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ABSTRACT 

IgY, the predominate avian antibody isotype, has biochemical properties that 

make it attractive for a human immunotherapy: IgY does not bind to mammalian Fc 

receptor (FcR) or rheumatoid factor; IgY does not activate the mammalian complement; 

and IgY has no heteroagglutinins.  Anseriformes (waterfowl, e.g. ducks and geese) 

produce 2 isoforms of IgY, full length IgY and alternatively spliced IgY, (IgYΔFc) 

lacking the Fc region and a stable equivalent to mammalian F(ab')2 fragment, and the 

predominate isoform following hyperimmunization. We, and others, have demonstrated 

that egg-derived avian polyclonal antibodies are prophylactic or therapeutic for a variety 

of different infectious agents including bacteria, viruses, and parasites.  

Several routes of administration have been utilized for IgY, although the most 

intriguing has been those that are administered orally. The targets for the successful oral 

administrations have been associated with the gastrointestinal tract, other organ systems, 

and systemic infections.  However, bioavailability of orally administered IgY has not 

been determined. As part of the research presented here, we administered purified goose-

derived IgY via oral gavage to mice and determined seroconversion. Oral IgY is 

bioavailable and can be detected in the serum by 24 hrs. Multiple dosing and buffering to 

pH 8.0 resulted in higher serum titers, with the buffered IgY preparations not detected 

until 48 hrs. IgY was detectable up to 7 days post oral administration. Goose-derived IgY 
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was relatively resistant to intestinal trypsin and chymotrypsin digestion but sensitive to  

gastric pepsin digestion, as demonstrated by others with IgY from other avian sources. 

This demonstration that orally administered IgY is bioavailable significantly increases the 

potential applications of IgY therapy. Furthermore the ability to administer IgY orally 

versus injection provides a novel and efficient means to treat disease worldwide. 

In addition to determining the bioavailability of goose-derived IgY, we tested its 

therapeutic potential in two unrelated disease models. One organism of interest for the 

development of therapeutic IgY is dengue virus (DENV). At present, there are no anti-

viral agents or vaccines approved to treat dengue-induced disease. Dengue hemorrhagic 

fever (DHF) and dengue shock syndrome (DSS), both disease manifestations originating 

from dengue virus infection are severe and life threatening. These disease states are 

mediated by serotype cross-reactive antibodies that facilitate antibody dependent 

enhancement (ADE) by binding to viral antigens and then Fcγ receptors (FcγR) on 

additional myeloid cells. In this study we hypothesized that avian IgY, which does not 

interact with mammalian FcγR, would provide a novel therapy for DENV. Polyvalent 

anti-DENV2 IgY was purified from eggs of DENV2-immunized geese and tested for its 

ability to neutralize and enhance a DENV2 infection both in vitro and in vivo. Our data 

suggests that DENV2 IgY is able to effectively neutralize DENV2 in the absence of 

inducing ADE. DENV2-specific epitopes were determined in both the full length and 

alternatively spliced (IgYΔFc) goose IgY populations and were used to develop affinity 

purified DENV2 epitope specific antibodies.  

The second organism used to test the therapeutic potential of IgY was 

Plasmodium berghei, the causative agent of murine cerebral malaria. Human cerebral 
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malaria is a severe manifestation resulting from the infection of Plasmodium falciparum. 

Although there are successful antimalarial drugs on the market, there are increased 

reports of isolated strains that are drug resistant, therefore highlighting the need for new 

drug molecules or therapies to be used in combination therapy. Here we generated goose-

derived IgY that was specific for Plasmodium berghei, or the merozoite surface protein 1 

(MSP-1) antigens, and determined their ability to treat cerebral malaria in a murine 

model. Mice survived significantly longer and had decreased parasitemia when both 

malaria specific IgY were administered together on days 2 and 4. These data suggest that 

malaria specific IgY is a potential therapeutic candidate to be used in combination 

therapy in order to prolong death and provide time for the combination drug to be 

effective.  
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CHAPTER I 

INTRODUCTION 

Passive immunization 

Passive immunization refers to the transfer of antibodies from an immune donor 

to a non-immune individual. Immunity is often artificially transferred by the injection of 

antibodies or serum isolated from an immune human or animal. Passive immunity can 

also occur naturally from the mother to the fetus during the placental or colostral transfer 

of IgG or IgA. In contrast to active immunity, passive immunization has the ability to 

provide rapid and immediate protection (1, 2). Passive immunization was first reveled by 

Emil Adolf von Behring and his partner Kitasato Shibasaburo when they demonstrated 

that blood serum from an infected animal could be injected into another animal to provide 

immunity. Eventually the blood serum was named antitoxin and was used during the 

early 1900s as a curative agent (3). In the following years, serum transfer was used to 

treat many infectious diseases. Today, passive immunization of immunoglobulin isolated 

from hyperimmune donors is used to treat numerous infectious diseases both 

prophylactically and therapeutically (4, 5).  

Most of the antibodies currently used in passive therapeutics are of human or 

murine origin (4). In order to obtain sufficient human antibody titers for the use in 

therapeutics, pre-screened volunteer donors are generally immunized with the
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antigen, and their plasma is then collected. Alternatively, convalescent sera is collected 

from patients who have successfully recovered from an infectious disease (6). Although 

human-derived antibodies are very effective treatment molecules, there are several 

restrictions and limitations to obtaining them. For example, there are limitations on the 

types of vaccines used, the number of immunizations permitted per individual, the 

adjuvant used, and the amount of total plasma that can be collected (7). In addition, it is 

unknown whether or not individual serum samples are further contaminated with virus or 

other potential microbial species. Some of these limitations can be overcome by using 

other animals as antibody sources.  

Following the development of mouse hybridoma technology there has been an 

increase in the number of therapeutic antibodies of murine origin. Although many of 

these antibodies are currently being used in the clinic, they may not be ideal candidates. 

Murine antibodies have a high potential to be immunogenic when administered to 

humans. Often times the murine antibody is seen as a foreign antigen by the human 

immune system and this triggers an immune response that can lead to the formation of 

human anti-murine antibodies (HAMAs). HAMAs remain in the blood for a period of 

time and can cause adverse reactions in patients, especially if the antibodies are re-

activated during a secondary exposure. Unfortunately, the HAMA response can also lead 

to antibody inactivation and clearance by the host immune system before the treatment 

antibodies are able to provide protection. In order to overcome such challenges, 

researchers designed a technique to genetically modify murine antibodies to make them 

humanized. During this process the Fc portion of the murine antibody is replaced with the 

Fc portion of a human antibody. Often this technique is used with monoclonal antibodies 
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that are specific for a disease antigen. Humanized antibodies are currently being used to 

treat several diseases, and there are even greater amounts that are in clinical trials (8). 

Although humanized antibodies may offer sufficient protection, like the naturally 

occurring human antibodies, they are highly susceptible to unwanted interactions with 

conserved human proteins, and are laborious and costly to generate (9). In recent years 

there has been an increased concentration on the development of avian-derived 

therapeutic antibodies as an alternative to murine-derived passive immunotherapeutics, 

whereas several studies have demonstrated their effectiveness in the absence of unwanted 

host interactions.  

Avian IgY and the Avian Immune System 

 Passive immunization with avian derived antibodies has emerged as an attractive 

alternative approach to treat human and animal diseases. The avian immune system 

differs from those of mammalian species specifically in the genes, molecules, cells and 

organs it possesses, and also in functional mechanisms that it has evolved (10). Most of 

the research that has been performed in order to better understand the avian immune 

system has been done using a chicken model. Although chickens (galliformes) are closely 

related to geese (anseriformes), it is important to understand that the chicken is just a 

model and not all published research directly applies to all avian immune systems.  

 The avian immune system is comprised of both primary and secondary lymphoid 

organs. The primary lymphoid organs include the thymus, bone marrow, and the Bursa of 

Fabricus (BF). The secondary lymphoid organs are the spleen, harderian gland, germinal 

centers, and other diffuse lymphoid tissues. The thymus is located in the neck along the 

jugular vein and is where T lymphocytes both develop and mature. The thymus also 
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includes a subpopulation of B lymphocytes. The bone marrow is the source of precursor 

stem cells for both T and B cells that eventually migrate to either the thymus or the BF 

where they are further differentiated. The BF is located on the dorsal surface of the cloaca 

and consists of thousands of bursal follicles. The BF is the sole site of B cell maturation 

and differentiation (10). In mature birds, the spleen is the major site of antigen processing 

and antibody production. The harderian gland is located behind the eyeball within the 

orbit and is the major secondary lymphoid organ within the head. This gland is comprised 

of a large number of plasma cells with the majority of these cells being B cells.  

 Like the mammalian immune response, the avian immune response is divided into 

an innate and adaptive response. The innate immune response has traditionally been 

considered a non-specific response, however there is increasing evidence that there are 

responses that are specific to different classes of pathogens (10). During the innate 

response the first lines of defense are the physical and chemical barriers; the skin, 

mucosal epithelium, and gastric secretions. The cellular components of the innate 

immune response that confer specificity include the natural killer cells, macrophages, and 

heterophils. Unlike mammals, the avian species do not have eosinophils, basophils, or 

neutrophils (10). Heterophils are the predominate granulated leukocyte that are present 

during the acute inflammatory response in galliformes (11). Heterophils are phagocytic 

cells that both uptake foreign antigens via phagocytosis and release granules. They are 

similar in function to neutrophils but have different granule components (11). Natural 

killer cells are found in the spleen, peripheral blood, thymus, BF and intestine and are 

cytotoxic cells that are important for completing antibody-dependent cellular cytotoxicity 

(ADCC). Macrophages are phagocytic cells that serve as antigen presenting cells and 
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bridge the innate and adaptive immune responses (10). Dendritic cells (DCs) are also a 

population of very efficient antigen presenting cells that are found both in tissues that are 

in contact with the external environment and in the bone marrow (12).  

 There are several cells in the avian innate immune response that have receptors 

that will bind to foreign antigens and initiate the production of cytokines and chemokines. 

These receptors are called pattern recognition receptors (PRRs) and they recognize 

certain conserved molecules called pathogen associated molecular patterns (PAMPs). 

Some of the most studied PRRs in the avian immune system are the toll like receptors 

(TLRs) that recognize both cell surface and endocytic molecules. When TLRs recognize 

PAMPs they initiate signaling pathways that can lead to the activation of NF-κB, type I 

interferons (IFN) and the production of pro-inflammatory cytokines and chemokines 

(10).  

 The adaptive immune response in avian species involves the targeted recognition 

of specific molecular features on the surface of a pathogen, resulting in a series of events 

intended to eliminate the pathogen and prevent future infection (13). Although protection 

conferred by the innate response may be sufficient, the adaptive immune response is 

generally required to clear pathogens and generate immunological memory (10). 

Protection conferred during the adaptive immune response is mediated preferentially by 

either a cell-mediated response or a humoral response, although non-exclusive (13). The 

of presence of certain cytokines and chemokines, and sub sequential CD4
+
 T cell subset 

(Th1/Th2) at the sight of inflammation is what determines the activation of the cell-

mediated or the humoral response, respectively. During an adaptive immune response 

antigen presenting cells (APCs) present antigen within major histocompatibility (MHC) 
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molecules to both T and B cells which recognize the peptide antigen. As a result of cell 

mediated immunity, either CD4
+
 or CD8

+
 T cells are stimulated to proliferate and 

become activated (10). CD8
+
 T cells, also known as cytotoxic T cells are involved in the 

direct lysis of pathogen infected cells and tumor cells (13). CD4
+
 T cells have both 

effector and regulatory functions; specifically they activate macrophages by secretion of 

cytokines and stimulate B cell growth and differentiation.  

 The production of antibodies specific for foreign antigens is a result of the 

activation of the humoral immune response. Antibodies are secreted by plasma B cells 

and are found in both body fluids and tissue spaces. Present in the avian immune system 

are three antibody isotypes, IgM, IgY, and IgA (14). Avian IgM, IgY, and IgA have been 

identified as genetic homologs of mammalian IgM, IgG, and IgA (15, 16). IgM is 

primarily found in the serum and egg white and is present on the surface of B cells (17). 

IgM is generally the first antibody isotype secreted following an infection and it functions 

to bind and activate the avian complement system. IgA is secreted continuously and is 

found primarily in serum, bile, saliva, and at mucosal surfaces, but also found in the egg 

white (17). IgY is the primary serum antibody but is also transferred from the serum to 

the egg yolk during embryonic development. IgY is a homolog of mammalian IgG and to 

some extent functions like both IgG and IgE, and has some characteristics of IgA. In 

anseriformes there are two isoforms of IgY present, the full length IgY, and a smaller IgY 

isoform formed by alternative splicing (IgYΔFc) that lacks the Fc antibody portion. 

During egg formation, both IgY isoforms are passed from the blood to the egg yolk via 

receptors that are specific for IgY translocation (18, 19). The amount of IgY that is 
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transferred from the blood to the yolk is directly proportional to the serum concentration 

(18).  

 The generation of antigenic diversity is remarkably different in the avian immune 

system as compared to the mammalian immune system. In the avian system genetic 

rearrangement contributes little diversity because both the heavy (H) and light (L) chain 

loci consist of only one functional variable (V) and one functional junctional (J) gene. 

Avians use three mechanisms to generate diversity in the antibody repertoire: somatic 

gene hyper conversion, V-J flexible joining, and somatic point mutations (20-23). B cell 

formation takes place in the BF during embryonic development and for a few weeks after 

hatching. The BF is colonized in the embryo between days 8-14 of incubation by 

immature progenitor cells that give rise to differentiated progenitors. The gene 

rearrangement leading up to this takes place at both the H and L chain loci during the 

early colonization process (24). All B cells use the same VL and JL segments (20) so little 

diversity is gained during the VJL rearrangement process. Heavy chain rearrangement 

also generates little diversity because there is only one VH and one JH and approximately 

15 diversity (D) segments used (21). Subsequent V region diversity is generated by 

somatic gene conversion events occurring on days 15-17 of incubation in which 

sequences within the rearranged V region genes are replaced with sequences derived 

from upstream pseudo-V region gene families (20, 21). These pseudogenes are located 

upstream of both the VL and the VJ regions and are defined as pseudogenes because of 

their lack in promoter sequences necessary for transcription, a truncated 5’ or 3’ coding 

region, or lack in recombination signal sequences (20). Once the DNA is transferred from 

pseudo V genes to the recombined VJL or VDJH regions of the immunoglobulin genes, 
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the result is the production of mature B cells that migrate out of the BF and are competent 

to form a functional humoral immune response (9). Approximately 5% of the B cells in a 

newly hatched bird appear to be derived from rapidly dividing extrabursal precursors and 

are potentially the source of peripheral B cells in older birds after bursal involution. In 

mature birds B cells are often located in germinal centers within the spleen or other 

mucosa associated lymphoid tissues. The activation of avian B cells to antibody secreting 

B cells occurs via a similar mechanism to that in mammals. The avian B cell receptor of 

germinal center B cells is modified by somatic hypermutation and gene conversion to 

generate antibody diversity. Immunoglobulin class switching is also occurring 

simultaneously in the avian germinal centers. In the terminal differentiation step 

following antigen encounter, B cells first become plasmablasts and subsequently plasma 

B cells. These cells are able to secrete antibody (IgM, IgA, and IgY) that is specific for 

the antigen encountered (25).  

Structure and Function of IgY 

 IgY is the primary immunoglobulin isotype in oviparous animals and is the 

functional equivalent to mammalian IgG but also has the ability to sensitize tissues to 

anaphylactic reactions (26). IgY is a low molecular weight serum antibody that contains 

two heavy (H) and two light (L) chains and has a molecular mass of 180kDa, which is 

larger than mammalian IgG (159kDa) (27, 28). The H chain of IgY possesses a variable 

domain (VH), four constant domains (Cυ1-Cυ4) and lacks a hinge region. In contrast, the 

H chain of IgG consists of a VH and three constant domains (Cγ1-Cγ3), where Cγ1 is 

separated from Cγ2 by a hinge region (27). Also present in anseriform birds (waterfowl 

e.g. ducks and geese) is a truncated (120kDa) form of IgY lacking Cυ3 and Cυ4. The 
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truncated form of IgY coexists with the full length IgY and is the structural equivalent of 

a F(ab’)2 fragment (28). Both full length IgY and IgYΔFc are generated by the same gene 

but different pathways of mRNA processing (29, 30). It is important to distinguish the 

difference in function between full length IgY and IgYΔFc. During the activation of the 

immune response in avian species IgYΔFc is found later than full length IgY and is 

unable to fix complement and sensitize tissues to anaphylaxis (31).  

Physiochemical properties of IgY and IgYΔFc 

 IgY and IgYΔFc differ from mammalian IgG in their β-sheet content, 

hydrophobicity, and isoelectric points. IgY has decreased β-sheet content specifically in 

its constant domain (32) and thus a potentially more disordered conformation than IgG. 

Full length IgY also has a larger Fc fragment than IgG and is therefore a more 

hydrophobic molecule (33). When comparing the isoelectric point of IgG to IgY, IgY is 

between 5.7-7.6, which is much lower than that of IgG (34).  

 IgY is a relatively stable molecule that is functional at a wide pH range. IgY is 

functional between pH 4.0 -11.0 but changes if above or below (35, 36). IgY activity is 

decreased in a pH 3.5 solution and is completely lost at pH 3.0 (32). IgY is also fairly 

heat stable with minimal loss in activity at temperatures of 60-65°C and significant loss 

in activity when heated to 70°C for at least 15 minutes (32, 35, 37). One way researchers 

have overcome the temperature and pH limitations of IgY is to add additional sugars to 

the antibody solution (38).  

  The stability of chicken IgY has also been tested in the presence of several 

digestive enzymes, specifically pepsin, trypsin and chymotrypsin. The stability of IgY in 

the presence of pepsin is highly pH dependent whereas activity remains high at a pH of 4 
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but decreases significantly at pH 3.5 (39) IgY has moderate resistance to chymotrypsin 

and trypsin and has very little loss in activity after an 8 hour incubation period in the 

respective enzymes (39).  

Advantages of IgY for Passive Immunotherapy 

 The use of IgY in therapeutics has many advantages over the traditional use of 

IgG. One important advantage is the genetic background and phylogenetic distance that 

distinguishes birds from mammals. IgY that is isolated from birds has a higher avidity for 

mammalian antigens and has the ability to recognize different epitopes that may be non-

immunogenic in mammals (9, 27). There are data that suggest that when mammals and 

chickens are immunized with the same antigen, the antibody repertoire that is present 

post vaccination is different between the two animals (40, 41). In one study, chickens and 

rabbits were both immunized with human papilloma virus type 16E7, and antibodies 

were collected and used for epitope mapping with eight peptides. Antibodies isolated 

from the chicken recognized all eight peptides, whereas rabbits only recognized two (40). 

Furthermore it has been demonstrated that avian IgY that is specific for insulin receptors 

in rats was able to inhibit insulin binding, but mammalian (rabbit) antibodies with the 

same specificity could not (41). Another advantage that arises from the phylogenetic 

distance of these two antibody reservoirs is the ability of IgY to be used as an antibody 

against conserved mammalian proteins; proteins so highly conserved that it would 

otherwise be impossible to use a mammalian antibody for treatment (42).  

 The ability of IgY to be easily isolated from the egg yolk poses another key 

advantage to using IgY as an alternative to mammalian IgG. Eggs can be collected from 

laying hens and the egg yolks used as a source of IgY. This is a rather rapid process that 
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enables researchers to avoid serum collection while still maintaining high antibody 

yields. The concentration of IgY present in the egg yolk of immunized birds depends on 

the species, breed, age of the bird, and the antigen injected. Concentrations range from 

60-150mg per chicken egg and 100-500mg per goose egg (43). An average laying hen 

will produce upwards of 1000 to 2800mg of antibody per month, while geese will 

produce even greater amounts. These concentrations are superior to what can be isolated 

from the serum of rabbits or other animal sources (44). It has also been demonstrated that 

older laying hens (2 years) will lay fewer eggs but will produce more IgY per egg yolk 

(43, 45). It is important to note that the IgY isolated from these chicken eggs remained 

stable and was functional over this extended period of time (43). The isolation technique 

used for isolating IgY from egg yolks is also a fairly straightforward process that has 

been exploited by many research groups. Briefly, the egg white is separated from the egg 

yolk, and IgY is extracted using a series of centrifugation and precipitation steps and 

finally purified using chromatography techniques. At present there are a number a 

industrial processes set up for the collection and separation of eggs, making large scale 

production of IgY a feasible option (27).  

 IgY has a number of different Fc mediated effector functions that suggest the use 

of these antibodies would be better tolerated than mammalian antibodies. The Fc portion 

of IgY functions different from IgG and therefore could prevent unwanted interactions 

including the activation of complement, binding to rheumatoid factor (RF), HAMA, and 

the binding to human and bacterial Fc receptors.  

The purpose of the complement system is to initiate the recruitment of inflammatory 

cells, which eventually leads to the clearance of the pathogen from the host. When 
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mammalian antibodies are used for treatment, the Fc portion of the treatment antibody 

has the ability to bind to self-antigens and activate complement. When complement is 

activated under these conditions it can lead to unwanted inflammatory reactions due to 

the production of anaphylatoxins C4a and C5a and antibody dependent cell-mediated 

lysis. When anaphylatoxins are produced they have the ability to stimulate the release of 

cytokines that can lead to the induction of shock in the patient (46, 47). The activation of 

complement can also promote illness similar to serum sickness; immune complexes bind 

to complement leading to the activation of leukocytes and even tissue damage. Although 

IgY can activate complement in the avian system, its distinct structure prevents it from 

being able to activate human complement (48). The Fc region of an antibody is composed 

of different carbohydrates and the composition of this region is what determines its 

ability to activate complement. It has been suggested that IgY is lacking the necessary Fc 

carbohydrates that would allow it to promote activation (49). Therefore, the advantage of 

using IgY would be its potential to prevent the aforementioned possible complications.  

 RF is an autoantibody that is generally associated with patients diagnosed with 

rheumatoid arthritis, but not exclusively (50). RF will interact with the Fc portion of IgG 

but will not interact with IgY. This is important because when RF antibodies bind to the 

treatment antibodies, the treatment will likely be less effective or require a higher dosage 

to be protective.  

 There is also evidence that suggests that IgY does not bind to the bacterial 

proteins Staphylococcal protein A or Streptococcal protein G. Both of these proteins are 

used during IgG affinity purification processes and other immunological bioassays. 

Briefly, the bacterial protein is immobilized within a column matrix, the crude sample is 
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passed through the column, and during this time the bacterial proteins will bind to the Fc 

portion of the antibody in the sample. This becomes problematic if the assay is used to 

purify IgG from a source containing treatment antibodies. There have been several 

studies done to determine the binding capacity of the IgY Fc portion to these bacterial 

antigens. Initially it was reported that chicken-derived IgY does not bind to 

Staphylococcal protein A or Streptococcal protein G (51-54). However, recent reports 

suggest that the reactivity of IgY may depend on the source. Specifically, Justi-Valliant et 

al. demonstrated that when tested by direct ELISA, duck-derived IgY, but not chicken-

derived IgY, reacted with Staphylococcal protein A. It was also determined in this study 

that neither duck-derived nor chicken-derived IgY interacted with Streptococcal protein 

G. When the reactivity of IgY was compared to IgG, IgY proved to have much lower 

reactivity to these bacterial proteins regardless of the source (55). Although these data 

suggest that IgY may have the potential to bind to bacterial proteins, this binding is not 

likely to be Fc mediated due to the structural differences between IgG, IgY, and IgYΔFc.  

Oral Passive IgY Immunotherapy 

 Polyclonal avian IgY is currently being studied for its passive immunization 

applications both in human and veterinary medicine. IgY has been effective against 

several human pathogens and diseases both in vitro and in animal and clinical settings. 

The therapeutic efficacy of IgY has been specifically demonstrated for a variety of 

different infectious agents including bacteria, viruses, and parasites. Some of the most 

prominent research studies suggesting the use of IgY for the treatment of disease will be 

discussed below. 
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Pseudomonas aeruginosa 

 One of the most successful clinical applications of IgY has been in the prevention 

of Pseudomonas aeruginosa (P. aeruginosa) infections in cystic fibrosis patients. Cystic 

fibrosis patients often present with repeated lung infections caused by P. aeruginosa, 

which causes rapid deterioration in lung function and is the major cause of mortality in 

these patients. In an attempt to clear the infection, these patients undergo antibiotic 

treatment. If initial antibiotics fail to eradicate infection, the patient often becomes 

chronically infected and will be subject to continual treatment with antibiotics. Antibiotic 

treatment for prolong periods of time has detrimental effects to the host; specifically it 

can lead to bacterial resistance, secondary infections, antibiotic toxicity, and the reduction 

of normal flora (56-59).  

 There are ongoing clinical trials in cystic fibrosis patients using a mouth rinse 

containing purified anti-P. aeruginosa IgY. Patients were asked to gargle the IgY mouth 

rinse for two minutes and then swallow the rinse, after their last meal and brushed teeth. 

Patients who were treated with the mouth rinse had an increased amount of time between 

subsequent P. aeruginosa infections compared to the control group. Further study 

indicated that those patients treated long term with the mouth rinse had fewer positive P. 

aeruginosa cultures than the control group, and none of the patients in the experimental 

group became chronically infected (60). Results of these experiments were similar in 

another almost identical study researching the long term effects of an anti-Pseudomonas 

IgY mouth rinse (61).  

 Nilsson et al. elucidated the mechanism by which IgY causes decreased 

colonization by P. aeruginosa. These researchers determined that anti-P. aeruginosa 
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binds to flagellin present on the surface of the bacteria. This binding may prevent the 

bacteria from adhering to host proteins and reduce bacterial motility and thus decrease or 

prevent P. aeruginosa infection (62).  

Rotavirus 

Rotavirus is viral pathogen that causes severe acute gastroenteritis specifically in 

infants and children and the young of other mammalian and avian species, including 

calves and piglets. At present, there are two orally administered vaccines that are 

approved for use against human rotavirus and they are widely distributed and effective 

throughout the United States. However, due to the lack of established health care in 

developing countries, it has been difficult to institute an effective vaccination protocol 

and therefore rotavirus induced diarrhea remains the cause of death for millions of 

children (63). The need for a treatment alternative has fueled several researchers to assess 

the potential of rotavirus specific IgY to be used as an oral passive immunization therapy.  

Human trials have been done to test anti-rotavirus IgY in children suffering from 

virally induced diarrhea. Specifically, children that had confirmed cases of virally 

induced diarrhea were treated orally with anti-rotavirus IgY or naïve IgY and stool output 

was determined. By day 4 post treatment, 74% of children treated with anti-rotavirus IgY 

no longer had diarrhea whereas less than 50% of the control group no longer had diarrhea 

(64). Another study was done using gnotobiotic piglets that were experimentally infected 

with human rotavirus at 24 hours of age and treated twice a day for 9 days (days 3-12) 

with cow milk supplemented with rotavirus specific IgY. Treatment with rotavirus 

specific IgY dose dependently protected the piglets from diarrhea and significantly 

reduced virus shedding (65). 
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Bovine rotavirus is a common cause of diarrhea in neonatal calves typically 

through 8 weeks of age (66). Bovine rotavirus in calves becomes a major issue for the 

cattle industry because of financial loss due to a reduction in body weight and the 

expense of treating the disease. The current treatment strategy is to vaccinate the mothers 

and rely on passive antibody transfer from the mother to the newborn calf. Vaccination 

has been somewhat successful, however it does not prevent virus infection. Passive 

immunization with bovine rotavirus specific IgY has proven to be an attractive alternative 

treatment (65, 66) 

Vega et al. experimentally inoculated 2-day-old calves with bovine rotavirus and 

then treated them with milk containing 6% bovine rotavirus immune egg yolk, or non-

immune control egg yolk twice a day for 14 days. In this study, 80% of the infected 

calves that were fed the bovine rotavirus immune egg yolk were protected and the 

antibodies could be detected in the feces at 21 days post infection (66). 

Helicobacter pylori 

 Helicobacter pylori (H. pylori) is the causative agent of gastritis and gastric 

ulcers. H. pylori produces several virulence factors but one of the most important for 

bacterial colonization is the urease enzyme. Urease is able to hydrolyze urea into carbon 

dioxide and ammonia to permit the bacteria to survive in the gastrointestinal tract (67). 

Gastritis and ulcers are caused by the H. pylori induced disruption of the gut epithelium. 

This infection is generally treated with antibiotics although treatment is not always 

successful. Purified anti-H. pylori IgY has been shown to decrease bacterial adhesion, 

growth, and urease activity in vitro and decrease H. pylori induced gastric mucosal injury 

and inflammation in vivo (68). Patients suffering from H. pylori infections were also 
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given a yogurt that contained 1% anti-urease IgY as well as Lactobacillus acidophilus 

and Bifidobacterium species. The patients who drank the yogurt had suppressed H. pylori 

infection compared to the control group (69). In vivo studies using mice have also been 

exploited to test the efficacy of H. pylori antigen specific IgY treatment. In this study 

mice were infected with H. pylori and the anti-Hp58 IgY was administered on day 1, 

week 1, week 4, or week 12-post infection. When administered one week post infection 

there was a significant difference in the degree of gastritis and a higher recovery rate 

compared to the control group (70).  

Streptococcus mutans 

 Streptococcus mutans (S. mutans) is one of many bacteria present in the mouth 

that can cause infections, specifically dental carries. Most treatments are focused on 

eliminating the bacterium or suppressing virulence factors. There have been several 

studies using various forms of S. mutans IgY that provide evidence that IgY can be used 

to treat these infections. Hatta et al. evaluated the efficacy of oral anti- S. mutans IgY 

mouth rinse to prevent bacterial colonization. Those patients who gargled the mouth rinse 

had a decreased level of S. mutans as well as a higher protection from dental carries (71). 

In a randomized, double blind, placebo-controlled study, Nguyen et al. also reported that 

anti-cell associated glucosyltransferase IgY could significantly suppress oral colonization 

by salivary S. mutans (72). Cell-associated glucosyltransferase is essential for the 

production of glucans by S. mutans and is an important virulence factor.  

Salmonella 

  Salmonella enterica serovar Enteritidis (Salmonella ser. Enteritidis) and 

Salmonella enterica serovar Typhimurium (Salmonella ser. Typhimurium) cause major 
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outbreaks in humans but also in other animal species such as chickens. Salmonella 

species have several virulence factors that are targets for the creation of passive 

immunotherapies. One of the virulence factors targeted is the fimbria surface antigen of 

Salmonella ser. Enteriditis. Fimbria is implicated in the bacterial adherence to the 

mucosal epithelium of the host. Peralata et al. demonstrated protection with IgY specific 

for the Salmonella ser. Enteriditis fimbria (SEF) 14. Briefly, SEF-14 specific IgY was 

isolated from the egg yolk of immunized laying hens and given to mice that were infected 

with Samonella ser. Enteriditis. Mice that were treated with the IgY had increased 

survival rate compared to the control mice treated with naïve IgY. When given the 

highest antibody titer the survival rate was 77%, the lowest titer survival rate was 59.3% 

and the naïve IgY survival rate was only 32% (73). The SEF-14 IgY was also tested in 

vitro using isolated murine small intestinal cells. In this experiment the SEF-14 IgY 

decreased the adherence of Salmonella ser. Enteritidis to the small intestinal cells when 

compared to the naïve IgY. These researchers suggest that although the mechanism of 

protection is unknown, it is likely that the SEF-14 IgY is preventing initial attachment of 

the bacteria to the cell surfaces (73).  

 Others have also done research with Salmonella specific IgY targeting the outer 

membrane proteins (OMP) of the bacterium (74, 75). Yokoyama isolated IgY from 

chickens that were immunized with OMP, lipopolysaccharide (LPS), and flagella from 

either Salmonella ser. Enteritidis or Salmonella ser. Typhimurium. These three proteins 

are associated with bacterial virulence. To test the efficacy of the antigen specific IgY, 

mice were infected with either bacterial strain and then orally administered OMP, 

flagella, or LPS specific IgY antibodies. Antibodies were administered three times a day 
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for three days total. The mice that were infected with Salmonella ser. Enteritidis had a 

80% survival rate with OMP IgY, 60% survival rate with the flagella IgY, 47% survival 

rate with the LPS IgY, and 20% survival rate with the control naïve IgY (75). The mice 

that were infected with Salmonella ser. Typhimurium had 40% survival rate with OMP 

IgY, 30% survival rate with LPS IgY, 20% survival with the flagella IgY, and all control 

naïve mice died (75). These research studies demonstrate that IgY specific for Salmonella 

or Salmonella virulence factors has the potential to be used for the passive treatment of 

human salmonellosis.  

Escherichia coli 

 Enterotoxigenic Escherichia coli (ETEC) is an enteric bacterium that causes 

severe diarrhea in both animals and humans. ETEC is one of the most frequent causes of 

childhood diarrhea prevalent in developing countries. ETEC is also the cause of diarrhea 

in newborn calves and in piglets. ETEC uses adhesion molecules to adhere to the small 

intestine and secrete enterotoxins. These enterotoxins cause the increased secretion and 

reduced absorption in the small intestine (76). ETEC is often treated through the use of 

antimicrobial agents and thus finding alternative treatment options is necessary.  

 ETEC specific IgY has been used in research studies to determine its efficacy in 

treating animals infected with the bacterium. Porcine ETEC fimbrial antigens K88, K99, 

and 987P are associated with bacterial adhesion and therefore are good targets for the 

production of IgY. IgY that was produced against these antigens showed to decrease 

ETEC binding to porcine epithelial cells and intestinal mucus in vitro. When piglets were 

treated with the antigen specific IgY, there were no adherent ETEC along the intestinal 

epithelial surface (77).  
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 Other researchers have used freeze-dried K88 fimbiral antigen specific IgY to 

treat piglets or neonatal pigs that were experimentally challenged with ETEC. These 

antibodies were made into a powder and administered orally post infection at different 

time points. K88 IgY was able to protect both the neonatal and 21 day weaned piglets 

from ETEC induced diarrhea in just 24 hours post treatment. Piglets that were given 

naïve IgY powder continued to have diarrhea and only 37.5% of them survived 

(78).  

 Ikemori et al. has exploited the K99 pilus virulence factor to create K99 specific 

IgY powder that can be administered in colostrum to newborn calves in order to protect 

them from ETEC induced diarrhea. In this study the calves were challenged with ETEC 

and then treated with either the K99 specific IgY or naïve IgY powder in milk. The 

calves that received a high titer IgY treatment had only temporary diarrhea and did not 

experience weight loss or dehydrateion, whereas the control group developed severe 

diarrhea and died 3 days post challenge (79).  

Oral therapeutic IgY summary 

 The aforementioned research studies represent a significant amount of evidence 

for the efficacy of orally administered IgY to treat various diseases both contained within 

the gastrointestinal (GI) tract and potentially within other organ systems. Despite this, 

there are no published findings demonstrating the oral bioavailability of these antigen 

specific IgY antibodies.  
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Other therapeutic IgY 

Venom IgY 

 In many parts of the world snakebites and bites from other venomous animals are 

medical emergencies. According to the World Health Organization (WHO) report in 

2007 on snakebites, there are about 5 million snakebite incidences resulting in 2.5 million 

envenoming, and 125,000 deaths that occur annually (80). Envenomation is usually 

performed using anti-venoms that are derived from horse sera. A deleterious outcome of 

using horse sera anti-venoms is that they often contain large amounts of non-specific 

horse proteins that can cause side effects such as serum sickness and anaphylactic shock 

when used for treatment in patients (81-83). Several studies have examined the potential 

of anti-venom IgY for envenomation in order to avoid the unwanted reactions between 

the currently available anti-venoms and the human immune system.  

 One of the first demonstrations of IgY anti-venom was the purification of IgY 

from the egg yolks of hens that were vaccinated with either Cortalid snake venom or 

Leiurus quinquestiratus hebraeus scorpion venom. In this study the neutralizing potential 

of the IgY was tested by mixing the anti-venom IgY with a lethal dose of each venom 

and then injected into mice. All ten mice administered the anti-Cortalid IgY and 7 of the 

8 mice administered the Leiurus quinquestiratus hebraeus IgY were alive at 24 hours 

post infection. All but one of the control mice died by 24 hours post infection (84). 

Several other studies have been done that also suggest the neutralizing potential of anti-

venom IgY is very high (85-87). 
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West Nile Virus IgY 

Past research in our lab has exploited geese as a source of IgY. Initial studies 

aimed to determine if the serum from West Nile Virus (WNV) immune geese could 

protect against WNV infection in geese. Geese were given immune serum prior to and 

post WNV infection and mortality was assessed. Of the ~10,000 geese per group there 

was a 65% reduction in mortality when serum was administered as a prophylactic and 

62% reduction in mortality when administered as a treatment. These experiments were 

repeated with purified anti-WNV IgY and similar results were observed. Purified anti-

WNV was also tested in WNV infected golden hamsters. All of the hamsters treated with 

anti-WNV IgY survived and had viral titers of zero, compared to the sham treated 

hamsters that had 100% mortality and 65% viral titer (Bradley et al., unpublished data).  

 

Summary 

 As evidenced by the significant body of related research, passive immunization 

with avian antibodies is an unconventional and appealing strategy for the treatment of 

infectious diseases. The following chapters will describe the current research in our lab 

focused on the bioavailability of goose-derived IgY, the ability of Plasmodium specific 

IgY to treat murine cerebral malaria, and the epitope mapping and viral neutralization 

capacity of anti-dengue virus IgY.
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CHAPTER II 

BIOAVAILABILITY OF ORAL IGY 

Abstract 

Avian IgY exhibits biochemical properties that make it an attractive human 

immunotherapeutic. Unlike mammalian IgG, IgY does not bind to mammalian Fc 

receptor (FcR) or rheumatoid factor, does not activate mammalian complement, and has 

no heteroagglutinins. The prophylactic and therapeutic efficacy of IgY has been 

demonstrated for a variety of different infectious agents including bacteria, viruses, and 

parasites. The targets for the successful oral administrations have been associated with 

the gastrointestinal tract, other organ systems, and systemic infections.  However, 

bioavailability of orally administered goose-derived IgY has not been determined. In this 

study we administered purified goose-derived IgY via oral gavage to mice and 

determined seroconversion.  Oral IgY is bioavailable and can be detected in the serum by 

24 h. Multiple dosing or increasing the pH resulted in higher serum titers. IgY was 

detectable up to 7 days post oral administration. Goose-derived IgY was relatively 

resistant to intestinal trypsin and chymotrypsin digestion but sensitive to gastric pepsin 

digestion, as previously demonstrated with IgY from other avian sources.  This 

demonstration that orally administered IgY is bioavailable significantly increases the 

potential applications of IgY therapy. Furthermore the ability to administer IgY orally 

provides a novel and efficient means to treat disease worldwide.
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Introduction 

Immunoglobulins are well-established affinity molecules that have applications 

ranging from biochemical analysis, diagnostics, and therapeutics. Mammalian 

immunoglobulins are the most commonly used and have proven to be adequate for most 

approaches. They are however highly susceptible to unwanted interactions with 

conserved proteins and can promote unnecessary immune mediated pathologies. 

Mammalian antibodies have the ability to activate the human complement system and 

thus have the potential to reduce the binding capacity of the antibody to the target antigen 

(88). Furthermore, when complement is activated the anaphylatoxins that are released, 

C4a and C5a, have the ability to initiate unnecessary inflammatory reactions such as 

stimulating the release of TNF-α. Another example is the binding of mammalian IgG to 

the auto-antibody rheumatoid factor (RF). RF is found primarily in patients with 

rheumatoid arthritis but is also found in a small percentage of healthy blood donors (50). 

When IgG binds non-specifically to RF, the total IgG available to interact with the 

disease antigen is decreased. These characteristics among others hamper the use of 

mammalian or humanized immunoglobulins for use as therapeutics.  

The development of unconventional methods to generate antibodies that are 

suitable for use as therapeutics is an area of active research. Immunoglobulin Y (IgY) is 

the major immunoglobulin in oviparous animals. Many distinct properties of this 

antibody type allow it to overcome several of the limitations of the current mammalian 

derived therapeutic antibodies (9). During egg formation, IgY is passed from the blood to 

the egg yolk through receptors that are specific for IgY translocation (18, 19). IgY is the 

equivalent of mammalian immunoglobulin G (IgG), although there are differences in 
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structure and function (6). IgY is a low molecular weight serum antibody that contains 

two heavy (H) and two light (L) chains and has a molecular mass of 180 kDa, which is 

larger than IgG (159 kDa) (27, 28). The H chain of IgY possesses a variable domain 

(VH), four constant domains (Cυ1-Cυ4) and lacks a hinge region. In contrast, the H chain 

of IgG consists of a VH and three constant domains (Cγ1-Cγ3), where Cγ1 is separated 

from Cγ2 by a hinge region (27). Also present in anseriform birds (ducks and geese) is an 

alternatively spliced (120 kDa) form of IgY lacking Cυ3 and Cυ4, IgYΔFc. IgYΔFc 

coexists with the full length IgY, is the structural equivalent of a F(ab’)2 fragment, and is 

the predominant isoform produced during hyperimmunization (28). The use of IgY in 

therapeutics has many advantages over the traditional use of IgG. One important 

advantage is the genetic background and phylogenetic distance that distinguishes birds 

from mammals. This allows IgY to target those antigens or epitopes that may be non-

immunogenic in mammals (9, 27). Avian antibodies will also recognize different epitopes 

than mammalian antibodies, providing an antibody repertoire that is distinct from 

mammalian antibodies (27, 89).  

Most of the biological effector functions of immunoglobulins are associated with 

the Fc region.  The Fc mediated secondary functions of IgY, compared to those of IgG, 

make IgY antibodies highly suitable for use as therapeutics (28). IgY lacks many of the 

interactions with mammalian immune components that promote unwanted cross-

reactivities (9). IgY does not activate mammalian complement, and similarly does not 

bind to human and bacterial Fc receptors on cell surfaces (27, 90). IgY does not interact 

with mammalian IgG, nor does it bind to rheumatoid factors (27, 91, 92) or bacterial 

antigens staphylococcus protein A or Streptococcus protein G (53, 89).  
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Polyclonal avian IgY is currently being studied for its passive immunization 

applications in both human and veterinary medicine. Unlike most of the mammalian 

derived immunoglobulin therapeutics that require routine injections, there is increasing 

evidence that the oral administration of IgY is an effective approach for passive 

protection of both humans and animals. One of the most successful clinical applications 

of IgY has been in the prevention of Pseudomonas aeruginosa (PA) infections in cystic 

fibrosis (CF) patients. There are ongoing clinical trials in CF patients using a mouth rinse 

that contains purified anti-PA IgY and when administered on a continuous basis has 

shown to reduce and even prevent PA colonization, lessening the need for antibiotic 

treatment (60-62, 93). Researchers determined that anti-PA IgY remained active in the 

saliva for 8 hours and could be used for immunotherapy over a long period of time in the 

absence of negative side effects (62, 94). The clinical application of IgY in humans is 

also being studied in the prevention of Helicobacter pylori infections, the causative agent 

of gastritis and gastric ulcers. Anti-H. pylori IgY has been shown to decrease bacterial 

adhesion, growth, and urease activity in vitro and decrease H. pylori induced gastric 

mucosal injury and inflammation in vivo (68). Patients suffering from H. pylori infections 

were given a yogurt that contained 1% anti-urease IgY as well as Lactobacillus 

acidophilus and Bifidobacterium species resulting in suppression of H. pylori infection 

(69). Furthermore, studies using rotavirus immune bovine colostrum passively 

administered during an outbreak in children both significantly reduced the risk for 

rotavirus induced gastroenteritis associated diarrhea and the number of days children 

experienced diarrhea (95, 96). Similarly, Vega et al. showed that anti-human rotavirus 
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IgY passively administered to neonatal piglets as a cow milk supplement protected 

piglets against human rotavirus (65).  

In veterinary medicine, IgY produced against porcine enterotoxigenic Escherichia 

coli (ETEC) fimbrial antigens decreased E. coli binding to porcine epithelial cells and 

intestinal mucus in vitro (77, 97). These antibodies were given to piglets orally and 

protected against E. coli infection in a dose-dependent manner (77).  Similarly, IgY 

specific for Salmonella enterica Serovar Enteritidis and Salmonella enterica Serovar 

Typhimurium reduced Salmonella adhesion to epithelial cells in vitro and when chickens 

were fed egg powder that contained the specific IgY there was a decrease in fecal 

shedding, cecal colonization and the rate of Salmonella-contaminated eggs (74, 98, 99). 

Another successful application of IgY has been in treating newborn calves with egg yolks 

containing anti-bovine rotavirus (BRV) IgY to reduce BRV induced diarrhea (66).  

Although there have been several studies demonstrating the efficacy of orally 

administered IgY in treating gastrointestinal pathogens, the ability of IgY to cross the 

intestinal barrier and enter the blood remains to be determined. Vega et al. reported that 

no human rotavirus IgY was detected in the serum samples from IgY treated piglets, 

however, it was not clear at what time post treatment the serum samples were obtained 

(65). It is important to establish the bioavailability of IgY and the circumstances where 

IgY may be bioavailable in order to increase the potential therapeutic applications of IgY. 

There are several reasons to consider the possibility of seroconversion. IgY is a highly 

stable molecule and has moderate resistance to some of the digestive enzymes, 

specifically trypsin and chymotrypsin (35). The stability of IgY in the presence of pepsin 

is highly pH dependent whereas activity remains high at a pH of 4 but decreases 
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significantly at a pH of 3.5 and below (35, 100). Furthermore, IgY is temperature stable 

up to 60°-70° C (100). In this study we used a murine model to evaluate the ability of 

goose derived IgY to undergo seroconversion in a dose dependent manner both at neutral 

pH and pH 8.0. We also determined the remaining IgY activity following incubation with 

several proteolytic enzymes.  

Materials and Methods 

Ethics Statement 

All research was conducted in compliance with the Animal Welfare Act and 

adheres to principles stated in the Guide for Care and Use of Laboratory Animals (8
th

 

ed.), National Research Council, 2011. All animal experiments were performed under the 

approval of the University of North Dakota IACUC.  

Purification of IgY and IgYΔFc from Goose Egg Yolk 

Yolks were isolated and rinsed with water and then punctured to drain the 

contents and diluted 1:10 with cold deionized water, stirred, and acidified to pH 5.0. The 

diluted yolk was centrifuged at 10,000 x g for 30 minutes, and the supernatant was 

filtered. IgY was further purified via column gradient chromatography (Avianax LLC, 13 

March 2014, US20140073766 A1 patent application).  

Mice 

The common lab strain, B10.T(6R) mice (originally obtained as a gift from Chella 

David, Mayo Clinic and College of Medicine, Rochester, MN) were bred in laminar flow 

containment and were maintained in a clean conventional area within the Center for 

Biological Research (CBR) at the University of North Dakota (UND).  

Administration of Antibody 
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Six to eight week old B10.T(6R) male mice were administered 0.1 mg or 1 mg 

purified IgY or 0.1 mg IgG diluted in 1x PBS by oral gavage with a 20-gauge stainless 

steel oral feeding needle (George Tiemann & Company, Hauppauge, New York). Each 

experimental group consisted of 7-8 mice, and experiments were performed in duplicate.  

Serum collection 

Sera were collected into BD Microtainer serum separator tubes by retro-orbital 

bleeding using Natelson blood collecting tubes (Plain, Fisherbrand) prior to the 

administration of antibody and on various days post administration (as noted). Blood was 

centrifuged for 10 min at 10,000 x g and stored at -80°C until assayed.  

ELISA 

The presence of IgY or IgG in the sera was determined using an ELISA. Briefly, 

microtiter plates were coated with 100 µL of the capture antigen diluted in 1x PBS (Rb α-

Whole goose IgY, 2.5µg/mL for IgY detection; Donkey α-Goat Fc – unlabeled for IgG 

detection) and stored at 4°C overnight. Plates were then washed 3 times with wash buffer 

(1X PBS, 0.05% Tween-20 (Fisher Scientific) pH 7.4) and blocked with 400 µL per well 

of blocking buffer (0.25% BSA (Fisher Scientific), 0.05% Tween-20 (Fisher 

Scientific)1X PBS) and incubated at room temperature for 30 min. Plates were washed 3 

times and 50 µL of each serum sample was added in triplicate and serially diluted down 

the plates. IgY or IgG standards and naïve serum were prepared in blocking buffer and 

added to the plates in duplicate. The plates were allowed to incubate for 30 min at 37°C. 

The plates were then washed 3 times and blocked with blocking buffer for 10 min at 

room temperature. Plates were washed 3 times and 50 µL of capture antibody 

(biotinylated rabbit anti-goose IgY for IgY detection; biotinylated donkey α-goat IgG for 
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IgG detection) was added to each well and incubated for 30 min at 37°C. Plates were then 

washed 3 times and blocked with blocking buffer for 10 min at room temperature. 50 µL 

of diluted streptavidin-HRP (Invitrogen) was added to each well and allowed to incubate 

for 30 min at 37°C. The plates were washed 3 times and 50 µL of prepared OPD was 

added to each well. After 15 min the reaction was terminated with the addition of 50µL of 

1N H2SO4 and the absorbance was measured at A490 (Biotek).  

Western Blot 

Proteins were separated by SDS-polyacrylamide gel electrophoresis (SDS-

PAGE). 27 µL of each serum sample containing IgY (0.1mg IgY from 1 day post 

administration, 0.1mg IgY from 2 days post administration, and 1mg IgY pH 8.0 from 3 

days post administration) was diluted in 9 µL of 4x Laemmli sample buffer and loaded 

into each of the three respective wells. The positive control naïve IgY was diluted in 1x 

PBS and 9 µL of 4x Laemmli sample buffer and loaded in the control well. Proteins 

resolved by SDS-PAGE were transferred to Immobilon-P membranes (Millipore Corp., 

Bedford, MA) using Tris-Glycine buffer. IgY was visualized using 1:10,000 dilution of 

Rb anti-chicken IgY-AP (Sigma-Aldrich) and protein bands were visualized with 

nitroblue tetrazolium and 5-bromo-4-chloro-3-indolylphosphate.  

The effects of proteolytic enzymes on IgY 

For the examination of the effect of pepsin on IgY, pepsin was dissolved in 0.07 

M sodium acetate buffer (pH 2.0 or pH 4.0) at a concentration of 5 µg/mL as previously 

described [30]. The enzyme solution was immediately mixed with either 1 mg or 0.1 mg 

99% purified goose IgY at a weight ratio of 1/200 pepsin to IgY. The mixture was then 

incubated at 37°C at pH 2.0 or 4.0 for the appropriate incubation period (0-4 h). After 
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incubation a 0.45 mL sample of the mixture was combined with 0.05 mL of 5.0% sodium 

carbonate (for the pH 2.0 sample) or 0.05mL of 1.0% sodium carbonate (for the pH 4.0 

sample) to inactivate the enzyme. The remaining IgY activity was measured by ELISA.  

Trypsin or Chymotrypsin was dissolved at a concentration of 2.0 mg/mL in 50 mM Tris 

buffer containing CaCl2, pH 8.0. The enzymes were mixed with either 1 mg IgY or 0.1 

mg IgY at a ratio of one enzyme to 20 of IgY by weight and incubated at 37°C for the 

appropriate time (0-8 h). Following incubation a 0.45 mL sample of each mixture was 

mixed with 0.05 mL of phenylmethyl sulfonyl fluoride (PMSF) solution to inactivate the 

enzymes. The remaining IgY activity was measured by ELISA.  

Statistical Analysis 

Two way repeated measures ANOVA and the bonferroni post hoc tests were 

performed for the data sets given in figures 1-3. P values are represented in the figure 

legends. All statistics were done using GraphPad PRISM Version 5.0d for Macintosh.  

 

Results and Discussion 

Bioavailability of IgY  

Following the administration of 0.1 mg IgY by oral gavage, intramuscular (IM) 

injection, or subcutaneous (SC) injection, the level of IgY present in the serum was 

determined by ELISA at the specified time points. We detected IgY in the serum as early 

as 24 h post administration for all routes, and the peak IgY titer was at 24 h post 

administration by oral gavage at a concentration of 21158.16 ng/mL (Table 1). 

Furthermore, it is important to note that at 24 h all administration routes induced similar 

levels of IgY in the serum. IgY was present in the serum until day six for both the IM and 
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SC routes and until day five for the oral gavage (Figure 1 and Table 1). Serum samples 

from mice administered 0.1mg IgY orally were also analyzed by western blot on day 1 

and 2 post administration (Figure 3). Western blot analysis confirms that IgY is present in 

the serum post oral administration. We believe this is the first demonstration of 

bioavailability of whole IgY.  It is not clear if the titer of IgY demonstrated here is 

sufficient for protection. Reports demonstrating the efficacy of orally administered IgY 

support the potential of this antibody to be therapeutic.  The presence of whole IgY in the 

serum suggests that orally administered IgY may indeed by therapeutic for targets beyond 

those located in the gastrointestinal tract.  The orally available titers of IgY necessary for 

protection would need to be determined based on the specific microorganism or disease 

being treated.  The level of IgY in the serum declines slightly faster in the orally 

administered IgY group, compared to administration by other routes.  The advantages of 

the potential to administer IgY orally, most importantly eliminates the specially trained 

medical personnel necessary for IM or SC injections, may outweigh this pitfall.  Without 

such requirements not only would the cost of administration decrease but the potential for 

these therapeutics to be widely distributed would expand.  
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TABLE 1 Serum IgY and IgG concentrations (ng/mL) 

 

Day post 

administration 

Antibody concentration and route of administration 

 

0.1 mg IgY 

Oral 

1 mg IgY 

IM 

0.1 mg IgY 

IM 

1 mg IgY 

SQ 

0.1 mg IgY 

SQ 

0.01 mg IgG 

Oral 

0.01 mg IgG 

IM 

0.01 mg IgG 

SQ 

1 21158.16 105258.3 17325.23 152502.1 19193.46 73.23 420.93 515.68 

2 2957.59 91490.04 7780.93 64601.88 7598.07 0 428.49 575.87 

3 967.77 15403.16 1977.65 16978.34 2127.87 0 557.14 726.53 

4 435.83 24286.17 854.23 6418.9 984.17 0 579.28 558.29 

5 301.55 2616.86 447.09 3596.2 371.04 0 307.3 384.56 

6 0 728.06 180.16 207.37 168.77 0 9.8 10.16 

7 0 0 0 21.98 0 0 0 0 

14 0 0 0 0 0 0 0 0 

3
3
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Figure 1. Bioavailability of IgY. IgY (0.1 mg) was administered by oral gavage, 

intramuscular injection or subcutaneous injection in PBS pH 7.2. The concentration of 

IgY present in the serum at various time points post administration was determined by 

ELISA. Data is representative of two experiments, samples analyzed in triplicate, n=7-8. 

Two-way repeated measures ANOVA and the bonferroni multiple comparisons tests 

were performed. Column factor p value = 0.0029 (Figure 1A). Oral and SC 

administration are significantly different on days 2 and 3 (P < 0.0001 and P < 0.01 

respectively). Oral and IM are significantly different on days 1 and 2 (P < 0.0001). IM 

and SQ are significantly different on day 1 (P < 0.0001). 
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Figure 2. IgY detected in serum post administration. Serum samples from mice 

administered 0.1mg IgY and 1mg pH8.0 were used to do western blot analysis. Lane one 

is naïve IgY, lane two is serum collected 1 day post oral administration of 0.1mg IgY, 

lane three is serum collected 2 days post oral administration of 0.1mg IgY, and lane four 

is serum collected 3 days post oral administration of 1mg IgY pH 8.0. 
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Bioavailability of IgG 

The bioavailability of IgG was determined for three injection routes, IM, SC, and 

by oral gavage. IgG was present in the serum 24 hours post administration for all routes 

and was able to be detected in the serum as late as five days post SC or IM injection 

(Table 1, Figure 3). IgG administered orally had a peak serum titer at one day post 

administration whereas the peak serum titer for SC and IM injections were at days three 

and four, respectively (Figure 1B). When comparing the oral bioavailabilty of IgG to that 

of IgY on a molecular level, these data clearly demonstrate that there is a greater amount 

of IgY than IgG in the serum at all-time points post administration. The importance of 

this demonstration is that therapeutic IgY may uniquely be given orally, whereas there 

are currently no approved IgG treatments that are administered orally, likely due to the 

very low bioavailability.  
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Figure 3. Bioavailability of IgG. IgG was administered by oral gavage, intramuscular 

injection, or subcutaneous injection in PBS pH 7.2. The concentration of IgG present in 

the serum at various time points post administration was determined by ELISA. Data is 

representative of two experiments, samples analyzed in triplicate, n=7-8. Two-way 

repeated measures ANOVA and the bonferroni multiple comparisons tests were 

performed. Column factor p value = 0.0006 (Figure 1B). IgG SC and IgG oral are 

significantly different on days 1-5 (P < 0.001). IgG IM and IgG oral are significantly 

different on days 1-5 (P < 0.001). IgG IM and IgG SC are different on day 2 (P < 0.05).  
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Bioavailability of orally administered IgY (1 mg) after multiple doses 

To determine if the titer of bioavailable IgY could be increased by increasing the 

dose or 1 mg of IgY was administered by oral gavage either once, or three times as part 

of a multiple dose schedule at 0 h, 12 h, and 24 h. With multiple administrations, IgY was 

detected in the serum as early as 24 h after the final antibody dose (48 h after the first 

dose). However, when a higher concentration (1 mg) of IgY was administered as a single 

dose, IgY was undetectable the serum at any time point post administration (Figure 4). 

This was surprising, as the previous experiments using orally administered IgY at a lower 

dose demonstrated the presence of IgY in the sera. We expected that IgY administered at 

a higher dose (1 mg) would also be bioavailable. The mechanism by which IgY 

seroconversion occurs only at a lower dose during single administration is unknown and 

is currently being investigated. Overall, these data suggest that depending on the 

concentration of IgY administered, it would be advantageous to design a therapeutic 

strategy that would include a multiple dosing schedule.  When IgY was administered at a 

higher concentration (1mg) dose the bioavailability followed a similar trend in the IM 

and SC groups but not in the orally administered group (Table 1).  
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Figure 4. Bioavailability of IgY increases with multiple doses. IgY was administered by 

oral gavage in PBS pH 7.2 either once or at multiple time points (0 h, 12 h, 24 h). The 

concentration of IgY present in the serum at various time points post administration was 

determined by ELISA. Data is representative of two experiments, samples analyzed in 

triplicate, n=7-8. Two-way repeated measures ANOVA and the bonferroni multiple 

comparisons tests were performed. Column factor p value = 0.0008. On days 2 and 3 P < 

0.0001.  
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Bioavailability of IgY in PBS pH 8.0 

To further investigate why IgY was not able to seroconvert at a higher dose we 

looked into ways to alter the antibody conditions without changing the dose. In this 

experiment IgY was administered by oral gavage in PBS at either pH 7.2 or pH 8.0 and 

the level of IgY present in the serum was determined at the specified time points. When 

IgY was administered in PBS buffered to pH 8.0, the orally administered IgY was 

detected in the serum at 48 h post administration at a level of 45,760 ng/mL. 

Seroconversion still did not occur when IgY was administered as a single dose in a pH 

7.2 solution, as demonstrated above (Figure 5). We were able to demonstrate that by 

increasing the pH of the solution the higher concentration of IgY became bioavailable. 

These data suggest that increasing the pH of the antibody solution is better than both the 

low dose and the multiple dose strategy. The level at 24 hours is over double that of the 

0.1mg IgY administration and approximately sixty times higher than the oral 

administration of IgG. Furthermore, when the pH is increased the IgY remains at a higher 

level in the serum over time. At day five, 1mg IgY in pH 8.0 is at an average of 3807 

ng/mL whereas at day five 0.1mg IgY is at an average of 301.5 ng/mL and IgG is absent 

by day five. Further investigation is ongoing to elucidate a mechanism as to why 

increasing the pH proves to be advantageous, however one possible explanation is that 

the increased pH solution is able to buffer the acidic environment of the stomach. If the 

stomach acid is in some way changing the behavior or structure of the IgY in a way that 

prevents it from being passed into the small intestine and absorbed, then by adding a 

buffer to counteract the acid may offer some protection to these antibodies allowing them 

to seroconvert. Furthermore, these data do suggest that other potential formulations and 
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manipulations of IgY may be beneficial in order to be used orally. One alternative would 

be to microencapsulate the IgY, which may aid in both protecting IgY from proteolytic 

enzymes in the gastrointestinal tract and increasing the bioavailability.  
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Figure 5. Bioavailability of IgY increases in PBS pH 8.0. IgY was administered by oral 

gavage in PBS pH 7.2 or PBS pH 8.0. The concentration of IgY present in the serum at 

various time points post administration was determined by ELISA. Data represented 

follows the same trend in both experiments, samples analyzed in triplicate, n=7-8. Two-

way repeated measures ANOVA and the bonferroni multiple comparisons tests were 

performed. Column factor p value < 0.0001. On days 2 and 3 P < 0.0001, on day 5 P < 

0.01.   
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Behavior of IgY against proteolytic enzymes 

Previously it has been shown that chick IgY is more resistant to specific 

proteolytic enzymes, compared to mammalian IgG.  Therefore we want to determine if 

goose-derived IgY also demonstrated this resistance, and to determine if the resistance 

was concentration-dependent, in light of the ability of buffering the high dose orally 

administrated IgY to obtain bioavailability. In these experiments we determined the 

amount of IgY activity remaining following the incubation of either 0.1 mg or 1 mg IgY 

in pepsin (pH 2.0), pepsin (pH 4.0), trypsin, or chymotrypsin.   We detected no dose-

dependent difference in the proteolytic resistance, regardless of the IgY dose.  IgY 

incubated with pepsin (pH 4.0) retained more activity than IgY incubated with pepsin 

(pH 2.0). Incubation of IgY with trypsin or chymotrypsin had much less effect on the 

degradation of IgY, with 50-70% of the antibody activity still remaining after 8 hours of 

incubation. The degradation of IgY incubated in PBS alone was measured as a control, 

and 100% activity remained after 8 hours (Table 2). These results are in agreement with 

previous studies (39), and suggest that when administered orally IgY is able to withstand 

partial activity, which is highly advantageous over the use of IgG that tends to be less 

stable. Unfortunately these data did not explain the difference we see in the 

bioavailability between the high and low doses of IgY.  
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TABLE 2 Behavior of IgY against proteolytic enzymes 

Incubation 
period 

0.1 mg IgY Pepsin pH 2.0 1 mg IgY Pepsin pH 2.0 0.1 mg IgY Pepsin pH 4.0 1 mg IgY Pepsin pH 4.0 

 Titer %Recovery Titer %Recovery Titer %Recovery Titer %Recovery 

0 hours 97272.23 100 1180302.43 100 97272.23 100 1180302.43 100 

1 hour 29137.86 29.9 387101.53 32.7 38518.23 39.5 557631.03 47.2 

2 hours 27091.4 27.8 295364.4 25.0 41580.6789 42.7 388228.96 32.8 

4 hours 22102.74 22.7 297198.6 25.1 41944.74 43.1 389606.12 33.0 

 

Incubation 
period 

0.1mg IgY Trypsin 1mg IgY Trypsin 0.1mg IgY Chymotrypsin 1mg IgY Chymotrypsin 

 Titer %Recovery Titer %Recovery Titer %Recovery Titer %Recovery 

0 hours 97272.23 100 1180302.43 100 97272.23 100 1180302.4 100 

1 hour 82685.38 85.0 873275.47 73.9 79241.61 81.4 928249.76 78.6 

2 hours 77365.61 79.5 817156.15 69.2 56926.25 58.5 752834.10 63.7 

4 hours 64414.82 66.2 703863.25 59.6 75315.67 77.4 673075.81 57.0 

4
4
!
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CHAPTER III 

IGY TREATMENT FOR MURINE CEREBRAL MALARIA 

Abstract 

Increasing evidence for drug resistant Plasmodium strains suggests there is a 

substantial need for new or additional therapeutic options. Cerebral malaria (CM), a 

manifestation of severe Plasmodium falciparum infection is a clinical disease that can 

lead to lasting neurological and cognitive disorders and is yet to be cured. Although the 

pathogenesis of CM is not well characterized, the use of Plasmodium berghei ANKA has 

been accepted as a commonly used model organism to study CM in mice. Here we used 

this murine model of CM to evaluate the efficacy of a combination of two anti-malaria 

IgY antibodies: anti-Plasmodium IgY and anti-MSP-1 IgY.  

C57BL/6 male mice were infected intraperitoneally with 1.0 x 10
7
 Plasmodium 

berghei ANKA infected red blood cells (iRBC). Mice were treated subcutaneously on 

days 2 and 4 or days 2 and 5 post infection with a combination of anti-Plasmodium IgY 

and anti-MSP-1 IgY, naïve IgY, or PBS. Survival and clinical signs of CM were 

monitored daily and thin blood smears were collected and Giemsa stained to determine 

parasitemia daily as well.  

Mice that were treated with a combination of anti-Plasmodium and anti-MSP-1 

had significantly increased survival rates as compared to both the naïve IgY treated and 

PBS treated control mice. Parasitemia was also reduced in the malaria antigen IgY treated
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mice and this decrease corresponded to the timing of treatment. IgY therapy delayed 

mortality in the murine model of CM.  

Goose-derived anti-Plasmodium and anti-MSP-1 IgY is able significantly extend 

the times to death in mice infected with Plasmodium berghei ANKA. These data provide 

evidence for anti-malaria IgY as a potential candidate to be used in antimalarial 

combination therapy.   

Introduction 

The decreasing efficacy of the currently approved anti-malarial drugs for the 

treatment of severe malaria facilitates the need for new drugs and/or the exploitation of 

different drug classes. Most of the drugs that have been approved for treatment of malaria 

patients are artemisinin derivatives (101). Artemisinin derived anti-malarial drugs are 

highly important because of their efficacy against multidrug-resistant strains of 

Plasmodium falciparum (P. falciparum). One disadvantage of artemisinin drugs is the 

occurrence of recrudescence when given in short course monotherapy (102). Therefore, 

artemisinin derivatives are often used in combination with other antimalarial drugs to 

provide both rapid and long-lasting protection. Artemisinin was isolated in 1972 by a 

group of Chinese researchers from the Artemisia annua plant. Artemisinin derivatives 

work at the early trophozoite and ring stages of parasite development, unlike other drugs 

that work only during the later stages (trophozoite and schizont).   Therefore, artemisinin 

has been successful in treating patients suffering from uncomplicated malaria, but 

unfortunately its efficacy is reduced in complicated cases of malaria, such as cerebral 

malaria (CM). Even after intramuscular treatment with artemether, an artemisinin 

derivative, the mortality rate of children with CM is 15-25% (102). Furthermore, 
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researchers have identified human-infecting Plasmodium strains that are resistant to 

artemisinin drugs (103). The mechanism of drug resistance in such parasites is an area of 

active research and debate (104).  

Malaria is a global disease that affects millions of people every year. 

Approximately 3.4 billion people within 106 countries and territories live in areas that are 

at risk for malaria transmission, and in 2012 the World Health Organization estimates 

that malaria caused over 207 million clinical episodes and approximately 627,000 deaths 

(105). The life cycle of the parasite involves both hepatic and erythrocytic stages and the 

clinical manifestations of disease occur following erythrocyte rupture (106). There are 

five species of Plasmodium that are infectious to humans, however P. falciparum is the 

parasite responsible for the development of severe malaria (107). 

CM is a clinical syndrome, a neurological complication, which is the result of a 

severe infection of the parasite P. falciparum. CM is characterized by the presence of 

parasites in the blood, and as a diffuse encephalopathy resulting in an altered level of 

consciousness (e.g. coma) in the absence of other causes of encephalopathy (108). CM is 

the leading cause of hospitalization and mortality of children under the age of five in sub-

Saharan Africa and accounts for approximately 80% of all fatal cases of malaria (109, 

110). In the absence of treatment, CM is nearly universally lethal and, even with 

intervention, the mortality is still 15-20% (111). Following treatment for CM, patients 

often exhibit permanent residual symptoms, including cognitive, behavioral, and motor 

changes (112).  

There are two leading theories describing the pathogenesis of CM: the first is the 

obstruction of cerebral microvasculature by sequestered Plasmodium-infected red blood 
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cells (iRBC); and the second is an immunopathology caused by the exacerbation of the 

host inflammatory response (113). The assessment of CM pathogenesis in humans is 

especially difficult due to the invasiveness required to accurately assess human brain 

tissue. Experimental cerebral malaria (ECM) is currently modeled in mice using 

Plasmodium berghei ANKA (PbA) infection. ECM has been valuable providing a wealth 

of information about the pathogenesis of CM despite the functional differences in 

Plasmodium pathogenesis between humans and mice (114). In the ECM model the 

neurological syndrome is associated with severe vasculopathy and a systemic 

inflammatory response. There are several factors that contribute to this disease state 

including the activation of leukocytes, cytokine production, and increased expression of 

endothelial adhesion molecules (115).  

Merozoite surface protein 1 (MSP-1) is the most abundant protein on the surface 

of P. falciparum merozoites, which are the invasive form of the parasite (116). MSP-142 

(42 kDa) is synthesized initially as a large precursor during intracellular merozoite 

development and then is expressed as a GPI-linked protein in complex with MSP-6 and 

MSP-7 on the surface of a replicating merozoite inside of the iRBC (116). Between 

merozoite release and the completion of erythrocyte invasion, MSP-142 undergoes 

proteolytic processing that results in the formation of two MSP fragments, MSP-133 and 

MSP-119. The majority of the MSP-1 complex, the MSP-133 fragment, is then shed from 

the parasite surface leaving only the C-terminal MSP-119 fragment intact. Antibodies that 

are specific for MSP-119 were able to block merozoite invasion of RBCs and the 

development inside the iRBC in an in vitro assay (117). Other reports have described the 

potential of anti-MSP antibodies in malaria vaccines (118-120). There is also evidence 
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that MSP-1 is essential for parasite survival as efforts to disrupt or knock out the msp1 

gene have been unsuccessful (121).  

In this study we tested the ability of goose derived anti-MSP-1 and anti-

Plasmodium IgY antibodies to treat ECM. IgY is the predominant antibody isotype found 

in birds and is located in both the serum and egg yolk. Also present in anseriform birds 

(waterfowl, e.g.ducks and geese) is an alternatively spliced IgY isoform called IgYΔFc 

that lacks two constant domains present in full length IgY and is the functional equivalent 

of an IgG F(ab’)2 fragment. The IgYΔFc isoform is also the most prevalent antibody 

produced following hyperimmunization (28). Although IgY and IgG are functionally 

similar molecules, there are several characteristics of IgY that make it an attractive 

alternative to using conventional mammalian antibodies for the treatment of infectious 

agents in mammals. The genetic background and phylogenetic distance between birds 

and mammals is critical difference between these two antibody sources  that allows avian 

IgY to recognize epitopes that may not be recognized by mammals.  IgY does not bind to 

mammalian complement to induce an inflammatory reaction (48). IgY does not bind to 

human rheumatoid factor, and has decreased binding to bacterial proteins Staphylococcus 

protein A or Streptococcus protein G (51-54, 92). The binding of IgY to Fc receptors is 

also drastically reduced when compared to the binding of Fc receptors by IgG (90). There 

have been several reports of experimental and clinical trials indicating the efficacy of IgY 

for the treatment of infectious diseases (27, 39, 61, 64, 68, 71, 75, 79, 93, 98, 100, 122-

124). We demonstrate here that anti-Plasmodium IgY in combination with anti-MSP-1 

IgY is able to increase the time to death and decrease the parasitemia in PbA infected 
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mice. These data suggest that IgY is a putative therapeutic that could be used in new 

combination therapy for malaria.  

 

Materials and Methods 

Ethics statement  

All research was conducted in compliance with the Animal Welfare Act and 

adheres to principles stated in the Guide for Care and Use of Laboratory Animals (8
th

 

ed.), National Research Council, 2011. All animal experiments were performed under the 

approval of the University of North Dakota IACUC committee.  

Plasmodium berghei ANKA  

Plasmodium berghei ANKA (PbA) was obtained from BEI resources and 

maintained by successive infection of C57BL/6 male mice. On day 6 p.i. blood was 

collected by retro orbital bleeding with a Natelson blood collecting tube (Fisherbrand) 

and placed into a BD vacutainer with sodium heparin to prevent clotting. Experimental 

mice were inoculated intra-peritoneally with 1.0 x 10
7
 iRBC in 100µL of PBS. Blood 

smears were collected daily starting at day 3 post infection and stained to analyze 

parasitemia.  

 

Mice 

Mice were bred in our breeding colony and maintained within a clean 

conventional area in the Center for Biological Research at the University of North 

Dakota. C57BL/6 male mice between the ages of 6-8 weeks were used for the infection 

studies.   All mice were assessed for survival and signs of CM were monitored daily.  
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Generation of blood Smears for determining parasitemia  

Blood was collected from all experimental mice via tail clip and a drop of blood 

was placed on a clean slide (Fisherbrand). A second slide was used to create a thin smear. 

Slides were then fixed with methanol and allowed to dry for 30 minutes. Each slide was 

stained in a dilute solution of Giemsa stain (Sigma-Aldrich) for 1 hour and allowed to air 

dry. Slides were viewed using a 100x oil immersion lens.  

Parasitemia was determined by counting the number of iRBC/500 RBC in Giemsa 

stained blood smears. Parasitemia was calculated for each experimental mouse and the 

daily average parasitemia was calculated for each group.  

Anti-Plasmodium IgY 

Geese, three for each antigen, were vaccinated subcutaneously with killed whole 

Plasmodium berghei parasite previously isolated from iRBCs or the MSP-1 antigen 

(yeast secreted recombinant 19 kDa carboxy-terminius of MSP-1 from Plasmodium yoelii 

lethal strain (XL), ATCC) at day 0, followed by booster injections on weeks 2, 4, and 6. 

Geese were then bled between 6-8 weeks and serum was obtained using a 10,000 x g, 30 

minute spin at 20°C. The serum was filtered through a PES 0.22 µm filter unit and a 

series of precipitation steps were carried out to obtain the antibody populations. 

Following this, MEP HyperCel Chromatography was performed using a 30 mL MEP 

HyperCel (Pall Biosciences) column at 5 mL/minute. The column was washed and IgY 

was eluted using a 50 mM acetate buffer step gradient. Antibody fractions were 

combined and placed into a 500 mL chamber of Water’s LabScale Tangental Flow 

Filtration (TFF) apparatus with a Pellicon XL TFF PES membrane (100,000 MW 

cutoffs). Samples were concentrated and diafiltration was performed with 1x PBS.  
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Antibody treatment  

Experimental mice received a combination of anti-Plasmodium or anti-MSP-11 

antibody on either on days 2 and 5 post infection (p.i.), or on days 2 and 4 p.i. 

subcutaneously, as outlined.  Each antibody type was injected separately into a different 

site on the mouse as to avoid potential unwanted interference. Specifically mice were 

injected into the loose skin above the neck, and into the loose skin further down the back 

near the dorsal rump. Multiple injections were performed within 15-20 minutes of each 

other to prevent any leakage from the initial injection site.  

Statistical analysis 

Survival curves were analyzed using the log-rank (Mantel-Cox) test and p values 

are reported in the text and figure legends. All statistics and figures were made using 

GraphPad PRISM version 5.0d for Macintosh.  

Results 

IgY therapy of CM 

Treatment on days 2 and 5 p.i. 

C57BL/6 mice infected with PbA were administered anti-MSP-1 IgY, anti-

Plasmodium IgY, a combination of both antibodies, or PBS via a subcutaneous route of 

infection on days 2 and 5 p.i.. Parasitemia was calculated from daily blood smears. Mice 

that received the combination of the two antibodies showed the greatest initial survival, 

although all treatment groups had similar survival rates at 21 days p.i. with approximately 

30% survival (Figure 6). All mice, regardless of  treatment, did eventually succumb by 23 

days post infection. There was no statistically significant difference between any of the 

treatment groups. However, these data suggested that the anti-Plasmodium and anti-MSP-
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1 IgY antibodies offered protection that allowed these mice to survive longer than the 

PBS control treated mice. 
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Figure 6. Prolonged day to death following IgY treatment on days 2 and 5 p.i. C57BL/6 

male mice ages 6-8 weeks were infected by intraperitoneal route with 1.0 x 10
7 
infected 

red blood cells previously harvested from an infected mouse. Cells were injected in a 1x 

PBS vehicle solution. On days 2 and 5 post infection a groups of mice (n=7-8/group) 

were administered anti-Plasmodium IgY (anti-Parasite), anti-MSP-1 IgY, a combination 

of both antibodies (combination) or PBS via subcutaneous route. Survival was monitored 

daily.   
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Treatment on days 2 and 4 p.i. 

We observed, as others have reported (125) that death associated with PbA 

infection typically started within 7 days post infection. Therefore, in order to examine the 

kinetics of treatment and provide potentially better protection with the anti-Plasmodium 

and anti-MSP-1 antibodies, the administration schedule was altered to days 2 and 4 p.i. 

with PbA. Mice treated with the combination of anti-Plasmodium and anti-MSP-1 

antibodies survived significantly longer, day 21 p.i. compared to day 7 with PBS 

treatment and  day 10 with the naïve IgY antibody treatment, p = 0.0007 and p= 0.045 

respectively (Figure 7).  This demonstrated that malaria-specific IgY was able to 

significantly prolong the day to death in mice infected with PbA.  
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Figure 7. Prolonged day to death following IgY treatment on days 2 and 4 p.i. C57BL/6 

male mice ages 6-8 weeks were infected i.p. with 1.0 x 10
7 
infected red blood cells 

previously harvested from an infected mouse. Cells were injected in a 1x PBS vehicle 

solution. On days 2 and 4 post infection groups of mice (n=7-8/group) were administered 

anti-Plasmodium IgY and anti-MSP-1 IgY (combo Ab), naïve IgY, or PBS via 

subcutaneous route. Survival was monitored daily. A log rank (Mantel-Cox) test was 

performed between the PBS control group and the combination IgY treatment group p 

value = 0.0007. A log rank (Mantel-Cox) test was performed between the naïve IgY and 

combination IgY treatment p value = 0.045. 
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To better understand the protection provided by the anti-Plasmodium and anti-

MSP-1 IgY antibodies, parasitemia by Giemsa-stained thin film blood smears was 

determined. Parasitemia was calculated daily starting on day 3 post infection as shown in 

Figure 8. Parasitemia was lower in the antibody treated group by day 4 p.i., rapidly post 

treatment on day 2. Both the PBS control and naïve IgY control groups had higher 

parasitemia on all days following treatment with the greatest notable difference at day 8 

post infection. Between days 12 and 13 the parasitemia started to rise again in the 

malaria-antigen specific IgY treated groups until the day of death (Figure 8).  
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Figure 8. Decreased parasitemia in mice treated with IgY on days 2 and 4 p.i. C57BL/6 

male mice ages 6-8 weeks were infected by intra peritoneal route with 1.0 x 10
7 
infected 

red blood cells previously harvested from an infected mouse. Cells were injected in a 1x 

PBS vehicle solution. On days 2 and 4 post infection groups of mice (n=7-8/group) were 

administered anti-Plasmodium IgY and anti-MSP-1 IgY (combo Ab), naïve IgY, or PBS 

via subcutaneous route. Thin blood smears were made from the blood of each mouse 

starting at day 3 post infection. Each slide was fixed and stained with dilute Giemsa stain. 

Parasitemia was calculated by counting the number of infected red blood cells per 500 

red blood cells for each mouse.   
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Discussion 

The current situation regarding the parasitic resistance to artemisinin derivatives 

in malaria patients has pushed the World Health Organization to recommend artemisinin 

based combination treatments instead of a monotherapy approach to treating malaria 

infections. There have been several studies determining the efficacy of different 

artemisinin derivatives in combination with other anti-malaria compounds (126). 

Unfortunately there are indications of resistance to drugs that may be used in artemisinin 

based combination therapies, e.g. Malarone ® which is a combination of atovaquone and 

proguanil (127). Artemisinin treatments, despite many interventions, have not been able 

to cure severe complicated malaria and overall there has been no significant difference in 

the neurological sequelae with this treatment (102). These data highlight the need for new 

anti-malaria compounds or immunotherapies that could be used as part of an artemisinin 

based or other combination therapy. In this study we demonstrate that PbA infected mice 

that are treated with a therapeutic antibody on either days 2 and 4 or on days 2 and 5 p.i. 

succumb to the infection at a slower rate than those without treatment. We also show that 

mice that receive IgY treatment have decreased parasitemia that correlates with when the 

antibodies were administered and the time of death. The administration of malaria 

antigen-specific IgY at a later time point did change the statistical significance of the data 

although the trends remained similar (data not shown). It has been previously 

demonstrated that polyclonal antibodies can prevent erythrocyte invasion by merozoites 

in vitro (128, 129). It has also been demonstrated in several studies that IgY is safe for 

human consumption and has less unwanted reactivities with host proteins than does other 

mammalian antibody treatments. We understand that IgY is not a candidate for 
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monotherapy treatment of malaria, however we do propose that anti-Plasmodium IgY and 

anti-MSP-1 IgY would be a good alternative cocktail for use in combination therapies.  

Further studies are necessary to determine what antibody-drug combinations and 

treatment regimes provide the best protection, and if antibody therapy is able to prevent 

neurological damage to a greater extent than other drugs used in combination therapy for 

severe cerebral malaria.  

Conclusions 

In summary, the data presented in this study offer evidence that a combination 

treatment with other potential drug candidates and anti-Plasmodium and anti-MSP-1 IgY 

may offer increased protection. Here we demonstrate that IgY treatment delayed the time 

between infection and death and has decreased the parasitic load in these infected 

animals. Elaboration on this preliminary study will include the investigation of the 

efficacy of IgY in combination with other antimalarial drugs. 
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CHAPTER IV 

PASSIVE IMMUNIZATION OF IGY FOR THE TREATMENT OF DENGUE 

VIRUS INFECTIONS 

Abstract 

Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are severe 

disease manifestations following secondary heterotypic dengue virus (DENV) infections. 

At present, there are no licensed therapies or vaccines to treat DENV induced disease. 

DHF and DSS are mediated by serotype cross-reactive antibodies that facilitate antibody 

dependent enhancement (ADE) by binding to viral antigens and then Fcγ receptors 

(FcγR) on additional myeloid cells. Balsitis et al. have verified using genetically 

engineered DENV specific antibodies that the interaction between the Fc portion of the 

serotype cross-reactive antibodies and the FcγR is required to induce ADE (130). 

Additionally, they demonstrated that these antibodies were as neutralizing as their non-

modified variants, were incapable of inducing ADE, and were therapeutic following a 

lethal, antibody-enhanced infection. We therefore hypothesized that avian IgY that do not 

interact with mammalian FcγR, would provide a novel therapy for DENV induced 

disease. In this study, polyvalent anti-DENV2 IgY were purified from the eggs of 

DENV2-immunized geese. The neutralization and enhancement capacity of anti-DENV2 

IgY was tested in vitro, and the therapeutic efficacy against lethal challenge was tested in 

vivo. It was determined that anti-DENV2 IgY neutralized DENV2 and did not induce 
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ADE in vitro. Anti-DENV2 IgY was also protective in vivo when administered 24 hours 

following a lethal DENV2 infection. The anti-DENV2 IgY were separated into the “full 

length” and “alternatively spliced (Δ)” antibody populations and DENV2-specific 

epitopes were mapped and compared to the well-characterized DENV and flavivirus 

epitopes. Anti-DENV2 IgY recognized some but not all well characterized DENV 

epitopes, the two antibody populations recognized different epitopes, and both 

populations recognized uncharacterized epitopes. Peptide selection of the anti-DENV2 

antibodies based on the unique DENV2 epitopes was completed to test the neutralization 

capacity in vitro. These findings support the potential of avian antibodies as a new 

treatment for DENV infection.  

Introduction 

Dengue virus epidemiology 

 Almost half of the world is at risk for dengue virus infections with up to 390 

million possible infections occurring in nearly 100 endemic countries annually (131). 

Dengue is a fast emerging disease with a 30-fold increase in disease incidence reported in 

the past 50 years (132). Dengue has established itself globally in both endemic and 

epidemic transmission cycles and is currently regarded as the most important arboviral 

disease internationally (91, 131, 133).  

 DENV is a member of the Flavivirus family of RNA viruses. There are four 

distinct serotypes (DENV1, DENV2, DENV3, DENV4) that differ at the amino acid 

level by 25-40% (134). It has been estimated based on genetic studies of the four 

different serotypes that these serotypes emerged from a common ancestor virus that 

circulated between non-human primates and mosquitoes some 500 years ago. Following 
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this it is likely that each virus serotype emerged separately into a human urban 

transmission cycle (135). DENV is primarily transmitted by the Aedes aegyptii mosquito 

and Aedes albopictus is a secondary vector. Mosquitos transmit DENV to humans by 

feeding on previously infected human hosts. Following the incubation period in the 

mosquito, the mosquito is infectious and can release the virus upon feeding on another 

human host (136, 137).  

 It has been suggested that the principle mosquito vector Aedes aegyptii originated 

in Africa and that the exportation of DENV to the Western Hemisphere occurred 

approximately 400 years ago. The exportation likely occurred in multiple introductions in 

association with the slave trade (138). The first recognized dengue outbreaks occurred 

early in the 17
th

 century with the firsts reported on the Caribbean islands of Martinique 

and Guadeloupe. During these outbreaks patients reported symptoms including fever, 

severe headache, lassitude, and pains in the legs. During a 1780 outbreak in Philadelphia 

Benjamin Rush coined the term “break-bone fever” (91). In the early years DENV was 

considered a nuisance disease with very low mortality rates. The earliest known cases of 

possible DHF/DSS were in India during the 1870s as the 4 different serotypes began to 

spread globally and reinfection became common (139). During the early 20
th

 century the 

mosquito vector began to spread and DENV became prevalent in more tropical areas of 

the globe. There have been several suggested factors that explain the expansion of the 

mosquito vector including the international travel and urbanization and globalization 

following World War II and an increase in standing water as a result of poor housing 

situations, water systems, and improper sewer and waste management systems (133). 

During the 1950s the first documented epidemics of DHF occurred, first in the 
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Philippines (1953-1954) and Thailand (1958) (133). In the Americas, epidemic dengue 

was controlled in most of the region by the eradication program that eliminated the Aedes 

aegypti mosquito vector from 23 countries until the program was terminated in the early 

1970s (140). Following this the mosquito vector was rapidly reestablished and new 

DENV serotypes and strains emerged, causing the co-circulation of multiple DENV 

serotypes (133).  

 In 1980 DENV1 was isolated from a 5-year-old girl in Brownsville, Texas, 

representing the first indigenous case of dengue since the initial case in 1945. (141). 

Since then there have been further reported cases of dengue in Brownsville, TX and in 

Florida and the presence of DENV1 has been detected in Aedes aegypti mosquitos in 

Florida (141, 142).  

 It is important to realize that the spread of the virus is ultimately dependent on the 

mosquito vector and thus vector control is crucial. Unfortunately, to effectively control 

the mosquitoes that live in close contact with the human host, every house and office in 

the city must be visited on a daily basis and this has proven to be nearly impossible 

without effective community outreach programs (133). It has become clear that in order 

to control the disease in the absence of a strong vector control program there needs to be 

the development of new antiviral therapies and vaccines.  

DENV characteristics and replication 

DENV is an enveloped positive-strand RNA virus. The mature DENV contains 

three structural proteins, the capsid protein (C), membrane protein (M), and the envelope 

protein (E); and seven nonstructural proteins, NS1, NS2A, NS2B, NS3, NS4A, NS4B, 

NS5 (143). The structure of the virus includes a viral nucleocapsid surrounding the RNA 
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genome composed of multiple copies of the C protein. Surrounding the nucleocapsid is a 

host-cell-derived lipid bilayer, in which 180 copies of the M and E proteins are anchored. 

The M protein is proteolytic fragment of the precursor protein Pre-membrane (PrM).  

DENV naturally infects cells of the mononuclear phagocyte lineage (e.g. 

monocytes, macrophages, and dendritic cells) as well as the skin-resident Langerhans 

cells (144, 145). It is unknown what receptor(s) DENV attaches to the on the cell surface 

to facilitate entry but it has been suggested that possible receptors are DC-SIGN, and the 

closely related L-SIGN (146, 147). In addition to these two receptors it was recently 

demonstrated that the carbohydrate moieties on the DENV E protein can bind to the 

mannose receptor expressed on human macrophages (148). DENV use clathrin-mediated 

endocytosis to enter the host cell and upon internalization they are delivered to Rab5-

positive early endosomes. Once the endosome as matured into a Rab7-positive late 

endosome the virus and host cell membrane fusion occurs (149). Following this the viral 

nucleocapsid is released into the cytoplasm. As the replication machinery of positive 

strand RNA viruses is not packaged in the viral particle, the DENV must undergo an 

initial round of translation, to generate viral replicase, upon entry into the cell. The 

DENV genome is translated as a single polyprotein and is later co-and post-

translationally cleaved into respective proteins. During this initial translation the 

structural proteins are anchored in the endoplasmic reticulum (ER). Following the 

proteolytic cleavage of proteins, dengue virions are assembled on the membrane of the 

ER. The C protein remains associated with the ER and the PrM and E proteins form 

heterodimers on the luminal side (150).  
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After the initial translation episode the virus begins to replicate inside the host cell 

cytosol. Several nonstructural proteins are required for successful replication of the 

dengue RNA. Negative strand synthesis begins upon assembly of NS5 with the other 

components of the DENV replicase, NS3, NS1, NS2A, NS4A and NS4B. Negative strand 

synthesis results in the formation of a double stranded replicative form. The replicative 

form undergoes transition into a replicative intermediate, and this is a process that likely 

involves genome cyclicization. Viral replication proceeds on this replicative intermediate 

asymmetrically and semi-conservatively resulting in the predominant production of 

positive strand RNA. Once the newly synthesized RNA is present the C protein forms a 

nucleocapsid around the RNA genome. Immature virions are formed after heterodimers 

of PrM and E are oriented into the lumen, as previously stated. The immature virion 

travels through the trans-golgi network where the acidic environment causes dissociation 

of the PrM and E proteins. Dissociation allows the PrM proteins to be cleaved by furin 

protease to form a mature virion. As the new virus exits the golgi it fuses with the host 

cell membrane and is released by exocytosis (151, 152).  

DENV pathogenesis  

DENV can affect people of all ages including infants, children, adults and elderly 

but the interplay between the virus and host is what determines the clinical outcome. 

Disease manifestations from DENV infections range from asymptomatic infections, a 

mild febrile illness known as dengue fever (DF), or the more severe DHF and DSS. 

During an initial infection, most children experience subclinical infection or mild 

undifferentiated febrile syndromes (153). In this situation, lifelong immunity against the 

primary infecting virus occurs. During a secondary infection the pathophysiology of the 



! 67! !

disease changes dramatically, specifically if the secondary infection is with a different 

DENV serotype. Heterotypic secondary infections are the cause of 90% of the DHF cases 

reported (154). One working hypothesis of dengue pathogenesis during severe disease is 

the result of ADE during secondary infections (153).    

ADE occurs when remaining sub-neutralizing antibodies following a primary 

DENV infection bind to an infecting viral particle from the secondary heterotypic 

infection. These antibody-virus complexes then bind to Fc receptors on macrophages and 

dendritic cells via the FcγR of the antibody (143). The result of ADE is a higher number 

of infected cells and therefore a heightened immune response to the infection (143). ADE 

also results when infants are born to dengue immune mothers (155). In this situation 

antibodies transferred from the mother to the child for the first 4 months postpartum 

protect children, but after this the antibodies become non-neutralizing and the child 

becomes at risk for ADE. When the child reaches one year the anti-DENV antibody 

levels decline and the child is no longer at risk for severe disease (156, 157).  

During an initial infection with dengue patients often have no symptoms or they 

present symptoms such as fever, malaise, headache, body pains, and rash that are 

characteristic of DF. At this point, clinicians cannot predict if these patients will progress 

to severe disease!(153, 158). However, most of these patients will go on to recover from 

the disease within a week to ten days of onset (159). Viremia is apparent 1-2 days prior to 

the onset of symptoms and peaks during the first 2 days of fever. About 5% of the 

patients that report with symptoms of DF will go on to have DHF or DSS. The critical 

period in DHF starts at the moment of defervesence but it is possible that haemorrhagic 

manifestations may occur 24 hours earlier. DHF is characterized by a high fever, 
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haemorrhagic manifestations, thrombocytopenia (platelet count 100,000/mm
3 
or less), 

haemoconcentration (> 20% difference), and 10 to 100 fold higher viremia than in DF. 

Petechiae, epistaxis, bleeding at the venipuncture sites, gum bleeding, and haematemesis 

are also observed in some patients. The most significant pathophysiological even that 

characterizes severe disease is plasma leakage. Signs of circulatory failure are also 

apparent in patients with severe disease (irritability, cold extremities, restlessness, flushed 

face). At this point it is important to closely monitor these people for signs of progression 

to shock such as intense abdominal pain, persistent vomiting, a weak pulse, and 

hypotension (160). DSS results during the onset of increased vascular permeability and is 

characterized by the leakage of plasma fluids into the interstitial spaces inducing 

hypovolemic shock (161). Once a patient is in shock due to DENV infection it is likely 

that they will either survive or succumb to infection within 24 hours (162).  

Treatment of DENV induced disease currently involves treating the symptoms, 

specifically rehydration therapy and the use of pain relievers such as acetaminophen. 

There have been several attempts to make antiviral therapies and vaccines. One problem 

that has been encountered is the need for a therapy that will protect against all four strains 

of DENV. Another challenge is the need for treatment early in the course of illness, often 

before patients have a confirmed dengue infection. At present there remains an unmet 

need for an effective dengue therapeutic that is able to shorten the duration of the illness, 

prevent the development into severe disease, and reduce the severity of common 

symptoms (163). There are a number of institutions, both academic and pharmaceutical, 

that are currently engaged in the discovery and development of DENV therapeutics 

(163). One encouraging area of research has been the development of therapeutic anti-
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DENV monoclonal antibodies that block viral infection. Although it is unlikely that a 

single monoclonal antibody will be able to neutralize all four DENV serotypes, a potent 

neutralizing antibody cocktail is a likely candidate (130, 163). It should be remembered, 

however, in addition to effective therapeutic intervention we need to focus on an 

integrated approach that also aims to control the mosquito vector, especially in the case 

of Aedes aegypti that transmits several diseases (133).  

Immune response to DENV 

 The first line of defense against DENV infection is the recognition of the virus by 

host cell molecules, specifically pattern recognition receptors such as toll-like receptors 

(TLRs). The TLRs that are primarily involved in dengue viral recognition are TLR-7 and 

TLR-3, which recognize DENV RNA after endosomal acidification (164). Recognition of 

viral RNA by TLR-3 results in a series of phosphorylation events that leads to the nuclear 

translocation of interferon regulatory factor 3 (IRF3), activator protein 1 (AP-1), and NF-

κB. This induces the production of IFN-α/β, interferon stimulating genes, and 

chemokines (165). In addition to TLR-3, DENV is recognized by the cytoplasmic 

helicases retinoic-acid-inducible gene I (RIG-I) and melanoma differentiation associated 

gene 5 (MDA-5) to induce IFN-α/β (166). The interferon response to DENV triggers a 

warning signal to adjacent non-infected cells and an autocrine induction of cellular 

antiviral responses (167). IFN-α/β binds to its receptors on infected and neighboring cells 

and activates a signaling pathway that eventually leads to the induction and production of 

numerous antiviral proteins and pro-inflammatory cytokines (168). Another host cell type 

that is important during initial DENV infection is the natural killer cell, the main 

producers of IFN-γ (169). It is important to note that several studies have demonstrated 
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that DENV viral proteins NS2A, NS4A, NS4B, and NS5 are able to inhibit the IFN-α 

mediated innate antiviral response by blocking activation of the signal transducers and 

activators of transcription (STAT) signaling pathway (170-173).  

 The major target cells for DENV, the monocytes and dendritic cells, are antigen-

presenting cells (APCs) that are critical for stimulating cell mediated immunity. Cell 

mediated immunity is comprised of two major subsets of T cells, CD4 and CD8. Little is 

known about the role of CD8+ T cells during a DENV infection but it has recently been 

revealed that the cytolitic effect of these cells is important in controlling a primary DENV 

infection (174). It has also been reported, however that cellular immunity is not fully 

activated during acute infections and the memory T cell activation during heterologous 

secondary DENV infections results in a massive production of cytokines and chemokines 

(175, 176). CD4+ T cells play a different role in the response to DENV by mediating 

cytotoxicity and producing cytokines. CD4+ T cells also activate APCs and B cells.  

 The humoral response to DENV infection usually occurs approximately 5-6 days 

post infection with DENV, with IgM antibodies typically produced first. While IgM 

peaks at two weeks after onset, DENV specific IgG is detectible in patients after the first 

week and continues to rise (153). The antibody response is mainly directed against the E 

and PrM structural proteins on the surface of the virus (177, 178). There are is also 

evidence that suggests that antibodies directed at the NS1 protein, which is expressed on 

the surface of infected cells and is secreted from these cells as a soluble factor (177, 179, 

180). It has been demonstrated that these antibodies can activate complement-mediated 

lysis of DENV-infected cells and protect mice from DENV challenge (181-184).  

However, anti-NS1 antibodies have been reported to be cross reactive with human 
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platelets and endothelial cells, leading to increased vascular permeability. Antibodies to 

all of the defined DENV epitopes have varying degrees of cross-reactivity to different 

DENV serotypes as well as different neutralization potential.  

 Antibody neutralization of DENV occurs via multiple mechanisms. Antibodies 

can bind to the virus and block binding to host cell receptors. Antibodies can also bind to 

virus and be internalized with the virus, but block fusion with the endosomal membrane. 

Another possibility is that antibodies specific for DENV virions bind to the incoming 

virus and enhance its uptake into host cells via FcγR binding, thus is the case during 

ADE. ADE occurs during secondary heterotypic DENV infections and is characteristic of 

patients suffering from DHF or DSS. The tropism of dengue virus for monocytes, 

macrophages and dendritic cells, all FcγR bearing cells, creates the opportunity for 

DENV specific antibodies to enhance viral entry. During ADE, antibodies that are non-

neutralizing or sub-neutralizing against a primary infecting virus remain active and bind 

to the heterotypic secondary infecting virus or viral particle. Studies with anti-E protein 

antibodies suggest that when virion opsonization is below the threshold necessary for 

virus neutralization, these antibodies participate in ADE (185). The formation of a 

antibody-virus complex occurs and this complex is shuttled to those FcγR bearing cells 

(158, 185-188). This leads to an increase in the number of cells that are infected and an 

increase in the number of virus particles produced per infected cell (189). DENV 

infection through the mechanism of ADE can induce the production of IFN-α, TNF-α, 

and IL-10 as well as upregulate costimulatory molecules CD40 and CD86 (190). The 

activation of complement by antibody-virus complexes also contributes to the disease 

state by activating complement, which induces temporal plasma leakage (191, 192).  
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 In patients with DHF or DSS, ADE is often accompanied by original antigenic 

sin, a phenomenon wherein sequential exposure to closely a related virus reduces the 

novel response to the secondary virus and impairs the development of immunological 

memory. The hallmark of the pathogenesis of these two disease states is the loss of 

endothelial integrity, which is assumed to be the result of an abnormal immune response 

to the virus, the “cytokine storm” (143). It is believed by man scientists that original 

antigenic sin is responsible for the cytokine storm. During a secondary heterotypic 

infection low avidity memory T cells are re-activated and inefficient in clearing the new 

viral infection. It has been demonstrated that these T cells have suboptimal degranulation, 

altered cytokine production and cytolytic activity. These T cells are not only unable to 

efficiently clear the DENV infection but they cause a massive immune activation (175, 

193-195).  

 Figure 9 shows an integrated model describing the immunopathogenesis of severe 

DENV infection. It is likely that many immunological processes contribute to DHF and 

DSS (143). 
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Figure 9. Immunopathogenesis of severe dengue – an integrated model.  
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 The development of passive immunotherapy to treat DENV infections remains an 

elusive goal of many. In order to treat DENV effectively with antibody therapy it is 

necessary to determine DENV specific neutralizing epitopes. Current research is 

primarily focused on elucidating epitopes within the E protein. The E protein is the 

principal surface component of the dengue virion and is composed of three domains (DI, 

DII, and DIII) (196). DI is the central domain and contains non-neutralizing epitopes. 

Several neutralizing epitopes have been found within the conserved fusion loop region in 

DII and the lateral ridge and fusion loop of DIII (196-207). A smaller body of research 

suggests that there are protective epitopes within PrM and some of the nonstructural 

proteins, specifically NS1, NS3, and NS5 (196, 206, 208-213). All of the characterized 

DENV epitopes have been revealed using either mammalian or murine antibodies, both 

of which have reactive Fc portions. The problem with this trait is that if used for 

treatment they have the ability to complex with virus and interact with FcγR on target 

cells, monocytes, macrophages and dendritic cells, and potentially induce ADE.  

 In a recent study, Balsitis et al. verified using aglycosylated and F(ab’)2 DENV 

specific IgG that the interaction between the Fc portion of the serotype cross-reactive 

antibodies and the FcγR is required to induce ADE. Additionally they demonstrated that 

the aglycosylated DENV-specific antibodies were as neutralizing as their naturally 

glycosylated (or non-modified) variants, were incapable of inducing ADE, and were 

therapeutic following a lethal, antibody-enhanced infection when administered up to 48 

hours later (214). We, therefore, hypothesized that avian IgY, that do not interact with 

mammalian FcγR, would provide a novel therapy for DENV induced disease.  
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Preliminary studies with West Nile Virus IgY 

There are many advantages to using IgY for the treatment of DENV infections.  

One possibility is that IgY will be able to neutralize a viral infection in the absence of 

ADE. IgY is also very well tolerated in humans, and can be produced in large quantities 

very efficiently. Past research in our lab has exploited geese as a source of IgY. Initial 

studies aimed to determine if the serum from West Nile Virus (WNV) immune geese 

could protect against WNV infection in geese. Geese were given immune serum prior to 

and post WNV infection and mortality was assessed. Of the ~10,000 geese per group 

there was a ~65% reduction in mortality when administered as a prophylactic and ~62% 

reduction in mortality when administered as a treatment (unpublished data Schiltz, Petell, 

& Bradley). These experiments were repeated with purified anti-WNV IgY and similar 

results were observed. Purified anti-WNV IgY was also tested in WNV infected golden 

hamsters. All of the hamsters treated with the anti-WNV IgY survived and had viral titers 

of zero, compared to the sham treated hamsters who had 100% mortality and ~65% viral 

titer (unpublished data Schiltz, Petell, & Bradley).  

DENV2 epitope mapping of goose-derived IgY: IgY and IgYΔFc 

The aim of the current research study was to identify anti-DENV2 IgY protective 

epitopes and determine the ability of these specific antibodies to treat DENV2 infections. 

Epitope mapping was performed using 4 different viral proteins: E protein, PrM protein, 

NS1, and NS3 with either anti-DENV2 IgY or anti-DENV2 IgYΔFc. Here we present 

data suggesting that different populations of IgY recognize different DENV epitopes and 

IgY recognizes epitopes uncharacterized for mammalian or murine IgG.  
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Materials and Methods 

Geese 

Ten geese were vaccinated with 120 µg of Dengue Killed Virus (Dengue Type 2 

Antigen, Microbix Biosystems Inc.) on Day 0 and 60 µg boost immunizations on week 2 

and 4. Immunizations consisted of 2 x 200 µL subcutaneous injections at the back of the 

neck in two different injection spots. The eggs were collected starting from week 4 after 

the first immunization and stored at 4
°
C till further use. 

Purification of IgY and IgY(DFc) from Goose Egg Yolk 

Yolks were isolated and rinsed with water and then punctured to drain the 

contents and diluted 1:10 with cold deionized water, stirred, and acidified to pH 5.0. The 

diluted yolk was centrifuged at 10,000 x g for 30 minutes, and the supernatant was 

filtered. In order to separate the full-length IgY from the transcriptionally truncated 

IgYΔFc a sequential series of 30%, 40% and 50% ammonium sulfate were used. The 

pellets were suspended in 50 mM Tris HCl pH 8.0. Further purification was achieved via 

hydrophobic charge induction chromatography on 4-Mercapto-Ethyl-Pyridine-linked 

(MEP) HyperCel sorbent (Pall Corporation) followed by buffer exchange. 

Antibody Detection  

 The antibody activity of anti-DENV2 was determined by ELISA. Briefly, 

microtiter plates were coated with 100 ml of the capture antigen (Dengue Type 2 

Antigen, Microbix Biosystems Inc) and stored at 4°C overnight. After washing the plates 

3 times with wash buffer (1X PBS, 0.05% Tween-20 (Fisher Scientific), they were 

blocked with 400 mL per well of blocking buffer (0.25% BSA (Fisher Scientific), 0.05% 

Tween-20 (Fisher Scientific)1X PBS) and incubated for 30 minutes at room temperature. 
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The wells were washed 3 times with wash buffer and incubated with 100 mL of diluted 

goose antibody and serially diluted down the plate in blocking buffer and incubated at 

37°C for 30 minutes. Proper dengue control and Naïve control antibodies were included 

as standards on each plate. The plates were washed 3 times with wash buffer and blocked 

for 10 minutes at room temperature. Next, 100 mL of biotinylated rabbit anti-goose IgY 

antibody was added to each well and incubated at 37°C for 30 minutes. After washing the 

plates 3 times with wash buffer the wells were blocked for 10 minutes at room 

temperature. Following this, 100 mL of diluted strepavidin-HRP antibody in blocking 

buffer (1:2000) was added to each well and the plates were incubated at 37°C for 30 

minutes. The plates were finally washed 3 times before adding 100 mL of prepared OPD 

color substrate to each well and allowed to develop for 15 minutes at room temperature. 

The reaction was terminated by adding 50 mL of 1N H2SO4, and the absorbance read in 

BioTek plate reader at A490.  

In Vitro Viral Neutralization and Antibody Dependent Enhancement studies 

The neutralization and enhancement titers for anti-DENV2 and control purified 

polyvalent IgY sera against DENV2 D2S10 were determined. D2S10 is a DENV2 strain 

developed in the lab of Dr. Eva Harris in the Division of Infectious Diseases and 

Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 

(215). Both neutralization and enhancement experiments were performed twice, each 

time in duplicate. In brief, the sera were diluted to a starting concentration of 2.0 mg/mL. 

Twelve 4-fold dilutions were mixed with equivalent volumes of DENV2 D2S10 for 45 

minutes before infecting U937 DC-SIGN cells, a DENV-permissive monocytic cell line. 

The cells were washed two hours following infection, and then fixed and stained for 



! 78! !

DENV E protein 24 hours later. The data was analyzed by flow cytometry, and the 

dilution yielding 50% neutralization (NT50) was calculated using GraphPad PRISM.  

 To test for potential enhancement, the serum was diluted and mixed with DENV2 

as described above and used to infect K562 cells, an erythroleukemic cell line that is not 

naturally permissive for DENV infection, but can be infected via surface FcγRIIA when 

DENV virions are coated with sub-neutralizing concentrations of anti-DENV antibody. 

The cells were fixed, stained, and analyzed as described above 48 hours following 

infection.  

In Vivo anti-DENV2 IgY neutralization  

The therapeutic potential of goose-derived anti-DENV2 IgY was tested using 

conditions that cause 100% mortality in AG129 mice. Six-eight week old IFN-αβR
-/-

 and 

IFN-γR
-/-

 (AG129) mice were administered a sub-lethal intravenous infection with 

D2S10 (2x10
5
 plaque forming units (PFU)). Twenty-four hours after infection, mice were 

injected i.p. with the indicated amounts of  polyclonal anti-DENV2 IgY or the positive 

control mouse monoclonal antibody (MAb) E60 N297Q in a volume of 200 µL, or 200 

µL of PBS as a negative control. Mice were followed for 10 days and observed for 

morbidity and mortality twice daily. Anti-DENV2 IgYwas administered as 20, 100, or 

500 µg per injection, control naïve IgY was administered as 500µg per injection, and the 

positive control IgG E60 N297Q was administered as 20µg per injection.  

 

Epitope mapping 

Anti-DENV2 IgY epitopes were mapped on the E, PrM, NS1 and NS3 proteins 

via peptide arrays. Specifically, each protein was covalently attached in 11 amino acid 
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overlapping 15mer peptides to a microarray slide (JPT Innovative Peptide Solutions, 

Berlin, Germany). All Pepstar™ microarray protocols were provided by JPT. Briefly, a 

slide sandwich containing the microarray and a dummy slide was made, separated by 

spacers, in order to increase and incubation environment. The primary antibody serum 

was incubated on the slide at 4°C overnight in a moist environment. The slide was rinsed 

5 times for 4 minutes each with T-TBS, then 5 times for 4 minutes each with ultra pure 

water. The slide was incubated in the fluorescently labeled (Cy5) secondary antibody 

solution (1µg/mL) for 45 minutes, washed 5 times with T-TBS, then 5 times with ultra 

pure water, and dried using a dust free, oil free, high velocity canned air. Fluorescence 

was measured at a pixel sized of 10µm using the Genepix™ 4000 microarray reader. The 

signal intensity mean values were calculated for each sub-array and background corrected 

values were used for interpretation in Microsoft excel. The microarray experiment was 

repeated with each antibody type on three separate but identical slides; anti-DENV full 

length IgY, anti-DENV IgYΔFc, and control naïve IgY.  

Purification of DENV2 epitope specific IgY and IgYΔFc 

 Careful analysis of the epitope mapping data revealed several epitopes that were 

recognized by either the IgY or IgYΔFc with at least 2x higher MFI than the naïve 

control IgY. We selected peptides within the NS1 proteins to use for generating a 

population of peptide/epitope specific IgY. This was carried out using an AminoLink 

coupling resin Kit (Thermo Scientific). The AminoLink aldehyde activated agarose bead 

resin was suspended by end over end mixing and then centrifuged within a 15 mL conical 

at 1000 x g for 1 minute. Following, 2 mL of pH 7.2 coupling buffer was added to the 

column and centrifuged at 1000 x g for 1 minute, this step was repeated once. The bottom 
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of the column was capped and 2mL (1mg/mL) of the specific peptide solution was added 

to the column (peptides were synthesized by GenScript). In a fume hood, 40 µL of 

sodium cyanoborohydride solution was added to the column. The top cap was replaced 

and the column was mixed by end over end mixing overnight at room temperature. The 

next day the caps were removed and the column was centrifuged at 1000 x g for 1 minute 

to collect the unbound peptide. The flow through was collected to determine coupling 

efficiency. The column was washed with 2 mL quenching buffer and centrifuged at 1000 

x g for 1 minute, this step was repeated once. Following this 2 mL of quenching buffer 

and 40 µL of sodium cyanoborohydride was added to the column and the column was 

mixed by end over end rocking for 30 minutes at room temperature to block the 

remaining active sites. The column was then centrifuged at 1000 x g for 1 minute to 

remove the quenching buffer. The column was washed 4 times with wash buffer and 

centrifugation at 1000 x g for 1 minute each time. 2 mL of undiluted IgY or IgYΔFc was 

added to each of the respective columns and the sample was allowed to enter the resin. 

0.2 mL of binding/wash buffer was added to the column and the column mixed by end 

over end rocking at room temperature for 1 hour. To wash the resin, 2mL of 

binding/wash buffer was added and the column was centrifuged at 1000 x g for 1 minute, 

this step was repeated once. The flow through was collected to determine binding 

efficiency. The column washed 4 times with wash buffer. To elute the antibodies 2 mL of 

elution buffer was added to the column and centrifuged at 1000 x g for 1 minute, this step 

was repeated twice. The column was equilibrated with 4 mL wash buffer and stored at 

4°C.  
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Plaque reduction neutralization test (PRNT) 

 Baby hamster kidney (BHK) cells were obtained from ATCC and grown in 

DMEM with 5% FBS and 1x pen/strep in a tissue culture flask at 37°C. Cells were plated 

into 6 well tissue culture plates and incubated at 37°C and 5% CO2. Cells were allowed to 

grow to be 95-100% confluent. On the day of the experiment 1:15,000 dilution of 

DENV2 D2S10 was made and aliquoted in 2mL aliquots into sterile 15 mL conicals. 100 

µL of each peptide specific antibody to be tested was added to the respective virus 

aliquots and incubated at 37°C and 5% CO2 for one hour. Just prior to this the media in 

the 6 well plates was aspirated and the cells were washed once with 2 mL/well of growth 

media. The 2 mL DENV2 D2S10 – antibody mixtures were added to each well. Virus 

only and media only wells were used for controls. The plate was incubated at 37°C and 

5% CO2 for 90 minutes. The media was aspirated and 3 mL of 2% methylcellulose 

overlay was added to each well. The plate was incubated for 7 days at 37°C and 5% CO2. 

On day 7 the overlay was aspirated and 1 mL of buffered formalin (1 part 10% buffered 

formalin to 1 part PBS) was added to each well and allowed to incubate at room 

temperature for 30 minutes. The formalin was aspirated and crystal violet was added to 

each well. The crystal violet was removed and the wells were washed with distilled 

water. Plaques were counted to determine antibody neutralization capacity. 

Results 

Antibody characterization 

Following the purification of anti-DENV2 IgY and ELISA was performed to 

confirm the presence of DENV2 specific IgY and to determine the antibody titer. Egg 

yolk titers are indicative of serum titers because antibodies are transferred from the serum 
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of the laying hen to the egg yolk during embryogenesis. Of the 80 eggs that were 

measured, the average serum titer was 1:850,000 with the highest titer being 1:3,800,000 

(Figure 10).  
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Figure 10. Anti-DENV2 IgY antibody titer in egg yolk. Egg yolks were collected from 

geese immunized with DENV2 killed virus. Arrows indicate boost immunizations at 2 

and 4 weeks post first immunization. Anti-Dengue IgY antibody titer did not differ 

among weeks (ANOVA on ranks, p = 0.157). Data presented as mean ± SE. Sample sizes 

presented within figure.   
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In Vitro Viral Neutralization and Antibody Dependent Enhancement  

Polyvalent anti-DENV2 IgY were purified from serum of DENV2-immunized 

geese. These antibodies were tested for potential enhancement and neutralization in vitro. 

Anti-DENV2 IgY was mixed with DENV2 D2S10 and used to infect U937 DC-SIGN 

(neutralization) or K562 (enhancement) cells. The cells were washed, fixed, stained for 

DENV E protein. The data was analyzed by flow cytometry. For the neutralization 

experiment the dilution yielding 50% neutralization (NT50) was calculated using 

GraphPad PRISM. The anti-DENV2 IgY serum NT50 was determined to be 1.0 and 2.6 

µg/mL in two independent experiments (Figure 11). The control IgY serum did not yield 

a measurable NT50 titer in either experiment. In the enhancement experiment, while the 

positive control anti-DENV monoclonal antibody resulted in ~ 15% infection at its peak 

enhancement titer, neither the anti-DENV IgY nor control sera were enhancing across 

any dilution tested (figure 11).  
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Figure 11. Anti-DENV2 purified IgY neutralizes but does not enhance DENV2 D2S10 

in vitro. A) Anti-DENV2 IgY (NT50 2.6µg/mL), but not control, purified IgY neutralized 

DENV2 D2S10. Relative percent infection is shown on the y-axis, and log reciprocal 

antibody concentration on the x-axis. The data are representative of two independent 

experiments. B) Neither anti-DENV2 IgY nor control purified IgY enhanced DENV2 

D2S10, whereas control MAb E60 generated ~ 15% enhancement at the peak enhancing 

titer. Percent infection is shown on the y-axis and log reciprocal antibody concentration 

on the x-axis. These data are representative of two independent experiments. 
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In Vivo anti-DENV2 IgY neutralization  

AG129 mice were challenged with a lethal dose of D2S10 and the in vivo neutralization 

capacity of anti-DENV2 was determined. In Figure 12, we have combined the results of 

six different experiments using a lethal dose (1.0x10
7 
PFU) of DENV2 D2S10. We 

consistently observed therapeutic efficacy with 2 mg anti-DENV2 IgY (n=13) 

administered 24 hours post-infection, similar to the 100% therapeutic protection observed 

with our positive control, 20 mg of MAb E60-N297Q (n=6). However, 2 mg of control 

IgY (n=16) provided 50% therapeutic protection. Therefore, we tested 1 mg of anti-

DENV2 IgY, which also provided 100% protection (n=8); however, administration of 1 

mg of control IgY yielded 25% protection (n=4). These results indicate to us that some 

non-specific protection may be provided by large amounts of goose antibodies regardless 

of specificity, in this model. The dose of 500 mg anti-DENV2 IgY (n=6) provided 66% 

protection, and the dose of 50 mg anti-DENV2 IgY (n=6) provided 33% protection, 

whereas 50 mg of control IgY (n=2) provided no protection. The viral dose was lethal in 

all the mice that received only PBS 24 hours post-infection (n=8).  
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Figure 12. Therapeutic efficacy of anti-DENV2 in vivo. 6-8 week old AG129 mice were 

administered a lethal dose (1X107
 pfu) of DENV2 D2S10 i.v. in a volume of 100 mL. At 

24 hours p.i. mice were injected one time i.p. with the indicated amounts of antibody in a 

volume of 200 mL and 200mL of PBS was administered to a group of mice as a negative 

control. Mice were followed for 10 days and observed for morbidity and mortality twice 

daily. Number of mice per group is indicated.   
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DENV2 IgY epitopes 

Anti-DENV2 IgY epitopes were mapped on the E protein, PrM protein, and NS1 

and NS3 proteins. Full length anti-DENV2 IgY and alternatively spliced anti-DENV2 

IgY epitopes were compared to each other and to previously characterized anti-DENV2 

IgG epitopes. Our results suggest that there are both similar and different epitopes 

recognized by either full length or alternatively spliced anti-DENV2 IgY. Similarly, anti-

DENV2 IgY recognized different epitopes than anti-DENV2 IgG. We noticed that naïve 

IgY recognized several of the same epitopes that both full length and alternatively spliced 

IgY recognized, however there were epitopes recognized that were unique to either of the 

anti-DENV2 IgY populations.  

Heat maps were generated to display the epitope mapping data. Heat maps display 

the MFI in a color gradient. The red color represents strong binding of our antibody to the 

indicated peptide (Figures 13-16).  
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Figure 13. Identification of DENV2 NS3 epitopes. Amino acid sequence for NS3 was 

used to make 15-mer peptides for microarray slide. Slides were incubated with anti-

DENV2 IgYΔFc, anti-DENV2 IgY full length, or naïve control IgY. Reactivity is 

measured based on a spectrum ranging from no reactivity in black to high reactivity in 

red. Values represent MFI-background.   

Peptide 'ΔFc'IgY Full'length Naïve'IgY Peptide 'ΔFc'IgY Full'length Naïve'IgY
AGVLWDVPSPPPV =790 =451.3333333 =2031 ATPPGSRDPFPQS =365 =237.6666667 =1094
LWDVPSPPPVGKA =233.6666667 =337.6666667 =794.3333333 PGSRDPFPQSNAP =333.3333333 =213.3333333 =847.3333333
VPSPPPVGKAELE =590.3333333 =170.6666667 =1533 RDPFPQSNAPIMD =308 =176.3333333 =1848.666667
PPPVGKAELEDGA =385.3333333 =210.3333333 =563.3333333 FPQSNAPIMDEER 261 =136.6666667 =442.3333333
VGKAELEDGAYRI =177.3333333 =222.3333333 =702 SNAPIMDEEREIP =436 =273.3333333 =797.6666667
AELEDGAYRIKQK =365.6666667 =317 =628.3333333 PIMDEEREIPERS =364 =272.6666667 =709.3333333
EDGAYRIKQKGIL =272.6666667 =162.6666667 =287 DEEREIPERSWSS =370.3333333 =217.3333333 =1590
AYRIKQKGILGYS 5114.333333 6104.666667 12392 REIPERSWSSGHE =362.6666667 =274.3333333 =1462
IKQKGILGYSQIG 483.6666667 731.6666667 12672 PERSWSSGHEWVT =440.6666667 =329 =1415.333333
KGILGYSQIGAGV =294 =172.3333333 1927.333333 SWSSGHEWVTDFK =547.6666667 =286.3333333 =836.3333333
LGYSQIGAGVYKE =408 =72.33333333 1501.666667 SGHEWVTDFKGKT =376.6666667 =256.3333333 =911.6666667
SQIGAGVYKEGTF =309.6666667 =87 =155 EWVTDFKGKTVWF 6326.666667 10916 27990
GAGVYKEGTFHTM =559.6666667 =228.3333333 513 TDFKGKTVWFVPS 151.6666667 1001.666667 9102.666667
VYKEGTFHTMWHV 9180 12706 35916 KGKTVWFVPSIKA 229.3333333 107.6666667 10894.33333
EGTFHTMWHVTRG 7273.666667 6886 15503.66667 TVWFVPSIKAGND =187 =136.6666667 =740
FHTMWHVTRGAVL 11986 12309.66667 22320.33333 FVPSIKAGNDIAA =211.6666667 =155 352.3333333
MWHVTRGAVLMHK 4614.666667 2528.333333 3136 SIKAGNDIAACLR =442 =139.6666667 =672
VTRGAVLMHKGKR 991.3333333 68.33333333 =593.6666667 AGNDIAACLRKNG =296.6666667 =182.6666667 =1122.333333
GAVLMHKGKRIEP =523 =240 =645 DIAACLRKNGKKV =156.6666667 =181 =1250
LMHKGKRIEPSWA =273.3333333 =247.6666667 283.6666667 ACLRKNGKKVIQL 250.3333333 96.66666667 623
KGKRIEPSWADVK =349.3333333 =271 =1121.666667 RKNGKKVIQLSRK =329.6666667 =205 =2354
RIEPSWADVKKDL =360.6666667 =224.6666667 =1663.333333 GKKVIQLSRKTFD 606.3333333 287.3333333 4233.666667
PSWADVKKDLISY =416 =228.3333333 =592.6666667 VIQLSRKTFDSEY 430.3333333 843 8280
ADVKKDLISYGGG =467.3333333 =405 =1292.333333 LSRKTFDSEYVKT =76 =20.66666667 =497
KKDLISYGGGWKL 13116.66667 4399 22218 KTFDSEYVKTRTN =282.3333333 =182.3333333 =1615.333333
LISYGGGWKLEGE 8240.333333 685 8391 DSEYVKTRTNDWD =334.6666667 =245.6666667 =991
YGGGWKLEGEWKE 8450.333333 525.3333333 12053.33333 YVKTRTNDWDFVV 56.66666667 640.3333333 8597.333333
GWKLEGEWKEGEE 1978.333333 =99.33333333 =594 TRTNDWDFVVTTD =259 =182.6666667 =873.3333333
LEGEWKEGEEVQV =188 =100 834.6666667 NDWDFVVTTDISE =215.3333333 =178 =1133
EWKEGEEVQVLAL =486.6666667 =137.3333333 =1304.666667 DFVVTTDISEMGA =342.3333333 =266.6666667 =657.3333333
EGEEVQVLALEPG =361.6666667 =228 =514.3333333 VTTDISEMGANFK =359 =197.3333333 =1828.666667
EVQVLALEPGKNP =284.3333333 =254 =941 DISEMGANFKAER =269.3333333 =172 =744
VLALEPGKNPRAV =541.6666667 =356.6666667 =994 EMGANFKAERVID =255 =275.3333333 =1105
LEPGKNPRAVQTK =432.3333333 =312.3333333 =992.6666667 ANFKAERVIDPRR =431.6666667 =390.6666667 =1429
GKNPRAVQTKPGL =418.6666667 =107.6666667 =1627 KAERVIDPRRCMK =589.6666667 =381.6666667 =1055.666667
PRAVQTKPGLFKT =386 =285.3333333 =877 RVIDPRRCMKPVI =348 =296.3333333 =1356
VQTKPGLFKTNAG =371.3333333 =341 =808.3333333 DPRRCMKPVILTD =328 =267.3333333 =1420.333333
KPGLFKTNAGTIG =437.3333333 =288.6666667 =997.6666667 RCMKPVILTDGEE =305 =274.3333333 =1199.333333
LFKTNAGTIGAVS =190 =189.6666667 =1454.333333 KPVILTDGEERVI =379.6666667 =165 =1679.666667
TNAGTIGAVSLDF 843.3333333 435.6666667 1442 ILTDGEERVILAG =248.3333333 =222.3333333 =1050
GTIGAVSLDFSPG =317.6666667 =244.3333333 =570 DGEERVILAGPMP =518.3333333 =268.3333333 =1060
GAVSLDFSPGTSG =322 =180 =1096.666667 ERVILAGPMPVTH =260.6666667 =124.3333333 =1071.666667
SLDFSPGTSGSPI 276.6666667 =164.6666667 =1403.333333 ILAGPMPVTHSSA =382.6666667 =257.3333333 =793.3333333
FSPGTSGSPIIDK =357.3333333 =200 =1739.333333 GPMPVTHSSAAQR =302.6666667 =283.6666667 =648
GTSGSPIIDKKGK =714 =409 =1118.666667 PVTHSSAAQRRGR =179.6666667 =182.6666667 =665.6666667
GSPIIDKKGKVVG =397 =369.3333333 =892.3333333 HSSAAQRRGRIGR =321.3333333 =217 =1291
IIDKKGKVVGLYG =196.3333333 196 8924.333333 AAQRRGRIGRNPK =485 =382.3333333 =876.3333333
KKGKVVGLYGNGV =222.6666667 =111.3333333 =523 RRGRIGRNPKNEN =507.3333333 =459.3333333 =805.6666667
KVVGLYGNGVVTR =149.3333333 83 2116 RIGRNPKNENDQY =401.3333333 =241 =547.6666667
GLYGNGVVTRSGA =399.6666667 =397 =751.6666667 RNPKNENDQYIYM =436.6666667 =324 =421.6666667
GNGVVTRSGAYVS =189.6666667 =131.6666667 =406.3333333 KNENDQYIYMGEP =426 =340.6666667 =676.3333333
VVTRSGAYVSAIA 1159 693 4613.333333 NDQYIYMGEPLEN =412 =368.6666667 =1211
RSGAYVSAIAQTE =228 =188.3333333 =543.6666667 YIYMGEPLENDED =389.6666667 =232 =1075
AYVSAIAQTEKSI =361.6666667 =147.6666667 =615.6666667 MGEPLENDEDCAH =322.6666667 =259.3333333 =794
SAIAQTEKSIEDN =274.3333333 =218.6666667 =794 PLENDEDCAHWKE =360.3333333 =225.6666667 =713.3333333
AQTEKSIEDNPEI =422 =181.3333333 =807 NDEDCAHWKEAKM =375.6666667 =224.6666667 =1041.666667
EKSIEDNPEIEDD =321.6666667 =185.6666667 =1630.666667 DCAHWKEAKMLLD =498.6666667 =261.6666667 =1003
IEDNPEIEDDIFR =468.6666667 =299.6666667 =744.3333333 HWKEAKMLLDNIN =355 =243.3333333 =1617.333333
NPEIEDDIFRKRK =369.3333333 =226 =1322 EAKMLLDNINTPE =361 =221.6666667 =1411.333333
IEDDIFRKRKLTI 401.6666667 864.3333333 5622 MLLDNINTPEGII =305.3333333 =128.6666667 =1368
DIFRKRKLTIMDL =443 =202 713 DNINTPEGIIPSM =404.3333333 =303.3333333 =1032.666667
RKRKLTIMDLHPG =264 =140.3333333 =74 NTPEGIIPSMFEP =372 =346 =1252.666667
KLTIMDLHPGAGK =276 =15.66666667 =513 EGIIPSMFEPERE =236.6666667 =156.3333333 =904.3333333
IMDLHPGAGKTKR =529 =331.6666667 =327 IPSMFEPEREKVD =182.6666667 =185.6666667 =1135.666667
LHPGAGKTKRYLP =372.3333333 =277 203.6666667 MFEPEREKVDAID =229 =190.6666667 =798
GAGKTKRYLPAIV =389.3333333 =138.6666667 198 PEREKVDAIDGEY =278.6666667 =148 =1991.666667
KTKRYLPAIVREA =469 =243.3333333 722.6666667 EKVDAIDGEYRLR =225.6666667 =132.6666667 =1209.333333
RYLPAIVREAIKR 4622 6826.333333 2101.666667 DAIDGEYRLRGEA =259 =116.6666667 =1929
PAIVREAIKRGLR 3076.333333 1940 =331.3333333 DGEYRLRGEARKT =331 =211 =2014.333333
VREAIKRGLRTLI 2066.666667 1483.666667 =791.3333333 YRLRGEARKTFVD =101 6.333333333 24.66666667
AIKRGLRTLILAP 1283.333333 1248.666667 956 RGEARKTFVDLMR 477.6666667 668 1832.333333
RGLRTLILAPTRV 578 331 341 ARKTFVDLMRRGD 478 368.6666667 147.6666667
RTLILAPTRVVAA 135.3333333 =39.66666667 2615 TFVDLMRRGDLPV =101.6666667 =74.66666667 916.3333333
ILAPTRVVAAEME =479 =288.6666667 =2535 DLMRRGDLPVWLA =313.6666667 =244.3333333 =338
PTRVVAAEMEEAL =370.3333333 =260.3333333 =2202 RRGDLPVWLAYRV =23.66666667 65.33333333 434.6666667
VVAAEMEEALRGL =434 =275 =1909 DLPVWLAYRVAAE 321.3333333 1001 9223.666667
AEMEEALRGLPIR =385.3333333 =284.6666667 =1297.333333 VWLAYRVAAEGIN 256.3333333 267.6666667 2792.666667
EEALRGLPIRYQT =471 =316.6666667 =1024 AYRVAAEGINYAD =146.6666667 =32 2555
LRGLPIRYQTPAI 96.66666667 249.6666667 3307 VAAEGINYADRRW 155.3333333 510 4630
LPIRYQTPAIRAE =249.6666667 =169.3333333 =900.6666667 EGINYADRRWCFD =250.3333333 =38.66666667 2241.666667
RYQTPAIRAEHTG =357 =250.3333333 =1688.333333 NYADRRWCFDGIK =149.6666667 =74 2036.333333
TPAIRAEHTGREI =381 =134.3333333 =1306 DRRWCFDGIKNNQ =319.3333333 =230.6666667 =53.66666667
IRAEHTGREIVDL =162.6666667 =151.6666667 =573 WCFDGIKNNQILE =172 =94.33333333 =1041.333333
EHTGREIVDLMCH =253.3333333 =277.3333333 =666.6666667 DGIKNNQILEENV =287.6666667 =107.3333333 =828.6666667
GREIVDLMCHATF 595.6666667 952.3333333 4307 KNNQILEENVEVE =34.33333333 =28 =703
IVDLMCHATFTMR 4507 3854.666667 4834 QILEENVEVEIWT =446.3333333 =195.6666667 1002
LMCHATFTMRLLS 5010.666667 3615.666667 3899 EENVEVEIWTKEG =152.6666667 =201.6666667 =1170
HATFTMRLLSPVR 5103.666667 6220 4262.666667 VEVEIWTKEGERK =432.6666667 =166 =414.3333333
FTMRLLSPVRVPN 1807 1790.666667 5027.333333 EIWTKEGERKKLK =155.3333333 =275.3333333 =1438.666667
RLLSPVRVPNYNL 5851 7695 11611.66667 TKEGERKKLKPRW =306.3333333 =183 =307
SPVRVPNYNLIIM =56.66666667 =94 1042 GERKKLKPRWLDA =187 =151.3333333 =395
RVPNYNLIIMDEA =201.3333333 =192.6666667 =542.3333333 KKLKPRWLDARIY 11384.66667 14187 15821.33333
NYNLIIMDEAHFT 124.3333333 17.33333333 3546 KPRWLDARIYSDP =96.66666667 =56.66666667 2573.333333
LIIMDEAHFTDPA =421 =263.6666667 =1138.666667 WLDARIYSDPLAL 152.3333333 970.3333333 7718.666667
MDEAHFTDPASIA =408.6666667 =283.3333333 =1108 ARIYSDPLALKEF =233.6666667 =131.6666667 733
AHFTDPASIAARG =581 =311 =1664.666667 YSDPLALKEFKEF =259 =118.3333333 1714
TDPASIAARGYIS 553.6666667 276.3333333 3024.666667 PLALKEFKEFAAG =319.6666667 =217.3333333 925.6666667
ASIAARGYISTRV 1965.333333 2024.333333 3870.333333 ALKEFKEFAAGRK 33 95.33333333 19.33333333
AARGYISTRVEMG 599.6666667 440 1976.333333
GYISTRVEMGEAA =16.66666667 59.33333333 =139.6666667
STRVEMGEAAGIF =208.3333333 =18.33333333 =11.66666667
VEMGEAAGIFMTA =207.6666667 =158 =1414.666667
GEAAGIFMTATPP =393.3333333 =307.3333333 =561.3333333
AGIFMTATPPGSR =307.3333333 =205 =124.3333333
FMTATPPGSRDPF =324 =199.3333333 1.666666667
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Figure 14. Identification of DENV2 E protein epitopes. Amino acid sequence for E 

protein was used to make 15-mer peptides for microarray slide. Slides were incubated 

with anti-DENV2 IgYΔFc, anti-DENV2 IgY full length, or naïve control IgY. Reactivity 

is measured based on a spectrum ranging from no reactivity in black to high reactivity in 

red. Values represent MFI-background.   

Peptide 'ΔFc'IgY Full'length Naïve'IgY Peptide 'ΔFc'IgY Full'length Naïve'IgY
IGISNRDFVEGVS <205 <126.3333333 <1704.666667 TEIQMSSGNLLFT <114 <23 <20.33333333
SNRDFVEGVSGGS <410 <214.6666667 <979 QMSSGNLLFTGHL 2285.666667 3923.666667 11835
DFVEGVSGGSWVD <183.3333333 344.3333333 3316.666667 SGNLLFTGHLKCR 7286.666667 5230.666667 14341
EGVSGGSWVDIVL 532 527.6666667 1706.666667 LLFTGHLKCRLRM 8181.333333 7540.666667 8165
SGGSWVDIVLEHG 1835.333333 118.6666667 528 TGHLKCRLRMDKL 3312.666667 629.3333333 337.6666667
SWVDIVLEHGSCV 163.6666667 <135 81.66666667 LKCRLRMDKLQLK 736 660 919
DIVLEHGSCVTTM <380.6666667 <234.6666667 <1562.666667 RLRMDKLQLKGMS 77 65.66666667 94.66666667
LEHGSCVTTMAKN <195 <200 <1792 MDKLQLKGMSYSM 2103.666667 1543.666667 4902.666667
GSCVTTMAKNKPT <327.6666667 <276 <960 LQLKGMSYSMCTG 384.6666667 302.6666667 3306.333333
VTTMAKNKPTLDF <75.33333333 <221 <1649.333333 KGMSYSMCTGKFK 5106.666667 3678.333333 <56
MAKNKPTLDFELI <143.6666667 299.6666667 1171.333333 SYSMCTGKFKVVK 2136.333333 358 267
NKPTLDFELIKTE <106.3333333 34 <1113 MCTGKFKVVKEIA <34 <203.6666667 <120.6666667
TLDFELIKTEAKQ 82 43.33333333 726 GKFKVVKEIAETQ <329.3333333 <200.3333333 <199.3333333
FELIKTEAKQSAT <152.6666667 <123.6666667 <354.3333333 KVVKEIAETQHGT <492 <85 <1474
IKTEAKQSATLRK 133.3333333 <119 <348.3333333 KEIAETQHGTIVI <15.66666667 <21.66666667 88.33333333
EAKQSATLRKYCI 467 375.6666667 2203.333333 AETQHGTIVIRVQ <288.3333333 <265.3333333 <971.6666667
QSATLRKYCIEAK 1074.666667 967 1416 QHGTIVIRVQYEG 412.6666667 <76.66666667 <712.6666667
TLRKYCIEAKLTN 549.6666667 2469.333333 2711.333333 TIVIRVQYEGDGS <183 <136.6666667 <1792
KYCIEAKLTNTTT <159.6666667 1202.666667 <649.6666667 IRVQYEGDGSPCK <268.3333333 <183.3333333 <1558.333333
IEAKLTNTTTESR <240 <105 <523 QYEGDGSPCKIPF <366.6666667 <214.3333333 <746.3333333
KLTNTTTESRCPT <382 <285.6666667 <674.3333333 GDGSPCKIPFEIM <306.3333333 <250.6666667 <1261
NTTTESRCPTQGE <436 <258 <754.6666667 SPCKIPFEIMDLE <452.3333333 <292.3333333 <1633.333333
TESRCPTQGEPSL <211.6666667 <203.6666667 <1709 KIPFEIMDLEKRH <367 <263.3333333 <1362.666667
RCPTQGEPSLNEE <248.3333333 <214.6666667 <832.6666667 FEIMDLEKRHVLG <373.6666667 <227.6666667 <940
TQGEPSLNEEQDK <262 <206.3333333 <1732.333333 MDLEKRHVLGRLI 837.3333333 3668.333333 2100.666667
EPSLNEEQDKRFV 612.6666667 <29 <986.3333333 EKRHVLGRLITVN 2990 3651.333333 4237.666667
LNEEQDKRFVCKH <168.3333333 <277.3333333 <716 HVLGRLITVNPIV 156.3333333 708.6666667 2966
EQDKRFVCKHSMV 2038.666667 421.3333333 5295 GRLITVNPIVTEK <508 <349.3333333 <706.6666667
KRFVCKHSMVDRG <219.6666667 <198.6666667 <613.3333333 ITVNPIVTEKDSP <159 <235 <586.6666667
VCKHSMVDRGWGN <352.3333333 <267.3333333 <645.3333333 NPIVTEKDSPVNI <70.33333333 633.6666667 821.6666667
HSMVDRGWGNGCG <396.6666667 <285.6666667 <1388.666667 VTEKDSPVNIEAE <150 <108.3333333 <587.3333333
VDRGWGNGCGLFG <323 <162.3333333 722 KDSPVNIEAEPPF 163.6666667 <42 <367.3333333
GWGNGCGLFGKGG <162.6666667 <179.6666667 <474 PVNIEAEPPFGDS <317.6666667 <299 <967.3333333
NGCGLFGKGGIVT <32.33333333 <48 1490.666667 IEAEPPFGDSYII <404.3333333 <240 <2
GLFGKGGIVTCAM <523.6666667 <277 <161.6666667 EPPFGDSYIIIGV 383 <4.666666667 3911
GKGGIVTCAMFTC <231 <128 979.3333333 FGDSYIIIGVEPG <224.6666667 475 3592.666667
GIVTCAMFTCKKD <360.3333333 <187 1313.666667 SYIIIGVEPGQLK <723 <289.3333333 218.6666667
TCAMFTCKKDMKG <454 <380.3333333 <895.6666667 IIGVEPGQLKLNW <305 1113 3925.666667
MFTCKKDMKGEVV <281 <270.3333333 <1093 VEPGQLKLNWFKK 2735.666667 2675.333333 10662.66667
CKKDMKGEVVQPE <505 <463 <1532 GQLKLNWFKKGSS 164 42.66666667 614.3333333
DMKGEVVQPENLE 1649.333333 <184.6666667 <885 KLNWFKKGSSIGQ 537.3333333 <100.3333333 52
GEVVQPENLEYTI 5304.666667 224.3333333 <874.3333333 WFKKGSSIGQMLE 2336.333333 41 <386.3333333
VQPENLEYTIVIT 749 307.6666667 <27 KGSSIGQMLETTM <427.3333333 <324.6666667 <873.6666667
ENLEYTIVITPHS 118.3333333 75.33333333 <362.3333333 SIGQMLETTMRGA <321.3333333 <320 <817.6666667
EYTIVITPHSGEE <323.3333333 <292.3333333 <1039.333333 QMLETTMRGAKRM <127.3333333 <202.6666667 <1042.666667
IVITPHSGEEHAV 774.3333333 22 <759.6666667 ETTMRGAKRMAIL 586.6666667 24.33333333 501
TPHSGEEHAVGND <53 <190.3333333 <501 MRGAKRMAILGDT <527.6666667 <262.3333333 <1016.666667
SGEEHAVGNDTGK <251.6666667 <144.3333333 <912 AKRMAILGDTAWD <257.6666667 <212.3333333 <2453.333333
EHAVGNDTGKHGK 52 <200 <1301 MAILGDTAWDFGS <163.3333333 79.33333333 3234.666667
VGNDTGKHGKEIK <269 <217 <928.3333333 LGDTAWDFGSLGG <290 <210.3333333 <1025.666667
DTGKHGKEIKITP <80.33333333 <123 <1342.333333 TAWDFGSLGGVFT 168.6666667 1045.333333 12727.66667
KHGKEIKITPQSS <223 <218.3333333 <1321.333333 DFGSLGGVFTSIG <131 <18 2520.333333
KEIKITPQSSITE <276.3333333 <205 <923 SLGGVFTSIGKAL <582.3333333 <278.3333333 <2060.666667
KITPQSSITEAEL <264 <217.6666667 <938 GVFTSIGKALHQV <9 <39.66666667 777.3333333
PQSSITEAELTGY <305 <105.3333333 <936.3333333 TSIGKALHQVFGA 363 187 <1071.333333
SITEAELTGYGTV <243 <177.6666667 <969.3333333 GKALHQVFGAIYG 5134.333333 4906.333333 17752.33333
EAELTGYGTVTME <197 <167 <1789.666667 LHQVFGAIYGAAF 813 698.3333333 3921.666667
LTGYGTVTMECSP <229.6666667 <157.6666667 <662.6666667 VFGAIYGAAFSGV 238 195.6666667 2313.333333
YGTVTMECSPRTG <369.6666667 <259.3333333 <1706.666667 AIYGAAFSGVSWT <71.33333333 180 5484
VTMECSPRTGLDF <286.3333333 <155.6666667 <1165.666667 GAAFSGVSWTMKI 87.33333333 197.6666667 2786.666667
ECSPRTGLDFNEM <245 <197.3333333 <1278.333333 FSGVSWTMKILIG 2774 2295.666667 5333.666667
PRTGLDFNEMVLL <52.33333333 192.3333333 1698.333333 VSWTMKILIGVII 178.6666667 222.6666667 959.6666667
GLDFNEMVLLQME <152.6666667 <93 173.6666667 TMKILIGVIITWI 155.3333333 175.3333333 1799.666667
FNEMVLLQMENKA <177.3333333 <197.3333333 <438.6666667 ILIGVIITWIGMN <16.33333333 41.33333333 172.6666667
MVLLQMENKAWLV 837.3333333 462 1886.333333 GVIITWIGMNSRS <355 <230.6666667 <341.3333333
LQMENKAWLVHRQ 1538.666667 1693.666667 10980 ITWIGMNSRSTSL <426 <298.3333333 <1392.333333
ENKAWLVHRQWFL 12062.33333 12182 20134.66667 IGMNSRSTSLSVS <331.6666667 <243.6666667 <1339.666667
AWLVHRQWFLDLP 10184 12098.33333 33207.33333 NSRSTSLSVSLVL <186.3333333 49.66666667 29.33333333
VHRQWFLDLPLPW 21589.33333 17183 43312.66667 STSLSVSLVLVGV 548 735.6666667 1613
QWFLDLPLPWLPG 931 953.6666667 3694 LSVSLVLVGVVTL 107 140.3333333 243.6666667
LDLPLPWLPGADT <48 26.66666667 1473.666667 SLVLVGVVTLYLG <600 <332.6666667 <831.6666667
PLPWLPGADTQGS <295.6666667 <198.6666667 <602 LVGVVTLYLGVMV 904.6666667 427.3333333 1827.666667
WLPGADTQGSNWI 31.33333333 <98 1351.666667 GVVTLYLGVMVQA <321.6666667 <98.33333333 521
GADTQGSNWIQKE <323.6666667 <222.3333333 <768.3333333
TQGSNWIQKETLV <289 <231.6666667 <1447.333333
SNWIQKETLVTFK 147 240 1736.666667
IQKETLVTFKNPH <262.6666667 <229 <1104.666667
ETLVTFKNPHAKK <124.3333333 <184.6666667 <148.6666667
VTFKNPHAKKQDV <432 <252.6666667 <703.6666667
KNPHAKKQDVVVL 376.6666667 108.6666667 <25
HAKKQDVVVLGSQ <138.3333333 <97 <434
KQDVVVLGSQEGA <266.3333333 <229.3333333 <1343.333333
VVVLGSQEGAMHT <297 <189 <1626.666667
LGSQEGAMHTALT <421 <264 <2008.666667
QEGAMHTALTGAT <138.3333333 <165 <804
AMHTALTGATEIQ <364 <119.3333333 <812.3333333
TALTGATEIQMSS <628.6666667 <281.6666667 <313.3333333
TGATEIQMSSGNL <360.6666667 <171.6666667 <621
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Figure 15. Identification of DENV2 PrM epitopes. Amino acid sequence for PrM was 

used to make 15-mer peptides for microarray slide. Slides were incubated with anti-

DENV2 IgYΔFc, anti-DENV2 IgY full length, or naïve control IgY. Reactivity is 

measured based on a spectrum ranging from no reactivity in black to high reactivity in 

red. Values represent MFI-background.   

Peptide 'ΔFc'IgY Full'length Naïve'IgY
FHLTTRNGEPHMI =199 =109 1041.333333
TTRNGEPHMIVSR =342.3333333 =160.3333333 =306.6666667
NGEPHMIVSRQEK =365.3333333 =267.3333333 =1050.666667
PHMIVSRQEKGKS =154.6666667 =101.3333333 =710
IVSRQEKGKSLLF 2816.666667 2995.666667 5313
RQEKGKSLLFKTG =286 =106 =620
KGKSLLFKTGDGV =363 =185.6666667 =681.3333333
SLLFKTGDGVNMC =321.3333333 =105.6666667 =789.6666667
FKTGDGVNMCTLM =262 =177.3333333 =536.6666667
GDGVNMCTLMAMD =140.6666667 =127 =177.3333333
VNMCTLMAMDLGE =480.6666667 =287 =1031.666667
CTLMAMDLGELCE =367 =98 =1151.333333
MAMDLGELCEDTI =566.3333333 =311.6666667 =1313.666667
DLGELCEDTITYK =450.3333333 =285 =1301.333333
ELCEDTITYKCPL =244 =146 =27.66666667
EDTITYKCPLLRQ =385.3333333 =250 =1272.666667
ITYKCPLLRQNEP =262.6666667 =203.6666667 =882
KCPLLRQNEPEDI =288 =242.3333333 =886.6666667
LLRQNEPEDIDCW 13.33333333 =141.3333333 =955
QNEPEDIDCWCNS =363.6666667 =207.6666667 =1026
PEDIDCWCNSTST =331.3333333 =164 =1094.666667
IDCWCNSTSTWVT 4.666666667 133 3584
WCNSTSTWVTYGT 153 184 7348.666667
STSTWVTYGTCTT =223 17 3629.666667
TWVTYGTCTTTGE =701.3333333 =402.6666667 =17
TYGTCTTTGEHRR =324.6666667 =276.3333333 369.3333333
TCTTTGEHRREKR =419.6666667 =191.3333333 =1304.666667
TTGEHRREKRSVA =282.6666667 =171.3333333 90
EHRREKRSVALVP =277.6666667 =219.6666667 =609
REKRSVALVPHVG =244 =152.6666667 =58.33333333
RSVALVPHVGMGL 945.6666667 1990.333333 4661
ALVPHVGMGLETR =37.66666667 =3 391
PHVGMGLETRTET =374.3333333 =249.3333333 =1069
GMGLETRTETWMS =192 =54.33333333 1846.333333
LETRTETWMSSEG =253 =220.3333333 =530
RTETWMSSEGAWK 581.3333333 616 7376
TWMSSEGAWKHAQ =217.6666667 =197 =48
SSEGAWKHAQRIE =335 =246 327.3333333
GAWKHAQRIETWI 825.6666667 1857 9546.666667
KHAQRIETWILRH 1415 1357 7776
QRIETWILRHPGF 7199.333333 8871.666667 18426.66667
ETWILRHPGFTIM 10920.33333 13709.66667 24216.66667
ILRHPGFTIMAAI 21.66666667 46.33333333 588
HPGFTIMAAILAY 571 473 2872
FTIMAAILAYTIG 524.3333333 317 1719.333333
MAAILAYTIGTTH 160.3333333 27.66666667 2562
ILAYTIGTTHFQR 12177 12438 18925.66667
YTIGTTHFQRALI 365 181.3333333 11275.33333
GTTHFQRALIFIL 387 584.3333333 1013
HFQRALIFILLTA =203 =83.66666667 181.6666667
RALIFILLTAVAP =440 =265 =536
IFILLTAVAPSMT =179.3333333 24 150.6666667
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Figure 16. Identification of DENV2 NS1 epitopes. Amino acid sequence for NS1 was 

used to make 15-mer peptides for microarray slide. Slides were incubated with anti-

DENV2 IgYΔFc, anti-DENV2 IgY full length, or naïve control IgY. Reactivity is 

measured based on a spectrum ranging from no reactivity in black to high reactivity in 

red. Values represent MFI-background.   

Peptide 'ΔFc'IgY Full'length Naïve'IgY Peptide 'ΔFc'IgY Full'length Naïve'IgY
DSGCVVSWKNKEL ?253.6666667 ?260.3333333 ?606.6666667 QDVFCDSKLMSAA ?234.6666667 ?203.6666667 ?1070.333333
CVVSWKNKELKCG ?489.6666667 ?311 ?149 FCDSKLMSAAIKD ?237 ?162 ?1345.333333
SWKNKELKCGSGI ?342.3333333 ?322 ?1085 SKLMSAAIKDNRA ?457.6666667 ?259.6666667 ?1437.666667
NKELKCGSGIFIT ?234.6666667 ?117.3333333 996 MSAAIKDNRAVHA ?344.6666667 ?264 ?927.6666667
LKCGSGIFITDNV ?130.3333333 ?174 ?334 AIKDNRAVHADMG ?413.6666667 ?257 ?1046
GSGIFITDNVHTW 1.666666667 570 7119.333333 DNRAVHADMGYWI 6872 8417.666667 41015.33333
IFITDNVHTWTEQ ?107.3333333 ?77.33333333 937.3333333 AVHADMGYWIESA ?263.3333333 ?149 ?751.6666667
TDNVHTWTEQYKF 56.33333333 474 10449.66667 ADMGYWIESALND ?309.3333333 ?157.6666667 ?1551.666667
VHTWTEQYKFQPE ?315.3333333 ?196.6666667 ?831.3333333 GYWIESALNDTWK 192.3333333 477.3333333 9053.666667
WTEQYKFQPESPS ?198.6666667 ?141 ?1087.666667 IESALNDTWKIEK ?197 ?112.6666667 ?359
QYKFQPESPSKLA ?266.6666667 ?173.6666667 ?761.6666667 ALNDTWKIEKASF ?32 ?30.66666667 1856.666667
FQPESPSKLASAI ?30.33333333 ?154.3333333 ?586.6666667 DTWKIEKASFIEV ?30.66666667 30.66666667 592
ESPSKLASAIQKA ?312 ?216.3333333 ?1041.333333 KIEKASFIEVKSC ?140.6666667 ?150.3333333 1284
SKLASAIQKAHEE ?318.6666667 ?200.3333333 ?1816.333333 KASFIEVKSCHWP 411 337.6666667 11410.66667
ASAIQKAHEEGIC ?301.3333333 ?154.3333333 ?874.3333333 FIEVKSCHWPKSH 1235.333333 492.3333333 8460
IQKAHEEGICGIR ?350.6666667 ?177.3333333 ?1538.333333 VKSCHWPKSHTLW 1456 1393 17264.66667
AHEEGICGIRSVT ?364.3333333 ?215.3333333 ?1584.666667 CHWPKSHTLWSNE ?175 ?106 242
EGICGIRSVTRLE ?282.3333333 ?199 ?359 PKSHTLWSNEVLE ?253.6666667 ?126.6666667 ?545.3333333
CGIRSVTRLENLM ?230.6666667 ?155 ?2179.666667 HTLWSNEVLESEM ?382.3333333 ?141.6666667 ?508.6666667
RSVTRLENLMWKQ 5.666666667 351.6666667 ?81 WSNEVLESEMIIP ?40 ?28.33333333 207.6666667
TRLENLMWKQITP ?339.6666667 ?249 ?733 EVLESEMIIPKNF ?362 ?251.6666667 ?489.3333333
ENLMWKQITPELN ?272 ?193 ?880.3333333 ESEMIIPKNFAGP ?563.3333333 ?389.6666667 ?759.3333333
MWKQITPELNHIL ?274.6666667 131 2442.666667 MIIPKNFAGPVSQ ?296 ?179.3333333 ?930
QITPELNHILSEN ?324.6666667 ?132.6666667 ?1600 PKNFAGPVSQHNY ?391.3333333 ?198.6666667 ?87
PELNHILSENEVK ?316 ?228.3333333 ?843.6666667 FAGPVSQHNYRPG ?551.3333333 ?385 ?933.6666667
NHILSENEVKLTI 86.66666667 71 682 PVSQHNYRPGYHT 5405.333333 4268 17690.66667
LSENEVKLTIMTG 251.3333333 ?93.33333333 ?113 QHNYRPGYHTQTA ?416.3333333 ?289 ?402
NEVKLTIMTGDIK ?301.3333333 ?201.3333333 ?519.6666667 YRPGYHTQTAGPW 750.6666667 419.6666667 8722
KLTIMTGDIKGIM 47.66666667 ?70.66666667 844.6666667 GYHTQTAGPWHLG ?293 ?249.6666667 1922.666667
IMTGDIKGIMQAG ?285.3333333 ?311.6666667 ?590 TQTAGPWHLGKLE ?348.3333333 ?219.3333333 ?637
GDIKGIMQAGKRS 64.66666667 ?39.33333333 121.3333333 AGPWHLGKLEMDF 449 217.3333333 3956
KGIMQAGKRSLRP 1521.333333 589 1406.333333 WHLGKLEMDFDFC 7395.333333 1068.666667 11936
MQAGKRSLRPQPT ?360 ?189 ?670 GKLEMDFDFCEGT ?146 64.33333333 4276.666667
GKRSLRPQPTELK ?429 ?359.3333333 ?1185 EMDFDFCEGTTVV ?233 166 1563
SLRPQPTELKYSW ?214.6666667 2 5042.333333 FDFCEGTTVVVTE ?178 ?192.3333333 ?839
PQPTELKYSWKTW 1741 3637 20900 CEGTTVVVTEDCG ?383.6666667 ?267.3333333 ?601.3333333
TELKYSWKTWGKA ?23.33333333 352.6666667 11510.33333 TTVVVTEDCGNRG ?288.3333333 ?150.6666667 ?1346.666667
KYSWKTWGKAKML 2857 1723.333333 4968.333333 VVTEDCGNRGPSL ?343.6666667 ?191.6666667 ?846.6666667
WKTWGKAKMLSTE ?507.6666667 ?309 ?1418.333333 EDCGNRGPSLRTT ?439.6666667 ?193.6666667 ?678.3333333
WGKAKMLSTESHN ?331 ?272.3333333 ?1124.666667 GNRGPSLRTTTAS ?540.6666667 ?355.6666667 ?1100.666667
AKMLSTESHNQTF ?392 ?299.6666667 ?581.6666667 GPSLRTTTASGKL ?546.3333333 ?347.3333333 ?909
LSTESHNQTFLID ?163.3333333 ?166.6666667 317 LRTTTASGKLITE 111.6666667 ?265 ?793.3333333
ESHNQTFLIDGPE ?440.3333333 ?186.6666667 ?1105.666667 TTASGKLITEWCC ?217 ?203.3333333 117
NQTFLIDGPETAE ?253.6666667 ?177.3333333 ?930.6666667 SGKLITEWCCRSC ?294.6666667 ?218 ?938.3333333
FLIDGPETAECPN ?336 ?268 ?1423 LITEWCCRSCTLP ?599 ?422.6666667 ?966.3333333
DGPETAECPNTNR ?364 ?296.3333333 ?1179.666667 EWCCRSCTLPPLR ?353 ?113 ?381.3333333
ETAECPNTNRAWN ?348.6666667 ?227.3333333 ?826 CRSCTLPPLRYRG ?244 ?216 ?661.6666667
ECPNTNRAWNSLE ?217.3333333 ?245.3333333 ?181.3333333 CTLPPLRYRGEDG ?228.3333333 ?124.3333333 ?757.6666667
NTNRAWNSLEVED ?264 ?192.6666667 ?290 PPLRYRGEDGCWY ?201.6666667 ?110 ?327.3333333
RAWNSLEVEDYGF ?32.33333333 51.66666667 7194.666667 RYRGEDGCWYGME 184 339 2556.666667
NSLEVEDYGFGVF 85 98.66666667 1814.333333 GEDGCWYGMEIRP ?340.3333333 ?172 ?886.6666667
EVEDYGFGVFTTN ?297.6666667 ?178 ?501.3333333 GCWYGMEIRPLKE ?355.6666667 ?188.3333333 ?1282.666667
DYGFGVFTTNIWL 595.6666667 1116 3632 YGMEIRPLKEKEE ?311 ?210.3333333 ?1748
FGVFTTNIWLKLR 995.3333333 710 1525 EIRPLKEKEENLV ?285.6666667 ?188.6666667 ?1854.666667
FTTNIWLKLREKQ 1310.666667 1465.666667 6104.333333 PLKEKEENLVNSL ?442.6666667 ?234.6666667 112
NIWLKLREKQDVF 711 2363 11045.33333 EKEENLVNSLVTA 44.66666667 ?152.3333333 ?549.3333333
LKLREKQDVFCDS ?284.6666667 ?161.6666667 ?220
REKQDVFCDSKLM ?270.6666667 ?231.6666667 ?286.6666667
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Determination of anti-DENV IgY neutralizing epitopes 

 We selected peptides where either anti-DENV2 IgY or IgYΔFc binding to that 

spot generated a MFI that was at least 2x greater than the positive control peptide. These 

peptides were used in an AminoLink affinity purification column to purify antibodies that 

specifically recognize that peptide (peptide specific antibody). To test the neutralization 

potential of these peptide specific IgY antibodies we used a PRNT assay. Preliminary 

data from these experiments suggest that peptide specific IgY antibodies may be able to 

neutralize DENV infection in vitro. Further studies will determine if neutralization is 

greater than the polyclonal combined anti-DENV2 IgY and what epitopes have the 

greatest neutralization capacity.  

Discussion 

 In this study we demonstrate that anti-DENV2 IgY purified from goose egg yolk 

is effective in neutralizing DENV2 D2S10 viral infection both in vitro and in vivo, in the 

absence of ADE. Vaccination with the DEVN2 antigen induced a strong humoral 

response in the geese, with titers maintained for over six weeks and reaching as high as 1: 

3,800,000 (figure). We consistently observed therapeutic efficacy with 2 mg anti-DENV2 

IgY administered 24 hours post infection, similar to the 100% therapeutic protection 

observed with the MAb E60-N297Q positive control. Our results also indicate some non-

specific protection that may be provided by large amounts of naïve goose IgY as 

indicated by both the in vivo challenge data and the epitope mapping. Experiments that 

were performed prior to epitope mapping were done using the total combined full length 

IgY and IgYΔFc polyclonal antibody population. Further studies will determine the 
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neutralization capacity of full length IgY compared to IgYΔFc as well as the 

neutralization capacity of the epitope specific affinity purified IgY and IgYΔFc.  

 At present, there are no licensed therapies or vaccines for the protection of DHF 

or DSS, the severe manifestations of DENV infection. The development of a vaccine has 

been problematic, in part due to the possible risk of eliciting suboptimal immune 

responses that will lead to ADE and severe disease following infection with heterologous 

virulent strains. In the absence of an effective vaccine, passive immunotherapy with 

neutralizing antibodies may provide an alternative for the treatment of dengue. Our data 

suggests that ADE does not occur when anti-DENV2 IgY is administered as a treatment 

for dengue. This characteristic is especially advantageous because it does not require any 

genetic modification or engineering to prevent enhancement, unlike other non-avian 

antibody therapies (214). It has been suggested that ADE results in increased viral load, 

increased activation of cytokines, and the activation of complement. All of these 

phenomena taking place simultaneous to the immune response to the actual infection 

increase the likelihood of vascular leakage and tissue damage. When tissue is damaged 

and the vasculature inadequate, the recruitment of immune mediators is also occurring at 

these organ sites. This massive increase in cytokines actually becomes detrimental to the 

patient and may hamper the clearance of the virus. Likewise, activation of the immune 

system may remain high after viral clearance. The combined immune response to DENV, 

specifically during heterotypic secondary infections elucidates the need to develop 

therapeutics that will not induce ADE, such as anti-DENV2 IgY.  

 Humanized anti-DENV MAbs obtained from mice or non-human primates have 

been produced to treat dengue, but functionally the majority of these antibodies are 
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weakly neutralizing and serotype cross reactive (188, 206, 216). Potently neutralizing 

human MAbs are rare indicating that only a small fraction of the total antibody response 

during natural infection is responsible for virus neutralization. We have done extensive 

epitope mapping of three complete DENV proteins; E protein, PrM protein, NS1, and 

NS3. Our results suggest that naïve IgY and anti-DENV2 IgY recognize similar epitopes, 

but anti-DENV2 IgY also recognizes unique epitopes. The majority of the unique 

epitopes were located within the E protein, with some located in the NS3 protein. These 

data are consistent with the current literature suggesting that the most neutralizing 

epitopes are located within the E protein. In contrast, the NS3 epitopes presented are 

uncharacteristic and may be potential neutralizing epitopes that have yet to be exploited 

by other research groups. It is important to note that all of the unique anti-DENV2 IgY 

epitopes, both full length IgY and IgYΔFc are epitopes that have yet to be published as 

neutralizing epitopes for any mammalian or murine MAbs. This confirms that IgY 

recognizes different DENV2 epitopes than IgG, and therefore the antibody population 

generated in geese is different from what would be generated for production of human 

anti-DENV MAbs.  

Conclusions 

Our results suggest that anti-DENV2 IgY is capable of neutralizing but not 

enhancing a DENV2 infection. The anti-DENV2 IgY administered to mice post lethal 

challenge with D2S10 is protective. We have confirmed that the antibody repertoire 

generated against DENV in geese is different from what occurs in mammals, and thus 

provides an increase in potential viral neutralization. Future research will focus on 
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characterizing the neutralization and therapeutic capacity of the affinity purified epitope 

specific anti-DENV2 IgY. 
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CHAPTER V 

DISCUSSION 

The development of bioavailable, passive immunotherapies to treat infectious 

diseases remains an elusive goal. In recent years, passive immunization with avian 

derived antibodies has emerged as an attractive alternative to mammalian derived 

antibodies to treat disease. Most of the polyclonal antibodies used in passive therapeutics 

are of human origin (4). In order to obtain sufficient antibody titers, pre-screened 

volunteer human donors are generally immunized with the antigen, and their plasma is 

then collected. Unfortunately, there are substantial restrictions to this method including 

the limitations to the types of vaccines used, the number of immunizations permitted, the 

adjuvant used, and the amount of plasma that can be collected (7). Furthermore, 

humanized or human derived antibodies are highly susceptible to unwanted interactions 

with conserved proteins, which in turn leads to unwanted immune mediated pathologies 

(9). In addition, human-derived antibodies pool are also potentially contaminated with 

other unwanted infectious agents, putting the recipient of the immunotherapy at risk of 

potentially life threatening infections. The development of unconventional methods of 

generating antibodies that are not only suitable for use as therapeutics but also cost and 

quantity efficient is an area of active research.  

IgY, the major serum immunoglobulin in birds, is transferred from the serum to 

the egg yolk during embryonic development. The natural deposition of IgY into the egg 
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yolks of immunized birds provides both an excellent source of polyclonal antibodies but 

also facilitates a less invasive technique for collecting these antibodies (27, 44, 9). 

In addition, the sustained high titers of IgY in immunized birds provide a long-term 

supply of substantial amounts of antibody (9).  

In an attempt to increase the potential application of IgY therapeutics, one of our 

research goals was to determine the bioavailability of IgY following oral administration. 

As stated above, there are currently several disease agents that have been utilized in the 

production of antigen specific IgY for passive oral therapeutics. For the first time, our 

research suggests that IgY is bioavailable as soon as 24 hours post oral administration, 

and under specific biochemical conditions remains in the serum for up to 7 days. These 

data suggest that IgY is able to cross the epithelial barrier in the intestine and potentially 

exert its effects outside of the GI tract. Although the ability of orally administered IgY to 

provide protection against disease agents remains to be determined, these data provide 

evidence for such possibilities.  

There are several physiological, physiochemical, and biopharmaceutical factors 

that influence the bioavailability of drugs. The mechanism as to how or why IgY is able 

to seroconvert post oral administration is unknown and under investigation in our lab. 

One possibility is that IgY is binding to unspecified receptors in the gut facilitating its 

translocation. It is important to recognize however that the delivery of therapeutics orally, 

even in the absence of a known mechanism of seroconversion, has many advantages. 
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Oral therapeutics do not require trained medical professionals for administration, and also 

do not require additional medical equipment such as sterile needles and syringes. One 

would argue that this would facilitate better compliance if patients were only required to 

take an oral medication instead of being injected. Furthermore, oral IgY would be good 

candidate therapeutics for use in areas where other administration routes are difficult to 

implement due to a lack of economic and healthcare development.  

One organism of interest for the development of antigen specific IgY is P. 

falciparum, the causative agent of falciparum malaria, and more specifically CM. The 

current treatment protocol for CM is the administration of combination antimalarial 

drugs, particularly those including artemisinin derivatives. Unfortunately the introduction 

of drug resistant Plasmodium strains has facilitated the need for new drug and therapeutic 

candidates. In this study we demonstrate that anti-malaria and anti-MSP-1specific IgY is 

able to increase the time to death following the induction of CM in mice, possibly 

allowing for the introduction of other antimalarial drugs. We also show that IgY 

treatment on days 2 and 4 post infection decreases parasitemia. These data suggest that 

malaria specific IgY may be a candidate therapeutic for the use in combination therapies. 

Further research is being directed at determining what other antimalarial drugs and 

formulations of IgY will offer optimal protection.  

A second organism of interest for the development of antigen specific IgY is 

DENV. At present there are no approved vaccines for DENV, due in large part to the 

difficulty in providing cross-reactive protection for all DENV serotypes. In this study we 

employ a novel approach to treating DENV induced disease. The advantage of anti-

DENV IgY for the treatment of DENV is not only the ability to provide therapeutic 



! 100! !

protection, but protection in the absence of ADE. ADE has been suggested to be a 

leading cause of the severe DHF and DSS seen during secondary heterotypic infection; 

therefore utilizing an antibody therapy that provides protection but does not enhance 

infection or stimulate the immune system to dangerous levels is promising. Another 

advantage of IgY therapy is that the distinction between birds and mammals allows IgY 

to target epitopes that are non-immunogenic in mammals and possibly cross protective 

epitopes that will likely not undergo selective pressure to change as rapidly over time.  

IgY also has the potential to be used in areas where vaccination to such disease is 

not a feasible option. It takes years of research and development to move a vaccine into 

the market, and is a costly endeavor. IgY has the potential to be developed quickly and 

efficiently and thus could provide more on demand protection, specifically in situations 

where the onset of infectious disease in a defined area is very rapid. In some cases where 

vaccinating a population is difficult, the therapeutic administration of IgY could still 

provide protection for those individuals.  

The detailed mechanisms as to how antigen specific IgY (IgY and IgYΔFc) is 

able to neutralize and clear these infectious particles in the mammalian system remains to 

be elucidated and is an area of active research in our lab. Furthermore, determining what 

receptor(s) IgY uses in the mammal, and the downstream effects of receptor activation 

will allow for a better understating of how IgY works in the absence of enhancing an 

immune response. With these data we will be able to better modify, and further customize 

IgY therapeutics to offer optimal protection. 
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