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ABSTRACT
In the existing literature, little is known about the dynamic behav-
iour of the optimal portfolio in terms of market inputs and arbi-
trary stochastic factor dynamics in an incomplete market with a
stochastic volatility. In this paper, to study optimal portfolio behav-
iour, we compute and analyze the mean and the variance of the
optimal portfolio and of their adjustment speed in terms of mar-
ket inputs in an incomplete market. The incompleteness arises
from the additional source of uncertainty of the volatility in
Heston’s stochastic volatility model. Conducting sensitivity analysis
for the mean and the variance of the optimal portfolio process as
well as its adjustment speed to the market parameters, we find
several interesting behavioural patterns of investors towards asset
price and its volatility shocks. Our results are robust and conver-
gent by the agreement from two simulation methods for different
time step increments and the number of Monte Carlo simula-
tion paths.
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1. Introduction

The volatility and anomalies of the stock market have been the focus of study since
the global financial crisis, especially in emerging Asian financial markets (Gulzar
et al., 2019; Zaremba & Nikorowski, 2019). The questions of the sensitivity of the
optimal portfolio choice and investors’ behaviour in terms of the market parameters,
stochastic factor and risk preferences are central in financial economics and have
been studied primarily in simple economical models (see for example, Kimball (1990)
and Landsberger and Meilijson (1990) and references therein). Kimball (1990) used
’prudence’ as a measure of the sensitivity of optimal choices to risk and focussed on
precautionary saving. Landsberger and Meilijson (1990) studied conditions on distri-
butions and concave utility functions under which investors would demand more of
a (risky) asset. For other types of risky asset portfolio choice, Kołodziejczyk et al.
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(2019) studied Polish real estate portfolio allocation and Nicolae and Maria-Daciana
(2019) studied currency risk portfolios in Romania.

For diffusion models with and without a stochastic factor, some qualitative
results about optimal portfolios can be found in Borrell (2007), Detemple et al.
(2003), Kim and Omberg (1996), Liu (2007) and Wachter (2002). Borrell (2007)
studied the monotonicity properties of optimal portfolios in the classical utility
maximisation problem of terminal wealth and confirmed that the optimal portfolio
in terms of the total wealth invested in a given risk asset at any date was decreasing
in wealth. Detemple et al. (2003) studied the economic properties of optimal port-
folios in complete markets. Kim and Omberg (1996) and Wachter (2002) discussed
dynamic portfolio behaviour in terms of the stochastic risk premium (in fact, mar-
ket price of risk) following the simplest mean-reverting diffusion process, and
Wachter (2002) obtained a closed form solution for optimal portfolios under the
assumption of a complete market. Bergen et al. (2018) provided optimal multivari-
ate intertemporal portfolios for an ambiguity averse investor, who has access to
stocks and derivative markets, in closed form. In Escobar et al. (2017), a stochastic
covariance model is studied and implemented for incomplete and complete markets.
Fouque et al. (2017) presented a formal derivation of asymptotic approximations
for portfolio optimisation with stochastic volatility asymptotic. For recent empirical
research on multi-asset portfolio asset allocation, we refer the work of Isiksal
et al. (2019).

However, little is known about the dynamic behaviour of the optimal portfolio in
terms of market inputs and arbitrary stochastic factor dynamics in an incomplete
market with a stochastic volatility. As pointed out by Zariphopoulou (2009), comput-
ing and analyzing the distribution of the portfolio process as well as its moments
were open questions. In this paper we will address these questions in the framework
of the Heston’s stochastic volatility model.

The Black-Scholes model, a famous mathematical options pricing model in the
field of financial economics, was developed by Black and Scholes (1973). It provides a
theoretical estimate of the price of European option with the assumption that stock
returns are normally distributed with known mean and variance. Under this assump-
tion, price volatility is constant. However, this assumption needs to be fully consid-
ered since volatility plays a crucial role in determining the price of an option and risk
management. To better describe the real-world economic phenomena, Hull and
White generalise the model with the development of the stochastic volatility model in
1987. But their model has its own disadvantages in that it does not have a closed-
form solution and requires solving two-dimension partial differential equations. To
solve this problem, Stein and Stein (1991) assumed that volatility was uncorrelated
with the spot asset. However, their method failed to capture the important skewness
effects arising from such correlations. Subsequently, Heston (1993) developed a new
model, now known as Heston’s stochastic volatility model, allowing an arbitrary
correlation between the risky asset and its volatility. In that model, the Cox-Ingersoll-
Ross (CIR) process was employed to formulate the volatility and its correlation with
the risky asset price (or return). Under such a condition, since there is one risky asset
being traded with two sources of uncertainty (namely, the uncertainty of the risky
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asset’s price and the uncertainty of the volatility), the market is incomplete and no
unique equivalent martingale measure exists. Under the assumption of bounded mar-
ket price of risk, Kraft (2005) obtained a closed form solution for the optimal port-
folio. The closed-form solution allows us to further study the distribution and
moments of the optimal portfolio process as well as its adjustment speed in response
to the market conditions.

The remainder of the paper is structured as follows. In section 2, we describe
the general framework of a continuous-time financial market that consists of one
risk-free bond and one risky asset, as well as the maximisation problem in the
incomplete market. In section 3, we study the impact of market parameters on the
percentage change of the optimal portfolio weight invested in the risky asset. In
section 4, we conduct numerical simulations for time dependent paths, the mean
and variance of optimal portfolio process followed by the study of the sensitivity
of these paths to the market parameters. Robustness and convergence tests
are also performed by comparing different simulation methods, namely, the time
step size and the number of Monte Carlo paths. Finally, we conclude the paper in
section 5.

2. The closed form solution of optimal portfolio

We consider a continuous-time financial market consisting of a risk-free bond and a
risky asset (or stock).

The price, denoted by B, of the risk-free bond, which offers a time-dependent
nominal interest rate of r(t), satisfies

dBðtÞ
BðtÞ ¼ rðtÞdt: (1)

The price, denoted by S, of the risky asset follows Heston’s stochastic volatility
model given by

dSðtÞ
SðtÞ ¼ lðtÞdt þ

ffiffiffiffiffiffiffiffi
vðtÞ

p
qdW1ðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p
dW2ðtÞ

� �
dvðtÞ ¼ jðh�vðtÞÞdt þ r

ffiffiffiffiffiffiffiffi
vðtÞp

dW1ðtÞ
(2)

where lðtÞ is the expected nominal return on the stock, and q (q 2 ½�1, 1�) is an
arbitrary correlation between the stock return and the stock volatility. The parameters
j, h,r>0 and h correspond to the long-run variance while j controls the speed, by
which the variance v(t) returns to its long-run variance h. The two independent
Brownian motions, W1 and W2, are defined on a probability space (X,F ,P) and
FðtÞt�0 is the P-augmentation of the Brownian filtration.

Let us assume that, at time t 2 ½0,T� for a fixed T, a representative investor with
an initial wealth x � 0 invests a proportion pðtÞ1 of his wealth into the stock and the
remaining proportion 1�pðtÞ into the risk-free bond. The corresponding wealth pro-
cess X(t) must then satisfy
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dXðtÞ
XðtÞ ¼ rðtÞ þ pðtÞðlðtÞ � rðtÞÞ½ �dt þ pðtÞ

ffiffiffiffiffiffiffiffi
vðtÞ

p
qdW1 þ

ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p
dW2ðtÞ

h i
,

X0 ¼ x:
(3)

The portfolio weight pðtÞ satisfies the standard assumption of being XðtÞ � 0 self-
financing2 and is deemed admissible if the corresponding wealth process P-a.s. for all
t 2 ½0,T�: We denote the set of admissible portfolio weights by A:

Now consider the following maximisation problem maximising the expected utility
of terminal wealth

max
pðtÞ2A

E uðXðTÞÞ½ � (4)

subject to (3). The utility function u : ð0, þ1Þ ! R is increasing (u0>0), concave
(u00<0Þ3 and satisfies the following Inada conditions

lim
x!0

u0ðxÞ ¼ þ1

and

lim
x!1 u0ðxÞ ¼ 0:

Consider the maximisation problem of (4) subject to (3) in the incomplete market of
(1) and (2) with the CRRA utility function defined by4

uðxÞ ¼ x1�c

1� c
, c>0 and c 6¼ 14: (5)

Under the assumption of bounded market price of risk, Kraft (2005) shows that
the optimal proportion p�ðtÞ in stock is given by

p�ðtÞ ¼ 1
c
lðtÞ�rðtÞ

vðtÞ , (6)

with the variance v(t) satisfying 5

dvðtÞ ¼ jðh�vðtÞÞdt þ r
ffiffiffiffiffiffiffiffi
vðtÞ

p
dW1ðtÞ: (7)

Note the above result is the same as Equation (32) in Proposition 6.1 in
Kraft (2005).
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3. Dynamics and behaviour of the adjustment speed of the optimal
portfolio process

Applying the Itô lemma to the optimal portfolio p�ðtÞ in (6) and using (7), we obtain

dp�ðtÞ
p�ðtÞ ¼ e0ðtÞ

eðtÞ þ
r2�jðh�vðtÞÞ

vðtÞ

 !
dt� rffiffiffiffiffiffiffiffi

vðtÞp dW1ðtÞ, (8)

where, eðtÞ ¼ lðtÞ�rðtÞ is the expected excess return on the stock and positive (nega-
tive) if the expected stock return is greater (less) than the risk-free rate, i.e,
lðtÞ>ð<ÞrðtÞ: The symbols (0) denotes the first derivative.

We define dp�ðtÞ
p�ðtÞ =dt as the portfolio adjustment speed which measures the percent-

age change of the optimal portfolio weight invested in the stock.
Before studying the distribution and behaviour of the optimal portfolio process in

the following section, we first analyze below the mean and variance of the portfolio
adjustment speed, as well as its behaviour in terms of market inputs.

Letting the variance of the stock return converge to its long-run variance, i.e., v !
h, we have

dp�ðtÞ
p�ðtÞ ¼ e0ðtÞ

eðtÞ þ
r2

h

 !
dt� rffiffiffi

h
p dW1ðtÞ: (9)

Dividing (9) by dt and then taking expectation and variance, respectively, give

E
dp�ðtÞ
p�ðtÞ =dt

� �
¼ e0ðtÞ

eðtÞ þ
r2

h
,

Var
dp�ðtÞ
p�ðtÞ =dt

� �
¼ r2

h
=dt:

(10)

Therefore, both the mean and variance of the portfolio adjustment speed increase
with the volatility of volatility r, and decrease with the long-run variance h.

For the general case with t0 � t � t0 þ dt, dividing (8) by dt and then taking
expectation and variance, respectively, give6

E
dp�ðtÞ
p�ðtÞ =dt

� �
¼ e0ðtÞ

eðtÞ þ
r2�jðh�vðt0ÞÞ

vðt0Þ ,

Var
dp�ðtÞ
p�ðtÞ =dt

� �
¼ r2

vðt0Þ =dt:
(11)

From the relationships in (11), we can discuss the impact of the model parameters
on the portfolio weight adjustment speed as follows:

� The expected portfolio adjustment speed E½dp�ðtÞp�ðtÞ =dt� is an increasing function of
e0ðtÞ
eðtÞ which measures the rate of change of expected excess return. Obviously, when
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the expected excess return increases at a faster rate, investors will increase the
weight of risky asset in their portfolio at a faster rate.

� The expected portfolio adjustment speed E½dp�ðtÞp�ðtÞ =dt� is an increasing function of j
when vðt0Þ>h: For increasing j, v reverts downward to h at a faster rate, then the
stock becomes less risky at a faster rate. Thus, the investor increases the weight
invested in the less risky stock at a faster rate. This can be explained intuitively as
follows: When an economic shock occurs, the volatility of the stock market increases
above the long-term equilibrium level, i.e., vðt0Þ>h: The mean reversion speed j
depends on the size of the economic shock. Thus, we can regard j as a measure of
the economic recovery speed. Therefore, the smaller the shock, the quicker the
economy will recover back to the normal state and the volatility of the stock market
will revert back to the long-term level. Under such conditions, the investor quickly
rebalances their portfolio weight as they anticipate the market returning to a normal
state as the economic shock is small and transient. Conversely, when the strength of
the shock is large, such as the 2008 financial crisis, the investor anticipates a slow
economic recovery, generating a small mean reversion speed j and so the investor
rebalances their portfolio in a more gradual way.

� The expected portfolio adjustment speed E½dp�p� =dt� is a decreasing function of j
when vðt0Þ<h: For increasing j, v reverts upward to h at a faster rate, then the
stock becomes riskier at a faster rate. The investor decreases the weight invested
in the riskier stock at a faster rate. During a period of slow economy growth, the
stock market has lower than normal long-term volatility. When the economic
growth picks up speed towards the normal growth rate, the stock market tends to
become more volatile and the investor sells off some of the stock due to risk aver-
sion. The sell-off speed will depend on how quickly the market volatility increases
to the normal risk level.

� Both the expected portfolio adjustment speed E½dp�ðtÞp�ðtÞ =dt� and the variance of the
portfolio adjustment speed Var½dp�p� =dt� increase with the volatility of volatility r
(or variance of volatility r2). In other words, when the price risk becomes more
uncertain, investors tend to increase their weight in the risky asset at a faster rate
and thus the adjustment rate becomes more uncertain. It is interesting to see that
investors like the volatility of the volatility. Due to their risk aversion, investors
reduce their portfolio risk by selling a certain amount of the risky asset when its
risk level (price variance) increases. But the more this risk-level volatility increases,
the less amount of risky asset investors will sell because they believe that such risk
level increase has high uncertainty and the risk level could soon decrease.

� The expected portfolio adjustment speed E½dp�ðtÞp�ðtÞ =dt� is a decreasing function of h.
As the long-run variance h of the stock increases, the investor tends to invest less
into it to avoid risk.

4. The distribution and dynamic behaviour of the optimal
portfolio process

In this section, we compute and analyze the time-dependent paths of the mean and
the variance of the optional portfolio process p�ðtÞ using numerical simulations. We
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further examine the dynamic behaviour of the optimal portfolio process by investigat-
ing the sensitivity of the mean and the variance to the market inputs.

From (8), we can obtain

d ln ðp�ðtÞÞ ¼ e0ðtÞ
eðtÞ þ

1
2r

2�jðh�vðtÞÞ
vðtÞ

 !
dt� rffiffiffiffiffiffiffiffi

vðtÞp dW1ðtÞ: (12)

Integrating (12) gives

p�ðtÞ ¼ p�ð0Þ eðtÞ
eð0Þ exp

ðt
0

1
2r

2�jðh�vðsÞÞ
vðsÞ ds�

ðt
0

rffiffiffiffiffiffiffiffi
vðsÞp dW1ðsÞ

( )
: (13)

When the variance v(t) approaches the long-run variance h, we can get

p�ðtÞ ¼ p�ð0Þ eðtÞ
eð0Þ exp

r2

2h
t � rffiffiffi

h
p W1ðtÞ

( )
: (14)

Taking expectation and variance, respectively, we obtain

E p�ðtÞ½ � ¼ p�ð0Þ eðtÞ
eð0Þ exp

r2

h
t

� �
,

Var p�ðtÞ½ � ¼ p�ð0Þ eðtÞ
eð0Þ

� �2
Exp

3r2t
h

� �
� Exp

2r2t
h

� �	 

,

(15)

for v ! h: When volatility v(t) is not near h, we adopt the Monte Carlo simula-
tion method.

4.1. Monte Carlo simulation for the optimal portfolio process distribution

To apply the Monte Carlo simulation method to simulate the mean and variance of
the optimal portfolio process p�ðtÞ, we discretize the volatility equation in (7) as

vðjÞðtiÞ�vðjÞðti�1Þ ¼ j h�vðjÞðti�1Þ
h i

Dt þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðjÞðti�1Þ

q
Dt � ZðjÞ

i (16)

where i ¼ 1, 2, � � � ,N, j ¼ 1, 2, � � � ,M: N is the number of time steps, M is the
number of Monte Carlo paths, Dt is the time step size, and ZðjÞ

i is a standard nor-
mally-distributed random variable.
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To simplify notations, we define the following variables:

f ðvÞ ¼
1
2
r2�jðh�vðtÞÞ

vðtÞ ,

gðvÞ ¼ rffiffiffiffiffiffiffiffi
vðtÞp ,

YðtnÞ ¼
Ð tn
0 f ðvÞdt� Ð tn0 gðvÞdW1ðtÞ, n ¼ 1, 2, � � � ,N:

Then from (13) we can get

p�ðtnÞ ¼ p�ð0Þ eðtÞ
eð0Þ exp YðtnÞf g: (17)

The numerical approximation of YðtnÞ is given by

YðjÞðtnÞ ¼
Xn
i¼1

f ðvðjÞðti�1ÞÞDt�
Xn
i¼1

gðvðjÞðti�1ÞÞ
ffiffiffiffiffi
Dt

p
� ZðjÞ

i : (18)

Taking expectation and variance of (17), we obtain

E p�ðtnÞ½ �	p�ð0Þ eðtÞ
eð0Þ

1
M

XM
j¼1

ExpfYðjÞðtnÞg,

Var p�ðtnÞ½ � ¼ E ðp�ðtnÞÞ2
� �

�fE p�ðtnÞ½ �g2,
E ðp�ðtnÞÞ2
� �

	 p�ð0Þ eðtÞ
eð0Þ

� �2 1
M

XM
j¼1

Expf2YðjÞðtnÞg:
(19)

4.2. The dynamic behaviour of the optimal portfolio process in terms of
market inputs

Our sensitivity analysis is conducted for various mean reversion speed j, long-run
expected variance h, and the volatility of volatility r. Our simulations are carried out
on a daily basis with a time step size Dt ¼ 1

365 , with the number of Monte Carlo
paths M¼ 500, and an initial weight p�ð0Þ ¼ 0:6: Since our main goal is to study
portfolio behaviour for the different input parameters of the volatility model (7), we
hold the expected excess return e(t) fixed which is assumed in Heston model.7

Figure 1 shows the time-depend paths for the mean and the variance of the opti-
mal weights p�ðtÞ for three different reversion speed j ¼ 0:1, 0:2, 0:5 with h and r
fixed. We set h ¼ 0:04,r ¼ 0:02 and the initial variance vð0Þ ¼ 0:02, which is smaller
than the long-run variance h ¼ 0:04: We observe that E½p�ðtÞ� decreases with time to
the equilibrium weight of 0.3 at a faster rate when j increases. This is reasonable
because j controls the speed by which v(t) returns to its long-run variance h, which
in turn drives p�ðtÞ to a long-run equilibrium as well. But the most interesting aspect
is the evolution of Varðp�ðtÞÞ: We see that the variance rises very rapidly to relatively
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stable values for all three j levels, and that variance falls as j increases. Therefore the
mean reversion speed j not only drives the weight p�ðtÞ to equilibrium at a faster
rate but also impacts the stability of p�ðtÞ with increasing stability as j becomes
larger. Figure 2 shows the case for vð0Þ ¼ 0:06 which is larger than h ¼ 0:04 while all
other parameters are the same as in Figure 1. Here E½p�ðtÞ� increases with time to
equilibrium, and the effect of j on E½p�ðtÞ� for the case vð0Þ ¼ 0:06 is similar to the
previous case of vð0Þ ¼ 0:02: But the effect of j on Varðp�ðtÞÞ is different as shown
by comparing Figures 1(b) and 2(b) though Varðp�ðtÞÞ falls as j increases in
both cases.

In the case vð0Þ ¼ 0:06,Varðp�ðtÞÞ increases at higher rate with the peak value of
0.05 than the case vð0Þ ¼ 0:02 where the peak value is around 0.01. This shows dif-
ferent investor behavioural patterns for two cases: (a) the asset becomes riskier as
vð0Þ ¼ 0:02 increases to the larger long-run expected variance h ¼ 0:04; (b) the asset
becomes less risky as vð0Þ ¼ 0:06 decreases to the smaller long-run expected variance

Figure 2. Time-dependent paths of (a) mean, and (b) variance of the optimal weight p�ðtÞ for
the risky asset under three different mean reversion speed j, with model parameters: p�ð0Þ ¼
0:6, vð0Þ ¼ 0:06>h ¼ 0:04,r ¼ 0:02: Source: The authors.

Figure 1. Time-dependent paths of (a) mean, and (b) variance of the optimal weight p�ðtÞ
for the risky asset under three different mean reversion speed j, with model parameters:
p�ð0Þ ¼ 0:6, vð0Þ ¼ 0:02<h ¼ 0:04,r ¼ 0:02: Source: The authors.
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h ¼ 0:04: As the asset gets less risky(case b), the investor increases the proportion
invested in it in a more chaotic way than the case the investor sells their risky asset
when the asset becomes riskier(case a). This shows that the investor has very different
attitude towards buying assets when the market becomes less risky. On the other
hand, when the market becomes more volatile, the investor will make similar strategy
to sell assets from fear of market risk increasing.

Now we study the effect of the long-run variance h on E½p�ðtÞ� and Varðp�ðtÞÞ:
Figure 3 shows the paths of the mean and variances of the optimal weight for three
different hð¼ 0:01, 0:04, 0:09Þ with vð0Þ ¼ 0:02, p�ð0Þ ¼ 0:6, j ¼ 0:2,r ¼ 0:02:
Figure 4 shows the result for the case vð0Þ ¼ 0:06 in which all other parameters are
the same as the case vð0Þ ¼ 0:02: Here both cases of vð0Þ ¼ 0:02, 0:06 display similar
results. E½p�ðtÞ� increases with decreasing long-run variance h while Varðp�ðtÞÞ for
small hð¼ 0:01Þ is much larger than at larger hð¼ 0:04, 0:09Þ: This shows that larger
long-run variance has a stabilising effect on the weight path. This can be explained

Figure 3. Time-dependent paths of (a) mean, and (b) variance of the optimal weight p�ðtÞ for
the risky asset under three different long-run variance h, with model parameters: p�ð0Þ ¼
0:6, vð0Þ ¼ 0:02,j ¼ 0:2,r ¼ 0:02: Source: The authors.

Figure 4. Time-dependent paths of (a) mean, and (b) variance of the optimal weight p�ðtÞ for
the risky asset under three different long-run variance h, with model parameters: p�ð0Þ ¼
0:6, vð0Þ ¼ 0:06,j ¼ 0:2,r ¼ 0:02: Source: The authors.
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intuitively as follows. As an asset becomes riskier (larger h), the investor will sell the
risky asset in a homogeneous way (small variance) compared to the case when asset
becomes less risky (smaller h), in which the investor becomes greedy by over inves-
ting in the risky asset in a chaotic heterogenous way (large variance).

Finally, we study the impact of the volatility of volatility r on the optimal weight
paths. Figure 5 shows the case vð0Þ ¼ 0:02 and Figure 6 shows the case vð0Þ ¼ 0:06:
The simulations are carried out for three different rð¼ 0:01, 0:02, 0:05Þ holding other
parameters constant as: ðp�ð0Þ ¼ 0:6, j ¼ 0:2, h ¼ 0:04Þ: The two cases vð0Þ ¼ 0:02
and vð0Þ ¼ 0:06 show similar qualitative characteristics for weight paths. E½p�ðtÞ�
decreases to equilibrium for vð0Þ ¼ 0:02, but it increases to equilibrium for vð0Þ ¼
0:06: Here we find both E½p�ðtÞ� and Varðp�ðtÞÞ increase with the volatility of volatil-
ity r, and Varðp�ðtÞÞ becomes less stable with large r. This result can be proved
using (11) where both E½dp�p� =dt� and Var dp�

p� =dt
� �

are monotone increasing functions

Figure 5. Time-dependent paths of (a) mean, and (b) variance of the optimal weight p�ðtÞ for
the risky asset under three different volatility of volatility r, with model parameters: p�ð0Þ ¼
0:6, vð0Þ ¼ 0:02<h ¼ 0:04,j ¼ 0:2: Source: The authors.

Figure 6. Time-dependent paths of (a) mean, and (b) variance of the optimal weight p�ðtÞ for
the risky asset under three different volatility of volatility r, with model parameters: p�ð0Þ ¼
0:6, vð0Þ ¼ 0:06>h ¼ 0:04,j ¼ 0:2: Source: The authors.
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of r. Therefore, the investor tends to be optimistic when the volatility of risk is high
by overinvesting in risky assets.

Further observations can be made about the difference of variance paths for two
cases: (i) vð0Þ<h, and (ii) vð0Þ>h as shown in Figures 1(b) and 2(b), Figures 3(b)
and 4(b), and Figures 5(b) and 6(b). We find larger variances in case (ii) than case
(i), which shows that the investor adjusts their weight in a more chaotic way when
initial return risk is higher than the long run expected risk (case (ii)) than case (i).
On the other hand, the variance paths in case (i) reach their maximal equilibrium at
a much faster rate than in case (ii). This can be explained as follows. In case (i)
vð0Þ<h, the investor will sell asset when the risk reverts upward to higher level h
while the investor will buy asset when risk reverts downward to lower level h. The
investor seems to react to risk increasing quicker than risk decreasing and sells asset
in a more uniform way than they buy asset. This is in consistence with the behaviour
of the stock market in the real world. The fall of the market is often faster than
the rise.

4.3. Robustness and convergence tests

Here we introduce another way to compute E½p�ðtÞ� and Var½p�ðtÞ� to test robustness
of our results obtained above. We refer the method described in Section 4.1 to as
method 1, and the method described below as method 2.

From (6), we can obtain

p�ðtÞ ¼ p�ð0Þ eðtÞ
eð0Þ vð0Þ

1
vðtÞ : (20)

Taking expectation and variance, we get

E p�ðtnÞ½ � ¼ p�ð0Þ eðtÞ
eð0Þ vð0ÞE

1
vðtnÞ
� �

	p�ð0Þ eðtÞ
eð0Þ vð0Þ

1
M

XM
j¼1

1
vðjÞðtnÞ

(21)

and

Var p�ðtnÞ½ � ¼ E ðp�ðtnÞÞ2
� �

�fE p�ðtnÞ½ �g2,
E ðp�ðtnÞÞ2
� �

¼ ðp�ð0ÞÞ2 eðtÞ
eð0Þ
� �2

v2ð0ÞE 1
v2ðtnÞ
� �

	ðp�ð0ÞÞ2 eðtÞ
eð0Þ
� �2

v2ð0Þ 1
M

XM
j¼1

1

ðvðjÞðtnÞÞ2
(22)

where vðjÞðtnÞ is obtained by (16) and M is the number of Monte Carlo paths.
For the illustration purpose, we only show the cases when the initial variance v(0)

is below its long-run variance h. Figures 7, 8, 9 show the comparison of the two
methods for both mean and variance of the optimal weight paths p�ðtÞ for the
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Figure 7. Comparison of (a) mean weight paths, and (b) variance of weight paths from
two numerical simulation methods to test for robustness, with model parameters: p�ð0Þ ¼
0:6, vð0Þ ¼ 0:02<h ¼ 0:04,j ¼ 0:1,r ¼ 0:02: Source: The authors.

Figure 8. Comparison of (a) mean weight paths, and (b) variance of weight paths from
two numerical simulation methods to test for robustness, with model parameters: p�ð0Þ ¼
0:6, vð0Þ ¼ 0:02<h ¼ 0:04,j ¼ 0:2,r ¼ 0:02: Source: The authors.

Figure 9. Comparison of (a) mean weight paths, and (b) variance of weight paths from
two numerical simulation methods to test for robustness, with model parameters: p�ð0Þ ¼
0:6, vð0Þ ¼ 0:02<h ¼ 0:04,j ¼ 0:5,r ¼ 0:02: Source: The authors.
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Figure 10. Comparison of (a) mean paths of weights, and (b) variance of weight paths from
simulations using two different time steps (daily v.s. monthly) with model parameters: p�ð0Þ ¼
0:6, vð0Þ ¼ 0:02<h ¼ 0:04,j ¼ 0:2,r ¼ 0:02: Source: The authors.

Figure 12. Comparison of (a) mean paths of weights, and (b) variance of weight paths from numerical
simulations (method 2) for two different numbers of Monte Carlo simulation paths (M¼ 500 v.s. 1000)
with model parameters: p�ð0Þ ¼ 0:6, vð0Þ ¼ 0:02<h ¼ 0:04,j ¼ 0:2,r ¼ 0:02: Source: The authors.

Figure 11. Comparison of (a) mean paths of weights, and (b) variance of weight paths from numerical
simulations (method 1) for two different numbers of Monte Carlo simulation paths (M¼ 500 v.s. 1000)
with model parameters: p�ð0Þ ¼ 0:6, vð0Þ ¼ 0:02<h ¼ 0:04, j ¼ 0:2,r ¼ 0:02: Source: The authors.
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parameters: p�ð0Þ ¼ 0:6, vð0Þ ¼ 0:02, h ¼ 0:04,r ¼ 0:02 and j ¼ 0:1, 0:2, 0:5 respect-
ively. We find the two methods yield almost the same results. Figure 10 shows the
agreement of results for two different time steps Dt ¼ 1

12 (monthly) and Dt ¼ 1
365

(daily) with the same set of model parameters as in Figure 8. Figure 11 shows the
agreement of results for two different numbers of Monte Carlo paths: ðM ¼ 500 and
M ¼ 1000Þ for method 1 and Figure 12 shows the agreement of results for method 2.

Therefore we can conclude that our results are both robust and convergent in
terms of both the time steps and the number of Monte Carlo simulation paths.

5. Conclusion

We discuss the constraint maximisation problem of maximizing expected utility of
terminal wealth in an incomplete market, where the incompleteness arises from the
additional source of uncertainty of the volatility in Heston’s model. We first derive
analytical formulas for the mean and the variance of the portfolio process and its
adjustment speed, as well as sensitivities to the market parameters. We further con-
duct numerical simulations for the time-dependent paths for the mean and the vari-
ance of the optimal portfolio process. We also conduct a series of sensitivity analyses
for the mean reversion speed, long-run expected variance and the volatility of volatil-
ity and show that these market parameters can have a significant impact on the
investor’s behavioural patterns towards asset price and volatility shocks. Our results
are robust and convergent by obtaining the agreement from two simulation methods
for different time step increments and the numbers of Monte Carlo simulation paths.

Notes

1. Here short-selling is allowed. That is, we do not impose that pðtÞ 2 ½0, 1�:
2. For the formal definition of a self-financing portfolio process please see, for example,

Korn and Korn (2001) page 63.
3. An increasing utility implies that the investor prefers more to less, while a concave utility

is associated with a risk-averse investor. The symbols (0) and (00) denote first and second
derivative, respectively.

4. It is known that, when c converges to 1 (or c ! 1), the power utility function (5)
simplifies to the log utility ln(x).

5. When the stock variance v(t) is constant, (6) becomes the well-know Merton’s
portfolio rule.

6. Note (10) is a special case of (11) when v ! h:
7. For time-dependent excess returns, similar results can be obtained.
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