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ABSTRACT 

 

Immunotherapies have evolved into a collection of tools used clinically in the treatment 

of several pathologies. Staphylococcal enterotoxin G and I are potent T cell activators 

that drive multifaceted immune responses and have been implicated in antitumor 

responses. The addition of SEG and SEI as useful immunotherapies could be 

underappreciated as mice do not respond as humans would to superantigen stimulation. 

HLA-DQ8 mice with established B16-F10 tumors receiving 50µg each SEG and SEI 6 

and 9 days post tumor implant resulted in 80% progression free survival >300 days. In 

comparison, allogeneic C57BL/6 mice did not benefit from SEG/SEI therapy. 

Remarkably, 100% of HLA-DQ8 mice survived rechallenge with 2.5x105 live B16-F10 

cells >200 days post implant. In addition, SEG/SEI boosted an irradiated cell vaccine 

response against LLC in HLA-DQ8 mice resulting in 100% protection. However, 

SEG/SEI did not provide the same benefit against established Lewis lung carcinoma. The 

data presented herein demonstrate SEG and SEI elicit antitumor responses against 

melanoma and support further investigation into clinical application. 
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CHAPTER I 

 

INTRODUCTION 

 

Staphylococcal Enterotoxins 

Staphylococcal enterotoxins (SE) G and I are powerful immunostimulatory 

proteins produced by Staphylococcus aureus. In 1998, SEG and SEI were 

characterized from different enterotoxigenic strains of S. aureus and were found 

to have superantigenic properties comparable to classical enterotoxins, like SEA 

and SEB [1]. Further investigation identified several other toxins in proximity to 

SEG and SEI within the enterotoxin gene cluster (egc) of S. aureus’ pathogenicity 

island 3 (SaPI3) [2,3]. The crystal structures, bound to major histocompatibility 

complex (MHC), have also been elucidated for both SEG and SEI [4,5]. Several 

enterotoxins identified in the gene cluster have been shown to activate large 

numbers of T cells and are classified as superantigens [6-9]. Superantigens are 

molecules present in nearly all aspects of cellular biology; bacteria make 

superantigens, viruses, found endogenously in animals and suggested in plants. 

Superantigens are classified as molecules that elicit polyclonal cell activation in a 

large percentage of the cell population [10]. Superantigens were originally 

classified as only activating large number of T cells with B cell superantigens 
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documented later [11]. These non-glycosylated proteins interact outside of typical 

antigen processing and presentation pathways. In general, antigens are broken 

down proteins presented as small, ~10 amino acid, peptide lengths which are 

eloquently loaded onto the cell surface; taking place in 1 out of every 10,000 cells 

[12]. Superantigens can bypass cellular processing to directly bind to the cell 

surface, in turn activating >20% of cells leading to massive activation and 

cytokine release. Dysregulation as a result of SE activation can lead to a lethal 

cytokine storm. Enterotoxins can provoke emesis when ingested by humans and 

monkeys, often as a result of bacterial contamination of food and/or water. Mice 

nor rats have emetic responses to enterotoxins likely due to a lack of specific 

neurological architecture [13], yet still respond to enterotoxins with typical T cell 

activation and cytokine release. 

 

Superantigens isolated from Streptococcus and Staphylococcus species have been 

extensively characterized [14-17], in addition to some viral superantigens (18). 

Yersinia pseudotuberculosis mitogen (YPM) is the only identified superantigen 

from Gram negative bacteria [19], suggesting superantigens are not advantageous 

for gram negative bacteria and are either genetically repressed or have been lost 

over time. Lipopolysaccharide (LPS) from gram negative bacteria has been shown 

to dramatically enhance the effects of superantigen stimulation [14]. Enterotoxins 

can activate T cells by binding to the variable beta region on the t cell receptror 

(TCR) and MHC. Superantigens can be categorized into groups based on MHC 

interactions that: (1) bind the TCR and MHC α-chain (SEB & SEG); (2) bind 
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TCR and MHC β-chain (SEI); or (3) crosslink MHC by binding to the α-chain 

and β-chain (SEA) [14, 20, 21, 28-34]. There is controversial evidence to support 

some superantigens can also bind with MHC Class I molecules, but this 

interaction has not been completely characterized [22]. SE specificity towards Vβ 

segments of the TCR have also been extensively characterized [23- 25]. 

Superantigen dissociation rates where SEA has been shown to stay at the cell 

surface longer than SEB [26,27]. Endogenously expresses superantigens in mice 

have been shown to selectively eliminate T cells based on V beta specificity; and 

like many superantigens, endogenously synthesized superantigens are thought to 

be derived from viral DNA [28].  

 

T cells and Cancer 

Lymphocytes, immune cells slightly larger than a red blood cell (RBC), have once 

again become major players in the current landscape of cancer therapy. There are 

two general types of lymphocytes in humans and mice, B and T lymphocytes, or 

B and T cells. SEG and SEI activate T cells through the help of MHC on antigen 

presenting cells (APCs), like B cells. In combination, T cells work synergistically 

with APCs and thus responsible for the pathology associated with superanitgens 

[29-35]. Historically B and T cells were classified based on the site of maturation 

and development. Nearly all lymphocytes originate from the bone marrow. Cells 

that migrate and later mature in the bone marrow are designated B cells; whereas 

cells migrating through the thymus for maturation are called T cells. Ironically, B 

cells were originally identified in the bursa of Fabricius, a lymphoid structure in 
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birds that atrophies after 6 months of age, not the bone marrow, a rare 

happenstance with immunological nomenclature. B cells from birds are similar to 

mammalian B cells yet are derived from entirely different structures, the bursa 

and bone marrow respectively [32].  

 

The immune system is the collection of these cells, and many more, contributing 

to a delicate balance to recognize self vs non-self. Immune cells that detect 

abnormalities and homeostatic imbalance activate to purge anything deemed 

foreign. T cells, many expressing either CD4+ and CD8+, are responsible for 

surveying the host environment and eliminate cells that appear abnormal, either 

malignant or not. The inability for the immune system to recognize abnormal cells 

is a well-accepted mechanism to describe metastatic disease, like cancer. T cell 

mediated immunity in response to cancerous, abnormal cells deploy a mix of 

secreted proteins, like granzymes, perforin, interferon gamma (IFNy), and cell to 

cell contact killing [59-62]. Countless therapies have attempt to utilize T cells 

against cancer including the more recent advent of chimeric antigen receptor 

(CAR) T cells directed specifically at antigens on tumors [62]. These cells are 

then infused back into the patient through adoptive transfer. Even coupled with 

advancements in T cell therapy delivery [61], the reliability to which these 

adoptively transferred cells confer long term anti-tumor responses is yet 

unattainable.  
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Murine Models of Cancer 

The B16 melanoma cell line originated from a spontaneous melanoma in 

C57BL/6J mice. The cell line was later manipulated by injecting cells 

intravenously into mice, sacrificing the mice 3 weeks later to harvest lungs and 

isolate lung metastases [115]. The pulmonary metastases were made into single 

cell suspensions, grown in vitro and reinjected into C57BL/6 mice. B16-F1 cells 

underwent the aforementioned process 1 time whereas B16-F10 cells where 

subject to 10 passages from mouse to culture dish [114-118]. B16-F10 cells where 

used for this study due to the highly metastatic potential of these cells compared 

to similar models.  

 

Lewis lung carcinoma (LLC) cells were originally derived from a spontaneous 

arising tumor from C57BL/6 mice [119, 120]. LLC has been found to be a 

consistent, reproducible model to study non-small cell lung cancer (NSCLC) in 

mice and has been used in several preclinical research leading to approved 

therapies in humans. LLC and B16 cells are both epithelial in appearance, 

however, LLC cells grow loosely adherent to the flask whereas B16 cells strictly 

adhere. Of note, both cell lines will form large tumors which will overtake the 

omental tissue when injected intraperitoneally. LLC cells have also been observed 

to invade the mesentery as well as omental tissue (laboratory observation). The 

omental tissue in mice differs to humans in that it does not extend downward over 

the intestines. Murine omental tissue is also smaller, connected to the stomach, 

pancreas and spleen. Harvesting the omentum should be done using the method 
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described in Kahn et al. which uses a flotation technique to isolate the omental 

tissue from the surrounding organs [102]. The omentum has been shown to 

contain immune aggregates, sometimes referred to as milky spots because of their 

fatty white appearance, along with fat and blood vessels. Preferential attachment 

to the omentum has been suggested to result from several factors: the available 

blood supply and VCAM expression on mesothelial cells which also secreted 

VEGF-A [104].  

 

Historical Perspective: Immunotherapies 

The treatment of malignant disease has been meticulously documented throughout 

many generations of human evolution where early recordings of the disease in the 

Edwin Smith Papyrus date back to around 3000 BC [51-58].  The many 

documented accounts throughout history illustrate an evolution of human 

responses tied to an emotional and physical relationship with disease. Often 

described are crude, yet sophisticated, techniques of excising disease, sometimes 

tumors, through surgical techniques; many of which, though refined, are still 

recognizable in practice. Swiss physician Paracelsus is often credited for laying 

the foundation for chemotherapy and regarded as a founding father of toxicology. 

Paracelsus’ introduction to his self-described “poisonous compounds”, including 

mercury, zinc, lead and more as treatments for internal disease eventually lead to 

his death in 1541 [55].   
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The ensuing centuries led to more and more observations that seemingly 

advanced understanding of malignant disease. Physicians and scientists would 

continue to make and mold hypothesis to endless, often reckless means. Jean 

Astruc, an early 1700s French physician, carried out experiments to identify 

differences in the acidity of cooked meat in relation to bile, by taste [57]. He 

noted no difference in taste between cooked beef or cancerous breast. For years, 

the battle between cancer and scientist will continue to claim countless lives and 

shape the course of human history. German Emperor Frederick III, ruling for 99 

days until his death in 1888 from laryngeal cancer was examined by several 

physicians, including Rudolf Virchow, colloquially referred to as “the pope of 

medicine” [55]. Virchow’s career, highlighted in numerous publications, which 

are not completely referenced here, include; linking cancer to the outgrowth of 

specific cells, specifically differentiating between splenic, myeloid appearance, 

and lymphatic, lymphocytic appearance, cells. Virchow is also one of several 

scientists credited in discovering leukemia, what he called leukämie [57]. 

Virchow, who eventually died of a broken leg sustained while jumping from a 

moving streetcar at age 80, was a staunch opponent to germ theory and was 

skeptical of the experiments demonstrating bacteria as a causative agent of 

disease[58].  

 

Spontaneous remission of an inoperable neck sarcoma was observed by William 

Coley who later injected patients with preparations of bacteria and bacterial 

byproducts, known as “Coley’s Toxins” [63]. His and others attempts at 
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controlling various malignancies stem from clinical observations in spontaneous 

regression of the diseases. Specifically, Coley administered Streptococcus 

isolations he procured from other patients, grown in culture, and administered to 

patients at the site of diseases in order to elicit erysipelas [64-66]. It was noted 

that the heat, or inflammation, generated was crucial in a durable response. These 

pioneering, yet rudimentary in practice, paved the way for years of research into 

toxin-based therapies. Coley, often credited as the Father of immunotherapy, the 

treatment of 30 (of 270) cases were outlined in a review published posthumously 

by his daughter, Helen Coley Nauts [64].  Attempts to refine as isolate 

compounds from these preparations is outside the scope of this discussion, suffice 

to say that many are still working on it at the time of writing this. One such 

component that has been shown to contribute towards controlling malignant cell 

outgrowth are superantigens [71-77]. 

 

The 1990s brought the race for tumor associated antigens (TAAs). In 1988, 

Steven Rosenberg, now current Head of the National Institute of Health’s Tumor 

Immunology Section, and colleagues isolated tumor infiltrating lymphocytes 

(TILs), expanded them in vivo via IL-2, and infused them back into the patients 

[book]. Although this did not yield substantial responses, this was the first time T-

cells were specifically used as a therapy, a paradigm shift in the way we think 

about treating cancer.  Several labs over the next 30 years have been perfecting 

the use of T-cells as therapies [60, 74]. 
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Enterotoxins and Cancer 

Over the past decade, numerous immunotherapies have provided some respite for 

patients with a variety of cancer types [67]. Though still in its infancy, 

immunotherapy has yet to live up to expectations in providing consistent 

progression free survival, let alone complete regression. The first publication of 

monoclonal antibody use in clinical trials in 2002 targeted CTLA4 expressed on T 

cells [152]. It took until 2011 for Ipilimumab (Yervoy® under Bristol-Myers 

Squib) to be approved for the treatment of melanoma in the United Sates[153]. 

Cancer vaccine strategies have been largely unsuccessful with one approved 

therapy, Sipuleucel-T (Provenge® under Dendreon) in 2010, for hormone-

refractory prostate cancer [154]. Although one can hypothesize revisiting this as a 

future waste of time, results have not been released (NCT01832870) from 9 

patients receiving Sipuleucel-T and Ipilimumab. Nonetheless, combinations of 

different immunotherapies, specifically CTLA-4 and PD-1 antagonists, have 

proven beneficial when used together [154].  

 

Several, largely unsuccessful, therapies have attempted to use SEs in to treat 

various cancers. Several of these studies were hindered by the presence of 

neutralizing antibodies to classical superantigens found in >80% of sampled 

human sera [68-70]. For decades, China has used Gaojusheng, an SEC based 

therapy, for the treatment of cancer [67]. Exciting work by Dr. David Terman, 

and others, have demonstrated the therapeutic efficacy in using superantigens for 

the enterotoxin gene cluster as in the treatment of pleural effusion in patients with 
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non-small cell lung cancer (NSCLC) [71]. In addition to neutralizing antibodies, 

SE therapy has been hindered by toxicity associated with increased 

proinflammatory mediators, like TNFα [21, 68-70]. Reducing adverse toxicity 

associated with SEs has included using monoclonal antibodies against CTLA-4 

[77, 151], adjusting dosages and time administered, or  adding compounds such as 

Δ9Tetrahydrocannabinol [76]. Kominsky et al. used SEA and SEB in the 

treatment of B16 melanoma and produced long term survival in C57BL/6 mice 

suggested an IFNγ mediated response that requires both CD4+ and CD8+ T cells 

[78]. 

 

The remainder of this document outline a series of experiments I performed using 

SEG and SEI in the treatment of B16 melanoma and Lewis lung carcinoma. By 

no means are these experiments comprehensive to understanding the immune 

responses elicited by SEG and SEI nor is the precise mechanism that underlies the 

phenomena presented herein. In that context, the following chapter outlines 

methods and information required, including tips and tricks observed along the 

way, for someone repeat these experiments. The results demonstrate a clear 

antitumor response that is benefited by SEG and SEI.  
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CHAPTER II 

 

METHODS 

 

 

Ethics 

All research performed, including animal and tissue collection, was conducted in 

accordance with the Animal Welfare Act and with the approval of the University 

of North Dakota’s Institutional Animal Care and Usage Committee (IACUC).  

 

Mice 

Mice were bred and maintained in pathogen-free conditions within the Center for 

Biological Research at the University of North Dakota. A laboratory inbred 

colony of C57BL/6 mice and human leukocyte antigen (HLA) transgenic mice 

were used for experiments. Transgenic mice include: HLA-DQ8 

(DQA*0301/DQB*0302), originally a gift from Dr. Chella David (Mayo Clinic, 

Rochester, MN) and HLA-DR3 (DRA*0301/DRB*0301), gifted from Dr. Malak 

Kotb (University of North Dakota, Grand Forks, ND). The generation of these 

mice were described previously [84-86]. Similar to DR3 mice, DQ8 mice were 

generated on H2b haplotype mice lacking H2A (20) and inherent H2E expression, 

thus making them devoid of murine class II. Specific gene insert was confirmed 

via polymerase chain reaction (PCR) and subsequent protein expression was 

confirmed via flow cytometry using anti-DR (Clone Tu39, 
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BioLegend) and anti-DQ (Clone SK10, eBioscience) for HLA-DR3 and HLA-

DQ8 confirmation, respectively Table 1. 

 

Enterotoxins 

Purified, recombinant SEG and SEI were obtained from Aldeveron (Fargo, ND). 

SEA, SEB and SEI were obtained from Toxin Technology (Sarasota, FL). All 

reagents were kept at 4°C or -20°C and subject to only 1 freeze-thaw cycle. The 

sequences used for SEG SEI manufacturing were originally elucidated by Munson 

et al. [1]. The protein sequence for SEI: 

MQGDIGVGNLR_NFYTKHDYIDLKGVTDK_NLPIANQLEFSTGTNDL 

ISESNNWDEISKFKGKK_LDIFGIDYNGPCKSKYM_YGGATLSGQYLNSAR

KIPINLWVNGKHKTISTDK_IATNKKLVTAQEIDVKL_RRYLQEEYNIYGHN

NTGKGKEYGYKSKFYSGFNN_GKVLFHLNNEKSFSYDL_FYTGDGLPVSFL

KIYEDNKIIESEKFHLDVEISY_VDSN 

 

The protein sequence for SEG: 

MQPDPKLDEL_NKVSDYKNNKGTMGNVM NLYTSPPVEGRGVINSR 

QFLSHD LIFPIEYKSY NEVKTELENT ELANNYKDKK 81 VDIFGVPYFY 

TCIIPKSEPD INQNFGGCCM YGGLTFNSSE 121 NERDKLITVQ 

VTIDNRQSLG FTITTNKNMV TIQELDYKAR 161 HWLTKEKKLY 

EFDGSAFESG YIKFTEKNNT SFWFDLFPKK 201 ELVPFVPYKF 

LNIYGDNKVV DSKSIKMEVF LNTH 
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Antibody Clone Company 

HLA-DQ SK10 Invitrogen 

HLA-DR,DP,DQ Tü39 BioLegend 

H-2Kb AF6-88.5 BioLegend 

I-A/I-E M5/114.15.2 BioLegend 

CD3 17A2 TONBO Biosciences 

CD4 RM4-5 BioLegend 

CD8 53-6.7 TONBO Biosciences 

CXCR3 CXCR3-173 BioLegend 

CTLA-4 UC10-4F10-11 TONBO Biosciences 

PD-1 J43.1 TONBO Biosciences 

TLR2 T2.5 BioLegend 

TLR4 SA15-21 BioLegend 

CD44 IM7 BioLegend 

CD62L MEL-14 BioLegend 

KLRG1 2F1 TONBO Biosciences 

CD25 PC61 TONBO Biosciences 

FOXP3 MF23 TONBO Biosciences 

CD103 2E7 BioLegend 

CD39 Duha59 BioLegend 

T-bet 4B10 BioLegend 

IFNγ XMG1.2 BioLegend 

Perforin S16009A BioLegend 

Granzyme B QA16A02 BioLegend 

Proliferation Dye  eBioscience 

CD16/32 93 BioLegend 

Annexin V  BioLegend 

Propidium Iodide  TONBO Biosciences 

Live/Dead  TONBO Biosciences 

 

Table 1: Antibodies used for flow cytometry experiments. 
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Cell Culture 

Tumor Cell Lines 

B16-F10 (CRL-6475TM) murine melanoma cells and Lewis lung carcinoma (LLC) 

(CRL-6475TM) were obtained from American Type Culture Collection (ATCC) 

and maintained according to manufacturer recommendations in complete 

Dulbecco’s Modified Eagle’s Medium ((DMEM) Gibco) containing 10% heat 

inactivated fetal bovine serum (FBS) (Atlanta Biologicals), 50 IU/ml Penicillin 

and 50 µg/ml Streptomycin (MP Biologicals), and HEPES. Cells were maintained 

humid at 37°C with 5% CO2. Frozen 1 ml aliquot stocks were made by freezing 

~1x106 cells in complete DMEM supplemented with 50% vol/vol sterile dimethyl 

sulfoxide (DMSO). Cells were maintained in liquid nitrogen vapor phase.  

 

Of note, tissue culture flasks and other plastics used for cellular assays remained 

consistent throughout these experiments (CytoOne and Falcon). It has been 

demonstrated that different surfaces of tissue culture plastics can alter phenotypes 

of adherent cells [92, 93]. In addition, breast implants with specific textured 

surfaces were found to increase the risk of breast cancer in 82% of patients 

receiving the implant [94, 95]. The World Health Organization (WHO) 

provisionally defined the cancer in 2016 as breast implant-associated anaplastic 

large cell lymphoma (BIA-ALCL) [96]. 
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Primary Cell Isolation 

Peritoneal lavage cells were isolated by sacrificing mice, injecting 5 ml HBSS 

(Gibco) into the peritoneal cavity, massaging for 10 seconds and collecting 4 ml 

of fluid. It is important to take note of injection as not to perforate or injection 

into the intestines. Cell yield will vary substantially without consistency in 

technique but will average ~1 million total cells. ACK lysis was used as needed 

while maintaining consistency. Cells were filtered through a 70 µm cell strainer 

before counting and use.  

 

Splenocytes were isolated by passing spleens through a 70 µm cell strainer 

(Falcon) with bottom plunger of 5ml or 10ml syringe. Cells were washed with 

DMEM, ACK lysed, washed and strained again before counting. Cell yield will 

depend but should average 50-100 million total cells in naïve mice.    

Inguinal lymph nodes were isolated and placed in 1ml HBSS. Nodes should sink 

when removed without major fat contamination. Both lymph nodes were mashed 

through a 70 µm cell strainer (Falcon) with bottom plunger of 5ml or 10ml 

syringe. Cells were washed with DMEM and strained again before counting. Cell 

yield is varied but average 0.5-1 million total cells per lymph node in naïve mice.    

 

Omental tissue was isolated and washed by transferring through several wells 

containing HBSS. The tissue was placed in 1 ml media in 24 well plates and cells 

were allowed to disassociate freely into the media over 48 hours.   
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Tumor Implant 

Tumors were implanted intraperitoneally resulting in solid tumors at the omentum 

ultimately leading to death of the animal. 

 

Prior to implant, cells were grown in T75 tissue culture flasks and harvested for 

use at < 80% confluency. Cells were rinsed with HBSS prior to addition of trypsin 

w/EDTA (Gibco) for ~5 minutes. cDMEM was used to neutralize trypsin and 

cells were washed 2 times with HBSS. Cells were resuspended at 1x105 or 

2.5x106 cells/ml in HBSS w/ca+mg+. The stock was aliquoted into .5ml tubes for 

individual dosages to insure consistent tumor burden among mice.  

 

Of note, LLC cells typically present as a mix of suspension and adherent cells. 

For these studies, only the adherent cells were used for implant. This should not 

affect overall results as this technique was deployed in vitro and mixed 

populations continued throughout each subculture.  

 

Just before injection, after cell aspiration, wipe the needle with 70% ethanol to 

reduce subcutaneous tumors devolving at the injection site outside the peritoneal 

cavity.  
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Vaccination Protocol 

Mice were injected with 1 x 106 irradiated (15,000 rads) B16-F10 melanoma cells 

IP in 100µl HBSS on day -13. Mice received 100µl injections IP of SEG (50µg) + 

SEI (50µg) on days -7 and -3. Mice were challenged day 0 as described above. 

Mice were continuously evaluated and sacrificed when moribund.  

 

Flow Cytometry 

Cell Staining  

Cells were washed with HBSS, stained with Ghost Dye for viability (TONBO), 

FC blocked and stained for extracellular antigens via standard protocols. Cells 

were fixed and permeabilized using Foxp3 staining buffer kit (TONBO) for 

intracellular cytokine and transcription factor analysis. See Table 1 for list of 

antibodies used in this manuscript. Fluorescence minus one (FMO) and single 

stained controls were used for gating and compensation. Gating strategies are 

indicated within each experiment. In general, doublets and cell debris were 

excluded with only Ghost Dye negative cells being used for analysis. Samples 

were analyzed using a BD LSRII or Symphony A3 flow cytometer in the North 

Dakota Flow Cytometry and Cell Sorting (ND FCCS) Core. Data was analyzed 

using FlowJo software.  
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Proliferation Assay 

T cell proliferation was evaluated using carboxyfluorescein succinimidyl 

ester (CFSE) (Life Technologies) or Cell Proliferation Dye eFluor 450 

(eBiosciences) dye. In short, splenocytes were stained with proliferation dye as 

described previously (25). After which, 2x105 cells/well were seeded in 96-well 

round-bottom tissue culture plates (Becton Dickinson) in cDMEM and stimulated 

with Concanavalin A (1µg/ml) (Sigma Aldrich) or indicated superantigens for 72 

hrs (37°C, 5% CO2 and humidity) in 200µl total volume. After 3 days, cells were 

processed for flow cytometry. 

 

Cytotoxicity Assay 

Cytotoxicity was measured by annexin V and propidium iodide (PI) (TONBO) 

staining. Briefly, B16-F10 cells were seeded 2 hours prior to coculture with 

lymphocytes at indicated ratios. CD4 and CD8 cells were isolated from C57BL/6 

and HLA-DQ8 splenocytes using EasySep TM CD4 and CD8 negative selection 

kits (STEMCELL Technologies) in accordance with manufacturer specifications. 

All cells were counted using a hemocytometer, cell viability was determined via 

trypan blue exclusion (>90% viabke) and purity was assessed via flow cytometry. 

Cells were cocultured for 4 hours (37°C, 5% CO2 and humidity) and stained with 

annexin V and PI using BioLegend’s annexin V binding buffer according to 

manufactures recommendations and analyzed immediately via flow cytometry. 

Cells were gated to exclude doublets and debris Figure 1.  
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Figure 1 . Gating strategy for flow cytometry-based cytotoxicity assays. 

T cells were cocultured with B16-F10 cells in 96 well flat bottom plates. Specific T 

cell responses and B16 responses can be distinguished based on separation via FSC 

vs SSC. Cytotoxicity was measured on B16 cells for annexin V and propidium iodide 

staining.  

  

B16 Cells T cells 
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Cytokines and Chemokines 

Blood was collected from mice in EDTA tubes via submandibular venipuncture. 

Plasma cytokine and chemokine concentrations were measured using 

BioLegend’s LEGENDplex™ kits according to manufacturer recommendations. 

Samples were processed via flow cytometry.  

 

Peripheral Blood Smear and Cytospin Staining 

Blood smears were made from blood collected in ethylenediaminetetraacetic acid 

(EDTA). Body fluids and single cell suspensions were resuspend in cDMEM or 

HBSS w/10% serum to maintain cell integrity. Cytospins were spun for 3 mins at 

80 x g. Smears and cytospins were stained with Hema 3Ô Wright-Geimsa 

(Fischer Scientific). Several references provide reference valves for common 

laboratory mice (122). Several common morphologies exist between human and 

murine immune cells and therefore human morphological references can provide 

guidance.  

 

Thymidine Incorporation Assay 

C57BL/6 and HLA-DQ8 splenocytes (2x105 cells/well) were seeded in 96-well 

round-bottom tissue culture plates (Becton Dickinson) in complete RPMI. 

Splenocytes were cultured 72 hrs (37°C, 5% CO2 and humidity) in 200µl total 

volume with medium alone, various concentrations of SEA, SEB, SEG, and SEI 

(0.001–1000 ng/ml) and with Concanavalin A (1.25µg/ml) (Sigma Aldrich). At 
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68 hrs incubation, cells were pulsed with 1 µCi/well [3H] thymidine (Perkin 

Elmer); radioactivity was measured 4 hours later as described previously [98].  

 

Statistical Analysis 

One-way analysis of variance with Bonferroni’s posttest and student’s t test were 

performed where indicated. Kaplan Meier curves and Mantel-Cox Test were used 

to evaluate survival data. Statistical analysis was performed using GraphPad 

Prism software version 7.0a (La Jolla, CA). 
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CHAPTER III 

 

RESULTS 

 

Characterization of Staphylococcal Enterotoxin G and I 

SEG and SEI have been shown to cause robust T cell proliferation and with 

massive cytokine release in human T cell cultures [4, 5, 73 ]. Murine T cell 

responses vary in response to SE stimulation. HLA-DQ and C57BL/6 splenocytes 

were used to measure activity of SEG and SEI compared to classical 

superantigens, SEA and SEB using a standard 3 day thymidine incorporation 

assay Figure 2A. Splenocytes were isolated from 6-8 week old mice, stained with 

cell proliferation dye and stimulated with SEA, SEB, SEG, SEI (all 1µg/ml), 

using concanavalin A (1µg/ml and media alone as controls. As demonstrated 

previously, both CD4+ and CD8+ cells respond to SE stimulation and stimulated 

to a greater extent in HLA transgenic mice compared to C57BL/6 Figure 2B. 

These data confirm previous findings of enterotoxin potency and support using 

HLA transgenic mice to more accurately investigate the efficacy of SEG/SEI 

therapy.   

 

SE stimulation, including SEG and SEI, has been associated with increased levels 

of interferon gamma (IFNγ) both in vivo and in vitro. To identify which cells are 

responsible for this production, splenocytes were isolated and stimulated with 

SEG, SEI and SEG+SEI for 3 days. After which, cells were blocked with 
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brefeldin A and monosen (BioLegend), permeabilized and stained for IFNγ 

Figure3. These data reveal CD8+ T cells from both C57BL/6 mice and HLA-

DQ8 mice produce IFNγ and CD4+ T cells from DQ8 mice produce more IFNγ 

than C57BL/6.  

 

Immune signals provoked by SE stimulation are often met with inhibitory 

immune signals that balance the immune response. PD-1 and CTLA-4, two such 

inhibitory molecules produced on T cells in response to activation, expression was 

evaluated on CD4+ and CD8+ T cells in response to SE stimulation (all 1µg/ml) 

Figure 4. CD4+ and CD8+ T cells were gated on CXCR3 expression, a chemokine 

receptor upregulated on activated Th1-like cells [126-130]. Collectively, these 

data support the potential for using immune checkpoint inhibitors, antibodies 

against PD-1 and CTLA-4, to enhance SEG/SEI activated, CXCR3+ T cells.  
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Figure 2 . DQ8 mice respond strongly to staphylococcal enterotoxins G & I. 

Splenocytes isolated from 6-8 wk old DQ8 mice exhibited stronger mitogenicity to 

SEs (1ug/ml) compared to C57BL/6 mice in typical thymidine incorporation assay 

(A). Specific CD4+ and CD8+ T cell proliferation was measured by dye dilution via 

flow cytometry and reported as % proliferation (B). n=3-5. Graphed mean with SD. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.001.  
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Figure 3. SEG and SEI elicit Type 1 effector CD4+ and CD8+ T cells.  

Splenocytes were stimulated for 3 days with indicated SE concentrations where 

CD4+ (A) and CD8+ (B) cells were evaluated for intracellular IFNy and Tbet 

production. Representative flow data of SEG+SEI (10ng/ml) (C). n=3-5. Graphed 

mean with SD. *p<0.5, **p<0.01, ***p<0.001, ****p<0.001  
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Figure 4. Activated CD4+ and CD8+ T cells express PD-1 and CTLA-4.  

SEG and SEI (1ug/ml) demonstrate increased CXCR3 expression (A), along with PD-

1 (B) and CTLA4 (C) expression on DQ8 T cells . All cells were gated on 

Singlets>Live cells>cells>CD3. n=3-5. Graphed mean with SD. *p<0.5, **p<0.01, 

***p<0.001, ****p<0.001  
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Peritoneal Tumor Models  

Cells injected into the peritoneal cavity have been demonstrated to associate with 

specific locations within the cavity with several fat deposits have been extensively 

characterized in throughout the peritoneum. DQ8 mice were originally created 

using multiple strains of mice under the same MHC allotype, H2b. It is reasonable 

to hypothesis tumor models using cells originating from C57BL/6 mice, MHC 

allotype H2b, would implant in HLA mice. Mixed lymphocyte reactions using 

mitomycin C treated C57BL/6 splenocytes were cocultured with DQ8 splenocytes 

to measure proliferation Figure 5. These data do not indicate DQ8 T cells 

proliferate in response to mitomycin C or irradiated (data not shown) C57BL/6 

splenocytes. 

 

To this end, several tumor cell lines were investigated for potential use. Murine 

colon cancer cell line MC38 was implanted (2.5x105 cells IP) in various strains of 

6-8 week old male mice Figure 6. In general, HLA mice survived longer than 

allogeneic C57BL/6 mice; however, using tumors models with LD50 resolving at 

day 50 would be time consuming. The BALB/c derived mammary tumor cell line 

4T1, H2d allotype, was implanted IP in 6-8 week old female mice to confirm 

allotype specificity in HLA transgenic mice Figure 7. 
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Figure 5 . DQ8 lymphocytes to not proliferate when cocultured with C57BL/6 

splenocytes. 

Mitomycin C Treated C57BL/6 Splenocytes (Stimulator Cells, red) were cocultured 

with DQ8 splenocytes (Responder Cells, blue) for 3 days. CD3+ T cell proliferation 

(green) was measured by dye dilution via flow cytometry and reported as % 

proliferation. SEB was used as a positive proliferative control.   
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Figure 6 . MC38 survival in HLA transgenic mice.  

2.5 x 105 live MC38 cells were implanted into the peritoneal cavity, suspended in 

100ul HBSS, of 6-8 week old male DQ8, DR3 and C57BL/6 mice. Kaplan Meier 

curves with Log-rank test shown.   
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Figure  7. 4T1 survival in HLA transgenic mice.  

2.5 x 105 live MC38 cells were implanted into the peritoneal cavity, suspended in 

100ul HBSS, of 6-8 week old female DQ8, DR3, BALB/c and C57BL/6 mice. 

Kaplan Meier curves with Log-rank test shown.   
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In this study, B16-F10 murine melanoma, a classic tumor model used widely used 

to elucidate antigen specific T cell responses, and Lewis lung carcinoma (LLC) 

cells, the premier model for NSCLC, were chosen. Cells, and treatment, were 

administered intraperitoneally making sure to wipe the needle with 70% alcohol 

to prevent subcutaneous implant. B16 cells were found to preferentially attach to 

the omental tissue with minimal seeding throughout the mesentery Figure 8. LLC 

cells also attach to omental tissue but appear to favor the mesentery later post 

implant.   

 

Omental tissue has long been identified as an important site for immune responses 

in the peritoneum. Several studies have characterized immune cells within the 

omentum  from lymphoid follicles, often referred to as milky spots (sorn). 

Therefore, C57BL/6 mice and HLA transgenic mouse omentum was evaluated 

using a similar technique outlined in [102]. In Figure 9, omental tissue was 

harvest, washed with HBSS and allowed to float in cDMEM for 2 days; after 

which cells were analyzed via flow cytometry.  These data compare previously 

reported T cell percentages in omental tissue [105] and show no differences in T 

cell composition among mice tested. However, CD4+ and CD8+ T cell populations 

are altered in DQ8 mice.  
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Figure 8 . B16-F10 cells establish at the omentum by day 6 post implant.  

2.5 x 105 live B16-F10 cells were implanted into the peritoneal cavity, suspended in 

100ul HBSS, of 6-8 week old female DQ8 and C57BL/6 mice. Images were taken 6 

days post implant with representative mouse shown. Undisturbed peritoneal cavity 

(left) and omental tissue exhumed (right) show similar tumor mass (dotted white 

line).  
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Figure 9 . Omental T cell characterization.  

Omental tissue was placed in 1ml media and incubated for 2 days. Cells (including 

adherent cells collected w/trypsin dissociation) were analyzed after exclusion of 

doublets, debris and dead cells. T cells reported as % live cells (A) and % TCRβ+ 

(B). Graphed mean with SD. *p<0.5, **p<0.01, ***p<0.001, ****p<0.001 
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SEG/SEI in Treatment of B16 Melanoma 

The therapeutic efficacy of enterotoxins was demonstrated previously by 

Kominsky et. al. [78] using SEA and SEB in a vaccine model for B16 melanoma 

in C57BL/6 mice. In this study, 60% of mice receiving 1x106 irradiated (15,000 

rads) 13 days before tumor challenge survived >140 days when boosted with 

SEA+SEB (25µg each) prior to tumor challenge. Unfortunately, these findings 

have been difficult to translate into human therapies due to neutralizing antibodies 

against them in patients with prior exposure. To that end, SEG and SEI were used 

following the same protocol in Kominsky et. al. Figure 10. Comparatively, SEG 

+ SEI provided minimal benefit in C57BL/6 mice when rechallenged (2.5x105 

cells) >60 days post initial implant 10B. Interestingly, ~10% of DQ8 10A mice 

responded well to B16 challenge when receiving just the irradiated cells alone 

compared to DR3 Figure 10C. Moreover, SEG/SEI boosted the vaccine response 

in DQ8 mice where 3/3 mice survived initial tumor challenge with either 1 single 

day -7, or 2 treatments before initial implant. Upon rechallenge, 1/6 mice died 

along with age matched naïve controls (data not shown). Not surprisingly, 

SEG/SEI did not provide appreciable benefit for C57BL/6 mice in the B16 

vaccine model. Additionally, these data support using DQ8 over C57BL/6 mice to 

study the therapeutic potential of SEG and SEI.  
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Figure 10. SEG and SEI promote long term survival in B16-F10 vaccinated DQ8 

mice. 

DQ8 (A), C57BL/6 (B) and DR3 (D) 6-8 week old female mice were injected with 

1x106 irradiated (15,000 rads) B16-F10 cells IP day -13 (C). Treated mice were 

injected with 50ug each SEG+SEI day -7 and -3. SEG/SEI(1x) groups received 

SEG+SEI on day -7 only; whereas SEG/SEI(2x) groups received both doses of 

SEG/SEI. DQ8 and C57BL/6 mice surviving >60 days were rechallenged with 

2.5x105 live B16-F10 cells intraperitoneally. Age matched controls died as expected 

(data not shown). Kaplan Meier curves with Log-rank test shown. n=3-10.  
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Vaccine strategies for various cancers using animal models provide useful 

information immunologically yet provide minimal translational benefit when 

applied clinically. The treatment of an established solid tumor is more clinically 

beneficial and was investigated using Figure 8 as an established B16 tumor in 

DQ8 mice Figure 11. Treatment of C57BL/6 established tumors did not provide 

meaning benefit  even when using a lower initial tumor implant, 10,000 cell IP 

Figure 11C. This representative experiment shows long term survival in ~80% of 

DQ8 mice rechallenged >200 days post initial cell implant.  Based on the results 

of vaccination experiments, it was hypothesized that irradiated cells could provide 

longer term benefit to prevent reoccurrence. In this experiment, using irradiated 

cells 4 days post implant did not provide apparent benefit with or without 

SEG/SEI.  Considering laboratory observations over these experiments, 2 

injections of SEG/SEI (50µg) were provided better overall therapeutic efficacy. 

That said, injections of SEG/SEI proved toxic in some C57BL/6 mice and nearly 

all DR3 mice. DR3 mice did not benefit from a single SEG/SEI in an established 

B16 model (data not shown); although, lower amounts of SEG/SEI could provide 

benefit in DR3 mice but were not evaluated by this researcher.  
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Figure 11 . SEG and SEI promote long term survival in DQ8 mice with 

established B16-F10 tumors.  

Mice were implanted with 2.5x105 (A) or 1x104 (B) live B16-F10 cells 

intraperitoneally day 0 and followed the treatment protocols (C) and (D), 

respectively. Mice surviving >200 days were rechallenged with 2.5x105 live B16-F10 

cells intraperitoneally (A). Age matched controls died as previously demonstrated 

(data not shown). n=4-10. Kaplan Meier curves with Log-rank test shown.  
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Characterization of the SEG/SEI Anti-B16 Response 

Plasma cytokines Figure 12 and chemokines Figure 13 were measured ~24 hours 

after each SEG/SEI injection measured using BioLengend’s LEGENDplex™ 

using BD FACSymphony™ flow cytometer. Standard curves were evaluated for 

appropriate error considered appropriate for all parameters given. The data can be 

interpreted collectively and demonstrate a powerful IFNγ response in all mice 

tested and levels are not as elevated 24 hours after the second injection. This 

decreased level could be a result of inhibitory molecules on the T cells after SE 

stimulation, Figure 4; or the IFNγ response peaks before 24 hours after the 

second SEG/SEI injection.  Eluded to in earlier with B16 survival, DR3 mice 

demonstrate a toxic inflammatory response, a cytokine storm, demonstrated by 

increased TNFα, IL-6 and IL-10 after the second SEG/SEI injection. Numerous 

CC and CXC chemokines are increased in response to SEG/SEI, namely IFNγ 

associated chemokines. Again, taken collectively, chemokine responses can be 

grouped into Th1, Th2 and Treg response for example [124, 125]. DR3 mice 

mirror the inflammatory response seen in aforementioned cytokine levels; like 

CCL11, and evidence of regulatory type responses from CCL20 and IL-10. A 

recent review nicely summarizes the vast implications of chemokines in relation 

to cancer immunotherapies [125]. These data, when taken at face value, provide 

insight into the nature of the systemic immune response from SEG/SEI and 

clearly show increased IFNγ plasma concentrations regardless of MHC. Although 

these data prove SEG/SEI is toxic to DR3 mice, there is no clear difference in 

DQ8 vs C57BL6 cytokine or chemokine levels.    
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Figure 12 . Plasma cytokine concentrations 24 hours post SEG/SEI in mice with 

established B16-F10 melanoma. 

All mice were implanted with 2.5x105 live B16-F10 cells intraperitoneally. Blood 

was collected from the submandibular vein in EDTA tubes 24 hours after each 

SEG/SEI administration . All plasma samples were frozen and run together using 

BioLegend’s LEGENDplex Mouse Th cytokine panel. All DR3 mice died 24 hours 

post second SE injection. n=4-5. 
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Figure 13. Plasma chemokine concentrations 24 hours post SEG/SEI in mice 

with established B16-F10 melanoma. 

All mice were implanted with 2.5x105 live B16-F10 cells intraperitoneally. Blood 

was collected from the submandibular vein in EDTA tubes 24 hours after each 

SEG/SEI administration . All plasma samples were frozen and run together using 

BioLegend’s LEGENDplex Mouse Proinflammatory chemokine panel. All DR3 mice 

died 24 hours post second SE injection. n=4-5. 
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The data presented insofar demonstrate SEG/SEI elicit robust IFNγ responses but 

do not delineate antitumor response between DQ8 and C57BL6 mice.  Cell 

specific differences in DQ8 and C57BL6 responses to B16 melanoma, including 

cell populations and effector molecules, were evaluated at different time points 

during treatment. In Figure 14, spleens and peritoneal lavage cells were collected 

13 days post implant and stained for surface CD3, CD4 and CD8 expression, 

including intracellular perforin and granzyme B in CD4 + A and CD8+ B T cells. 

Flow cytometry analysis reveals that DQ8 mice produce more CD8+ T cells that 

contain perforin and granzyme B in both the spleen and peritoneal cavity.  

 

CD3, CD4, CD25 and CD39 expression including intracellular FoxP3 was 

evaluated similarly to investigate T regulatory cell (Treg) responses Figure 14C. 

CD39 was selected, out of many, to investigate suppressive functionality of Tregs 

by Treg cells converting ATP to adenosine [134-137]. It stands to reason that 

inadequate T cell responses are responsible for poor survival in C57BL/6 mice, 

however, regulatory mechanisms cannot be ruled out here and warrant further 

investigation.  
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Figure 14 . HLA-DQ8 CD8+ T cells produce perforin and granzyme B. 

Splenocytes and peritoneal lavage cells were evaluated 13 days post B16-F10 implant 

(2.5x105 cells IP) from DQ8 and C57BL/6 mice. Effector molecules perforin and 

granzyme B production in CD4+ (A) and CD8+ (B) T cells, along with T regulatory 

cells (C) via flow cytometry. . Groups presented were treated with 50ug each SEG & 

SEI on day 6 and 9 post implant. n=3. Graphed mean with SD. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.001 

  

Tumor Alone SEG+SEI

0

10

20

%
 o

f 
C

D
3

+
C

D
4

+
 C

e
lls

CD25+ FoxP3+

Spleen

DQ8

C57BL/6

**

**

Tumor Alone SEG+SEI

0

10

20

30

%
 o

f 
C

D
2
5

+
F

o
x
P

3
+
 C

e
lls

CD39+

Spleen

DQ8

C57BL/6

****

Tumor Alone SEG+SEI

0

10

20

%
 o

f 
C

D
3

+
C

D
4

+
 C

e
lls

CD25+ FoxP3+

Peritoneal Lavage

DQ8

C57BL/6

**

Tumor Alone SEG+SEI

0

10

20

30

%
 o

f 
C

D
2
5

+
F

o
x
P

3
+
 C

e
lls

CD39+

Peritoneal Lavage

DQ8

C57BL/6

**
**



 58 

In order to specifically determine which cells are functionality cytotoxic, CD4+ 

and CD8+ T cells were isolated from spleens 13 days post B16 implant from 

treated and non-treated mice, including naïve controls. Specific T cells were 

cocultured with B16-F10 melanoma cells for 4 hours in vivo at 50:1 

effector:target ratio Figure 15. Cytotoxicity was measured and reported as 

annexin V and propidium iodide double positive B16-F10 cells, gated to exclude 

T cells.  Unfortunately, these data did not show meaningful differences in 

cytotoxicity after 4 hours coculture.   
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Figure 15. Day 13 splenocyte cytotoxicity against B16-F10.  

CD4+ (A) and CD8+ (Β) T cells isolated from splenocytes 13 days post B16-F10 

implant (2.5x105 cells IP) from mice treated with 50ug each SEG & SEI on day 6 and 

9 post implant, nontreated B16 alone and naïve controls. Cells were cocultured at a 

50:1 (T cell:B16) ratio for 4hrs in 96 well flat bottom plates. Representative flow 

cytometry plots of annexin V and PI staining (Gate: Singlets>B16-F10 cells) shown 

and reported as % annexin V+/PI+ B16-F10 cells. n=3. *p<0.05. 
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The presence of CD8+ T cells that contain perforin and granzyme 13 days post 

tumor implant suggest a potential cell mediated response in DQ8 mice not present 

in C57BL/6 compatriots. Expanding on day 13 observations, day 15 lymphoid 

tissue was evaluated for memory responses generated from SEG/SEI compared to 

naïve controls Figure 16.  B16 tumor alone groups for memory responses proved 

variable in results possibly due to the nature of the inherent immune response to 

B16. The B16 alone group was include for DQ8 mice for comparison. These data 

highlight the immune cell populations in the spleen, inguinal lymph nodes and the  

peritoneum. The percent CD3+ population between naïve C57BL/6 and DQ8 were 

no different in spleens and peritoneum Figure 16A and were increased day 15 

post implant in response to SEG/SEI treatment. Not unexpected, CD49b+ NK 

cells were similarly increased with SEG/SEI treatment including CD49b+TCRβ+ 

NKT cells. Further analysis finds the breakdown of CD4+/CD8+ populations differ 

between genotypes with DQ8 mice presenting lower CD4+/CD8+ ratios compared 

to C57BL/6 mice Figure 16B,C. Given that these mice have similar numbers of 

CD3+ T cells, the differences between CD4+ and CD8+ memory cell phenotypes 

were explored. 
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Figure 16. CD8+ T cells are increased in SEG/SEI treated HLA-DQ8 mice.  

DQ8 and C57BL/6 splenocytes, peritoneal lavage cells, and inguinal lymph nodes 

were evaluated 15 days post B16-F10 implant (2.5x105 cells IP) from SEG/SEI 

treated and naïve mice.  (A) CD3+ cells were increased in SEG/SEI treated groups, 

whereas CD49b+ (NK) cells were decreased. (B,C) CD4+ and CD8+ T cells are 

reported as % live cells. Groups presented were treated with 50ug each SEG & SEI 

on day 6 and 9 post implant. n=3-5. Graphed mean with SD. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.001.  
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As mentioned previously, the durability of T cell therapies providing lasting 

immunity is limited. In that light, memory T cell populations were characterized 

using anti-CD44, -CD62L, -CD3, CD4, CD8 and KLRG1 and analyzed via flow 

cytometry Figure 17. Including KLRG1 was used to differentiate between 

effector and memory cells with effector cells expressing higher levels upon 

activation and decreased levels in memory cells [142-145]. Take together data 

provide a glimpse into the trafficking of immune cells in response to SEG/SEI. It 

would be easy to focus on the effector, CD44+CD62L- , populations, but the 

differences in naïve mice complicate the interpretation of these data. Of note, 

CD8+CD44+CD62L+KLRG1- cells are increased in the inguinal lymph nodes and 

spleens of DQ8 mice compared to controls Figure 17 B,F. Differences could be a 

result of a delayed response in C57BL/6. CD8+CD44+CD62L+ cells in the 

peritoneum of C57BL/6 are increased compared to DQ8 mice. Taking into 

consideration day 13 and 15 responses these data suggest SEG/SEI elicit a 

powerful, lasting CD8 response against B16 melanoma unseen in identically 

treated  C57BL6 mice.  
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Figure 17. CD44+CD62L+KLRG1-CD8+ T memory cells are increased in 

SEG/SEI treated HLA-DQ8 mice.  

DQ8 and C57BL/6 splenocytes, peritoneal lavage cells, and inguinal lymph nodes 

were evaluated 15 days post B16-F10 implant (2.5x105 cells IP) from SEG/SEI 

treated and naïve mice. Representative scatter plots of cells from mice treated day 6 

and 9 post implant with SEG/SEI (A-C). CD44 and CD62L expression (D,F) along 

with KLRG1 (E,G) was used to characterized effector and memory CD4/CD8 T cells 

were gated to exclude doublets, debris and dead cells from analysis. n=3-5. Graphed 

mean with SD. *p<0.05, **p<0.01, ***p<0.001, ****p<0.001 
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Figure 18 . Day 15 peritoneal lavage cell cytotoxicity against B16-F10.  

CD4+ (A) and CD8+ (Β) T cells isolated from peritoneal lavages of SEG/SEI treated 

and non-treated mice 15 days post implant. Cells were cocultured at a 10:1 (T 

cell:B16) ratio for 4hrs in 96 well flat bottom plates. Representative flow cytometry 

plots of annexin V and PI staining (Gate: Singlets>B16-F10 cells) shown and 

reported as % annexin V+/PI+ B16-F10 cells. n=5. *p<0.05. 
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SEG/SEI in Treatment of Lewis Lung Carcinoma  

Pushing the success demonstrated by introducing SEG/SEI in the treatment of 

melanoma, LLC cells were used to evaluate a tumor with a different immune 

contexture. LLC cells were deployed similar to the peritoneal model used to 

assess SEG/SEI against B16 melanoma Figure 19.  Survival of mice with B16 or 

LLC were similar albeit 250,000 LLC cells at implant prove more lethal in DQ8 

mice compared to 10,000 cells at implant Figure 20.  

 

SEG/SEI therapy proved ineffective in treating an established LLC tumor using 

the same treatment protocol which demonstrated robust anti-B16 responses 

Figure 21. It would be reasonable to think that lowering the tumor burden to 

10,000 cells at implant would provide some benefit. Nope Figure 22. Irradiated 

LLC cells were used to provide antigen for an antitumor response which would in 

turn be enhanced with SEG/SEI. This provided no benefit to the mice. The only 

hypothesis supported throughout these experiments is that LLC tumors have a 

different immune contexture.  
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Figure 19. Lewis lung carcinoma implanted intraperitoneally is more lethal in 

HLA-DQ8 mice compared to allogeneic C57BL/6. 

Syngeneic C57BL/6 6-8 w.o. female mice were implanted with 2.5x105 live LLC 

cells IP along with DQ8 and DR3 mice. Kaplan Meier survival curves shown with 

Log-rank test corrected for multiple comparisons. n=6-14. *p=0.05, **p=0.01, 

***p=0.001. 
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Figure 20. Mice implanted intraperitoneally with 10,000 LLC cells. 

6-8 w.o. male mice were implanted with 1x104 live LLC cells IP. Kaplan Meier 

survival curves shown. n=10.  
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Figure 21. SEG/SEI does not elicit antitumor responses in DQ8 mice with an 

established LLC tumor.  

DQ8 6-8 w.o. female mice were implanted with 2.5x105 live LLC cells IP. Treated 

mice received 50µg SEG and 50µg SEI IP day 6 and 9 post implant. Kaplan Meier 

survival curves shown. n=10.  
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Figure 22. Initial LLC implant dosage does not affect SEG/SEI treatment 

outcome. 

DQ8 mice implanted with 1x104 live LLC cells received 1x106 irradiated (15,000 

rads) LLC cells, 50µg each SEG/SEI, both, or no treatment. Kaplan Meier survival 

curves shown. n=5.  
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There have been several immunotherapies recently approved that are used to 

augment the immune response. In fact, inflammation was critical and deemed 

necessary in Coley’s descriptions of his treatments provoking erysipelas [63-66]. 

To that end, toll like receptor (TLR) agonists were included in the treatment 

protocol of LLC Figure 23. These data show a deleterious effect when used 

synergistically with SEG/SEI. This could simply be corrected with dosage 

titrations, but this researcher hypothesizes the use of TLR agonists will not 

favorably shape the immune environment of the LLC tumor.  

 

Recently, several antibodies have been evaluated and approved that target 

inhibitory molecules, like PD-1 and PD-L1 on the T and LLC cells, respectively 

[150-156]. SE stimulation has been shown to increase inhibitory signals on T cells 

Figure 4. Therefore, anti-PD1 and anti-PDL1 were incorporated into the 

treatment protocol for LLC tumors Figure 24. Anti-PDL1 therapy was given 6 

and 10 days post implant and conferred enhanced survival in DQ8 mice when 

given without SEG/SEI Figure 24A.  Utilizing anti-PD-1 did prolong survival in 

DQ8 mice similar to using anti-PDL1. DQ8 mice receiving anti-PD-1 along with 

SEG/SEI on days 4 and 8 post implant increased survival in 10% of mice but did 

not protect upon rechallenge with LLC. The collection of LLC results using 

various immunotherapeutic tools again supports a highly inflammatory LLC 

tumor environment in the peritoneum of DQ8 mice. Although beneficial in B16 

melanoma, the immune contexture of LLC tumors will require further 

investigation into unleashing T cell mediated tumor killing.   
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Figure 23. TLR agonists exacerbate SEG/SEI therapy. 

6-8 w.o. female mice were implanted with 2.5x105 live LLC cells IP. 20µg LPS 

(Sigma L6143) or 40µg YscF (Alvine) were combined with 50µg each SEG/SEI 

(France) just before injecting IP day 6. Treatment mice received 50µg each SEG/SEI 

day 9. . Kaplan Meier survival curves shown with Log-rank test. n=3/experimental, 

6/controls. *p=0.05, **p=0.01, ***p=0.001 
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Figure 24. Including anti-PD-1 and anti-PD-L1 therapy to established LLC 

treatment protocol prolongs survival in DQ8 mice.   

DQ8 mice implanted with 2.5x105 live LLC cells received 50µg each SEG/SEI with 

200µg anti-PD-L1 (A) or anti-PD-1 (B) at days indicated. Mice were rechallenged 

with 2.5x105 live LLC cells and subsequently died with controls (data not shown). All 

injections done IP in <200µl total volume in 6-8 w.o. female mice. Kaplan Meier 

survival curves shown with Log-rank test corrected for multiple comparisons. n=6. 

*p=0.05, **p=0.01, ***p=0.001. 
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CHAPTER IV 

 

DISCUSSION 

It is necessary to take into consideration the history into current understanding of 

the immune system and the factors that can influence the interpretation of the data 

collected from studies in vitro or vivo. Mouse models have advanced to support 

grafting human cells creating humanized mice to study cancer. The experiments 

shown here use HLA transgenic mice that express a single cell surface receptor 

from the human immune system, DQ8. HLA transgenic mice do allow for some 

meaningful data into the role of receptor based specificity that can drive an 

autoimmune response. Autoimmune responses are characterized as an 

inappropriate reaction against host, self-antigen. Experiments that aim to elucidate 

a similar relationship in cancer have been underway for years. The search for 

tumor associated antigens (TAAs) peaked in the 1990s and has recently evolved 

into the search for neoantigens pioneered by Dr. Stephen Rosenberg [60]. 

Recently, another therapy using SEG/SEI could be poised to attack tumors 

through another cellular therapy, sickle cells. These cells have the capacity to 

stick in the tumor vasculature, rupture, and release cytotoxic compounds directly 

at the tumor site [158, 159].  

 

Long term, progression free survival was achieved in many animals throughout 

this study. HLA-DQ8 mice are able to respond favorably to 50 µg doses of SEG 
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and SEI and these responses can be directed towards an established B16-F10 

tumor and can provide memory responses in rechallenged mice. However, these 

tumors responses are specific. The treatment of an established LLC tumor proved 

difficult in all strains of mice used. Interestingly, anti-PD1 and -PD-L1 therapy 

did prolong survival when tested in HLA-DQ8 mice. Studies were not done in 

C57BL/6 mice due to the lack of SE response in B16-F10 models. Experiments 

using different concentrations of LLCs at implant yielded varying results and 

where used to compare B16-F10 implant load. LLC models could use a lower 

number of cells at implant as the survival of 10,000 cells vs 250,000 cells is 

negligible; however, 10,000 B16-F10 cells can lead to variable tumor outgrowth. 

SEG/SEI activated a subset of T cells and skewed the immune contexture towards 

T cells expressing Tbet, IFNy, perforin, and granzymes b at day 13 post 

treatment. Rechallenge studies >200 days post implant yielded 100% survival >70 

days post rechallenge. The data presented throughout this document provide 

evidence to support investigation into incorporating SEG and SEI into current 

clinical repertoire for treating melanoma.  
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