors.

2



Background subtraction is commonly used in surveillance video as a technique

for segmenting objects of interest from a scene [17, 18]. By extracting segments

of the collected video with an abnormal amount of foreground activity, it is

possible to algorithmically present scientists with video containing classifiable

events and filter out video where no events occur.

While both methods focus on reducing scientist workload, they use very

different methods to do so. The feature detection method attempts to determine

an event type for each video frame by learning previous classifications made by

scientists. Each video frame is tagged with ongoing events and descriptors

collected from that frame are used with a support vector machine to learn bird

behaviors. The goal of this process is to automatically classify nesting behaviors,

especially On Nest and Not In Video events. The background subtraction

focuses on eliminating work for scientists by finding sections of video with bird

activity or interesting events. Background subtraction doesn’t allow for

classification of events but can greatly reduce scientist workload.

Feature detection with SURF and event classification with LIBSVM [10] has

shown to be a poor performer on the Wand ildlife@Home video. Many factors

may cause poor performance on the footage, including video quality, brightness

fluctuations, species cryptic coloration, slightly incorrect event boundaries set by

scientists, and too few features for SVM training. The poor results from this

research sparked a shift to study the effectiveness of background subtraction in

the same domain.

Given the diversity of species and nest locations, results find that background

subtraction performance is sensitive to the amount of background movement,

camera brightness, and cryptic coloration in a video. Using modern background

subtraction techniques, such as Running Gaussian Average (AccAvg) [17–19],

and modified versions of the ViBe [20] and Pixel-Based Adaptive Segmentation

(PBAS) [21] algorithms, it is possible to show a strong correlation between

scientist-observed events and those calculated with background subtraction. By

3



Figure 2: Sample Sharp-Tailed Grouse footage. The nest is marked with a white
oval. A bird is on the nest.

confidently narrowing the amount of video scientists are watching, it will be

possible to focus on showing worth-while video segments and increase user

incentive and focus.

Chapter II presents modern techniques used for common feature detection

algorithms, SVMs, and background subtraction problems. Chapter III covers the

approaches we took to classifying frames and extracting regions of the video with

activity. Performance results and limitations of the algorithms are in described

Chapter IV. Finally, Chapter V concludes with future work and a discussion of

the next steps to collecting more results, improving the algorithms, and use of

the data.
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(a) Sample I

(b) Sample II

(c) Sample III

Figure 3: Sample sunrise Interior Least Tern footage. The nest is marked with a
white oval. A bird is on the nest in all three images.
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CHAPTER II

RELATED WORK

This chapter gives a detailed overview of common feature detection, machine

learning methods and modern approaches to background subtraction. Both

background subtraction and feature detection are popular categories of computer

vision and typically play different roles in the processing of data. In the sections

below we hope to provide meaningful and up to date information about applying

these methods.

1 Feature Detection

The process of feature detection in computer vision is the use of image qualities

to find unique or descriptive regions. These regions can be used to find a

matching object or scene in another image. There are mainly three qualities of

an image that are used to describe an object or scene, edges [13, 22, 23],

corners [24], and blobs [5, 6, 25]. The main to algorithms we will be looking at

use blob detection which uses a kernel (Laplacian or Gaussian) to find local

extremum within an image and uses them as keypoints or descriptors.

1.1 SIFT: Scale Invariant Feature Detection

In this paper, Lowe [5] proposes a scale and rotation invariant feature detection

and matching method called SIFT. This technique works by creating a scale

space representation of the image by successively blurring the image with a

Gaussian kernel. The difference of these Guassian blurs is used to locate maxima

and minima in the scale space which are then used as keypoints. The image

gradient Gi,j and orientation Oi,j are calculated using pixel differences in image I.

Gi,j(I) =

√

(Ii,j − Ii+1,j)
2 + (Ii,j − Ii,j+1)

2 (1)

6



Oi,j(I) = arctan
Ii,j − Ii+1,j

Ii,j+1 − Ii,j
(2)

The gradient (Equation 1) and orientation (Equation 2) are stored with a

canonical gradient orientation in order to make the keypoints independent of

image rotation. This means storing them according to their gradient peak. Each

feature is inserted into a 36 bin histogram according to their 360 degree

orientation.

The scale and rotation invariance of SIFT makes it a good candidate for

outdoor detection of non-rigid objects, however, the features are sensitive to

lighting and this will become a problem with any nighttime footage. SIFT is also

relatively slow, at around 1.5 seconds per image, and this becomes a serious

problem for video processing.

1.2 SURF: Speeded Up Robust Features

Bay et al. [6, 25] use a similar blob detection method to SIFT (Section 1.1).

They use estimations for the Gaussian filters by taking advantage of the quick

sums calculated with integral images. With an integral image, finding the sum of

pixel values over any rectangular area only requires three addition operations.

The use of integral images allows for extremely fast Gaussian derivatives and

keypoint orientation calculations via Haar wavelets [26].

SURF comes out to be about 4 times faster than SIFT. It’s speed and

reliability make it better suited than SIFT for processing video, however it is still

not ideal real-time video analysis.

2 Machine Learning

This section discusses the current status and role of Support Vector Machine

Classification in machine learning. A Support Vector Machine (SVM) [27] is a

machine learning classifier which learns how to classify new input from a set of

pre-classified training data. SVMs can learn binary-class data or multiclass data.

7



There are two main types of optimization problems that SVMs solve in order

to learn to predict the class of new data. The first equation assumes the data is

cleanly separated, none of the training is incorrectly labeled. This equation is as

follows:

D(α) =
n

∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjk(xi, xj)

subject to
n

∑

i=1

αiyi = 0, (3)

0 ≤ αi, i = 1, . . . , n,

such that α is a set of Lagrange multipliers, (xi, yi) is a data element where xi is

the set of input features and yiǫ{−1, 1} is the class identifier, and n is the

number of input elements.

The second equation uses a modifier called the slack variable which allows for

a margin of error in the training data. This margin prevents overfitting of the

training data. There are many different equations which use different slack

variables but the most common is as follows:

D(α) =
n

∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjk(xi, xj)

subject to
n

∑

i=1

αiyi = 0, (4)

0 ≤ αi ≤ C, i = 1, . . . , n,

where the only additional symbol here is C, the slack variable for computing a

soft margin.

Each of these equations is the dual form of their primal counterparts. This

means that, under their given constraints, they return the optimal solution for

their primal form.

8



2.1 LIBSVM: A Library for Support Vector Machines

This section is an overview of the LIBSVM software package and its

implementation. LIBSVM is one of the most popular and widely used SVM

libraries[10]. Chang et al. [10] emphasize LIBSVM’s reliability and thus the

main reason for its support and popularity in the software community. The

library supports classification, regression, and distribution estimation with

different SVM Kernels including, linear, polynomial, radial basis, and sigmoid.

The LIBSVM solves the C-SVM optimization problem by default. This

problem is defined as:

minα
1

2
αTQα− eTα

subject to yTα = 0, (5)

0 ≤ αi ≤ C, i = 1, . . . , l,

where α is the set of Lagrange multipliers to be optimized, e = [1, . . . , 1]T is a

vector of ones, Q is a matrix Qij ≡ yiyjK(xi, xj), and where K(xi, xj) is the

Kernel function. Within Q, x is the set of features and y is the sample class.

Once optimized the Lagrange multipliers are used in the classification of any test

data.

accuracy =
samples correctly predicted

total sample size
∗ 100 (6)

Chang et al. [10] measure the accuracy of an SVM classifier as the number of

correctly predicated samples divided by the total sample size of the test data.

Due to the reliability of the LIBSVM library the reported accuracy can be used

to test future implementations of SVMs.

9



3 Background Subtraction

This section discusses approaches for background subtraction, or as it is

sometimes referred, foreground segmentation. Background subtraction is the

process of removing the uninteresting or unwanted regions of a video in order to

highlight the foreground or objects of interest. Many methods fit each pixel

value in a frame to a background model based on probability using previously

observed values. The most common methods along with more modern

approaches are presented. This includes the running Gaussian average

(Section 3.1), Mixture of Gaussians (Section 3.2), ViBe (Section 3.3), pixel-based

adaptive segmentation (Section 3.4), and a couple techniques used in a similar

problem domain (Section 3.5).

3.1 Running Gaussian Average (AccAvg)

Running Gaussian average is one of the most basic background subtraction

techniques [17, 18] and has also been effective in applications with a static

background such as traffic cameras [12, 28]. This technique works by storing a

model of the background Bt and calculating the distance of each new image It

from the background model. If this distance is larger than a provided threshold,

τ , then the pixel at that location is marked as foreground. This threshold can be

seen in Equation 7.

|It −Bt| < τ (7)

The background model can then be updated by using an exponential moving

average which slowly adapts to changes:

Bt+1 = α · It + (1− α) ·Bt (8)

Where α is the rate at which the model adjusts and t is the current frame

index.

10



There are a few effective methods for cleaning the results from a simple

running Gaussian average as pointed out in [17]. The first is to clean up the

foreground mask with some type of filter. Both a median filter and an

open/close [29] filter work well. If a pixel has been marked as foreground for too

many consecutive frames it can be set in the background model to prevent long

standing false detection in the event of a sudden lighting change. Finally if a

pixel is rapidly changing from foreground to background it can be masked to

prevent sporadic and unreliable detection.

3.2 Mixture of Gaussians (MOG)

MOG is a widely used and robust background subtraction algorithm used in

OpenCV [30]. It is based on modeling the background pixels as a combination of

surfaces [31] which is further described as a Gaussian mixture model. The

probability of a pixel belonging to the background is described as a sum of

Gaussians:

fX(X|Φ) =
K
∑

k=1

P (k) · fX|k(X|k, θk) (9)

Where P (k) is the probability of the surface k appearing in the pixel view and

fX|k(X|k, θk) is the Gaussian distribution for surface k with Φ being the set of

theta input parameters (θk = µk, σk) for the Gaussian distributions describing

each surface.

Power and Schoonees note that P (k), µk, and θk are typically estimated with

running averages calculated at each frame [31]. Also, fX|k(X|k, θk) for a pixel

value x can be estimated by a Boolean value, true if x is within 2.5 standard

deviations of the mean, false otherwise.

With MOG, similar techniques to those in Section 3.1 can be used to clean

results. The use of an open/close filter is especially useful for removing noise.

11



3.3 ViBe

ViBe [20] is a background subtraction algorithm based on random substitution

and spatial diffusion. Van Droogenbroeck et al. [20] approach background model

formulation with stochasticity in order to increase the robustness of their

algorithms and increase the range of background pixels stored in the model.

Since ViBe does not rely on statistical modeling of pixel history, the authors

believe it can better match a pixel’s true history by actually using past pixel

values. This means ViBe can fit multimodal pixel histories and better adapt to

slight background movement.

To model the background, ViBe stochastically stores 20 previous pixel values

and compares new pixel values to this pixel history. If a pixel value matches (see

Equation 7) two of the stored values then it is classified as part of the

background, otherwise it is masked as foreground. This method of classification

allows for up to 10 different background models to be fit by ViBe.

As alluded to earlier, updating the background model is a stochastic

processing in ViBe. Each new observed pixel value has a 1/16 chance to

overwrite a random position in the 20 previously stored pixel values. Previous

pixel values are not stored as a FIFO queue since this implies some linearity to

background pixel occurrence which is typically not the case in real world data. If

a pixel history is updated there is another 1/16 chance to update one randomly

selected neighboring pixel. This random update process allows for an adaptive

model that can slowly absorb foreground object that have become part of the

static background.

ViBe employs the use of an open/close filter to remove noise from the

foreground mask as in 3.1. Van Droogenbroeck et al. [20] also suggest using the

filtered mask as the update mask such that ViBe will add the unwanted noise to

the background model.
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3.4 Pixel-Based Adaptive Segmentation (PBAS)

PBAS, introduced by Hofmann et al. [21], is a foreground segmentation

algorithm that uses the stochastic portions of ViBe [20] along with pixel-based

adaptive thresholding and updating. PBAS adjusts thresholds to the pixel

variance in the image by dynamically setting the threshold, τ , as shown in

Equation 7, and the probability of pixel update from Section 3.3.

Hofmann et al. [21] measure background dynamics by calculating the mean

from a stored array of previously observed minimum pixel differences [21]. When

background dynamics are high, a larger threshold, τ , can be used to reduce noise

and the probability for updating the background model can be increased to allow

for quicker absorption of false foreground detection. By contrast, when

background dynamics are low, a smaller and more precise τ can be used with a

smaller update probability to keep foreground detections in the foreground

longer. This means PBAS allows for strong foreground segmentation on pixels

with a highly static background while simultaneously using a more lenient set of

parameters on highly dynamic regions of the image such as water or foliage.

3.5 Background Subtraction on Distributions

Work in a similar domain, the observation of avian behaviors, has been done by

researching background subtraction techniques as a method for observing birds

visiting a feeder [32, 33]. This environment naturally has an active background

with foliage movement, however birds drawn to feeders are not typically in their

ideal environment for camouflage and since they are feeding tend to be more

active than when on the nest. The technique proposed in [32] was designed to

solve noise generated by background movement by looking at pixel neighborhood

distributions but is more computationally expensive than pixel-based approaches.
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3.6 MotionMeerkat

MotionMeerkat is a general use tool to detect motion in ecological environments

created by Ben Weinstein [34]. The tool is used to alleviate the process of video

stream data analysis by extracting frames with motion from a video file.

MotionMeerkat can either use MOG (Section 3.2) or a version of AccAvg

(Section 3.1) for foreground segmentation and then uses blob detection and

thresholding to determine if a foreground object it present. Weinstein’s results

show that MotionMeerkat is successful in many ecological environments but is

still subject to problems such as rapid lighting changes, and camouflage.
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CHAPTER III

METHODOLOGY

In this chapter we discuss the methods and techniques used for both the

machine learning and background subtraction approaches. In Section 1 we cover

the data collection process from both expert scientists (Section 1.1) and

volunteer computing (Section 1.2), SVM training (Section 1.3), analysis

(Section 1.4), and testing (Section 1.5). Section 2 covers the changes made to the

ViBe and PBAS algorithms (Section 2.1) and the process used for converting the

detected foreground into computed video events (Section 2.2).

1 Feature Detection

The feature detection research aims to automate the process of classifying the

Wildlife@Home video events. Specifically the On Nest and Not In Video events.

The process of collecting data, training a SVM on the data, and then testing the

SVM for accuracy requires many different steps and precautions in order to

maintain data accuracy. At each step a layer of complexity is added that

typically requires a translation of the data into a new data type or format that

can then be handled by the next process in the workflow.

The workflow uses human observations, volunteer computers, and local

computers in order to finally train and test a SVM. First, a scientist must view

the video and mark events that occur with a start time and an end time. The

marked events are then sent to volunteer computers and the SURF algorithm is

used to collect feature descriptors which can be tagged with the event types

marked by the scientists. Finally these marked descriptors are used to train and

test the SVM on a local machine.

15



1.1 Expert Classification

To understand the difficulty of the problem and for the best chance of a working

classifier, we start with the most accurate data for training the SVM. This means

using only video classified by experts for training as there may be errors in the

volunteer classifications. Experts include anyone approved to authoritatively

decide the correctness of events in a video, specifically the wildlife biologists

working on the Wildlife@Home team. The classification process involves tagging

events in the video along with a start time and end time for each event. Events

include a variety of behaviors such as Eggs Hatching, Chick Presence, Parent

Feeding, Brooding, Nest Exchange, On Nest, Not In Video, and many others. An

example of the interface used to enter these events can be seen in Figure 1.

1.2 Descriptor Collection

Feature collection is the process of extracting features from each frame of the

video using a feature extracting algorithm such as SIFT[5], SURF[6], FAST[35],

HOG[13], etc. We use SURF for Wildlife@Home due to its ability to identify

partially hidden objects such as the Sharp-Tailed Grouse in large amounts of

foliage. SURF is sensitive to its input parameters and is tested with the input

video to produce a reasonable number of features. Each feature is then converted

into its location and orientation independent counterpart called a descriptor. In

the case of SURF this is an array of 64 floating point values between -1 and 1.

Once collected, the descriptors are added to a global array of descriptors.

This process is done for each active event type in the current frame. For

example, each event in a video will have a type, such as On Nest, Brooding, Nest

Exchange, etc. Each event contains a start time and end time. If the current

frame is within the start and end time of a Brooding event then those descriptors

will be added to the Brooding event type descriptor list. Likewise for overlapping

events, if the frame contains both Chick Presence and On Nest then that frame’s

descriptors will be added to both event type descriptor lists.
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Video Streaming Server Volunteer Computing Server
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Crowdsourcing 
Portal

Video Assimilation Daemon

Compresses, watermarks, and converts (mp4 
and ogv) video for streaming and download. 

Video info is stored in OVID upon completion.

Raw Archival Video

Streaming Video
Observation and 

Video Info 
Database (OVID)

Volunteer Computing 
Hosts Crowdsource Users

Raw survey 
video is 
uploaded to 
the server.

Portal 
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determine 
which videos 
to show 
users.

User observations are 
validated against each other 

and stored the OVID.

BOINC work 
units download 
and process the 
streaming video.

Website users stream 
video from the video 
server.

BOINC daemons 
validate results 
from multiple 
hosts and store 
results in the 
OVID.

Figure 4: Wildlife@Home uses two servers to manage videos, crowdsourcing, and
volunteer computing data. The video streaming server stores videos, prepares
them for viewing/download and stores crowdsourcing and volunteer computing
results in the OVID. The volunteer computing server houses the crowdsourcing
webpages, user and host information, along with the daemons for generating and
validating work.

In order to prevent the collection of duplicate descriptors between frames we

match each of the existing descriptors with their nearest match in the new set

using brute-force matching. We then calculate the standard deviation of these

distances and only accept the new features classified as outliers.

Depending on the algorithm, parameters, video, and processor, the collection

can take a few hours for each video. In our data set each video is anywhere from

30 minutes to two hours in length. In order to address the computational

expense of this, we use volunteer computing with the Berkeley Open

Infrastructure for Network Computing (BOINC) [36] to process each video on a

volunteer host and return the collected descriptors. Each program and set of
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data files sent to a volunteer is called a work unit. The Wildlife@Home network

architecture can be seen in Figure 4.

Once each work unit is completed its output is validated against a second

work unit result to ensure data integrity. This is is done by validating the events

and descriptors returned from each volunteer. First, the validation daemon

makes sure both return the same event types, then it checks the number of

descriptors returned for each type, and finally that each descriptor is a match to

the descriptor from the other work unit. If there is an error at one of the steps a

new work unit is sent out until a quorum is reached.

Once validated, the results are assimilated into a file structure sorted by a

work unit tag, species, nest location, and video id. Each video id folder contains

a file for each event type with its descriptors. These collected files can be

combined or organized based on how the data needs to be analyzed.

1.3 Train SVM

For this classification problem we have chosen to use a SVM because of its ability

to work with extremely complex boundaries, not only in high dimensionality but

also data overlap. In addition to allowing a soft margin, SVMs also allow for a

weighted margin which will train to heavily favor the correctness of one class.

These SVM parameters help when training on descriptors from video where we

have a lot of overlap between the positive and negative data sets.

Using the collected descriptors to train an SVM means organizing the data

into two groups, a set of positive examples and a set of negative examples. This

can be done in a couple different ways, however, if we want to use cross

validation to test the SVM, we must partition the video files prior to combining

the descriptors. We use leave-one-out validation so we choose a video which

contains both the positive and negative event types to validate against.

First, we need to pick the event type or types we want to train the SVM to

detect. We can either choose all non-positive events to be considered negative or
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we can specify the negative event types and ignore the rest. To detected bird

presence we picked On Nest for the positive type and Not In Video as the

negative type. These two types will minimize the overlap of positive and

negative descriptors.

Next, we have the problem of the On Nest descriptors containing many of the

Not In Video descriptors. This can be alleviated by finding the matches between

the two sets and removing very close matches from the On Nest event type

descriptors. This process can be ignored because a well parameterized SVM

should be able to ignore the overlap, but it will make training much faster by

reducing the training set size.

Once we have our training data we can begin training the SVM. For this we

used LIBSVM[10]. For a general idea of training parameters we used the

LIBSVM grid search program and from there customized the parameters. With

our data, best results were achieved using C-SVC SVM and a Gaussian kernel:

e−γ|u−v|2 (10)

Where γ is the Gaussian kernel multiplier. Other parameters to the SVM

include c and w where c is the SVM cost multiplier, and w is a vector of cost

multipliers for each classification category such that wi is a multiplier for some

class i. In this case we heavily penalize all false positives and relax false

negatives. This gives a heavily skewed SVM to correctly classify all negative

examples. We want this skewed SVM to help detect event presence, too many

false positives will invalidate the classification process. Also note that, depending

on the event type and feature set, a very different set of SVM training

parameters may work better for a different feature set. Results from this are in

in Chapter IV Section 1.
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1.4 Measure Error

Since we are using a leave-one-out cross validation technique we can get a basic

understanding of how well we have trained our SVM by checking the training

error. We do this by comparing the accuracy of the training examples and the

testing examples. We use the following formula for accuracy:

A =
true positives + true negatives

number of examples
(11)

Both the training and testing accuracy should be similar to each other but

larger than the minimum accuracy shown below:

minA =
max (positives, negatives)

number of examples
(12)

If our accuracy, A, for either the training or testing examples is equal to the

minimum accuracy there is a good chance the SVM classified all examples into a

single class. A quick check of the output data can confirm this. We can get a

reasonably accurate SVM if Atest and Atrain are both greater than the output

from Equation 12 and Atest ≈ Atrain.

SVM accuracy is sensitive to the input data and parameters so finding good

training data is important to establishing a reliable SVM for the classification

problem.

1.5 Testing

Even with a well-trained SVM and acceptable training error, it is difficult to

show that the SVM correctly classifies the descriptors from a video. In order to

help test the SVM we need to somehow calculate or show that the points

classified are accurate in depicting the object of interest. We do this by color

coordinating the keypoints from a video by their classification. Positively

classified points colored green and negatively classified points colored red. We

also color points that closely match the training descriptors as blue in order to
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determine the accuracy of our training data. Since each frame has a very

sporadic number of points accepted depending on the position of the bird or

lighting we show the positively classified points (green) and training descriptors

(blue) permanently. An example of this is in Figure 5.

2 Background Subtraction

The goal of this research is to determine which algorithms can best highlight

regions of uncontrolled outdoor video with interesting events. This ideally can

act as a filter and help scientists focus on segments of video that require their

attention and letting them skip less interesting segments of video. The

background subtraction methods need to be resistant to noise and handle quick

correction of camera lighting problems while still being sensitive enough to

detect the motion of a small to medium sized animal with cryptic coloration.

The usefulness of these algorithms is sensitive to the number false positives and

false negatives. Too many false positives and there many not be a significant

length of video that can be classified as uninteresting, while too many false

negatives may leave many interesting events unclassified and unwatched. An

example of this is observed when comparing scientists’ observations to positive

events from the algorithms, as in Figure 6. An almost continuous stream of false

positives can occur when vegetation moves in the wind when the grouse is not

even at the nest (see Figure 6a), but on less windy days we see increased

agreement between the two classifications (see Figure 6b).

Three different algorithms were evaluated for their ability to accurately detect

motion in Wildlife@Home’s Interior Least Tern, Piping Plover and Sharp-Tailed

Grouse video. Running Gaussian Average (see Chapter II Section 3.1) was

chosen as the baseline for performance as it is considered a good performer, easy

to implement, and proven useful in real world applications [12, 17, 18, 28].
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2.1 Algorithm Modifications

Modified versions of ViBe [20] and PBAS [21] were implemented and compared

to MOG and AccAvg. ViBe is a good fit for this problem space as it is

non-parametric and can be quickly initialized to prevent a large number of initial

false positives. PBAS is an algorithm that adjusts its thresholding and update

parameters on a pixel-by-pixel basis. PBAS is also good for this problem, where

certain parts of the image are very noisy and at times entire sections of the video

are polluted with dynamic lighting changes. PBAS will dynamically increase the

foreground classification threshold during portions of a video affected by lighting

changes and can learn to ignore regions of a video with large background

variance such as in the grouse video (see Figure 2) where grass movement will

span a large area of the video (100’s of pixels) and pixel neighborhoods are not

enough to detect the movement.

Modifications were made to improve performance on the noisy video and

subjects with cryptic coloration. Initialization of ViBe and PBAS were adjusted

to be second-frame-ready by adding the minimum number of values to the

background model to match the first frame and filling the rest of the background

model with values from random locations in the frame. This initialization allows

for fast adaptation to subsequent frames if the background has a lot of motion

while maintaining the minimum requirement to match the likely similar

following frame. An open/close [29] filter was also added to reduce foreground

detection noise in the output mask. The mathematical morphology removes

small unconnected bits of noise while maintaining the larger connected regions.

This prevents many false detections due to video compression and camera

induced noise. Depending on the video resolution, filter size may be adjusted

accordingly. Finally, in order to improve detection of birds, we use the convex

hull of any connected foreground regions as the foreground mask. Since much of

the birds are a similar color to their environment, generally only small areas are

detected such as the head, tail feathers, and shadow, and much of the body can
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remain missing or segmented. The addition of a convex hull to connected

foreground regions highlights bird movements and increases algorithm

confidence. The convex hull may also be used in the future to detect extreme

lighting changes since this will also emphasize large scene changes.

2.2 Event Calculation

The conversion from the foreground mask to calculated events is done with

time-series analysis. An event is defined as a specified video segment marked

with a start and an end time. Foreground pixel counts are taken as a series of

data points, and these are smoothed by using an exponential moving average.

This further reduces detection noise and sporadic peaks. Once the data is

smoothed its mean (µ) and standard deviation (σ) are calculated and used to

determine which frames have more than 3σ foreground pixels using the

inequality in Equation 14. If this is the case, it is marked as a significant event,

otherwise it is ignored. Experimentation can be done to determine a good

threshold for the standard deviation.

The equation for the exponential moving average is:

mt = α · xt + (1− α) ·mt−1 (13)

where mt is the mean at time unit t, xt is the number of foreground pixels at

time t, and α is the weighted decrease or learning rate. As α → 1 the new data

is more heavily weighted. An example this time-series data compared to when

scientist marked events occurred can be seen in Figure 7.

The calculation of significant foreground events is done using the following

threshold inequality:

xt > µ+ 3σ (14)

This threshold is a good indication of foreground activity even when the video
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has a moderate amount of noise since noisy regions are either smoothed or taken

into consideration in the time-series mean. The calculated foreground activity

can then be compared to scientists to determine algorithm accuracy, as shown in

Figure 6. By calculating events from regions with an abnormal amount of

foreground pixels, a measure for the amount of foreground activity taking place

is provided. This activity can then be compared to scientists to determine the

accuracy of each background subtraction algorithm as shown in Figures 6 and 7.

An example of the correlation between background subtraction events and

scientist-observed events can be see in Figure 7. The arrows indicate human

observed events in comparison with the time-series for each of the three

algorithms. The data in these two examples are highly correlated with little

noise and few false detections. It can also be observed that PBAS is very quick

to adapt to changes while ViBe has the largest detection emphasis among the

three algorithms.
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(a) Sample I

(b) Sample II

(c) Sample III

Figure 5: These samples show the progression of feature collection and classifica-
tion on a Tern nest. We see a frame with no feature overlay (5a), a frame with
a few features overlaid at the beginning of the video (5b), and a frame with all
the features from the video overlaid (5c). Feature descriptors used for training
are shown as blue circles (cumulative), additional positively classified descriptors
are shown as green green circles (cumulative), and red circles indicate negatively
classified descriptors (non-cumulative). Red boxes around the UND logo and the
video timestamp indicate regions of the video excluded from the feature detection
algorithm.
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(a) Timeline I

(b) Timeline II

Figure 6: Timelines showing the number of false positives in a windy grouse video
(6a) against those in a less windy grouse video (6b). The highlighted regions show
time segments from the background subtraction results where there is no bird on
the nest. These timelines were created using the Google Charts API [37] and are
easily embedded in the Wildlife@Home user interface.

26



(a) Sample I

(b) Sample II

Figure 7: Example of event and foreground pixel count correlation. Red arrows
indicate a scientist-observed event and lines indicate foreground pixel count for
each algorithm.
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CHAPTER IV

RESULTS

In this chapter we cover results from both the feature detection (Section 1)

and Background Subtraction (Section 2) methods. Results in each section

include a summary tools used to collect data, the size of the analyzed data, and

a discussion on the effectiveness of each technique.

1 Feature Detection

Approximately 500 computers processed more than 63 million images for the

Wildlife@Home SVM classification project. More than 3,500 work units have

been successfully processed by volunteers with Linux, OSX, and Windows

computers and have collected SURF descriptors for more than 1,750 hours of

wildlife video. Most work units process a single hour long video recorded at 10

frames per second. Each work unit typically takes 3 hours of CPU time

depending on video length, the number of descriptors being handled, and

processor speed. Depending on SURF parameters and video content each work

unit returns roughly 2,000 descriptors for each event type in the video. These

descriptors are stored for SVM training and testing.

For testing results, a variety of parameters were chosen for SVM training with

LIBSVM. Initial parameters were determined by the LIBSVM grid search

program, grid.py. All tested results fall in the ranges below:

γ = 0.5 to 10.0

c = 0.5 to 10.0

w−1 = 0.5 to 50.0

w+1 = 0.5 to 50.0
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Descriptors were collected for Sharp-Tailed Grouse, Interior Least Tern, and

Piping Plover. For each species 5 different SURF minimum Hessian values were

sampled, 100, 150, 200, 300, and 500. The Hessian value controls the threshold

for a Hessian corner detection algorithm used in SURF for determining which

points in the image to use a possible point of interest. The lower the minimum

Hessian threshold value the larger the number of descriptors collected from each

frame.

1.1 Video Identification Results

We selectively chose a single tern nest for testing as there is less background

noise and fewer descriptors collected from the video background. Since many

videos have dramatic lighting changes and indistinguishable objects at night we

removed nighttime footage and videos with dramatic shadow changes from sun

orientation. These videos greatly skew results from the feature detection

algorithms which focus on edge and corner detection. Upon removal of these

videos from our selected tern nest we have 24 acceptable videos remaining for

SVM training. These videos contain 25,000 positive and 23,000 negative

descriptors. Three methods could be used to provide data to the SVM as see in

the list below:

1. Train on all 47,000 of the descriptors.

2. Subtract the negative features from the positive features and accept only

those outside of a threshold for training.

3. Manually select the nest location with a bounding box and use the

descriptors in the box as positives.

Method 2 reduces the positive set size from 47,000 to 120 descriptors. Method

3 results in a positive set of about 8000 descriptors. Method 1 is the slowest and

hardest to train because of the volume of features along with the large overlap in

positive and negative features. Method 2 is easiest to train and theoretically the
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most accurate, however the difficulty comes in choosing the descriptor

subtraction threshold. Too large of threshold leads to training on video outliers

such as video artifacts and too large a threshold will continue to have similar

problems as method 1. Method 3 can work well but requires manual selection of

the nest location and will not work if the bird is not always directly on the nest.

We used method 3 in our system to reduce the system memory footprint and

SVM training time, reduce the chance of a possible event classification error, and

to test the algorithms in the best possible scenario. A classification could happen

when an expert marks Not In Video when the bird has just appeared or possibly

quickly entered and exited the camera view. This type of error will cause SURF

to misclassify the extracted features from the incorrectly marked frames and feed

incorrect data to the SVM.

Results for this sample data using method 3 can be seen in figures 5b and 5c.

Keypoints from the video were drawn on each frame and colored according to

their SVM classification. The negative SVM classifications are colored red,

positive classifications colored green, and the closest matches to training data are

colored blue. The green and blue points were redrawn on all successive frames to

show a clustering and get an idea of their overall representation. As seen in

Figure 5b there is very little correlation in the position of points and the location

of the bird but as the video progresses more and more training points start to

position themselves on the bird and around the nest in Figure 5c. However, since

the majority of green points aren’t necessarily enclosed in the same region it is

likely the SVM is not being optimally trained on the descriptors. This is a sign

of overfitting, specifically on any video artifacts that are appearing only in the

positively correlated frames such as parent on nest. If we saw a larger number of

positive classifications than negative classifications it would be a sign of

underfitting the data and accepting too many descriptors.
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Figure 8: Single tern video descriptors run against itself with training features
using method 3 for SVM training. White segments indicate frames where an expert
has marked On Nest and gray regions are segments where the expert marked Not
In Video. The blue line indicates the number of descriptors found to match a On
Nest event. The green line represents the average number of matched descriptors
for its corresponding gray or white time segment.

Figure 9: Three tern videos using leave-one-out cross validation and method 3
for SVM training. White segments indicate frames where an expert has marked
On Nest and gray regions are segments where the expert marked Not In Video.
The blue line indicates the number of descriptors found to match a On Nest
event. The green line represents the average number of matched descriptors for
its corresponding gray or white time segment.
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1.2 Tern Presence Correlation

In order to predict bird presence we selected three Interior Least Tern videos

from the same nest and charted the number of descriptor matches against the

expert classified bird presence events for that video. Results can be seen in

Figure 8 and 9 where the gray background indicates bird presence, white

background indicates bird absence, the blue line is the number of matching

descriptors in each frame, and the green line is the mean for that segment of

either bird presence or absence. Figure 8 shows results for a single video’s

descriptors tested against itself and Figure 9 shows results using descriptors from

videos at the same nesting site against the same video used in Figure 8. As seen

in each case there is a signal indicating an increase in matching descriptors when

the bird is present and a decrease when the bird is absent. The optimal case in

Figure 8 has only a slightly more pronounced signal which indicates descriptors

across videos from the same nest have similar values.

1.3 Effectiveness of Feature Detection

Results from this feature detection research shows that there may be a slight

correlation in the number of SVM matches and bird presence in a video. This

however is not a good indication since we have only trained and tested on the

best possible scenarios and still see mixed results (Figures 8 and 9).

Many factors may be causing the poor performance from the feature

detection. Video quality and resolution, random noise detected during intra

coded frames from video compression, moving shadows from outdoor video, and

a large number of overlapping descriptors from frames with a bird and frames

without a bird can all be causes of poor SVM performance. It is likely that many

of these factors contribute to the results we see in Figures 8 and 9.
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2 Background Subtraction

Three background subtraction algorithms — AccAvg, ViBe, and PBAS — were

run against a set of nearly 70,000 tern and plover videos and more than 22,000

grouse videos. MOG was not used with this data because the OpenCV [30]

implementation at time time of this writing hides MOG’s internal states and is

not serializable for checkpointing on BOINC clients. The plover and tern video

totals approximately 3 years and 9 months of footage, and the grouse video

totals more than 2 years. Videos range anywhere from 30 minutes to 2 hours in

length. Each algorithm runs at more than 10 frames per second (the recording

frame rate) on a hyperthreaded 3.5 GHz core processor and is considered capable

of real-time processing. Results were collected using BOINC and about 300

volunteers. Processing took only 10 days to run the more than 31 years of CPU

time required. Results were compared to more than 20 weeks worth of

observations made by project expert scientists and volunteer citizen scientists to

determine algorithm accuracy.

2.1 Detecting Events with Background Subtraction

Tables 1, 2, 3, and 4 present how well each algorithm matched up to project

scientists and volunteers for Sharp-Tailed Grouse, and Piping Plover and Interior

Least Tern combined. Piping plover and least tern results were combined as the

birds and environments are similar, and both species are being observed for the

same set of events. The Event Count column shows the total number of each

event that occurred in the set of videos analyzed, and the following columns

present how many of those events the background subtraction algorithm found.

Any background subtraction detected events that occur within 30 seconds of

the start or end time of a scientist-observed event are marked as a match.

Multiple matches to the same start and end event from the same scientist are

ignored. Since all three algorithms are adaptive, learning takes place in each

algorithm where it will begin to ignore bird presence and absence on the nest.
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Table 1: Algorithm Accuracy vs Expert Scientists on Tern and Plover Nests

Event Type Event Count AccAvg ViBe PBAS

Preen 274 253 123 187
Scratch 30 30 7 10
Shake 10 10 0 6
Not In Video 1684 1402 769 1432
Brooding Chicks 2 1 1 1
Nest Exchange 46 36 26 38
Foraging 228 212 54 92
Adult-to-Adult Feed 32 20 16 20
Human 8 4 4 6
Nest Defense 12 12 4 10
Predator 12 4 3 8
Non-Predator Animal 22 16 9 14
Unspecified 400 80 48 90
On Nest 2284 1753 847 1621
Off Nest 3158 2548 1582 2489

Table 2: Algorithm Accuracy vs Citizen Scientists on Tern and Plover Nests

Event Type Event Count AccAvg ViBe PBAS

Not In Video 722 630 331 682
Brooding Chicks 42 40 13 42
Nest Exchange 140 128 71 127
Eggshell Removal 2 2 1 2
Foraging 130 127 60 117
Adult-to-Adult Feed 22 22 18 22
Human 8 8 8 8
In Video 60 34 9 52
Eggs Hatching 2 0 0 2
Foraging 14 14 5 14
Adult-to-Chick Feed 36 30 25 36
Nest Defense 6 6 4 6
Predator 2 2 0 2
Non-Predator Animal 68 55 32 62
Unspecified 38 33 25 32
On Nest 1158 1059 525 1052
Too Dark 4 0 1 1
Off Nest 1454 1339 699 1434
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Table 3: Algorithm Accuracy vs Expert Scientists on Grouse Nests

Event Type Event Count AccAvg ViBe PBAS

Not In Video 988 849 473 909
Brooding Chicks 2 2 1 2
Eggshell Removal 8 8 4 8
Human 8 8 6 8
In Video 320 290 289 303
Predator 34 24 6 28
Non-Predator Animal 16 11 8 12
Unspecified 14 13 6 13
Attack 6 6 0 6
Physical Inspection 92 87 25 87
Observation 78 77 35 75
On Nest 916 721 467 739
Video Error 18 7 6 14
Camera Issue 2 1 1 2
Off Nest 1888 1692 984 1787

Table 4: Algorithm Accuracy vs Citizen Scientists on Grouse Nests

Event Type Event Count AccAvg ViBe PBAS

Not In Video 3626 3194 1658 3304
Walking 2 2 2 2
Brooding Chicks 22 20 9 19
Eggshell Removal 104 97 41 99
Human 44 44 8 40
In Video 432 371 322 370
Eggs Hatching 14 13 5 12
Nest Defense 6 6 4 6
Predator 126 118 36 121
Non-Predator Animal 74 62 35 66
Unspecified 48 40 20 45
Attack 84 84 43 83
Physical Inspection 168 164 78 168
Observation 94 91 60 93
On Nest 3812 3039 1640 3116
Too Dark 10 5 2 5
Video Error 86 20 27 58
Camera Issue 18 8 5 12
Off Nest 6296 5874 2948 6096
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Event start and end times that take place within the first 10 seconds of the

beginning of the videos were ignored as the algorithms did not have time to learn

an initial background yet.

Tables 5, 6, 7, and 8 compare results from combining all three background

subtraction algorithms. The Any Alg column shows the number of events that

matched any one of the three algorithms, and the All Alg column shows the

number of events that matched all three algorithms. Using events marked by any

algorithm provided an increase in events detected over PBAS for all event types

and using a consensus showed a decrease in the number of events found. Both of

these behaviors indicate that the events detected by the algorithms are not

subsets of one another. This may lead to a combination of algorithms to increase

overall accuracy but will also combine the false positives from each algorithm.

2.2 Analysis of False Positives

Tables 9 and 10 provide an analysis of false positives generated by the

background subtraction algorithms. False positives were counted by the number

of computer classified events that occur during a user classified Not In Video

event. Results are reported as the mean (µ) and standard deviation (σ) of false

positives occurring during any Not In Video event by any scientist over all videos

tested for that species. Videos without a Not In Video event were ignored to

prevent padding the results. A 10 second buffer is used after the start and before

the end of the Not In Video events to avoid counting edge case movement as a

false positive. This was used as a measure for false positives since at any other

time a detection may correspond to an unmarked event, such as motion from the

bird on the nest.

2.3 Effectiveness of Background Subtraction

The background subtraction results in Tables 1, 2, 3, and 4 show that

background subtraction is accurate enough to be a reliable detection method for
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Table 9: Algorithm False Positives vs Expert Scientists

AccAvg ViBe PBAS

Species Observations µ σ µ σ µ σ

Grouse 790 173.59 241.17 123.77 227.56 203.22 338.57
Tern 99 1.78 7.85 2.04 9.70 1.54 6.78
Plover 239 2.36 10.34 1.02 2.87 1.08 3.07

Table 10: Algorithm False Positives vs Citizen Scientists

AccAvg ViBe PBAS

Species Observations µ σ µ σ µ σ

Grouse 3909 263.72 292.61 180.23 237.15 262.29 305.48
Tern 58 0.41 1.77 1.26 2.41 0.93 2.49
Plover 118 11.53 32.83 5.74 14.82 4.47 8.92

all three species of video. However we see too many false positives on the windy

grouse video for this method to be a useful indicator of event occurrence in those

videos. For all other videos, especially in the case of the Not In Video, On Nest,

and Off Nest events, the detection accuracy is high enough to be useful for

decision making. The other event sample sizes are still too small, requiring more

scientist observations. Both AccAvg and PBAS have high accuracy and a low

number of false positives on the tern and plover video. We see PBAS has a

slightly higher accuracy on the Not In Video and On Nest events which are the

main indicator events for species transitions into and out of the frames.

Interestingly we see AccAvg with a high accuracy on the presumably more

difficult to detect events such as Scratch, Shake, and Foraging events in Table 1.

PBAS is likely the best overall performing algorithm for scientist use due to its

low false positive rate and high accuracy on bird presence indicator events.

The grouse have the highest average number of false positives (Tables 9

and 10) and by far the highest standard deviation of false positives. The large

number of false positives is caused by the more active backgrounds (moving

vegetation) of the grouse. This negatively impacts the usefulness of the grouse

results. However, the high variance in the grouse results suggest that some
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videos may have a low number of false positives, indicating better precision on

less windy videos. We can see this in Figures 6 and 10 where the algorithms all

have a high number of false positives in Figures 6a and 10a and little to no false

positives in Figures 6b and 10b. This also indicates that the high accuracy on the

grouse videos (Tables 3 and 4) is not solely false positives due to moving foliage.

The usefulness of the background subtraction algorithms can be seen in

Figures 11, 12, and 13. In these figures we compare the number of useful videos

for each species by thresholding on percentage of false positives in the video.

This percentage is calculated as the number of seconds of false detection relative

to the number of seconds of Not In Video events for each video. We see that the

grouse videos suffer from a far higher percentage of false positives than the tern

and plover video however above a 20% threshold we see good performance for

the grouse. The tern and plover video requires only a threshold of about 5% false

positives.

2.4 Background Subtraction Inaccuracy and Errors

A major cause for algorithm inaccuracy and large variance in false positives

(especially in the Least Tern samples) is from camera lighting autocorrection

discussed in Section 2 and seen in Figure 14. Changes in scenery brightness from

transitions in time of day or significant overhead cloud movement cause the

camera to adjust brightness and can cause large scale false foreground detection.

If the camera rapidly and repeatedly changes the brightness we see regions of

video that the foreground algorithms cannot adapt to as shown in Figure 14.

Due to the nature of PBAS, it adjusts to the rapid brightness changes but this

still causes false negatives if a scientist-observed event does occur during or

shortly after the brightness adjustments.

Other detection errors are caused by video compression noise, and species

cryptic coloration. The original archival Wildlife@Home videos taken by the field

cameras are compressed by the hardware in part due to storage reasons. With
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these background subtraction algorithms working on moderate to heavy

compression, false positives are caused during transitions between intra coded

frames. More sensitive events such as preens and scratches can be difficult to

detect due to the small amount of motion involved (typically just body rotation

and head movement) given the camera distance and resolution, along with the

cryptic coloration of the species. With the surrounding area taking on such a

similar color to the bird a simple preen or scratch may easily go undetected by a

background subtraction algorithm.

It is also worth noting that many detected events may not line up with the

start or end time of a scientist observation but may still be a cause of bird

motion. For example in Figure 6b, no events occur while the bird is off the nest,

but we see sporadic events while it is on the nest. This could be caused by bird

adjustment on the nest or unmarked bird grooming events. The frequency of

events occurring during a video may also serve as an additional indicator of bird

presence, and merits further investigation.
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(a) Sample I

(b) Sample II

Figure 10: Example of foreground pixel noise in a windy grouse video vs a non-
windy grouse video. This figure corresponds to the timelines in Figure 6. The noise
from foreground motion is very significant in the windy video. The magnitude of
the events in Figure 10b would be lost in noise if the same events occured in
Figure 10a.
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Figure 11: Percentages of grouse videos calculated as useful in relation to a false
positive threshold.

Figure 12: Percentages of tern videos calculated as useful in relation to a false
positive threshold.

Figure 13: Percentages of plover videos calculated as useful in relation to a false
positive threshold.
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(a) Sample I

(b) Sample II

(c) Sample Issue Foreground Count

Figure 14: Rapid and repeating brightness adjust caused by overhead cloud move-
ment. Brightness is alternated multiple times per second creating a messy fore-
ground pixel timeline show in Figure 14c. ViBe fails to adapt to the rapid changes
and both MOG and PBAS become ignorant to small pixel changes required to
detect bird movement.
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CHAPTER V

CONCLUSION

This paper presents an analysis of the use of feature detection and

background subtraction algorithms for the classification and detection of events

within uncontrolled outdoor avian nesting video. The effectiveness of feature

detection was tested with SURF and a SVM while background subtraction was

tested with MOG, Running Gaussian Average, modified ViBe, and modified

Pixel-Based Adaptive Segmentation.

Feature detection using SURF was run using BOINC [36] and used

approximately 500 machines to process 1,750 hours of wildlife video. Each

machine takes approximately 3 hours of CPU time to process a single hour long

video recorded at 10 frames per second. The descriptors collection from the

volunteer computers were processed on a 4 core MacBook Pro using

LIBSVM [10].

The results for the background subtraction algorithms where obtained using

over 68,000 hours of video along with more than 20 weeks of human observations

gathered by project experts and volunteer citizen scientists at the

Wildlife@Home project [1, 2]. Results show that AccAvg and PBAS perform

quite well and reach high enough accuracy to be promising techniques for

detecting video segments that are most interesting and important for an expert

and citizen scientist to observe and classify. This opens up the possibility of

using the modified PBAS or AccAvg as a filter to reduce the amount of time

spent by scientists analyzing the 68,000 hours of video at Wildlife@Home.

1 Feature Detection

Results for learning to detect the presence of birds in wildlife video are not

promising. Too many variables come into play with video quality, cryptic

coloration, camera lighting, and the quality of training data. The feature
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detection used requires very clean training data and this couldn’t be provided by

the current Wildlife@Home event classification system.

Certain aspects of this approach may see improvement with some changes.

The effect of camera lighting on descriptor quality may be reduced with the

normalization of the video lighting using something like Retinex [38, 39]. The

quality of the training data may see some improvements with the user of a buffer

on expert events. This could be implemented by ignoring frames near the

beginning and end of expert events to help prevent misclassifying descriptors

collected by SIFT and SURF.

Using a feature detector that can handle non-rigid objects, such as HOG [13],

may reduce the number of SVM false matches. Since HOG focuses on gradient

changes rather than the detection of corners it may be a better approach to

feature detection.

2 Background Subtraction

Background subtraction shows promise as a useful technique for reliably

detecting interesting video in the Wildlife@Home tern and plover video. The

number false positives in the grouse footage makes it less useful for for scientists

but it remains an accurate method of detecting movement. With PBAS and

AccAvg having relatively high accuracy and low number of false positives they

are currently the best overall performers.

In addition to analyzing more videos, changes can be made in order to more

accurately detect segments of interest within the videos. Rapidly changing

brightness inhibits the background subtraction algorithms. Possibilities for

normalizing scene brightness, such as Retinex [38, 39] or adjusting the

exponential moving average filter to mark video segments with extreme

foreground detection (e.g., larger then 20% to 30% of the frame) remain as

future work. More in-depth improvements could involve taking nest location into

consideration and increasing the importance of foreground pixels located around
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Figure 15: An example of Wildlife@Home’s video viewing interface with computed
events times. Computed event times can be seen in a timeline below the presented
video.

the nest. Since cameras are placed strategically facing the nests we can safely

assume nest location is close to the center of the frame and can easily scale

foreground pixel importance accordingly.

These background subtraction results have been integrated into the video

watching interface (Figure 15) used by project and citizen scientists to gain

human feedback on the correctness of computer calculated event occurrences.

This will not only help confirm the computed results but will also notify users to

a possible upcoming event which could improve human accuracy. Background

subtraction provides a first step towards using automated strategies as a filter

before showing the Wildlife@Home videos to scientists and allowing them to

reliably skip segments of the videos where there is no animal activity.

3 Future Work

This thesis opens up interesting questions and work for the future. Can results

for windy grouse video see performance by emphasizing motion that appears

towards the center of the frame? Would removing large blobs of detected

foreground regions reduce the number of false detections from rapid brightness
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changes? How accurately we predict bird presence by the frequency of detected

events? How useful are these results to scientists? How useful will scientists

perceive these predictions to be? Will the use of these computed events increase

the speed or accuracy of expert and citizen scientists?

4 Final Thoughts

With many scientists turning to surveillance video as a form of data collection

they are limited mainly by the work required to analyze and classify the data. In

the case of Wildlife@Home this is more than 68,000 hours of video. This thesis

examines the used of two different methods to automatically or

semi-automatically reduce the effort required to analyze video. The feature

detection approach had problems classifying events with the low quality, 24/7

outdoor video. Background subtraction fared much better with event accuracy

above 90% for the modified PBAS algorithm. Results show that this work is

general enough to be applied to surveillance video with calm environments as a

method of pre-processing to highlight segments of video with motion events.
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