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ABSTRACT 
 

 Synucleinopathies is the overarching term used to describe a group of 

neurodegenerative disorders characterized by aggregates of α-synuclein (α-syn) 

protein in the cytoplasm of neurons, nerve fibers, and glial cells. The cause(s) for 

synucleinopathies are likely multi-factorial with genetic predisposition and 

environmental factors participating in the pathogenesis of the diseases. Dietary 

factors including dyslipidemia of cholesterol, its metabolites, and fatty acids have 

shown conflicting results as risk factors in recent years. Our overarching 

hypothesis is that dietary factors including 27-Hydroxycholesterol (27-OHC) and 

Palmitic Acid (PA) can affect key proteins involved in synucleinopathies. 

 Findings regarding risk related specifically to dietary cholesterol have 

indicated either an increased risk, decreased risk, or no association. We believe 

the reason for the conflicting association between cholesterol and 

synucleinopathies lies in the metabolites of cholesterol and not cholesterol per 

se. Supporting our hypothesis many studies have shown increased levels of 

many different oxysterols, including 27-OHC, within the brains of synucleinopathy 

patients. However, the extent to which increased 27-OHC levels in the brain 

causes α-syn deposition and promotes synucleinopathies is yet to be 

determined. Therefore, in this dissertation we explore the effects of 27-OHC on  

the accumulation of α-syn and investigate the mechanisms of such involvement.
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We demonstrate that 27-OHC induces an increase in α-syn levels in human 

dopaminergic neurons. The mechanism involved in the α-syn increase does not 

appear to involve LXRs as we did not observe any significant changes in α-syn 

mRNA with 27-OHC or LXR agonist and antagonistic treatments. To the best of 

our knowledge, our results are the first to show that 27-OHC increases α-syn in 

dopaminergic neurons and that this increase may emanate from inhibition of the 

proteasomal function. Also, 27-OHC decreases levels of HSP70 protein which is 

involved in protein folding, and protein degradation through the Ubiquitin-

Proteasomal System (UPS). The extent to which a decrease in HSP70 protein 

levels leads to decreased protein folding and degradation through specific 

pathways needs to be further elucidated. All-together, our results potentially 

suggest that restoring proteasomal function and HSP70 protein levels may 

attenuate the 27-OHC-induced increase in α-syn protein levels in vitro and 

reduce α-syn accumulation that can increase the risk for synucleinopathies. 

 Additionally, to date, studies focused on the contributions of dietary fat 

intake to the risk of PD type synucleinopathy have yielded inconsistent results. 

Epidemiological studies of dietary fat intake and PD have found positive 

associations, no association, and even protective effects. As implied by all the 

conflicting studies, the jury is still out on the role(s) of FAs in PD-type 

synucleinopathy risk. 

 Palmitic acid (PA) (16:0) is the most abundant saturated fatty acid in the 

body and the most abundant fatty acid in our diet. It has been shown to increase 

ER stress proinflammatory cytokine expression in astrocytes and microglia, and 
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activation of TLRs via NFKβ but its role in pathological hallmark formation of PD-

type synucleinopathy remains unknown. Throughout this dissertation we aim to 

examine the role(s) of PA on various hallmarks of PD-type synucleinopathy 

pathology in various animal and cellular models. We demonstrate that a PA-

enriched diet induces an increase in α-syn and TH protein and mRNA expression 

in both B6D2 and m-Thy1 mice. We also show that the PA-enriched diet does not 

affect biogenic amine content in control B6D2 mice but significantly changes 

dopamine and serotonin levels in m-Thy1 mice relative to control-fed mice. Our 

results demonstrate that a diet enriched in PA increases the levels of Tyrosine 

Hydroxylase (TH), and serotonin, an effect that can provide beneficial effects in a 

variety of conditions. 

Additionally, we demonstrate that PA treatment in mouse dopaminergic 

neurons decreases α-syn protein and mRNA expression as well as it decreases 

TH protein content. Our study is the first to show that within MPTP-injected 

C57BL/6 mice a PA-enriched diet preserves motor function, decreases α-syn 

accumulation, increases TH protein, and increases dopaminergic neuronal 

survival. Altogether, our results suggest that a diet enriched in PA is protective 

against MPTP-induced Parkinsonism. Future studies are needed to elucidate the 

mechanisms by which a PA-enriched diet modulates these proteins. Establishing 

the effects of a smaller percentage of PA in the diet may reveal beneficial effects 

of this saturated free fatty acid in neurodegenerative conditions including PD and 

other synucleinopathies. 
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CHAPTER I 
 

INTRODUCTION 
 

Synucleinopathies 

 Synucleinopathies is the overarching term used to describe a group of 

neurodegenerative disorders characterized by aggregates of alpha-synuclein (α-

syn) protein in the cytoplasm of neurons, nerve fibers, and glial cells (Goedert, 

Jakes, & Spillantini, 2017; Mart�, Tolosa, & Campdelacreu, 2003). Aggregates 

of α-syn are termed Lewy Bodies after Fritz Heinrich Lewy discovered them in 

1912. These disorders include multiple system atrophy (MSA), dementia with 

Lewy bodies (DLB), and most commonly Parkinson’s disease (PD). In the clinic, 

they are characterized by chronic and progressive decline in motor, cognitive, 

behavioral, and autonomic functions, depending on the localization of the α-syn 

aggregates. These disorders have a large clinical overlap that makes 

distinguishing the diagnosis between the disorders very difficult for physicians. 

Multiple Systems Atrophy 

 MSA is a fatal neurodegenerative disease that is characterized by a 

combination of parkinsonian features, progressive autonomic failures, and 

cerebellar and pyramidal features. MSA can be classified as a cerebellar type or 

parkinsonian type depending on which features are predominately presented 

(Fanciulli & Wenning, 2015a).
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 MSA is not very common and is considered an orphan disease (Orpha 

number, ORPHA102). The estimated mean incidence is 0.6 to 0.7 cases per 

100,000/year, with up to 2.4 cases per 100,000 /year (Bower, Maraganore, 

McDonnell, & Rocca, 1997). Prevalence ranges from 1.9 to 4.9 per 100,000 

inhabitants over the age of 50 years (Gregor K Wenning, Colosimo, Geser, & 

Poewe, 2004). The average age of onset is 60 years and affects males and 

females equally (Wüllner et al., 2007) for a typical disease duration of 7 to 9 

years before death (A. Schrag, Wenning, Quinn, & Ben-Shlomo, 2008). 

 The causes for MSA are unknown but the following environmental factors 

have been implicated as risk factors: metal dusts and fumes, plastic additives, 

organic solvents, pesticides, diet, and physical activity (Alavanja et al., 1996; 

Frumkin, 1998; Hanna, Jankovic, & Kirkpatrick, 1999; Nagai et al., 2012; Nee et 

al., 1991) while nicotine use, drinking alcohol, and eating fish and seafood are 

more common in healthy controls and are considered as being protective against 

MSA (Chrysostome et al., 2004; Johnsen & Miller, 1986; N Vanacore et al., 2000; 

Nicola Vanacore et al., 2005; Vidal et al., 2008). MSA is normally considered a 

sporadic disease but genetic factors play a role in some families. It has been 

transmitted by an autosomal dominant or autosomal recessive pattern (Itoh et al., 

2014; Stemberger, Scholz, Singleton, & Wenning, 2011). Loss of function 

mutations in COQ2, encoding the coenzyme Q10-synthesizing enzyme (Multiple-

System Atrophy Research Collaboration, 2013),single-nucleotide polymorphisms 

in the SNCA gene (Scholz et al., 2009), and mutations in many inflammatory 

related genes have been associated with causality of MSA. 
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 Degeneration of the nigrostriatal pathway and olivopontocerebellar 

atrophy are normally found in postmortem brains of individuals with MSA. These 

features broadly present the individual with parkinsonism and ataxia (Ahmed et 

al., 2012). Neurodegenerative changes can also be seen in the hypothalamus, 

nuclei of noradrenergic and serotonergic connections, dorsal nuclei, and 

intermediolateral columns of the spinal cord (Benarroch, 1993). The major 

histological hallmark of MSA is the intracytoplasmic proteinaceous 

oligodendroglial inclusions (also known as Papp-Lantos bodies). Less commonly, 

neuronal axonal, neuronal cytoplasmic and nuclear, and oligodendroglial nuclear 

inclusions are also observed. In addition to cytoplasmic inclusions, reactive 

astrocytes and microglia are commonly found. The main protein found within the 

inclusions is misfolded α-syn protein as in other synucleinopathies. The 

distinguishing factor between MSA and other synucleinopathies is that MSA is 

the only disease in which the oligodendroglial cells are the cells affected. 

Most evidence from animal models and postmortem studies suggest that the 

pathogenesis of MSA is oligodendrogliopathy (Fig. 1)(Fanciulli & Wenning, 

2015b). The redistribution of an important stabilizer of myelin integrity, p25α, into 

the cell body of oligodendroglial cells happens before α-syn aggregation (Y. J. C. 

Song et al., 2007) The redistribution of p25α is followed by the swelling of 

affected cells and the abnormal uptake and/or overexpression of the α-syn 

protein (Asi et al., 2014; Reyes et al., 2014). The interactions of α-syn and p25α 

lead to the aggregation of α-syn in oligodendroglial cells. Cytoplasmic inclusions 
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Figure 1.  Schematic of the pathogenesis of MSA. Reproduced with 

permission from (Fanciulli & Wenning, 2015a), Copyright 
Massachusetts Medical Society. 

.



5 

cause dysfunctions in these cells and the activation of microglial cells. These 

events lead to progressive dysfunction in oligodendrocytes and the release of 

misfolded α-syn into the extracellular space where it is taken up by neighboring 

neurons and glial cells. This ultimately leads to spreading of the disease to many 

different brain regions leading to the multisystem dysfunction associated with 

MSA (Watts et al., 2013). 

 There is a prodromal premotor phase in 20 to 75% of MSA cases that 

include urinary urge incontinence or retention, sexual dysfunction, orthostatic 

hypotension, REM sleep behavior disorder, and inspiratory stridor years before 

motor symptoms appear (Jecmenica-Lukic, Poewe, Tolosa, & Wenning, 2012). 

Motor features include Parkinsonism (slow movements, rigidity) while the “pill-

rolling” resting tremor is unusual in the parkinsonian subtype of MSA. Levodopa 

treatments lack a response in MSA (G. K. Wenning, Tison, ben Shlomo, Daniel, 

& Quinn, 1997). Cerebellar ataxia leads in the motor presentation of the 

cerebellar subtype of MSA (Bensimon et al., 2009). Features of the cerebellar 

type consist of uncoordinated limb movements, wide-based gait, action tremors, 

hyperreflexia, Babinski sign, and spontaneous, gaze-evoked, or positional 

downbeat nystagmus (Köllensperger et al., 2010). Fig. 2 shows the various 

presentations of MSA while Fig. 3 shows the disease progression over an 

average of 10 years. 
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Figure 2.  Diagram of the various symptoms associated with MSA. 
Reproduced with permission from (Fanciulli & Wenning, 2015a), 
Copyright Massachusetts Medical Society. 
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Figure 3.  Schematic of MSA progression over 10 years. Reproduced with 

permission from (Fanciulli & Wenning, 2015a), Copyright 
Massachusetts Medical Society. 

 

Dementia with Lewy Bodies 

 Dementia with Lewy Bodies (DLB) also known as Lewy Body Disease, 

Lewy Body dementia, and diffuse Lewy Body Disease is considered the second 

most common cause of dementia next to Alzheimer’s disease. It is a progressive 

neurodegenerative disorder that has main features of psychosis, cognitive 

impairment, and parkinsonism (Fig. 4). 

 The prevalence of DLB in the United States is estimated to be 1.3 million 

individuals (Savica et al., 2013). DLB has an incidence of 5.9 cases per 100,000 

persons/year, with a higher incidence in men than in women (7.2 vs 4.9) (Savica 

et al., 2013). The incidence of DLB rises with age from 10.3 cases per 100,000 

persons/year for age 60-69 to 44.5 cases per 100,000 persons/year for ages 70-

79 and finally remaining high at 30.1 cases per 100,000 persons/year in ages 
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Figure 4.  Overview of Dementia with Lewy bodies. Reproduced with 

permission from (Dra. Carla Abdelnour Ruiz, n.d.). 
 

80-89 (Savica et al., 2013). Average life expectancy is 5-7 years after age of 

onset (“Dementia with Lewy Bodies | Family Caregiver Alliance,” n.d.). 

 The causes for DLB are unknown but the following factors have been 

implicated as risk factors: old age, being male, history of anxiety, family history of 

dementia, depression, stroke, and a family history of Parkinson’s disease 

whereas being more educated, history of cancer, smoking, and using caffeine 

seem to be more protective against DLB (Boot et al., 2013). DLB is normally 

considered a sporadic disease but genetic factors play a role in some families. 

Mutations in the GBA gene, a gene normally associated with Gaucher’s disease,  
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Apolipoprotein E (APOE), and SNCA have been shown in individuals suffering 

with DLB (“Genetic Variant Increases Risk for Dementia in Lewy Body Diseases | 

Lewy Body Dementia Association,” n.d.; R. Guerreiro et al., 2018). 

 In DLB, Lewy bodies are found within the cytoplasm of monoaminergic 

and cholinergic neurons within multiple cortical regions and brainstem nuclei 

(Dickson, 2002). Lewy bodies are found within neuronal processes called Lewy 

body neurites in the dorsal motor nucleus of the vagus nerve, hippocampus, 

amygdala, and throughout temporal lobe structures and the limbic system. Lewy 

bodies are also found in the peripheral and autonomic nervous systems. The 

localization of lewy body pathology is very important to specific types of cognitive 

impairment and clinical symptoms. The presence of Lewy bodies is required for 

the DLB diagnosis at autopsy but the presence of Lewy bodies is not in itself 

enough to cause clinical symptoms. An estimated 24 to 55% of healthy elderly 

adults are found to have a significant amount of Lewy bodies (Jellinger, 2009). 

Although Lewy bodies are needed in a diagnosis of DLB, 35 to 90% of patients 

with DLB also have varying degrees of Alzheimer’s-like pathology such as 

neurofibrillary tangles and senile plaques (Hansen & Samuel, 1997). 

Neurofibrillary tangles are filamentous aggregates, which are composed of the 

microtubule associated protein TAU within the cell body and dendrites of 

neurons. These tangles initially start in the limbic structures and progressively 

move to the multimodal association cortices and finally the primary cortices. 

Senile plaques are lesions composed of extracellular deposits of beta-amyloid 

protein (Aβ), which is a 40 to 42 amino acid peptide derived from amyloid 



10 

precursor protein (Dickson, 2002) and can also be found throughout much of the 

brain. 

 Symptoms of DLB include reoccurring visual hallucinations as one of the 

first symptoms. Individuals may see people or things that aren’t there and hear 

and smell things that are not present. Parkinsonism (slow movements, tremor, 

rigidity) may be present along with autonomic nervous system dysfunctions 

resulting in dizziness, falling, and constipation. Sleep difficulties, fluctuating 

attention, depression and apathy are also commonly seen in DLB. Finally 

cognitive problems such as confusion, visual-spatial problems and memory loss 

are commonly seen in individuals suffering with DLB (“Dementia with Lewy 

bodies: diagnostic and predictive biomarkers - ppt video online download,” n.d.; 

“Lewy body dementia - Symptoms and causes - Mayo Clinic,” n.d.; Dickson, 

2002; Javed et al., 2008; Savica et al., 2013). Fig. 5 shows some of the main 

symptoms of DLB. 

Parkinson’s Disease 

 Parkinson’s disease (PD) is the second-most common neurodegenerative 

disorder next to Alzheimer’s disease that affects 2-3% of the population ≥ 65 

years old (Poewe et al., 2017). It is a progressive disease that consists of 

dopaminergic neuronal loss in the substantia nigra, resulting in deficient striatal 

dopamine, and Lewy bodies containing α-syn as the neuropathological 

hallmarks.
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Figure 5. Main symptoms of DLB. Reprinted with permission from (“lewy 

body dementia going gentle into that good night,” n.d.) 
 

.
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 The worldwide yearly incidence estimates for PD ranges from 5 to >35 

new cases per 100,000 people (Twelves, Perkins, & Counsell, 2003). The global 

prevalence estimated at 0.3% overall, increases sharply with age to >3% in those 

greater than 80 years of age and is visualized in Fig. 6 (Pringsheim, Jette, 

Frolkis, & Steeves, 2014). PD is twice as common in men than in women in most 

populations (Baldereschi et al., 2000; Van Den Eeden et al., 2003). Protective 

effects of sex-associated genetic mechanisms, female sex hormones, and sex-

specific differences in exposures and reactions to environmental risk factors 

might explain the drastic difference between males and females regarding PD. 

Mortality does not increase within the first ten years of disease onset, but 

increases thereafter, eventually being twice as high compared with the general 

population mortality rate (Pinter et al., 2015). 

 

 

Figure 6. Incidence and prevalence of Parkinson’s disease. A. Prevalence of 
PD in men and women per 100,000 individuals. B. Incidence rate of 
PD per 100,000 people. Reprinted by permission from RightsLink, 
Springer Nature, (Poewe et al., 2017), Copyright 2017.
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 Roughly 90% of PD cases are sporadic with the causes being unknown 

but the following environmental factors have been implicated as risk factors: dairy 

products, pesticides, methamphetamine, certain cancers, traumatic brain injury, 

body-mass index and diabetes, blood cholesterol and hypertention, heavy 

alcohol consumption, postmenopausal hormones and reproductive factors, and 

fat and other macronutrients (Abbott, Ross, et al., 2003; Alberto Ascherio et al., 

2004, 2004; Callaghan, Cunningham, Sajeev, & Kish, 2010; Honglei Chen, 

Zhang, Hernán, Willett, & Ascherio, 2003a; Curtin et al., 2015; L M L de Lau et 

al., 2005a; Driver et al., 2008; Eriksson, Löfving, Callaghan, & Allebeck, 2013; 

Guilarte, Nihei, McGlothan, & Howard, 2003; G Hu et al., 2006; G Hu, Antikainen, 

Jousilahti, Kivipelto, & Tuomilehto, 2008; Jiang, Ju, Jiang, & Zhang, 2014; 

Langston, Ballard, Tetrud, & Irwin, 1983a; R. Liu, Gao, Lu, & Chen, 2011; Marras 

et al., 2014; Louis C Tan et al., 2008a; Tanner et al., 2011; Tysnes & Storstein, 

2017; Qun Xu et al., 2011). Factors considered as protective against PD are as 

follows: tobacco, coffee and caffeine, green and black tea, urate, physical 

activity, Non-steroidal anti-inflammatory drugs (NSAIDs), calcium channel 

blockers, statins in some studies, and flavonoids (A Ascherio et al., 2001; Bakshi 

et al., 2015; Becker, Jick, & Meier, 2008a; H Chen et al., 2010; H Chen, Zhang, 

Schwarzschild, Hernán, & Ascherio, 2005; Honglei Chen, Zhang, Hernán, 

Schwarzschild, et al., 2003; X. Chen et al., 2013; Duan et al., 2002; X Gao, 

Cassidy, Schwarzschild, Rimm, & Ascherio, 2012; Xiang Gao, Chen, 

Schwarzschild, & Ascherio, 2011; Xiang Gao, Simon, Schwarzschild, & Ascherio, 

2012a, 2012b; Gong et al., 2012; S. Guerreiro et al., 2009; Gang Hu, Bidel, 
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Jousilahti, Antikainen, & Tuomilehto, 2007; Y.-C. Lee et al., 2014; Lin et al., 

2016; R. Liu et al., 2012; G Logroscino, Sesso, Paffenbarger, & Lee, 2006; 

Morens, Grandinetti, Reed, White, & Ross, 1995; O’Reilly et al., 2005; Pasternak 

et al., 2012; Ritz, Rhodes, et al., 2010; Ross et al., n.d.; Louis C Tan et al., 

2008b; E L Thacker et al., 2007; Evan L Thacker et al., 2008; Undela, Gudala, 

Malla, & Bansal, 2013; Wolozin et al., 2007; Q Xu et al., 2010; Fei Yang et al., 

2015). Though PD is generally of sporadic origin, familial forms do exist. In 1997, 

the first mutation leading to PD was identified in the gene encoding the vesicular 

protein α-syn, a missense mutation from alanine to threonine in position 53 

(A53T) (Polymeropoulos et al., 1997a) followed by the finding of another 

missense mutation, alanine 30 to proline (A30P) (Krüger et al., 1998a). Since 

then, many different genes have become implicated in familial forms of PD 

(Table 1). These genes code for proteins that normally function as mitochondrial 

membrane proteins, protein homeostasis and degradation machinery, and 

oxidative stress sensors. 

 Neuropathologically, PD includes characteristic features of neuronal loss 

in the substantia nigra and widespread intracellular proteinaceous inclusions 

consisting of α-syn. The loss of dopaminergic neurons and the deposition of α-

syn is not specific to PD but these two neuropathologies in concert are specific 

for a decisive diagnosis of idiopathic PD (Fig. 7).  
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Table 1.  Classification of hereditary parkinsonism. Reprinted by permission 
from RightsLink, Springer Nature, (Poewe et al., 2017), Copyright 
2017. 

Locus 
symbol  

New 
designation‡  

Gene 
locus  

Gene  

OMIM 
(phenotype 

MIM number; 
gene/locus 

MIM number)  

Clinical clues 

Autosomal dominant Parkinson disease  

PARK1 or 
PARK4  PARK-SNCA  4q22.1  SNCA  

• 168601; 
163890 
(PARK1)  
• 605543; 
163890 
(PARK4)  

Missense mutations 
(PARK1) cause classic 
Parkinson disease 
phenotype. Duplication or 
triplication of this gene 
(PARK4) causes early-onset 
Parkinson disease with 
prominent dementia  

PARK8  PARK-
LRRK2  12q12  LRRK2  607060; 609007  

Classic Parkinson disease 
phenotype. Variations in 
LRRK2 include risk-
conferring variants and 
disease-causing mutations  

PARK17  PARK-VPS35  16q11.2  VPS35  614203; 601501  Classic Parkinson disease 
phenotype  

Early-onset Parkinson disease (autosomal recessive inheritance)  

PARK2  PARK-Parkin  6q26  
PARK2 
encoding 
parkin  

600116; 602544  Often presents with lower 
limb dystonia  

PARK6  PARK-PINK1  1p36.12  PINK1  605909; 608309  Psychiatric features are 
common  

PARK7  PARK-DJ1  1p36.23  

PARK7 
encoding 
protein 
deglycase 
DJ1  

606324; 602533  Early-onset Parkinson 
disease  

PARK19B  PARK-
DNAJC6  1p31.3  DNAJC6  615528; 608375  

Onset of parkinsonism 
between the third and fifth 
decades of life  

Complex genetic forms (autosomal recessive inheritance) 

PARK9  PARK-
ATP13A2  1p36.13  ATP13A2  606693; 610513  

Early-onset parkinsonism 
with a complex phenotype 
(for example, dystonia, 
supranuclear gaze palsy, 
pyramidal signs and 
cognitive dysfunction); also 
known as Kufor–Rakeb 
syndrome  

  

https://www.nature.com/articles/nrdp201713/tables/1#t1-fn2
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PARK14  PARK-
PLA2G6  22q13.1  PLA2G6  256600; 

603604  

PLAN (or NBIA2) is characterized by a 
complex clinical phenotype, which does 
not include parkinsonism in the majority 
of cases  

PARK15  PARK-
FBXO7  22q12.3  FBXO7  260300; 

605648  

Early-onset parkinsonism with pyramidal 
signs and a variable complex phenotype 
(for example, supranuclear gaze palsy, 
early postural instability, chorea and 
dystonia)  

PARK19A  PARK-
DNAJC6  1p31.3  DNAJC6  615528; 

608375  

Juvenile-onset parkinsonism that is 
occasionally associated with mental 
retardation and seizures  

PARK20  PARK-
SYNJ1  21q22.11  SYNJ1  615530; 

604297  

Patients may have seizures, cognitive 
decline, abnormal eye movements and 
dystonia  

PARK23  Not yet 
assigned  15q22.2  VPS13C  616840; 

608879  

Young-adult-onset parkinsonism 
associated with progressive cognitive 
impairment that leads to dementia and 
dysautonomia 

Legend: The locus symbols originate from the Online Mendelian Inheritance in Man (OMIM) 
catalogue (https://omim.org). Seven loci, which have been assigned a PARK designation, have 
a yet unconfirmed relationship to disease (that is, PARK3, unknown gene on 2p13; PARK5, 
UCHL1 on 4p13; PARK11, GIGYF25 on 2q37.1; PARK13, HTRA2 on 2p13.1; PARK18, 
ELF4G1 on 3q27.1; PARK21, DNAJC13 on 3q22; and PARK22, CHCHD2 on 7p11.2) and three 
are classified as risk loci (PARK10 on 1p32; PARK12 on Xq21–q25; and PARK16 on 1q32). 

https://omim.org/
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Figure 7.  Main neuropathologies of PD. (a) PD is defined by depigmentation 
of the substantia nigra (right side) compared to control (left side). 
Macroscopic and transverse sections of the midbrain following 
staining with Tyrosine Hydroxylase. Selective loss of the 
ventrolateral parts of the substantia nigra with sparing of the more 
medial and dorsal regions. (b-d) Haematoxylin and eosin staining of 
the ventrolateral region of the substantia nigra showing a 
pigmented normal health control (b) and significant moderate (c) 
and severe (d) pigmeted cell loss. e-g. IHC staining of α-syn shows 
the round, intracytoplasmic Lewy bodies (e), more diffuse, granular 
deposits of α-syn (e and f), deposits of α-syn in neuronal cell 
processes (f.), extracellular dot-like α-syn structures (f) and α-syn 
spheroids in axons (g). (h) The theorized progression of α-syn 
aggregation in PD. α-syn inclusions occur in monoaminergic and 
cholinergic lower brainstem neurons in asymptomatic cases (Braak 
stage I and stage II), infiltrate similar neurons in the midbrain and 
basal forebrain in those with the motor symptoms of PD (Braak 
stage III and stage IV), and then are found later in limbic and 
neocortical brain regions with disease progression (Braak stage V 
and stage VI) 3N, 3rd nerve fibres; CP, cerebral peduncle; RN, red 
nucleus. Reprinted by permission from RightsLink, Springer Nature, 
(Poewe et al., 2017), Copyright 2017. 
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 PD does not feature global macroscopic atrophy of the brain, rather 

neuronal degeneration occurs in certain areas and mainly in dopaminergic 

neurons. In early-stage PD, loss of these neurons is restricted to the ventrolateral 

substantia nigra with relative conservation of other dopaminergic neurons of the 

midbrain (Damier, Hirsch, Agid, & Graybiel, 1999; Fearnley & Lees, 1991) but 

spreads to the rest of the midbrain by end-stage PD. The loss of these 

dopaminergic neurons at such an early time in the disease progression suggests 

that the deterioration in the substantia nigra starts earlier than motor symptoms 

present, which is supported by several studies (Dijkstra et al., 2014; Iacono et al., 

2015). 

 The abnormal accumulation of α-syn protein in the cytoplasm of certain 

neurons in several different brain regions is the other required neuropathology for 

a definitive PD diagnosis (Braak et al., 2003). Lewy bodies, mainly consisting of 

α-syn protein were the first to be described. Since then, a wider range of α-syn 

aggregates have been described (Fig. 7 e-g). The Lewy type pathology initially 

occurs in monoaminergic and cholinergic neurons of the brainstem and in 

neurons of the olfactory system but also is found in neocortical and limbic regions 

as PD progresses (Fig. 7 h).  

 Heritable forms of PD only represent about 5-10% of cases but have 

provided invaluable clues to the mechanisms underlying the neuropathology of 

PD. Many of the proteins associated with PD are involved in molecular pathways 

that, when disturbed, can lead to pathology that resembles sporadic PD. 

Examples of these pathways are: proteostasis of α-syn, oxidative stress, 
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mitochondrial function, neuroinflammation, transport via axons, and calcium 

homeostasis (Fig. 8). 

 PD diagnosis consists of 2 steps. Step 1 includes the presence of 

bradykinesia as a slowness of movement and a decrease in amplitude and/or 

speed as movements are started and continued along with the combination of at 

least one of: resting tremor and/or rigidity. Step 2 involves determining PD as the 

cause of parkinsonism with two levels of diagnostic certainty. The diagnosis of 

PD requires all three of the below parameters: 

 

 
 
Figure 8.  Schematic of molecular mechanisms of Parkinson’s Disease. 

Reprinted by permission from RightsLink, Springer Nature, (Poewe 
et al., 2017), Copyright 2017. 
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• Absence of absolute exclusion criteria. This includes evidence for 

alternative diagnoses of parkinsonism like atypical parkinsonism, drug-

induced parkinsonism, or essential tremor. 

• Two or more supportive criteria. Included in supportive criteria are L-

DOPA responsiveness, presence of L-DOPA-induced dyskinesia, 

presence of olfactory loss, and presence of classic rest tremor. 

• No red flags, which refers to the features that are uncommon but not 

exclusionary for PD. For example, the development of severe autonomic 

failure within 5 years of disease onset or the quick progression of gait 

impairment that calls for wheelchair use. 

 The typical onset of motor symptoms is usually unilateral and remains 

asymmetrical throughout the disease. The average age of onset is in the late 

fifties with a general range between forty and eighty years. There is a young-

onset form of PD that is commonly defined by an age of onset less than forty-five 

years. More than 10% of these young-onset forms have a genetic source, while 

in individuals that develop the disease before thirty years of age have greater 

than a 40% chance of having a genetic origin of PD (Alcalay et al., 2010; Marder 

et al., 2010). 

 In addition to the main motor symptoms observed in PD patients, a 

number of individuals also have non-motor symptoms (Chaudhuri & Schapira, 

2009). Non-motor symptoms involve many different systems and functions 

including sleep-wake cycle regulation, cognitive impairments, autonomic 

dysfunction, disorders of mood and affect, as well as sensory problems (Fig. 9). 
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Figure 9. Clinical symptoms and timeline associated with PD. Reprinted by 

permission from RightsLink, Springer Nature, (Poewe et al., 2017), 
Copyright 2017. 

 

 Many of these nonmotor symptoms can appear years before the classical 

motor symptoms. Non-motor symptoms become more prevalent as the disease 

progresses and become major determinants in quality of life and progression of 

overall disabilities. 

 Parkinson’s disease sufferers can also develop dementia. Dementia 

associated with PD has been reported as ranging from 2% in early-onset cases 

(Hietanen & Teräväinen, 1988) all the way up to 81% in a patient population 

(Martin, Loewenson, Resch, & Baker, 1973). Additionally, in a review of nearly 30 

studies, it was found that 40% of individuals with PD have some sort of dementia 

(Cummings, 1988). There was a large association with age: no individuals with 

PD under the age of 50 had dementia while 69% of patients above the age of 80 

met the criteria (Mayeux et al., 1992). The incidence of dementia has been 
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shown to be six times higher in patients with PD than in controls (Aarsland et al., 

2001). 

 There are many risk factors that have been reported to be associated with 

dementia in PD. See Fig. 10. These factors include age at onset of PD, duration 

of PD, depression, and atypical neurological features (Aarsland, Tandberg, 

Larsen, & Cummings, 1996; Rajput, Offord, Beard, & Kurland, 1987; Stern, 

Marder, Tang, & Mayeux, 1993). The main features of the dementia associated 

with PD in addition to the symptoms already present from PD are impairments in 

executive functioning (Litvan, Mohr, Williams, Gomez, & Chase, 1991; Pillon, 

Deweer, Agid, & Dubois, 1993; Pillon, Dubois, Lhermitte, & Agid, 1986; Pillon, 

Dubois, Ploska, & Agid, 1991) and can be found in Fig. 11. 

 

 
 
Figure 10.  Risk factors for dementia in patients with PD. Reprinted from The 

Lancet, Volume 361, (Emre, 2003), Dementia associated with 
Parkinson’s disease, 229-237, Copyright 2003, with permission 
from Elsevier.
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Figure 11.  Clinical features of dementia associated with PD. Reprinted from 
The Lancet, Volume 361, (Emre, 2003), Dementia associated with 
Parkinson’s disease, 229-237, Copyright 2003, with permission 
from Elsevier. 

 

Tyrosine Hydroxylase 

 Tyrosine hydroxylase (TH), also known as tyrosine 3-monooxygenase, is 

the rate-limiting enzyme in the synthesis of the catecholamines dopamine, 

epinephrine, and norepinephrine that are important neurotransmitters and 

hormones in the peripheral and central nervous system. It is a cytoplasmic 

protein found in the brain, gut and retina, the sympathetic nervous system and 

the adrenal medulla (Haycock, George, & Waymire, 1985). A deficiency in TH in 

the substantia nigra leading to a reduction of striatal dopamine is a hallmark of 

PD (Adams, Chang, & Klaidman, 2001). TH is part of the aromatic amino acid 
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hydroxylases (AAAHs) family of enzymes that also include phenylalanine 

hydroxylase and tryptophan hydroxylase. All three enzymes participate in 

hydroxylation of aromatic rings of amino acids. TH catalyzes the conversion of 

the amino acid L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA) (George & 

Yang, 2013). It does so by using molecular oxygen (O2), in addition to iron (Fe2+) 

and tetrahydropiopterin as cofactors. TH is a tetramer of four identical subunits 

that have multi-domain structures with an amino-terminal of 150 amino acids 

acting as the regulatory domain followed by a catalytic domain of roughly 300 

amino acids and a coiled-coil domain consisting of 20 amino acids at the 

carboxyl terminus. TH is coded for by a single gene, the TH gene, and there are 

multiple isoforms due to multiple mRNAs formed by generating slice variants of 

the gene (Brigitte Grima et al., 1987; Kappock & Caradonna, 1996; Kumer & 

Vrana, 1996; Le Bourdellès et al., 1988; Nagatsu, 1995).In humans, there are 

four different variations of the regulatory domain and therefore four variants of 

the enzyme due to alternative splicing(Kobayashi et al., 1988).  

Regulation. 

 The activity of TH can be modulated by two mechanisms: longer term 

regulation of gene expression (enzyme stability, transcriptional regulation, RNA 

stability, alternative RNA splicing and translational regulation) and more transient 

regulation of enzyme activity by feedback inhibition, allosteric regulation and 

phosphorylation (Kumer & Vrana, 1996).  

 TH can be phosphorylated by cAMP-dependent mechanisms that will be 

elaborated upon in the forthcoming paragraphs. Although phosphorylation leads 
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to an increase in enzymatic activity, it can also decrease the stability of the 

enzyme (Lazar, Truscott, Raese, & Barchas, 1981; Vrana, Allhiser, & Roskoski, 

1981; Vrana & Roskoski, 1983). 

 The TH gene contains many binding sites in its promotor for transcription 

factors to increase its mRNA expression. An AP-1 site has been identified where 

c-fos and Jun transcription factors can take action to increase transcription of the 

gene (Goc & Stachowiak, 1994). Many studies have been undertaken toward the 

characterization of a CRE binding site in the promotor (Carroll, Kim, Kim, 

Goodman, & Joh, 1991; Fader & Lewis, 1990; K. S. Kim, Lee, Carroll, & Joh, 

1993; K. S. Kim, Tinti, Song, Cubells, & Joh, 1994). Additionally, many labs have 

shown that estrogen can bind an ERE in the TH promotor and modulate levels of 

TH mRNA (Ivanova & Beyer, 2003; Maharjan, Serova, & Sabban, 2005; Raab, 

Pilgrim, & Reisert, 1995) and the Ghribi lab has shown that 27-OHC can 

negatively regulate TH mRNA expression by binding to the ERE in the TH 

promotor (Marwarha, Rhen, Schommer, & Ghribi, 2011a). 

 Alternative RNA splicing results in four different forms of human TH mRNA 

and protein (B Grima et al., 1987; Haycock, 1991; Kaneda et al., 1987; O’Malley 

et al., 1987). The variants are made from differential splicing of the single gene 

copy of TH through the use of two splice donor sites in the first exon and the 

inclusion/exclusion of the second exon (O’Malley et al., 1987). The protein 

products differ at most by 71 amino acids in the amino-terminal regulatory 

domain. A functional role for the various TH isoforms has yet to be established. 
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 TH is subject to feedback inhibition by all of the catecholamines by 

competing for the binding site of TH with the pterin cofactor 

(“Psychopharmacology - 4th Generation of Progress - ACNP,” n.d.; Zigmond, 

Schwarzschild, & Rittenhouse, 1989). It is also subject to allosteric regulation. 

Allosteric regulation involves the modulation of enzyme activity at a site that is 

not the active site of the protein. Phospholipids (Lloyd, 1979; Lloyd & Kaufman, 

1974; Raese, Patrick, & Barchas, 1976), heparin (Kuczenski & Mandell, 1972), 

and polyanions (Katz, Yamauchi, & Kaufman, 1976) have all been shown to 

allosterically regulate TH. 

 Activation by phosphorylation is the primary mechanism responsible for 

the maintenance of catecholamine levels in tissues after secretion of 

catecholamines. TH can be phosphorylated at serine residues 8, 19, 31, and 40 

by a variety of protein kinases (Dunkley, Bobrovskaya, Graham, Von Nagy-

Felsobuki, & Dickson, 2004a). The phosphorylation at Ser40 increases the 

activity of TH in vitro, in vivo and, in situ (Dunkley et al., 2004a; Le Bourdellès et 

al., 1991). Phosphorylation at Ser31 also increases the activity but to a much 

lesser extent than for Ser40. The phosphorylation at Ser19 and Ser8 has no 

direct effect on TH activity (Dunkley et al., 2004a). TH can be phosphorylated at 

Ser40 by protein kinase A (PKA) (Campbell, Hardie, & Vulliet, 1986a; Edelman, 

Raese, Lazar, & Barchas, 1978; Joh, Park, & Reis, 1978). TH can also be 

phosphorylated at Ser40 by a range of other protein kinases, including protein 

kinase C (PKC) (Albert et al., 1984), calcium and calmodulin stimulated protein 

kinase (CaMPK) II (Vulliet, Woodgett, & Cohen, 1984), protein kinase G (PKG) 
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(Roskoski, Vulliet, & Glass, 1987), MAPK-activated protein kinases (MAPKAPKs) 

1 and 2 (Sutherland et al., 1993a), p38-regulated/activated kinase (PRAK) and 

mitogen and stress-activated protein kinase (MSK) 1 (Toska et al., 2002a). TH 

that has been phosphorylated at Ser40 can be dephosphorylated by protein 

phosphatases PP2A and PP2C (Berresheim & Kuhn, 1994; Bevilaqua, 

Cammarota, Dickson, Sim, & Dunkley, 2003; Haavik et al., 1989a). Bradykinin 

and nerve growth factor have been shown to phosphorylate TH at Ser31 by an 

extracellular regulated kinase (ERK) 1 and 2 dependent mechanism (Haycock, 

Ahn, Cobb, & Krebs, 1992) while PP2A has been shown to dephosphorylate this 

site (Leal, Sim, Gonçalves, & Dunkley, 2002). TH can be phosphorylated at 

Ser19 by CaMPKII (Campbell, Hardie, & Vulliet, 1986b), MAPKAPK2 (Sutherland 

et al., 1993b), and PRAK (Toska et al., 2002b). PP2A and PP2C have the 

capability of dephosphorylating TH at Ser19 (Haavik et al., 1989b). ERK has 

been shown to be able to phosphorylate TH at Ser8 (Royo, Daubner, & 

Fitzpatrick, 2004) while no pathways have been identified that dephosphorylate 

this site. 

Alpha-Synuclein 

 Alpha-synuclein (α-syn) is a protein product of the SNCA gene that is 

located on chromosome 4 (Shibasaki, Baillie, St. Clair, & Brookes, 1995). The 

accumulation, oligomerization, and aggregation of α-syn protein have been 

implicated as contributing factors in the development of synucleinopathies 

including MSA, DLB, and PD. It is a small (140 amino acids) cytosolic protein that 

is abundantly expressed in neurons and also found in astrocytes (Castagnet, 
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Golovko, Barceló-Coblijn, Nussbaum, & Murphy, 2005a) and microglial cells 

(Austin, Floden, Murphy, & Combs, 2006). Its primary sequence can be divided 

into three main domains: 1. the N-terminal domain (1-60) contains multiple 

repeats of the consensus sequence (KTKEGV) and has alpha-helical propensity 

upon binding membranes; 2. the central domain (61-95), also known as the non-

amyloid-beta component (NAC) because it was found to aggregate in Beta-

amyloid plaques in Alzheimer’s disease. It is highly hydrophobic and is involved 

in α-syn aggregation when it acquires a beta-sheet structure; and 3. the C-

terminal domain (96-140), enriched in negative charged and proline residues, 

providing flexibility to the protein. This region is intrinsically disordered in 

structure. Remarkably, all of the mutations associated with familial forms of PD 

i.e. A53T, A30P, E46K, G51D, and H50Q (Appel-Cresswell et al., 2013; Krüger 

et al., 1998b; Lesage et al., 2013; Polymeropoulos et al., 1997b; Proukakis et al., 

2013; Zarranz et al., 2004) reside within the N-terminal domain. 

Function. 

 The function of α-syn is perhaps the most controversial subject in the field. 

Many hypothetical functions have been ascribed over the past 20 years but none 

is fully consensual. This has limited our ability to fully assess the protein and to 

create effective therapies. One of the most prominent lines of work suggests that 

α-syn functions at the pre-synaptic terminal and regulates synaptic transmission. 

In support of this idea many studies have shown that α-syn is highly enriched at 

the synapse (Maroteaux, Campanelli, & Scheller, 1988; Withers, George, 

Banker, & Clayton, 1997) and co-localizes with reserve pools of synaptic vesicles 
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(S.-J. Lee, Jeon, & Kandror, 2008; Zhang et al., 2008). α-syn may be involved in 

the cycling of synaptic vesicles, modulating the vesicle pool size, mobilization 

and endocytosis (Bendor, Logan, & Edwards, 2013; Vargas et al., 2014). Direct 

evidence for the role of α-syn in synaptic transmission didn’t arise until (Burre et 

al., 2010) showed that the C-terminus of α-syn and synaptobrevin-2 (VAMP2), a 

key protein in synaptic exocytosis (Schoch et al., 2001), interact. Additionally, it 

was shown that the N-terminus can bind to phospholipids and promote SNARE 

complex assembly in vivo and in vitro (Burre et al., 2010). α-syn has been shown 

to compensate for the loss of cysteine-string protein-alpha (CSPα), a presynaptic 

chaperone, (Chandra, Gallardo, Fernández-Chacón, Schlüter, & Südhof, 2005) 

suggesting that α-syn might have a similar role to CSPα in maintaining the nerve 

terminal, rather than transmitter release. α-syn multimers have been reported to 

affect synaptic transmission by enhancing vesicle clustering without changing the 

efficiency or kinetics of vesicle fusion upon calcium triggering (Diao et al., 2013). 

This enhancement may delay vesicle trafficking. Although an alternative 

mechanism has been proposed where high levels of monomeric α-syn can inhibit 

vesicle docking, a SNARE-independent pathway, via interaction with acidic lipids 

(Lai et al., 2014). This brings the N-terminus of α-syn into the spotlight because 

of its known lipid-binding properties. Since all known PD-related mutations in α-

syn are located in the lipid-binding domains, it is possible that they change the 

homeostasis needed for membrane-protein interactions and subsequent 

oligomerization, impairing the physiological functionality of α-syn.  
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 α-syn also functions in the nucleus and was initially found in the nuclear 

compartment (Z. Huang, Xu, Wu, & Zhou, 2011; John Goers et al., 2003). The N- 

and C- termini have been implicated in nuclear translocation, while familial 

mutations, post-translational modifications, and oxidative stress can increase its 

nuclear localization (Gonçalves & Outeiro, 2013; Kontopoulos, Parvin, & Feany, 

2006a; X. Liu et al., 2011; Schell, Hasegawa, Neumann, & Kahle, 2009; S. Xu et 

al., 2006). The mechanisms of nuclear import are elusive but once inside the 

nucleus α-syn may play a role on transcriptional regulation. It is possible that α-

syn either interacts directly with DNA or it regulates players involved in 

transcription. It has been shown that α-syn can bind to the GC1α promotor, a 

crucial mitochondrial transcription factor, leading to negative impacts on 

mitochondria homeostasis (Desplats et al., 2012; Siddiqui et al., 2012). α-syn has 

been reported to interact with histones and may affect histone function via 

acetylation-deacetylation cycles, a process that might be strongly dependent on 

α-syn levels (Kontopoulos, Parvin, & Feany, 2006b; X. Liu et al., 2011).  

 α-syn has been reported to interact with a large number of proteins which 

might regulate its activity. One of the first identified was synphilin, which appears 

to promote the aggregation of α-syn (Engelender et al., 1999; P. J. McLean, 

Kawamata, & Hyman, 2001; Ribeiro, Carneiro, Ross, Menezes, & Engelender, 

2002). Tubulin appears to interact with a form of α-syn, and this can influence the 

microtubule cytoskeleton (H.-J. Lee, Khoshaghideh, Lee, & Lee, 2006). However, 

this interaction seems to be more relevant for the toxicity associated with α-syn 

and not for its normal function (Alim et al., 2002; Leo Chen et al., 2007; M. Kim et 
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al., 2008). α-syn has been shown to interact with dopamine transporter (DAT) 

where it colocalizes to the plasma membrane and increases dopamine efflux and 

enhances DAT localization to cholesterol-rich membrane microdomains (Butler et 

al., 2015). α-syn has also been shown to activate protein phosphatase 2A which 

effects the phosphorylation status of TH (Peng et al., 2005). Additionally, α-syn 

has been shown to bind fatty acids and polyunsaturated fatty acids increase the 

oligomerization of α-syn while monounsaturated and saturated fatty acids do not 

affect its propensity to form oligomers (Karube et al., 2008). 

Clearance and spreading. 

 In order for cells to maintain intracellular homeostasis, proper protein 

degradation is crucial and is ensured by two independent, but complementary, 

systems that work in concert, the Ubiquitin Proteasomal System (UPS) and the 

Autophagy-Lysosomal Pathway (ALP). Monomeric α-syn can be actively 

degraded by both pathways (Cuervo, Stefanis, Fredenburg, Lansbury, & Sulzer, 

2004; C.-W. Liu, Corboy, DeMartino, & Thomas, 2003) that compensate each 

other when one fails (Fang Yang et al., 2013). Higher molecular species of α-syn, 

including oligomers and aggregates, are mainly degraded by pathways involving 

the lysosome (H.-J. Lee, Khoshaghideh, Patel, & Lee, 2004). α-syn was originally 

thought to be degraded by the proteasome without a requirement for 

ubiquitination (Bennett et al., 1999a; Hardy J Rideout & Stefanis, 2002; G K 

Tofaris, Layfield, & Spillantini, 2001). However, it was later found that 

monoubiquitination apparently promotes the degradation of α-syn by the 

proteasome, and this can be controlled by the ubiquitin ligase (SIAH-2) and 
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deubiquitinase (USP9X) (Liani et al., 2004; Rott et al., 2011). Additionally, much 

evidence has accumulated suggesting the ALP can clear α-syn. Initially thought 

to only clear α-syn aggregates by macroautophagy, the lysosome also clears 

monomers and oligomers of α-syn (H.-J. Lee et al., 2004; Mak, McCormack, 

Manning-Boğ, Cuervo, & Di Monte, 2010; Hardy J Rideout, Lang-Rollin, & 

Stefanis, 2004). Indeed, chaperone-mediated autophagy (CMA), a process that 

targets individual, soluble proteins to the lysosome for proteolysis via HSC70, 

contributes to the clearance of α-syn, and α-syn can disrupt CMA, altering the 

turnover of CMA-dependent proteins (Cuervo et al., 2004; Vogiatzi, Xilouri, 

Vekrellis, & Stefanis, 2008). Ubiquitination by the E3 ligase Nedd4 has been 

shown to target α-syn for degradation by the lysosome, rather than the 

proteasome (George K Tofaris et al., 2011). 

 Heat-shock protein 70 (HSP70) is capable of being involved in various 

degradation pathways by the presence of specific chaperones and co-

chaperones that aid in guiding the targeted protein to a specific degradation 

pathway (see Fernández-Fernández et al. 2017). HSP70 uses its ATP 

hydrolysis-powered conformational changes to assist protein folding, 

disaggregation and degradation, and is a key contributor in cellular proteostasis. 

α-syn has been shown to bind HSP70 (Aprile et al., 2017; Dedmon, 

Christodoulou, Wilson, & Dobson, 2005; Luk, Mills, Trojanowski, & Lee, 2008) 

and be degraded by the UPS and autophagy (Webb, Ravikumar, Atkins, 

Skepper, & Rubinsztein, 2003). In this dissertation we show that 27-OHC 
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decreases levels of HSP70 and may lead to aberrant clearance of α-syn through 

the UPS (Schommer et al., 2018). 

 In addition to clearance, α-syn has been proposed to act as a prion-like 

protein and has the ability to spread intercellularly between neurons, astrocytes, 

and microglia by cellular release, movement and uptake, including exocytosis, 

exosomes, tunneling nanotubes, glymphatic flow, and endocytosis (Valdinocci, 

Radford, Siow, Chung, & Pountney, 2017). 

Regulation. 

 Transcriptional and post-translational mechanisms regulate α-syn gene 

expression and may play important roles in the development of 

synucleinopathies (Tagliafierro & Chiba-Falek, 2016). Many groups have 

investigated the transcriptional regulation of SNCA and have identified few 

putative transcription factors that mediate its expression. PARP-1, binds to Rep1 

and has been shown to regulate SNCA via this interaction (Chiba-Falek, 

Kowalak, Smulson, & Nussbaum, 2005). LXRs have been shown to regulate its 

expression in SHSY5Y neuroblastoma cells (Cheng, Kim, & Garner, 2008a; 

Marwarha, Rhen, Schommer, & Ghribi, 2011b). Transcription factors of the 

ZSCAN21 (Richard Lee Clough, Dermentzaki, & Stefanis, 2009) and GATA 

family (Scherzer et al., 2008) bind to regions in intron 1 and the promotor region 

(Brenner, Wersinger, & Gasser, 2015) of SNCA to induce transcription. A 

signaling pathway involving ERK/PI3 mediated ZSCAN induced SNCA 

transcriptional activation has been suggested (R. Lee Clough & Stefanis, 2007; 

Richard Lee Clough, Dermentzaki, Haritou, Petsakou, & Stefanis, 2011; Richard 
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Lee Clough et al., 2009). Additionally, five other factors (PITX3, OTX2, NR3C1, 

AR, TBP) have been shown to interact with the SNCA promotor (Sterling, Walter, 

Ting, & Schüle, 2014). 

 The modulation of SNCA mRNA levels by endogenous microRNAs 

(miRNAs) has been proposed as a post-transcriptional mechanism of regulation. 

miR-7 and miR-153 are abundantly expressed in the brain and have been shown 

to regulate SNCA mRNA levels. In mouse primary neurons, both miRNAs 

downregulated SNCA levels (Doxakis, 2010). Within PD brains, miR-34b and 

miR-34c are downregulated (Miñones-Moyano et al., 2011; Villar-Menéndez et 

al., 2014). Within SHSY5Y cells miR-34b and miR-34c decrease mRNA levels of 

SNCA (Kabaria, Choi, Chaudhuri, Mouradian, & Junn, 2015). 

 Another form of post-transcriptional regulation of SNCA is alternative 

splicing. At least six different transcript variants have been described for the 

SNCA gene (SNCA 140, SNCA 126, SNCA 115, SNCA 112, SNCA 98, SNCA 

67) and SNCA 112, SNCA 126, and SNCA 98 arise from alternative splicing (J. 

R. McLean, Hallett, Cooper, Stanley, & Isacson, 2012; W. Xu, Tan, & Yu, 2015). 

No biological or pathological significance of the different variants have been 

explained yet. However, isoforms are differently expressed in human 

synucleinopathies (Beyer et al., 2008) and have been associated with 

intracellular aggregation (Kalivendi, Yedlapudi, Hillard, & Kalyanaraman, 2010).  

 α-syn is vulnerable to many types of post-translational modifications 

(Lopes da Fonseca, Villar-Piqué, & Outeiro, 2015). Modifications such as 

ubiquitination (Rott et al., 2008; Shin, Klucken, Patterson, Hyman, & McLean, 
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2005; George K Tofaris, Razzaq, Ghetti, Lilley, & Spillantini, 2003), sumoylation 

(Y. M. Kim et al., 2011; Krumova et al., 2011; Shahpasandzadeh et al., 2014), 

and N-terminal acetylation (Bartels, Kim, Luth, & Selkoe, 2014; Dikiy & Eliezer, 

2014; Maltsev, Ying, & Bax, 2012) have been described. Additionally, α-syn can 

be phosphorylated at two serine residues (S129 and S87) and three tyrosine 

residues (Y125, Y133, and Y135) (Li Chen et al., 2009; Y. Xu, Deng, & Qing, 

2015). Approximately 90% of the α-syn in Lewy Bodies is phosphorylated at 

S129 (Fujiwara et al., 2002; Sato, Kato, & Arawaka, 2013b). However, S129 

phosphorylation can inhibit α-syn fibrillization (Li Chen & Feany, 2005; Tenreiro, 

Reimão-Pinto, et al., 2014) which has been similarly shown for S87 

phosphorylation (Paleologou et al., 2010). Unfortunately, the functional relevance 

of phosphorylation of α-syn is elusive (Oueslati, Fournier, & Lashuel, 2010; Sato, 

Kato, & Arawaka, 2013a; Tenreiro, Eckermann, & Outeiro, 2014). Many kinases, 

including casein kinases (CKs), polo-like kinases (PLKs), and G protein-coupled 

receptor kinases (GRKs) are capable of phosphorylating α-syn (Arawaka et al., 

2006; Basso et al., 2013; Inglis et al., 2009; Ishii et al., 2007; Mbefo et al., 2010; 

Okochi et al., 2000; Pronin, Morris, Surguchov, & Benovic, 2000). 

 In contrast, when α-syn is nitrated on tyrosine residues (Y39, Y125, Y133, 

Y136) it is known to produce toxic effects. Nitrated α-syn is present in Lewy 

Bodies (Giasson et al., 2000) and nitrated α-syn multimers have been shown to 

promote mitochondrial impairment and cell death (Y. Liu, Qiang, Wei, & He, 

2011) Nitration on Y39 has been shown to block α-syn fibril formation and 

reduces monomer degradation via the UPS (Hodara et al., 2004). 
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 Epigenetic regulation, particularly DNA methylation, of SNCA has been 

suggested to play a key role in expression levels of α-syn (Ammal Kaidery, 

Tarannum, & Thomas, 2013). In PD and DLB human brains reduced DNA 

methylation has been reported which leads to increased α-syn expression 

(Desplats et al., 2011; Matsumoto et al., 2010). 

Acetyl-CoA and Its Numerous Fates 

 Acetyl-Coenzyme A (acetyl-CoA) is a very important molecule that is 

involved in many biochemical processes including protein, carbohydrate, 

cholesterol, and fatty acid metabolism (Fig. 12). It is vital to energy generation 

from the degradation of carbohydrates, fatty acids, and proteins and is also 

heavily involved in the production of cholesterol and fatty acids. Acetyl-CoA 

consists of a two-carbon activated acetyl unit attached to coenzyme A via a 

thioester linkage (Fig. 13). The thioester linkage is a high energy bond that is 

broken during oxidation and the acetyl group is donated to be oxidized for energy 

production. The acetyl unit is also the initial building block of fatty acids and 

cholesterol.  

 Acetyl-CoA is produced via three types of oxidative pathways (Fig. 14): 

the activation of acetate, the thiolytic cleavage of β-ketoacyl-CoAs and β-hydroxy 

acids, and the oxidative decarboxylation of pyruvate. In mammalian cells, acetate 

is the end product of threonine degradation and ethanol metabolism. Acetate is 

converted to acetyl-CoA by the enzyme acetyl-CoA synthetase. Thiolytic 

cleavage of β-ketoacyl or β-hydroxy acyl-CoA derivatives to acetyl-CoA occurs in 

the pathways for oxidation of fatty acids, synthesis of ketone bodies, and 
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Figure 12.  Sources and fates of acetyl-CoA. Acetyl-CoA is mainly generated 

by burning of glucose, fatty acid, and proteins. When abundant, it 
can be used to make sterols and fatty acids, and can also bind to 
proteins, forming acetylated protein. In long term fasting or 
starvation, ketone bodies can be formed from acetyl-CoA that can 
be utilized by the brain. Under normal conditions, acetyl-CoA is 
metabolized to provide energy via TCA cycle and oxidative 
phosphorylation inside mitochondria. Reprinted with permission 
from (Luo, Wu, Jing, & Yan, 2016). 
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Figure 13.  Structure of acetyl CoA. Reprinted with permission from (“Acetyl 
Coenzyme A (Molecular Biology),” n.d.).  

 

oxidative degradation of various amino acids. In β-oxidation of fatty acids, one 

molecule of palmitate is metabolized into eight molecules of acetyl-CoA. The last 

type involves the oxidative decarboxylation of pyruvate formed in glycolysis to 

produce acetyl-CoA to feed into the Kreb’s cycle. 
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Figure 14.  Oxidative pathways leading to Acetyl-CoA production. Reprinted 
with permission from (“Acetyl Coenzyme A (Molecular Biology),” 
n.d.). 

 

Cholesterol Metabolism 

 Acetyl-CoA has a two-carbon acetyl unit that is the basic building block of 

cholesterol, fatty acids, and other compounds derived from the five-carbon 

isoprenoid unit (Fig. 15). In the production of cholesterol (Fig. 16), acetyl-CoA 

formed by glycolysis of sugars and β-oxidation of fatty acids is first transported 

out of the mitochondrion as citrate. Citrate, produced by the condensation of 

acetyl-CoA with oxaloacetate, is removed from the Kreb’s cycle and is carried 

across the mitochondrial membrane by the citrate shuttle. Citrate is then cleaved 

by ATP citrate lyase into acetyl-CoA and oxaloacetate. Once in the cytosol, 
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Figure 15.  Acetyl-CoA is a building block for many compounds. Reprinted with 
permission from (“Acetyl Coenzyme A (Molecular Biology),” n.d.) 

 

acetyl-CoA undergoes a series of reactions to form hydroxymethyglutaryl-CoA 

(HMG-CoA). This reaction requires thiolase and HMG-CoA synthase enzymes. 

HMG-CoA is then converted into mevalonate by HMG-CoA reductase. This is the 

rate limiting step of cholesterol biosynthesis. Mevalonate undergoes 

pyrophosphorylation by two consecutive reactions with ATP followed by a 

decarboxylation step to form isopentenyl pyrophosphate (IPP). IPP is then 

isomerized into dimethylallyl pyrophosphate (DPP) by the enzyme isopentenyl 

pyrophosphate isomerase. This leaves an equilibrium between IPP and DPP. 
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Figure 16.  Cholesterol Biosynthetic Pathway. Reproduced with permission 
from (“Cholesterol: Synthesis, Metabolism, Regulation,” n.d.) 
themedicalbiochemistrypage, LLC. 

 

Squalene is then formed by the condensation of isoprene units. Four IPP and two 

DPP molecules condense to form the cholesterol precursor squalene by a series 

of three reactions. Prenyltransferase (farnesyl pyrophosphate synthase) 

catalyzes the condensation of DPP and IPP to yield geranyl pyrophosphate. 

Prenyltransferase then catalyzes a second condensation of geranyl 

pyrophosphate and IPP to yield farnesyl pyrophosphate (FPP). Squalene 

synthase then catalyzes the condensation of two farnesyl pyrophosphate 

molecules to form squalene. Squalene is then cyclized into lanosterol by a series 

of two reactions involving squalene epoxidase and oxidosqualene cyclase. 

Finally, lanosterol undergoes a series of nineteen reactions to form cholesterol 
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(Fig. 17). Cholesterol synthesized in the liver is then either converted into bile 

acids or esterified by acyl-CoA:cholesterol acyltransferase (ACAT) to form 

cholesterol esters which are secreted into the bloodstream in lipoproteins to be 

destined for target cells. 

 

 
 
Figure 17.  Structure of Cholesterol. Reproduced with permission from 

(“Cholesterol: Synthesis, Metabolism, Regulation,” n.d.) 
themedicalbiochemistrypage, LLC. 

 

Fatty Acid Metabolism 

 In the production of the fatty acid palmitate, pyruvate from glycolysis is 

converted into acetyl-CoA in the mitochondrion where it can be used in the 

Kreb’s cycle to produce energy. In order for acetyl-CoA to be used for fatty acid 

synthesis it needs to be moved into the cytosol (Fig 18). Citrate, produced by the 

condensation of acetyl-CoA with oxaloacetate, is removed from the Kreb’s cycle 

and is carried across the mitochondrial membrane by the citrate shuttle. Citrate is 

then cleaved by ATP citrate lyase into acetyl-CoA and oxaloacetate. 

Oxaloacetate can be used by the liver for gluconeogenesis or can be returned to 

the mitochondrion as malate. The cytosolic acetyl-CoA is carboxylated by acetyl-

CoA carboxylase into malonyl-CoA. This is the first committed step in the 
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Figure 18.  Shuttling of acetyl-CoA for palmitic acid production. Reprinted with 
permission from (“Fatty Acids and Triacylglycerols - Lipid and 
Amino Acid Metabolism,” n.d.) 

 

synthesis of fatty acids. Fatty acid synthase complex then adds malonyl-CoA 

units to the growing chain until palmitic acid (16:0) is formed (Fig. 19). Palmitic 

acid can be further modified by elongases and desaturates to form other 

saturated and unsaturated fatty acids within the body.  
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Figure 19.  The formation of palmitic acid. Reprinted with permission from 

(Lehninger, n.d.). 
 

Cholesterol, Oxysterol Biosynthesis, and 27-OHC 

 Cholesterol is a vital molecule that has many different roles. It plays a role 

in membrane structure and fluidity and is a precursor for the synthesis of the 

steroid hormones, the bile acids, and vitamin D.(Berg, Tymoczko, & Stryer, 2002; 

Michael W King, 2017; Norlin & Wikvall, 2007) Only about 1/3 of the cholesterol 

in a human body is consumed through diet while the other 2/3 is synthesized de 

novo. (Dietschy, 1984) Both dietary cholesterol and that synthesized de novo, 

are transported through the circulation in lipoprotein particles. Cholesteryl esters, 

the form in which cholesterol is stored in cells is also circulated in lipoprotein 
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particles. Due to its important role in membrane function, all cells express the 

enzymes of cholesterol biosynthesis. 

 Cholesterol is necessary for life but its overabundance and deposition in 

arteries has been associated with cardiovascular disease and stroke.(Huxley, 

Lewington, & Clarke, 2002) Therefore, cholesterol regulation is important to cell 

survival. Regulation of the rate limiting enzyme, HMG-CoA reductase, in 

cholesterol production is one method. Another is the regulation of excess 

intracellular free cholesterol by the activity of sterol O-acyltransferases, SOAT1 

and SOAT2. Finally, regulation of plasma cholesterol levels via low density 

lipoprotein (LDL) receptor-mediated uptake and high density lipoprotein (HDL) 

mediated reverse cholesterol transport. (Michael W King, 2017) 

 Cholesterol is also a precursor to a host of active derivatives called 

oxysterols. Oxysterols are oxidized cholesterol metabolites that are intermediates 

or even end products in cholesterol excretion pathways. They are 27-carbon 

compounds with a cholesterol like backbone containing either an epoxide or 

ketone or an additional hydroxyl group in the sterol center and/or hydroxyl group 

in the side chain (Fig. 20) (Vurusaner, Leonarduzzi, Gamba, Poli, & Basaga, 

2016). They are formed directly by autoxidation, the action of monooxygenases, 

or may come from enzymatic or nonenzymatic lipid peroxidation. (Fig. 21, 22) In 

many cases, the introduction of an oxygen moiety in the cholesterol molecule 

drastically reduces the half-life of the molecule and directs it for excretion or to 

further oxidation to water-soluble bile acids. This rapid degradation and excretion 
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Figure 20.  Main oxidation sites (in red) of cholesterol. Reprinted from 

Oxysterols and mechanisms of survival signaling, Volume 49 June 
2016, (Vurusaner et al., 2016), 8-22, Copyright 2016, with 
permission from Elsevier. 

 
 
 

 
 

Figure 21.  Origins of oxysterols. Reprinted from (Vurusaner et al., 2016). 
.
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Figure 22.  Structure of Common Oxysterols. Side-chain oxysterols of 

enzymatic origin are in blue. Ring oxysterols of non-enzymatic 
origin mediated by reactive oxygen species (ROS) in red. 
Oxysterols generated by both mechanisms are in purple. Reprinted 
from Oxysterols and mechanisms of survival signaling, Volume 49 
June 2016, (Vurusaner et al., 2016), 8-22, Copyright 2016, with 
permission from Elsevier. 

 

of oxysterols are facilitated by their physical properties, allowing them to pass 

lipophilic membranes and to be rearranged in cells at a much faster rate than 

cholesterol. (Björkhem & Diczfalusy, 2002) In light of their ability to readily pass 

membranes and the blood-brain barrier at faster rates than cholesterol, 

oxysterols are also a very important form of cholesterol transport. (Björkhem & 

Diczfalusy, 2002) In addition to their role in cholesterol transport, oxysterols play 

important roles in cholesterol turnover, apoptosis, atherosclerosis, inflammation, 

differentiation, and immunosuppression (Fig. 23) (Björkhem & Diczfalusy, 2002; 

Kha et al., 2004; Kosmider, Loader, Murphy, & Mason, 2010; Lordan, Mackrill, & 

O’Brien, 2009; Lütjohann, Lizard, & Iuliano, 2017; Moog et al., 1991; Murdolo et 
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Figure 23. A diagram of the major functions of oxysterols. Reprinted with 

permission from (Olkkonen et al., 2012). 
 

al., 2016; Olkkonen, Béaslas, & Nissilä, 2012; Ryan, O’Callaghan, & O’Brien, 

2004; Sottero, Rossin, Poli, & Biasi, 2017; Spann & Glass, 2013; Vurusaner et 

al., 2016; Zmysłowski & Szterk, 2017).  

 27-Hydroxycholesterol (27-OHC) is made in the mitochondria of most cells 

by the enzyme CYP27A1 and it is the most abundant oxysterol in the periphery 

(Björkhem, 2013; Burkard, von Eckardstein, Waeber, Vollenweider, & Rentsch, 

2007; Hirayama et al., 2009). It has been shown to cross into the brain readily via 

direct diffusion because it isn’t bound to similar carrier proteins as cholesterol 

(Hughes, Rosano, Evans, & Kuller, 2013; Lee, Marszalek, & Cleveland, 1994; 

Leoni & Caccia, 2011a, 2011b) (Heverin et al., 2005b) (Marjan Shafaati et al., 



50 

2011). Males on average have 0.6 uM 27-OHC in plasma circulation while 

females have 0.4 uM (Karuna et al., 2011). Within the CSF and brains of PD and 

Alzheimer’s patients levels of 27-OHC have been shown to be elevated 3-6 fold 

from control samples (Cheng et al., 2011a; Heverin et al., 2005c; Leoni et al., 

2004a; Leoni & Caccia, 2011a; M. Shafaati et al., 2011). 27-OHC has been 

implicated in numerous diseases including cancers and neurodegenerative 

diseases. It has been shown to promote atherosclerosis via activation of 

proinflammatory processes (Umetani et al., 2014) and promotes breast and 

prostate cancer (Marwarha, Raza, Hammer, & Ghribi, 2017). Throughout the 

next section of this dissertation, we will make the case for increased 27-OHC and 

not cholesterol per se as a potential risk factor for synucleinopathies. 

The Role of Cholesterol and 27-OHC in Synucleinopathies 

 The cause(s) for synucleinopathies are likely multi-factorial with genetic 

predisposition and environmental factors participating in the pathogenesis of the 

diseases.  Dyslipidemia has shown conflicting results as a risk factor in recent 

years.(Xiang Gao, Simon, Schwarzschild, & Ascherio, 2012c; Marwarha & Ghribi, 

2015; Mutez et al., 2009) Findings regarding risk related specifically to dietary 

cholesterol have indicated either an increased risk,(Bosco et al., 2006; G. Hu, 

Antikainen, Jousilahti, Kivipelto, & Tuomilehto, 2008; Johnson, Gorell, Rybicki, 

Sanders, & Peterson, 1999a) decreased risk (Miyake, Tanaka, et al., 2010; 

Karen M. Powers et al., 2009a; Simon, Chen, Schwarzschild, & Ascherio, 2007), 

or no association.(Abbott, Webster Ross, et al., 2003a; L M L de Lau et al., 

2005b). 
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 Statins are widely utilized medications used to lower cholesterol levels. 

Statins have strong immune modulating and anti-inflammatory effects that could 

potentially be valuable in PD, but they also lower levels of coenzyme Q10 (Human 

et al., 1997), an important part of the cellular respiratory chain and a potent 

antioxidant that has been hypothesized to protect against PD (Shults et al., 2002) 

although high doses of coenzyme Q10 have not benefited individuals with PD 

(Parkinson Study Group QE3 Investigators et al., 2014). 

 The effects of statin use in epidemiological studies of PD have been 

contradictory (Becker, Jick, & Meier, 2008b; Lonneke M L de Lau, Stricker, & 

Breteler, 2007; Xiang Gao et al., 2012a; Lin et al., 2016; Ritz, Manthripragada, et 

al., 2010; Samii, Carleton, & Etminan, 2008; Undela et al., 2013; Wolozin et al., 

2007). No association between statins and PD risk has been reported in some 

studies, (Becker et al., 2008b; Lonneke M L de Lau et al., 2007; Ritz, 

Manthripragada, et al., 2010; Samii et al., 2008) while others have shown a 

protective effect (Xiang Gao et al., 2012a; Lin et al., 2016; Undela et al., 2013; 

Wolozin et al., 2007) and even increased risk of PD with statin use (X. Huang et 

al., 2015). It is clear that no definitive answer has been reached regarding the 

use of statins and the risk of developing PD. Interestingly, after 12 weeks of 

simvastatin use, levels of 27-OHC are not changed in human plasma or CSF 

(Serrano-Pozo et al., 2010). The inconsistencies observed in studies utilizing 

statins and no change in 27-OHC levels lead us to believe that cholesterol itself 

may not be the guilty culprit.  
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 We believe the reason for the conflicting association between cholesterol 

and synucleinopathies lies in the metabolites of cholesterol and not cholesterol 

per se. Supporting our hypothesis many studies have shown increased levels of 

many different oxysterols, including 27-OHC, within the brains of synucleinopathy 

patients.(Bosco et al., 2006; Cheng et al., 2011b; Leoni et al., 2004b; Leoni & 

Caccia, 2011a; Marwarha, Rhen, et al., 2011b; Rantham Prabhakara et al., 

2008) Oxysterol levels have also been shown to increase in the circulation of 

hypercholesterolemic individuals,(Bertolotti et al., 2012; van Doormaal et al., 

1989) in the ageing(Marwarha & Ghribi, 2015; Sottero, Gamba, Gargiulo, 

Leonarduzzi, & Poli, 2009) and have also been shown to increase with oxidative 

stress (Thanan et al., 2015) all of which are risk factors for PD type 

synucleinopathy. Another interesting fact is that oxysterols can cross the blood 

brain barrier while cholesterol cannot (Björkhem, Cedazo-Minguez, Leoni, & 

Meaney, 2009; Heverin et al., 2015; Leoni et al., 2004b; Leoni & Caccia, 2011a). 

This data shows an association between accumulation of 27-OHC and 

synucleinopathies. However, the extent to which increased 27-OHC levels in the 

brain causes α-syn deposition and promotes synucleinopathies is yet to be 

determined.  

 Oxysterols are active products of cholesterol metabolism that have a 

variety of biological functions. One of their main functions is to act as ligands of 

the LXRs (Gabbi, Warner, & Gustafsson, 2014; Olkkonen, 2008). LXRs, by 

means of gene transcription, regulate several metabolic pathways including lipid 

metabolism, glucose homeostasis, and inflammation (Gabbi et al., 2014). LXRs 
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regulate gene transcription by binding to promotors of genes and recruiting co-

activators or co-repressors to encourage or repress the expression of target 

genes.(Gabbi et al., 2014) Since oxysterols act as ligands of LXRs they can 

influence the expression of numerous target genes. In previously published work, 

(Cheng, Kim, & Garner, 2008b; Marwarha, Rhen, et al., 2011b; Rantham 

Prabhakara et al., 2008) 27-OHC has been shown to increase levels of α-syn 

through an LXR dependent mechanism in human neuroblastoma SHSY5Y cells. 

In this dissertation we aim to examine the roles of 27-OHC on LXR in human 

dopaminergic neurons. 

 Altered protein homeostasis from folding to dysfunction in the two major 

degradation systems, the UPS and the autophagy-lysosomal pathway (ALP), is 

prevalent in many neurodegenerative diseases attributed to the presence of 

aggregates of ubiquitinylated proteins in Lewy Bodies in neurons and glial cells. 

α-syn has been frequently shown to be degraded by the proteasome (Alvarez-

Castelao, Goethals, Vandekerckhove, & Castaño, 2014; Bennett et al., 1999b; 

Webb et al., 2003) and proteasomal dysfunction has often been implicated in PD 

(McNaught, Jackson, JnoBaptiste, Kapustin, & Olanow, 2006; McNaught, 

Olanow, Halliwell, Isacson, & Jenner, 2001). Impairment of the UPS has been 

shown to cause dopaminergic cell death and inclusion bodies in ventral 

mesencephalic cultures (McNaught, Mytilineou, et al., 2002). Proteasome 

inhibition causes nigral degeneration with inclusion bodies in rats (McNaught, 

Björklund, et al., 2002) and the formation of ubiquitin/α-syn-immunoreactive 

inclusions in PC12 cells (H J Rideout, Larsen, Sulzer, & Stefanis, 2001). Also, 
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injections of the proteasomal inhibitor, lactacystin, directly into the nigral tissue of 

C57Bl/6 mice results in PD-like motor symptoms and α-syn accumulation 

(Savolainen, Albert, Airavaara, & Myöhänen, 2017). The UPS is a highly 

regulated system that controls the degradation of proteins involved in signal 

transduction, apoptosis, cell cycle progression and differentiation (Cook & 

Petrucelli, 2009). It is the chief pathway involved in the removal of damaged, 

misfolded and short-lived proteins within the cytoplasm and nucleus of cells. It 

functions by sequentially ubiquitinylating and degrading target proteins (Dantuma 

& Bott, 2014; Hershko & Ciechanover, 1998; Kleiger & Mayor, 2014). To this 

date, oxysterols have not been implicated in proteasomal dysfunctions but 27-

OHC has been shown to increase oxidative stress in astrocytes (Ma et al., 2015) 

and prolonged oxidative stress has been shown to decrease proteasomal 

function (Shang & Taylor, 2011). Here, we look to provide evidence that 27-OHC 

inhibits proteasomal function. 

 Heat shock proteins (HSPs) play a pivotal role in preventing protein 

misfolding and inhibiting apoptotic activity, and represent a class of proteins 

potentially involved in the pathogenesis of PD (Aridon et al., 2011). HSPs are 

ubiquitous and usually expressed at relatively low levels under normal 

circumstances but are dramatically increased in response to cellular stressors as 

well as many normal processes such as cell growth, differentiation, development 

and aging (Multhoff, 2007). This response represents a naturally occurring 

mechanism to protect cells against environmental and physiological stresses. 

HSPs operate primarily as molecular chaperones that support protein folding, 
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preventing protein aggregation, and targeting misfolded proteins for degradation 

in the UPS and ALP (Aridon et al., 2011; Ebrahimi-Fakhari, Saidi, & Wahlster, 

2013; Ebrahimi-Fakhari, Wahlster, & McLean, 2011, 2012).  

 HSP70 is one of the most structurally and functionally conserved proteins 

in evolution. In addition to its role in cellular stress, it is involved in the 

disassembly of protein aggregates and targeting of proteins for degradation. 

HSP70 uses its ATP hydrolysis-powered conformational changes to assist 

protein folding, disaggregation and degradation. It is a key contributor in cellular 

proteostasis. To date, four major protein degradation pathways have been 

implicated in mammalian systems including UPS and three major types of 

autophagy: macroautophagy, microautophagy, and chaperone-mediated 

autophagy (Fernández-Fernández et al., 2017). HSP70 is able to be involved in 

these various degradation pathways by the presence of specific chaperones and 

co-chaperones that aid in guiding the targeted protein to a specific degradation 

pathway (Fernández-Fernández et al., 2017). In PD, the first evidence of the 

involvement of molecular chaperones was provided by pathological studies that 

identified many heat shock proteins, including HSP70, as components of Lewy 

bodies (Namba, Tomonaga, Ohtsuka, Oda, & Ikeda, 1991). Increasing HSP70 

has been shown to inhibit α-syn accumulation in PC12 cells (H. Wang et al., 

2017). It has been shown that oxysterols are cytotoxic but fail to induce hsp70 

expression in endothelial cells (Pirillo et al., 1999) so in this dissertation we aim 

to investigate the effects of 27-OHC on HSP70 protein levels. 
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 In summary, throughout this dissertation, we will discuss the role of 27-

OHC on the accumulation of α-syn. We will investigate the mechanism(s) by 

which 27-OHC elicits its effects to alter levels of α-syn protein. 

Global Fatty Acid and Palmitic Acid  
Function and Biosynthesis 
 
 Fatty acids (FAs) have roles in many different cellular properties resulting 

in altered gene expression, metabolism, responsiveness to hormones, and 

production of bio-active substances. Through these many actions, FAs affect 

health, physiology, and disease risk (Calder, 2015). 

 A FA molecule, such as palmitic acid, has 2 chemically distinct regions. A 

long hydrocarbon chain, which is hydrophobic and not very reactive chemically 

(doesn’t form hydrogen bonds with H2O very readily) The other is a carboxyl  

(-COOH) group, which behaves as an acid (carboxylic acid): it is ionized in 

solution (-COO-), extremely hydrophilic, and chemically reactive. Almost all fatty 

acid molecules in a cell are covalently linked to other molecules by their 

carboxylic acid group. FAs can either be saturated (have all single bonds 

between carbon atoms), be monounsaturated (have one double bond), or 

polyunsaturated (more than one double bond between carbons). The degree of 

saturation and the length of the carbon chain affects the function of specific FAs. 

 FAs are major components of phospholipids, triacylclycerols (TAGs), and 

other complex lipids. These compounds are widely dispersed in nature and the 

foods we eat. Different foods contain varying amounts of fat and different types of 

fatty acids. Hence, diets will vary drastically in FA content from day to day and 

meal to meal. Individual fatty acids have been shown to have their own specific 
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functions regardless of if they are in the same general FA class. In healthy 

individuals roughly 95% of the FAs consumed are available in the bloodstream 

(Calder, 2015) and they can also be synthesized in the human body as 

previously mentioned. Table 2 shows % by weight of total FAs in plasma, whole 

blood, red blood cells, lipoproteins and platelets. Table 3 shows % of total FA 

composition in phospholipids and neutral lipids extracted from temporal cortex 

sample from controls and PD patients. 
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Table 2. Fatty acid profiles of lipids in whole blood, plasma, red blood cells 
(RBCs), lipoproteins and platelets (PLTs).a. Reprinted from Fatty acid 
composition of plasma, blood cells and whole blood: relevance for the 
assessment of the fatty acid status in humans, Volume 76 Issue 6, June 
2007, (Risé, Eligini, Ghezzi, Colli, & Galli, 2007) 363-369, Copyright 
2007, with permission from Elsevier. 

% by weight of total fatty acids 

FA WB Plasma LDL HDL RBCs PLTs 

16:0 26.01±4.8
0 22.66±1.72 18.75±1.68b,c 24.04±0.67b,d 24.22±3.1

0d 13.90±1.07b,c,d,e,f, 

18:0 11.01±2.0
9 8.11±0.73b 7.25±0.41b,c 9.45±0.31b,c,d 20.63±2.1

0b,c,d,e 19.38±0.67c,d,e 

16:1 0.59±0.21 1.51±0.37 1.11±0.15c 1.17±0.12c 0.22±0.07
c,d,e 0.26±0.04c,d,e 

18:1 17.97±1.5
2 19.38±2.61 17.95±0.92 15.67±0.68b,c,

d 
15.63±1.9
3b,c,d 17.18±0.54c,e,f 

18:2n-6 19.36±2.7
3 28.95±2.71b 34.94±1.61b,c 29.48±1.03b,d 9.77±1.37

b,c,d,e 9.31±0.35b,c,d,e 

18:3n-6 0.23±0.10 0.36±0.12 0.47±0.07 0.34±0.03d n.d. 0.06±0.01c,d,e 

20:3n-6 1.41±0.15 1.70±0.22 1.51±0.07 1.97±0.10c,d 1.38±0.19
c,e 1.29±0.08c,d,e 

20:4n-6 9.01±0.82 8.59±1.01 8.94±0.53 9.59±0.38c 12.88±2.0
9b,c,d,e 21.23±0.80b,c,d,e,f 

22:4n-6 1.06±0.06 0.25±0.04 0.21±0.03 0.26±0.02 2.22±0.83
c,d,e 2.03±0.17c,d,e 

22:5n-6 0.26±0.05 0.30±0.19 0.23±0.07 0.24±0.03 0.59±0.46
c,d,e 1.81±0.28c,d,e,f 

18:3n-3 0.24±0.07 0.26±0.06 0.27±0.02 0.24±0.03 n.d. 0.13±0.04b,c,d,e,f 

20:5n-3 0.69±0.46 0.80±0.24 0.98±0.13 0.92±0.10 0.42±0.12
c,d,e 1.44±0.67 

22:5n-3 0.96±0.20 0.47±0.11b 0.34±0.04b,c 0.55±0.04b,d 1.13±0.59
c,d,e 1.09±0.08c,d,e 

22:6n-3 2.69±0.66 2.68±0.60 2.25±0.20 2.91±0.18d 3.24±1.19
d 2.21±0.11b,c,d,e,f 
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% by weight of total fatty acids 

FA WB Plasma LDL HDL RBCs PLTs 

SFA 41.83±3.2
0 32.26±1.64b 29.04±1.84b,c 35.52±0.87b,c,

d 
49.36±3.0
2b,c,d,e 39.03±0.79b,c,d,e,f 

MUFA 22.20±2.7
0 22.25±2.77 20.72±1.02 17.87±0.76b,c,

d 
18.92±1.3
2c 20.19±0.64b,c,e 

PUFA 35.97±4.9
9 44.49±2.89b 50.24±1.49b,c 46.62±1.11b,d 31.71±3.7

6c,b,d,e 40.78±0.78b,c,d,e,f 

U.I. 131.07±11
.07 

146.78±6.34
b 155.52±4.41b,c 150.23±2.93b 133.43±1

8.05c,d,e 171.79±3.02b,c,d,e,f 

n-3 
HUFA 
Index 

27.60±7.5
0 26.65±4.07 24.60±4.17 26.62±3.32 21.31±4.3

6b,e 15.21±6.76b,c,d,e,f 

aValues are the mean±SD (n=10). The ANOVA analysis (SPSS 12.0.1 for Windows) and Tukey's 
post hoc test was used for the comparisons: bP<0.05 compared with WB. cP<0.05 compared with 
plasma. dP<0.05 compared with LDL. eP<0.05 compared with HDL. fP<0.05 compared with 
RBCs. FA, fatty acids; WB, whole blood; SFA, saturated FA; MUFA, monounsaturated FA; PUFA, 
polyunsaturated FA; U.I. unsaturation index; n-3 HUFA (high unsaturated FA) index: ratio 
between n-3 FA (with 20 and more carbon atoms) and n-3 plus n-6 FA (with 20 and more carbon 
atoms). 
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Table 3.  Fatty acid (FA) composition in phospholipids and neutral lipids 
extracted from temporal cortex sample from controls (n = 9) and 
Parkinson disease (PD) patients (n = 12) expressed in percent of fatty 
acids. Reprinted from Postmortem brain fatty acid profile of levodopa-
treated Parkinson disease patients and parkinsonian monkeys, Volume 
48 Issue 5 April 2006, (Julien et al., 2006), 404-414, Copyright 2006, 
with permission from Elsevier. 

Fatty acid 
Controls 

phospholipids 
(%FA/total FA) 

 
PD patients 

phospholipids 
(%FA/total FA) 

Controls 
neutral 
lipids 

(%FA/total 
FA) 

PD patients 
neutral 
lipids 

(%FA/total 
FA) 

14:0 (Myristic) 0.38 ± 0.01  0.39 ± 0.01 0.99 ± 0.06 1.14 ± 0.09 
14:1n − 5 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
16:0 (Palmitic) 18.97 ± 0.67  20.17 ± 0.24 19.66 ± 0.33 19.17 ± 0.33 
16:1n − 7 0.61 ± 0.04  0.56 ± 0.04 1.08 ± 0.11 1.00 ± 0.06 
18:0 (Stearic) 22.35 ± 0.39  22.55 ± 0.39 24.71 ± 0.45 25.44 ± 0.55 
18:1n − 9 (Oleic) 17.56 ± 0.92  15.85 ± 0.61 14.87 ± 0.45 14.25 ± 0.27 
18:1n − 7 4.11 ± 0.16  3.90 ± 0.20 5.11 ± 0.33 4.44 ± 0.26 
18:2n − 6 (LA) 0.65 ± 0.06  0.72 ± 0.05 1.45 ± 0.11 1.78 ± 0.20 
18:3n − 6 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
18:3n − 3 (LNA) 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
18:4n − 3 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
20:0 0.22 ± 0.03  0.21 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 
20:1n − 12 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
20:1n − 9 0.88 ± 0.14  0.63 ± 0.08 0.41 ± 0.09 0.24 ± 0.07 
20:2n − 6 0.43 ± 0.05  0.37 ± 0.04 0.16 ± 0.08 0.38 ± 0.14 
20:3n − 6 0.96 ± 0.08  0.92 ± 0.04 1.50 ± 0.15 1.41 ± 0.05 
20:4n − 6 (ARA) 8.56 ± 0.36  9.32 ± 0.29 16.24 ± 0.49 16.89 ± 0.45 
20:3n − 3 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
20:4n − 3 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
20:5n − 3 (EPA) 0.08 ± 0.03  0.09 ± 0.06 0.00 ± 0.00 0.13 ± 0.13 
22:0 0.19 ± 0.04  0.22 ± 0.10 0.04 ± 0.04 0.00 ± 0.00 
22:1n − 11 0.02 ± 0.01  0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 
22:1n − 9 0.02 ± 0.01  0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 
22:2n − 6 0.14 ± 0.14  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
22:4n − 6 (DTA) 4.40 ± 0.85  5.00 ± 0.47 3.22 ± 0.15 2.71 ± 0.29 
22:3n − 3 1.26 ± 0.83  0.48 ± 0.48 0.00 ± 0.00 0.00 ± 0.00 
22:5n − 6 (DPA) 1.21 ± 0.12  1.38 ± 0.06 0.62 ± 0.10 0.57 ± 0.08 
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24:0 
(Tetracosanoic) 0.30 ± 0.14  0.04 ± 0.03* 0.22 ± 0.12 0.12 ± 0.09 

22:5n − 3 0.79 ± 0.27  0.82 ± 0.07 0.47 ± 0.11 0.61 ± 0.11 
22:6n-3 (DHA) 12.49 ± 0.97  13.90 ± 0.67 7.51 ± 0.37 7.02 ± 0.35 
24:1n − 9 
(Tetracosenoic) 2.49 ± 0.63  1.61 ± 0.32 0.37 ± 0.13 0.36 ± 0.14 

  

Saturated FA 
(total) 42.92 ± 0.92  43.98 ± 0.37 46.81 ± 0.87 47.26 ± 0.80 

Monounsaturated 
FA (total) 25.70 ± 1.78  22.57 ± 1.18 21.84 ± 0.94 20.35 ± 0.54 

Polyunsaturated 
FA (total) 30.94 ± 0.86  32.97 ± 0.82 31.31 ± 0.78 32.25 ± 0.78 

  

n − 6 total 16.34 ± 0.93  17.69 ± 0.57 23.21 ± 0.55 23.74 ± 0.57 
n − 3 total 14.61 ± 1.21  15.29 ± 0.81 8.11 ± 0.45 8.51 ± 0.50 
n − 9 total 20.96 ± 1.67  18.11 ± 0.99 15.65 ± 0.59 14.91 ± 0.40 
n − 3:n − 6 ratio 0.95 ± 0.14  0.88 ± 0.08 0.35 ± 0.02 0.36 ± 0.02 
  

SFA/MUFA 1.72 ± 0.12  1.99 ± 0.10 2.13 ± 0.11 2.27 ± 0.08 
PUFA/MUFA 1.25 ± 0.09  1.52 ± 0.10 1.46 ± 0.08 1.60 ± 0.07 
n − 6/MUFA 0.66 ± 0.06  0.81 ± 0.05 1.08 ± 0.05 1.18 ± 0.04 
n − 3/MUFA 0.60 ± 0.06  0.71 ± 0.06 0.38 ± 0.03 0.42 ± 0.03 

 

 mg/100 g of 
tissue 

mg/100 g of 
tissue 

mg/100 g of 
tissue 

mg/100 g of 
tissue 

Total FA 2116.57 ± 155.3
4 1821.21 ± 99.26 111.18 ± 6.53 86.53 ± 4.20 

mg 
lipids/10
0 g (wet 
tissue) 

10494.69 ± 443
4.31 

10006.60 ± 403
7.09 

10494.69 ± 443
4.31 

10006.60 ± 403
7.09 

Values are expressed as the mean ± S.E.M. Abbreviations—ARA: arachidonic acid 
(20:4n − 6); DHA: docosahexaenoic acid (22:6n-3); DPA: docosapentaenoic acid (22:5n − 6); 
DTA: docosatetraenoic acid (22:4n − 6); EPA: eicosapentaenoic acid (20:5n − 3); FA: fatty 
acids; LA: linoleic acid (18:2n − 6); LNA: linolenic acid (18:3n − 3); PD: Parkinson disease. 
* P < 0.05 vs. Controls. 

 

http://www.sciencedirect.com/science/article/pii/S0197018605002901#tbl2fn1
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 FAs are transported in the blood as parts of more complex lipids (ex. 

TAGs, phospholipids, cholesteryl esters) within lipoproteins, although some “free” 

non-esterified FAs also circulate in the blood. Lipoproteins and non-esterified 

FAs act as means for transporting FAs throughout the body where they can 

serve metabolic, functional, and storage roles. One of the major metabolic roles 

is to be used as a source of energy via β-oxidation. An important functional role 

is to act as components of cell membrane phospholipids. The wide variety of cell 

types, membranes, and phospholipids consist of very differential FA 

compositions. The composition of FAs within cell membranes affects the fluidity 

of the membrane which in turn affects the function of membrane proteins and the 

movement of proteins within the membrane. Membrane lipids are also precursors 

to diacylglycerols, ceramides, lyso-phospholipids, and endocannabinoids which 

are important in cellular signaling (Calder, 2015). As previously mentioned, 

individual FAs have specific roles. For example, the saturated FAs myristic (14:0) 

and palmitic (16:0) have specific roles in acylation of membrane proteins that are 

important for anchoring those proteins to the membrane and also used for 

cellular localization signaling. The ω-6 polyunsaturated fatty acid arachidonic 

acid (20:4ω-6) is the main precursor for prostaglandins, thromboxanes, and 

leukotrienes that have many important roles in inflammatory signaling. Many FAs 

are able to control expression and activity of transcription factors meaning that 

FAs can control gene expression and protein production throughout the body. 

This allows FAs to regulate cellular processes like fatty acid synthesis and 

oxidation, lipoprotein assembly, inflammation, and insulin sensitivity. With the 



63 

plethora of biological effects of FAs it is no question that FAs can influence 

health, well-being and disease risk. Throughout this dissertation we aim to more 

fully explore the roles of FAs and more specifically, palmitic acid, the most 

abundant saturated FA in the body, in the context of PD type-synucleinopathy 

risk. 

The Role of Palmitic Acid in Synucleinopathies 

 To date, studies focused on the contributions of dietary fat intake to the 

risk of PD type synucleinopathy have yielded inconsistent results (White et al., 

2009). Epidemiological studies of dietary fat intake and PD have found positive 

associations (Anderson et al., 1999a; Johnson, Gorell, Rybicki, Sanders, & 

Peterson, 1999b; Giancarlo Logroscino et al., 1996a; Miyake, Sasaki, et al., 

2010), no association (Hellenbrand et al., 1996a; L. C. Tan et al., 2007), and 

even protective effects (Abbott, Webster Ross, et al., 2003b; Honglei Chen, 

Zhang, Hernán, Willett, & Ascherio, 2003b; L M L de Lau et al., 2005c; Kamel et 

al., 2014; Kyrozis et al., 2013; Karen M. Powers et al., 2009b). Studies focused 

on specific groups of fatty acids have provided little clarity. Indeed, PUFAs and 

MUFAs have been shown to be protective in some studies (Abbott, Webster 

Ross, et al., 2003c; L.M.L. de Lau et al., 2005) and detrimental in another (Dong 

et al., 2014), while studies of saturated fatty acids have shown positive 

associations (Anderson et al., 1999b; Honglei Chen, Zhang, Hernán, Willett, & 

Ascherio, 2003c; Johnson, Gorell, Rybicki, Sanders, & Peterson, 1999c; 

Giancarlo Logroscino et al., 1996b) and no significant relationship with PD risk 

(Honglei Chen, Zhang, Hernán, Willett, & Ascherio, 2002; Honglei Chen, Zhang, 
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Hernán, Willett, et al., 2003c; Hellenbrand et al., 1996b; K M Powers et al., 

2003). Additionally, in vitro studies have shown that PUFAs increase α-syn 

oligomerization and insoluble aggregate formation while saturated fatty acids did 

not (Assayag, Yakunin, Loeb, Selkoe, & Sharon, 2007; Ronit Sharon, Bar-

Joseph, Mirick, Serhan, & Selkoe, 2003). With all of the conflicting studies, the 

role(s) of FAs in PD-type synucleinopathy risk are still yet to be determined. 

 Palmitic acid (16:0) is the most abundant saturated fatty acid in the body 

and the most abundant fatty acid in meats, cheeses, and dairy products. It is 

synthesized de novo in the body and makes up 24-26% of total fatty acids in our 

blood and 28% of total fatty acids in our CSF (Guest, Garg, Bilgin, & Grant, 2013; 

Risé et al., 2007). Numerous in vitro studies have focused on various roles of 

palmitic acid. It has been shown to increase ER stress (Marwarha, Claycombe, 

Schommer, Collins, & Ghribi, 2016b), proinflammatory cytokine expression in 

astrocytes and microglia (Gupta, Knight, Gupta, Keller, & Bruce-Keller, 2012; 

Tracy, Bergqvist, Ivanova, Jacobsen, & Iverfeldt, 2013), and activation of TLRs 

via NFKβ (Oberbach et al., 2012) but its role in pathological hallmark formation of 

PD-type synucleinopathy remains unknown. In the frontal cortex of normal 

human brains PA makes up roughly 21% of total FAs, while in the frontal cortex 

of PD patient brains it makes up roughly 22% of total FAs (Ronit Sharon et al., 

2003) while PD brains have been shown to have significantly higher levels of 

polyunsaturated fatty acids than control brains which potentially leads to more α-

syn oligomerization (Assayag et al., 2007; Ronit Sharon et al., 2003).  
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 Throughout this dissertation we aim to examine the role(s) of Palmitic acid 

on various hallmarks of PD-type synucleinopathy pathology in various animal and 

cellular models of PD.
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CHAPTER II 
 

METHOD FOR ORGANOTYPIC TISSUE CULTURE  
IN THE AGED ANIMAL 

 
Abstract 

 Organotypic slicing of brain tissue from young rodents has been used as a 

powerful model system for biomedical research (Gähwiler, Capogna, Debanne, 

McKinney, & Thompson, 1997; Humpel, 2015; Stoppini, Buchs, & Muller, 1991). 

Organotypic slicing complements cell culture and in vivo studies in multiple 

facets. This system can be useful for investigating manipulation of cellular 

signaling pathways without the hindrance of the blood-brain barrier while 

sacrificing fewer animals in the process. It also allows for preserved cellular 

connectivity and local intact circuitry which is a drawback of isolated cell cultures. 

Studies on age-related diseases have mainly used embryonic or early postnatal 

organotypic slice tissue. Excluding synaptic plasticity studies that are usually 

carried-out over a few hours and use adult mice or rats, a handful of studies 

performed on adult animals have had success for survival of slices (H. Kim, Kim, 

Park, Lee, & Namkoong, 2013; Mewes et al., 2012). Here we describe a method 

for culturing organotypic slices with high viability from hippocampus of aged mice 

and rabbits. See Figure 24 for a graphical representation of our method. 

• Our method permits slices from mice as old as 16 months and rabbits as 

old as years of age to survive ex vivo up to 8 weeks (Marwarha, Dasari, 
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• Prasanthi, Schommer, & Ghribi, 2010b; Marwarha, Prasanthi, Schommer, 

Dasari, & Ghribi, 2011a; Prasanthi, Larson, Schommer, & Ghribi, 2011; M. 

Schrag, Sharma, Brown-Borg, & Ghribi, 2008). Such a slice system may 

be relevant to investigating age-related brain diseases. 

 

 

Figure 24.  Graphical Abstract of method for organotypic tissue culture in the 
aged animal. Reprinted from (Schommer, Schrag, Nackenoff, 
Marwarha, & Ghribi, 2017) 
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Materials 

Table 4. Materials needed for Organotypic tissue culture in the aged animal. 
Reprinted from (Schommer et al., 2017) 

Material Company Catalog Number 

McIlwain Tissue Chopper The Mickle Laboratory 
Engineering Co. LTD 

Model MTC/2 

Teflon insert The Mickle Laboratory 
Engineering Co. LTD 

 

Grade 50 hardened filter paper Whatman 1450-055 
35x15mm tissue culture 
treated dishes 

Santa Cruz Sc-200284 

100x20mm cell culture dishes Greiner Bio-One 664-160 
Size 2 oil paint brushes Silver Fox  
Long-nosed forceps   
Premium Sterile Stainless 
Steel Scalpel Blades - #22 

Havel’s FHS22 

0.4µm, 30mm cell culture 
inserts 

Millipore PICMORG50 

Hibernate A Brain Bits Hibernate A 
L-Glutamine 200mM (100x) Gibco 25030-081 
Horse Serum Gibco 16050-122 
Antibiotic/Antimycotic (100x) Gibco 15240-062 
Neurobasal-A Medium Gibco 10888-022 
2% B27 Supplement (50x) Gibco 17504-044 
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Method 

Preparation—Prior to animal sacrifice.  

Day 0 Medium Preparation 

Hibernate A (preparation medium): 

To a sterile 50 mL centrifuge tube add: 

• 0.5mM Glutamine (250µL of stock solution)  

• 10mL Horse Serum 

• 40mL standard Hibernate A Medium 

Prepare 2-3 batches if you desire extra medium and/or to change out when 

medium containing the slices starts to discolor. 

Neurobasal A (growth medium): 

To a sterile 50 mL centrifuge tube add: 

• 20% Horse Serum (8mL) 

• 400µL standard antibiotic mixture (Antibiotic/Antimycotic) 

• 40mL Neurobasal A Medium 

Prepare Day 1 and Day 4-Treatment Day Medium fresh on the day of use 

Day 1: Neurobasal A (growth medium 1):  

To a sterile 50mL centrifuge tube add: 

• 20% Horse Serum (8mL) 

• 400µL standard antibiotic mixture (Antibiotic/Antimycotic)   

• 40mL Neurobasal A Medium 

Day 4 through Treatment Day: Neurobasal A (growth medium 2): 

To a sterile 50mL centrifuge tube add: 
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• 2% B27 supplement (800µL) 

• 400µL standard antibiotic mixture (Antibiotic/Antimycotic) 

• 40mL Neurobasal A Medium 

McIlwain chopper preparation. 

• Prepare the chopper by adjusting the dial for the desired slice thickness 

(we have used 250µM and 300µM slices). 

• Install a sharp double-sided razor and loosely attach the clamp. 

• Thoroughly clean the stage of the chopper and blade with 70% ethanol.  

• Place a sterile Teflon insert surrounded by 2 filter paper disks on the 

stage. 

• Turn the dial on the chopper to allow the arm to drop onto the stage 

containing the Teflon insert and filter papers. Once the arm has dropped 

make sure the blade is resting flush on top of the stage, then tighten the 

clamp. 

• Just prior to use, wet the top filter paper with a few drops of Hibernate A 

preparation medium and wet the blade using the paintbrush to ensure that 

the tissue will stick to the filter paper but not the blade. 

Insert preparation. 

• Place 1.1 mL of growth medium 1 into the desired number of 35 mm 

tissue culture dishes. For hippocampal slices from mice, you can expect to 

use 3 dishes per mouse (8-10 slices per dish). For hippocampal slices 

from rabbit you can expect to use 12-15 dishes per rabbit (4-6 slices per 

dish). 
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• Place one Millicell insert in each dish trying to avoid trapping air bubbles 

underneath the membrane to allow the tissue to contact the medium. 

• Store the prepared dishes in the incubator (35ºC, 5% CO2) for at least 1 

hour prior to use. 

Procedure. 

• Anesthetize animal with Euthasol diluted 1:1 with dH2O and rapidly 

decapitate. Other forms of anesthesia also work including CO2 and 

Ketamine/Xylazine. 

• Dissect area of interest and place in chilled preparation medium in a 100 

mm tissue culture dish. Store on ice for 5 minutes or less. 

• Transfer the tissue to the stage of the McIlwain chopper and proceed to 

chop the tissue. 

• Gently move the sliced tissue from the stage into a new 100mm tissue 

culture dish containing chilled preparation medium and allow the slices to 

sit in the solution for 5 minutes. 

• Transfer to a new 100mm tissue dish containing 4 mL of chilled 

preparation medium. Less medium in the dish allows for easier handling 

and separation of slices. 

• Gently tease the slices apart using a small size 2 oil paint brush and 

scalpel. Once separated, pull the slices from their outer extremity onto the 

scalpel blade using the paint brush while being careful not to damage the 

slices integrity. Transfer the slices from the scalpel blade to the membrane 

of the dishes that were prior placed in the incubator using the paint brush 
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again on the outer extremity of the slice to minimize damage to the slice. 

Each membrane can hold 8-10 mouse hippocampal slices or 4-6 rabbit 

hippocampal slices. 

• Change the medium on Day 1 and on every third day. Do this as quick as 

possible, if necessary only change media on 2-4 dishes at a time. 

 The sections attach to the culture membranes in a few days and become 

fully attached to the membrane after ten days.  One half of the growth medium 

should be replaced every 3-4 days.  Sections plated at lower density (i.e. 3-5 

sections of mouse hippocampus per membrane) will require media exchange 

every 7-10 days.  

 Though infection is rare (roughly 1 in 50 dishes) and user dependent, 

standard antibiotic mixture is used to minimize infection throughout the duration 

of culture. If desired, user may exclude standard antibiotic mixture following 

day 4 with similar infection rate. Figures 25–27 show that organotypic slices in 

the aged animal do indeed survive. Figures 28–29 show the effects of treatment 

of slices with 27-OHC and PA respectively on important proteins in PD. 

In organotypic slices, 27-OHC increases α-syn protein content (Fig. 28A,B), 

decreases TH protein levels (Fig. 28C,D), and decreases pS40TH protein levels 

(Fig. 28E,F) in concordance with our forthcoming data in human dopaminergic 

neurons. PA treated of organotypic slices at 200 µM concentration decreases α-

syn protein levels (Fig. 29A,B), increases TH protein levels (Fig.29C,D) and 

increases pS40TH protein levels. Suggested mechanisms of action for these 

effects will be highlighted in the following chapters. 
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Figure 25.  Hippocampal slices from 1 year old C57BL6 mice. A. Healthy dish 
of mouse hippocampal slices 10 days post tissue sectioning. B. 
Dead/Dying infected mouse hippocampal slices 10 days post tissue 
sectioning. Reprinted from (Schommer et al., 2017). 
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Figure 26.  Hippocampal slices from 10.5 month old B6129SF2/J mice. 
A. Healthy hippocampal slice 7 days post tissue sectioning exposed 
to Trypan Blue staining. B. Medium deprived dead hippocampal 
slice 7 days post tissue sectioning exposed to Trypan Blue staining. 
Reprinted from (Schommer et al., 2017) 
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Figure 27.  LDH Assay on the medium of culture dishes containing 4 
hippocampal slices of 1 year old C57BL6 mice at sequential days In 
Vitro. Reprinted from (Schommer et al., 2017)
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Figure 28. 27-OHC treatments in C57BL/6 substantia nigra slices. A,B 
Western Blot and optical density of alpha-synuclein. C,D Western 
Blot and optical density of Tyrosine Hydroxylase. E,F Western Blot 
and optical density of pS40 Tyrosine Hydroxylase. 
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Figure 29. PA treatments in C57BL/6 substantia nigra slices. A,B Western Blot 
and optical density of alpha-synuclein. C,D Western Blot and 
optical density of Tyrosine Hydroxylase. E,F Western Blot and 
optical density of pS40 Tyrosine Hydroxylase. 
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CHAPTER III 
 

27-HYDROXYCHOLESTEROL INCREASES α-SYNUCLEIN PROTEIN LEVELS 
THROUGH PROTEASOMAL INHIBITION IN HUMAN DOPAMINERGIC 

NEURONS 
 

Abstract 

 Background. Accumulation of the α-synuclein (α-syn) protein is a 

hallmark of a group of brain disorders collectively known as synucleinopathies. 

The mechanisms responsible for α-syn accumulation are not well understood. 

Several studies suggest a link between synucleinopathies and the cholesterol 

metabolite 27-hydroxycholesterol (27-OHC). 27-OHC is the major cholesterol 

metabolite in the blood that crosses the blood brain barrier, and its levels can 

increase following hypercholesterolemia, aging, and oxidative stress, which are 

all factors for increased synucleinopathy risk. In this study, we determined the 

extent to which 27-OHC regulates α-syn levels in human dopaminergic neurons, 

the cell type in which α-syn accumulates in PD, a major synucleinopathy 

disorder.  

 Results. Our results show that 27-OHC significantly increases the protein 

levels, not the mRNA expression of α-syn. The effects of 27-OHC appear to be 

independent of an action through liver X receptors (LXR), its cognate receptors, 

as the LXR agonist, GW3965, or the LXR antagonist ECHS did not affect α-syn 

protein or mRNA levels. Furthermore, our data strongly suggest that the 
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27-OHC-induced increase in α-syn protein levels emanates from inhibition of the 

proteasomal degradation of this protein and a decrease in the heat shock protein 

70 (HSP70).  

 Conclusions. Identifying 27-OHC as a factor that can increase α-syn 

levels and the inhibition of the proteasomal function and reduction in HSP70 

levels as potential cellular mechanisms involved in regulation of α-syn. This may 

help in targeting the correct degradation of α-syn as a potential avenue to 

preclude α-syn accumulation. 

Introduction 

 Synucleinopathies are pathologically characterized by the abnormal 

accumulation of α-syn protein in intracellular inclusions known as Lewy bodies. 

The role of α-syn in the pathogenesis of synucleinopathies is not well understood 

but extensive experimental data points to a neurotoxic role of high levels of the 

protein in its soluble and aggregated forms (Adamczyk, Kaźmierczak, & 

Strosznajder, 2006; Brown, 2010; Halbach, Schober, & Krieglstein, 2004; Snyder 

& Wolozin, 2004). For the last decade, hyperlipidemia has been under scrutiny 

as a risk factor for synucleinopathy of Parkinson’s disease (PD) type (Xiang Gao 

et al., 2012c; Marwarha & Ghribi, 2015; Mutez et al., 2009). However, while 

various studies showed an increased risk (Bosco et al., 2006; G. Hu et al., 2008; 

Johnson et al., 1999a), other studies reported a decreased risk (Miyake, Tanaka, 

et al., 2010; Karen M. Powers et al., 2009a; Simon et al., 2007), or no 

association with high cholesterol levels (Abbott, Webster Ross, et al., 2003a; L M 

L de Lau et al., 2005b). It may be possible that the conflicting results are 
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indicative of the disturbances in the cholesterol oxidation derivative 27-OHC, not 

cholesterol per se, as the risk factor for PD. In addition to being a cholesterol 

oxidation product (oxysterol), 27-OHC is an active product that has a variety of 

biological functions. One of its main functions is to bind to liver X receptors 

(LXRs), thus affecting genes and proteins that are regulated by these receptors 

(Gabbi et al., 2014; Olkkonen, 2008). LXRs, by means of gene transcription, 

regulate several metabolic pathways including lipid metabolism, glucose 

homeostasis, and inflammation (Gabbi et al., 2014). LXRs regulate gene 

transcription by binding to promotors of genes and recruiting co-activators or co-

repressors to enhance or repress the expression of target genes(Gabbi et al., 

2014). In support of our speculation of a link between synucleinopathies and  

27-OHC are studies showing increased levels of a variety of cholesterol oxidation 

products (oxysterols), including 27-OHC, within the brains of patients with 

synucleinopathies (Bosco et al., 2006; Cheng et al., 2011b; Leoni et al., 2004b; 

Leoni & Caccia, 2011a; Marwarha, Rhen, et al., 2011b; Rantham Prabhakara et 

al., 2008). Oxysterol levels have also been shown to be increased in the 

circulation of hypercholesterolemic individuals (Bertolotti et al., 2012; van 

Doormaal et al., 1989), with aging (Marwarha & Ghribi, 2015; Sottero et al., 

2009), and with oxidative stress (Thanan et al., 2015), all of which are risk factors 

for PD. Another interesting observation in support of a role of 27-OHC in brain 

neurodegeneration is that 27-OHC can cross the blood brain barrier while 

cholesterol cannot (Björkhem et al., 2009; Heverin et al., 2015; Leoni et al., 

2004b; Leoni & Caccia, 2011a). This data points to a potential association 
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between accumulation of the oxysterol 27-OHC and synucleinopathies.  

However, the potential mechanisms by which 27-OHC may affect α-syn levels 

and increase the risk for synucleinopathies remains to be determined. Ours 

(Marwarha, Rhen, et al., 2011b; Rantham Prabhakara et al., 2008) and others 

(Cheng et al., 2008a) published data showed that 27-OHC increases the 

transcription of α-syn through activation of LXRs in human neuroblastoma SHSY-

5Y cells. However, whether 27-OHC can also affect α-syn transcription in human 

dopaminergic neurons is yet to be demonstrated. Furthermore, whether the 

accumulation of α-syn involves the inhibition of its degradation by 27-OHC is not 

known. 

 α-syn has been shown to be degraded by the proteasome (Alvarez-

Castelao et al., 2014; Bennett et al., 1999b; Webb et al., 2003), and proteasomal 

dysfunction has often been implicated in PD (McNaught et al., 2006, 2001). 

Currently, the extent to which 27-OHC inhibits the UPS to increase α-syn 

accumulation remains to be shown. Heat shock proteins (HSPs) are one of the 

most structurally and functionally conserved proteins in evolution. In addition to 

their role in cellular stress, they are involved in the disassembly of protein 

aggregates and targeting of proteins for degradation. Increasing HSP70 has 

been shown to inhibit α-syn accumulation in PC12 cells (H. Wang et al., 2017). In 

this study we aimed to investigate the effects of 27-OHC on both UPS and 

HSP70 protein levels. We found that 27-OHC increases α-syn protein levels 

independently of LXR, through proteasomal inhibition and HSP70 reduction in 

normal human dopaminergic neurons.  
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Methods 

Materials. 

 27-OHC (Cat. # 3907), the LXR agonist GW3965 (Cat. # G6295), and the 

proteasome inhibitor MG132 (Cat. # 1748) were purchased from Tocris 

(Minneapolis, MN, USA). The LXR antagonist Cholestan-5α, 6α-EPOXY-3β-OL 

sulfate sodium salt (ECHS, Cat. # C4136-000) was purchased from Steraloids 

Inc. (Newport, RI, USA). All cell culture reagents, with the exception of fetal 

bovine serum (Cat. # S11150H, Atlanta Biologicals, Lawrenceville, GA, USA), 

dibutyryl cAMP (Cat. # sc-201567 Santa-Cruz Biotechnology, Inc. Dallas, TX, 

USA), antibiotic/antimycotic mix (Cat. # 15240-062, Sigma Aldrich) and Poly L-

Lysine (Cat. # P4707, Sigma Aldrich) were purchased from Applied Biological 

Materials (Richmond, BC, Canada). Human primary Dopaminergic Neuronal 

Precursor cells (Cat. # T4034), PriGrow IV medium (Cat. # TM004), Fibroblast 

Growth Factor 2 (Cat. # Z101455), Glial-Derived Neurotrophic Factor (Cat. # 

Z101055), and Epidermal Growth Factor (Cat. #Z100135) were purchased from 

Applied Biological Materials (Richmond, BC, Canada). 

Cell culture and treatments. 

 Human primary dopaminergic neuronal precursor cells were grown in 

PriGrow IV medium containing 5% fetal bovine serum, 10ng/mL Fibroblast 

Growth Factor 2, 10ng/mL Glial-Derived Neurotrophic Factor, and 1% Penicillin-

Streptomycin. Cells were maintained at 37 ͦ C in a saturated humidity atmosphere 

containing 95% air and 5% CO2. Cells were cultured and passaged for thirty days 

prior to differentiation. Plates were coated with Poly L-Lysine and the cells were 
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plated at a density of 104 cells per cm2 with differentiation media consisting of 

PriGrow IV, 5% fetal bovine serum, 10ng/mL fibroblast growth factor 2, 10ng/mL 

epidermal growth factor, and 100µM dibutyryl cAMP for twenty-five days to allow 

for differentiation. Following differentiation, cells were incubated with ethanol 

vehicle (control), 0.5 µM 27-OHC (physiological concentration), and 1 or 10µM 

27-OHC (high concentrations) for twenty-four hours for the 27-OHC alone 

experiments. For experiments involving LXR agonist and antagonist cells were 

incubated with ethanol and DMSO vehicle (control), 10 µM 27-OHC, 10 µM 

GW3965, 10 µM ECHS, 10 µM 27-OHC + 10 µM ECHS for twenty-four hours. 

The concentrations we used are based on our previously published data in 

SHSY-5Y cells (Marwarha, Rhen, et al., 2011b). For experiments involving the 

proteasomal inhibitor MG132 cells were incubated with ethanol vehicle (control), 

10µM 27-OHC, and 1µM MG132 for twenty-four hours. The half-life of α-

synuclein has been estimated by pulse-chase experiments to be 26.5 hours (Kirik 

et al., 2002). We chose MG132 for 24hrs for this reason and because others 

have inhibited the proteasome for 24hrs with MG132 prior to experimentation 

involving α-syn (Kirik et al., 2002). In all above mentioned treatments, three 

biological replicates were assigned to plates and were all utilized in the 

subsequent experiments including technical replicates. Cells were authenticated 

by Applied Biological Materials and tested negative for Mycoplasma 

contamination. 
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LDH assay. 

 The effect of 27-OHC, GW3965, ECHS, and 27-OHC + ECHS on cell 

toxicity was quantitatively determined by the measurement of lactate 

dehydrogenase (LDH) released from the cells into the medium 24 hours post 

treatments using an LDH Assay (Promega, Madison, WI, USA) according to the 

manufacturer’s recommendations. Data were analyzed by comparison of the 

intensity of the absorbance in vehicle-treated cells to the treatments and 

subjected to one-way ANOVA. Data are expressed as individual values with 

mean ± SEM (n=3 wells per one sample from three separate samples). 

Western blotting. 

 Cultured human dopaminergic neurons were treated for 24 hours with 

ethanol vehicle control, 0.5 µM, 1 µM, 10 µM 27-OHC in the initial experiments. 

In the second set of experiments cultured human dopaminergic neurons were 

treated for 24 hours with ethanol and DMSO vehicle (control), 10 µM 27-OHC, 

10 µM GW3965, 10 µM ECHS, 10 µM 27-OHC + 10 µM ECHS. For experiments 

involving the proteasomal inhibitor MG132 cells were incubated with ethanol 

vehicle (control), 10µM 27-OHC, and 1µM MG132 for twenty-four hours. Treated 

cells were washed with phosphate-buffered saline (PBS), followed by protein 

extraction with RIPA buffer. Protein concentrations were determined with the 

BCA protein assay reagent by standard protocol. Proteins (10µg) were separated 

on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, transferred to 

a polyvinylidene difluoride membrane (Bio-Rad, Hercules, CA, USA), and 

incubated overnight at 4ºC with the following antibodies: anti-α-synuclein rabbit 
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antibody (Cat. # 2642S, RRID: AB_10695412) (1:500; Cell Signaling Danvers, 

MA, USA), anti-ATP-binding cassette transporter (ABCA1) (Cat. # Mo13101, 

RRID: AB_2220136) (1:500; Neuromics Minneapolis, MN USA), anti-HSP70 

antibody (Cat. # PA5-28003, RRID: AB_2545479) (1:1000; Thermo Fisher 

Scientific Waltham, MA USA), and anti-Dopamine Transporter (Cat. #MAB369, 

RRID: AB_2190413) (1:1000; EMD Millipore Temecula, CA USA). Antibodies 

have been extensively validated by the companies of origin. β-Actin was used as 

a gel loading control. The blots were developed with Clarity Western ECL 

Substrate (Biorad, Hercules, CA). Bands were visualized on a polyvinylidene 

difluoride membrane on an Aplegen Omega Lum G System (Pleasanton, CA, 

USA) and analyzed by ImageJ (NIH, USA). The results were quantified by 

densitometry and represented as total integrated densitometric values. Data are 

expressed as individual values with mean ± SEM and includes determinations 

made in two separate experiments containing (n=3) and technical replicates for 

all proteins except DAT which was one experiment (n=2). 

Immunofluorescence. 

 Human primary Dopaminergic neuronal precursor cells were grown in 

PriGrow IV medium containing 5% fetal bovine serum, 10ng/mL Fibroblast 

Growth Factor 2, 10ng/mL Glial-Derived Neurotrophic Factor, and 1% Penicillin-

Streptomycin. Cells were maintained at 37 ͦ C in a saturated humidity atmosphere 

containing 95% air and 5% CO2. Cells were cultured and passaged for thirty days 

prior to differentiation. Coverslips were coated with Poly L-Lysine and the cells 

were plated at a density of 104 cells per cm2 with differentiation media consisting 
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of PriGrow IV, 5% fetal bovine serum, 10ng/mL Fibroblast Growth Factor 2, 

10ng/mL Epidermal Growth Factor, and 100µM dibutyryl cAMP for twenty-five 

days to allow for differentiation. Cells were either used immediately for Fig. 30 

and 31 or were treated for 24 hours with 10 µM 27-OHC and 1 µM MG132 

(Fig. 35). Cells were rinsed briefly with PBS, fixed in ice-cold acetone for 

5 minutes, washed twice with PBS and incubated for 1 hour with PBS containing 

10% normal goat serum before applying PBS containing 5% normal goat serum 

and the following antibodies for the various figures: anti-TH mouse antibody (Cat. 

# MAB7566) (8µg/mL R&D Systems, Minneapolis, MN, USA), anti-Neuron 

specific β-III Tubulin (Cat. # ab18207, RRID AB_444319) (Abcam, Cambridge, 

MA, USA), anti-α-synuclein rabbit antibody (Cat. # 2642S, RRID: AB_10695412) 

(1:500; Cell Signaling Danvers, MA, USA), anti-HSP70 antibody (Cat. # PA5-

28003, RRID: AB_2545479) (1:1000; Thermo Fisher Scientific Waltham, MA 

USA), and anti-Dopamine Transporter (Cat. #MAB369, RRID: AB_2190413) 

(1:1000; EMD Millipore Temecula, CA USA) overnight at 4ºC. Cells were then 

washed three times with PBS (5 mins each) and reacted to AlexaFluor 594 goat-

anti-rabbit (Cat. # A11037, RRID AB_2534095) (Life Technologies, Carlsbad, CA, 

USA) and AlexaFluor 488 goat-anti-mouse antibody (Cat. # A11001, RRID 

AB_2534069) (Life Technologies, Carlsbad, CA, USA) in PBS containing 5% 

normal goat serum for 1 hour at room temperature in the dark. Cells were 

washed three times with PBS for five minutes in the dark and mounted with 

Vectashield containing 4’,6-diamidino-2-pheylindole (DAPI) (Cat. # H-1500, RRID 

AB-2336788) (Vector Labs, Burlingame, CA USA), and visualized with a Leica 
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Figure 30.  Human dopaminergic neurons express Tyrosine Hydroxylase. 
Bright field microscopy of human dopaminergic neuronal precursor 
cells one day prior to the start of differentiation (A) and 25-day post 
differentiation (B). Immunofluorescence staining showing showing 
that the neurons express tyrosine hydroxylase, the rate limiting 
enzyme in dopamine synthesis (C; green) suggesting that these 
neurons are predominantly of dopaminergic origin. (D) is 
immunostaining with the neuron specific β-III Tubulin (red), and 
(E) is nuclear counterstain with DAPI (blue). F. Overlay of tyrosine 
hydroxylase, neuron specific β-III Tubulin, and DAPI staining 
showing multiple neurons with nuclear and axonal/dendritic staining 
for tyrosine hydroxylase (arrows).Reprinted from (Schommer et al., 
2018). 
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Figure 31.  Human dopaminergic neurons express Dopamine Transporter. A 
representative western blot (A) and optical density (B) of dopamine 
transporter (DAT) show the presence of DAT in the lysates from 
vehicle and 27-OHC-treated neurons. Immunofluorescence imaging 
shows immunopositive staining for DAT in untreated neurons (C; 
green). Immunofluorescence for the neuron specific β-III Tubulin 
marker (D; red) and for nuclear counterstaining with DAPI (E; blue). 
F. Overlay of dopamine transporter, neuron specific β-III Tubulin, 
and DAPI showing both nuclear and cytoplasmic localization of 
DAT (arrows). (Schommer et al., 2018). 
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DMI6000B microscope with a Leica DFC350 FX camera (Buffalo Grove, IL USA). 

Imaging was performed with a 10x (Fig. 30) and 20x (Fig. 31, 35) objective. 

Real time-rtPCR. 

 Total RNA was extracted with the QuickGene RNA cultured cell HC kit S 

(Autogen, Holliston, MA). 1µg of total RNA was reverse transcribed into cDNA 

with qScript cDNA SuperMix (Quanta Biosciences, Gaithersburg, MD). Real-time 

rtPCR was performed on the cDNA with taqman probes for the SNCA 

(Hs01103383_m1) gene (Applied Biosystems, Foster City, CA) and normalized 

to 18S rRNA. The data were quantified and expressed as fold-change compared 

to the control by using the ΔΔCT method. Data are expressed as individual 

values with mean ± SEM and includes determinations made with (n=3) and three 

technical replicates. 

Proteasome-GloTM caspase-like, chymotrypsin-like,  
and trypsin-like cell-based assays. 
 
 Human primary dopaminergic neuronal precursor cells were grown in 

PriGrow IV medium containing 5% fetal bovine serum, 10ng/mL Fibroblast 

Growth Factor 2, 10ng/mL Glial-Derived Neurotrophic Factor, and 1% Penicillin-

Streptomycin. Cells were maintained at 37°C in a saturated humidity atmosphere 

containing 95% air and 5% CO2. Cells were cultured and passaged for thirty days 

prior to differentiation. Plates were coated with Poly L-Lysine and the cells were 

plated at a density of 104 cells per cm2 with differentiation media consisting of 

PriGrow IV, 5% fetal bovine serum, 10ng/mL Fibroblast Growth Factor 2, 

10ng/mL Epidermal Growth Factor, and 100µM dibutyryl cAMP for twenty-five 

days to allow for differentiation. 96-well plates were then coated with Poly L-
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Lysine and differentiated cells were plated at a density of 103 cells per well. Cells 

were treated in triplicate for 24 hours with ethanol vehicle (control), 10 µM 27-

OHC, and 1 µM MG132. Respective Proteasome-GloTM substrates were added 

to cells for the three different types of proteasomal activity. The plates were 

placed on a plate shaker for 2 minutes at 700 rpm and incubated at room 

temperature for 15 minutes. The luminescence was measured using a 

luminometer and is expressed as Relative Luminescence Units (RLU) minus no 

cell media and reagent only blank wells. Data are expressed as individual values 

with mean ± SEM and includes determinations made in (n=3). 

Statistical analysis. 

 One-way analysis of variance (one-way ANOVA) was used to assess the 

significance of differences among the samples including more than two groups 

assuming the data was of parametric nature followed by Tukey’s post hoc test. 

Unpaired student’s t-test was used to assess the significance of difference 

among the samples for the HSP70 western blots. Statistical analysis was 

performed with GraphPad Prism software 6.07. Quantitative data for western 

blotting analysis are presented as individual values with mean ± SEM with unit 

value assigned to control and the extent of differences among the samples being 

expressed relative to the unit value of control. Quantitative data for Real Time-

rtPCR analysis are presented as individual values with mean ± SEM and 

expressed as fold-change from control. 
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Results 

Human dopaminergic neurons express tyrosine hydroxylase and 
dopamine transporter. 

 
 Human primary dopaminergic neuronal precursor cells were cultured and 

differentiated into human dopaminergic neurons according to the protocol 

provided by the vender. We acquired light microscopy images of pre (Fig. 30A) 

and post-differentiation (Fig. 30B). Twenty-five-day post differentiation, 

immunofluorescence imaging shows that the neurons express TH, the rate 

limiting enzyme in dopamine synthesis (Fig. 30C-F). We also performed western 

blotting to determine whether the cells express the dopamine transporter protein. 

Our results show that the differentiated neurons express dopamine transporter 

(DAT) and the DAT bands are present in absence or presence of the various 

concentrations of 27-OHC we used (Fig. 31 A-B). There were no significant 

differences in the protein levels of DAT between the used concentrations of 27-

OHC. Immunofluorescence assay corroborates the western blot results and 

shows that the untreated cells express DAT, (Fig. 31C-F). 
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27-OHC increases protein but not mRNA levels of α-synuclein. 

 We determined the effects of increasing concentration of 27-OHC on the 

viability of dopaminergic neurons and found that there was no significant cell 

death with any of the chosen treatment concentrations (Fig. 32A). We then 

investigated the effects of 27-OHC on α-syn protein levels in human 

dopaminergic neurons. We found that 27-OHC significantly increases the levels 

of α-syn protein with 0.5 µM 27-OHC (p<0.01), 1 µM 27-OHC (p<0.001), and 10 

µM 27-OHC (p<0.001) (Fig. 32B-C). Real-time RT-PCR analysis demonstrates 

that 27-OHC does not affect the α-syn mRNA levels (Fig. 32D). This data 

suggests the mechanism by which 27-OHC increases α-syn protein levels in 

human dopaminergic neurons is through post-translational modifications or 

processing of the α-syn protein because 27-OHC does not appear to be 

modulating α-syn at a transcriptional level. 

The LXR agonist, GW3965, and the LXR antagonist, ECHS,  
do not affect α-synuclein mRNA or protein levels. 

 
 We determined the extent to which 27-OHC increases α-syn through its 

cognate receptors LXRs as we have previously shown in human neuroblastoma 

SHSY5Y cells (Marwarha, Rhen, et al., 2011b). We utilized the LXR agonist 

GW3965 (Collins et al., 2002; Joseph et al., 2002; Naik et al., 2005) and the LXR 

antagonist ECHS (Marwarha, Rhen, et al., 2011b; C. Song, Hiipakka, & Liao, 

2001) in these experiments. Fig. 33A shows that 10 µM 27-OHC, 10 µM 

GW3965, 10 µM ECHS, and 10 µM 27-OHC + 10 µM ECHS did not kill the 

dopaminergic neurons relative to control as determined with the LDH assay. In 

order to test whether 27-OHC is activating LXRs in normal human dopaminergic  
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Figure 32.  27-OHC does not kill cells and increases α-synuclein protein levels 

while mRNA levels remain unchanged. A. Lactate Dehydrogenase 
assay shows that varying concentrations of 27-OHC do not elicit 
cell death relative to control untreated cells. Representative 
western blot (B) and optical density (C) of α-syn. Western blots are 
expressed as fold change over β-Actin. The amount of α-syn 
significantly increases with increased 27-OHC concentrations. 
(D) Real-time rt-PCR shows that 27-OHC does not increase SNCA 
mRNA. Data are expressed as individual values with mean ± SEM 
and includes determinations made in one experiment with (n=3) 
and three technical replicates for LDH assay, two separate 
experiments with (n=3) and three technical replicates for western 
blots, and one experiment with (n=3) and three technical replicates 
for Real Time- rtPCR. **p < 0.01, ***p < 0.001 versus control. 
Reprinted from (Schommer et al., 2018). 
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Figure 33. The LXR agonist, GW3965, and the LXR antagonist, ECHS, do not 
affect α-synuclein protein or mRNA levels. (A) Lactate 
Dehydrogenase assay shows that 27-OHC, GW3965, ECHS, and 
27-OHC + ECHS do not elicit significant cell death relative to 
control untreated cells. Representative western blot (B) and optical 
density (C) of ABCA1 expressed as fold change over β-Actin. 27-
OHC and GW3965 both significantly increase the amount of 
ABCA1 protein levels. ECHS does not significantly alter the protein 
levels of ABCA1 while 27-OHC + ECHS significantly increases the 
amount of ABCA1. Representative western blot (D) and optical 
density (E) of α-syn. Western blots expressed as fold change over 
β-Actin. 27-OHC significantly increased the amount of α-syn protein 
levels while the LXR agonist GW3965 and LXR antagonist ECHS 
had no effects on α-syn protein levels. F. Real-time rt-PCR shows 
that 27-OHC, GW3965, ECHS, and 27-OHC+ECHS do not 
significantly affect SNCA mRNA levels. Data are expressed as 
individual values with mean ± SEM and includes determinations 
made in one experiment with (n=3) and three technical replicates 
for LDH assay, two separate experiments with (n=3) and technical 
replicates for western blots, and one experiment with (n=3) and 
three technical replicates for PCR. *p <0.05, **p < 0.01, ***p <0.001 
versus control. Reprinted from (Schommer et al., 2018). 
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neurons we performed western blots on ABCA1, a downstream protein of LXR 

activation. 27-OHC (p<0.01) and GW3965 (p<0.01) significantly increased the 

amount of ABCA1 protein while ECHS kept the levels near control. ECHS in 

combination with 27-OHC was not able to rescue ABCA1 levels back to baseline 

as this treatment also exhibited a significant increase in ABCA1 (p<0.01) 

(Fig. 33B-C). These blots strongly suggest that 27-OHC is able to activate LXRs 

in normal human dopaminergic neurons. When probing for α-syn in western 

blotting we observed that only 27-OHC significantly increased α-syn protein 

levels while GW3965, ECHS, and 27-OHC + ECHS had no significant effect on 

α-syn protein content (Fig. 33D-E). To test the hypothesis that the effects of 27-

OHC on α-syn are transcriptional through LXRs, we performed a real-time RT-

PCR analysis in the presence of 27-OHC, GW3965, ECHS, and 27-OHC + 

ECHS and discovered that no treatments significantly affected α-syn mRNA 

content (Fig. 33F). This data strongly suggests that 27-OHC increases α-syn 

protein levels through a mechanism independent of transcriptional control by 

LXRs.  

27-OHC impairs proteasomal function and decreases HSP70  
protein levels leading to increased α-syn protein levels. 

 
 As the LXR transcriptional activity appears to not be involved in the 27-

OHC-induced increase in α-syn protein levels we determined the potential role of 

27-OHC in inhibiting the degradation of α-syn protein using ExPASy 

PeptideCutter, a tool that predicts potential cleavage sites cleaved by proteases 

in a given protein sequence. Our data shows that both 27-OHC and the 

proteasomal inhibitor MG132 reduce Caspase-like activity (Fig. 34A). The 
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chymotrypsin-like and trypsin-like, the two proteasomal modes of α-syn 

degradation, are significantly inhibited by 27-OHC (Fig. 34B, C) as well as 

MG132.  Our data demonstrates that MG132 and 27-OHC treatments both 

significantly increase α-syn protein levels versus vehicle-treated cells as shown 

with western blotting (Fig. 34D-E) and immunofluorescence imaging (Fig. 35A-L). 

This data strongly suggests that the 27-OHC-induced proteasomal inhibition 

plays a key role in the accumulation of α-syn protein. Our data also shows that 

27-OHC significantly decreases while MG132 significantly increases HSP70 

protein levels versus vehicle-treated cells as determined with western blotting 

(Fig. 34 F,G). A significant decrease in HSP70 protein content could lead to 

abnormal cellular proteostasis as HSP70 is involved in protein folding and 

numerous degradation pathways, including the UPS, depending on which co-

chaperones are involved. The significant decrease in HSP70 protein level caused 

by 27-OHC could possibly be the cause of proteasomal inhibition or another 

compromising event to cellular protein maintenance machinery involved in folding 

and degradation of proteins which is yet to be determined. 

Discussion 

 Abnormal accumulation of α-syn protein is a characteristic of PD and other 

disorders collectively referred to as synucleinopathies. The causes of the 

accumulation of α-syn remain unknown, but genetic predisposition together with 

environmental factors are likely to contribute to the pathogenesis of 

synucleinopathies. 27-OHC is an active product of cholesterol metabolism made 

in the mitochondria of most cells by the enzyme CYP27A1 and serves many 
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Figure 34.  27-OHC inhibits proteasomal function and reduces HSP70 levels. 

27-OHC and the proteasomal inhibitor MG132 significantly 
decrease Caspase-Like Proteasomal Activity (A), Chymotrypsin-
Like Proteasomal Activity (B), and Trypsin-Like Proteasomal 
Activity (C).  Representative western blot (D) and optical density (E) 
of α-syn. Western blots are expressed as fold change over β-Actin. 
27-OHC and MG132 significantly increase the amount of α-syn 
protein. Representative western blot (F) and optical density (G) of 
HSP70 showing that while 27-OHC reduces HSP70 levels, 
treatment with MG132 dramatically increases HSP70 protein levels. 
Data are expressed as individual values with mean ± SEM and 
includes determinations made in one experiment with (n=3) for the 
proteasomal assays and two separate experiments including (n=3) 
and three technical replicates for the western blots. *p < 0.05, **p < 
0.01, ***p<0.001 versus control. †p < 0.05, †††p < 0.001 MG132 
versus 27-OHC.Reprinted from (Schommer et al., 2018). 
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Figure 35.  Both 27-OHC and the proteasomal inhibitor MG-132 increase α-syn 
protein levels. Immunofluorescene imaging shows that both  
27-OHC (E) and MG132 (I) increase the immunostaining of α-syn 
compared to control untreated cells (A).  Staining with the Neuron 
Specific βIII-Tubulin marker in control (B), 27-OHC-treated (F) and 
MG132-treated (J) neurons. Staining with the nuclear counterstain 
DAPI in control (C), 27-OHC-treated (G) and MG132-treated 
(K) neurons. The overlay shows multiple neurons exhibiting nuclear 
α-syn staining (arrows) in 27-OHC (H) and MG132 (L) treated 
neurons compared to untreated neurons (D). Reprinted from 
(Schommer et al., 2018). 
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biological roles. This oxysterol has been shown to promote atherosclerosis via 

activation of proinflammatory processes (Umetani et al., 2014), promotes breast 

and prostate cancers (Marwarha, Raza, et al., 2017) and functions as a ligand of 

the LXRs (Gabbi et al., 2014). LXRs, by means of gene transcription, regulate 

several metabolic pathways including lipid metabolism, glucose homeostasis, 

and inflammation (Gabbi et al., 2014). We (Marwarha, Rhen, et al., 2011b; 

Rantham Prabhakara et al., 2008) and other laboratories (Cheng et al., 2008a) 

have previously shown that the oxysterol 27-OHC evokes an increase in α-syn 

expression by mechanisms involving LXR activation in human neuroblastoma 

SHSY5Y cells. In this study, we determined the extent to which 27-OHC can 

regulate α-syn expression levels in human dopaminergic neurons, an in vitro 

model system that recapitulates synucleinopathies of PD type. We found that 27-

OHC increases α-syn protein levels, activates LXR as shown by an increase in 

ABCA1, but fails to elicit a change in α-syn mRNA. GW3965, an LXR agonist and 

ECHS, an LXR antagonist also failed to elicit any change in α-syn protein or 

mRNA content suggesting there is no link between LXR and α-syn level increase 

in the dopaminergic neuronal model. We took our investigation further to study 

proteasomal inhibition as a potential post-translational event that could contribute 

to the 27-OHC induced increase in α-syn protein levels. Proteasomes are large 

intracellular protein complexes whose main function is to degrade short-lived, 

damaged, and misfolded proteins by proteolysis. Proteasomes help control for 

the amount of proteins necessary for normal cellular functioning. In higher 

organisms, proteasomes are located both in the cytoplasm and nucleus. The 
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most common form is the 26S proteasome, which contains one 20S core 

catalytic particle and normally one 19S regulatory particle at each side of the 20S 

core particle. The 20S core, which is concealed inside the 19S particles, is the 

active site of the proteasome which is responsible for its caspase-like, 

chymotrypsin-like, and trypsin-like activities. Initially, proteins targeted for 

degradation are tagged with several molecules of ubiquitin. Ubiquitin is covalently 

attached to target proteins by three sequential enzymatic steps: ubiquitin 

activation by E1 enzymes, ubiquitin conjugation by E2 enzymes, and ubiquitin 

ligation to target proteins by E3 enzymes. Ubiquitin is normally conjugated via its 

carboxy-terminal glycine to an internal lysine residue (Pickart, 2001). Following 

many rounds of ubiquitinylation a polyubiquitin chain is formed. This chain can 

function as a signal for degradation by the proteasome. The proteasome unfolds 

substrates and threads the polypeptide chains through the inner channel, where 

they are cleaved into short peptides (Bhattacharyya, Yu, Mim, & Matouschek, 

2014). After release from the proteasome, peptides are quickly processed into 

amino acids and recycled (Reits et al., 2003). One approach to determine the 

functionality of the UPS is to assess the individual enzymatic activities involved in 

ubiquitin-dependent proteasomal degradation (Dantuma & Bott, 2014; Lindsten & 

Dantuma, 2003). Examining proteasomal function is the final stop of all 

ubiquitinylated proteins to be degraded and creates a bottleneck in the UPS 

pathway (Dantuma & Bott, 2014). Therefore, it isn’t surprising that most studies 

focusing on the functionality of the UPS examine proteasomal function and not 

the individual enzymatic reactions leading up to it. However, this correlation of 
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proteasomal activity and overall UPS impairment is complicated because it is 

presently unknown to what extent altered proteasomal activity affects the overall 

changes in degradation of ubiquitinylated proteins (Dantuma & Bott, 2014). The 

UPS is a highly regulated system that controls the degradation of proteins 

involved in signal transduction, apoptosis, cell cycle progression and 

differentiation (Cook & Petrucelli, 2009). It is the chief pathway involved in the 

removal of damaged, misfolded and short-lived proteins within the cytoplasm and 

nucleus of cells. It functions by sequentially ubiquitinylating and degrading target 

proteins (Dantuma & Bott, 2014; Hershko & Ciechanover, 1998; Kleiger & Mayor, 

2014). We show that 27-OHC increases α-syn protein levels through 

proteasomal inhibition in normal dopaminergic neurons that could potentially 

have implications in protein folding, UPS function and autophagy-lysosomal 

pathways of degradation. 27-OHC may potentially affect the UPS as this 

oxysterol has been shown to increase oxidative stress in astrocytes (Ma et al., 

2015), and prolonged oxidative stress has been shown to decrease proteasomal 

function (Shang & Taylor, 2011). HSP70 uses its ATP hydrolysis-powered 

conformational changes to assist protein folding, disaggregation and 

degradation, and is a key contributor in cellular proteostasis. The decrease in 

HSP70 protein levels we observed could have numerous effects on cellular 

proteostasis. HSP70 is capable of being involved in various degradation 

pathways by the presence of specific chaperones and co-chaperones that aid in 

guiding the targeted protein to a specific degradation pathway (see Fernández-

Fernández et al. 2017 for a review). α-syn has been shown to bind HSP70 (Aprile 
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et al., 2017; Dedmon et al., 2005; Luk et al., 2008) and be degraded by the UPS 

and autophagy (Webb et al., 2003). The extent to which a decrease in HSP70 

affects proteasomal and/or autophagy is yet to be determined in future studies.  

 In summary, we demonstrate that 27-OHC induces an increase in α-syn 

levels in human dopaminergic neurons. The mechanism involved in the α-syn 

increase does not appear to involve LXRs as we did not observe any significant 

changes in α-syn mRNA with 27-OHC or LXR agonist and antagonistic 

treatments. To the best of our knowledge, our results are the first to show that 

27-OHC increases α-syn in dopaminergic neurons and that this increase may 

emanate from inhibition of the proteasomal function. Also, 27-OHC decreases 

levels of HSP70 protein which is involved in protein folding, and protein 

degradation through the UPS (Fernández-Fernández et al., 2017). The extent to 

which a decrease in HSP70 protein levels leads to decreased protein folding and 

degradation through specific pathways needs to be further elucidated. All-

together, our results potentially suggest that restoring proteasomal function and 

HSP70 protein levels may attenuate the 27-OHC-induced increase in α-syn 

protein levels in vitro and reduce α-syn accumulation that can increase the risk 

for synucleinopathies. 
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CHAPTER IV 
 

PALMITIC ACID-ENRICHED DIET INCREASES α-SYNUCLEIN  
AND TYROSINE HYDROXYLASE EXPRESSION LEVELS  

IN THE MOUSE BRAIN 
 

Abstract 

 Background: Accumulation of the α-synuclein (α-syn) protein and 

depletion of dopaminergic neurons in the substantia nigra are hallmarks of 

Parkinson’s disease (PD). Currently, α-syn is under scrutiny as a potential 

pathogenic factor that may contribute to dopaminergic neuronal death in PD. 

However, there is a significant gap in our knowledge on what causes α-syn to 

accumulate and dopaminergic neurons to die. It is now strongly suggested that 

the nature of our dietary intake influences both epigenetic changes and disease-

related genes and may thus potentially increase or reduce our risk of developing 

PD. 

 Objective: In this study, we determined the extent to which a three month 

diet enriched in the saturated free fatty acid palmitate (PA) influences levels of α-

syn and tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis in 

mice brains. 

 Methods: We fed the m-Thy1-αSyn (m-Thy1) mouse model for 

synucleinopathy and its matched control, the B6D2F1/J (B6D2) mouse a PA-

enriched diet or a normal diet for three months. Levels of α-syn, tyrosine 
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hydroxylase, and the biogenic amines dopamine and dopamine metabolites, 

serotonin and noradrenaline were determined. 

 Results: We found that the PA-enriched diet induces an increase in α-syn 

and TH protein and mRNA expression levels in m-Thy1 transgenic mice. We also 

show that, while it didn’t affect levels of biogenic amine content in the B6D2 mice, 

the PA-enriched diet significantly reduces dopamine metabolites and increases 

the level of serotonin in m-Thy1 mice.  

 Conclusions: Altogether, our results demonstrate that a diet rich in the 

saturated fatty acid palmitate can modulate levels of α-syn, TH, dopamine and 

serotonin which are proteins and neurochemicals that play key roles in increasing 

or reducing the risk for many neurodegenerative diseases including PD. 

Introduction 

 Hallmarks of Parkinson’s disease (PD) include the loss of dopaminergic 

neurons containing-tyrosine hydroxylase (TH) in the substantia nigra pars 

compacta and the abnormal accumulation of α-syn protein in Lewy bodies 

(Crowther, Daniel, & Goedert, 2000; Schapira, 1997; Spillantini et al., 1997). The 

role of α-syn in the pathogenesis of PD is not well understood but extensive 

experimental data points to a neurotoxic role of high levels of the protein in its 

soluble and aggregated forms (Adamczyk et al., 2006; Brown, 2010; Halbach et 

al., 2004; Snyder & Wolozin, 2004). The causes of PD are likely multi-factorial 

with genetic predisposition and environmental factors contributing to the 

pathogenesis of the disease. To date, studies focused on the contributions of 

dietary fat intake to the risk of PD have yielded inconsistent results (White et al., 
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2009). Epidemiological studies of dietary fat intake and PD have found either a 

positive association (Anderson et al., 1999a; Johnson et al., 1999b; Giancarlo 

Logroscino et al., 1996a; Miyake, Sasaki, et al., 2010), no association 

(Hellenbrand et al., 1996a; L. C. Tan et al., 2007), or protective effects (Abbott, 

Webster Ross, et al., 2003b; Honglei Chen, Zhang, Hernán, Willett, et al., 2003b; 

L M L de Lau et al., 2005c; Kamel et al., 2014; Kyrozis et al., 2013; Karen M. 

Powers et al., 2009b). Studies focused on specific groups of fatty acids have 

provided little clarity. Indeed, while poly-unsaturated fatty acids (PUFAs) and 

mono-unsaturated fatty acids (MUFAs) have been shown to be protective in 

some studies (Abbott, Webster Ross, et al., 2003c; L.M.L. de Lau et al., 2005) 

and detrimental in another (Dong et al., 2014), saturated free fatty acids (sFFAs) 

have shown positive associations (Anderson et al., 1999b; Honglei Chen, Zhang, 

Hernán, Willett, et al., 2003c; Johnson et al., 1999c; Giancarlo Logroscino et al., 

1996b) or no significant relationship with PD risk (Honglei Chen et al., 2002; 

Honglei Chen, Zhang, Hernán, Willett, et al., 2003c; Hellenbrand et al., 1996b; K 

M Powers et al., 2003). Additionally, in vitro studies have shown that while 

PUFAs increase α-syn oligomerization and insoluble aggregate formation, sFFAs 

did not (Assayag et al., 2007; Ronit Sharon et al., 2003). Many of these 

epidemiological studies utilized food frequency questionnaires without clarifying 

the specific role of each sFFAs. In studies carried out in mice, the n-3 poly 

unsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic 

acid  (DHA) have been shown to provide neuroprotective effects in animal 

models of PD (M Bousquet et al., 2008; Mélanie Bousquet, Calon, & Cicchetti, 
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2011; Dyall, 2015; Seidl, Santiago, Bilyk, & Potashkin, 2014). Another study in 

which m-Thy1 mice were fed a diet enriched in DHA over a 10-month span 

showed improved survival but no major impact on the dopaminergic system, 

motor impairments, or brain α-syn levels (M Bousquet et al., 2008; Mélanie 

Bousquet et al., 2011; Dyall, 2015; Seidl et al., 2014). Several other animal 

studies utilized high fat diets that aren’t isocaloric and contain high levels of 

cholesterol; however these studies didn’t determine the contribution of specific 

fatty acids (M Bousquet et al., 2012; Choi, Jang, Park, & Kang, 2005a). 

Therefore, the role of dietary fat in PD risk requires a more precise examination 

of the contributions of individual fatty acids including saturated fats to elucidate 

the effects of each fat on PD risk.  

 In this study, we determined the specific effects of a diet rich in palmitic 

acid (PA), the most abundant SFFA in the body, on key proteins involved in PD 

risk. We fed m-Thy1 mice and their controls, the B6D2 mice, an isocaloric diet 

enriched in PA and examined the effects on the levels of two major hallmarks of 

PD, α-syn protein and TH, the rate limiting enzyme in dopamine synthesis in the 

substantia nigra. We chose the m-Thy1 mouse model that exhibits many 

similarities with PD (Rockenstein et al., 2002a) (see Table 5 for details). The m-

Thy1 mouse model overexpresses full-length human wild-type α-synuclein under 

the murine Thy-1 promoter. They have been extensively characterized and 

exhibit 3-fold increase in α-syn protein at 5 months, and decreased TH at 8 

months  (Chesselet et al., 2012c; S M Fleming et al., 2006; Sheila M Fleming et 

al., 2004, 2008; Rabl et al., 2017; Rockenstein et al., 2002b).Our data shows that 
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Table 5.  Classification of the m-Thy1 Mouse 

Age Experiment/ 
Behavioral Test 

Used 

Pathology/Behavioral Deficits Reference 

1, 2, 3, 6 
months 

Wire hanging  Significant decrease in performance 
of mice 

(Rabl et al., 
2017) 

1 month in 
striatum 
6 months in 
SN 

mRNA and protein 
levels of 
proinflammatory 
cytokines 

Microglia are activated in mice. TNF 
alpha was elevated in striatum at 1 
month and at 5-6 months in SN. 
Microglial activation persisted 
through 14 months in both areas of 
the brain. 

(Pradhan & 
Andreasson, 
2013) 

1 month in 
striatum and 5-
6 months in 
SN 

IHC, rt PCR, flow 
cytometry for t 
cells, ELISAs 

Increased numbers of activated 
microglia and increased tnf-alpha in 
striatum at 1 month. and in substantia 
nigra at 5-6 months. but not in cortex 
or cerebellum. TLR4, and TLR8 were 
increased at 5-6 months in SN. and 
TLR2 in SN at 14 months 
MHCII staining was not detected in 
the regions and ages examined at 14 
months. peripheral CD4 and CD8 T-
cells were increased in the blood only 
at 22 months of age suggesting later 
involvement of the adaptive immune 
response 

(Watson et al., 
2012) 

1, 3, 10 
months 

 Mice displayed significant decreases 
in the frequency of spontaneous 
excitatory postsynaptic 
currents (EPSCs). altered 
corticostriatal plasticity; abnormal 
corticostriatal transmission 
 

(Wu, Joshi, 
Cepeda, 
Masliah, & 
Levine, 2010) 

2, 4, 6, 8 
months 

Scale At all ages mice were significantly 
less weight than controls 

(Sheila M 
Fleming et al., 
2004) 

2, 4, 6, 8 
months 

Challenging beam 
(motor 
performance and 
coordination) 

At all ages mice were significantly 
worse than controls and 
progressively got more dysfunctional 
at 6 and 8 months 

(Sheila M 
Fleming et al., 
2004) 

Multiple ages 
see description 

Spontaneous 
activity in a 
cylinder 

Spontaneous rearing, forelimb and 
hindlimb steps and grooming were 
measured for 3 minutes. at 2 months 
mice reared significantly less. for 
forelimb stepping significantly less 
steps made by mice at 2 and 6 
months. for hindlimb steps at all ages 
2, 4, 6, 8 mice made less steps 
significantly. at 8 months of age mice 
groom significantly less than controls 

(Sheila M 
Fleming et al., 
2004) 

2.5-3 months 
And 7-8 
months 

Defecation, gastric 
emptying 

Reduction in fecal pellet output in 
novel environment, mice 8-10 months 
had increased asyn in myenteric 
plexuses 

(L Wang et al., 
2012) 
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2-3 months 
6-7 months 
9 months 

 Vocalization deficits at all ages and 
progressively got worse 

(Grant et al., 
2014) 

2, 3, 6 months Rotarod Significantly decreased performance 
of mice 

(Rabl et al., 
2017) 

2 months 
progressively 
worse to 14 
montsh 

Beam overlaid with 
grid, pole test, limb 
movement in 
cylinder 

Deficits as early as 2 months and 
progressively gets worse to 8 
months. very severe at 14 months 

(Chesselet et 
al., 2012a) 

3 to 4 months Pole test Deficits on pole test (S M Fleming 
et al., 2006; 
Sheila M 
Fleming et al., 
2004) 

3 to 4 months Inverted wire 
screen hanging 
test (grip strength) 

Deficits on ability to stay on screen (Rabl et al., 
2017) 

3-4 months 
and again at 9 
months 

Block test Mice spent less time sniffing the new 
block 

(Sheila M 
Fleming et al., 
2008) 

3-4 months 
And again at 9 
months 

Habituation/dishabi
tuation 

Mice spent less time sniffing the 
novel scent 

(Sheila M 
Fleming et al., 
2008) 

3 months Challenging Beam, 
spontaneous 
activity, pole test, 
gait 

Mice injected with L-DOPA 
performed even more significantly 
poorly on challenging beam, 
spontaneous activity, pole test and 
gait than transgenic mice alone 
versus control. 

(S M Fleming 
et al., 2006) 

3-4 months Pole test (motor 
coordination) 

Mice took significantly more time to 
turn and descend the pole than 
controls 

(Sheila M 
Fleming et al., 
2004) 

3-4 months Inverted grid T test showed that mice had a 
significant difference in step distance 
than controls. forelimb faults were not 
significantly different but increased in 
transgenic mice 

(Sheila M 
Fleming et al., 
2004) 

3-4 months 
and 
progressively 
worsened 

Wheel-running 
activity 

Selective deficits in the expression of 
circadian rhythms of locomotor 
activity, including lower night-time 
activity and greater fragmentation in 
the wheel-running activity.  

(Kudo, Loh, 
Truong, Wu, & 
Colwell, 2011) 

3 months IHC, Western 
Blotting 

Inclusions in olfactory bulb, 
substantia nigra, locus coeruleus and 
other brain regions. Inclusions are 
bigger with aging and paraquat 
 
 alpha-synuclein accumulated in 
synapses and neurons throughout 
the brain, including the thalamus, 
basal ganglia, substantia nigra, and 
brainstem. 
Human asyn does not accumulate in 
glial cells in this mouse model but 
does in the PDGF line M glial cells 

(Rockenstein 
et al., 2002b) 
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4-6 months y-maze, novel 
object recognition, 
object-place 
recognition, 
operant reversal 
learning 

Exhibit deficits in cholinergic systems 
involved in cognition, and cognitive 
deficits in domains affected in early 
PD. Together with an increase in 
extracellular dopamine and a 
decrease in cortical acetylcholine 
(30%) at 4-6 months of age. these 
mice made fewer spontaneous 
alternations in the y-maze and 
showed deficits in tests of novel 
object recognition, object-place 
recognition, and operant reversal 
learning compared to controls 

(Magen et al., 
2012) 

4 months Grabbing bin 
cotton (fine motor 
skills) 

Mice used significantly less cotton to 
build nests 

(Sheila M 
Fleming et al., 
2004) 

4-5 months  Mice treated with paraquat did not 
have worsened behavioral deficits. 
there was also no added cell loss 
from the paraquat in these mice. 
paraquat did increase the amount of 
proteinase K resistant a syn 
aggregates in SN of mice. 

(Fernagut et 
al., 2007) 

4 to 5 months 
7 to 8 months 

Open field Hyperactive in open field, displaying 
increase in move time, distance 
traveled, movement velocity 

(Lam et al., 
2011; L Wang 
et al., 2012) 

4 months y-maze, novel 
object recognition, 
object place 
recognition, 
operant reversal 
learning 

Deficits as early as 4 months (Chesselet et 
al., 2012 

5 months Western Blotting 3 fold increase in asyn in most brain 
regions 

(Chesselet et 
al., 2012d) 

5 months IHC Aggregates of asyn (Chesselet et 
al., 2012d) 

5 months Western Blotting Increased pS129 in SN (Chesselet et 
al., 2012d) 

5-6 months Buried pellet test Mice took significantly longer to find 
the buried pellet 

(Sheila M 
Fleming et al., 
2008) 

5 months IHC Proteinase K resistant aggregates of 
asyn in locus coeruleus, which may 
be related to neuronal dysfunction 
and sleep disorders in these mice 

(Chesselet et 
al., 2012a) 

6 months Adhesive removal Mice took significantly longer to make 
contact and remove adhesive at 6 
months. at 2, 4, 8 months there was 
no significant difference 

(Sheila M 
Fleming et al., 
2004) 

6 months Transcriptome 
analysis of 
striatum 

Alterations in multiple biological 
processes in the striatum including 
synaptic plasticity, signaling, 
transcription, apoptosis, 
neurogenesis 

(Cabeza-
Arvelaiz et al., 
2011) 
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6 months  Gut microbiota are required for motor 
deficits, microglia activation and 
alpha synuclein pathology 

(Sampson et 
al., 2016) 

6 and 9 
months 

IF GFAP and IBA1-immunofluorescence 
in the cortex and hippocampus of 6 
and 9 months old animals revealed 
no significant alterations in 
astrogliosis or activated microglia 
levels in mice compared to non-
transgenic littermates  
 

(Rabl et al., 
2017) 

6 months Beam walk Significant increase in number of 
slips 

(Rabl et al., 
2017) 

6 months Block test Catalepsy in block test (Chesselet et 
al., 2012a) 

8 months IHC The time when loss of nigrostriatal 
dopamine neurons commences 

(Sheila M 
Fleming et al., 
2008) 

8 months Fear conditioning 
task 

Less freezing in fear conditioning 
task at 8 months 

(Rabl et al., 
2017) 

9 months IHC No obvious neuronal loss or changes 
in myelination 

(Rabl et al., 
2017) 

9-12 months Morphometry, 
hemodynamic 
assessment, 
dobutamine 
challenge, 
telemetric 
assessment 

Impaired baroreflex (Sheila M 
Fleming et al., 
2013) 

10 months EEG, 
electromyograms 

Sleep disturbances and lower 
frequencies in EEG 

(show increased Non REM sleep 
during quiescent phase, increased 

active wake during their active phase, 
and decreased REM over a 24hr 
period. also EEG power spectra 

shifts towards lower frequencies with 
a significant decrease in gamma 

power during wakefulness 

(McDowell, 
Shin, Roos, & 

Chesselet, 
2014) 

11-12 months  Basal fecal output was significantly 
lower in mice 

(Lixin Wang, 
Fleming, 
Chesselet, & 
Taché, 2008) 

11-13 month 
old mice 

TEM microscopy Mice treated with MPTP had 
extensive mitochondrial alterations, 
increases in mitochondrial size, 
filamentous neuritic aggregations, 
axonal degeneration, and formation 
of electron dense perinuclear 
cytoplasmic inclusions in the SN that 
did not occur in the hippocampus or 
neocortex compared to controls 

(D. D. Song, 
Shults, Sisk, 
Rockenstein, & 
Masliah, 2004) 

14 months Mass Spec. Loss of striatal dopamine (Chesselet et 
al., 2012b) 
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14 months IHC No decrease in TH positive neurons 
or fibers until 14 months of age 

(Lam et al., 
2011) 

14 months Open field Decreased locomotion at 14 months (Chesselet et 
al., 2012a) 

22 months IHC At 22 months # of TH positive 
neurons was not significantly different 

(Chesselet et 
al., 2012b) 

 

the PA diet regulated the expression levels of α-syn, TH, dopamine and 

serotonin, which are all key proteins and neurochemicals involved in the 

pathogenesis of neurodegenerative diseases. 

Methods 

Feeding regimens. 

 Mice overexpressing full-length human wild-type α-syn under the murine 

Thy-1 promoter on the X chromosome were procured from the Chesselet 

laboratory at the University of California, Los Angeles (UCLA). The 

corresponding background control B6D2F1/J mice (Stock # 100006) were 

procured from The Jackson Laboratory (Bar Harbor, ME). We used male animals 

in these studies because female mice have the ability to inactivate the X 

chromosome, which may contain the inserted human α-syn gene under the m-

Thy1 promoter. All animal procedures were carried out in accordance with the 

U.S. Public Health Service Policy on the Humane Care and Use of Laboratory 

Animals and were approved by the Institutional Animal Care and Use Committee 

at the University of North Dakota (Protocol 1506-2). All animal experiments 

complied with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals (NIH Publications No. 8023, revised 1978). The mice were 

housed individually in ventilated cages at an ambient room temperature (23-

25ºC) and ambient relative humidity ranging between 50-70%. The mice were 
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maintained on 12:12 hour light:dark cycle and allowed access to food and water 

ad libitum. Both genotypes of 3-month-old male mice, m-Thy1 and their 

backcrossed wild-type B6D2 mice (n=8-9 per group), were fed either a PA-

enriched diet (custom-made, TD 1106162, Harlan Teklad, 2.2% w/w palmitic 

acid) or a control diet (custom made, TD 85172, Harlan Teklad, 0.8% w/w 

palmitic acid) for three months. The diets were isocaloric in relation to each other 

with the exception of palmitate and linoleate content and based on the NIH-07 

open formula. The respective composition of the diets is shown in Table 6. 

Necropsy was performed at six (6) months of age. The genotype of all mice was 

verified with PCR analysis of tail snip DNA via general endpoint PCR. The HPRT 

gene was used as the internal control with a forward primer of 

GAAGAGCTACTGTAATGATCAGTCAACGG and a reverse primer of 

GAGAGGTCCTTTTCACCAGCAAGC. The forward primer used for the human 

SNCA gene was GCTACTGCTGTCACACCCGTC and the reverse primer was 

GATGATGGCATGCAGCACTGG. 

Western blotting analysis. 

 Substantia nigra-enriched fractions were prepared as previously described 

(Marwarha, Dasari, Prasanthi, Schommer, & Ghribi, 2010a; Marwarha, Prasanthi, 

Schommer, Dasari, & Ghribi, 2011a) and as follows. Substantia nigra-enriched 

tissues (20 mg) were dounce homogenized in RIPA tissue lysis buffer (50 mM 

Tris, 150 mM Nacl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X, pH 7.4) 

supplemented with protease and phosphatase inhibitors. The samples were 

centrifuged at 5000 x g for 15 min and the supernatant harvested. Protein 
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Table 6.  Composition of the control chow diet and palmitate-enriched diet 
Components Control chow diet 

 

Palmitic acid-enriched 
diet 

Proteins 23.6 % w/w 23.6 % w/w 

Carbohydrates 65.8 % w/w 65.8 % w/w 

Total Fat 5.6 % w/w 5.6 % w/w 

Total Energy 4.08 Kcal/gram 4.08 Kcal/gram 

Myristic acid (14:0) 0.1 % w/w 0.1 % w/w 

Palmitic acid (16:0) 0.8 % w/w 2.2 % w/w 

Stearic acid (18:0) 0.2 % w/w 0.2 % w/w 

Palmitoleic acid (16:1) Trace Trace 

Oleic acid (18:1) 1.2 % w/w 1.2 % w/w 

Gadoleic acid (20:1) Trace Trace 

Linoleic acid (18:2 n6) 2.2 % w/w 0.8 % w/w 

Linolenic acid (18:3 n3) 0.2 % w/w 0.2 % w/w 

Arachadonic acid  
(20:4 n6) 

Trace Trace 

EPA (20:5 n3) 0.1 % w/w 0.1 % w/w 

DHA (22:6 n3) 0.3 % w/w 0.3 % w/w 

 

concentrations were determined by the Bradford protein assay method. Proteins 

(10 μg) were resolved on SDS-PAGE gels followed by transfer to a 

polyvinylidene difluoride (PVDF) membrane (BioRad, Hercules, CA) and 

incubation with the antibodies listed in Table 7. The origin, source, and dilutions 

of the respective antibodies used for this study are compiled in Table 7. β-actin 

was used as a gel loading control. The blots were developed with enhanced 

chemiluminescence (Clarity™ Western ECL blotting substrate, Bio-Rad, 

Hercules, CA) and imaged using an Aplegen Omega Lum G System 

(Pleasanton, CA, USA). The analysis was performed using ImageJ (NIH, USA) 

software. The results were quantified by densitometry and represented as total 
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Table 7. List of antibodies used in the study 
Antibody Dilution Host Manufacturer Catalog 

# 
RRID 

α-syn 1:500 Rabbit Cell Signaling 2642S AB_10695412 

TH 1:500 Rabbit Cell Signaling 2792S AB_10691683 

pS40TH 1:500 Rabbit Sigma Aldrich T9573 AB_261823 

 

integrated densitometric values. Data were analyzed using the nonparametric, 

unpaired student’s t-test with the Mann-Whitney post hoc test. Western blots are 

expressed as fold change over β-Actin (n=4 for B6D2 mice, n=3-4 for m-Thy1 

mice) including 3 technical replicates. 

Real time-rtPCR. 

 Total RNA was extracted from substantia nigra-enriched tissue with the 

QuickGene RNA cultured cell HC kit S (Autogen, Holliston, MA). Total RNA (0.5 

µg) was reverse transcribed into cDNA with qScript cDNA SuperMix (Quanta 

Biosciences, Gaithersburg, MD). Real time-rtPCR was then performed on the 

cDNA with taqman probes for the SNCA (Mm01188700_m1) and TH 

(Mm00447557_m1) genes (Applied Biosystems, Foster City, CA) and normalized 

to 18S rRNA. Data were analyzed using the nonparametric, unpaired student’s t-

test with the Mann-Whitney post hoc test. Real time-rtPCR is expressed as fold 

change over 18s rRNA using the ΔΔCT method (n=4-5) including 2 technical 

replicates. 

Immunohistochemistry. 

 The right cerebral hemispheres of m-Thy1 and B6D2 mice were sectioned 

using a freezing microtome. As previously described (Manocha et al., 2017), 
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multiple paraformaldehyde-fixed and sucrose-equilibrated tissues were 

embedded in a 15% gelatin (in 0.1 M phosphate buffer, pH 7.4) matrix to form 

sample blocks for simultaneous processing. The blocks were immersed in a 4% 

paraformaldehyde solution for 3-4 days to harden the gelatin matrix, followed by 

a 30% sucrose solution that was replaced every 2 days until the blocks were 

utilized. The blocks were then flash frozen using dry-ice/isomethylpentane, and 

40 µm serial sections were cut using a freezing microtome. Serial sections (960 

µm apart) were then immunostained using an anti-TH antibody (1:500 dilution) 

and an anti α-syn antibody (1:500 dilution, see Table 7 for detailed descriptions 

of antibodies). The antigens were visualized using a Vector ABC kit and DAB as 

the chromogen (Vector Laboratories, Inc., Burlingame, CA) according to the 

manufacturer’s protocols. The slides were dehydrated through a series of ethanol 

concentrations and Histo-Clear (National Diagnostics, Atlanta, GA) before being 

coverslipped using Permount. Photomicrographs were taken using an upright 

Leica DM1000 microscope and a Leica DF320 digital camera system (n=2). 

Biogenic amine analysis using HPLC-ECD. 

 Substantia nigra-enriched tissues were shipped to the Neurochemistry 

Core at Vanderbilt University where biogenic amine analysis was performed. 

Briefly, tissue samples were homogenized using a tissue dismembrator in 100-

750 ul of 0.1M TCA, which contains 10-2 M sodium acetate, 10-4 M EDTA, and 

10.5 % methanol (pH 3.8).  Ten microliters of homogenates were used for the 

protein assay. The samples were then spun in a microcentrifuge at 10,000 x g for 

20 minutes, and the supernatant was removed for biogenic monoamine analysis. 
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Protein concentrations were determined using a BCA Protein Assay Kit (Thermo 

Scientific). Ten microliters of tissue homogenate was distributed into a 96-well 

plate, and 200 µl of mixed BCA reagent (25 ml of Protein Reagent A mixed with 

500 μl of Protein Reagent B) was added. The plate was then incubated at room 

temperature for two hours for color development. A BSA standard curve was run 

at the same time. Absorbance was measured using a plate reader (POLARstar 

Omega) purchased from BMG LABTECH Company.  

 Biogenic amine concentrations were determined using an Antec Decade II 

(oxidation: 0.65) electrochemical detector operated at 33°C.  Twenty 

microliter samples of the supernatant were injected using a Water 2707 

autosampler onto a Phenomenex Kintex C18 HPLC column (100 x 4.60 mm, 2.6 

um).  Biogenic amines were eluted with a mobile phase consisting of 89.5% 0.1M 

TCA, 10-2 M sodium acetate, 10-4 M EDTA, and 10.5 % methanol (pH 

3.8).  Solvent was delivered at 0.6 ml/min using a Waters 515 HPLC 

pump.  Using this HPLC solvent, the biogenic amines were eluted in the following 

order: Noradrenaline, Adrenaline, DOPAC, Dopamine, 5-HIAA, HVA, 5-HT, and 

3-MT.  HPLC control and data acquisition were managed using Empower 

software. Isoproterenol (5 ng/mL) was included in the homogenization buffer for 

use as a standard to quantify the biogenic amines. Data were analyzed using the 

nonparametric, unpaired student’s t-test with the Mann-Whitney post hoc test and 

are expressed as ng/mg protein (n=3) including 3 technical replicates. 
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Statistical analysis. 

 Data were analyzed using the nonparametric, unpaired student’s t-test 

with the Mann-Whitney post hoc test. Statistical analysis was performed with 

GraphPad Prism software 6.07. Western blots are expressed as fold change over 

β-Actin (n=4) including 3 technical replicates. Quantitative data from the western 

blotting analysis are presented as mean ± SEM with unit value assigned to 

control diet and the extent of differences among the samples being expressed 

relative to the unit value of control diet. Quantitative data for Real time-rtPCR 

analysis are presented as mean ± SEM and expressed as fold-change from 

control diet. Real-Time RT-PCR for SNCA and TH is expressed as fold change 

over 18s rRNA using the ΔΔCT method (n=4-5) including 2 technical replicates. 

Results 

PA-enriched diet exhibit increased α-syn expression levels. 

 We examined the effects of a PA-enriched diet on α-syn protein levels and 

mRNA expression in the substantia nigra-enriched fractions from the B6D2 mice 

and found that three months of feeding with a PA-enriched diet significantly 

increased (p<0.05) α-syn protein levels compared to the control diet (Fig. 36A-B). 

To determine whether the PA-enriched diet affected α-syn gene expression via 

transcription, we performed Real time rt-PCR and found that the SNCA gene was 

significantly increased (p<0.01) in mice fed PA-enriched chow (Fig. 36C). We 

then performed immunohistochemistry and found that the PA-enriched diet that 

confirms increased positive staining of α-syn (Fig. 36E) than the control diet 
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(Fig. 36D). This data suggests that a PA-enriched diet is capable of regulating α-

syn at a transcriptional level in B6D2 mice. 

 

 

Figure 36.  PA-enriched diet exhibit increased α-syn expression in B6D2 mice. 
Representative western blot (A) and optical density (B) of α-syn in 
the substantia nigra-enriched fraction of brains from B6D2 mice 
showing that the PA diet significantly increases α-syn protein levels. 
C. Real-time RT-PCR shows that the PA diet increases SNCA 
mRNA. Immunocytochemistry of the substantia nigra shows that 
the PA diet-fed mice exhibit increased α-syn immunoreactivity (E) 
compared to the control diet (D). *p<0.05, **p<0.01 versus control 
diet. 

 
.
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 We also examined the effects of a PA-enriched diet on α-syn protein and 

mRNA expression levels in the substantia nigra-enriched fractions from m-Thy1 

mice and found that three months of a PA-enriched diet feeding significantly 

increased (p<0.05) α-syn protein levels as demonstrated by western blotting (Fig. 

37A-B). To determine whether the PA-enriched diet also affects α-syn gene 

expression, we performed Real time-rtPCR and found that the SNCA gene was 

significantly increased (p<0.05) in mice fed PA-enriched diet (Fig. 37C). We then 

performed immunohistochemistry and found that the PA-enriched diet resulted in 

increased α-syn immunostaining (Fig. 37E) compared to the control diet-fed mice 

(Fig. 37D). This data suggests that a PA-enriched diet is capable of regulating α-

syn expression levels in m-Thy1 mice.  

PA-enriched diet increases TH expression levels. 

 We examined the effects of a PA-enriched diet on TH protein and mRNA 

expression levels in the substantia nigra-enriched fractions of brains from B6D2 

mice and found that three months of feeding with a PA-enriched diet significantly 

increased (p<0.05) TH protein levels compared to the control diet (Fig. 38A-B). In 

addition, levels of phospho S40TH, the active form of TH (Dunkley, Bobrovskaya, 

Graham, Von Nagy-Felsobuki, & Dickson, 2004b) were also shown to be 

significantly increased (p<0.05) following PA-enriched diet feeding (Fig. 38C-D). 

To assess whether the PA-enriched diet affects TH gene expression via 

transcription, we performed Real time-rtPCR and found that the TH gene 

expression was significantly increased (p<0.05) in mice fed the PA-enriched diet 

compared to control diet (Fig. 38E). Immunohistochemistry shows that the PA- 
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Figure 37.  PA-enriched diet increases α-syn expression levels in m-Thy1-
mice. Representative western blot (A) and optical density (B) of α-
syn in the substantia nigra-enriched fraction of brains from m-Thy1-
αsyn mice showing that the PA diet significantly increases α-syn. 
(C) Real time-rtPCR shows that the PA diet also increases SNCA 
mRNA. Immunocytochemistry of the substantia nigra shows that 
PA diet-fed mice (E) exhibit more immunoreactivity to α-syn 
antibody than control diet fed mice (D). *p<0.05 versus control diet. 
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Figure 38. B6D2 mice on a PA diet exhibit increased TH and pS40TH 
expression. Representative western blot (A,C) and optical density 
(B,D) showing the PA diet significantly increases levels of TH and 
pS40TH respectively in the substantia nigra-enriched fraction of 
brains from B6D2 mice . Real time-rtPCR shows that the PA diet 
significantly increases TH mRNA (E). Immunocytochemistry shows 
that PA diet-fed mice exhibit increased immunoreactivity to TH 
antibody (F) compared to control diet-fed (G). *p<0.05 versus 
control diet. 
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enriched diet increases TH staining (Fig. 38G) compared with the control diet-fed 

mice (Fig. 38F). This data suggests that in B6D2 mice, a PA-enriched diet is 

capable of regulating TH at a transcriptional and translational level. 

 In the substantia nigra-enriched fraction of m-Thy1 mice, the three months of 

feeding with a PA-enriched diet significantly increases (p<0.05) TH protein levels 

(Fig. 39A-B). In addition, levels of pS40TH were also shown to be significantly 

increased (p<0.05) with the PA-enriched diet (Fig. 39C-D). Real time-rtPCR 

shows that the TH gene was significantly increased (p<0.05) in mice fed the PA-

enriched chow (Fig. 39E). We then performed immunohistochemistry in the 

substantia nigra and found that the PA-enriched diet resulted in increased TH 

staining (Fig. 39G) compared with the control diet-fed mice (Fig. 39F). This data 

suggests that in m-Thy1 mice a PA-enriched diet can regulate TH at a 

transcriptional and translational level. Not only did the PA diet increase TH but it 

also increased pS40TH in both B6D2 and m-Thy1 mouse models.   

PA diet differently affects biogenic amines. 

 We assessed the levels of various biogenic amines in the substantia 

nigra-enriched fraction of B6D2 mice fed the control or the PA diets and 

observed no significant differences in dopamine (DA) content (Fig. 40A) or its 

metabolites DOPAC (Fig. 40B) and HVA (Fig. 40C) between the two feeding 

regimens. Also, no significant differences in noradrenaline (Fig. 40D), serotonin 

(Fig. 40E), and the serotonin metabolite 5-HIAA (Fig. 40F) were observed. 
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Figure 39.  m-Thy1-αSyn mice on a PA diet exhibit increased TH and pS40TH 
expression. Representative western blot (A,C) and optical density 
(B,D) showing the PA diet significantly increases levels of TH and 
pS40TH respectively in the substantia nigra-enriched fraction of 
brains from m-Thy1-αSyn mice. Real time-rtPCR shows that the PA 
diet significantly increases TH mRNA (E). Immunocytochemistry 
shows that PA diet-fed mice exhibit increased immunoreactivity to 
TH antibody (G) compared to control diet (F). *p<0.05 versus 
control diet. 
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Figure 40.  Biogenic amine analysis revealed no significant differences in 
biogenic amines between B6D2 mice on a control or PA diet. PA-
enriched diet doesn’t affect DA (A), DOPAC (B), HVA (C), 
Noradrenaline (D), Serotonin (5-HT) (E), or 5-HIAA (F) content 
compared to control diet. Data is expressed as ng/mg protein. 
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 Although the PA-enriched diet increased the expression of α-syn and TH, 

this data suggests the diet does not alter normal biogenic amine content in B6D2 

mice. In the substantia nigra-enriched fractions of m-Thy1 mice we observed 

reduced levels of DA (Fig. 41A) and DOPAC (Fig. 41B), and increased levels of 

serotonin (Fig. 41E) in mice fed a PA-enriched diet, while HVA (Fig. 41C), 

Noradrenaline (Fig. 41D), and 5-HIAA (Fig. 41F) levels were unchanged between 

PA-enriched and control diets.  

Discussion 

 In this study, we determined the specific contribution of the fatty acid PA in 

regulating expression levels of α-syn and TH, two proteins that are tightly linked 

to PD, in the m-Thy1 mouse model of PD and its matched control the B6D2 

mouse. We found that the PA-enriched diet increased α-syn protein levels and 

mRNA content in both strains of mice. We also found that in both strains of mice 

the PA-enriched diet increases the protein and mRNA levels of TH, the rate 

limiting enzyme in the synthesis of dopamine (Sjoerdsma, Engelman, Spector, & 

Udenfriend, 1965). Our results suggest that the PA diet may have both protective 

and destructive effects by increasing TH and α-syn expression levels 

respectively. 

 PA (16:0) is the most abundant sFFA acid in the body and the most 

abundant sFFA in certain foods including meats, cheeses, and dairy products. It 

is also synthesized de novo in the body and makes up 24% of total fatty acids in 

our blood and 28% of total fatty acids in our CSF (Guest et al., 2013). Human  
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Figure 41.  Biogenic amine analysis shows significant differences in biogenic 
amine levels between control and PA diet-fed m-Thy1 mice. While 
PA-enriched diet reduced DA (A) and DOPAC (B), it increased 5-
HT content (E) and didn’t significantly affect Noradrenaline (D), 
HVA (C), or 5-HIAA (F) levels. Data were analyzed using the 
nonparametric, unpaired student’s t test with the Mann-Whitney 
post hoc test. Data is expressed as ng/mg protein. **p<0.01 versus 
control diet. 
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research studies of sFFA have found positive associations (Anderson et al., 

1999b; Honglei Chen, Zhang, Hernán, Willett, et al., 2003c; Johnson et al., 

1999c; Giancarlo Logroscino et al., 1996b) or no significant relationship (Honglei 

Chen et al., 2002; Honglei Chen, Zhang, Hernán, Willett, et al., 2003c; 

Hellenbrand et al., 1996b; K M Powers et al., 2003) with PD risk. While these 

studies provide important information, they utilized food frequency questionnaires 

in which individuals described what they have consumed. This type of survey can 

be difficult to interpret because individuals may not accurately report what, when, 

and how much they consumed.  

 Abnormal accumulation of α-syn protein is a characteristic of PD and other 

synucleinopathies. While the cause of the accumulation remains unknown, 

genetic predisposition along with environmental factors are likely to contribute to 

the pathogenesis of PD. In vitro studies have shown that PUFAs increase α-syn 

oligomerization and insoluble aggregate formation while sFFAs do not (Assayag 

et al., 2007; Ronit Sharon et al., 2003). Additionally, α-syn has been proposed to 

act as a lipid carrier to shuttle fatty acids around the cell (George & Yang, 2013) 

and a previous study showed that when α-syn is ablated in primary astrocytes, 

PA incorporation into membranes is decreased (Castagnet, Golovko, Barceló-

Coblijn, Nussbaum, & Murphy, 2005b). The increase in PA content in our study 

may therefore lead to increased α-syn expression, which could function to 

properly traffic the excess PA to lipid membranes or to the mitochondria for β-

oxidation and might therefore be functioning as a protective measure to maintain 

normal lipid homeostasis. 
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 TH is a very important enzyme in the synthesis of dopamine (Sjoerdsma 

et al., 1965) and has been shown to decrease in PD (Tabrez et al., 2012; Zhu, 

Zhang, & Zeng, 2012). Short chained fatty acids have been shown to upregulate 

TH expression through a cAMP dependent mechanism (DeCastro et al., 2005; 

Mally et al., 2004) while the role of long chain saturated and unsaturated fatty 

acids remains to be determined. In this study, we found that a PA-enriched diet 

increases TH protein and mRNA expression in both strains of mice. cAMP 

response element binding protein (CREB) has been shown to be the mediator by 

which cAMP upregulates TH expression in PC12 cells (Piech-Dumas & Tank, 

1999). It is possible that longer chain fatty acids like palmitic acid may have the 

same effect on CREB activation and are yet to be determined in future studies. 

To the best of our knowledge, we are the first to show that a PA enriched diet 

can induce TH protein and mRNA expression. Elucidation of the mechanism by 

which PA enriched diet induces TH expression is of great importance in the 

search for disease altering therapies in PD. 

 We did not observe any significant difference in the levels of biogenic 

amines in the control B6D2 mice fed the PA-enriched diet compared to the 

control diet. However, dopamine and serotonin levels were significantly 

modulated by the PA-enriched diet in the m-Thy1 mice. Our findings 

demonstrating reduced dopamine content in m-Thy1 mice are intriguing as we 

show that the PA diet increases TH expression. It is possible that the PA diet 

increases TH expression levels as a protective strategy to compensate the loss 

of dopamine content in the m-Thy1 mice. As well, our findings showing that PA 
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increases serotonin levels are of extreme significance as such an increase is 

desirable in many conditions such as depression that is frequently associated 

with PD presentation. The significant increase in serotonin could be explained by 

the fact that sFFAs have been shown to decrease the binding of serotonin to 

transporters (du Bois, Deng, Bell, & Huang, 2006). The PA-enriched diet may 

thus result in less serotonin binding, which could lead to an increase in serotonin 

availability.   

Conclusions 

 In summary, we demonstrate that the PA-enriched diet induces an 

increase in α-syn and TH protein and mRNA expression in both B6D2 and m-

Thy1 mice. To the best of our knowledge, our study is the first to show that a diet 

enriched in PA increases the levels of TH protein and mRNA in these mouse 

models. We also show that the PA-enriched diet does not affect biogenic amine 

content in control B6D2 mice but significantly changes dopamine and serotonin 

levels in m-Thy1 mice relative to control-fed mice. Altogether, our results 

demonstrate that a diet enriched in PA increases the levels of TH, and serotonin, 

an effect that can provide beneficial effects in a variety of conditions. Future 

studies are needed to elucidate the mechanisms by which a PA-enriched diet 

modulates these proteins.  
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CHAPTER V 
 

PALMITIC ACID ENRICHED DIET RESCUES MOTOR FUNCTION,  
TYROSINE HYDROXYLASE, AND DOPAMINERGIC NEURONS  

FROM MPTP IN C57BL/6 MICE 
 

Abstract 

 α-synuclein (α-syn) protein accumulation is a hallmark of a group of brain 

disorders known collectively as synucleinopathies. These include Parkinson 

disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy 

(MSA). Currently, α-syn is under scrutiny as a potential pathogenic factor in the 

progression of synucleinopathies. However, there is a significant gap in our 

knowledge on what causes α-syn to accumulate. It is now becoming evident that 

the nature of our dietary intake influences disease-related genes and may thus 

potentially increase or reduce our risks of developing synucleinopathies. In this 

study, we determined the extent to which a two month diet enriched in the 

saturated free fatty acid palmitate (PA) influences motor function, along with 

levels of α-syn and tyrosine hydroxylase (TH), the rate limiting enzyme in 

dopamine synthesis, and finally dopaminergic neuronal survival in the MPTP-

induced C57BL/6 mouse model for synucleinopathy. We demonstrate that a PA-

enriched diet rescues motor function. We show that it induces a decrease in α-

syn and an increase in TH protein content in the substantia nigra of MPTP-

treated animals. We also show that the number of surviving dopaminergic 

neurons is significantly rescued in PA fed MPTP injected animals in comparison 
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to control fed MPTP animals. Altogether, our results demonstrate that a diet rich 

in the saturated fatty acid PA may be protective against the MPTP-induced 

perturbation in motor function, α-syn and TH protein level fluctuations, and 

survival of dopaminergic neurons in the substantia nigra of mice. 

Introduction 

 Synucleinopathies, a group of neurodegenerative disorders, are 

pathologically characterized by the abnormal accumulation of α-synuclein (α-syn) 

protein in intracellular neuronal and glial inclusions known as Lewy bodies. The 

role of α-syn in the pathogenesis of synucleinopathies is not well understood but 

extensive experimental data points to a neurotoxic role of high levels of the 

protein in its soluble and aggregated forms (Adamczyk et al., 2006; Brown, 2010; 

Halbach et al., 2004; Snyder & Wolozin, 2004). The cause(s) of 

synucleinopathies are likely multi-factorial with genetic predisposition and 

environmental factors contributing to the pathogenesis of the diseases. To date, 

the intake of dietary fats have shown many inconsistencies in relation to PD type 

synucleinopathy risk (White et al., 2009). Epidemiological studies on dietary 

intake of fats and PD have shown positive associations (Anderson et al., 1999a; 

Johnson et al., 1999b; Giancarlo Logroscino et al., 1996a; Miyake, Sasaki, et al., 

2010), no association (Hellenbrand et al., 1996a; L. C. Tan et al., 2007), and 

even protective effects (Abbott, Webster Ross, et al., 2003b; Honglei Chen, 

Zhang, Hernán, Willett, et al., 2003b; L M L de Lau et al., 2005c; Kamel et al., 

2014; Kyrozis et al., 2013; Karen M. Powers et al., 2009b). Examining specific 

groups of fatty acids does not allow for much more clarity as polyunsaturated 
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fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) have been shown 

to be protective in some studies (Abbott, Webster Ross, et al., 2003c; L.M.L. de 

Lau et al., 2005) and detrimental in another (Dong et al., 2014), while saturated 

fatty acids have been shown to be associated with (Anderson et al., 1999b; 

Honglei Chen, Zhang, Hernán, Willett, et al., 2003c; Johnson et al., 1999c; 

Giancarlo Logroscino et al., 1996b) and have no significant relationship with PD 

risk (Honglei Chen et al., 2002; Honglei Chen, Zhang, Hernán, Willett, et al., 

2003c; Hellenbrand et al., 1996b; K M Powers et al., 2003). 

 Hallmarks of PD type synucleinopathy include the loss of dopaminergic 

neurons in the substantia nigra pars compacta and the abnormal accumulation of 

α-syn protein aggregates in Lewy bodies. The reduction in TH, the rate limiting 

component of dopamine synthesis, and the accumulation of α-syn in Lewy bodies 

are key components observed in PD brains (Crowther et al., 2000; Schapira, 

1997; Spillantini et al., 1997) and are hallmarks of late stage disease. 

 A variety of model systems have been utilized to investigate the 

mechanisms of neuronal damage in PD that link cell loss with characteristic 

motor deficits associated with PD pathology. A commonly utilized drug in in vitro 

and in vivo studies of PD is 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

(Meredith & Rademacher, 2011; Notter, Irwin, Langston, & Gash, 1988; Sriram, 

Pai, Boyd, & Ravindranath, 1997) that has been used to model PD based on its 

ability to phenocopy the pathology and behavioral outcomes of PD. MPTP, first 

synthesized in 1947 (ZIERING & LEE, 1947), was not implicated as a potent 

drug that induces PD until the 1980s (Langston, Ballard, Tetrud, & Irwin, 1983b). 
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MPTP, itself, is not toxic but is lipid-soluble and readily crosses the blood-brain 

barrier (Langston et al., 1983b). Once within the brain, it is taken up by 

astrocytes that contain monoamine oxygenase B enzymes that convert MPTP 

into the toxic cation 1-methyl-4-phenylpyridinium (MPP+) (Chiba, Trevor, & 

Castagnoli, 1984; Langston, Irwin, Langston, & Forno, 1984; Ransom, Kunis, 

Irwin, & Langston, 1987). MPP+ is then released by astrocytes and selectively 

taken up by dopaminergic neurons via the dopamine transporter (Shen, Abell, 

Gessner, & Brossi, 1985). Once inside dopaminergic neurons, it becomes 

concentrated in mitochondria and inhibits Complex I of the respiratory chain 

ultimately leading to their selective death (Ramsay, Salach, & Singer, 1986).  

 Mouse studies involving the administration of omega-3 polyunsaturated 

fatty acids (PUFAs) have shown beneficial against MPTP-induced effects (M. 

Bousquet et al., 2009; M Bousquet et al., 2008; Melanie Bousquet et al., 2011; 

Mélanie Bousquet et al., 2011; Coulombe et al., 2018), while diets high in fat 

either exacerbate the progression of parkinsonism by exhibiting enhanced 

dopamine depletion in the substantia nigra, striatum, and nigrostriatal pathway 

(M. Bousquet et al., 2012; Choi, Jang, Park, & Kang, 2005b; Morris, Bomhoff, 

Stanford, & Geiger, 2010; White et al., 2009) or have shown to to be protective 

against MPTP induced motor dysfunction and TH neuronal loss (X. Yang & 

Cheng, 2010a).  

 However, some of these studies examined the effects of PUFAs and 

others utilized diets high in fat and were not isocaloric to the control diet. 

Additionally, many of the aforementioned epidemiological studies utilized food 
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frequency questionnaires and were unable to clarify the roles of specific fatty 

acids. The use of a high fat diet does not pinpoint the precise contributions of 

individual fatty acids because they contain elevated levels of cholesterol and 

various fatty acids in combination. Another confounding factor is that many of the 

high fat diets used were not isocaloric to the control diet, which adds another 

layer of complexity to interpreting whether changes were caused by one of many 

specific fatty acids, cholesterol, or the increased caloric intake that can lead to 

obesity and a plethora of metabolic diseases. Therefore, the role of dietary 

interventions in PD risk requires a more precise examination of the contributions 

of individual fatty acids including palmitate to more thoroughly elucidate the 

effects of saturated fats on PD risk. 

 Here we describe the effects of palmitate on cultured mouse dopaminergic 

neurons and the effects of an isocaloric diet enriched in PA in an MPTP mouse 

model of PD type synucleinopathy. We show that palmitate treatment decreases 

α-syn and TH protein content in cultured mouse dopaminergic neurons. We also 

show that the effects of a diet enriched in PA differentially affects animals. We 

show that a PA enriched diet rescues motor function, decreases α-syn, and 

increases TH protein levels, in addition to preventing dopaminergic neuron loss 

in an MPTP mouse model of PD. Taken together, our results suggest that a diet 

enriched in PA may protect against the development of PD pathology and 

symptoms. 
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Methods 

Materials. 

 The cells and the respective kits and reagents used to grow and 

differentiate them were obtained by companies highlighted in Table 8. Palmitic 

acid (CAS 57-10-3, Catalog # sc-203175) and MPTP-HCl (CAS 23007-85-4, 

Catalog # sc-206178) were purchased from Santa-Cruz Biotechnology, Inc. 

Dallas, TX, USA. 

Mouse dopaminergic neuronal differentiation from pluripotent  
stem cells. 
 
 Mouse pluripotent stem cells were differentiated into mature dopaminergic 

neurons following an optimized protocol provided by the R & D Systems Stem 

Cell Kit Human/Mouse Dopaminergic Neuron Differentiation Kit. Briefly, irradiated 

mouse embryonic fibroblasts were plated on gelatin coated plates as a feeder 

layer for PSCs at a density of approximately 3 x 106 cells/100 mm plate and 

incubated for 24 hours at 37 ͦ C and 5% CO2. PSCs were then seeded on top of 

the feeder layer and allowed to increase colony sizes for a few days before 

moving to stage I of differentiation. Stage I of differentiation involved the 

expansion of undifferentiated PSCs for four days. Stage II consisted of seeding 

PSCs on nonadherent plates to allow for the formation of embryoid bodies for 

four days. In stage III, the embryoid bodies were transferred to a tissue culture 

plate and subjected to a selection media to allow for the enrichment of nestin-

positive cells for six to eight days. The nestin-positive cells were further 

expanded in another media for four to six days in stage IV. Once cells were
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Table 8. Materials list for differentiation of PSCs into dopaminergic neurons. 
Product Catalog # Company 

Stem Cell Kit Human/Mouse Dopaminergic Neuron 
Differentiation Kit 

SC001B R & D Systems 

Mouse Embryonic Stem cells CRL-11632 ATCC 
Irradiated Mouse Embryonic Fibroblasts (iMEFs) 

feeder cells 
PSC001 R & D Systems 

10 cm tissue culture dishes Falcon 353003 (case of 
200) 

08-772-E ThermoFisher 

10 cm bacterial culture dishes Falcon 351029 (case 
of 500) 

08-757-100D ThermoFisher 

12mm coverslips glass (pack of 100) 633009 www.carolina.com  

24 well flat well bottom TC treated (case of 50) 09-761-146 ThermoFisher 
15ml and 50ml centrifuge tubes C-3394-1 and C-

3394-3 
Bioexpress 

0.2um syringe filter (pack of 50) SLGP033RS Millipore 
0.2um, 500ml filter units (pack of 12) SCGV05RE Millipore 

Cryotubes 2ml corning 431386 89089-764 VWR 
Serological pipettes P-2827-10, P-

2837-25, P-
2834-5 

Bioexpress 

Pipettes and pipette tips  Bioexpress and USA 
Scientific 

10ml syringes 305482 BD ET eccentric tip 
Dulbecco’s Modified Eagle Medium (DMEM High 

Glucose) (500mL) 
11965-092 Invitrogen 

DMEM/F12 no HEPES powder (10x1L) 12500-062 Invitrogen 
FBS ES cell qualified (500mL) SH30071.03HI Hyclone   

ThermoFisher 
Phosphate Buffered Saline (PBS) (500mL) 10010-023 Invitrogen 

0.05% Trypsin/EDTA 25300-054 Invitrogen 
Gelatin from porcine skin G2500-100G Sigma 

ESGRO (recombinant mouse LIF) ESG1106 Millipore 
Knockout DMEM (500mL) 10829-018 Invitrogen 

MEM Non-essential AA Solution 11140-050 Invitrogen 
Pen-Strep-Glutamine (100X) (100mL?) 10378-016 Invitrogen 

Pen-Strep (100X) (20mL) 15140-148 Invitrogen 
2-Mercaptoethanol 21985-023 Invitrogen 

D-(+)-Glucose G6152-100G Sigma 
L-Glutamine G-8540-25G Sigma 

Sodium Bicarbonate NaHCO3 S-5761-500G Sigma 
Poly-L-ornithine Hydrobromide (50mg) P3655-50MG Sigma 
L-Ascorbic Acid (Tocris 4055) (50mg) 40-555-0 ThermoFisher 

Sterile, deionized water   
BSA-very low endotoxin 81-068-3 Millipore 

Acetic Acid (J.T. Baker 9508-03) JT9508-2 VWR 
Anti-Nestin Antibody AF2736 R & D Systems 

Anti-Tyrosine Hydroxylase Antibody T1299 Sigma 
Anti-Neuron Specific Beta-III Tubulin Antibody MAB1195 R & D Systems 

http://www.carolina.com/
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expanded, another medium change occurred and cells could differentiate into 

mature dopaminergic neurons in stage V remaining viable for two weeks or more. 

Cell culture treatments. 

 Following differentiation, cells were treated as previously described 

(Marwarha, Claycombe, Schommer, Collins, & Ghribi, 2016a; Marwarha, 

Schommer, Lund, Schommer, & Ghribi, 2018a) with modifications as indicated. 

Dopaminergic neurons were treated with different concentrations of BSA (bovine 

serum albumin) – conjugated palmitic acid. Palmitic acid stock solution 100 mM 

was prepared in 100% ethanol. A 5 mM BSA stock solution was prepared in 

endotoxin-free milliQ water (18 MΩ). Both, the palmitic acid and BSA stock 

solutions were sterile filtered using a 0.2 µm filter. The necessary amounts of 

palmitic acid and BSA were added to the medium to yield the desired palmitic 

acid concentrations with the ratio of palmitic acid and BSA being 6:1. The 

combined mediums were incubated for 1.5 hours to allow for palmitic acid/BSA 

conjugation. The cells were then treated with the designated concentrations of 

palmitic acid/BSA for 24 hours. 

Mouse husbandry and diet. 

 Male C57BL/6 mice were obtained from The Jackson Laboratory (Stock # 

000664) for this study. All animal procedures were carried out in accordance with 

the U.S. Public Health Service Policy on the Humane Care and Use of 

Laboratory Animals and were approved by the Institutional Animal Care and Use 

Committee at the University of North Dakota (Protocol 1506-2 and 1407-1). All 

animal experiments complied with the National Institutes of Health Guide for the 
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Care and Use of Laboratory Animals (NIH Publications No. 8023, revised 1978). 

The mice were housed individually in ventilated cages at an ambient room 

temperature (23-25ºC) and ambient relative humidity ranging between 50-70%. 

The mice were maintained on 12:12 hour light:dark cycle and allowed access to 

food and water ad libitum. Male mice, four (4) months of age (n=10-12) were fed 

either a palmitate-enriched diet (custom-made, TD 1106162, Harlan Teklad, 

2.2% w/w palmitic acid) or a control diet (custom made, TD 85172, Harlan 

Teklad, 0.8% w/w palmitic acid) for two months. The diets were isocaloric in 

relation to each other with the exception of palmitate and linoleate content and 

based on the NIH-07 open formula. The respective composition of the diets is 

shown in Table 9. Following the two months of feeding, 5-6 animals on each of 

the diets were subjected to either saline vehicle or MPTP intraperitoneal 

injections according to previously published work (Manocha et al., 2017). 

Behavioral testing and necropsy were performed five days post-injection at six 

(6) months of age. 

MPTP-based PD model.  

 The six-month-old male C57BL/6 mice were given 3 intraperitoneal (i.p.) 

injections of saline vehicle or MPTP-HCl (18 mg/kg of free base) at 2 hour 

intervals for a total of 3 injections. C57Bl/6 mice have proven to be a good model 

for the study of MPTP induced Parkinson’s disease for they exhibit a greater 

reduction in dopaminergic neurons compared to other strains of mice subjected
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Table 9. Composition of the control chow diet and palmitate-enriched diet. 
 Control chow diet Palmitic acid-enriched 

diet 
Proteins 23.6 % w/w 23.6 % w/w 
Carbohydrates 65.8 % w/w 65.8 % w/w 
Total Fat 5.6 % w/w 5.6 % w/w 
Total Energy 4.08 Kcal/gram 4.08 Kcal/gram 
Myristic acid (14:0) 0.1 % w/w 0.1 % w/w 
Palmitic acid (16:0) 0.8 % w/w 2.2 % w/w 
Stearic acid (18:0) 0.2 % w/w 0.2 % w/w 
Palmitoleic acid (16:1) Trace Trace 
Oleic acid (18:1) 1.2 % w/w 1.2 % w/w 
Gadoleic acid (20:1) Trace Trace 
Linoleic acid (18:2 n6) 2.2 % w/w 0.8 % w/w 
Linolenic acid (18:3 n3) 0.2 % w/w 0.2 % w/w 
Arachadonic acid (20:4 
n6) 

Trace Trace 

EPA (20:5 n3) 0.1 % w/w 0.1 % w/w 
DHA (22:6 n3) 0.3 % w/w 0.3 % w/w 

 

to similar doses of MPTP (Meredith & Rademacher, 2011; Muthane et al., 1994; 

Sonsalla & Heikkila, 1986). The MPTP dosages utilized in our study were based 

on the concentrations established in the following publications (Manocha et al., 

2017; Sonsalla & Heikkila, 1986). Within these studies, neither Lewy bodies nor 

inclusions that resemble these bodies were observed when mice were acutely or 

subchronically (subacutely) treated with MPTP although α-syn is increased in the 

dopaminergic neurons of the substantia nigra and correlated with TH neuron loss 

(Sonsalla & Heikkila, 1986; Vila et al., 2000a). 

Bright-field microscopy. 

 Bright-field images of the mouse PSCs differentiation procedure were 

obtained on an EVOS® cell imaging system with a 10x objective. 
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Immunofluorescence. 

 Mouse PSCs were first differentiated via an optimized human/mouse 

dopaminergic neuron differentiation kit into nestin-positive cells that were further 

differentiated into dopaminergic neurons as confirmed by TH-positive 

immunolabeling. Cells were rinsed briefly with phosphate buffered saline (PBS), 

fixed in ice-cold acetone for 5 minutes, washed twice with PBS and incubated for 

1 hour with PBS containing 10% normal goat serum before applying PBS 

containing 5% normal goat serum and the following antibodies which are further 

classified in table 3: anti-nestin antibody, anti-neuron specific β-III tubulin, anti-TH 

antibody overnight at 4ºC. Cells were then washed three times with PBS (5 mins 

each) and double-labeled with AlexaFluor 594 goat-anti-rabbit and AlexaFluor 

488 goat-anti-mouse antibody in PBS containing 5% normal goat serum for 1 

hour at room temperature in the dark. Cells were washed three times with PBS 

for five minutes in the dark and mounted with Vectashield containing 4’,6-

diamidino-2-pheylindole (DAPI), and visualized with a Leica DMI6000B 

microscope with a Leica DFC350 FX camera (Buffalo Grove, IL USA). Imaging 

was performed with 10x and 20x objectives and composites were generated 

using Photoshop Software (San Jose, CA). 

Western blotting analysis. 

 Substantia nigra-enriched fractions were prepared as previously described 

(Marwarha et al., 2010a; Marwarha, Prasanthi, et al., 2011a) and as follows. 

Substantia nigra-enriched tissues (20 mg) were dounce homogenized in RIPA 

tissue lysis buffer (50 mM Tris, 150 mM Nacl, 0.1% SDS, 0.5% sodium 
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deoxycholate, 1% Triton X, pH 7.4) supplemented with protease and 

phosphatase inhibitors. The samples were centrifuged at 5000 x g for 15 min and 

the supernatant harvested. Protein concentrations were determined by the 

Bradford protein assay method. Proteins (10 μg/lane) were resolved on SDS-

PAGE gels followed by transfer to a polyvinylidene difluoride (PVDF) membrane 

(BioRad, Hercules, CA) and incubation with the antibodies listed in Table 3. The 

origin, source, and dilutions of the respective antibodies used for this study are 

compiled in Table 10. β-actin was used as a gel loading control. The blots were 

developed with enhanced chemiluminescence (Clarity™ Western ECL blotting 

substrate, Bio-Rad, Hercules, CA) and imaged using an Aplegen Omega Lum G 

System (Pleasanton, CA, USA). The densitometric analysis was performed using 

ImageJ (NIH, USA) software with the results represented as total integrated 

densitometric values for fold change over β-Actin (n=5 for each condition) 

including 3 technical replicates. Data were analyzed using the nonparametric, 

unpaired student’s t-test with the Mann-Whitney post-hoc test (GraphPad Prism 

Software, San Diego, CA). 

Real time-rtPCR. 

 Total RNA was extracted from mouse dopaminergic neurons with the 

QuickGene RNA cultured cell HC kit S (Autogen, Holliston, MA). Total RNA (0.5 

µg) was reverse transcribed into cDNA with qScript cDNA SuperMix (Quanta 

Biosciences, Gaithersburg, MD). Real time-rtPCR was then performed on the 

cDNA with taqman probes for the SNCA (Mm01188700_m1) and TH  

(Mm00447557_m1) genes (Applied Biosystems, Foster City, CA) and
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Table 10. List of antibodies used in the study 
Antibody Dilution Host Manufacturer Catalog 

# 
RRID 

α-syn 1:500 Rabbit Cell Signaling 2642S AB_10695412 
TH 1:500 Rabbit Cell Signaling 2792S AB_10691683 
pS40TH 1:500 Rabbit Sigma Aldrich T9573 AB_261823 
TH 1:500 Mouse Sigma Aldrich T1299 AB_477560 
Nestin 1:500 Mouse R & D 

Systems 
AF2736 AB_416673 

Neuron 
specific β-
III tubulin 

1:500 Rabbit Abcam Ab18207 AB_444319 

AlexaFluor 
594 goat-
anti-rabbit 

1:250 Goat Life 
Technologies 

A11037 AB_2534095 

AlexaFluor 
488 goat-
anti-mouse 

1:250 Goat Life 
Technologies 

A11001 AB_2534069 

Vectashield 
containing 
DAPI 

  Vector 
Labs 

H-1500 AB_2336788 

 

normalized to 18S rRNA. The data were quantified and expressed as fold-

change compared to the control by using the ΔΔCT method. Data are expressed 

as mean ± SEM and includes determinations made with (n=3) and three 

technical replicates. 

Immunohistochemistry. 

 The left cerebral hemispheres of C57BL/6 mice in the four different 

conditions were sectioned using a freezing microtome. As previously described 

(Manocha et al., 2017), multiple paraformaldehyde-fixed and sucrose-

equilibrated tissues were embedded in a 15% gelatin (in 0.1 M phosphate buffer, 

pH 7.4) matrix to form sample blocks for simultaneous processing. The blocks 

were immersed in a 4% paraformaldehyde solution for 3-4 days to harden the 
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gelatin matrix, followed by a 30% sucrose solution that was replaced every 2 

days until the blocks were utilized. The blocks were then flash frozen using dry-

ice/isomethylpentane, and 40 µm serial sections were cut using a freezing 

microtome. Serial sections (960 µm apart) were then immunolabeled using an 

anti-TH antibody (1:500 dilution) or an anti α-synuclein antibody (1:500 dilution, 

see Table 10 for detailed descriptions of antibodies). The antigens were 

visualized using a Vector ABC kit and DAB as the chromogen (Vector 

Laboratories, Inc., Burlingame, CA) according to the manufacturer’s protocols. 

The slides were dehydrated through a series of ethanol concentrations and 

Histo-Clear (National Diagnostics, Atlanta, GA) before being coverslipped using 

Permount. Images were collected using an upright Leica DM1000 microscope 

and a Leica DF320 digital camera system (n=4-5) with exposure times consistent 

across the sample set. 

Locomotor activity assessment via the Pole test. 

 Following the saline and MPTP injections, mice were housed for an 

additional 4 days and behaviorally tested on day 5. Each animal was trialed on 

the pole test to assess locomotor activity as a measure of dopaminergic neuron 

function following the MPTP injections (Matsuura, Kabuto, Makino, & Ogawa, 

1997). Briefly, mice were placed head-upward on the top of a vertical rough-

surfaced pole (diameter 8 mm, height 55 cm) with a base that was positioned on 

a flat surface. The time until the mouse descended to the bottom of the pole floor 

was recorded with a maximum of 120 seconds. Mice were returned to their home 
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cages after testing and the pole was wiped clean with 70% ethanol in between 

mice trials and was allowed to dry before the next trial.  

Grip strength test via Kondziela’s inverted screen test. 

 To test gross strength of the forelimb muscles in mice, mice were 

challenged with the inverted screen test as previously described (Deacon, 2013). 

A 43 x 43 cm2 square wire mesh frame was utilized in this test. The mesh was 

12 x 12 mm2 square formed by 1 mm diameter wires. The frame was 4 cm deep 

wooden beading to prevent mice from climbing to the other side of the mesh. 

After a 30-minute rest following the pole test, each mouse was placed onto the 

center of the mesh square frame and the screen was rotated over the course of 

2 seconds to an inverted position with the mouse’s head declining first. The 

screen was held at 40-50 cm over a clean foam surface, and the time it took 

each mouse to let go of the screen was measured until the maximum of 

120 seconds was reached. After testing, mice were returned to their home cages.  

Quantification of TH-positive neurons. 

 The number of TH-positive neurons in the substantia nigra of saline- and 

MPTP-injected mice on the control or PA diet were determined using design-

based stereology. The mouse brains were cryosectioned and a subset 

immunolabeled for TH as described above with the sectioned brains processed 

in parallel blocks. The section number start point was random for each brain 

based on the key anatomical features of the substantia nigra positioned ventral 

and caudolateral to the hippocampus. Non-biased quantification of TH-positive 

cells was performed using the optical fractionator approach (Hattiangady, Rao, & 
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Shetty, 2008; Rao, Hattiangady, & Shetty, 2006; West & Gundersen, 1990) and 

the optical fractionator workflow in StereoInvestigator 11.06 (Microbrightfield Inc., 

Williston, VT). Low power tracings of the substantia nigra were generated at 2X 

magnification on an Olympus BX51WI with a motorized x, y and z stage and a 

minimum of four sections per brain were counted at 120 µm intervals 

encompassing the entirety of the structure. A range of randomly and 

systematically selected frames, 250 – 1500 depending on the substantia nigra 

representation, were counted at 40X magnification with each frame measuring 

200 µm X 200 µm and the z-frame threshold distance measured at each counting 

site. The number and location of counting frames and the counting depth for that 

section were determined by entering parameters for the sample grid size (250 X 

250 µm), the thickness of the guard zones (5 µm) and the optical dissector height 

(30 µm). The TH-positive cells were counted if the immunolabeled cell body was 

fully within the counting frame. The values for total numbers of TH-positive 

neurons were determined using the optical fractionator formula 

(N=1/ssf.1/asf.1/hsf.ΣQ-) to quantify the estimated population number using 

mean section thickness with counts. For the calculations, ssf=section sampling 

fraction, which was 12 in our study as every 12th section was sampled; asf=area 

sampling fraction, which is calculated by dividing the area sampled with total area 

of the substantia nigra; hsf=height sampling fraction, which was calculated by 

dividing the height of the counting frame with the section thickness at the time of 

analysis (40 µm as the block advance value), and ΣQ- denotes the sum of the 

marks counted for the substantia nigra. The sampling was optimized for maximal 
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efficiency, with a final mean coefficient of error (CE) of less than 0.01 for each set 

of sections counted per brain based on preliminary overcounting to determine 

optimal counting parameters. 

Statistical analysis. 

 One-way analysis of variance (one-way ANOVA) was used to assess the 

significance of differences among the mouse dopaminergic neuronal samples 

including more than two groups assuming the data was of parametric nature 

followed by Tukey’s post hoc test. Quantitative data for Real time-rtPCR analysis 

are presented as mean ± SEM and expressed as fold-change from control. 

Animal data for western blots were analyzed using the nonparametric, unpaired 

student’s t-test with the Mann-Whitney post hoc test. Quantitative data from the 

western blotting analysis are presented as mean ± SEM with unit value assigned 

to control diet and the extent of differences among the samples being expressed 

relative to the unit value of control diet. Behavioral and quantification of TH-

positive neuron data were analyzed via an ordinary Two-way ANOVA with 

multiple comparisons across cell means using a Sidak post-hoc test to account 

for multiple comparisons and compute confidence intervals (CI) and significance. 

Data are expressed as mean ± SEM with the n reported in the figure legend for 

each experiment. +. Statistical analysis was performed with GraphPad Prism 

software 6.07. 
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Results 

Mouse dopaminergic neurons express tyrosine hydroxylase. 

 Mouse pluripotent stem cells were cultured and differentiated into 

dopaminergic neurons according to the protocol provided with the StemXVivo 

differentiation kit. We acquired light microscopy images of the differentiation 

procedure starting with the plating of iMEF cells as a feeder layer for the PSCs 

(Fig. 42A). Once a uniform monolayer of iMEFs was formed, PSCs were plated 

on top and formed colonies (Fig. 42B). PSCs were then plated and expanded in 

stage I of differentiation (Fig. 42C), followed by the formation of embryoid bodies 

in stage II (Fig. 42D), selection of nestin-positive cells in stage III (Fig. 42E), and 

expansion of nestin-positive cells in stage IV (Fig. 42F). Nestin-positive cells 

were then immunofluorescently labeled for nestin (Fig. 42G) and overlaid with 

DAPI (Fig. 42H). Once nestin-positive cells were confirmed we moved the cells 

into stage V of differentiation to derive mature dopaminergic neurons (Fig. 42I). 

Following stage V of differentiation dopaminergic neurons were 

immunofluorescently labeled for TH (Fig. 42J), neuron specific β-III tubulin (Fig. 

42K), DAPI (Fig. 42L), and overlay (Fig. 42M) to confirm cells are of 

dopaminergic origin.
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Figure 42.  Mouse dopaminergic neurons express Tyrosine Hydroxylase. 

Bright field microscopy of iMEFs used as a feeder layer for PSCs 
(A). (B) shows colonies of PSCs attached to the feeder layer of 
iMEFs. Bright field images of stage I of differentiation (C), stage II 
of differentiation (D), stage III of differentiation (E), and stage IV of 
differentiation (F) into dopaminergic neurons. (G) is immunostaining 
of nestin positive cells of neuronal lineage and (H) is an overlay of 
nestin and DAPI. Bright field microscopy following stage V of 
differentiation shows mature dopaminergic neurons (I). Post 
differentiation immunofluorescent labeling shows cells contain TH 
(J), Neuron specific β-III Tubulin (K), DAPI (L), and overlay (M). 
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Palmitic Acid decreases α-syn and TH in mouse dopaminergic neurons. 
 

 We determined the effects of increasing concentrations of palmitic acid on 

the protein and mRNA expression levels of key proteins involved in 

synucleinopathies in mouse dopaminergic neurons. We found that palmitic acid 

significantly reduced the amount of α-syn protein (p<0.05) (Fig. 43 A,B) and 

mRNA content (p<0.05) (Fig. 43C) suggesting that palmitic acid is able to 

regulate α-syn at a transcriptional level. We also found that palmitic acid 

significantly reduces the level of TH protein (p<0.01) (Fig. 43D, E) while it 

significantly increases TH mRNA content at 150 uM (p<0.05) (Fig. 43F). In 

addition, levels of pS40TH, the active form of TH (Dunkley et al., 2004b) are 

unchanged (Fig. 43G) by palmitic acid in mouse dopaminergic neurons. This 

suggests that palmitic acid is capable of regulating TH at a transcriptional and 

translational level in mouse dopaminergic neurons. 

PA diet is protective against MPTP-induced motor strength deficits in 
C57BL/6 mice. 

 
 Following the administration of a two-month control or PA enriched diet, 

mice were subjected to either acute saline or MPTP injections and motor 

functions of the mice were assessed using the grip strength and pole tests. As 

expected, animals injected with MPTP performed significantly (p<0.001) worse 

than saline injected animals on both tests (Fig. 44 A, B) regardless of diet 

consumed. Interestingly, the PA-enriched diet significantly (p<0.001) improved 

both pole test and grip strength performance of the MPTP-injected animals (Fig. 

44 A,B). Analysis of locomotor activity (DFn=1; DFd=17) revealed that diet 
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Figure 43.  Palmitic Acid decreases α-syn and TH in mouse dopaminergic 
neurons. Representative western blot (A) and optical density (B) 
showing that PA treatment significantly decreases the level of α-syn 
protein in mouse dopaminergic neurons. Real Time-RT PCR shows 
that PA treatment significantly decreases SNCA mRNA (B). 
Representative western blot (D, G) and optical density (E, H) shows 
that PA treatment significantly decreases TH while it does not affect 
pS40TH protein levels, respectively, in mouse dopaminergic 
neurons. (F) shows that PA treatment differentially affects TH 
mRNA levels at varying concentrations. The one-way ANOVA was 
used to assess the significance of differences among the samples 
including more than two groups assuming the data was of 
parametric nature followed by Tukey’s post hoc test. Western blots 
are expressed as fold change over β-Actin (n=3) including 3 
technical replicates. Real Time-RT PCR for SNCA and TH is 
expressed as fold change over 18S rRNA using the ΔΔCT method 
(n=3) including 3 technical replicates. *p<0.05, **p<0.01 versus 
control. 
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Figure 44.  PA diet is protective against MPTP in motor performance tests. 
Locomotor activity (A) and grip strength (B) of mice on control and 
PA diet with and without administration of MPTP were assessed via 
the pole test (A) and the Kondziela’s inverted screen test (B). Data 
were analyzed via the ordinary Two-way ANOVA with multiple 
comparisons comparing cell means regardless of rows and 
columns with a Sidak post-hoc test to correct for multiple 
comparisons with diet (control or palmitate) and injection paradigm 
(saline or MPTP) as the two variables assuming the data was of 
nonparametric nature due to the small size. All groups contained 
n=5-6 animals. ***p<0.001 versus saline/control diet, ***p<0.001 
versus saline/PA diet, ***p<0.001 versus MPTP/control diet. 
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accounted for 10.28% of the variation (F=34.70; p<0.0001), injection accounted 

for 69.11% of the variation (F=233.41; p<0.0001) and an interaction between the 

two variables accounted for 17.11% of the variation (F=57.79; p<0.0001) 

observed in the system. Analysis of grip strength (DFn=1; DFd=17) revealed that 

diet accounted for 5.81% of the variation (F=22.25; p=0.0002), injection 

accounted for 80.31% of the variation (F=307.34; p<0.0001) and an interaction 

between the two variables accounted for 10.43% of the variation (F=39.92; 

p<0.0001) observed in the system. Mice fed PA diet that were injected with 

MPTP were able to climb down the pole at a faster rate and were able to hang on 

to the grip strength test apparatus for a longer period than animals fed the control 

diet. This data suggests that a diet enriched in PA is potentially protective against 

the deleterious effects of MPTP on motor performance. 

PA diet decreases α-syn content in MPTP injected animals. 

 We determined the extent to which a PA-enriched diet affects α-syn 

protein content in the substantia nigra enriched fraction of C57BL/6 mice with or 

without the administration of MPTP. We found that a diet enriched in PA does not 

significantly affect the α-syn protein content of saline injected mice on control vs 

PA diet (Fig.45 A-D). We found that a PA enriched diet significantly (p<0.01) 

reduces α-syn protein content in relation to control fed mice treated with MPTP 

via western blotting analysis (Fig.45 E,F) and IHC (Fig.45 G,H). MPTP has been 

shown to increase α-syn protein levels in the substantia nigra region of C57BL/6 

mice (Vila et al., 2000b) and the fact that a diet enriched in PA is capable of 

reducing α-syn protein content is very interesting. This data suggests a PA
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Figure 45.  PA diet decreases α-syn in MPTP injected mice. Representative 
western blot (A) and optical density (B) showing that PA diet does 
not significantly affect α-syn protein content in the substantia nigra-
enriched fraction of brains from saline injected C57 mice. 
Immunohistochemistry of substantia nigra shows that saline 
injected C57 mice on PA diet (D) have similar α-syn protein content 
to control fed animals (C). Representative western blot (E) and 
optical density (F) showing that PA diet decreases α-syn protein 
content in the substantia nigra-enriched fraction of brains from 
MPTP injected C57 mice. Immunohistochemistry of substantia 
nigra shows that MPTP injected C57 mice on PA diet (H) have less 
α-syn protein content than control fed animals (G). Data were 
analyzed using the nonparametric, unpaired student’s t test with the 
Mann-Whitney post hoc test. Western blots are expressed as fold 
change over β-Actin (n=5) including 2 technical replicates. **p<0.01 
versus control diet. 
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enriched diet is capable of modulating α-syn levels and/or may be protective 

against the effects of MPTP that have been shown to lead to increased α-syn 

accumulation. 

PA diet increases TH content in saline and MPTP-injected animals. 
 
 We examined the effects of a PA-enriched diet on TH protein content in 

the substantia nigra-enriched fraction of brains from C57BL/6 mice injected 

acutely with saline or MPTP and found that two months of feeding with a PA-

enriched diet significantly increased (p<0.05) TH protein levels (Fig. 46 A-B) in 

saline injected animals in comparison to control diet. The same was true (p<0.01) 

for the PA enriched diet among the MPTP treated animals (Fig.46 E,F). In 

addition, pS40TH, the most activated form of TH (Dunkley et al., 2004b), was also 

shown to be significantly increased (p<0.01) following administration of the PA-

enriched diet (Fig. 46 C,D) in relation to the control fed saline injected animals 

and comparing the two diets in MPTP injected animals (Fig.46 G,H). This data 

suggests that a PA enriched diet is capable of regulating levels of TH and that it 

is also potentially protective against the MPTP induced decrease in TH. This data 

is in accordance with findings by others (X. Yang & Cheng, 2010b) stating that a 

ketogenic diet is protective against MPTP induced TH loss. 
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Figure 46.  PA diet increases TH in saline and MPTP injected mice. 

Representative western blots (A, C) and optical density (B, D) 
showing that a PA diet increases TH and pS40TH respectively in the 
substantia nigra-enriched fraction of saline injected C57 mice. 
Representative western blots (E, G) and optical density (F, H) 
showing that a PA diet increases TH and pS40TH respectively in the 
substantia nigra-enriched fraction of MPTP injected C57 mice. Data 
were analyzed using the nonparametric, unpaired student’s t test 
with the Mann-Whitney post hoc test. Western blots are expressed 
as fold change over β-Actin (n=5) including 2 technical replicates. 
*p<0.05, **p<0.01 versus control diet. 
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PA diet increases survival of TH positive neurons in MPTP-injected 
animals. 

 
 We performed immunohistochemistry to visualize TH-positive neurons in 

the substantia nigra of control fed saline injected (Fig.47 A), PA fed saline 

injected (Fig.47 B), control fed MPTP injected (Fig.47 C), and PA fed MPTP 

injected (Fig.47 D) animals. We then used design-based stereology to quantify 

the number of TH-positive neurons (Fig.47 E) and found that the MPTP-injected 

control fed animals had significantly fewer TH-positive neurons than saline-

injected control fed (p<0.01) and saline-injected PA fed (p<0.001) animals. 

Interestingly, of the MPTP injected animals, the PA enriched diet group had 

significantly more surviving TH-positive neurons (p<0.05) than the control fed 

MPTP animals. Analysis of TH-positive neuron quantification (DFn=1; DFd=11) 

revealed that diet accounted for 22.54% of the variation (F=11.24; p=0.0064), 

injection accounted for 44.00% of the variation (F=21.94; p=0.0007) and an 

interaction between the two variables accounted for 6.74% of the variation 

(F=3.36; p=0.0939) observed in the system. This data suggests that a PA diet is 

protective against the MPTP-induced loss of dopaminergic neurons in the 

substantia nigra.
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Figure 47.  PA diet rescues TH-positive neurons from MPTP induced death. 
Immunohistochemistry of TH stained substantia nigra in saline 
injected control fed C57 mice (A), saline injected PA fed C57 mice 
(B), MPTP-injected control fed C57 mice (C), and MPTP-injected 
PA fed C57 mice (D). Stereological quantification of TH-positive 
neurons in the substantia nigra of the four previously mentioned 
groups (E). Data were analyzed via the ordinary Two-way ANOVA 
with multiple comparisons comparing cell means regardless of rows 
and columns with a Sidak post-hoc test to correct for multiple 
comparisons with diet (control or palmitate) and injection paradigm 
(saline or MPTP) as the two variables assuming the data was of 
nonparametric nature due to the small size. All treatment groups 
contained n=3-4 animals. ***p<0.001 versus saline/control diet, 
***p<0.001 versus saline/PA diet, ***p<0.001 versus MPTP/control 
diet. 
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Discussion 

 In this study, we determined the specific contribution of the fatty acid PA 

on expression levels of α-syn and TH, two proteins that are tightly linked to PD in 

primary mouse dopaminergic neurons and within a MPTP induced C57BL/6 

mouse model of parkinsonism. We are the first to show that PA treatment in 

mouse dopaminergic neurons decreased both α-syn and TH protein levels while 

it differentially regulated the mRNA of both genes. Within the animal model, we 

are the first to show that a PA enriched diet is capable of rescuing motor function, 

increasing TH protein, decreasing α-syn protein, and reducing the loss of 

dopaminergic neurons in MPTP-injected animals. 

 Palmitic acid (16:0) is the most abundant saturated fatty acid in dairy 

products and meats. It is also synthesized de novo in the body and makes up 

24% of total fatty acids in our blood and 28% of total fatty acids in our CSF 

(Guest et al., 2013). Numerous in vitro studies have focused on the deleterious 

effects of palmitic acid by itself. It has been shown to increase ER stress 

(Marwarha et al., 2016b), proinflammatory cytokine expression in astrocytes and 

microglia (Gupta et al., 2012; Tracy et al., 2013), and activation of toll-like 

receptors (TLRs) via NFKβ (Oberbach et al., 2012). Within our study we also 

showed that PA treatment alone in mouse dopaminergic neurons can decrease 

TH protein, the rate limiting enzyme in dopamine synthesis (Sjoerdsma et al., 

1965), while it also decreases α-syn protein and mRNA levels. While these 

findings are very important, much of the in vitro work exposes cells to high levels 

of PA in the absence of any other vital contributing fatty acids and nutrients 
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present. Therefore, this research is inconclusive as to the role of PA incorporated 

into a wholesome diet consisting of other contributing fatty acids and nutrients. In 

addition, human research studies of saturated fatty acids have found positive 

associations (Anderson et al., 1999b; Honglei Chen, Zhang, Hernán, Willett, et 

al., 2003c; Johnson et al., 1999c; Giancarlo Logroscino et al., 1996b) and no 

significant relationship with PD risk (Honglei Chen et al., 2002; Honglei Chen, 

Zhang, Hernán, Willett, et al., 2003c; Hellenbrand et al., 1996b; K M Powers et 

al., 2003). While these studies are also very important for future research, they 

consist of questionnaires that involve subjects tallying what they consumed. This 

type of survey can be difficult to interpret because individuals may not accurately 

represent what, when, and how much of a given diet component they consumed. 

In this study, we attempted to more accurately pinpoint the contributions of the 

specific fatty acid PA to PD risk by feeding C57BL/6 mice a PA enriched diet that 

was isocaloric to control chow prior to injection with MPTP.  

 We found that the PA-enriched diet was protective against motor 

dysfunction caused by the injection of MPTP. This is in accord with other studies 

showing that a ketogenic diet is protective against MPTP induced motor 

dysfunction (Shaafi et al., 2016; X. Yang & Cheng, 2010b). It has been 

suggested that beta-hydroxybutyrate is protective against MPTP-induced 

neurodegeneration and is mediated by improved oxidative phosphorylation 

leading to enhanced ATP production (Tieu et al., 2003). PA can be converted 

into beta-hydroxybutyrate (Mashek & Grummer, 2003; Palmquist, 1972) which 

may be one mechanism by which a PA-enriched diet is protective against MPTP. 
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 Abnormal accumulation of α-syn protein is a characteristic of PD and other 

synucleinopathies. While the cause of the accumulation remains unknown, 

genetic predisposition along with environmental factors such as diet are likely to 

contribute to the pathogenesis of PD and other synucleinopathies. MPTP has 

been shown to increase α-syn protein in the dopaminergic neurons of the 

substantia nigra (Fornai et al., 2005; Forno, DeLanney, Irwin, & Langston, 1993; 

Sonsalla & Heikkila, 1986; Vila et al., 2000a). In our study we show that a PA-

enriched diet significantly reduces the MPTP-induced increase in α-syn protein. 

In vitro studies have shown that PUFAs increase α-syn oligomerization and 

insoluble aggregate formation while SFAs do not (Assayag et al., 2007; Ronit 

Sharon et al., 2003). Studies with rodent models also reported that diets high in 

PUFA concentration upregulated α-syn expression (Barceló-Coblijn et al., 2003; 

Kitajka et al., 2004). It is possible that the increase in the saturated fatty acid PA 

has opposing effects to PUFA’s which leads to the decrease in α-syn protein 

content or possibly because of the protective effects of PA against MPTP it may 

indirectly lead to decreased α-syn protein. 

 We found that in MPTP- and saline-injected mice, a PA-enriched diet 

increased the protein levels of TH, which is a very important enzyme in the 

synthesis of dopamine (Sjoerdsma et al., 1965) and the protein levels of pS40TH, 

the most activated form of TH (Dunkley et al., 2004b). This is in accordance with 

the administration of a ketogenic diet in conjunction with MPTP (X. Yang & 

Cheng, 2010a). Short-chained fatty acids have been shown to upregulate TH 

expression through a cAMP-dependent mechanism (DeCastro et al., 2005; Mally 
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et al., 2004), while the roles of long-chain saturated and unsaturated fatty acids 

remain to be determined. To the best of our knowledge, we are the first to show 

that a PA-enriched diet can induce TH protein expression and that a PA-enriched 

diet leads to significantly higher survival of dopaminergic neurons in the 

substantia nigra of MPTP injected animals although a ketogenic diet has shown 

similar effects (X. Yang & Cheng, 2010a). 

 We have previously shown that a PA-enriched diet can lead to ER stress, 

increased BACE1 activity, and amyloid beta genesis in aged animals (Marwarha, 

Rostad, et al., 2017; Marwarha, Schommer, Lund, Schommer, & Ghribi, 2018b). 

Within these studies, however, animals were much more aged and were exposed 

to the diets for a greater amount of time. Our current study suggests a PA diet 

over a short span of time promotes protective effects against PD-type 

synucleinopathy pathology. This data is highly important to the study of PD-type 

synucleinopathy pathology. We have shown that PA treatment in mouse 

dopaminergic neurons can modulate key proteins involved in disease risk in a 

much different way than a diet enriched in PA affects an animal model of PD. We 

also show that a diet enriched in PA is protective against the motor dysfunction, 

α-syn accumulation, TH decrease, and loss of dopaminergic neurons caused by 

MPTP administration. Future studies will elucidate the mechanisms of action, and 

once they are understood, pharmacological means can be utilized to block the 

increase in α-syn and other factors to stimulate an increase in TH in order to halt 

or reverse the course of PD. 
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 In summary, we demonstrate that PA treatment in mouse dopaminergic 

neurons decreases α-syn protein and mRNA expression as well as it decreases 

TH protein content. To the best of our knowledge, our study is the first to show 

that within MPTP-injected C57BL/6 mice a PA-enriched diet preserves motor 

function, decreases α-syn accumulation, increases TH protein, and increases 

dopaminergic neuronal survival. Altogether, our results suggest that a diet 

enriched in PA is protective against MPTP-induced Parkinsonism. Future studies 

are needed to elucidate the mechanisms by which a PA-enriched diet modulates 

these proteins. Establishing the effects of a smaller percentage of PA in the diet 

may reveal beneficial effects of this saturated free fatty acid in neurodegenerative 

conditions including PD and other synucleinopathies. 
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CHAPTER VI 
 

DISCUSSION, CONCLUDING REMARKS, AND FUTURE DIRECTIONS 
 

27-OHC and Parkinson’s Disease 

 27-OHC is an active product of cholesterol metabolism made in the 

mitochondria of most cells by the enzyme CYP27A1 and serves many biological 

roles. It has been shown to promote atherosclerosis via activation of 

proinflammatory processes (Umetani et al., 2014), promotes breast and prostate 

cancer (Marwarha, Raza, et al., 2017) and functions as a ligand of the LXRs 

(Gabbi et al., 2014).  

 Ours and another lab have previously shown that the oxysterol 27-OHC 

evokes an increase in α-syn expression in SHSY5Y cells (Cheng et al., 2008b; 

Marwarha, Rhen, et al., 2011b; Rantham Prabhakara et al., 2008). The 

mechanism underlying the increase in α-syn was through a LXRβ dependent 

mechanism (Marwarha, Rhen, et al., 2011b). In my dissertation work, we aimed 

to recapitulate these results within normal human dopaminergic neurons that had 

been differentiated from normal human dopaminergic neuronal precursor cells. 

We found that 27-OHC increases α-syn protein levels, activates LXR as shown 

by an increase in ABCA1, but fails to elicit a change in α-syn mRNA. GW3965 

and ECHS also failed to elicit any change in α-syn protein or mRNA content 

suggesting there is no link between LXR and α-syn in this model. We took our 

investigation further to study potential post-translational events that could 
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contribute to the 27-OHC induced increase in α-syn protein content. We are the 

first to show that 27-OHC increases α-syn protein levels through proteasomal 

inhibition and also a decrease in HSP70 protein content in normal dopaminergic 

neurons that could potentially have implications in protein folding, UPS function 

and autophagy-lysosomal pathways of degradation. 

 Proteasomes are large intracellular protein complexes whose main 

function is to degrade short-lived, damaged, and misfolded proteins by 

proteolysis. Proteasomes help control the levels of proteins necessary for normal 

cellular functioning. In higher organisms, proteasomes are located both in the 

cytoplasm and nucleus. The most common form is the 26S proteasome, which 

contains one 20S core catalytic particle and normally one 19S regulatory particle 

at each side of the 20S core particle. The 20S core, which is concealed inside 

the 19S particles, is the active site of the proteasome which is responsible for its 

caspase-like, chymotrypsin-like, and trypsin-like activities. Initially, proteins 

targeted for degradation are tagged with several molecules of ubiquitin. Ubiquitin 

is covalently attached to target proteins by three sequential enzymatic steps: 

ubiquitin activation by E1 enzymes, ubiquitin conjugation by E2 enzymes, and 

ubiquitin ligation to target proteins by E3 enzymes. Ubiquitin is normally 

conjugated via its carboxy-terminal glycine to an internal lysine residue (Pickart, 

2001). Following many rounds of ubiquitinylation a polyubiquitin chain is formed. 

This chain can function as a signal for degradation by the proteasome. The 

proteasome unfolds substrates and threads the polypeptide chains through the 

inner channel, where they are cleaved into short peptides (Bhattacharyya et al., 
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2014). After release from the proteasome, peptides are quickly processed into 

amino acids and recycled. (Reits et al., 2003)  

 We are aware that investigating proteasomal function is just one piece of 

the puzzle, per se, in the workings of the UPS. An approach to get a more 

fulfilling insight into the functionality of the UPS would be to assess the individual 

enzymatic activities involved in ubiquitin-dependent proteasomal degradation 

(Dantuma & Bott, 2014; Lindsten & Dantuma, 2003). Ubiquitinylation, is the 

overall result of a big family of enzymes that are involved in many processes and 

are therefore not straight-forward to address or to interpret. Examining 

proteasomal function is the final stop of all ubiquitinylated proteins to be 

degraded and creates a choke-point in the UPS pathway (Dantuma & Bott, 

2014). Therefore, it isn’t surprising that most studies focusing on the functionality 

of the UPS examine proteasomal function and not the individual enzymatic 

reactions leading up to it. However, this correlation of proteasomal activity and 

overall UPS impairment is complicated because it is presently unknown to what 

extent altered proteasomal activity affects the overall changes in degradation of 

ubiquitinylated proteins (Dantuma & Bott, 2014). 

 The decrease in HSP70 protein levels we observed could have numerous 

effects on cellular proteostasis. HSP70 is capable of being involved in various 

degradation pathways by the presence of specific chaperones and co-

chaperones that aid in guiding the targeted protein to a specific degradation 

pathway. See (Fernández-Fernández et al. 2017) for a review. α-syn has been 

shown to bind HSP70 (Aprile et al., 2017; Dedmon et al., 2005; Luk et al., 2008) 



173 

and be degraded by the UPS and autophagy (Webb et al., 2003). The extent to 

which a decrease in HSP70 affects proteasomal and/or autophagy is yet to be 

determined in future studies.  

 In summary, we demonstrate that 27-OHC induces an increase in α-syn 

accumulation in human dopaminergic neurons, a major hallmark of PD. The 

mechanism by which this occurs does not involve LXRs for we did not observe 

any significant changes in α-syn mRNA with 27-OHC or LXR agonist and 

antagonistic treatments. However, we are the first to show that 27-OHC can 

inhibit proteasomal function. Also, 27-OHC decreases levels of HSP70 protein 

which is involved in protein folding, and protein degradation through the UPS and 

three major types of autophagy: macroautophagy, microautophagy, and 

chaperone-mediated autophagy (Fernández-Fernández et al., 2017). The extent 

to which a decrease in HSP70 protein levels leads to decreased protein folding 

and degradation through specific pathways needs to be further elucidated. 

Restoring proteasomal function and HSP70 protein levels may attenuate the 27-

OHC induced increase in α-syn protein levels and needs to be further 

investigated. 

 In future studies we aim to assess the role 27-OHC has on individual 

enzymatic activities involved in the ubiquitin-dependent proteasomal degradation 

of α-syn in order to get a more fulfilling insight into the functionality of the UPS. 

We would also like to further investigate the mechanism by which 27-OHC is 

inhibiting the proteasomal degradation of α-syn. It may be through direct damage 

or inhibition of the proteasomal machinery and/or possibly increase the 
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propensity of α-syn to oligomerize which would not allow it to be properly 

degraded by the proteasome. Finally, we would also look to investigate the role 

of and mechanism by which 27-OHC effects HSP70 and identify specifically 

which type of degradation machinery is affected. It may be the UPS, autophagy, 

or both and remains to be determined. 

Palmitic Acid and Parkinson’s Disease 

 Palmitic acid (16:0), the most abundant saturated fatty acid in the body 

and diet, is synthesized de novo in the body and makes up 24% of total fatty 

acids in our blood and 28% of total fatty acids in our CSF (Guest et al., 2013). It 

has received much attention in in vitro and in vivo work. It has been shown to 

increase ER stress (Marwarha et al., 2016b), increase proinflammatory cytokines 

in astrocytes and microglia (Gupta et al., 2012; Tracy et al., 2013), activation of 

TLRs via NFKβ (Oberbach et al., 2012), and promote insulin resistance via 

phosphorylation of the insulin receptor (Reynoso, Salgado, & Calderón, 2003; 

Sears & Perry, 2015). While these findings are very important, much of in vitro 

work exposes cells to high levels of palmitic acid without any other fatty acids 

present which leaves this research inconclusive to the role of palmitic acid 

incorporated into a diet consisting of many other fatty acids and other nutrients. 

In human research studies, saturated fatty acids have shown positive 

associations (Anderson et al., 1999b; Honglei Chen, Zhang, Hernán, Willett, et 

al., 2003c; Johnson et al., 1999c; Giancarlo Logroscino et al., 1996b) and no 

significant relationship with PD risk (Honglei Chen et al., 2002; Honglei Chen, 

Zhang, Hernán, Willett, et al., 2003c; Hellenbrand et al., 1996b; K M Powers et 
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al., 2003). While these studies are also very important for future research, they 

utilize food frequency questionnaires where individuals are encouraged to eat 

what they will and are encouraged to fill out questionnaires describing what was 

eaten. This type of survey can be hard to interpret because individuals may not 

accurately represent what, when, and how much was consumed.  

 In the first of two dissertation studies, to more accurately pinpoint specific 

fatty acid contributions to PD risk we fed two strains of mice an isocaloric diet to 

control chow consisting of a slight increase in PA. We determined the extent to 

which a PA enriched diet affects B6D2 control and the m-Thy1 mouse model of 

PD biochemically. 

 We found that a PA enriched diet increases α-syn protein and mRNA 

expression in both strains of mice. It is possible that α-syn is increased following 

administration of PA because α-syn may function as a fatty acid binding protein 

that aids in the shuttling of PA around the cell (Lücke, Gantz, Klimtchuk, & 

Hamilton, 2006; R. Sharon et al., 2001). (Castagnet et al., 2005b) showed that 

when α-syn is ablated in primary astrocytes, PA incorporation into membranes is 

decreased. The increase in PA content in our study may therefore lead to 

increased α-syn expression which could function to properly traffic the excess PA 

to lipid membranes or to the mitochondria to be used for β-oxidation. 

 We found that a PA enriched diet increases TH protein and mRNA 

expression in both strains of mice. To the best of our knowledge, we are the first 

to show that a PA enriched diet can induce TH protein and mRNA expression. 

Short chained fatty acids have been shown to upregulate TH expression through 
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a cAMP dependent mechanism (DeCastro et al., 2005; Mally et al., 2004) while 

the role of long chain saturated and unsaturated fatty acids remains to be 

determined. Data not presented in this study showed that CREB protein levels 

are slightly upregulated in both strains of mice on the PA enriched diet. CREB 

has been shown to be the mediator by which cAMP upregulates TH expression 

in PC12 cells (Piech-Dumas & Tank, 1999). It is possible that longer chain fatty 

acids like palmitic acid may have the same effect on CREB activation but is yet to 

be determined. In addition to measuring CREB activity in this paradigm, we 

would also aim to pinpoint which specific receptors and intermediates are 

potentially involved in this mechanism. 

 Within the B6D2 mice on the differing diets we did not see any significant 

differences in levels of biogenic amines. However, the m-Thy1 mice showed 

much different results on the two diets. The findings of decreased dopamine 

content in m-Thy1 mice was very interesting as we have also shown that PA diet 

increases TH expression in these animals. It could be possible that m-Thy1 mice 

which overexpress normal human wildtype α-syn have vulnerable dopaminergic 

neurons to such a diet but concurrently increase the expression of TH in 

neurons. We also observed a significant increase in serotonin in the m-Thy1 

animals on the PA diet. This increase in serotonin could be explained by the fact 

that saturated fatty acids have been shown to decrease serotonin binding to 

transporter (du Bois et al., 2006). The diet may cause less serotonin binding 

which could lead to an increase in serotonin production as a compensatory 

mechanism. The fact that these changes were only observed in the m-Thy1 mice 
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is perplexing. The data suggests the overexpression of α-syn must make these 

animals more vulnerable to changes in neurochemicals when exposed to diets of 

differing fat consistencies. 

 This data is of high importance for the study of PD. We have shown a diet 

enriched in PA has the ability of upregulating α-syn and TH, two very important 

proteins in PD, through mechanisms that are yet to be determined in these two 

strains of mice. Future studies will look to elucidate the aforementioned proposed 

mechanisms by which PA enriched diet increases α-syn and TH expression. 

Once the mechanisms are elucidated, pharmacological means can be utilized to 

block the mechanism of α-syn increase and others to enhance the mechanism of 

TH increase to stop or reverse the course of PD. 

 In our second study on PA contributions to risk in PD-type 

synucleinopathy, we determined the contribution of PA on expression levels of α-

syn and TH in mouse dopaminergic neurons and within a MPTP induced 

C57BL/6 mouse model of parkinsonism.  

 We showed that PA treatment in mouse dopaminergic neurons decreased 

both α-syn and TH protein levels while it differentially regulated the mRNA of 

both genes. The mechanisms of such are yet to be determined. We then 

subjected C57Bl/6 mice to a 2 month PA enriched or control diet prior to injection 

with MPTP, a commonly utilized drug in in vitro and in vivo studies of PD 

(Meredith & Rademacher, 2011; Notter et al., 1988; Sriram et al., 1997). that has 

been used to model PD based on its ability to phenocopy the pathology and 

behavioral outcomes of PD. MPTP, first synthesized in 1947 (ZIERING & LEE, 
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1947), was not implicated as a potent drug that induces PD until the 1980s 

(Langston et al., 1983b). MPTP, itself, is not toxic but is lipid-soluble and readily 

crosses the blood-brain barrier (Langston et al., 1983b). Once within the brain, it 

is taken up by astrocytes that contain monoamine oxygenase B enzymes that 

convert MPTP into the toxic cation 1-methyl-4-phenylpyridinium (MPP+) (Chiba et 

al., 1984; Langston et al., 1984; Ransom et al., 1987). MPP+ is then released by 

astrocytes and selectively taken up by dopaminergic neurons via the dopamine 

transporter (Shen et al., 1985). Once inside dopaminergic neurons, it becomes 

concentrated in mitochondria and inhibits Complex I of the respiratory chain 

ultimately leading to their selective death (Ramsay et al., 1986). Mouse studies 

involving the administration of omega-3 polyunsaturated fatty acids (PUFAs) 

have shown beneficial against MPTP-induced effects (M. Bousquet et al., 2009; 

M Bousquet et al., 2008; Melanie Bousquet et al., 2011; Mélanie Bousquet et al., 

2011; Coulombe et al., 2018), while diets high in fat either exacerbate the 

progression of parkinsonism by exhibiting enhanced dopamine depletion in the 

substantia nigra, striatum, and nigrostriatal pathway (M. Bousquet et al., 2012; 

Choi et al., 2005b; Morris et al., 2010; White et al., 2009) or have shown to to be 

protective against MPTP induced motor dysfunction and TH neuronal loss (X. 

Yang & Cheng, 2010a). However, some of these studies examined the effects of 

PUFAs and others utilized diets high in fat and were not isocaloric to the control 

diet. Within the MPTP animal model, we are the first to show that a PA enriched 

diet is capable of rescuing motor function, increasing TH protein, decreasing α-
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syn protein, and increasing survival of dopaminergic neurons in MPTP injected 

animals. 

 We found that the PA-enriched diet was protective against motor 

dysfunction caused by the injection of MPTP. This is in accord with other studies 

showing that a ketogenic diet is protective against MPTP induced motor 

dysfunction (Shaafi et al., 2016; X. Yang & Cheng, 2010b). It has been 

suggested that beta-hydroxybutyrate is protective against MPTP induced 

neurodegeneration and is mediated by improved oxidative phosphorylation 

leading to enhanced ATP production (Tieu et al., 2003). PA can be converted 

into beta-hydroxybutyrate (Mashek & Grummer, 2003; Palmquist, 1972) which 

may be one mechanism by which a PA enriched diet is protective against MPTP. 

 MPTP has been shown to increase α-syn protein in the dopaminergic 

neurons of the substantia nigra (Fornai et al., 2005; Forno et al., 1993; Sonsalla 

& Heikkila, 1986; Vila et al., 2000a). In our study we showed that a PA enriched 

diet significantly reduces the MPTP induced increase in α-syn protein. In vitro 

studies have shown that PUFAs increase α-syn oligomerization and insoluble 

aggregate formation while SFAs do not (Assayag et al., 2007; Ronit Sharon et 

al., 2003). Studies with rodent models also reported that diets high in PUFA 

concentration upregulated α-syn expression (Barceló-Coblijn et al., 2003; Kitajka 

et al., 2004). It is possible that the increase in the saturated fatty acid PA has 

opposing effects to PUFA’s which leads to the decrease in α-syn protein content 

or possibly because PA remodels the mitochondrial membrane rendering it less 

vulnerable to the effects of MPTP. 
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 We found that a PA diet in MPTP and saline injected mice increased the 

protein levels of TH, which is a very important enzyme in the synthesis of 

dopamine (Sjoerdsma et al., 1965) and the protein levels of pS40TH, the most 

activated form of TH (Dunkley et al., 2004b). This is in accordance with the 

administration of a ketogenic diet in conjunction with MPTP (X. Yang & Cheng, 

2010a) while the mechanisms remain elusive. Short-chained fatty acids have 

been shown to upregulate TH expression through a cAMP-dependent 

mechanism (DeCastro et al., 2005; Mally et al., 2004), while the roles of long-

chain saturated and unsaturated fatty acids remain to be determined. To the best 

of our knowledge, we are the first to show that a PA-enriched diet can induce TH 

protein expression and additionally that a PA-enriched diet leads to significantly 

higher survival of dopaminergic neurons in the substantia nigra of MPTP injected 

animals although a ketogenic diet has shown similar effects (X. Yang & Cheng, 

2010a). 

 This data is highly important to the study of PD-type synucleinopathy.  We 

have shown that PA treatment alone in mouse dopaminergic neurons can 

modulate key proteins involved in disease risk in a much different way than a diet 

enriched in PA affects an animal model of PD. We also show that a diet enriched 

in PA is protective against the motor dysfunction, α-syn accumulation, TH 

decrease, and loss of dopaminergic neurons caused by MPTP administration. In 

future studies we would look to elucidate the mechanisms of action by which a 

PA diet can increase TH protein levels and examine how this diet is protective 

against the MPTP induced motor dysfunction, increase in α-syn, and loss of 
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dopaminergic neurons in the substantia nigra. Investigating how palmitic acid 

affects the mitochondria and potentially remodels the membrane to decrease its 

susceptibility to MPTP would be one of the first things to further explore. We 

would also investigate if a PA diet increases the amount of beta-hydroxybutyrate 

which could lead to enhanced oxidative phosphorylation and increased ATP 

production. Once the modes of action for a PA diets protective effects against 

MPTP are elucidated dietary intervention and/or pharmacological means can be 

utilized to slow or stop the progression of PD-type synucleinopathy. 

Summary 

 The work presented in these studies suggest diet plays a major role in the 

expression of α-syn and TH, two key proteins involved in synucleinopathies 

(Fig. 48). 27-OHC increases α-syn protein by inhibiting its proteasomal 

degradation and decreasing HSP70, a key chaperone protein that is involved in 

many different degradation pathways. Palmitic Acid differentially effects α-syn 

and TH levels depending on the model system utilized and mode of 

administration. PA treatment alone in differentiated mouse dopaminergic neurons 

leads to a decrease in α-syn and TH protein content. In m-Thy1 and B6D2 mice a 

PA-enriched diet increases both α-syn and TH protein and mRNA expression. 

The diet does not affect biogenic amine content in B6D2 mice but significantly 

changes dopamine and serotonin levels in m-Thy1 mice relative to control fed 

animals. In C57Bl/6 mice treated with MPTP a PA-enriched diet decreases α-syn 

and increases TH and pS40TH protein levels. It also rescues motor function and 

increases survival of dopaminergic neurons.
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Figure 48.  Summary figure. Human Dopaminergic neurons were treated with 

27-OHC. (1) Treatment activated LXR receptors, (2) activated 
LXRs did not effect SNCA mRNA, (3) LXR agonistic and 
antagonistic treatments did not effect α-syn protein levels, (4) 
decreased HSP70 protein levels, (5) decreased HSP70 protein 
levels may be involved in the accumulation of α-syn protein via 
diminished degradatory pathway functions, (6) decreased HSP70 
may be involved in proteasomal dysfunction, (7) 27-OHC 
decreased proteasomal function which leads to (8) increased α-syn 
protein levels. 2. B6D2 mice were fed a PA-enriched diet. The PA-
enriched diet (9) increased SNCA mRNA, (10) increased α-syn 
protein levels, (11) increased TH mRNA, (12) increased TH protein 
levels, (13) increased pS40TH protein levels. m-Thy1 α-syn mice 
were fed a PA-enriched diet. The PA-enriched diet (14) increased 
SNCA mRNA, (15) increased α-syn protein levels, (16) increased 
TH mRNA levels, (17) increased TH protein levels, (18) increased 
pS40TH protein levels, and (19) increased 5-HT content and 
decreased DA content. 3a. Mouse dopaminergic neurons were 
treated with PA. Treatment decreased SNCA mRNA (20) and α-syn 
protein levels (21). Treatment increased TH mRNA levels (22) and 
decreased TH protein levels (23). 3b. C57BL/6 mice were fed a PA-
enriched diet and subjected to MPTP injections. The PA-enriched 
diet rescued motor function (24), decreased α-syn protein levels 
(25), increased TH protein levels (26), increased pS40TH protein 
levels (27), and increased DA neuron survival (28). 
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