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ABSTRACT
Many methods have been developed to infer reciprocal relations between longitudinally observed 
variables. Among them, the general cross-lagged panel model (GCLM) is the most recent development 
as a variant of the cross-lagged panel model (CLPM), while the random-intercept CLPM (RI-CLPM) has 
rapidly become a popular approach. In this article, we describe how common factors and cross-lagged 
parameters included in these models can be interpreted, using a unified framework that was recently 
developed. Because common factors are modeled with lagged effects in the GCLM, they have both direct 
and indirect influences on observed scores, unlike stable trait factors included in the RI-CLPM. This 
indicates that the GCLM does not control for stable traits as the RI-CLPM does, and that there are 
interpretative differences in cross-lagged parameters between these models. We also explain that 
including such common factors as well as moving-average terms in the GCLM makes this interpretation 
very complicated.

Many researchers aim to uncover reciprocal (or, mutual or 
prospective) relations between longitudinally observed vari-
ables, and we have seen an increased number of such studies 
in the behavioral sciences. For example, during the past year 
more than 1,000 published psychology papers have dealt with 
this type of relation.1 For this analytic purpose, the use of the 
cross-lagged panel model (CLPM) and estimation via struc-
tural equation modeling (SEM) have been a standard approach 
for decades in the behavioral sciences. In this model, a cross- 
lagged coefficient, which indicates a path from one variable 
measured at a time point t � 1 to another measured at time 
point t, is a key parameter. Many alternatives to the CLPM 
have been proposed in various disciplines using SEM 
approaches (see Orth et al., in press; Usami, Murayama et al., 
2019). Notably, in the last few years the random-intercept 
CLPM (RI-CLPM; Hamaker et al., 2015) has rapidly become 
a popular approach among psychologists, reaching more than 
600 citations on Google Scholar as of August 2020. A major 
strength of this model is that it can account for stable trait 
factors that control for stable individual differences, allowing 
researchers to infer within-person relations between variables.

Usami, Murayama et al. (2019) proposed a unified frame-
work to clarify the mathematical and conceptual similarities 
and differences among various longitudinal models. This fra-
mework revealed that existing SEM-based longitudinal models 
can be classified according to whether the model posits unique 
factors and/or (dynamic) residuals, and what types of common 

factors are used to model changes. They argued that the latter is 
essential to understanding how cross-lagged parameters can be 
interpreted in each model, and showed from the viewpoint of 
a potential outcome (or counterfactual) approach (the Rubin 
causal model; Rubin, 1974) that including stable trait factors as 
in the RI-CLPM is mathematically equivalent to controlling for 
latent (unobserved) time-invariant confounders.

Although longitudinal designs have numerous advantages 
over cross-sectional designs (e.g., McArdle & Nesselroade, 
2014), the issue of causal inference becomes complicated and 
challenging in general for longitudinal studies, because research-
ers must effectively account for time-varying and time-invariant 
confounders. For this reason, efforts by researchers to devise 
a better methodology are continuing (e.g., Asparouhov et al., 
2018; Hamaker et al., 2015; Imai & Ratkovic, 2015; Robins, 1999; 
Robins & Hernán, 2009; Zyphur et al., 2020a).

Among such methodologies, the general cross-lagged panel 
model (GCLM; Zyphur et al., 2020a, 2020b) is a recent variant of 
the CLPM. This model was not covered in the discussion of 
Usami, Murayama et al. (2019). The GCLM as a SEM-based 
approach assumes (time-varying) unit effects as well as moving 
average (MA) and cross-lagged moving average (CLMA) terms, 
aiming to increase the range of dynamic processes that can be 
modeled. Zyphur et al. (2020b) discuss the relation between the 
GCLM and other longitudinal models such as the latent growth 
model (LGM; Meredith & Tisak, 1984, 1990) and the autoregres-
sive latent trajectory (ALT) model (Bollen & Curran, 2004, 2006; 
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Curran & Bollen, 2001). Many researchers have shown interest in 
applying the GCLM, including more than 10 citations on Google 
Scholar as of August 2020 (e.g., Bollmann, Rouzinov, Berchtold, & 
Rossier, 2019; Oswald, 2019; Zhang et al., 2019).

This article aims to elucidate how common factors and cross- 
lagged parameters included in the GCLM can be interpreted 
using the unified framework, and to highlight conceptual and 
mathematical differences among the GCLM, the RI-CLPM, and 
other longitudinal models. Despite interpretative differences 
existing in cross-lagged parameters among models, it has long 
been common practice for researchers to run a single model 
(typically, the CLPM) and evaluate its cross-lagged relations 
without considering potential alternative models (Usami, Todo 
et al., 2019). This article should better reveal the strengths and 
potential weakness of the GCLM over other alternatives, helping 
researchers to seek better methodologies while minimizing risk 
of wrong conclusions regarding reciprocal effects.

Importantly, we show that the mathematical relation 
between the RI-CLPM and the GCLM as described in Zyphur 
et al. (2020b, p. 13) requires correction, and that there are 
interpretative differences in cross-lagged parameters and com-
mon factors in these models. Specifically, because common 
factors are modeled with lagged effects in the GCLM, they 
have both direct and indirect influences on observed scores, 
meaning that the GCLM does not control for stable traits as 
does the RI-CLPM. We will also show that including unit 
effects as well as moving average terms in the GCLM greatly 
complicates the interpretation of cross-lagged parameters.

In the next section, we provide a brief introduction for the 
GCLM after a brief overview of some existing models: the RI- 
CLPM, the LGM, and the ALT model. In the third section, we 
introduce the unified framework (Usami, Murayama et al., 
2019). Readers who are already familiar with these models 
and the framework may skip these two sections. In the fourth 
section, we discuss how the GCLM can be characterized using 
the unified framework, showing interpretative differences in 
common factors and cross-lagged parameters from the RI- 
CLPM and other models. A conceptual diagram as well as 
path diagrams of models are also provided to further clarify 
relations between the models. The fifth section presents an 
empirical example to demonstrate how choice of the analysis 
model might lead to different conclusions about reciprocal 
relations. The sixth section briefly contrasts these SEM-based 
approaches with potential alternatives to effectively account for 
the influences of time-varying confounders. The final section 
presents our conclusions and some areas for future research.

Existing models

We first give an overview of the RI-CLPM, the LGM, and the 
ALT model, and then introduce the GCLM.

Random intercept cross-lagged panel model (RI-CLPM)

Throughout this article we assume that researchers are interested 
in reciprocal relations between two variables X and Y . Let xit and 

yit be the measurements at time point t (1 . . . t . . . T) for person i 
(1 . . . i . . . N). In the RI-CLPM, xit and yit are first modeled as 

xit ¼ μxt þ Ixi þ x�it
yit ¼ μyt þ Iyi þ y�it:

(1) 

Here, μxt and μyt are the temporal group means at time point t 
(i.e., EðxitÞ ¼ μxt, EðyitÞ ¼ μyt). The terms Ixi and Iyi are (time- 
invariant) stable trait factors (alternatively, random intercepts) 
that represent a person’s trait-like deviations from the tem-
poral group means. Trait factors Ixi and Iyi have means of 0 and 
a variance–covariance matrix. By accounting for stable trait 
factors for each person, x�it and y�it represent temporal devia-
tions from the means of that person because they are sub-
tracted from the expected scores of person i (i.e., 
μxit ¼ μxt þ Ixi and μyit ¼ μyt þ Iyi). Accordingly, in the RI- 
CLPM, the time series x�it and y�it can be considered as within- 
person fluctuation. Due to this statistical property in temporal 
deviations, at t ¼ 1 the initial deviation terms (x�i1 and y�i1) are 
assumed to be uncorrelated with stable trait factors. Using 
these within-person deviation terms, in the RI-CLPM the reci-
procal relations are modeled for t � 2 as 

x�it ¼ βxx�iðt� 1Þ þ γxy�iðt� 1Þ þ dxit

y�it ¼ βyy�iðt� 1Þ þ γyx�iðt� 1Þ þ dyit;
(2) 

where βx and βy are autoregressive parameters. γx and γy are 
cross-lagged parameters, which are key for inferring recipro-
cal relations between the variables.2 In t ¼ 1, the initial states 
xi1 and yi1 are modeled as exogenous variables (i.e., their 
variances and covariance are assumed). The residuals dxit 
and dyit are typically assumed to be normally distributed 
and correlated. If stable trait factors are omitted (i.e., if 
Ixi ¼ Iyi ¼ 0), this version of the RI-CLPM is mathematically 
equivalent to the CLPM. The RI-CLPM is identified if two or 
more variables have been measured at three or more time 
points, whereas the CLPM requires only two time points (in 
which case it is saturated).

Because the RI-CLPM separates within-person fluctuations 
(temporal deviations) from stable between-person differences 
(stable trait factors) over time, cross-lagged relations in 
Equation 2 can be considered as those pertaining to a process 
that takes place at the within-person level. Therefore, in the RI- 
CLPM, γx and γy can be interpreted as quantities that express 
the extent to which the two variables influence each other 
within persons. Hamaker et al. (2015) argued that parameter 
estimates in the CLPM conflate between-person and within- 
person processes, and that this model provides inaccurate 
estimates for within-person reciprocal effects as a consequence.

Equations (1) and (2) are the formulation that were used in 
Hamaker et al. (2015). However, there is another formulation 
of the (RI-)CLPM if intercepts (α) are included in the lagged 
regressions (Equation 2) instead of excluding temporal group 
means (μ) in Equation (1): 

xit ¼ Ixi þ x�it; yit ¼ Iyi þ y�it 

2Note that the original introduction in Hamaker et al. (2015) assumed time-varying autoregressive and cross-lagged parameters, but we assume here, without loss of 
generality, time-invariant parameters to keep the discussion concise.
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x�it ¼ αxt þ βxx�iðt� 1Þ þ γxy�iðt� 1Þ þ dxit;

y�it ¼ αyt þ βyy�iðt� 1Þ þ γyx�iðt� 1Þ þ dyit:
(3) 

α and μ are not mathematically identical unless T ¼ 2, because the 
former is modeled jointly with lagged effects and thus the influ-
ences of effects feed forward through the lagged relations. For 
example, expected values for X and Y at t ¼ 3 can be calculated 
by substituting the relations x�i2 ¼ αx2 þ βxx�i1 þ γxy�i1 þ dxi2 and 
y�i2 ¼ αy2 þ βyy�i1 þ γyx�i1 þ dyi2 into the equations x�i3 ¼
αx3 þ βxx�i2 þ γxy�i2 þ dxi3 and y�i3 ¼ αy3 þ βyy�i2 þ γyx�i2 þ dyi3. 
From this procedure, mathematical relations between α (in 
Equation (3)) and μ (in Equation (1)) can be expressed as 

Eðxi3Þ ¼ μx3 ¼ αx3 þ βxαx2 þ γxαy2
Eðyi3Þ ¼ μy3 ¼ αy3 þ βyαy2 þ γyαx2:

(4) 

By the same procedure, for t ¼ 4, we can derive the relations 
between α and μ as 

Eðxi4Þ ¼ μx4 ¼ αx4 þ βxαx3 þ γxαy3 þ ½βxðβxαx2 þ γxαy2Þ

þγxðβyαy2 þ γyαx2Þ�

Eðyi4Þ ¼ μy4 ¼ αy4 þ βyαy3 þ γyαx3 þ ½βyðβyαy2 þ γyαx2Þ

þγyðβxαx2 þ γxαy2Þ�:

(5) 

Note that numbers of parameters are independent of the choice 
of α or μ, and this choice does not influence the estimation 
results of other parameters, such as β and γ.

Latent growth model (LGM)

A bivariate version of the (linear) LGM can be expressed as 

xit ¼ Ixi þ ðt � 1ÞSxi þ �xit
yit ¼ Iyi þ ðt � 1ÞSyi þ �yit:

(6) 

Here, Ixi and Iyi are intercept factors and Sxi and Syi are (linear) 
slope factors. The values �xit and �yit are unique factors (or 
measurement errors). In the LGM literature, I and S are often 
called growth factors, and nonzero factor means (as well as 
variances and covariances) are assumed.

The main difference between the LGM and the RI-CLPM is 
that while the LGM explicitly models mean growth trajectories 
via the intercept and slope factor means, this model instead 
assumes there are no lagged effects. In other words, in the RI- 
CLPM temporal group means (μ) play a role in capturing mean 
growth trajectories without making an explicit modeling 
assumption (e.g., that growth trajectories are linear); instead, 
(within-person) reciprocal relations are modeled using lagged 
effects as well as stable trait factors.

Autoregressive latent trajectory (ALT) model

The ALT model was proposed by Curran and Bollen (2001), 
aiming to synthesize the traditions of the CLPM and the LGM. 
The bivariate (linear) ALT model can be expressed as 

xit ¼ Axi þ ðt � 1ÞBxi þ βxxiðt� 1Þ þ γxyiðt� 1Þ þ dxit
yit ¼ Axi þ ðt � 1ÞByi þ βyyiðt� 1Þ þ γyxiðt� 1Þ þ dyit:

(7) 

As in the LGM, temporal group means (μ) are not included. 
Instead, common factors A and B play a role in describing 
growth trajectories (i.e., A and B have nonzero factor means). 
As before, βx and βy are autoregressive parameters, γx and γy 
are cross-lagged parameters, and dxit and dyit are residuals. The 
ALT is identified if two or more variables have been measured 
at four or more time-points when stationarity of parameters is 
assumed, while five or more time points are required under 
a non-stationarity assumption.

Obviously, the main difference between the ALT model and 
the LGM is that the former assumes lagged effects, as in the RI- 
CLPM. However, as we will see later, the presence of lagged 
effects causes the interpretations of common factors A and B in 
the ALT model to differ from those of growth factors I and S in 
the LGM.

General cross-lagged panel model (GCLM)

The GCLM was proposed as a generalization of the CLPM by 
including two aspects: (1) stable trait factors (i.e., unit effects), 
and (2) MA and CLMA terms (Zyphur et al., 2020a).3 The 
latter idea was motivated by vector autoregressive moving 
average (VARMA) models (Box et al., 2008; Browne & 
Nesselroade, 2005; as cited in Zyphur et al., 2020a), which 
helps to expand the range of dynamic processes that can be 
modeled.

For the former idea, Zyphur et al. (2020a) cited the work 
of Hamaker et al. (2015) and noted the necessity of account-
ing for stable trait factors from the view of causal inference: 
“[b]y failing to model stable factors, they will be confounded 
with the system dynamics that should be reflected by AR 
and CL terms” (p. 8). Specifically, Hamaker et al. (2015) 
argued that parameter estimates in the CLPM conflate 
between-person and within-person processes, while the RI- 
CLPM is an alternative model that can separate within- 
person processes from stable between-person differences. 
Therefore, inference of within-person reciprocal (as well as 
causal) effects by including stable trait factors, as in the RI- 
CLPM, was one of the central aims for Zyphur and collea-
gues in developing the GCLM.

Without loss of generality, here we can focus on a GCLM 
that assumes first-order lags for autoregressive and cross- 
lagged terms as well as for MA and CLMA terms. Zyphur 
et al. (2020a) called this version of the GCLM the AR(1)MA 
(1)CL(1)CLMA(1) model (the numbers in parentheses indicate 
lag orders), which can be expressed as4 

xit ¼ αxt þ λxtBxi þ βxxiðt� 1Þ þ γxyiðt� 1Þ þ δxdxiðt� 1Þ

þζxdyiðt� 1Þ þ dxit

yit¼ αyt þ λytByi þ βyyiðt� 1Þ þ γyxiðt� 1Þ þ δydyiðt� 1Þ

þζydxiðt� 1Þ þ dyit;

(8) 

3Zyphur et al. (2020a) used the term “stable factors” rather than “stable trait factors.”
4For consistency between expressions of the introduced models, and to clarify the meanings of parameters and common factors, here we use symbols different from 

those in Zyphur et al. (2020ab). Specifically, in this article we use symbols λxt , Bxi , γx , ζx , and dxit , instead of using λðxÞt , ηðxÞi , βðxÞy , δðxÞy , and uðxÞit , respectively.
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for t � 3. The terms αxt and αyt are occasion-specific intercepts or 
occasion effects. As before, βx and βy are (first-order) autoregres-
sive parameters, and γx and γy are (first-order) cross-lagged 
parameters. The terms Bxi and Byi are (unit-specific) common 
factors, which Zyphur et al. (2020a, 2020b) called unit effects or 
stable (trait) factors. The means of these factors are set to zero. In 
addition, although not explicitly stated in Zyphur et al. (2020a, 
2020b), these factors are assumed to be uncorrelated with the 
initial states (xi1 and yi1), though this assumption can be relaxed. 
λxt and λyt are weights or occasion-specific factors loadings, 
expressing changes in the effects of common factors over time. 
We will later discuss the meanings of the common factors (as well 
as cross-lagged parameters) in the GCLM.

The terms δx and δy indicate MA effects, and ζx and ζy are 
CLMA effects. They are included to make observations a direct 
function of past impulses (i.e., residuals dðt� 1Þ). In this version of 
GCLM, the short-run persistence for a variable becomes AR+MA, 
and the short-run effect of one variable on another becomes CL 
+CLMA. Zyphur et al. (2020a, p. 12) argued that past impulses 
dyiðt� 1Þ and dxiðt� 1Þ impact xit and yit via both CL and CLMA 
paths, respectively, because dyiðt� 1Þ and dxiðt� 1Þ are the compo-
nents of yiðt� 1Þ and xiðt� 1Þ. Therefore, this is akin to estimating an 
effect of dyiðt� 1Þ and dxiðt� 1Þ on xit and yit as the short-run effect by 
γx þ ζx and γy þ ζy, again, respectively (Zyphur et al., 
2020a, p. 12).

This version of the GCLM (the AR(1)MA(1)CL(1)CLMA(1) 
model) can be extended straightforwardly by including second- or 
higher-order terms. For example, we can include the additional 
terms βx2xiðt� 2Þ and δx2dxiðt� 2Þ for explaining xit , and βy2yiðt� 2Þ
and δy2dyiðt� 2Þ for explaining yit . This version of the GCLM can be 
notated as AR(2)MA(2)CL(1)CLMA(1). The AR(1)MA(1)CL(1) 
CLMA(1) model fixing occasion-specific factor loadings as 
λxt ¼ λyt ¼ 1, which is applied in an empirical example below, is 
identified if two or more variables have been measured at three or 
more time-points when stationarity of parameters is assumed, 
while four or more time points are required under a non- 
stationarity assumption.

We can find mathematical relations between the GCLM and 
some of the longitudinal models we previously introduced. For 
example, if we set the weights of B as λxt ¼ λyt ¼ t � 1 and 
exclude the intercepts (i.e., αxt ¼ αyt ¼ 0) as well as MA and 
CLMA terms (i.e., δx ¼ δy ¼ ζx ¼ ζy ¼ 0), and then include an 
additional common factor (A) whose weight is fixed to one, this 
version of the GCLM is mathematically equivalent to the ALT 
model. Likewise, by setting the weights of B as λxt ¼ λyt ¼ t � 1 
and excluding intercepts and all lagged effects (set the AR, CL, 
MA, and CLMA terms to zero), and then instead including one 
additional common factor whose weight is fixed to one, this 
version of the GCLM is mathematically equivalent to the LGM. 
In the latter comparison, because no lagged effects are assumed to 
be present, the common factor (B) in the GCLM plays a similar 
role as the growth factor (S). In the former comparison, because 
AR and CL effects are still present in the GCLM (or the ALT 
model), the common factor (B) does not play the role as the 
growth factor (S) in the LGM. This is why we use the notation B 
(rather than S) to express common factors in the GCLM. This 

point is closely related to how we should interpret the common 
factors and cross-lagged parameters in each model. We revisit this 
issue later in more detail.

The relation between the CLPM and the GCLM is more 
obvious: excluding MA and CLMA terms as well as common 
factors (i.e., unit effects) from the GCLM reduces it to the 
CLPM. Therefore, the CLPM is a special case of the GCLM. This 
point might make us wonder whether the relation between the RI- 
CLPM and the GCLM is also simple. In fact, Zyphur et al. (2020b, 
p. 13) explain that a variant of the RI-CLPM (a special case of the 
RI-CLPM that assumes specific weights (time-varying effects) for 
stable trait factors I) is equivalent to the GCLM with MA and 
CLMA terms eliminated. However, because lagged effects (i.e., the 
AR and CL terms) are present and they are jointly modeled with 
common factors B in the GCLM, even if we exclude MA and 
CLMA terms and fix the factor loadings to one, this version of the 
GCLM is not mathematically equivalent to the RI-CLPM, in which 
common factors (stable trait factors I) are separately (rather than 
jointly) modeled with lagged effects (i.e., Equations (1) and (2)). 
Therefore, common factors (B) included in the GCLM cannot be 
interpreted as the stable trait factors (I) in the RI-CLPM. We 
discuss this point in detail using the unified framework (Usami, 
Murayama et al., 2019) described in the next section.

Unified framework and specifications of existing 
longitudinal models

Unified framework

Usami, Murayama et al. (2019) provides a unified statistical frame-
work that clarifies mathematical and conceptual relations among 
diverse SEM-based longitudinal models to examine reciprocal 
effects, which can be specified through this framework as particu-
lar cases. Formulation of the unified framework consists of three 
sets of equations, which Usami, Murayama et al. (2019) called 
measurement equations, decomposition equations, and dynamic 
equations.

Measurement equations. The first set of equations can be 
used to separate the latent true scores from unique factors (or 
measurement errors) as 

xit ¼ fxit þ �xit
yit ¼ fyit þ �yit:

(9) 

These unique factors are typically assumed to be normally dis-
tributed and possibly correlated. Among the models we have 
introduced, the LGM assumes unique factors. The GCLM as well 
as the (RI-)CLPM and the ALT model assume residuals d in the 
lagged regressions, but they do not account for the presence of 
unique factors (or measurement errors) in their formulations. 
Some of the longitudinal models that include cross-lagged para-
meters (e.g., the stable trait autoregressive trait and state 
(STARTS) model; Kenny and Zautra (1995, 2001); and latent 
change score (LCS) model; Hamagami and McArdle (2001); 
McArdle and Hamagami (2001) assume unique factors.

Though the inclusion of unique factors is desirable on con-
ceptual grounds, it can easily lead to estimation problems due to 
the strong dependency among the estimated parameters (Usami, 
Murayama et al., 2019). Notably, the STARTS model, in which 
both stable trait factors and unique factors are assumed, often 
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suffers from improper solutions (e.g., Hamaker et al., 2015; 
Usami, Todo et al., 2019), and a potential solution using 
Bayesian estimation has been recently investigated (Lüdtke et al., 
2018). Usami, Todo et al. (2019) provide a deeper discussion 
about improper solutions when applying the STARTS model 
through a simulation study that considers the presence of model 
misspecifications. Orth et al. (in press) also compared the behavior 
of several longitudinal models in ten datasets, empirically showing 
that CLPM and the RI-CLPM converged in every sample, whereas 
the other (ALT, LCS, and STARTS) models frequently failed to 
converge or did not converge properly.

Decomposition equations. The second set of equations allow 
for decomposition into an individual deterministic trend and 
a temporal deviation from this individual trend, denoted as f �xit 
and f �yit . The individual deterministic trend can depend on the 
temporal group means μxt and μyt and/or on the random inter-
cepts and (linear) slopes (i.e., Ixi, Iyi, Sxi, and Syi). Thus, we have 

fxit ¼ ½μxt þ fIxi þ ðt � 1ÞSxig� þ f �xit
fyit ¼ ½μyt þ fIyi þ ðt � 1ÞSyig� þ f �yit:

(10) 

Importantly, as we will show later, the common factors 
included in the decomposition equations (i.e., I and S) have 
only direct effects on f , indicating these influences do not feed 
forward to later time points. Thus, these common factors can 
be characterized as stable trait (if S is omitted as in the RI- 
CLPM) or growth factors (i.e., random intercepts and (linear) 
slope factors as in the LGM).

Dynamic equations. Finally, the dynamics of the processes 
are modeled with the dynamic equations, which include the 
lagged terms as autoregressive parameters βx and βy and cross- 
lagged parameters γx and γy along with the (dynamic) residuals 
dxit and dyit. In addition, they also include the common factors 
A and B, which are called accumulating factors in Usami, 
Murayama et al. (2019). This gives 

f �xit ¼ fAxi þ ðt � 1ÞBxig þ βxf �xiðt� 1Þ þ γxf �yiðt� 1Þ þ dxit

f �yit ¼ fAyi þ ðt � 1ÞByig þ βyf �yiðt� 1Þ þ γyf �xiðt� 1Þ þ dyit:
(11) 

Although these equations may look very similar to the ALT 
model (Equation (7)), dynamic equations are defined to explain 
temporal deviations ðf �Þ rather than observed scores. Because all 
terms in the dynamic equations contribute to the lagged pre-
dictors, their influences feed forward through the lagged rela-
tions and accumulate at later time points. This implies that the 
accumulating factors A and B as well as (dynamic) residuals d 
have direct and indirect effects on f �, and thus on the observed 
scores. In contrast, the effects of stable trait or growth factors (I 
and S) are temporal and they have only direct effects on scores: 
their influences do not feed forward through the lagged relations 
and do not accumulate at later time points (Usami, Murayama 
et al., 2019). As we will discuss later, the choice to include 
accumulating factors (A and/or B) or trait/growth factors (I 
and/or S) in the model makes a difference in how we control 
(unobserved) confounders, resulting in different interpretations 
of the cross-lagged parameters in each model.

Note that we cannot apply this unified model to longitudi-
nal data because it would be unidentified due to overparame-
terization. The aim of introducing this framework is to provide 

a general structure that helps to relate the many diverse mod-
eling approaches (Usami, Murayama et al., 2019). Another 
important point is that in this framework MA and CLMA 
terms were not originally included, though extending the fra-
mework to include them is not difficult.

Specification of longitudinal models based on the unified 
framework

Using the unified framework presented above we can easily see 
that there are components that may or may not be included in the 
model. Here we explain how the longitudinal models we have 
introduced so far can be expressed using the unified framework.

First, the RI-CLPM can be expressed within the unified 
framework as 

xit ¼ fxit; yit ¼ fyit 

fxit ¼ μxt þ Ixi þ f �xit; fyit ¼ μyt þ Iyi þ f �yit (12) 
f �xit ¼ βxf �xiðt� 1Þ þ γxf �yiðt� 1Þ þ dxit;

f �yit ¼ βyf �yiðt� 1Þ þ γyf �xiðt� 1Þ þ dyit;

by excluding unique factors �, slope factors S, and accumulat-
ing factors A and B in the unified framework. As we have 
explained, because in the RI-CLPM the common factors (i.e., 
stable trait factors) are modeled separately (rather than jointly) 
from lagged effects (i.e., Equations (1) and (2)), they have only 
direct effects on observed scores.

The (linear) LGM can be expressed as 

xit ¼ fxit þ �xit; yit ¼ fyit þ �yit 
fxit ¼ Ixi þ ðt � 1ÞSxi þ f �xit; fyit ¼ Iyi þ ðt � 1ÞSyi þ f �yit

(13) f �xit ¼ 0; f �yit ¼ 0;

by excluding temporal group means μ, accumulating factors A 
and B, lagged effects (i.e., setting βx ¼ βy ¼ γx ¼ γy ¼ 0) and 
(dynamic) residuals d from the unified framework.

One feature of the LGM is that it does not include lagged 
effects, implying that the distinction between the dynamic 
equations and other equations becomes meaningless in this 
special case. Therefore, if we temporarily disregard the original 
definition that terms included in the dynamic equations are to 
be modeled by lagged effects, we can find another expression of 
the (linear) LGM using different symbols: 

xit ¼ fxit; yit ¼ fyit 
fxit ¼ f �xit; fyit ¼ f �yit (14) 

f �xit ¼ Axi þ ðt � 1ÞBxi þ dxit; f �yit ¼ Ayi þ ðt � 1ÞByi þ dyit:

Conceptually, the common factors (A and B) and d included in 
this expression are to be interpreted as growth factors and 
unique factors, rather than as accumulating factors and 
(dynamic) residuals, respectively.

The ALT model can be expressed within the unified frame-
work as 

xit ¼ fxit; yit ¼ fyit 
fxit ¼ f �xit; fyit ¼ f �yit (15) 

f �xit ¼ fAxi þ ðt � 1ÞBxig þ βx f �xiðt� 1Þ þ γx f �yiðt� 1Þ þ dxit 
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Figure 1. Path diagrams of cross-lagged models. Notes. Residual covariances and covariances between common factors are omitted for clarity of presentation. In the 
LGM and the unified framework, unique factors (or measurement errors) are indicated by arrows only. Note that the means of common factors in the RI-CLPM and the 
GCLM are set to zero. In the GCLM, covariances between initial states and accumulating factors are not assumed.
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f �yit ¼ fAyi þ ðt � 1ÞByig þ βy f �yiðt� 1Þ þ γy f �xiðt� 1Þ þ dyit;

by excluding �, μ, and the growth factors I and S. We provide 
path diagrams of the existing models (expressed using the 
unified framework) as well as the unified framework itself in 
Figure 1. This should better clarify the properties of trait/ 
growth factors and accumulating factors: the former has only 
direct effects on observed scores and its influences are tem-
poral, while the latter has both direct and indirect effects and 
influences feed forward through the lagged relations and accu-
mulate at later time points.

Contrasting the GCLM and the RI-CLPM

Specification of the GCLM from the unified framework

As we have observed, one important key to understanding the 
differences among the models is whether common factors 
included in the model are modeled with lagged effects, that is, 
whether common factors are included in either the decompo-
sition equations (e.g., the RI-CLPM) or the dynamic equations 
(e.g., the ALT model).

With this point in mind, in this section we first show how 
the GCLM (i.e., Equation 8) can be expressed within the uni-
fied framework. Then we discuss the interpretative differences 
of cross-lagged parameters between the GCLM and the RI- 
CLPM, which was overlooked in Zyphur et al. (2020a, 
2020b). We also warn of the potential difficulty of its inter-
pretation in the GCLM.

Like the (RI-)CLPM and the ALT model, the GCLM does 
not assume unique factors (or measurement errors), meaning 
�xit ¼ �yit ¼ 0. Therefore, the expression in the measurement 
equations for the GCLM becomes 

xit ¼ fxit
yit ¼ fyit:

(16) 

In the GCLM, the common factors (B) are modeled jointly with 
lagged effects to explain observed scores (see Equation (8)), 
indicating that common factors included in this model can be 
considered as accumulating factors rather than stable trait or 
growth factors. Therefore, growth factors (I and S) in the 
decomposition equation can be excluded for the specification 
of the GCLM. Note that the original specification of the GCLM 
(Equation (8)) includes occasion-specific intercepts α. Recall 
that the mean structure in the model can be expressed by 
modeling the temporal group means μ (rather than α) as 
a function of α and lagged effects (Equations (4) and (5)). 
Therefore, we can express the decomposition equations for 
the GCLM using μ as 

fxit¼ μxt þ f �xit
fyit¼ μyt þ f �yit:

(17) 

As we have observed, the GCLM includes MA and CLMA terms 
to explain observed scores. However, these terms were not origin-
ally included in the unified framework. For concision, suppose we 
slightly extend the unified framework to include these terms in the 
dynamic equations and assume the weights (i.e., factor loadings) 

of accumulating factors B are fixed to t � 1 in the GCLM. Then, 
the dynamic equations for the GCLM can be expressed as 

f �xit ¼ ðt � 1ÞBxi þ βxf �xiðt� 1Þ þ γxf �yiðt� 1Þ þ δxdxiðt� 1Þ

þζxdyiðt� 1Þ þ dxit

f �yit ¼ ðt � 1ÞByi þ βyf �yiðt� 1Þ þ γyf �xiðt� 1Þ þ δydyiðt� 1Þ

þζydxiðt� 1Þ þ dyit;

(18) 

by excluding accumulating factors A. Note that the occasion- 
specific intercepts α, which are included in the original specifica-
tions of the GCLM (Equation (8)), are not modeled here because 
temporal group means μ in the decomposition equations already 
account for the mean structure. A path diagram of the GCLM 
within the unified framework is provided in Figure 1.

To better clarify the relations among models including the 
GCLM, a conceptual diagram is provided in Figure 2, which is 
an extension of the figure provided in Usami, Murayama et al. 
(2019). Note that we assumed time-invariant autoregressive 
and cross-lagged parameters in all the models here, though 
this assumption can be relaxed.

As we have observed, the GCLM and the ALT model com-
monly include accumulating factors, and a special case of the 
GCLM (in which weights are set to λ ¼ t � 1, intercepts as well 
as MA and CLMA terms are excluded as zero, and one addi-
tional common factor A is included instead) is mathematically 
equivalent to the ALT model. Thus, we express the (condition-
ally) nested relations between these two models in the diagram.

In sum, the GCLM can be viewed as a model in which all terms 
(excepts for temporal group means μ) are posited in the dynamic 
equations, as in the ALT model. Thus, it is again obvious that the 
common factors included in the GCLM can be viewed as accu-
mulating factors rather than as stable trait or growth factors. 
Therefore, one important conclusion of this article is that the 
common factors (unit effects) included in the GCLM cannot be 
interpreted as the stable trait factors used in the RI-CLPM, and 
that the GCLM does not control for the stable traits as in the RI- 
CLPM. In addition, the description that compares the RI-CLPM 
and the GCLM in Zyphur et al. (2020b, p. 13) is incorrect, because 
a variant of the RI-CLPM (i.e., a special case of the RI-CLPM that 
assumes specific weights for stable trait factors I) is not mathema-
tically equivalent to the GCLM with MA and CLMA terms 
eliminated.

Mathematical definition of stable traits and illustration of 
what the GCLM and the RI-CLPM control for

Psychometricians have used the terms “(stable) traits” and 
“within-person relations” in ambiguous ways when describing 
SEM-based longitudinal models, despite mathematical and inter-
pretative differences existing between them. Common factors that 
play a role as accumulating factors have been called by different 
names. The unified framework helps to resolve this problem and 
facilitate comparison of different models. In this subsection we 
provide a mathematical definition of stable traits, and mathema-
tically sketch what the GCLM and the RI-CLPM control for 
through common factors.

Inspired by the formulation of the RI-CLPM and the unified 
framework, Usami (2020) defined a stable trait factor (say, for 
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variable Y) for person i as the difference between expected value 
for an observation (the true score) of this person at time t 
(expressed as μyit) and the temporal group mean at time t (μyt) 
that are invariant over time as 

Iyi ¼ μyit � μyt; (19) 

where � 1< μyit <1 and � 1< μit <1. Note that 
EðIyiÞ ¼ Eðμyit � μytÞ ¼ μyt � μyt ¼ 0. Then, the within- 
person variability score y�it is also defined as the temporal 
deviation of person i at time t (i.e., the difference between an 
observation and its expected value) as 

y�it ¼ yit � μyit ¼ yit � ðμyt þ IyiÞ; (20) 

assuming that Eðy�itÞ=0 and Covðμyit; y
�
itÞ ¼ 0 (i.e., expected 

values of observations and within-person variability scores 
are uncorrelated). Then, Usami (2020) proposed a general 
procedure for estimating causal effects of time-varying treat-
ments or predictors on outcomes using within-person varia-
bility scores that are estimated by a factor analysis model.

As we have argued, the role of common factors critically 
depends on whether they are separated from lagged relations in 
the model. Because accumulating factors included in dynamic 
equations are not separated from the lagged relations in the 
model, they do not satisfy the relation in Equation (19) (i.e., the 
difference between the expected value of observation (true score) 
for person i and the temporal group mean is not invariant over 
time). To illustrate this point, we dig into the observed score of 

variable Y at time t (yit) in the RI-CLPM and the GCLM. In the 
RI-CLPM, yit can be re-expressed using Equations (1) and (2) as 

yit ¼ μyt þ Iyi þ y�it 
¼ μyt þ Iyi þ βyty

�
iðt� 1Þ þ γytx

�
iðt� 1Þ þ dyit 

¼ μyt þ Iyi þ βytðβyðt� 1Þy
�
iðt� 2Þ þ γyðt� 1Þx

�
iðt� 2Þ þ dyiðt� 1ÞÞ

þ γytðβxðt� 1Þx
�
iðt� 2Þ þ γxðt� 1Þy

�
iðt� 2Þ þ dxiðt� 1ÞÞ þ dyit: (21) 

This expression shows that stable trait factor Iyi has a direct effect 
on yit , since it does not show up in the lagged terms in Equation 
(21). As a result, the expected score for person i at t is 
μyit ¼ μyt þ Iyi. Thus, μyit � μyt ¼ ðμyt þ IyiÞ � μyt ¼ Iyi, indicat-
ing that the stable trait factor in the RI-CLPM satisfies the defini-
tion in Equation (19).

In contrast, in the GCLM, it can be shown that accumulat-
ing factor Byi has both direct and indirect effects on yit . Using 
Equation (8), we can re-express yit in the GCLM as 

yit ¼ αyt þ λytByi þ βyyiðt� 1Þ þ γyxiðt� 1Þ

þδydyiðt� 1Þ þ ζydxiðt� 1Þ þ dyit 

¼ αyt þ λytByi þ βyðαyðt� 1Þ þ λyðt� 1ÞByi þ βyyiðt� 2Þ

þγyxiðt� 2Þ þ δydyiðt� 2Þ þ ζydxiðt� 2Þ þ dyiðt� 1ÞÞ

þγyðαxðt� 1Þ þ λxðt� 1ÞBxi þ βxxiðt� 2Þ þ γxyiðt� 2Þ

þδxdxiðt� 2Þ þ ζxdyiðt� 2Þ þ dxiðt� 1ÞÞ þ δydyiðt� 1Þ

þζydxiðt� 1Þ þ dyit  

Figure 2. Conceptual diagram clarifying relations among cross-lagged models as an extension of Usami, Murayama et al. (2019). Notes. Single-headed arrows indicate 
nested relations, with dotted lines indicating relations that can be conditionally satisfied. Double-headed dotted lines indicate that models are statistically equivalent 
under particular circumstances. Note that we suppose time-invariant autoregressive and cross-lagged parameters in all models Hamaker (2005) compared the ALT 
model and the LCM-SR, and McArdle (2009) explained that the LGM (or, latent curve model: LCM) is a special version of the LCS model. Usami, Hayes & McArdle (2015) 
showed that the factor CLPM  (i.e., CLPM that includes measurement errors) is a special version of the TCS model (i.e., LCS model that assumes time-varying factor 
loadings for accumulating factors). GCLM: general cross-lagged panel model; CLPM: cross-lagged panel model; RI-CLPM: random-intercepts CLPM; STARTS: stable trait 
autoregressive traitand state; LCM-SR: latent curve model with structured residuals; ALT: autoregressive latent trajectory; LCS: latent change score; TCS: triple change 
score. GCLM: general cross-lagged panel model; CLPM: cross-lagged panel model; RI-CLPM: random-intercepts CLPM; STARTS: stable trait autoregressive trait and state; 
LCM-SR: latent curve model with structured residuals; ALT: autoregressive latent trajectory; LCS: latent change score; TCS: triple change score.
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¼ αyt þ ðλyt þ βyλyðt� 1ÞÞByi þ γyλxðt� 1ÞBxi þ βyðαyðt� 1Þ

þβyyiðt� 2Þ þ γyxiðt� 2Þ þ δydyiðt� 2Þ þ ζydxiðt� 2Þ

þdyiðt� 1ÞÞ þ δydyiðt� 1Þ þ ζydxiðt� 1Þ þ dyit: (22) 

This shows that the effect of the common factor Byi is different 
at each time point, and its function becomes increasingly more 
complex at later time points. In the first line, where yit and 
yiðt� 1Þ are contrasted, the effect of the accumulating factor 
appears as λytByi. However, in the third line, where yit and 
yiðt� 2Þ are contrasted, the effect becomes ðλyt þ βyλyðt� 1ÞÞByi, 
which reflects both a direct effect and an indirect effect of Byi. 
Bxi also impacts yit (γyλxðt� 1ÞBxi). Furthermore, the third line 
also suggests that the expected score for person i on variable Y 
at tð� 3Þ is a function of a) occasion-specific intercepts α, b) 
occasion-specific factor loadings λ, c) the common factors B, d) 
the lagged parameters β and γ, and e) the initial states yi1 and 
xi1. These suggest that the difference between the expected 
value of observation (true score) for person i and the temporal 
group mean is not equal to Byi and not invariant over time. 
Namely, the accumulating factor in the GCLM (or the ALT 
model) does not satisfy the definition in Equation (19). Zyphur 
et al. (2020a, p. 9) gave reasons for allowing the effect of 
accumulating factor B to vary over time (λt�λ), and the defini-
tion of stable trait factors Equation (19) might be expanded to 
allow such time-varying effects. Regardless of how we define 
stable traits, however, this observation reveals that mathema-
tical roles differ between stable trait factors in the RI-CLPM 
and the accumulating factors in the GCLM (or the ALT 
model), and that the GCLM (or the ALT model) does not 
control for stable traits as in the RI-CLPM.

Interpretation of cross-lagged parameters in the GCLM

Given the above, how can the cross-lagged parameters in the 
GCLM be interpreted, and how is this different from other models, 
such as the RI-CLPM? Zyphur et al. (2020a) explained how the 
range of dynamic processes that can be modeled increases by 
including MA and CLMA terms, and also discussed two threats 
to causal inference (trends and regime changes). However, they 
did not provide a clear explanation of how to interpret cross- 
lagged parameters in the GCLM. Below we discuss the potential 
difficulty of interpreting cross-lagged parameters in the GCLM 
from two aspects: including the accumulating factors, and the MA 
and CLMA terms. Here we partly refer to Usami, Murayama et al. 
(2019) for the former point.

Accumulating factors. As we have argued, the accumulating 
factors have both a direct effect and an indirect effect on out-
comes Equation (22), and the same is true even if occasion- 
specific factor loadings are fixed to 1 (λ ¼ 1). Therefore, the 
GCLM (or the ALT model) does not control for stable traits as 
in the RI-CLPM. Because accumulating factor B correlates with 
observations and its effect differs at each time point, one could 

say that the GCLM (or the ALT model) implicitly controls for 
unobserved time-varying confounders, and that those influ-
ences feed forward through lagged relations. However, one 
potential risk of the GCLM is that estimates of cross-lagged 
parameters are biased and cannot be interpreted as causal 
estimates unless influences of time-varying confounders are 
precisely expressed by the complex function of B and λ, as 
well as β and γ Equation (22). Correct specification of a highly 
structured model such as the GCLM might be a strong assump-
tion in general, and even minor model misspecifications can 
cause severely biased estimates of cross-lagged parameters.

Even if no model misspecification occurs, the assumption 
that the GCLM (or the ALT model) controls for unobserved 
time-varying confounders may be inappropriate for some 
instances, potentially leading to erroneous conclusions. 
Specifically, if individual differences in growth captured by 
accumulating factors in one of the observed variables is actually 
(in part) the result of growth in another observed variable, then 
using this model, which might cause unnecessary adjustment 
(i.e., overadjustment5) of growth, is likely to result in biased 
estimates of reciprocal (as well as causal) effects (Usami, 
Murayama et al., 2019). Namely, there is a great risk that 
accumulating factors wrongly account for individual differ-
ences in growth, resulting in biased estimates of reciprocal 
effects if such individual differences are considered to be con-
stituent components of these effects.6 More importantly, it is 
very difficult in general for researchers to precisely know what 
the accumulating factor B as a time-varying latent variable 
actually represents, causing interpretative difficulty of the 
cross-lagged parameters if this is included in the model.

In contrast, the RI-CLPM allows for a group-level trajectory 
(expressed as μt) that can take on any shape, and each person 
deviates from this trajectory by a constant distance (i.e., I). The 
reciprocal effects are then modeled between the residuals, that 
is, the deviations from the expected scores, without controlling 
for persons’ growths by slope (S) or accumulating factors (A 
and B). Hence, in this approach, stable trait factors can be 
clearly interpreted, and (time-varying) individual differences 
in growth remain in the reciprocal parts of the model, unlike in 
the GCLM (or the ALT model). However, if individual differ-
ences in growth are actually caused by unobserved time- 
varying confounders, failing to include them in the model 
may also cause biased estimates of cross-lagged parameters 
(Usami, Murayama et al., 2019).

In other words, the critical point of model selection and 
interpretation of cross-lagged parameters lies in what aspects 
are considered critical components of reciprocal or causal effects. 
If (time-varying) individual differences in growth trajectories are 
considered a critical component of these effects, then the RI- 
CLPM might be an appropriate choice (Usami, Murayama et al., 
2019). On the other hand, if researchers assume that the influ-
ences of unobserved time-varying confounders can be perfectly 
captured by accumulating factors, then the GCLM (or the ALT 

5We use the terms unnecessary adjustment or overadjustment to describe a variable that increases net bias and/or decreases precision, while some researchers use 
these to indicate only the latter meaning. See Schisterman et al. (2009) regarding this point.

6As a variant of the ALT model, we have seen the recent development of a latent variable-autoregressive latent trajectory (LV-ALT) model (Bianconcini & Bollen, 2018), 
which aims to provide a framework for comparing different longitudinal models and allows researchers to explore alternative structures to best model their 
longitudinal data. One may wish to apply the bivariate version of this model to evaluate reciprocal effects between variables. However, the risk that accumulating 
factors wrongly account for (time-varying) individual differences in growth remains in this model.
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model) might be a better choice. However, in many cases one 
can see that growth aspects are considered to be a critical com-
ponent of reciprocal or causal effects rather than mere unob-
served time-varying confounders, so choosing the GCLM (or the 
ALT model) might not be appropriate. This point implies that 
two primary analytic purposes of applying longitudinal models 
that include reciprocal relations-namely, inferring reciprocal 
effects between variables and modeling individual differences 
in growth trajectories by common factors-are intertwined 
(Usami, Murayama et al., 2019).

MA and CLMA terms. We have discussed the potential 
limitation of interpreting cross-lagged coefficients if accumulat-
ing factors are modeled as in the GCLM. However, this problem 
becomes more complicated in the GCLM because it assumes 
MA and CLMA terms in addition to accumulating factors.

(CL)MA terms are composed by (dynamic) residuals. The 
residuals mean that the components of the observed scores that 
cannot be explained by lagged effects (i.e., deviations of 
observed scores from temporal group means in the previous 
time point) as well as accumulating factors (i.e., unit effects). 
Considering also that the role of the residuals in general is to 
account for all sources of variation unexplained by the fitted 
model (e.g., possible model misspecification, unobserved con-
founders and (dynamic) errors), it is not surprepsilong that the 
exact meanings of (CL)MA terms (or residuals) are obscure 
and their interpretations are very difficult in general. This point 
makes interpretation of cross-lagged parameters much more 
difficult in the GCLM, and can also cause biased estimates 
because of overadjustment.

A critical point is that (dynamic) residuals in the CLMA 
terms are already accounted for as one component of temporal 
deviations in the CL term. Specifically, say dyðt� 1Þ, which is 
a component of yt� 1 in the CL term to explain xt , is also 
accounted for by the CLMA term. This implies that in the 
GCLM, the same residual d is accounted for twice. Likewise, in 
the unified framework expression for the GCLM (Figure 1d), f �xt 
is expressed by (i) the direct effect of dyðt� 1Þ (a path dyðt� 1Þ ! f �xt) 
and (ii) an indirect effect of dyðt� 1Þ (a path trace 
dyðt� 1Þ ! f �yðt� 1Þ ! f �xt). This redundancy can cause high corre-
lation between the CL term (yt� 1) and the CLMA term (dyðt� 1Þ). 
As a result, not only biases in cross-lagged parameter estimates 
but also multicollinearity (inflated standard errors) might arise.

In sum, accumulating factors and (CL)MA terms included in 
the GCLM increase the risks of bias, multicollinearity (inflated 
standard errors), and interpretative difficulty in cross-lagged para-
meters to estimate reciprocal or causal effects, even if no model 
misspecification occurs. Although the RI-CLPM is not a perfect 
procedure for every situation, if the model can be correctly speci-
fied and if time-varying confounders can be appropriately con-
trolled for, this choice better infers reciprocal or causal effects 
occurring at the within-person level. We revisit the issue of time- 
varying confounders from the view of causal inference later in this 
article.

Our goal in this article is not to suggest that researchers 
completely avoid using the model. The GCLM might be a good 
choice for researchers interested in building a useful linear 

model to predict observed scores, because this model can 
increase the range of dynamic processes that can be modeled. 
However, if the interpretation of cross-lagged parameters 
(inferring reciprocal effects) or controlling for stable traits 
(like in the RI-CLPM) is key in the application, applying the 
GCLM cannot be recommended.

An example using empirical data

This section presents an example using empirical data to show 
how estimates of reciprocal effects differ depending on model 
choice. Specifically, we focus on the GCLM and the RI-CLPM to 
illustrate (i) how differences in common factors included in the 
models, and (ii) how inclusion of (CL)MA terms in the GCLM 
influence estimates of reciprocal effects. In this example we inves-
tigate the reciprocal relation between adolescents’ exposure to 
smoking in movies (X) and their smoking intensity (Y), using 
data from the Minnesota Adolescent Community Cohort 
(MACC) Study 2000–2013. The MACC Study is a prospective 
cohort study designed to expand understanding of the transitional 
process from nonsmoking to smoking during adolescence and to 
examine the effect of state- and local-level tobacco prevention and 
control programs for youth in Minnesota (Choi, Forster, 
Erickson, Lazovich, & Southwell, 2012). For illustrative purposes 
we used a sample of 4,671 adolescents aged 15 to 20 years who 
were surveyed from every six months in most years of the survey. 
When participants responded to two surveys in a year, only 
response data from the first survey were used to construct the 
dataset of T ¼ 6. More detailed information about the study 
design and population in the MACC study is available in Choi 
et al. (2012) and from the website of the Inter-university 
Consortium for Political and Social Research.7 Usami, 
Murayama et al. (2019) used the same dataset to compare esti-
mates of reciprocal effects among various models, though they did 
not include the GCLM in this comparison. In this example we 
newly fit the GCLM to the dataset for illustrative purposes.

Exposure to smoking in movies and smoking intensity were 
assessed during each round of data collection. Participants were 
asked to report how often they saw actors and actresses smoking 
when they watched movies, with four response options: most of 
the time (4), some of the time (3), hardly ever (2) and never (1). 
The data also included an index for six levels of smoking inten-
sity, which was created by five measures (see Choi et al., 2012, for 
details). There were two sources of missing data, those missing 
by design and those by attrition. We used all available data when 
estimating parameters of the models, but we removed data for 
one participant with missing data for all variables at all time 
points. All analyses were conducted using the lavaan package 
(Rosseel, 2012) in R with the full information maximum like-
lihood estimation method. The lavaan source code used in this 
example is available in the Online Supplemental Materials.

To clarify the comparison between the models, in this 
example occasion-specific factor loadings are all fixed to 1 
(λxt ¼ 1 and λyt ¼ 1), and covariances between the first states 
(xi1 and yi1) and accumulating factors B were not assumed in 
the GCLM. We then fit two kinds of first-order GCLMs to the 

7https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36282
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dataset: AR(1)MA(1)CL(1)CLMA(1) and AR(1)CL(1). 
Comparison between these two GCLMs illustrates how inclu-
sion of the (CL)MA terms affects estimates of cross-lagged 
parameters in the GCLM. Because the number of parameters 
is the same and the kind of common factor included is the only 
difference between AR(1)CL(1) and the RI-CLPM, comparing 
estimates from these two models illustrates how choice of 
common factors included in the model affects estimates of 
cross-lagged parameters. In both the GCLMs and the RI- 
CLPM, we assume stationarity of parameters (e.g., equality of 
AR, CL, and CL(MA) effects and residual (co)variances over 
time). However, because the AR(1)MA(1)CL(1)CLMA(1) 
model resulted in an improper solution, we assumed non- 
stationarity of parameters for residual variances of X and 
residual covariances in this model.

Table 1 shows parameter estimates and fit indices from the 
RI-CLPM and the two GCLMs. The RI-CLPM showed non-
significant estimates for both cross-lagged parameters (expo-
sure to smoking in movies X did not predict later smoking 
intensity Y , and vice versa), while the two GCLMs showed 
significant estimates. The AR(1)MA(1)CL(1)CLMA(1) fit bet-
ter than did the other models, and resulted in significant 
estimates for both cross-lagged parameters. Note that this 
model also showed relatively larger standard errors, implying 
the influence of multicollinearity caused by correlations among 
accumulating factors (B), (lagged) observations (xiðt� 1Þ and 
yiðt� 1Þ), and (lagged) residuals (dxiðt� 1Þ and dyiðt� 1Þ).

This example clearly demonstrates the risk of drawing differ-
ent conclusions based on the cross-lagged parameters from dif-
ferent models. Focusing on model fit, the AR(1)MA(1)CL(1) 
CLMA(1) model would be the most appropriate for these data. 
Moreover, since model fits of the two GCLMs were much better 
than that of the RI-CLPM, it seems safe to conclude that there are 
omitted time-varying confounders affecting both observed 
variables.

As we have argued, however, cross-lagged parameters in the 
AR(1)MA(1)CL(1)CLMA(1) model are very difficult to interpret 
and also pose greater risks of bias in its estimates due to inclusion 
of (CL)MA terms and accumulating factors. If researchers are 
interested in estimating reciprocal or causal effects and can 
reasonably expect that influences of unobserved time-varying 

confounders can be perfectly expressed as accumulating factor 
B, choosing the estimation results from the AR(1)CL(1) model 
should be more reasonable than use of the AR(1)MA(1)CL(1) 
CLMA(1) model. In most cases, however, researchers are uncer-
tain regarding how the impacts of unobserved time-varying 
confounders shift over time. If longitudinal changes in smoking 
intensity and exposure to smoking in movies are considered 
critical components of reciprocal effects, AR(1)CL(1) is an inap-
propriate option, and the RI-CLPM could be an option. In this 
case, it would be reasonable to conclude that there are no sig-
nificant reciprocal effects between these variables. However, 
from the view of causal inference, we need to consider that 
their estimates of reciprocal effects in the RI-CLPM might be 
biased due to omitted time-varying confounders. To mitigate this 
risk, including observed time-varying confounders in this model 
should be a useful strategy, and this is discussed further in the 
next section.

Estimating causal effects by the RI-CLPM and recent 
potential outcome approaches

As we have argued, including accumulating factors and (CL)MA 
terms as in the GCLM should increase risk of bias in reciprocal or 
causal effect estimates. The RI-CLPM, which does not include 
these components, separates within-person fluctuations (temporal 
deviations) from stable between-person differences (stable trait 
factors) over time, and cross-lagged relations in Equation (2) can 
be considered as those pertaining to a process that takes place at 
the within-person level. From the view of the potential outcome 
approach, which is currently the standard framework for defining 
causal effects, within-person reciprocal effects estimated in the RI- 
CLPM can represent causal effects under assumption of no model 
errors and no unobserved confounders (see Usami, Murayama 
et al., 2019; Usami, 2020 for more details). If measurement errors 
(violation of the consistency assumption) are expected to be pre-
sent, using the STARTS model, which is a simple extension of the 
RI-CLPM to allow measurement errors, might be an option. 
However, see Usami, Todo et al. (2019) and Orth et al. (in press) 
for further discussion about improper solutions frequently appear-
ing in the STARTS model.

Table 1. Parameter estimates and model fit indices from different longitudinal models (N = 4,670).

Parameters and model fit indices

RI-CLPM GCLM

AR(1)MA(1)CL(1)CLMA(1) AR(1)CL(1)

Est. SE p Est. SE p Est. SE p

βy 0.700 0.012 0.000 0.708 0.028 0.000 0.525 0.016 0.000
γy −0.005 0.022 0.824 −0.181 0.044 0.000 −0.031 0.020 0.122
βx 0.166 0.011 0.000 0.273 0.025 0.000 0.142 0.010 0.000
γx −0.008 0.007 0.250 −0.083 0.013 0.000 −0.021 0.007 0.001
CFI 0.959 0.975 0.962
AIC 72224.166 72000.100 72181.582
BIC 72385.389 72238.710 72342.805
RMSEA [95% CI] 0.045 [0.042, 0.048] 0.039 [0.036, 0.043] 0.043 [0.040, 0.047]
SRMR 0.066 0.054 0.068
Degrees of freedom 65 53 65
Number of parameters 25 37 25

Note. Analysis result of the RI-CLPM is the same from Usami, Murayama et al. (2019). In the GCLM occasion-specific factors loadings were all fixed to 1, and covariances 
between the initial states and accumulating factor were not assumed. Because the AR(1)MA(1)CL(1)CLMA(1) model showed the improper solutions, the stationarity 
assumption was relaxed for residual variance of X and residual covariance. RI-CLPM random-intercept cross-lagged panel model; GCLM; general cross-lagged panel 
model; CFI comparative fit index; AIC Akaike information criterion; BIC Bayesian information criterion; RMSEA root mean square error of approximation; CI confidence 
interval; SRMR standardized root mean square residual.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 11



Regardless of which model we take, estimates of cross-lagged 
parameters are biased if there are omitted unobserved confoun-
ders. When time-varying observed confounders are available, 
a typical approach is to directly include them into the model like 
an analysis of covariance (ANCOVA). This approach requires 
assumptions of linearity and additivity of relations between out-
comes and confounders. Namely, even if observed confounders 
are included when applying the RI-CLPM (or the STARTS 
model), it requires correctly specified linear regressions to connect 
variables at the within-person level. However, the linearity that is 
typically assumed in path modeling and SEM has often been 
criticized in the causal inference literature (e.g., Hong, 2015).

To mitigate this problem, non-SEM approaches such as mar-
ginal structural models (MSMs; Robins, 1998, 1999; Robins et al., 
2000) or structural nested mean models (SNMMs; e.g., Robins, 
1994, 1999) with G-estimators are useful. They have been 
applied in epidemiology to estimate the causal effects of 
sequences of time-varying treatments or predictors 
Aðt� 1Þ ¼ ðAðt� 1Þ;Aðt� 2Þ; . . . ;A1Þ

t on outcomes Yt . Although 
these methods originally considered the situation where one is 
interested in evaluating a unidirectional relation (the effect of 
a treatment on an outcome) rather than reciprocal relations, they 
can be extended in a straightforward manner.

In MSMs, researchers specify a treatment assignment model 
f ðAðt� 1ÞjLðt� 1Þ Þ at time point t � 1 (and previous time points) 
to express the probability that one receives a certain level of 
treatment or predictors Aðt� 1Þ ¼ aðt� 1Þ using the history of 
observed confounders L

ðt� 1Þ ¼ ðLðt� 1Þ; Lðt� 2Þ; . . . ; L1Þ
t . Next, 

the inverse probability weights (IPW) required for estimating 
an outcome model f ðYtjAðt� 1Þ Þ are calculated using information 
of inverse probability 1=f̂ ðAðt� 1ÞjLðt� 1Þ Þ at time point t � 1 (and 
previous time points) under the assumption of no unobserved 
confounders or sequential ignorability. Causal effects are then 
estimated by fitting a weighted outcome model with an IPW 
estimator. Unlike ANCOVA, MSMs do not demand that 
researchers model the relation between outcomes and observed 
confounders. In general, MSMs can be easily understood and fit 
with standard, off-the-shelf software that allows for weights 
(Vansteelandt & Joffe, 2014). However, it is also well-known 
that MSMs can be highly sensitive to misspecification of the 
treatment assignment model, even when there is a moderate 
number of time points (e.g., Hong, 2015; Lefebvre et al., 2008). 
Imai and Ratkovic (2015) proposed a covariate balancing pro-
pensity score methodology for robust IPW estimation.

Although actual applications have been relatively infrequent, 
mainly due to a lack of the off-the-shelf software (however, see 
Wallace et al., 2017 as an exception), SNMMs with G-estimators 
are a better approach for handling violation of assumption of no 
unobserved confounders or sequential ignorability 
(Vansteelandt & Joffe, 2014). Specifically, by solving estimating 
equations constructed based on this assumption, consistent esti-
mates of causal parameters can be obtained when either 
a treatment assignment model or a model for outcome that 
would be observed if the treatment were stopped from 
a specific time can be correctly specified (the doubly robust 
property; see Vansteelandt & Joffe, 2014; Usami, 2020 for 
details). In addition, SNMMs can allow direct modeling of the 

interactions and moderation effects of treatments or predictors 
with observed confounders. Another advantage of SNMMs is 
that the variance of locally efficient IPW estimators in MSMs 
exceeds that of G-estimators in SNMMs, unless treatments or 
predictors and observed confounders are independent.

Note that observed confounders are typically included in 
applications of MSMs and SNMMs. That is, they do not often 
explicitly include latent variables or common factors like the stable 
trait factors. This implies that stable individual differences might 
not be adequately controlled for in usual applications of MSMs 
and SNMMs. Usami (2020) proposes a two-step analysis method 
for within-person variability scores-based causal inference to esti-
mate joint effects of time-varying treatments or predictors by 
controlling for stable traits as time-invariant unobserved confoun-
ders. In this method, within-person variability scores for each 
person Equation (20), which are disaggregated from stable traits 
of that person, are first calculated through a factor analysis model. 
Causal parameters are then estimated via a potential outcome 
approach, either MSMs or SNMMs, using calculated within- 
person variability scores. Through simulation and empirical appli-
cation, it was shown that the proposed method can recover causal 
parameters well and that causal estimates might be severely biased 
if one does not properly account for stable traits. It should be 
beneficial for researchers to take such non-SEM-based approaches 
as possible alternatives in future research, especially if they aim to 
effectively and flexibly control for time-varying confounders.

Conclusion

We discussed how common factors and cross-lagged parameters 
included in the GCLM can be interpreted using a unified frame-
work, highlighting the conceptual and mathematical differences 
among the GCLM, the RI-CLPM, and other longitudinal models. 
Our conclusions can be summarized as follows: (1) Common 
factors included in the GCLM are not stable trait factors (as 
included in the RI-CLPM), but are accumulating ones (as 
included in the ALT model), which have both direct and indirect 
influences on observed scores, meaning that the GCLM does not 
control for stable traits of persons as does the RI-CLPM. (2) 
Including accumulating factors as well as (CL)MA terms, which 
are main features of the GCLM, makes the interpretation of cross- 
lagged parameters very complicated in general. (3) Even if no 
model misspecification occurs, seriously biased estimates of cross- 
lagged parameters (and inflated standard errors) might be 
obtained in the GCLM when (time-varying) individual differences 
in the growth trajectories accounted for by accumulating factors 
are critical components of reciprocal or causal effects. (4) 
Although the GCLM might be an option if one is especially 
interested in predicting outcomes, applying this approach entails 
great risk if uncovering reciprocal or causal effects is the primary 
focus. (5) Although the RI-CLPM (and the STARTS model) is not 
a perfect procedure for every situation, if the model can be 
correctly specified and if time-varying confounders can be appro-
priately controlled for, this choice is better to infer reciprocal or 
causal effects that occur at a within-person level. Finally, (6) If one 
aims to effectively and flexibly control for time-varying confoun-
ders, the RI-CLPM (or the STARTS model) with ANCOVA 
approach is not the only option, and it is beneficial to take non 
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SEM-based approaches such as MSMs and SNMMs as possible 
alternatives. Table 2 summarizes our discussion of each model.

Notably, regarding the last point, SNMMs with G-estimators 
are a better approach for handling violation of assumption of no 
unobserved confounders or sequential ignorability, because of 
their doubly robust property. However, MSMs and SNMMs ori-
ginate from epidemiology and thus have not been broadly used in 
the behavioral sciences. In future studies, we plan to contrast these 
methods with various longitudinal models from both conceptual 
and mathematical viewpoints, and to introduce the within-person 
variability scores-based causal inference approach (Usami, 2020). 
Because estimation performance of these methods has not been 
exhaustively compared with the RI-CLPM (with an ANCOVA 
approach), this point should be investigated in future studies. We 
hope this corner and related future studies will help researchers 
choose better methodologies when aiming to uncover reciprocal 
or causal effects with minimal risk of obtaining wrong 
conclusions.
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