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ABSTRACT 
 

 The Borrelia burgdorferi sensu lato (s.l.) complex contains species 

carried by hard-shell ticks (Ixodes spp.) causing Lyme disease and related 

non-pathogenic species. Relapsing fever Borrelia includes both tick-borne 

(soft-shell, Ornithodoros spp.) and louse-borne species knowns to cause 

relapsing fever. A subgroup includes relapsing fever spirochetes carried by 

hard-shell ticks, including B. miyamotoi, an emerging pathogen. Despite 

bordering high-risk counties in Minnesota, little attention has been given to 

Lyme disease, B. burgdorferi, I. scapularis, or reservoirs in eastern North 

Dakota. Reports of B. burgdorferi and I. scapularis in North Dakota, however, 

prompted a more detailed examination. Through trapping Peromyscus and 

Myodes, five B. burgdorferi populations were obtained. We confirmed the 

presence of established, unique (nonclonal), and infectious B. burgdorferi 

populations in eastern North Dakota. Species of the B. burgdorferi s.l. 

complex possess two highly conserved hypothetical genes, bb0399 and 

bbb28, containing one of the most common protein motifs, ankyrin-repeat 

domains. The goal was to identify the function(s) of bb0399 and bbb28. Our 

hypothesis was BB0399 is an essential DNA binding protein and BBB28 is 

regulated by the Borrelia oxidative stress response regulator, BosR in 

response to unknown stimuli. Exposing B. burgdorferi to tert-butyl 

hydroperoxide increased transcription of bbb28 but not bb0399. Several 
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attempts to express recombinant BB0399 and BBB28 failed and the 

functionsof bb0399 and bbb28 remain unknown. B. miyamotoi is an 

emerging pathogen vectored by the same Ixodes spp. carrying and 

transmitting B. burgdorferi. B. miyamotoi binds human factor H in vitro. 

C57BL/6J Rag1-/- mice infected with a Japanese strain of B. miyamotoi, 

FR64b, developed a chronic infection, while both 2-4 and 6-8 week-old wild-

type C3H/HeN groups cleared B. miyamotoi. B. miyamotoi FR64b, normally 

vectored by I. persulcatus, was acquired by North American I. scapularis and 

maintained B. miyamotoi throughout the molting process from larvae to 

nymph, suggesting unlike other relapsing fever Borrelia, B. miyamotoi is not 

vector specific. 
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CHAPTER 1 

 
AN INTRODUCTION TO BORRELIA BURGDORFERI  

AND BORRELIA MIYAMOTOI 
 

 An array of viral, bacterial, and parasitic pathogens cause tick-borne 

diseases. Tick-borne pathogens are transmitted through the bite of an 

infected hard- or soft-shell tick belonging to four genera (Ixodes, 

Dermacentor, Amblyomma, and Ornithodoros) (1–3). This group of diseases 

include Lyme disease (Borrelia burgdorferi sensu lato), tick-borne relapsing 

fever (Borrelia), anaplasmosis (Anaplasma phagocytophilum), rickettsiosis 

(Rickettsia), babesiosis (Babesia), Powassan virus (Flavivirus), tick-borne 

encephalitis virus (Flavivirus), Colorado tick fever (Coltivirus), and Heartland 

virus (Phlebovirus) to name a few.  

Borrelia 
 

 Species of the B. burgdorferi sensu lato (s.l.) complex are primarily 

carried by Ixodes spp. (Ixodidae; hard shell). The s.l.  complex includes nine 

Borrelia spp. causing Lyme disease and approximately 11 non-pathogenic but 

genetically similar Borrelia spp. (Table 1.1) (4–16). Borrelia spp. that cause 

tick-borne relapsing fever (TBRF) are primarily carried by Ornithodoros spp. 

(Argasidae; soft shell) (Table 1.1). Relapsing fever Borrelia are genetically 

distinct from B. burgdorferi s.l. species but are genetically similar to each 

other (Fig. 1.1). 
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Table 1. 1.  Borrelia spp. confirmed to cause human disease and associated 

vectors. NA – North America, Eu – Europe, As – Asia, Af – Africa. 

Disease Causative agent(s) Vector(s) 

Lyme disease B. burgdorferi sensu 
stricto (s.s.) (NA, Eu) 

B. mayonii (NA) 
B. bissettii (NA, Eu) 
B. lusitaniae (Eu) 

B. valaisiana (Eu) 
B. afzelii (Eu, As) 

B. garinii (Eu, As) 
B. spielmanii (Eu, As) 
B. bavariensis (Eu, As; 

formerly B. garinii 
OspA serotype 4) 

I. scapularis (NA) 
I. pacificus (NA) 

I. ricinus (Eu, As) 
I. persulcatus (Eu, As) 

Tick-borne relapsing 
fever 

B. hermsii (NA) 
B. turicatae (NA) 

B. parkeri (NA) 
B. duttonii (Af) 
B. crocidurae (Af) 

B. hispanica (Eu, Af) 
B. latyshevi (As) 

B. persica (As, Af) 

O. hermsi (NA) 
O. turicata (NA) 

O. parkeri (NA) 
O. moubata (Af) 
O. erraticus; O. sonrai 

(Af) 
O. erraticus (Eu, Af) 

O. tartakovski (As) 
O. tholozani (As, Af) 

Hard tick-borne 
relapsing fever 

B. miyamotoi (NA, Eu, 
As) 

I. scapularis 
I. pacificus 
I. ricinus 

I. persulcatus 

Louse-borne relapsing 
fever 

B. recurrentis (Af) P. humanus humanus 
(Af) 
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Figure 1. 1.  Maximum likelihood phylogenetic analysis of Borrelia flagellin. 
B. burgdorferi s.l. species form a distinct, monophyletic clade; 

relapsing fever Borrelia do not form a monophyletic clade, 
however, they are separate from Lyme Borrelia species. 

Values at nodes represent bootstrap values from 1000 
replicates. Species of the B. burgdorferi s.l. complex (Lyme) 
are shown in blue, relapsing fever Borrelia vectored or carried 

by soft-shell ticks (Ornithodoros, Argas) are red, relapsing 
fever Borrelia vectored by lice (Pediculus) is pink, relapsing 

fever Borrelia vectored or carried by hard-shell ticks (Ixodes, 
Amblyomma, Hyalomma, Rhipichephalus) are purple, and an 
outgroup (Leptospira) is orange. 
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 The general classification for Borrelia currently holds as several Lyme 

disease Borrelia are associated with hard-shell ticks and relapsing fever 

Borrelia are associated with soft-shell ticks. However, five exceptions have 

been documented. B. recurrentis is a louse-borne relapsing fever spirochete 

presently endemic predominantly to sub-Saharan Africa. B. theileri is the 

causative agent of bovine borreliosis and is transmitted by Rhipicephalus 

microplus, a hard-shell tick that parasitizes livestock (17). B. lonestari and B. 

turcica are genetically similar to relapsing fever borreliae and carried by the 

hard-shell ticks Amblyomma americanum and Hyalomma aegyptium, 

respectively (18, 19). The status of B. lonestari and B. turcica as an animal 

or human pathogens is unknown. Finally, B. miyamotoi is a relapsing fever 

spirochete vectored by the same Ixodes spp. transmitting species of the B. 

burgdorferi s.l. complex (20, 21). 

The Unusual Nature of B. burgdorferi S.L. Genetics  
 
 All known Borrelia spp. have unusual genomes compared to traditional 

bacterial genomes, which consist of a circular chromosome. Species of the B. 

burgdorferi s.l. complex have a highly fragmented genome comprised of a 

linear chromosome (ca. 910 kilobases [kb]) and an array of linear and 

circular plasmids (size from ca. 5 to 54 kb) (22). Twelve linear and nine 

circular plasmids have been characterized from the B. burgdorferi s.s. B31 

type strain, though the number and arrangement of plasmids vary by B. 

burgdorferi s.l. strain (23, 24).  
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 The chromosome mainly consists of essential genes (e.g. metabolism, 

motility, replication) and appears to be stable (22, 25). Some essential genes 

are found on plasmids thereby making those plasmids essential. The 

presence of essential plasmids is in stark contrast to traditional bacterial 

genomes where plasmids are usually unessential or extra-chromosomal 

genetic elements. However, it should be noted the definition of “essential 

plasmid” requires consideration of the environment and B. burgdorferi exists 

in several environment types: in vivo in ticks (fed and unfed), in vivo in 

numerous reservoirs and hosts, and in vitro in laboratory cultures. A plasmid 

required for survival in a mouse may not be required for survival in a tick. 

Prolonged in vitro passage results in strains losing plasmids (likely due to a 

lack of selective pressure), which are required for establishing or maintaining 

an infection in mice and/or ticks resulting in non-infectious isolates (26, 27). 

The loss of plasmids, however, is not universal as some isolates do retain 

plasmids and, thus, infectivity (28). 

 The genome, in terms of open reading frames (ORFs), is significantly 

reduced compared to free-living bacteria but is on par with genome sizes of 

other obligate parasitic bacteria such as Rickettsia and Chlamydia. B. 

burgdorferi B31 currently has 1427 putative or known ORFs and 136 

pseudogenes (22, 29). Of these 1427 ORFs, 588 (41.2%) are predicted 

“hypothetical proteins,” or proteins meeting all the requirements to be 

functional but lacking empirical data to demonstrate functionality. Very few 

hypothetical proteins reside on the chromosome (26.4%) as many of these 

are essential genes that have been assigned a function either through 
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identification of conserved domains and/or empirically. By comparison, 50% 

of ORFs on 16 of the 21 plasmids found in B. burgdorferi B31 are 

hypothetical proteins. Function and functionality of many of these will require 

experimental data as only approximately 7.9% of predicted ORFs on B. 

burgdorferi’s plasmids share homology to proteins from any genera outside 

of Borrelia (30).  

Relapsing Fever Borrelia Genetics is also Unusual 
 

 Relapsing fever species also share similar genetic traits though much 

less is known about relapsing fever Borrelia as sequence data for most 

species is still incomplete. As a result, much of what we know about 

relapsing fever Borrelia comes from work with B. hermsii. Like species of the 

B. burgdorferi s.l. complex, relapsing fever Borrelia have a linear 

chromosome (ca. 923 kb) and several circular plasmids homologous to the B. 

burgdorferi s.l. cp32 family (31, 32). Unlike B. burgdorferi s.l. spp., relapsing 

fever Borrelia also have a linear megaplasmid (ca. 183 kb). B. hermsii HS1 

(type strain) also has two circular plasmids (ca. 6.5 and 28.8 kb) and seven 

linear plasmids (size from ca. 27 to 58 kb) (32). 

 Of the 1272 ORFs, 36.6% are predicted hypothetical proteins. 

However, the vast majority of these hypothetical proteins are found on the 

plasmids (ranges from linear plasmid B58 with 43.8% ORFs predicted as 

hypothetical proteins to the megaplasmid with 87.9% hypothetical protein 

ORFs). As with B. burgdorferi B31, the chromosome of B. hermsii HS1 has 

the fewest hypothetical proteins (19.9%). Given the number of hypothetical 

proteins predicted on B. hermsii plasmids, we presume a similarly small 
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percentage of predicted ORFs in B. hermsii lack homology to proteins from 

genera outside Borrelia and will require empirical testing to determine the 

function and functionality of many of these proteins. 

Vectors and Associated Borrelia spp.  

 
 There are distinct morphological differences between Ixodes and 

Ornithodoros ticks. Ixodes possess a hard plate on the back (dorsal scutum). 

Ornithodoros, on the other hand, have leathery but soft skin. Ixodes have 

mouthparts visible from dorsal and ventral perspectives, while Ornithodoros 

mouthparts are only visible when observing the ventral side. In addition to 

the gross anatomical differences, there are also behavioral differences 

between Ixodes and Ornithodoros that may contribute to differences 

observed between B. burgdorferi s.l. spp. and relapsing fever Borrelia. 

Life Cycle of Ixodes and Enzootic Cycle of B. burgdorferi s.l.  
 

 Ixodes have a two-year, four-stage life cycle (Fig. 1.2). During year 1, 

eggs are laid in spring and hatch to larvae in summer. Larvae will feed on 

their first host, typically a small to medium mammal, rodent, or bird, some of 

which are competent reservoirs for B. burgdorferi s.l. spp. Indeed, the larval 

bloodmeal is a crucial point in the enzootic cycle of B. burgdorferi s.l., which 

is not transovarially maintained in ticks. That is, an infected adult cannot 

pass B. burgdorferi s.l. to the eggs. Ixodes can only acquire B. burgdorferi 

s.l. by feeding on an infected reservoir. As a result, Lyme disease is not 

considered be obtained through the bite of a larval Ixodes. After feeding, 

replete Ixodes will detach and find refuge in a suitable habitat for the fall and 

winter months. During year 2, larvae will molt to nymphs, emerge in the 
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Figure 1. 2.  Life cycle of Ixodes spp. and enzootic cycle of B. burgdorferi 

s.l. Larvae (six legs) feed on small- to medium-sized animals, 
providing the first opportunity for Ixodes to acquire B. 

burgdorferi s.l. After feeding, larvae molt into nymphs (eight 
legs) and feed on medium- to large-sized animals. A final 
bloodmeal is consumed by adult females and pairs mate on a 

medium- to large-sized animals. Females will drop from the 
host to lay eggs. 

 
 
spring, and seek its next bloodmeal. Nymphs will usually feed on small to 

medium mammals, rodents, and birds. After detaching, nymphs will molt and 

emerge as adults during the fall of year 2. Adults will find a medium to large 

mammal, in particular, Odocoileus virginianus (white-tailed deer), a common 

host for adults. Females, but not males, will take a bloodmeal and both will 

mate. Males die shortly after mating, while females will drop from the host, 

find suitable habitat, and lay eggs.  
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 Each life stage feeds once but Ixodes are considered generalist 

feeders. Even though there are preferences for hosts (e.g. larvae tend to 

feed on Peromyscus or white-footed mice more often than other hosts), as a 

whole, Ixodes spp. feed on a variety of animals (33–45). Humans and 

domestic animals can become hosts for all stages of Ixodes but are 

considered dead-end hosts for B. burgdorferi s.l. as neither can sustain an 

enzootic cycle. Species of the B. burgdorferi s.l. complex are not maintained 

transovarially, a subject of debate for years. In retrospect, early reports of B. 

burgdorferi being transovarially transmitted (46) were likely due to the 

presence of B. miyamotoi, a relapsing fever spirochete transmitted by Ixodes 

spp. discovered in 1995 (20). To become infected with B. burgdorferi s.l., 

ticks must feed on an infected animal and any stage can acquire B. 

burgdorferi s.l. Larvae cannot transmit Lyme disease, thus the largest threat 

for humans and domestic animals to acquire B. burgdorferi s.l. from ticks 

come from unfed nymphs and adult females. Adult males can be infected, 

however, since adult males do not typically partake in a bloodmeal, they 

rarely transmit B. burgdorferi s.l. (47). 

 It is important to note the general perception of Ixodes, including host 

preference by different life stages and even active periods, is based on the 

most studied and largest endemic region for Lyme disease in North America, 

Northeastern US. However, as we understand more about Lyme disease (i.e. 

Ixodes, B. burgdorferi s.l., reservoirs, and hosts) in the upper Midwest, 

southern US, California, Canada, Europe, and Asia, it is clear we need to view 

Lyme disease as a regional disease, especially in terms of the maintenance of 
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B. burgdorferi s.l., the chance to acquire Lyme disease, and public health 

strategies for controlling Lyme disease.  

 P. leucopus (white-footed mouse) is a primary reservoir for B. 

burgdorferi s.s. in the northeastern US and host for larval I. scapularis (48, 

49, 49–52). In the upper Midwest, P. leucopus and P. maniculatus (deer 

mouse) are both major reservoirs and hosts. However, in California, the list 

of Ixodes hosts is long and several species are competent reservoirs for B. 

burgdorferi s.l., including western grey squirrels (Sciurus griseus), California 

kangaroo rats (Dipodomys californicus), and dusky-footed wood rats 

(Neotoma fuscipes) (53–55). These species, not the Peromyscus spp. 

present, represent the primary reservoirs for B. burgdorferi s.l. in California. 

The primary hosts for larval and nymphal I. pacificus, however, are lizards, 

particularly the western fence lizard (Sceloporus occidentalis) and the 

southern alligator lizard (Elgaria multicarinata) (53). Both lizards are 

refractory hosts for B. burgdorferi s.l. Likewise, in Europe and Asia, there 

does not appear to be a single, predominant reservoir as a diverse population 

of rodents, small and medium mammals, and birds serve as adequate B. 

burgdorferi s.l. reservoirs and Ixodes hosts (56).  

Life Cycle of Ornithodoros and Enzootic Cycle of Tick-Borne  
Relapsing Fever (TBRF) Borrelia  

 

 Unlike Ixodes, Ornithodoros have a multi-year life cycle that is not 

dictated by climate (Fig. 1.3). Eggs hatch into larvae, which feed on their 

first host. Ornithodoros spp. are considered specialized feeders. Collectively, 

Ornithodoros parasitize myriad mammals, rodents, and birds. Each species, 

however, has preferred hosts and each individual Ornithodoros population 
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Figure 1. 3.  Life cycle of Ornithodoros spp. With the exception of 

Ornithodoros eggs, each stage generally feeds upon the same 
host species and is capable of acquiring and transmitting 

relapsing fever Borrelia. 
 
 

will be limited primarily to one host. After feeding, larvae detach and molt to 

nymphs. Ornithodoros spp. have multiple nymphal stages. Each nymphal 

stage will feed, detach, and molt to a new nymphal stage. After 

approximately seven nymphal stages, Ornithodoros will molt to an adult. In 

stark contrast to Ixodes, adult Ornithodoros can feed, without molting, 

several times. Eventually, adults will mate and lay eggs.  

 Tick-borne relapsing fever (TBRF) Borrelia carried by Ornithodoros are 

transovarially maintained. Thus, a tick can acquire Borrelia during any 



13 

feeding (if the host is infected) or from an infected adult female. As with 

Ixodes, humans and domestic animals can become incidental hosts for 

Ornithodoros and dead-end hosts for relapsing fever Borrelia.  

Habitats and Behavior of Ixodes and Ornithodoros  

 
 The geographic distribution of Ixodes spp. is governed by the 

distribution of hosts and limited by temperature and humidity, with ticks 

preferring environments with warm, humid summers and mild winters (57). 

While off-host I. scapularis are highly susceptible to desiccation and low 

temperature in laboratory experiments, established populations have been 

found in regions that experience frigid and dry winters (38, 58–60). This 

suggests that microclimates are invaluable for I. scapularis survival. 

Deciduous and mixed forests provide leaf litter that maintains high relative 

humidity and are regarded as the classic microhabitat for ticks. However, 

several temperate biomes, including coniferous forests, grasslands, and 

pastures also maintain microclimates that sustain Ixodes spp. (61–64) some 

urban, peri-urban, and recreational environments support or are capable of 

supporting Ixodes spp. and host populations (65–67).  

 Ixodes find hosts by questing. Ticks will crawl up vegetation, extend 

their front legs, and wait for something, hopefully, a tasty bloodmeal and not 

a researcher’s collection cloth, to brush against the vegetation. The tick will 

attach and begin feeding. Desiccation is not a concern during feeding as ticks 

absorb water from the bloodmeal. If a suitable bloodmeal is not obtained and 

desiccation is a concern, Ixodes will crawl back to their humid habitat. Ixodes 

are long-term, slow feeders, remaining attached to a host for approximately 
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three to five days. Long attachment times, as well as the open environments 

Ixodes inhabit, facilitates dispersal of a population, especially if Ixodes 

attaches to a migrating mammal or bird.  

 Ornithodoros, in comparison, are found in more contained 

environments such as animal dens, burrows, and nests. As a result, 

Ornithodoros do not need to “hunt” for a bloodmeal and desiccation is less of 

a concern. Ornithodoros are short-term, quick feeders, able to attach, feed, 

and detach from a host in minutes to hours. Not surprisingly, dispersal of 

Ornithodoros populations is quite limited.  

Borrelia spp. Suitably Adapted to the Differences in Vector  

 
 B. burgdorferi s.l. are found in the tick midgut. When an infected 

Ixodes feeds, Borrelia must sense a bloodmeal is occurring and begin 

migrating from the midgut to the salivary glands and into the feeding pit 

while shifting gene expression from tick-phase genes to mammalian-phase 

genes. This process can take time for the slow-replicating microbe and works 

quite well with Ixodes’ long attachment time.  

 A feeding nymph is the last chance B. burgdorferi s.l. has to ensure 

survival of its genetic material since B. burgdorferi s.l. is not transovarially 

maintained, Ixodes feed once per life stage, adult males do not feed, and 

adult female Ixodes typically feed on deer, which are not competent 

reservoirs for B. burgdorferi s.l. (68). TBRF Borrelia, on the other hand, are 

found in the salivary glands of infected Ornithodoros, which allows for rapid 

transmission from tick to host (69). With nymph and adult Ornithodoros 
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capable of multiple feedings per life stage, TBRF Borrelia have ample 

opportunities for transmission to and from a host.  

 An important and intriguing, but not yet understood difference 

between B. burgdorferi s.l. and relapsing fever Borrelia involves vector 

specificity, exclusivity, and complementarity. Vector specificity occurs when 

serologically distinct bacterial strains have closely related vectors; vector 

exclusivity occurs when one vector species carries one bacterial strain; and 

vector complementarity occurs when one vector species carries multiple 

bacterial strains (70, 71). An unspoken assumption is that species of the B. 

burgdorferi s.l. complex are not vector specific or exclusive. That is, any 

species of the B. burgdorferi s.l. complex is assumed to be able to establish 

an infection in any Ixodes spp. While no experiments have shown exclusivity, 

numerous surveys have cataloged the species of the B. burgdorferi s.l. 

complex found in species of Ixodes. From these surveys and basic knowledge 

of evolution, it appears some B. burgdorferi s.l. species are exclusive. For 

example, B. bavariensis NT29, an Asian strain, is only found in I. persulcatus, 

an Asian species, while European B. bavariensis strains are only found in the 

European I. ricinus (72–74). Whether B. bavariensis demonstrates exclusivity 

or simple geographic isolation remains unknown. An experiment attempting 

to infect I. ricinus with an Asian strain of B. bavariensis is required. Other 

species of the B. burgdorferi s.l. complex appear to be highly promiscuous. 

B. burgdorferi s.s. has been found in I. scapularis, I. pacificus, I. ricinus, and 

I. persulcatus. There may be strain restrictions, such that B. burgdorferi s.s. 

B31 may not infect any species of Ixodes except I. scapularis. Still, the 
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degree of specificity or exclusivity that may be present with B. burgdorferi 

s.l. species pales in comparison to the exclusivity observed with relapsing 

fever Borrelia. To date, all relapsing fever Borrelia identified are exclusive to 

their respective vector, despite some significant overlap in geographic 

distribution for some Ornithodoros spp. (75). That is, B. hermsii cannot 

establish an infection in O. turicata; B. hermsii can only infect O. hermsi. The 

mechanism by which this exclusivity occurs is still not understood. 

Tick-Borne Spirochete Diseases  
 

Lyme Disease  

 
 Diseases caused by Borrelia burgdorferi s.l., especially Lyme disease, 

are relatively new diseases to be described. The first recorded account of 

erythema migrans (EM), an inconsistent but distinguishing symptom of Lyme 

disease, was made in Europe in 1909 by Dr. Arvid Afzelius (76). While 

unconfirmed at the time, Dr. Afzelius suspected a tick bite (I. ricinus) was 

involved in the development of EM. Lyme disease went unrecognized in the 

US until an outbreak of juvenile rheumatoid arthritis occurred in Connecticut 

in 1977 (77). By 1982, Dr. Willy Burgdorfer had isolated spirochetes from I. 

scapularis (I. dammini) and shown antibodies to B. burgdorferi reacted 

strongly with sera from Lyme disease patients (4).  

 Lyme disease is the top tick-borne disease reported to the Centers for 

Disease Control and Prevention (CDC), with 38,069 confirmed and probable 

cases reported in 2015. However, in 2012, the CDC released estimates 

indicating the number of people infected with Lyme disease is underreported 
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by about 10% and the actual number of cases in the US is closer to 300,000 

(78). 

 Symptoms of Lyme disease in humans vary by species and shows a 

distinct geographical pattern, though some symptoms are universal 

(Table 1.2) (79, 80). In North America, where the primary etiological agent is 

B. burgdorferi s.s., early stage Lyme disease (3-30 days post-infection) is 

characterized by influenza-like symptoms (e.g. mild fever, malaise, 

myalgia/arthralgia) and an associated, though not guaranteed, bullseye rash 

(erythema migrans). Arthritis is a key symptom of late stage Lyme disease 

(after 30 days post-infection). Lyme neuroborreliosis and carditis are also 

late stage Lyme symptoms in the US, though the prevalence is much lower 

compared to arthritis. In Europe, however, late-stage symptoms are more 

diverse because there are more pathogenic Borrelia spp. present. B. 

burgdorferi s.s. is found in Europe but is not a predominant strain. Thus, 

Lyme arthritis does occur but at significantly lower rates compared to North 

America. Acrodermatitis chronica atrophicans is a common late stage 

symptom caused by B. afzelii. Neurological symptoms (Lyme 

neuroborreliosis) characterized by numbness, Bell’s palsy, neck stiffness, 

declining memory, and sleep disorders are also common late-stage 

symptoms associated with B. bavariensis infection. Infection with B. 

burgdorferi s.l. is not self-resolving and does require treatment, usually a 

course of ceftriaxone or doxycycline (81).
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Table 1. 2.  Clinical symptoms of human Borrelia diseases. 
Disease Clinical symptom(s) 

Lyme disease Symptom onset after exposure: early stage generally 3-30 days 

–Influenza-like (e.g. mild fever, malaise, myalgia/arthralgia; B. 

burgdorferi s.s.) 

–Erythema migrans (B. burgdorferi s.s., B. afzelii) 

–Symptom onset after exposure: late stage generally > 30 days 

–Arthritis 

–Acrodermatitis chronica atrophicans (B. afzelii) 

–Neurological (Lyme neuroborreliosis, e.g. numbness, Bell’s 

palsy, stiffness of neck, declining memory, sleep disorders; B. 

burgdorferi s.s., B. bavariensis) 

 

Tick-borne 

relapsing fever 

Symptom onset: ca. 7 days 

–Influenza-like 

–Recurring high fever 

–Headache 

–Myalgia 

–Arthritis 

 

Approximately 3-10 febrile episodes (relapses) occur; mortality 

rates are variable but generally less than 5% 

Hard tick-

borne 

relapsing 

fever/Borrelia 

miyamotoi 

disease 

Symptom onset after exposure: ca. 15 days (82) 

–Influenza-like 

–Most common: 

–Fever  

–Malaise 

–Headache 

–Chills 

–Arthritis/arthralgia 

–Meningoencephalitis (immunocompromised patients) 

 

Rare (less than 10% of patients): 

–Rash/Erythema migrans 

–Gastrointestinal (e.g. vomiting, nausea, diarrhea) 

–Cardiac/respiratory (shortness of breath) 

–Neurological (e.g. dizziness, confusion) 

–Stiffness of neck 

Louse-borne 

relapsing fever 

Symptom onset after exposure: ca. 4-8 days 

–Recurring high fever 

–Malaise 

–Headache 

–Chills 

–Meningism 

–Myalgia 

–Nausea 

–Vomiting 

 

Approximately 3-5 relapses occur; mortality rate varies greatly 

(30-70% without treatment during outbreaks) 
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Tick-Borne Relapsing Fever 
 

 Unlike Lyme disease, TBRF is not nationally reportable. TBRF is, 

however, reportable in 11 endemic states (California, Washington, Colorado, 

Idaho, Nevada, Oregon, Arizona, Texas, New Mexico, Montana, Utah, 

Wyoming) and one bordering state (North Dakota, note no TBRF cases have 

been reported in North Dakota). Approximately 70% of TBRF cases are 

reported in California, Washington, and Colorado. Data collected from these 

12 states between 1990 and 2011 indicate 504 cases of TBRF have been 

reported (83).  

 There is less diversity in the symptoms of TBRF in humans. Influenza-

like symptoms appear approximately seven days post-infection (Table 1.2). 

The defining characteristic of TBRF is recurring spirochetemia events leading 

to febrile episodes. TBRF can be fatal (mortality rate is generally less than 

5%) but is usually self-resolving after approximately three to ten recurring 

febrile episodes. Louse-borne relapsing fever (B. recurrentis) has similar 

symptoms though approximately three to five febrile episodes occur and 

mortality can be much higher (30-70% without treatment during outbreaks).  

Hard Tick-Borne Relapsing Fever or  
Borrelia miyamotoi Disease 

 
 Hard tick-borne relapsing fever (HTBRF) or Borrelia miyamotoi disease 

(BMD) is an emerging disease first described in 2011 (82). Numerous cases 

have been documented for Lyme disease and TBRF allowing for a defined set 

of typical symptoms. Much of the data currently available for B. miyamotoi 

infections come from retrospective serological analyses of banked patient 

samples, which provide valuable epidemiological information but can lack the 
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detailed patient history or clinical aspects required to sufficiently define a 

disease. Two large studies in Russia (82) and the US (84) suggest HTBRF is a 

disease similar to TBRF.  

 The Russian patients described by Platonov et al (82) reported tick 

bites, developed moderate or severe disease, and were hospitalized as a 

precautionary measure against more severe tick-borne diseases, particularly 

viral tick-bone encephalitis. Forty-six patients were classified as having a 

confirmed B. miyamotoi infection with no detected current B. burgdorferi s.l. 

coinfection by PCR though all patient sera reacted with whole cell lysates of 

B. burgdorferi s.s., B. afzelii, and B. garinii. The most common symptoms 

were fever, headache, and malaise or fatigue (Table 1.3). Five patients 

reported recurrent fever with an average duration of 3.4 days, and 9 days 

between relapses, a similar timeline for TBRF. All patients were successfully 

treated with ceftriaxone or doxycycline.
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Table 1. 3. Comparison of B. miyamotoi symptoms reported from US (84) and 

Russian (82) patients 

Symptom US (n = 51) Russia (n = 46) 

Fever, chills 96% 96%, 35% a 

Headache 96% b 89% 

Myalgia 84% 59% 

Arthralgia 76% 28% 

Malaise/fatigue 82% 98% 

Rash/EM c 8% 9% 

Gastrointestinal d 6% 30% (nausea) 

7% (vomiting) 

Respiratory e 6% na f 

Neurological (dizziness, 

confusion, vertigo) 

8% na 

Stiff neck na 2% 
a Fever and chills were reported in separate categories 
b Authors noted in most patients the headaches were severe 
c US patients were described as having a rash. Russian patients were noted for 

having a single erythema migrans 
d For US patients, GI symptoms included nausea, abdominal pain, diarrhea, 

anorexia. For Russian patients, GI symptoms included nausea and vomiting 
e Labored breathing or shortness of breath 
f Not reported 

 

 
 In the US, 97 of 11.515 patient samples submitted by clinical 

laboratories for tick-borne disease analysis were PCR-positive for B. 

miyamotoi (84). Patients with known or suspected B. burgdorferi s.s. 

coinfection or a history of Lyme disease were omitted from further analysis. 

Fever, headache, and malaise were commonly reported among US patients 

with two patients reporting recurrent fever (Table 1.2). The duration of 

febrile episodes and the time between relapses were not reported. 

Spirochetemia was noted in US patients but either not reported or 

documented in Russian patients. Strikingly, a rash or single erythema 

migrans of unknown origin, a symptom associated with B. burgdorferi s.l. 

infections, was reported in 8 and 9% of US and Russian patients, 

respectively.  
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 In addition, some symptoms were different between US and Russia 

patients, which suggest clinical manifestations vary by B. miyamotoi strain, 

similar to that seen with B. burgdorferi s.l. strains (Table 1.2) (80). 

Arthralgia was more common in US (76%) compared to Russian patients 

(28%), and leukopenia, thrombocytopenia, and elevated liver enzymes were 

found in some US patients but none of the Russian patients. These 

differences may be explained by genetic differences between American and 

Asian type B. miyamotoi. Genetic analyses of B. miyamotoi isolates reveal 

heterogeneity between, and a high degree of homology among, strains from 

the US (American types; I. scapularis, I. pacificus), Europe (European type; 

I. ricinus), and Asia (Asian type; I. persulcatus) (85, 86). 

 Detailed case reports are currently available for nine patients in the 

US, Europe, and Japan. For immunocompetent patients, symptoms were 

similar to those observed in the aforementioned studies (e.g. fever, 

headache, malaise) (87–91). One US patient did not seek treatment, 

providing additional evidence that B. miyamotoi can result in recurrent fever 

and be self-resolving, similar to other relapsing fever infections (92, 93). This 

patient experienced two episodes of fever separated by three weeks, 

significantly longer than in other B. miyamotoi or relapsing fever patients, 

with each episode lasting 4-5 days, on par with B. miyamotoi or relapsing 

fever patients.  

 The pathology of B. miyamotoi infection is dramatically different in 

immunocompromised patients, specifically, those treated for non-Hodgkin’s 

lymphoma (NHL) treated with rituximab. Two patients treated with rituximab 
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for NHL, one from the US (94) and one from the Netherlands (95), with 

reported recent tick bites developed meningoencephalitis. Motile spirochetes 

were detected in cerebral spinal fluid in both cases. Interestingly, glpQ 

(glyphosphodiesterase; among Borrelia, glpQ is unique to relapsing fever 

Borrelia) was amplified and sequenced from both patient’s samples yet no 

anti-GlpQ antibodies were detected in the blood or cerebral spinal fluid of the 

European patient. IgM against B. burgdorferi was negative for both patients. 

Neither patient reported any of the commonly associated symptoms of a B. 

miyamotoi infection (e.g. fever, headache, myalgia, malaise). Instead, both 

patients exhibited neurological symptoms (cognitive processing defects, 

disturbed gait). A third patient from Germany, also with treated with 

rituximab for NHL developed Lyme neuroborreliosis-like symptoms 

(dizziness, vomiting, and headache) (96).  

General Immune Responses and  
How Borrelia Deal with Them 

 

 To establish long-term infection in rodents and mammals (late or 

disseminated phase of Lyme disease in humans), B. burgdorferi s.l. migrates 

to various sites, such as joints, skin, heart, and bladder (97–105). These 

sites offer much protection from cells of the immune system, however, 

Borrelia has not unlocked the mysteries of teleportation. As a result, B. 

burgdorferi s.l. must migrate to these sites from the inoculation site (tick 

bite) and will encounter immune cells producing complement and a humoral 

immune response. Ixodes saliva contains adaptive and innate 

immunomodulatory and anti-complement proteins that offer some protection 

for B. burgdorferi s.l. (106–113). B. burgdorferi s.l. possess a handful of anti-
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complement proteins with the best understood being factor H binding 

proteins (114–117). The ability to bind and neutralize complement through 

binding factor H is vital for B. burgdorferi s.l. to establish infection (114). 

 Relapsing fever Borrelia migrate from the inoculation site to the blood 

where they remain until cleared by the immune system. Ornithodoros 

salivary gland extracts also possess proteins that inhibit the host immune 

response (118–121). Despite possessing factor H binding proteins, 

complement is not an effective method for relapsing fever Borrelia to 

establish infection, meaning complement is not the primary mechanism to 

clear relapsing fever Borrelia (122, 123). Instead, the primary mechanism for 

clearance is an humoral response. 

 The humoral response is important for controlling and preventing both 

B. burgdorferi s.l. and relapsing fever Borrelia infections (124–131). Indeed, 

these responses form the basis of an intense research effort for effective 

Lyme vaccines. Fortunately for Borrelia, they are quite adept at evading the 

host humoral response primarily through variation of surface-exposed 

proteins. Lyme disease Borrelia possess outer surface proteins (Osps) and 

variable membrane protein-like (Vls) proteins, while relapsing fever Borrelia 

possess variable membrane proteins (Vmps; include variable large and 

variable small proteins) (132–136).  

Osps and VlsE of Lyme Borrelia 

 
 The outer surface proteins (Osps), particularly OspC, are one of the 

most studied groups of Borrelia proteins (117, 137, 138). ErpA (OspE) and 

OspF are factor H-binding proteins. OspA, a protein predominantly involved 
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in uptake and survival in tick, is immunogenic and able to block antibody 

binding to another surface-exposed protein, P66 (139, 140). OspC has 

diverse roles, many of which are essential for transmission from Ixodes and 

establishing infection in mammals (141–148). These studies were key in 

demonstrating that ospC is upregulated during the early stages of infection, 

downregulated after infection has been established, and deleting or 

overexpressing ospC results in spirochetes that are quickly cleared from a 

host. 

 A handful of immune evasion functions have been identified for OspC. 

OspC protects Borrelia by binding Salp15, an Ixodes salivary protein. OspC 

also prevents phagocytosis by macrophages (148). In addition, several OspC 

types have been identified and correlated with a strains ability to establish 

infection in hosts and reservoirs (98, 99, 149–152). However, as each Osp is 

present as a single-copy locus, genetic variation is seen at the population 

level. That is, outside of random mutation or horizontal gene transfer events, 

a single spirochete cannot produce different OspC types in situ.  

 In contrast, the Vls (Vmp-like sequences) system can change the 

expressed surface antigen in situ (Fig. 1.4). Antigenic recombination of VlsE 

is important in maintaining infection in mammals and helps Lyme Borrelia 

evade the humoral immune response (153–166). The Vls system is 

composed of approximately 16 vls cassettes (the exact number varies by 

strain) and one expression locus, vlsE. All of the identified vls cassettes are 

located on the same plasmid (lp28-1) in close proximity to but in the 

opposite direction of vlsE. Expression at vlsE occurs through the random 
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Figure 1. 4.  Antigenic variation of Lyme borreliae VlsE and relapsing fever 
borreliae Vmp systems. (A) VlsE. The expression locus (vlsE) 

is located near the telomere of linear plasmid (lp) 28-1 (blue 
or green arrow, promoter is indicated by a black arrow).  

Silent vls cassettes are located upstream and in the opposite 
orientation of vlsE. Antigenic variation occurs through the 
random and sequential insertion of silent cassette fragments 

(labeled 1, 2, and 3). (B) vlp (pink arrows) and vsp (purple 
arrows) cassettes are located throughout the genome on 

lp28-1, 28-2, 28-3, 28-4, and 32-1. The expression locus 
(blue or green arrow, promoter is indicated by a black arrow) 
is found on lp28-1 near the telomere (open oval). Changing 

the expressed Vmp cassette is achieved through deletion of 
the current cassette (blue arrow) followed by insertion of a 

copy of a new cassette (green arrow via recombination 
events) resulting in a change in the expressed Vmp on the 
surface of the bacterium (denoted by blue or green triangles, 

respectively). Grey arrows indicate non-Vmp ORFs; tan 
arrows indicate downstream homology sequences (DHS, 

sequences found throughout the genome and required for 
mapping recombination events at the Vmp expression locus). 
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recombination of segments of multiple vls cassettes rather than 

recombination of an entire, single vls cassette. Thus, recombination events 

result in thousands of unique VlsE variants, all approximately 36-kD. 

Vmps of Relapsing Fever Borrelia  

 
 Vmps, a system similar to Vls, are one of the best characterized 

immune evasion mechanisms (132, 167–170). B. hermsii has approximately 

60 unique and promoterless vmp cassettes (i.e. silent cassettes) scattered 

throughout its genome and one promoter-driven vmp expression locus (Fig. 

1.4). A single vmp cassette is expressed when the entire cassette is moved 

to the expression locus. 

 The majority of spirochetes are cleared from the host through specific 

anti-Vmp IgM antibodies raised against the predominantly expressed Vmps, 

which results in a significant decrease in spirochete load (from approximately 

105-107 spirochetes/mL to < 104 spirochetes/mL). The remaining spirochetes 

consist of a small population expressing different cassettes. Since the host 

has not raised a strong antibody response to these non-dominantly 

expressed Vmps, this minority population of spirochetes can proliferate to 

high concentrations until an antibody response is mounted and the majority 

of spirochetes are once again cleared. This cycle of vmp conversion, peaking 

spirochete loads, and antibody-mediated clearing repeats a minimum of two 

times resulting in the characteristic symptoms of a relapsing fever illness.  

Mechanisms of Immune Evasion by B. miyamotoi 
 

 Given the genetic similarity of B. miyamotoi to relapsing fever 

spirochetes, it is likely B. miyamotoi utilizes some homologous mechanisms 
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to evade host immune responses. While B. miyamotoi is resistant to 

complement in vitro (171, 172), complement inactivation is not required for 

relapsing fever spirochetes to establish infection. OspE homologues have 

been identified in B. miyamotoi FR64b (isolated from the blood of A. 

argenteus) however, McDowell et al. were unable to demonstrate binding of 

factor H (115). We observed factor H binding using whole-cell B. miyamotoi 

FR64b lysates and Röttgerding et al. (173) showed B. miyamotoi HT31 

expresses a functional FH-binding protein. CbiA, which binds FH in vitro. 

While the role of FH-binding remains unknown, it appears, as is the case for 

relapsing fever spirochetes, inactivation of complement may not be required 

to resolve spirochetemia during infection with B. miyamotoi (126, 174). 

 Instead, B. miyamotoi likely utilizes a Vmp system (175, 176), which 

relies on antigenic variation of Vmp. C3H/HeN mice infected with B. 

miyamotoi LB-2001 produced anti-Vsp1 IgM and IgG antibodies that were 

effective in clearing the initial spirochetemic peak of B. miyamotoi from SCID 

mice (176). Despite this clearing, a second spirochetemic relapse occurred. 

Analyses of the secondary B. miyamotoi population revealed expression of 

vlpC2, not vsp1, as would be expected in the case of antigenic variation. 

They also noted vlpC2 was present in the initial B. miyamotoi population in a 

much lower prevalence compared to vsp1.  

Problem 

 
 B. burgdorferi s.l. has had a significant impact on human health of 

both immunocompetent and immunocompromised individuals and Lyme 

disease is expected, at a minimum, to maintain its status as a public health 
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threat. The effect B. miyamotoi has had and will have remains unknown, 

though there is a clear impact on immunocompromised individuals that is 

cause for concern. 

 Despite both B. burgdorferi s.l. and B. miyamotoi being demonstrated 

human pathogens, several essential questions remain unanswered. Both 

possess uncharacterized genes, which prevent a comprehensive 

understanding of the physiology, pathogenesis, prevention, and treatment of 

Lyme disease and HTBRF. While we have a decent understanding of the 

enzootic maintenance of B. burgdorferi s.s. in the northeastern US, we are 

still filling in large holes in the enzootic maintenance of B. burgdorferi s.l. in 

other areas of North America. There are more unknowns regarding the 

enzootic maintenance of B. miyamotoi.  

 During my graduate career, I attempted to address some basic 

questions regarding B. burgdorferi s.s. and B. miyamotoi. Specifically, 1. The 

enzootic maintenance of B. burgdorferi in North Dakota, 2. The physiological 

role of proteins in the survival and pathogenesis of B. burgdorferi, and 3. The 

enzootic maintenance of B. miyamotoi.  
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CHAPTER 2 
 

THE WESTERN PROGRESSION OF LYME DISEASE:  
INFECTIOUS AND NON-CLONAL BORRELIA BURGDORFERI  

SENSU LATO POPULATIONS IN GRAND FORKS COUNTY,  
NORTH DAKOTA 

 

Introduction 
 

 Eastern North Dakota borders some Minnesota counties (i.e., Kittson, 

Marshall, Polk, and Norman) where the risk of contracting the tick-borne 

diseases Lyme disease or human granulocytic anaplasmosis is moderate to 

high based on confirmed human cases (177, 178), the abundance of Borrelia 

burgdorferi-positive Ixodes scapularis (179), and the density of nymphal I. 

scapularis (177). Despite this close geographical proximity, there has been a 

paucity of studies on the migration of I. scapularis or B. burgdorferi into 

North Dakota (38). Eastern North Dakota is classified as a transition zone for 

Lyme disease based on studies investigating the expansion of I. scapularis 

and B. burgdorferi in the Midwest (179). However, in 2011, the North Dakota 

Department of Health reported results of a 2010 survey showing established 

I. scapularis populations in six eastern North Dakota counties, including 

Grand Forks county (180). In addition, the pathogens Anaplasma 

phagocytophilum, Babesia sp., and B. burgdorferi were detected in I. 

scapularis via PCR (180). 

 Surveillance of I. scapularis has shown an increase in its geographic 

distribution (181–183), which has been accompanied by a concomitant 
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increase in the distribution of confirmed Lyme disease cases (184). The 

primary causative agents of Lyme disease differ between the US and Europe 

with B. burgdorferi sensu stricto being the primary agent in the US and B. 

afzelli and B. garinii being the primary agents in Europe (185, 186). While it 

is generally accepted that B. burgdorferi s.l. is the sole cause of Lyme 

disease in the US, there is increasing evidence that other members of the B. 

burgdorferi sensu lato complex, a group consisting of approximately 20 

closely related species, could also cause Lyme disease in the US (4–16). For 

example, B. bissettii, has been identified in DNA isolated from human sera 

samples in California residents by sequence analysis of p66; however, it has 

not been clearly associated with Lyme disease in the US because many of the 

samples that were positive for B. bissettii were also positive for 

B. burgdorferi (187). It has been demonstrated, however, to be associated 

with Lyme disease in Europe (185, 188) and has been shown to be infectious 

and pathogenic in a mouse model (189). B. americana, found in I. pacificus 

and I. minor, is predominantly found in California and South Carolina and has 

not yet been associated with Lyme disease in humans (185), but antibodies 

to B. americana have reportedly been detected in blood from Lyme disease 

patients (190). These data underscore the need to correctly identify newly 

isolated Borrelia species in order to assess their potential contribution to 

human disease. 

 Several schemes have emerged to classify presumptive Lyme disease 

Borrelia. One is based on outer surface protein C (OspC), a protein expressed 

only during transmission from vector to host (141, 144) that is required for 
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B. burgdorferi to infect mammals (143, 146). While ospC is highly 

polymorphic, many groups or types have been described (98, 149). OspC 

types are commonly used to determine a strains ability to cause 

disseminated infections in humans (98, 191, 192). OspC groups A-U have 

been identified (98, 149) with A-O, T, and U found in North America (98, 99, 

191). Groups A, B, I, K, and N have been found most commonly associated 

with disseminated infections in humans (98, 152, 193). Groups C, D, E, F, G, 

H, and M have also been found capable of causing disseminated infection in 

humans, although the occurrence of infection with these types is much lower 

(151, 193). B. burgdorferi small mammal reservoirs have been found to 

carry specific OspC types (150). For example, it has previously been shown 

Peromyscus leucopus (white-footed mouse) tested positive for groups A, B, 

D, F, G, I, and K, while Tamias striatus (eastern chipmunk) tested positive 

for groups A, D, F, G, I, K, T, and U (150). 

 Antigenic outer surface proteins (e.g., OspC) are highly variable and 

there are indications they are subject to horizontal gene transfer (194–196), 

which make them less than ideal candidates for evaluating evolutionary 

history and geographical relationships of B. burgdorferi strains. Multilocus 

sequence typing (MLST) schemes have been developed that have proven to 

be the most reliable method for determining the history and relationship 

within many bacterial genera and species, including B. burgdorferi s.l. strains 

(197, 198). MLST is based on the analysis of housekeeping genes, which are 

under strong pressure to minimize large-scale mutation events, such as 

those events seen in outer surface proteins. The B. burgdorferi MLST scheme 
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utilizes eight housekeeping genes: clpA, clpX, nifS, pepX, pyrG, rplB, recG, 

and uvrA (198). Each gene is assigned an allele number based on the 

sequence identity to previously submitted alleles. The profile produced from 

all eight loci corresponds to a sequence type (ST), which can be used to 

compare strains to determine evolutionary history and relationships. 

 With the discovery of I. scapularis and B. burgdorferi in eastern North 

Dakota, we sought to characterize previously unidentified spirochete cultures 

obtained from five hearts of Peromyscus spp. (deer mice) and Myodes 

gapperi (Southern red-backed vole) trapped in the Turtle and Forest River 

areas of eastern North Dakota. All five small mammals harbored unique or 

non-clonal populations of spirochetes determined to be B. burgdorferi s.l. The 

presence of non-clonal populations is significant as it indicates the B. 

burgdorferi populations present in eastern North Dakota are not the result of 

a recent or single migration event. Two of the five small mammals were 

carrying at least two different OspC types. OspC typing showed the infectious 

B. burgdorferi types A, B, E, F, and I are disproportionately represented in 

our samples. However, one isolate typed to the non-infectious group L and 

one typed to none of the previously described groups. B. burgdorferi M3 

(ospC group B) was obtained from M. gapperi at Forest River and predicted 

to be a highly infectious isolate. Using this isolate, we determined B. 

burgdorferi M3 is infectious in laboratory mice via both artificial and natural 

routes of exposure, culturable from mouse tissues, and survives I. scapularis 

molting. These data confirm B. burgdorferi is present in eastern North Dakota 

and is infectious and transmissible in a laboratory model.
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Materials and Methods 
 

Animal Care and Use  
 

 Infection experiments were performed per a University of North 

Dakota Institutional Animal Care and Use (UND IACUC) approved protocol 

#1101-2 at the University of North Dakota Center for Biomedical Research. 

Four to six week-old BALB/c mice (Harlan; Madison, WI) were cared for in 

accordance with the Association for Assessment and Accreditation of 

Laboratory Animal Care guidelines (Animal Welfare Assurance A3917-01) and 

the National Research Council of the National Academics Guide for the Care 

and Use of Laboratory Animals (8th edition). Wild rodents were collected, 

euthanized, and necropsied in the field as described in the UND IACUC 

approved protocol #1304-3. All efforts were made to minimize animal 

suffering. 

Sample Collection and Culturing Spirochetes 
 
 Live trapping of rodents was conducted during June and July 2012 in 

the two largest forested areas within an otherwise agricultural landscape in 

Grand Forks County: i.e., Turtle River State Park (47.94oN, -97.50oW; ca. 

254 hectares) and Forest River Biological Station and Wildlife Management 

Area (48.17oN, -97.66oW; ca 349 hectares). Sherman live traps (H.B. 

Sherman Traps; Tallahassee, Florida) were baited with peanut butter and 

oatmeal, supplied with cotton bedding, set in the evening, and recovered in 

the morning. Captured mammals were identified as M. gapperi and 

Peromyscus spp. based on morphological characteristics. This method makes 

it difficult to identify Peromyscus species in the field; thus, Peromyscus were 
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identified only to the genus level. However, all of the Peromyscus in this 

study were trapped deep in deciduous forests, a preferred habitat for P. 

leucopus, while P. maniculatus prefer more open terrain and/or coniferous 

forest, strongly suggesting the captured Peromyscus were P. leucopus 

(Robert Seabloom, personal communication; (199). Peromyscus spp. and M. 

gapperi were euthanized with isoflurane, necropsied, and hearts immediately 

inoculated into modified Barbour-Stoenner-Kelly (BSK-II) medium containing 

6% rabbit serum and 50 µg/mL rifampin (200). Surgical tools were sterilized 

with 95-99% ethanol prior to each necropsy to prevent possible cross-

contamination between animals. Three days later, uncontaminated cultures 

were blind passed into modified BSK-II with 6% rabbit serum without 

rifampin, incubated for three additional days, then examined for spirochetes 

via dark field microscopy. 

Amplification and Sequencing of ospA, ospC, flaB,  
16S, 16S-ile tRNA IGS, and p66  

 

 ospA, ospC, p66, and the 16S-ile tRNA IGS were obtained using 

amplification conditions previously described (201), except the annealing 

temperature was adjusted to 48°C (see Table 2.1 for primers used). 16S and 

flaB were amplified using the following conditions: 1 cycle 94°C for 5 min, 40 

cycles of 94°C for 30 sec, 50°C for 30 sec, 68°C for 1 min, 1 cycle 72°C for 5 

min. Sequencing was performed at Davis Sequencing (Davis, California). 

Chromatograms were visually inspected then the forward (coding) and 

reverse (template) strand sequences were aligned to obtain a double-

stranded consensus sequence. 16S sequences were queried using the 

Ribosomal Database Project’s Sequence Match (Seqmatch) program (202) 
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Table 2. 1.  Primer sequences used in this study and the predicted 
amplicon sizes. Primers obtained from other sources are 

indicated after primer name. 
Primer name Sequence (5’-3’) Predicted 

amplicon size in 

nucleotidesa 

16S For GGT CAA GAC TGA CGC TGA GTC A 136 nt 

16S Rev GGC GGC ACA CTT AAC ACG TTA G 

flaB For GGG TCT CAA GCG TCT TGG 139 nt 

flaB Rev GAA CCG GTG CAG CCT GAG 

ospA For ATG AAA AAA TAT TTA TTG GGA ATA GG 829 nt 

ospA Rev ATT CTC CTT ATT TTA AAG CG 

ospC For (200) ATG AAA AAG AAT ACA TTA AGT GC 638 nt 

ospC Rev CTT AAT TAA GGT TTT TTT GG 

p66 For GAT TTT TCT ATA TTT GGA CAC AT 755 nt 

p66 Rev TGT AAA TCT TAT TAG TTT TTC AAG 

16S IGS For AGT GCG GCT GGA TCA CCT CC 950 nt 

ileT IGS Rev 

(200) 

GTC TGA TAA ACC TGA GGT CGG A 

nid1 For CCA GCC ACA GAA TAC CAT CC 153 nt 

nid1 Rev GGA CAT ACT CTG CTG CCA TC 

recA For GTG GAT CTA TTG TAT TAG ATG AGG CT 171 nt 

recA Rev GCC AAA GTT CTG CAA CAT TAA CAC CT 

I. scap 16S For CGG TCT GAA CTC AGA TCA AG 300 nt 

I. scap 16S Rev GGG ACA AGA AGA CCC TAT C 

MLST primers for amplification and sequencing from 

borrelia.mlst.net/misc/info.asp 

clpA For AAA GAT AGA TTT CTT CCA GAC 982 nt 

clpA Rev GAA TTT CAT CTA TTA AAA GCT TTC 

clpX For GCT GCA GAG ATG AAT GTG CC 884 nt 

clpX Rev GAT TGA TTT CAT ATA ACT CTT TTG 

nifS For ATG GAT TTC AAA CAA ATA AAA AG 1049 nt 

nifS Rev GAT ATT ATT GAA TTT CTT TTA AG 

pepX For ACA GAG ACT TAA GCT TAG CAG 811 nt 

pepX Rev GTT CCA ATG TCA ATA GTT TC 

pyrG For GAT TGC AAG TTC TGA GAA TA 801 nt 

pyrG Rec CAA ACA TTA CGA GCA AAT TC 

recG For CCC TTG TTG CCT TGC TTT C 805 nt 

recG Rev GAA AGT CCA AAA CGC TCA G 

rplB For TGG GTA TTA AGA CTT ATA AGC 760 nt 

rplB Rev GCT GTC CCC AAG GAG ACA 

uvrA For GAA ATT TTA AAG GAA ATT AAA AGT AG 911 nt 

uvrA Rev CAA GGA ACA AAA ACA TCT GG 
a Predicted amplicon size was determined using the following respective accession 

versions: B. burgdorferi B31 AE000783.1 (chromosome), AE000790.2 (lp54), 

AE000792.1 (cp26); Mouse: NC_000079.6 (nid1). 

.
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and the Nucleotide Collection (nr/nt) BLAST database 

(blast.ncbi.nlm.nih.gov) to obtain genus and species identifications. flaB, 

ospA, ospC, p66, and the IGS region nucleotide sequences were queried 

using BLAST. 

NCBI Nuccore and BLAST Database Searches 

 
 Sequences were obtained by searching the NCBI nuccore database 

(www.ncbi.nlm.nih.gov/nuccore) using the following terms: Borrelia + p66; 

Borrelia + ospC; Borrelia + “outer surface protein C;” Borrelia + ospA; 

Borrelia + “outer surface protein A;” Borrelia + “intergenic spacer region;” 

Borrelia + IGS; Borrelia + 16S + 23S + IGS; Borrelia + 16S + 23S + 

“intergenic spacer region.” A search was performed in the non-redundant 

protein sequence (nr) BLAST database using the complete B. burgdorferi B31 

protein sequences for p66 (chromosome accession: NC_001318.1), OspC 

(cp26 accession: NC_001903.1), and OspA (lp54 accession: NC_001857.2). 

Alignments and Phylogeny 

 
 Sequences for ospA, ospC, p66, and the IGS regions from eastern 

North Dakota isolates were aligned along with BLAST and NCBI database 

sequences in ClustalW2 (www.ebi.ac.uk/Tools/msa/clustalw2/). The shaded 

alignment was generated using BoxShade (ExPASy, 

www.ch.embnet.org/software/BOX_form.html). Duplicate sequences 

(identified as the same species and found to be 100% identical) were 

represented in the analyses by a single sequence. Sequences obtained from 

BLAST were included in analyses if the query coverage was greater than 

90%. Obtained sequences were manually trimmed to conserved regions 
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aligning to the shortest sequence obtained for the eastern North Dakota 

isolates. Trimmed sequences meeting the above criteria were then used in 

phylogenetic analyses. For OspA and OspC, a subset of sequences from each 

clade was chosen to create representative phylogenetic trees. Final 

phylogenetic analyses for OspA, OspC, and p66 were performed using the 

PHYLIP programs SeqBoot, Proml, and Consense (Version 3.695, 

http://evolution.genetics.washington.edu/phylip/). Briefly, sequence files 

were put into SeqBoot and analyzed with1000 bootstrap replicates. The 

SeqBoot output file was analyzed in Proml using the Jones-Taylor-Thornton 

model with multiple data sets, slower analysis, a random number seed of 9, 

data sets jumbled 5 times, and an outgroup root when appropriate. The 

resulting file was input into Consense to obtain a single consensus tree using 

the majority rule (extended) consensus type and treated as rooted when 

appropriate. DNA trees were created using Dnaml in PHYLIP. Trees were 

visualized using FigTree (Version 1.4, 

http://tree.bio.edu.ac.uk/software/figtree) and labeled using Adobe 

Illustrator CS3 (San Jose, California). 

OspC Typing 
 

 To sequence ospC from mixed populations, PCR products for ospC 

from samples M6, M7, and M9 were gel purified and cloned into E. coli using 

the pCR2.1 TOPO TA Cloning Kit per the manufacturer’s instructions (Life 

Technologies; Carlsbad, California). Plasmids were purified using the QIAGEN 

Plasmid Mini Prep kit (Valencia, California) and sequenced at Davis 

Sequencing. OspC amino acid sequences for previously typed isolates  
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(98, 99) were obtained from NCBI. Nucleotide sequences from the eastern 

North Dakota isolates were translated (ExPASy; web.expasy.org/translate/) 

and aligned with the previously typed isolates in ClustalW2. A Percent 

Identity Matrix (PIM) was obtained. An OspC type group was assigned to 

each eastern North Dakota isolate if the sequence did not diverge more than 

2% from a particular group (99). 

Multilocus Sequence Typing (MLST) 
 

 MLST was performed for each eastern North Dakota sample (198). 

Primer sequences for the eight housekeeping genes used (clpA, clpX, nifS, 

pepX, pyrG, recG, rplB, and uvrA) were obtained from the Imperial College 

London’s B. burgdorferi MLST website (http://borrelia.mlst.net). For 

amplification and sequencing, the outer forward and outer reverse primers 

for each gene were used. For each gene, a 50 µL reaction was set up using 

the HotStarTaq Plus Master Mix (QIAGEN) per the manufacturer’s 

instructions. Primers were added to a final concentration of 1 µM and 1 µL of 

purified genomic DNA was added. Previously described amplification 

conditions were used (198) with the following modifications: 1. The initial 

denaturing step was decreased to 5 min per the HotStarTaq Plus Master Mix 

instructions and 2. The annealing temperature for recG was decreased to 

48°C. Sequencing was performed at Eton BioSciences, Inc (San Diego, CA). 

Chromatograms were inspected for double-peaks, which indicated a mixed 

population. Chromatograms indicating mixed populations were omitted from 

further analyses. Single locus queries were performed for each sequence to 

obtain an allele number. An allelic profile query was performed with the 



41 

available loci for each eastern North Dakota sample using the B. burgdorferi 

MLST website. When data for eight loci were available, the query type chosen 

was “Exact or nearest match.” When less loci were available, the query type 

chosen was n-1, where n = number of available loci. 

Infectivity of B. burgdorferi M3 

 
 Six female 4-6 week old BALB/c mice were each subcutaneously 

injected with 106 spirochetes/mL. Two weeks post-injection, infection was 

preliminarily determined by assaying pre- and post-infection sera by 

enzyme-linked immunosorbent assay (ELISA). Larval I. scapularis were 

allowed to feed on infected mice as previously described (203). Briefly, 

approximately 200-300 uninfected larval I. scapularis (Oklahoma State 

University-Stillwater) were placed on infected BALB/c mice, allowed to 

attach, and feed. Four to seven days after attachment, engorged larval I. 

scapularis dropped off, were collected, and placed in a humidified chamber 

until they molted to nymphs. Mice were euthanized twenty-four hours after 

all I. scapularis detached (i.e., day 8). One tibiotarsal joint, ear pinnae, and 

the heart were collected for qPCR analysis. The second tibiotarsal joint and 

ear pinnae were cultured in BSK-II medium with 6% rabbit serum and 50 

µg/mL rifampin, blind passed, and examined by dark field microscopy as 

described above. After molting, approximately 15 infected nymphal I. 

scapularis were placed on 6 naïve female 4-6 week old BALB/c mice. 

Engorged I. scapularis, mouse tissues, and cultures were treated as 

described above.  
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Enzyme-Linked Immunosorbent Assay (ELISA) 
 

 Anti-B. burgdorferi IgG in sera from inoculated mice was detected as 

previously described (203). Briefly, 96-well plates were coated with a 10 

µg/mL B. burgdorferi lysate in a carbonate coating buffer and incubated O/N 

at 4°C. All washes were performed with PBS-Tween. Serum samples were 

diluted 1:100 in PBS. Anti-mouse IgG was diluted 1:5000 in PBS. Each serum 

sample was analyzed in triplicate. 

DNA Extraction 
 
 DNA from bacterial cultures was extracted with a 25:24:1 phenol-

chloroform-isoamyl alcohol extraction. DNA was further purified with two 

consecutive ethanol precipitations. Total (mouse and spirochete) DNA for use 

in qPCR was extracted from tibiotarsal joints using a phenol-chloroform-

isoamyl alcohol protocol and further purified with the QIAGEN DNeasy Blood 

and Tissue Kit per manufacturer’s specifications. Total DNA from hearts and 

ear pinnae was extracted using a modified DNeasy Blood and Tissue Kit 

protocol. Briefly, minced tissues were suspended in Buffer ATL with 

proteinase K and incubated O/N at 56°C. Samples were further purified per 

manufacturer’s specifications and as previously described (203). 

Quantitative PCR (qPCR) 
 
 Primers used are listed in Table 2.1. Reactions were performed using 

Bio-Rad iQ SYBR Green Supermix (Hercules, California). Mouse DNA was 

detected using primers for nidogen (nid1) and quantified against 500, 50, 5, 

0.5, 0.05, and 0.005 ng mouse DNA standards. Amplification conditions: 

95°C for 3 min, 40 cycles of 95°C for 30, 49°C for 1 min, 1 cycle of 95°C for 
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1 min, 50°C for 1 min, 1 cycle 49°C for 1 min, 49-95°C Δ0.5°C for 10 sec 

each step. B. burgdorferi DNA was detected using primers for recA and 

quantified against six B. burgdorferi DNA standards ranging in concentration 

from 10-6 to 10-1 copy number. Amplification conditions: 95°C for 3 min, 40 

cycles of 95°C for 30 sec, 50°C for 1 min, 1 cycle of 95°C for 1 min, 50°C for 

1 min, 1 cycle 50°C for 1 min, 50-95°C Δ0.5°C for 10 sec each step. Each 

sample and a no-template control were run in triplicate. 

Detection of B. burgdorferi DNA in Nymphal I. scapularis 
 
 Total DNA was extracted from I. scapularis allowed to molt to nymphs 

after feeding as larvae using a modified QIAGEN DNeasy Blood and Tissue Kit 

protocol. Ten molted I. scapularis per mouse were homogenized in Buffer 

ATL (600 µL) with proteinase K (20 µL) and incubated overnight at 56°C. 

Buffer AL was added (200 µL); tubes were vortexed and incubated at 70°C 

for 10 min. Wheat germ transfer RNA, Type V (1 µL of 10 mg/mL; R-7876, 

Sigma-Aldrich; St. Louis, Missouri) was added and tubes vortexed. Ethanol 

(230 µL, 95%) was added, tubes were vortexed, transferred to DNeasy spin 

columns, and centrifuged for 1 min at 8000 rpm. Buffer AW1 (500 µL) was 

added and centrifuged for 1 min at 8000 rom. Buffer AW2 (500 µL) was then 

added and centrifuged at 14000 rpm for 3 min. DNA was eluted from the spin 

column with 100 µL nuclease-free water twice. PCR was performed using 

primers for I. scapularis 16S, B. burgdorferi 16S, and B. burgdorferi flaB 

(Table 2.1) with the following amplification conditions: initial denaturation at 

94°C for 3 min; 40 cycles of 94°C for 30 sec, 50°C for 30 sec, 65°C for 30 
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sec; final elongation at 65°C for 5 min. Reactions were run on a 2.5% 

NuSieve gel.  

GenBank Accession Numbers 
 
 Sequences obtained in this study have been deposited with accession 

numbers KM676013-KM676070. 

Results 
 

Sequence and Phylogeny Confirm Spirochetes are  
B. burgdorferi and Represent Non-Clonal Populations 

 
 To confirm the eastern North Dakota samples were B. burgdorferi s.l., 

we sequenced 136 and 139 nucleotides of the 16S rDNA and flaB, 

respectively. The 16S rDNA sequences were queried against the Ribosomal 

Database Project. The sequences for each of the five samples returned hits to 

various Borrelia species (data not shown). A BLAST search of the flaB 

sequences obtained from all five samples showed 100% sequence identity 

matches to B. burgdorferi (data not shown). These data confirmed the 

spirochetes were members of the B. burgdorferi s.l. group. 

 To determine whether the samples represented multiple B. burgdorferi 

populations or a single population, sequencing and phylogenetic analyses 

were performed for ospA, ospC, p66, and the 16S-ile tRNA IGS. For 

comparison, various B. burgdorferi s.l. and B. hermsii sequences were 

obtained from the NCBI and BLAST databases. A BLAST search using the 

16S-ile tRNA DNA sequence from B. burgdorferi B31 returned results for B. 

burgdorferi s.l. (data not shown). There were no differences in the sequences 

of ospA and p66 for the five samples. Protein maximum likelihood analyses of 
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OspA (Fig. 2.1) and p66 (Fig. 2.2) grouped the eastern North Dakota 

samples with B. burgdorferi s.l.  

 

 

 

Figure 2. 1.  Unrooted protein maximum likelihood analysis of OspA shows 
the eastern North Dakota isolates group with North American 

B. burgdorferi. Sequences included, approximately, residues 
41-236. Node values represent bootstrap values from 1000 

replicates. Red: eastern North Dakota isolates; purple: North 
America Lyme disease-associated Borrelia; blue: Eurasia 
Lyme disease-associated Borrelia; black: unknown species. 
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Figure 2. 2.  Rooted protein maximum likelihood analysis of p66 shows the 

eastern North Dakota isolates group with North American 
B. burgdorferi. Sequences included, approximately, residues 
364-548. Node values represent bootstrap values from 1000 

replicates. Red: eastern North Dakota isolates; purple: North 
America Lyme disease-associated Borrelia; blue: Eurasia 

Lyme disease-associated Borrelia; black: unknown species; 
pink: Relapsing fever outgroup. 
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 Unlike OspA and p66, OspC showed variation among the eastern North 

Dakota samples, sharing between 66 and 100% identity (Figs. 2.3 and 2.4). 

In two of the small mammals sampled (M7 and M9), multiple B. burgdorferi 

strains were detected. With the exception of B. burgdorferi M7 Clone 7, which 

grouped with a clade consisting of both North American and Eurasian 

Borrelia, the eastern North Dakota populations grouped most closely with B. 

burgdorferi s.l. (Fig. 2.4). B. burgdorferi M9 Clones 1 and 6 were 100% 

identical across the region used for OspC analyses, but showed variation 

outside of this region, particularly at four residues immediately downstream. 

Further sequencing would be required to determine whether Clones 1 and 6 

are indeed different strains. OspC typing revealed a diverse group of 

spirochetes (Table 2.2). Interestingly, one of the isolates identified, B. 

burgdorferi M7 Clone 8, belongs to one of the rarer groups (L) to be 

identified in reservoir animals (204). One isolate, B. burgdorferi M7 Clone 7, 

did not group with OspC groups A-U. This is not surprising given it did not 

clearly group with North American B. burgdorferi s.l. Taken together, these 

data confirm non-clonal, invasive populations of B. burgdorferi are present in 

eastern North Dakota.  
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Figure 2. 3.  Alignment of OspC suggests the eastern North Dakota 
isolates are genetically distinct strains of B. burgdorferi. 

Samples M7 and M9 contain a mixture of clones. Sequences 
included, approximately, residues 25-198. B. burgdorferi B31 

(AE000792.1), N40 (DQ437463.1), B. burgdorferi A (a non-
type strain, ABQ42987.1), B (a non-type strain, 
ABK41066.1), ZS7 (AF500204.1), and JD1 (DQ437462.1), as 

well as Vsp3, an OspC ortholog found in B. hermsii (relapsing 
fever, AAA22967.1) were included for comparisons. 

Alignment was performed in ClustalW2 and shading was 
performed using ExPASy’s BoxShade. 
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Figure 2. 4.  Rooted protein maximum likelihood analysis of OspC shows 

the eastern North Dakota isolates group with North American 
B. burgdorferi. OspC groups are indicated by a vertical black 

line and single letter code. Sequences included, 
approximately, residues 25-198. Node values represent 
bootstrap values from 1000 replicates Red: eastern North 

Dakota isolates; purple: North America Lyme disease-
associated Borrelia; blue: Eurasia Lyme disease-associated 

Borrelia; black: unknown species; pink: Relapsing fever 
outgroup. 
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Table 2. 2.  OspC group for each eastern North Dakota isolate using Wang et al. 

(99) and Seinost et al. (98) groupings. 

Eastern ND Isolate OspC group 

B. burgdorferi M9 Clones 1 and 6 A 

B. burgdorferi M3 B 

B. burgdorferi M6 E 

B. burgdorferi M4 and B. burgdorferi M9 Clone 2 F 

B. burgdorferi M7 Clone 5 I 

B. burgdorferi M7 Clone 8 L 

B. burgdorferi M7 Clone 7 None 

 

The Eastern North Dakota Populations are Most Closely Related  

to B. burgdorferi Found in the Upper Midwest 
 
 MLST analysis was performed to determine the regional source of the 

eastern North Dakota populations. Loci were omitted from further analysis if 

the chromatograms suggested a mixed population for that locus (i.e., double 

peak at a single nucleotide location) (Tables 2.3 and 2.4). Sequence for all 

eight loci could be obtained only for one sample (B. burgdorferi M9), thus 

single locus analyses were performed for the remaining samples. The 

database profiles that most closely matched the incomplete eastern North 

Dakota sample profiles were obtained (Tables 2.3 and 2.4). B. burgdorferi M3 

most closely matched ST30 strains for all loci except nifS, which was 

unavailable. The available loci information for B. burgdorferi M4 matched 

ST56 strains. B. burgdorferi M6 matched at five loci to ST31 and ST229 but 

had a different recG loci than ST31 or ST229. B. burgdorferi M7 differed at 

clpA from ST225 strains. B. burgdorferi M9 matched at all eight loci to ST56 

strains. Each database strain that was the closest match to the eastern North 

Dakota samples was initially identified in the Upper Midwest (Illinois, 

Wisconsin, Minnesota, and Manitoba, Canada) (Fig. 2.5, Table 2.4). These 

data suggest the eastern North Dakota samples are most closely related to 
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Upper Midwest strains and thus, the Upper Midwest is the most probable 

source of the eastern North Dakota samples. 

 
Table 2. 3.  Allele scores for clpA, clpX, nifS, pepX, pyrG, recG, rplB, and 

uvrA and closest matching database STs. 
Eastern ND 

Isolate 

clpA clpX nifS pepX pyrG recG rplB uvrA ST 

B. burgdorferi 

M3 

19 1 - a 1 2 1 1 10 30 

B. burgdorferi 

M4 

24 - - 18 - 19 1 - 56, 

231 

B. burgdorferi 

M6 

20 4 - 3 3 1 3 - 31, 

229 

B. burgdorferi 

M7 

18 2 - - 2 8 1 - 225 

B. burgdorferi 

M9 

24 14 4 18 11 19 1 12 56, 

231 
a Chromatogram indicated a mixed population 
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Table 2. 4. Allelic profiles and sequence types (ST) for the eastern North Dakota 

samples and the most closely matching multilocus sequence typing 

database strains. Alleles that differ from the respective eastern 

North Dakota allele are highlighted. 

Sample/Strain 

 

ST clpA clpX nifS pepX pyrG recG rplB uvrA 

B. burgdorferi 

M3  19 1 -a 1 2 1 1 10 

51405b 30 19 1 5 1 2 1 1 10 

MC132 30 19 1 5 1 2 1 1 10 

MC108 30 19 1 5 1 2 1 1 10 

          

B. burgdorferi 

M4  24 - - 18 - 19 1 - 

1469205 56 24 14 4 18 11 19 1 12 

MC73 56 24 14 4 18 11 19 1 12 

MC78 56 24 14 4 18 11 19 1 12 

Mid761 56 24 14 4 18 11 19 1 12 

MC150 231 24 14 4 18 11 90 1 12 

          

B. burgdorferi 

M6 

 

20 4 - 3 3 1 3 - 

48102 31 20 4 3 3 3 3 3 3 

50302 31 20 4 3 3 3 3 3 3 

Mid471 31 20 4 3 3 3 3 3 3 

MC101 229 20 4 3 3 3 18 3 3 

MC92 229 20 4 3 3 3 18 3 3 

          

B. burgdorferi 

M7 

 

18 2 - - 2 8 1 - 

MC110 225 8 2 5 93 2 8 1 84 

MC120 225 8 2 5 93 2 8 1 84 

BP-2 225 8 2 5 93 2 8 1 84 

          

B. burgdorferi 

M9 

 

24 14 4 18 11 19 1 12 

1469205 56 24 14 4 18 11 19 1 12 

MC73 56 24 14 4 18 11 19 1 12 

MC78 56 24 14 4 18 11 19 1 12 

Mid761 56 24 14 4 18 11 19 1 12 

MC150 231 24 14 4 18 11 90 1 12 
a Chromatogram indicated a mixed population 
b Database strain identifications 

 



54 

 

Figure 2. 5.  Location of database STs from Table 2.4. Strains from 
Marshfield Clinic, WI were obtained from unknown locations 

in Wisconsin. All were identified from human erythema 
migran samples. The remaining strains were reported to be 

isolated from the identified location. Pink icons are ST225, 
yellow ST31, orange ST30, green ST229 and ST231, cyan 
ST56. Numbers in parentheses indicate the number of unique 

strains comprising each ST. Forest River and Turtle River 
were sites of sample collection in this study. Satellite images 

obtained from NOAA via Google Earth. 
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Needle-Injected B. burgdorferi M3 Infects and Survives in  
BALB/c Mice and is Acquired by Larval I. scapularis During Feeding  

 
 To determine whether infectious and transmissible populations were 

present in eastern North Dakota, an infection and transmission study was 

performed using B. burgdorferi M3. M3 was the only sample obtained from 

M. gapperi, whose reservoir status is unknown. Further, the OspC data 

suggested M3 was a clonal population belonging to the infectious B group. An 

ELISA of pre- and post-infection sera from mice subcutaneously injected with 

106 B. burgdorferi M3/mL showed increased anti-Borrelia antibodies 2-weeks 

post-injection (Table 2.5). Tibiotarsal joints and ear pinnae were culture-

positive, except for one mouse where culture data were unavailable due to 

contamination. B. burgdorferi flaB was detected in molted nymphs fed on five 

of the six needle-injected mice (Table 2.5). Neither B. burgdorferi 16S nor 

flaB could be positively identified in molted nymphs fed on mouse 6. B. 

burgdorferi recA was detected in one of three hearts, six of six tibiotarsal 

joints, and three of six ear pinnae (Table 2.6). The mouse nidogen gene, 

nid1, was detected in all tissues (Table 2.6). These data demonstrate B. 

burgdorferi M3 is infectious to mice, able to disseminate to multiple tissues, 

and capable of being acquired by I. scapularis during a blood meal.  
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Table 2. 5.  Summary of ELISA and culture results from mice either needle-

injected (N) with 106 cells/mL B. burgdorferi M3 or tick-infected (T), 

as well as PCR detection of B. burgdorferi flaB from nymphs reported 

as B. burgdorferi flaB positive/nymph 16S positive. 

ELISA Culture PCR 

Needle-injected 

(N) 

Tick-infected 

(T) 

Tibiotarsal joint Ear pinnae Bb/Nymph

s N T N T 

6/6 6/6 5/6a 6/6 6/6 6/6 5b/6 
a One culture contaminated after initial inoculation 
b PCR with B. burgdorferi 16S and fla were not clearly positive or negative for one 

mouse 

 

 

Table 2. 6.  Summary of qPCR for needle-injected and tick-infected mice 

reported as B. burgdorferi recA positive/mouse nid1 positive. 

Needle-injected Tick-infected 

Heart Tibiotarsal 

joint 

Ear pinnae Heart Tibiotarsal 

joint 

Ear pinnae 

1/3a 6/6 3/6 6/6 6/6 6/6 
a Neither recA nor nid1 were detectable in three mice 

 

B. burgdorferi M3 Survives the I. scapularis Larval Molt  
and is Subsequently Transmitted to Naïve BALB/c mice  

During a Blood Meal  
 

 To determine whether B. burgdorferi M3 was transtadially maintained 

during the I. scapularis larval molt and capable of transmission to naïve 

mice, I. scapularis nymphs were fed on naïve BALB/c mice. Infection was 

confirmed by ELISA, which showed an increase in absorbance post-feeding 

(Table 2.5). Tibiotarsal joints and ear pinnae were all culture-positive. nid1 

and recA were detected in all six hearts, tibiotarsal joints, and ear pinnae. 

These data show B. burgdorferi M3 is transtadially maintained in I. scapularis 

and capable of dissemination in naïve hosts. 
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Discussion  
 

 Studies on the prevalence and spread of B. burgdorferi, I. scapularis, 

and Lyme disease in the Upper Midwest typically focus on Minnesota and 

Wisconsin (183, 205, 206). The vast majority of Lyme disease cases, and 

thus B. burgdorferi and I. scapularis, reported in the Upper Midwest are 

found in Minnesota and Wisconsin. However, there are numerous factors that 

demanded a detailed investigation of B. burgdorferi in eastern North Dakota 

(e.g., the close proximity to high-risk Minnesota counties with a history of 

Lyme disease, B. burgdorferi, and I. scapularis; the presence of known small 

mammal reservoirs; and recent studies (37, 180) identifying stable I. 

scapularis populations and B. burgdorferi in North Dakota further confirming 

the expansion of I. scapularis described in other US regions and Canada (41, 

179, 181, 182, 207)]).  

 The data presented here demonstrate the spirochetes isolated in 

eastern North Dakota from Peromyscus spp. and M. gapperi hearts are 

members of the B. burgdorferi s.l. complex. While OspA and p66 are identical 

among all of the eastern North Dakota populations, OspC typing shows they 

are distinctly non-clonal populations. The M9 population consisted of at least 

two OspC types, A and F; M7 consisted of at least two types, I and L (Table 

2.2, Fig. 2.4). B. burgdorferi M7 Clone 7 does not appear to belong to any of 

the previously defined OspC groups. In phylogenetic analyses, Clone 7 also 

does not appear to group clearly with either North American B. burgdorferi 

s.l. or Eurasian Lyme disease Borrelia (Fig. 2.4). A BLAST analysis with the 

sequence from Clone 7 returns results for B. burgdorferi s.l. OspC but with a 
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maximum identity score of 87% (data not shown). It is clear Clone 7 is a 

member of the B. burgdorferi s.l. complex, but its OspC type and infectivity 

remain unknown. Despite obtaining sequence data for a single clone, the M6 

population may consist of multiple OspC types due to difficulties obtaining 

ospC sequence prior to cloning ospC. Since less than five ospC clones were 

obtained and sequenced from three of the five eastern North Dakota 

samples, it is not possible to determine the proportion of OspC types in each 

sample. It is clear at least three of the most common OspC types known to 

cause disseminated infection in humans (A, B, and I) (98, 99) are present in 

eastern North Dakota (Table 2.2, Fig. 2.4). A more comprehensive survey is 

required to determine the presence and distribution of OspC types. 

 The MLST data, though limited, suggest the eastern North Dakota 

populations are derived from the Upper Midwest populations and not a recent 

transplant from another region. Specifically, the eastern North Dakota 

populations appear to be most closely related to strains found in Minnesota, 

Wisconsin, Illinois, and southeastern Manitoba on the Minnesota-Canada 

border. A number of the housekeeping genes appeared to be identical in the 

populations that the OspC data showed were mixed populations. Likewise, a 

number of housekeeping genes appeared to indicate mixed populations in a 

single sample when the OspC data suggested populations in each sample 

were clonal. This was surprising because the ospC gene is highly 

polymorphic, while the housekeeping genes are generally more conserved. 

Viewing the OspC and MLST data together suggest that in addition to small-

scale random mutation events, large-scale mutation events also occurred 
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with OspC. The sequence analyses, taken as a whole, suggest a regional 

population structure larger and more complex than was captured by the five 

samples partially characterized here.  

 The results of the infection study show B. burgdorferi M3 is infectious 

through both an artificial and natural route of infection. B. burgdorferi M3 is 

capable of disseminating from the site of inoculation to the heart, tibiotarsal 

joint, and ear pinnae indicating it is highly infectious (101). The ability to 

disseminate is not surprising since B. burgdorferi M3 belongs to the ospC 

group B, a group associated with disseminated disease in humans (98, 152, 

193).  

 In the US, Lyme disease remains a significant public health issue. 

From 2001 to 2011, the number of confirmed cases reported to the CDC 

averaged 24,000 making it the most reported tick-borne disease in the US 

(CDC). In 2013, the CDC released revised yearly estimates based on 

continuing studies including analyzing data from tests conducted by seven 

participating commercial laboratories in 2008 (78). Based on these analyses, 

the estimated number of individuals infected with B. burgdorferi in the US 

was revised to approximately 288,000 per year, about ten times more than 

the average yearly number of reported and confirmed Lyme disease cases. 

North Dakota is not the Lyme disease hotspot Minnesota is, but Lyme disease 

is poised to be a significant public health issue in North Dakota. The number 

of Lyme disease cases reported yearly in North Dakota is low (205 reported 

cases between 1996 and 2015, North Dakota Department of Health), 

compared to the number of cases reported in neighboring Minnesota (16,439 
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confirmed cases between 1996 and 2015, Minnesota Department of Health). 

However, just as the national cases are underestimated, there are a number 

of factors that make a reasonable argument for cases in North Dakota being 

underestimated: the classification of eastern North Dakota as a transition 

zone (179), the conventional opinion that B. burgdorferi and I. scapularis are 

not found in North Dakota, the evolving criteria for reporting and confirming 

Lyme disease, the increasing number of Lyme disease cases in North Dakota, 

and the rural nature of North Dakota.  

 To develop comprehensive, informed public health policies in both the 

US and Canada, it is imperative to understand whether I. scapularis, and 

subsequently B. burgdorferi, are expanding outside of the previously 

identified geographical regions. While changes in habitat, and the reasons for 

those changes, are outside the scope of this study, it is clear that B. 

burgdorferi and I. scapularis have migrated westward in the Upper Midwest. 

This information is relevant to North Dakota residents, visitors, and medical 

professionals who should be aware of the risk of contracting Lyme disease in 

eastern North Dakota. This information is also important beyond the borders 

of North Dakota as it provides additional data on the ever-evolving state of 

Lyme disease. 
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CHAPTER 3 
 

IN VITRO AND IN VIVO CHARACTERIZATION OF TWO ANKYRIN 
PROTEINS, BB0399 AND BBB28,  

IN BORRELIA BURGDORFERI 
 

Introduction 

 
 Lyme disease, an infection with Borrelia burgdorferi spread through 

the bite of an infected Ixodes scapularis, is the leading tick-borne disease in 

the US (4, 77). Each year 20,000-30,000 cases are reported to the CDC, but 

new estimates increase the suspected cases ten-fold to 240,000-444,000 per 

year (78). Despite the high incidence of Lyme disease, we still do not fully 

understand mechanisms B. burgdorferi utilize to cause disease and survive in 

reservoirs and vectors (208–210). One potential mechanism involves 

ankyrin-repeat (Ank) proteins, which have recently been identified in 

prokaryotes with several identified as virulence factors (211–251). Ank 

domains commonly facilitate protein-protein interactions in eukaryotes. In 

bacteria, three general functional classes of Ank proteins have been 

identified: 1. DNA-binding (252), 2. Oxidative stress response (248), and 3. 

Mimicking host Ank proteins (216, 238, 253, 254).  

 Based on BLAST searches and previous studies, our hypothesis was 

bb0399 belonged to the first functional class and bbb28 belonged to the 

second functional class.
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Ankyrin Proteins 
 

 The ankyrin-repeat domain (Ank) is one of the most common protein 

motifs and has been identified in the genomes of bacteria, archaea, 

eukaryotes, and viruses. The general structure of an ankyrin-repeat domain 

consists of a 33-residue repeat forming a series of alpha helices that stack 

upon each other forming a spring-like structure. A single domain can possess 

between 2 and 34 repeats, with prokaryotic Ank proteins having an average 

of four to six repeats for free-living/facultative host-associated and obligate 

intracellular bacteria, respectively (242).  

 Eukaryotic Ank proteins exclusively mediate protein-protein 

interactions (212) in diverse cellular processes, e.g. cell cycle regulation, 

with functions such as transcription factors (246), toxins (widow spider 

neurotoxins, (255)), and nucleases (RNase L, (256)). While less is known 

regarding the role of bacterial Ank proteins, a handful have been 

characterized to some degree and it is increasingly clear that Ank domains 

are important virulence factors and play important roles in the survival of 

bacteria (211, 216, 218, 238, 240, 248, 249, 252–254, 257, 258). One 

theme that has emerged is the role of Ank proteins in mediating some aspect 

of oxidative stress, with the two best characterized examples being AnkA 

from Anaplasma phagocytophilum and AnkB from Pseudomonas aeruginosa.  

AnkA  

 
 DNA-binding Ank proteins have been identified in Anaplasma (259) 

and Ehrlichia (244). One of the better characterized is AnkA, a secreted, 

soluble protein from A. phagocytophilum, a Gram-negative, obligate 
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intracellular pathogen living in neutrophils. Once inside a neutrophil, A. 

phagocytophilum secrets AnkA via a type IV secretion system. AnkA 

translocates to the host nucleus where it: 1. Binds the host phosphatase, 

SHP-1, to interfere with host cell signaling (223, 257) and 2. Directly binds 

host DNA, specifically the cytochrome b-245 beta chain gene (CYBB) 

promoter, to decrease CYBB transcription (211, 252). Cytochrome b-245 is 

part of the oxidase system in phagocytic cells and is involved in the 

formation of superoxide radicals. 

AnkB 

 
 Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen. 

AnkB is an integral cytoplasmic membrane protein, with the Ank domain on 

the periplasmic side (248). ankB is cotranscribed in a small operon with katB, 

a catalase only induced in response to H2O2 (248, 260). Deletion of ankB 

decreases transcription of katB and makes cells more sensitive to H2O2 

(248). While the mechanism or function of AnkB is unknown, two hypotheses 

were proposed (248): 1. AnkB binds to and stabilizes or anchors KatB 

allowing KatB to take an optimal conformation to bind and degrade H2O2, or 

2. AnkB provides structural support for the cytoplasmic membrane to 

mitigate an increase in turgor pressure from oxygen accumulated during the 

degradation of H2O2.  

Oxidative Stress 

 
 Oxygen is toxic, even to obligate aerobic bacteria (261). An inevitable 

byproduct of aerobic cellular metabolism, especially oxidative 

phosphorylation, is the production of reactive oxygen species (ROS), such as 
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superoxide (O2·–) and hydrogen peroxide (H2O2) (262). If not fully detoxified, 

superoxide or intermediates can cause irreparable damage eventually leading 

to cell death. Some microaerophilic bacteria, which require low 

concentrations of atmospheric oxygen, will use oxidative phosphorylation as 

a major or sole source of ATP production. As a result, microaerophiles can 

have a full collection of ROS-neutralizing enzymes. Helicobacter pylori and 

some Campylobacter species have a superoxide dismutase (SOD) and 

catalase (263–267); these microaerophilic species are able to fully detoxify 

ROS. B. burgdorferi has no catalase and only a single manganese-dependent 

SOD identified (22, 268). In fact, B. burgdorferi has no apparent sources of 

endogenous ROS, e.g. oxidative phosphorylation, except for a putative 

flavoenzyme (bb0812) that might be a source of endogenous superoxide 

radicals (22, 268). 

Oxidative Stress and B. burgdorferi  
 
 Whereas all other known pathogens have mechanisms to obtain iron 

from hosts (e.g. siderophores) and have myriad iron-dependent enzymes, B. 

burgdorferi has no siderophores, iron-dependent enzymes, or iron transport 

mechanisms (268). Coupled with an intracellular iron concentration of less 

than 10 atoms (269), B. burgdorferi is a pathogen that does not require iron. 

The outer membrane lipid profile of B. burgdorferi is also unique among 

pathogens. In addition to lipoproteins commonly found in the outer 

membrane of most bacteria, e.g. phosphatidylethanolamine and 

phosphatidylglycerol, B. burgdorferi also incorporates a large percentage of 

eukaryotic-derived cholesterol and cholesterol-glycolipids and thus, have 
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more polyunsaturated fatty acids (36% of the total fatty acids when grown in 

vitro) compared to other bacteria (270). Because B. burgdorferi obtains 

membrane lipids from its environment, the lipid profile can be highly variable 

and reflective of the environment (271, 272). Polyunsaturated fatty acids are 

more susceptible to lipid peroxidation, a potentially lethal reaction whereby 

ROS create lipid peroxyl radicals and can eventually decrease membrane 

fluidity. 

 This unique physiology precludes B. burgdorferi from the obvious and 

well-characterized bacterial targets of ROS. B. burgdorferi is not susceptible 

to DNA damage resulting from exposure to ROS (270). Hydroxyl radicals 

from the breakdown of H2O2 can lead to protein carbonylation. While 

carbonylation can be catalyzed by any metal, there is no evidence that 

protein carbonylation occurs in B. burgdorferi as a result of ROS. The main 

targets for ROS damage are the polyunsaturated fatty acids found in B. 

burgdorferi’s membranes (270).  

 With no apparent source of endogenous ROS, B. burgdorferi likely 

encounters ROS from exogenous sources, I. scapularis, and mammalian 

hosts. Much remains unexplained regarding dissolved oxygen concentrations 

and ROS production in I. scapularis. The dissolved oxygen content in the 

midgut and salivary glands of I. scapularis have not been determined and so 

whether or to what extent B. burgdorferi encounters ROS in I. scapularis is 

unknown (273). We do know I. scapularis releases a large number of 

proteins during feeding to minimize host immune responses (107), including 

proteins that aid B. burgdorferi in various ways, particularly with ROS. Two 
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salivary proteins directly inhibit neutrophils from producing ROS (274) and 

Salp25D, a salivary peroxidase directly protects B. burgdorferi from 

mammalian host oxidative damage during host-to-vector transmission (275, 

276).  

 B. burgdorferi will encounter rapidly evolving oxygen concentrations as 

it disseminates throughout a host. In rats, there is a concentration gradient 

of dissolved oxygen with a four-fold higher concentration in arterial blood 

than skin (273, 277, 278). Based on this, one hypothesis is that B. 

burgdorferi will encounter much lower concentrations of ROS in the host’s 

dermal layer until it encounters neutrophils. In addition to the neutrophil’s 

intracellular oxidative burst, which releases ROS within a phagolysosome to 

kill pathogens, neutrophils can release ROS into the extracellular space (276, 

279, 280). Oxygen and ROS concentrations will likely vary by host organ and 

the extent of oxygenation in areas where B. burgdorferi reside, e.g. 

connective tissue at the base of the heart, is unknown. Still, B. burgdorferi 

will have to survive some exposure to oxygen and ROS.  

 Studies on the effects of oxidative stress, particularly from hydrogen 

peroxide (H2O2) on B. burgdorferi have produced conflicting results with 

some groups showing B. burgdorferi is resistant to H2O2 (281) and others 

showing B. burgdorferi is susceptible (282, 283). Recently, Troxell et al. 

(282) confirmed wild-type B. burgdorferi is resistant to oxidative stress and 

demonstrated the discrepancies in previous studies may be due to the 

presence of pyruvate in B. burgdorferi culture medium. Pyruvate is a potent 
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scavenger of H2O2 and added in excess of physiological concentrations in B. 

burgdorferi culture medium.  

B. burgdorferi Ankyrin Proteins 
 
 B. burgdorferi possesses two genes encoding proteins with Ank 

domains, bb0399 and bbb28. These genes are two of the 588 hypothetical 

proteins in the B. burgdorferi genome. Both bb0399 and bbb28 are actively 

transcribed (284), however, the function(s) of bb0399 and bbb28 remain 

unknown.  

B. burgdorferi bbb28 

 
 B. burgdorferi type strain B31 possesses a gene, bbb28, with a 

putative Ank domain consisting of two Ank repeats (Fig. 3.1). bbb28 is 

located on circular plasmid 26 (cp26), a plasmid essential for B. burgdorferi 

survival (285), and is highly conserved among B. burgdorferi strains (89-

100% sequence identity). A few studies have identified bbb28 or BBB28 but 

those that have suggest bbb28 is functional, transcribed, and translated. 

Yang et al. (286) found BBB28 co-precipitated with the inner membrane 

protein, La7. Caimano et al. (287) found bbb28 decreased by approximately 

half when the response regulator, rrp1, was knocked out. Rrp1, part of the 

Hk1/Rrp1 two-component system, is vital for B. burgdorferi survival in I. 

scapularis (288–290). Ojaimi et al. (284) found bbb28 was one of 50 highly 

transcribed genes and transcription was high independent of temperature 

(35°C used to mimic a mammalian infection and 23°C used to mimic I. 

scapularis colonization) in wild-type (wt) B. burgdorferi type strain B31. 

Ojaimi et al. (291) also compared global transcription in a wild-type, virulent 
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Figure 3. 1.  Predicted features of BB0399 and BBB28 using European 

Molecular Biology Laboratory’s Simple Modular Architecture 

Research Tool database (EMBL SMART). A. BB0399 has four 
Ank repeats and four regions of low complexity (pink boxes at 

aa 14-29 and aa 202-211; two regions are not shown at aa 
106-114 and 184-197). B. BBB28 has two Ank repeats and 
two predicted transmembrane domains. (EMBL SMART found 

at http://smart.embl-heidelberg.de/)   
 

 
B. burgdorferi B31 isolate (BL206) and a high-passage, attenuated isolate 

(B356; lacks lp25, cp32-6, and cp32-8). bbb28 transcription was higher in 

the B356 isolate. RNA-seq analysis also found bbb28 was transcribed in wild-

type B. burgdorferi B31 grown under normal conditions (292). 

 Hyde et al (293) found bbb28 transcription was downregulated in a 

mutant B31 strain, JS167, that was as resistant to oxidative stress as the 

wild-type strain, MSK5 (294). This difference in phenotype between mutant 

and wild-type was attributed to the activity of a single protein, the Borrelia 

oxidative stress regulator (BosR). In wild-type B. burgdorferi, BosR activates 

genes involved in an oxidative stress response, e.g. superoxide dismutase  
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(sodA) and neutrophil activating protein A (napA; homologous with 

Escherichia coli’s Dps, an iron-dependent DNA-binding protein that functions 

to protect DNA during starvation and oxidative stress).  B. burgdorferi B31 

strain CHP100 was found to be hyper-sensitive to tert-butyl hydroperoxide 

(t-BHP, damages outer membrane). The hyper-sensitive phenotype was due 

to a single point mutation in bosR resulting in an arginine to lysine 

substitution (bosRR39K). BosRR39K does not bind the promoter of napA but 

does bind the promoter and repress sodA. Inactivation of bosRR39K by 

transposon mutagenesis resulted in strain JS167 and restoration of the wild-

type phenotype, ROS resistant. Thus, the model proposed is that BosR 

activates transcription of oxidative stress response genes, BosRR39K 

represses transcription of those genes, and inactivation of bosRR39K 

derepresses those genes. Thus, we can infer bbb28 is activated in a wild-type 

strain, repressed by BosRR39K, and derepressed by the inactivation of 

bosRR39K. 

 Finally, signature-tagged mutagenesis (STM) of B. burgdorferi was 

able to produce bbb28::kanR mutants that were used to infect mice (105). 

Culture and PCR of five tissues were utilized to screen tissues for B. 

burgdorferi at two and four weeks post-infection. The overall trend was one 

of defective dissemination and/or survival of bbb28::kanR mutants outside of 

the inoculation site.  

B. burgdorferi bb0399  
 

 Less is known about bb0399. Expression of BB0399 is different in mid-

exponential phase compared to stationary phase. A RelA/SpoT homolog 



70 

(RelBbu) involved in B. burgdorferi persistence in ticks upregulates bb0399 

expression during stationary phase, however, the increase in expression is 

small compared to other RelBbu-regulated genes (log2 fold change = 1.96) 

(295). Another study, also found bb0399 transcription was also different 

during stationary phase but found bb0399 was decreased in stationary phase 

(log2 fold change = -1.3) (292)Expression in wild-type B. burgdorferi B31 is 

minimal and unaffected by temperature (284). Expression of bb0399 

becomes undetectable when rrp1 is knocked out (287). Unlike with BBB28, 

there are no data suggesting bb0399 transcripts are translated. STM was 

unable to produce a bb0399::kanR mutant suggesting bb0399 is an essential 

gene (105). 

Objective 
 

 The goal of this work was to identify the function(s) of bbb28 and 

bb0399. Our initial hypothesis focused on a BBB28 belonging to the oxidative 

stress class of ankyrin proteins. Our hypothesis stated BBB28 had a direct 

role in an oxidative stress response with an additional, or perhaps related, 

role in host dissemination. Our oxidative stress hypothesis shifted to BBB28 

not having a direct role in an oxidative stress response, rather, being 

regulated by BosR in response to unknown stimuli. Our hypothesis for 

BB0399 was that BB0399 is an essential gene and may have DNA-binding 

properties, similar to AnkA of A. phagocytophilum.



71 

Materials and Methods 
 

Cloning 
 

 Full-length bb0399, full-length bbb28, and truncated bbb28 (nt 187-

1245, bbb28∆186 encoding protein BBB28∆62) were cloned into five vectors 

(Table 3.1). After ligating the target gene into the vector backbone, E. coli 

Top10 was transformed with each plasmid except pMAL-p5X and pMAL-c5X, 

which were transformed into NEB Express Competent E. coli (New England 

BioLabs, Inc). Cultures were grown overnight in LB with the appropriate 

antibiotic for selection. Up to 50 colonies per transformation were screened 

by PCR for the presence of the correct insert using universal T7 or M13 

primers as appropriate. Plasmid was then extracted from up to five PCR-

positive colonies using Qiagen’s Midi Plasmid Purification kit per the 

manufacturer’s instructions. Plasmids were sent for sequencing to either 

Davis Sequencing or Eton Bio. Both strands were sequenced using either 

universal T7 or M13 primers, as appropriate. Each sequence file was visually 

inspected for sequence quality. A consensus sequence was obtained by 

aligning the coding and non-coding strand files. Consensus sequence for each 

insert was aligned to the appropriate sequence from B. burgdorferi B31. A 

cloned insert had to match 100% to B. burgdorferi B31 before proceeding to 

the transformation of an expression strain.  

 To transform an expression strain of E. coli, 50 ng of purified plasmid 

was added to 50 µL of chemically competent E. coli. Five expression strains 

were used: BL21(DE3) (Novagen), Rosetta pLysS (Novagen), Tuner 

(Novagen), Tuner pLysS (Novagen), NEB Express Competent E. coli.  
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Table 3. 1.  Cloning vectors, primers, and E. coli strains used in this study. 

Restriction sites in primers, if present, are underlined. 

Gene Plasmid 

Name 

Cloning Primers E. coli 

Strain(s) Used 

Vector 

Backbone 
b
b
0
3
9
9
 

pBLS2 F: 

CGTCTAAAATTAAACACTTT

ATTAAAGG 

R: 

ATATCCAAGCATCTGATGG

G 

Top10 pCR2.1 

(Thermo 

Fisher 

Scientific) 

pBLS4 F: 

CACCATGCTTTTACTRTTAT

TGCAAACAATAATG 

R: 

GGCTATTTTACTAAAATTCG 

BL21(DE3) 

Rosetta pLysS 

Tuner 

Tuner pLysS 

pET200 

(Thermo 

Fisher 

Scientific) 

pBLS10 F: PO4-

atgaaaaaagaattcattatgctttt

actgttattgcaaaca 

R (SbfI): 

GAGAGAGACCTGCAGGCTA

TTTTACTAAAATTCG 

NEB Express pMAL-c5X 

(New England 

BioLabs, Inc) 

pBLS9 F: PO4-

ATGAAAAAAGAATTCATTAT

GCTTTTACTGTTATTGCAAA

CA 

R (SbfI): 

GAGAGAGACCTGCAGGCTA

TTTTACTAAAATTCG 

NEB Express pMAL-p5X 

(New England 

BioLabs, Inc) 

pBLS15 F (BamHI): 

CTCTCTGGATCCATGAAAAA

AGAATTCATTATGCTTTTAC

TG 

R (SalI): 

CTCTCTGTCGACCTATTTTA

CTAAAATTCGAACTATTTCT

TTGTT  

Tuner 

Tuner pLysS 

pGEX-6P-1 

(GE Healthcare 

Life Sciences) 

b
b
b
2
8
 

pBLS1 F: 

TATAATTTAAAAATAAACTTT

AAAAGGATG 

R: 

GCAATGGAATTAATCATCAA

TTAGC 

Top10 pCR2.1 

pBLS3 F: 

CACCATGAGTTATTATGTGC

TAAGCAAAATATT 

R: 

GTTAAATACCGATTAAATAT

TTATAGATTTCACTAG 

BL21(DE3) 

Rosetta pLysS 

Tuner 

Tuner pLysS 

pET200 

pBLS8 F: PO4-

ATGAGTTATTATGTGCTAAG

CAAAATATTTCTATATTCTG

GG 

NEB Express pMAL-c5X 
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R (SbfI): 

GAGAGAGACCTGCAGGTTA

AATACCGATTAAATATTT 

pBLS7 F: PO4-

ATGAGTTATTATGTGCTAAG

CAAAATATTTCTATATTCTG

GG 

R (SbfI): 

GAGAGAGACCTGCAGGTTA

AATACCGATTAAATATTT 

NEB Express pMAL-p5X 

pBLS14 F (BamHI): 

CTCTCTGGATCCatgagttatt

atgtgctaagcaaaatattt 

R (SalI): 

CTCTCTGTCGACTTAAATAC

CGATTAAATATTTATAGATT

TC 

Tuner 

Tuner pLysS 

pGEX-6P-1 

b
b
b
2
8
∆

1
8
6
 

pBLS6 F: 

CACCttcaccgaaaagcaattatt

agaagattttaatattttcgaa 

R: 

GTTAAATACCGATTAAATAT

TTATAGATTTCACTAG 

BL21(DE3) 

Rosetta pLysS 

Tuner 

Tuner pLysS 

pET200 

pBLS12 F: PO4-

ATGAGTTATTATGTGCTAAG

CAAAATATTTCTATATTCTG

GG 

R (SbfI): 

GAGAGAGACCTGCAGGTTA

AATACCGATTAAATATTT 

NEB Express pMAL-c5X 

pBLS11 F: PO4-

ATGAGTTATTATGTGCTAAG

CAAAATATTTCTATATTCTG

GG 

R (SbfI): 

GAGAGAGACCTGCAGGTTA

AATACCGATTAAATATTT 

NEB Express pMAL-p5X 

pBLS13 F (BamHI): 

CTCTCTGGATCCTTCACCGA

AAAGCAATTATTAGAAGAT 

R (SalI): 

CTCTCTGTCGACTTAAATAC

CGATTAAATATTTATAGATT

TC 

Tuner 

Tuner pLysS 

pGEX-6P-1 
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Expression of Recombinant BB0399 and BBB28 
 

 Several protocols were used to attempt expression of recombinant 

BB0399 and BBB28.  

 For the traditional induction, one colony was inoculated into 50 mL 

Super Broth (SB) + 100 µL 50 µg/mL kanamycin (Kan) and grown overnight 

at 37°C. Five mL of the starter culture was subcultured into 500 mL SB + 2.5 

mL Kan and grown with shaking until OD600 was 0.4-0.6. One-hundred µL 

was removed from each flask, pelleted, and stored at -20°C (pre-induction 

sample). Isopropyl ß-D-1 thiogalactopyranoside (IPTG) was added to each 

flask to a final concentration of 0.5 mM. One-hundred µL of induced culture 

was removed 1 and 4 hours post-induction. After 4 hours, the remaining 

induced culture was pelleted (6000 x g, 10 min) and stored at -20°C. 

The same protocol was used for cultures grown and induced at 30 and 20°C. 

In addition, all three protocols were attempted with 0.1 and 1 mM IPTG. 

 Two auto-induction protocols were used. The first attempt at auto-

induction was performed using the Dual Media Set (EB + OB) (Zymo 

Research) at 37, 30, and 20°C. Protocol II, which is designed for induction of 

toxic proteins and insoluble proteins, was used. For each temperature, a 

freshly streaked colony was inoculated into 5 mL EB medium and grown at 

the appropriate temperature for 8 hours (starter culture). Fifteen mL of pre-

warmed EB medium was added with 0.25 mM IPTG to the starter culture and 

incubated for 16 hours. 

 The second attempt at auto-induction was performed using Studier’s 

methods at 37, 30, and 20°C (296). Briefly, strains were cultured in ZYM-
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5052 (rich, auto-induction medium), MDA-5052 (enriched, fully defined auto-

inducing medium), and MD-5052 (minimal, auto-inducing medium) at 37 and 

20°C without or with 0.1 mM IPTG for 16 hours. 

 Drunken induction was also attempted using a protocol was obtained 

from Dr. Suba Nookala. Briefly, an overnight culture was grown with the 

appropriate antibiotic. The overnight culture was subcultured (1:100 dilution) 

into fresh LB with the appropriate antibiotic to an OD600 of 1.4-1.8. Cultures 

were chilled to 8-10°C in an ice-water bath. One mL of culture was removed, 

pelleted, resuspended in SDS-PAGE sample buffer, and stored at -20°C. IPTG 

was added to a final concentration of 100 µM and 2% (v/v) ethanol was 

added. Cultures were induced overnight at 20°C. After induction, the culture 

was pelleted and resuspended in binding buffer (5 mM imidazole, 0.5 mM 

NaCl, 20 mM Tris-HCl, pH 8), 0.1% Triton X-100, 100 µL DNase (10000 U/mL 

stock), 1 mg/mL lysozyme, 1 mM MgCl2, and 5 mM ß-mercaptoethanol. 

Samples were homogenized by pipetting for 2-3 minutes. One mL of 50X 

phenylmethane sulfonyl fluoride (PMSF) was added. The lysate was sonicated 

on ice and centrifuged at 8000 rpm, 4o°C, 30 min. Supernatants were 

removed (soluble protein fraction) and both supernatants and pellets were 

saved and analyzed by SDS-PAGE. 

 All whole cell lysates (pre- and post-induction) and purified protein 

fractions were analyzed via SDS-PAGE.  

Growth Curves 
 

 pBLS4 (bb0399 in pET200) and pBLS3 (bbb28 in pET200) in Tuner, 

Tuner pLysS, and Rosetta pLysS and pBLS9 (bb0399 in pMAL-p5X) and 
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pBLS7 (bbb28 in pMAL-p5X) in NEB Express were grown in LB, LB + 1% 

glucose, LB + 1% glycerol, SB, ZYM-5052, MDA-5052, MD-5052, and MDG 

(non-inducing medium) at 20 and 37°C for 140 and 68 hours, respectively, 

using a Bioscreen C Analyzer (Growth Curves USA). Plates were shaken 

continuously and OD600 was read every hour. 

Purification of Recombinant Proteins 
 

 Soluble (pET200, pGEX-6P-1 constructs), insoluble (pET200, pGEX-6P-

1 constructs), inclusion body (pGEX-6P-1 constructs), cytoplasmic (pMAL-c5X 

constructs), and periplasmic (pMAL-p5X constructs) fraction was extracted 

when appropriate per manufacturer’s instructions. 

 Briefly, soluble and insoluble fractions from pET200 constructs were 

isolated using B-PER II (Bacterial Protein Extraction Reagent; Pierce). Soluble 

protein fractions were purified with the MagneHis Protein Purification System 

(Promega) per manufacturer’s instructions. Protein fractions where 

recombinant BB0339, BBB28, or BBB28Δ62 would have been were they 

expressed in E. coli transformed with pMAL-c5X or pMAL-p5X were purified 

using the New England BioLab’s cytoplasmic or periplasmic (osmotic shock) 

isolation protocol, respectively. Inclusion bodies were purified Protein 

fractions from E. coli transformed with pGEX-6P-1 were purified by 

resuspending pellets in 1/20 volume PBS. Cells were sonicated on ice to lyse 

(8 cycles at 40% amp, 20 sec on, 30 sec off). Triton x-100 was added to a 

final concentration of 1% then incubated for 30 min at RT on an orbital 

shaker. Samples were centrifuged 5 min, 4°C, 10000 x g. Supernatant was 

removed and both supernatant and pellet were saved.  



77 

 Inclusion bodies were purified by one of two methods. The first 

method used the MagneHis Protein Purification System protocol per 

manufacturer’s instructions. The second method is as follows: 100 mL 

cultures were pelleted and resuspended in 4 mL 20 mM Tris-HCl, pH 8. Cell 

suspensions were sonicated on ice (4 cycles at 30% amp, 10 sec on, 20 sec 

off) and centrifuged (20 min, 4°C, 15000 x g). Pellets were resuspended in 

6 mL ice-cold purification buffer (2 M urea, 20 mM Tris-HCl, 0.5 M NaCl, 2% 

Triton X-100), sonicated, and centrifuged until the supernatant was clear. 

The pellet was resuspended in 5 mL solubilization buffer (20 mM Tris-HCl, 

0.5 M NaCl, 5 mM imidazole, 6 M guanidine-HCl, 1 mM ß-mercaptoethanol, 

pH 8) and incubated 60 min, RT, on an orbital shaker. Samples were 

centrifuged 30 min, 4°C, 15000 x g. Prior to analyzing samples by SDS-

PAGE, proteins resuspended in guanidine were precipitated and resuspended 

in urea using a modified protocol (297). Briefly, 200 µL of guanidine extract 

was added to 1 mL of RT 95% ethanol, incubated overnight at -80°C, then 

centrifuged at 14000 x g, 30 min, 4°C. Supernatant was removed and the 

pellet was resuspended in 250 µL of -20°C 70% ethanol, vortexed, and 

centrifuged 14000 x g, 10 min, RT. Supernatant and residual ethanol was 

removed and the pellet was air dried for 15 min. Pellets were resuspended in 

50-100 µL 8 M urea. Samples were then mixed with SDS-PAGE loading buffer 

and incubated at RT for 30 minutes before loading on a gel.  

Dot Blots 

 
 pGEX dot blots were performed using pBLS14 and pBLS15 in Rosetta 

pLysS, BL21, Tuner, and Tuner pLysS induced at 20 and 37°C as described 
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above for the traditional induction and Studier’s ZYM-5052 autoinduction 

medium. After induction, soluble fraction was isolated as described above for 

pGEX-6P-1 constructs. PVDF membranes were dipped in methanol until 

transparent then equilibrated in 1X TBS without Tween-20 for 10 minutes. 

Whatman filter paper was dipped in 1X TBS and placed on a clean weigh 

boat. The PVDF membrane was placed on the filter paper and quickly dotted 

with 1 and 2 µL of each supernatant. The membrane was removed from the 

filter paper and allowed to dry completely. The dried membrane was wet in 

methanol, briefly washed in 1X TBS, then blocked for 1 h at RT in 5% 

blocking buffer (1X TBS-T + 5% non-fat dried milk). The membrane was 

incubated with primary antibody (1:1000 mouse anti-GST, Pierce) for 2 h at 

RT. The membrane was washed eight times with 1X TBS-T then incubated 

with secondary antibody (1:10000 mouse anti-IgG, Pierce) for 1 h at RT. The 

membrane was immediately developed with the Pierce SuperSignal West Pico 

Chemiluminescent kit per manufacturer’s instructions.  

 Inclusion bodies were also analyzed via dot blot. The same protocol as 

described above was used with pET200 constructs, 1:2500 rabbit anti-His 

primary antibody (Thermo Fisher), and 1:10000 rabbit anti-IgG ECL 

secondary (GE Healthcare). 

Production of Polyclonal Anti-BBB28 Antibodies 

 
 Using the full-length BBB28 sequence, putative antigenic regions were 

determined using EMBOSS explorer antigenic tool and the Universidad 

Complutense Madrid antigenic peptide prediction tool (298). A 411 bp region 

of the putative exposed region was cloned into a pET200/D-TOPO vector 
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(Invitrogen) and expressed in Escherichia coli λDE3 BL21 Star (Invitrogen). 

Recombinant protein was purified using the MagneHis Protein Purification 

System (Promega) per manufacturer’s instructions and used to produce 

polyclonal anti-BBB28 antibodies from 4- to 6-week-old C3H/HeN mice.  

Purified protein was dialyzed into 1X PBS treated for animal injection. A pre-

immune cheek bleed was obtained for each mouse and analyzed via an 

ELISA using whole-cell B. burgdorferi lysates and purified BBB28 peptide. 

Purified peptide was suspended 1:1 in Alhydrogel adjuvant 2% (InvivoGen) 

per manufacturer’s instructions. Each mouse received 50 µL of the peptide 

and adjuvant mixture intraperitoneally on day 1, 14, and 28. On day 28, 

blood was collected via submandibular bleed and analyzed via ELISA to 

confirm production of antibodies against B. burgdorferi whole cell lysate. Mice 

were then sacrificed, blood was collected, and serum was separated and 

stored at -20°C.  

Oxidative Stress 

 
Determining Effects of Preparing Culture  

for Oxidative Stress Exposure 
 
 B. burgdorferi 5A18NP1, an infectious isolate of the B31 type strain 

(299), was cultured in BSK-II medium with 6% rabbit serum (complete BSK-

II) at 34°C + 5% CO2 to a cell density of 5 x 107 cells/mL. Cells were 

centrifuged, washed, and resuspended in modified BSK-II (no rabbit serum 

or sodium pyruvate) as previously described (282) with one modification. 

Resuspended cultures were incubated at 34°C + 5% CO2 for 30 minutes in 

modified BSK-II prior to ROS exposure. A 10 mL aliquot was removed 

immediately prior to transfer, immediately after transfer, after a 30-minute 
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incubation in modified BSK-II, and then 5, 10, 20, 30, and 60 minutes post-

incubation. 

 RNA was isolated using Trizol and isopropanol precipitation. cDNA was 

synthesized using the SuperScript VILO cDNA Synthesis Kit (Invitrogen) and 

used in quantitative PCR (qPCR). Transcripts for bosR and napA were 

normalized to flaB and compared to expression at: 1. Pre-transfer 

(+pyruvate) baseline, 2. Immediately post-transfer (-pyruvate, 0 min), or 3. 

30 minutes post-transfer (-pyruvate, 30 min).  

Oxidative Stress 

 
 B. burgdorferi 5A18NP1 was cultured in BSK-II with 6% rabbit serum 

at 34°C + 5% CO2 to a density of 5 x 107 cells/mL. Cells were centrifuged, 

washed, and resuspended as described above in modified BSK-II. After a 

30 minute acclimation period, a 10 mL aliquot was removed (time 0). One 

mM H2O2 or t-BHP were added to each culture. Ten mL aliquots were 

removed 5, 10, 20, 30, and 60 minutes post-treatment. Cultures were 

maintained in an ice-water bath until centrifuged. Pellets were washed three 

times with 1X PBS and stored at -80°C until RNA extraction. 

Quantitative Real-Time PCR 
 

 RNA was isolated using Trizol and isopropanol precipitation. cDNA was 

synthesized using the SuperScript VILO cDNA Synthesis Kit (Invitrogen) and 

used in quantitative PCR (qPCR). qPCR was performed for flaB, bosR, napA, 

sodA, bb0399, and bbb28 (primers in Table 3.2) using SYBR Green Master 

Mix (Bio-Rad) and the following protocol: 1 cycle at 95°C for 3 min, 40 cycles 

at 95°C for 30 sec and 56°C for 1 min. Melt curves were 1 cycle at 95°C for 1 
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min, 1 cycle at 56°C, 10 seconds at 56-95°C with 0.5°C temperature change 

per cycle. Transcripts were normalized to flaB. 

 
Table 3. 2.  qRT-PCR primers used in this study. 

Amplicon target Primer sequence 

flaB F: GGGTCTCAAGCGTCTTGG 

R: GAACCGGTGCAGCCTGAG 

bosR F: AGCTTGGCTTCCACAATAGC 

R: TTTGTTTCCCAGTTTTCTCCA 

napA F: GAAAGCATTGTTTGCAGTCT 

R: AAAACAATCGCAATTTTCAA 

sodA F: AGAACTTTAAGGCCAGGAAA 

R: CAATACTAACCATGCCCAAC 

bb0399 F: TGCACTAAATCTTGGAGCAGAA 

R: GCTCCGCTTTCTTTTAAAAATTC 

bbb28 F: TTCCAACGGCAATCCAATA 

R: GCGCCTTTTTCGATAAGTGA 

 

 
Results and Discussion 

 

In silico Analysis of BB0399 and BBB28 
  

 BB0399 is a small protein of 219 amino acids (Fig. 3.1A, Fig. 3.2A). It 

has four predicted Ank repeats and four predicted regions of low complexity. 

The presence of low complexity regions near the C- and N-termini suggest 

BB0399 may be a promiscuous protein with numerous binding partners 

(300). BBB28 is 414 amino acids with two predicted Ank repeats (residues 

326-355 and 359-389) and two transmembrane domains residues 5-27 and 

40-62) (Fig. 3.1B, Fig. 3.2B). Interestingly, the transmembrane domains 

predicted for BBB28 in B. burgdorferi B31 are not predicted in B. bavariensis 

PBi, a related Lyme disease Borrelia. In B. bavariensis PBi, the N-terminal 

region is annotated as a low complexity region. 
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Figure 3. 2.  Hydrophobicity plots by TopPred for BB0399 and BBB28. 
A. Hydrophobicity plot for BB0399 predicts a soluble protein. 

B. Plot predicts two transmembrane domains, indicated by 
the two hydrophobic regions near the N-terminal. 

 

 

 Hydrophobicity plots (TopPred Version 1.10, (301)) suggest BB0399 is 

a soluble protein with the Ank domain (residues 73-199) representing the 

least hydrophilic region (Fig. 3.2A). TopPred also predicted two 

transmembrane domains in BBB28 (Fig. 3.2B). Again, there is a sharp 

increase in hydrophobicity within the Ank domain (residues 326-389) 

compared to the rest of the protein (excluding the transmembrane domains).  
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 Protein BLAST (Blastp, NCBI) searches of BB0399 and BBB28 from B. 

burgdorferi B31 produced no significant matches when Borrelia spp. were 

excluded, except the conserved Ank domain structure. The Ank domain 

aligned with a variety of organisms from bacteria (e.g. Wolbachia, Bacillus, 

Lentisphaerae) to insects (e.g. Culex spp., Vollenhovia spp., Athalia spp.) to 

trees and grasses (e.g. Prunus spp., Zea spp.) to mollusks (Mizuhopecten 

spp.) (Fig. 3.3, 3.4; Tables 1 and 2 in Appendix).  

 Phyre2 is a tool that predicts protein structure through alignments and 

domain homology to create 3D models (302). The most likely models for 

BB0399 and BBB28 were produced using an intensive search (Fig. 3.5). For 

BB0399, 97% of the residues were modeled at greater than 90% confidence 

and for BBB28, 71% of the residues were modeled at greater than 90% 

confidence.  

Cloning and Recombinant Protein Expression 
 

 Numerous inductions for recombinant BB0399 and BBB28 failed 

regardless of induction conditions or expression vector used. After one failed 

induction, plasmid was extracted from cultures and sequenced. These results 

revealed a stop codon resulting in premature termination of both proteins. 

Since both bb0399 and bbb28 were sequenced prior to expression and no 

stop codons were present, this suggests bb0399 and bbb28 are toxic to E. 

coli and were mutated to prevent expression. The presence of an antibiotic 

gene on each expression plasmid and culturing under selective pressure 

prevented E. coli from removing the plasmid containing bb0399 or bbb28.  
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Figure 3. 3.  Alignment for BB0399 adapted from NCBI protein BLAST 
results. 
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Figure 3. 4.  Alignment for BBB28 adapted from NCBI protein BLAST 

results. 
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Figure 3. 5.  Predicted structures of BB0399 (A) and BBB28 (B) by Phyre2. 

Each structure is colored from the N-terminal (blue) to the  
C-terminal (red). A. Ank repeats show the most secondary 

structure (green to red helix-turn-helix motifs near the  
C-terminal). B. Putative transmembrane domains are shown 
in blue at the N-terminal. Ank repeats are in light green to 

red. 
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 A handful of induction attempts produced promising SDS-PAGE, dot 

blot, and Western results but were unable to be confirmed by additional 

methods. For example, a dot blot for the glutathione S-transferase (GST) tag 

found on recombinant protein expressed from pGEX vectors and 6X-Histidine 

(His) tag found on recombinant protein expressed from pET vectors showed 

some strains produced GST or His after induction but not before induction 

(Fig. 3.6). The negative dots did have detectable protein when stained with 

either Coomassie blue or Ponceau S.  These results confirmed inducing 

expression of recombinant BB0399 or BBB28 was possible with some strains. 

An obvious drawback of dot blots is the inability to determine whether 

antibodies are detecting the purification tag alone or tagged recombinant 

protein. Western blots with the same samples were not positive, even for the 

tag alone. 

 The goal for producing recombinant protein was to produce antibodies 

against BB0399 and BBB28 for use in in vivo experiments. In a final attempt 

to obtain antibodies to BB0399 and BBB28, a non-coding, highly antigenic 

peptide was cloned into a pET200 TOPO vector (Invitrogen) (Fig. 3.7). The 

peptides chosen covered several putative antigenic regions and at least part 

of the peptide was expected to be available for antibody binding under native 

folding conditions. There was a 50% success rate as only the bbb28 peptide 

was successfully cloned and expressed. ELISA results from mice injected with 

bbb28 peptide showed antibodies were produced that recognized whole B. 

burgdorferi lysate. 
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Figure 3. 6.  Dot blot for GST (pGEX) and His (pET) in soluble and 

inclusion body fractions isolated from Tuner and Tuner pLysS 
E. coli strains. Three E. coli strains transformed with pGEX 

constructs (columns 1-3) had detectable GST in the soluble 
fraction throughout the experiment, while the other three 

strains (columns 4-6) showed detectable GST after induction. 
Detection of His was weak throughout the experiment. 
Column 1 – E. coli Tuner bb0399 in pGEX, 2 – Tuner pLysS 

bb0399, 3 – Tuner bbb28, 4 – Tuner pLysS bbb28, 5 – Tuner 
with truncated bbb28 (bbb28Δ186), 6 – Tuner pLysS 

bbb28Δ186, 7 – Tuner bb0399 in pET200, 8 – Tuner pLysS 
bb0399, 9 – Tuner bbb28, 10 – Tuner pLysS bbb28.  
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Figure 3. 7.  Predicted antigenic peptides. (A) BB0399 peptides predicted 
to antigenic are shown as horizontal grey bars at the top of 

the plot. A region covering five putative antigenic peptides, 
marked by yellow vertical lines, was cloned into a pET200 

TOPO vector. (B) BBB28 peptides predicted to be antigenic. A 
region covering seven putative antigenic peptides, marked by 
yellow vertical lines, was cloned into a pET200 TOPO vector. 
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Growth Curves 
 

 With evidence that both BB0399 and BBB28 are toxic to E. coli and 

after several failed attempts to express recombinant protein, auto-induction 

medium was used. Smaller yields of toxic proteins can be obtained under 

certain conditions, such as inducing at lower temperatures or at higher cell 

density. During auto-induction, starter cultures are grown in non-inducing 

media containing a lac repressor, such as excess glucose. Cultures are then 

subcultured into auto-inducing media, which also contains an appropriate lac 

repressor as well as an additional carbon source. As the culture expands, 

glucose depletes, cells begin using the second carbon source, such as 

lactose, lac is no longer repressed, and recombinant protein is expressed. 

Growth curves were performed to determine the best non-inducing medium, 

auto-inducing medium, as well as the optimal length for induction. 

 All strains grew faster at 37°C (Fig. 3.9) compared to 20°C (Fig. 3.8). 

MDG was found to be the best non-inducing medium. Strains grew well in all 

auto-inducing media but for induction at 20°C, 16-24 hours was not enough 

time for cultures to reach stationary phase. Cultures required at least 40 

hours to reach stationary phase at 20°C. As a result, prior cultures were 

harvested too early. Unfortunately, longer induction times in auto-inducing 

media failed. 
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Figure 3. 8.  Growth curves for E. coli transformed with one of eight 
plasmids and cultured in eight types of media at 20°C. For all 

strains, MDG medium was found to be the best non-inducing 
medium. For auto-induction, all strains grew well in all auto-
inducing media but required much longer incubations than 

recommended (30-40 hours to reach stationary phase 
compared to the 16-24 hours recommended). 
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Figure 3. 9.  Growth curves for E. coli transformed with one of eight 
plasmids and cultured in eight types of media at 37°C. For 

unknown reasons, no data points were recorded between 29 
and 44 hours resulting in missing data points. In addition, 

two strains (bb0399 and bbb28 Tuner) did not grow in LB or 
SB. These wells were likely not inoculated with the starter 
culture.  
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 Troubleshooting failed recombinant protein expression can be a 

maddening experience as there are several factors (e.g. codon optimization, 

properties of the chosen protein, vectors, expression strains, and induction 

parameters) that can affect expression.  

Codon Usage 

 
 Borrelia tends to use rare codons much more frequently. To 

circumvent this problem, use of an E. coli strain capable of overproducing 

tRNAs for these rare codons, such as a Rosetta pLysS E. coli strain is usually 

recommended for routine expression of Borrelia proteins. Codon optimization 

(replacing rare codons with common codons) is also performed and 

recommended for genes encoded with several rare codons. Codon 

optimization was not performed as neither BB0399 nor BBB28 possess a high 

percentage of rare codons compared to other B. burgdorferi proteins. 

Expressing recombinant BB0399 and BBB28 using any E. coli transformed 

with pLysS was deemed sufficient. 

Recombinant Protein Properties 

 
 Transmembrane domains can also impede recombinant protein 

expression. Two approaches are available to express recombinant integral 

proteins: 1. Clone the protein without the transmembrane domains or 2. 

Express recombinant protein in an E. coli strain designed to express 

membrane proteins, such as the OverExpress C41(DE3) or C43(DE3) E. coli 

strains (Lucigen).  
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Vector and Expression E. coli Choice  
 

 If you adore customization, cloning is for you. Every piece of a vector 

can be customized to fit your needs. The choice of purification tag can help 

increase solubility of recombinant proteins, making them easier to purify. 

There are also non-bacterial expression systems available, which could 

eliminate several problems associated with expressing bacterial proteins. 

Induction Parameters 
 

 If using an IPTG-inducible promoter, the presence of repressors in 

culture medium, temperature before and during induction, duration of 

induction, cell concentration at the time of induction, and IPTG concentration 

used can all affect expression.  

Oxidative Stress 
 

Preparing Cultures for t-BHP Exposure  
Affects Gene Transcription  

 
 Care must be taken when determining the effect of ROS on B. 

burgdorferi. In addition to the unusual physiology (e.g. little intracellular 

iron, no oxidative phosphorylation pathway), the medium used to culture B. 

burgdorferi, BSK-II, possesses several components capable of scavenging 

ROS. The one component found to be a potent scavenger of ROS is pyruvate, 

which is added in physiological excess in BSK-II (282). Initially, H2O2 or t-

BHP were added immediately after transferring B. burgdorferi to pyruvate-

free BSK-II. Results from these experiments and knowledge of bacterial 

stress responses suggested B. burgdorferi was experiencing stress unrelated 

to the presence of ROS. To test this hypothesis, expression of two control 

genes, bosR and napA, was evaluated under three culture conditions.   
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 Expression of bosR and napA was found to significantly increase 

immediately after transfer to pyruvate-free medium (-pyruvate, 0 min; 

Fig. 3.10). A 30-minute incubation in pyruvate-free BSK-II returned 

expression of bosR and napA to levels seen prior to resuspension (-pyruvate, 

30 min; Fig. 3.10). Based on these results, cultures were washed and 

resuspended in pyruvate-free BSK-II and incubated for 30 minutes prior to 

the addition of either H2O2 or t-BHP. 

 

 

 

Figure 3. 10.  Preparing B. burgdorferi for exposure to ROS appears to 

affect the expression of bosR. A similar trend was observed 
with napA. 
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Transcription of bbb28, but not bb0399,  
Appears to Increase in the Presence of t-BHP  
 

 To determine the expression of bb0399 and bbb28 in response to t-

BHP, B. burgdorferi was cultured in complete BSK-II, resuspended in 

pyruvate-free BSK-II, incubated for 30 minutes then treated with 0 or 1 mM 

t-BHP. Aliquots were removed immediately prior to ROS addition and then at 

5, 10, 20, 30, and 60 minutes after addition of ROS. qRT-PCR data were 

unavailable for some time points and genes. However, expression of bbb28 

was highest 5 minutes after the addition of t-BHP and a time-dependent 

decrease in transcription was observed (Fig. 3.11).  

 Whether the changes in bbb28 transcription observed after the 

addition of t-BHP are due to the presence of ROS is still unknown. 

Undoubtedly, centrifugation, resuspension, and placement into different 

medium affect gene transcription in B. burgdorferi. To better elucidate the 

effect of ROS on bbb28 transcription, a promoter fusion or reporter strain is 

required. A reporter strain would allow direct observation of promoter 

activation in response to ROS.  
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Figure 3. 11.  Transcription of bbb28 increases after exposure to 1 mM  
t-BHP. (A) Transcription of bosR, sodA, napA, bb0399, and 
bbb28 in the absence of t-BHP. Transcription of bosR and 

bb0399 increased, while bbb28 transcription decreased over 
time in the absence of t-BHP. qRT-PCR failed for sodA at 30 

and 60 minutes, napA at 10, 20, and 30 minutes, and bbb28 
at 30 minutes. (B) Transcription in the presence of 1 mM t-
BHP. A strong increase in bbb28 transcription was observed 5 

minutes after addition of 1 mM t-BHP. qRT-PCR failed for 
sodA at 5 minutes and all transcripts at 60 minutes.  
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Conclusions 
 

 This project provided ample learning opportunities to learn new 

methods and troubleshoot methods. Unfortunately, I was unable to provide 

additional information regarding the function of BB0399 or BBB28. Both 

bb0399 and bbb28 are transcribed and others have shown at least BBB28 is 

translated (286). The placement of bb0399 on the chromosome (22) as well 

as the inability to knockout bb0399 (105) strongly suggests this is an 

essential gene. Similarly, the placement of bbb28 on cp26, an essential 

plasmid for B. burgdorferi, suggests the function of BBB28 is important, 

though not essential for survival in vitro or in mice as mutants have been 

recovered (105). In addition, understanding the function of bb0399 and 

bbb28 would add to our understanding of B. burgdorferi, regardless of 

whether this information would move from the realm of basic science into 

translational research. 
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CHAPTER 4 
 

IN VITRO CHARACTERIZATION OF BORRELIA MIYAMOTOI  
AND THE EFFECT OF AGE ON BORRELIA MIYAMOTOI INFECTION 

IN WILD-TYPE C3H/HEN MICE 
 

Introduction 

 
 Borrelia miyamotoi is a relapsing fever spirochete (20, 21, 85, 86, 

175, 303–309) carried by the same Ixodes spp. that vector and carry species 

of the Borrelia burgdorferi sensu lato (s.l.) complex in North America, 

Europe, and Asia (20, 310). While first characterized in 1995 by Fukunaga et 

al (20), B. miyamotoi was likely first reported in 1987 when Lane and 

Burgdorfer (46) noted transovarial transmission of spirochetes in I. pacificus 

and attributed the spirochetes as B. burgdorferi.  

 In general, Lyme disease Borrelia are associated with hard-shell ticks 

and relapsing fever Borrelia are associated with soft-shell ticks. In addition to 

B. miyamotoi, there are currently four documented exceptions. B. recurrentis 

is a louse-borne relapsing fever spirochete presently endemic predominantly 

to sub-Saharan Africa. B. theileri is the causative agent of bovine borreliosis 

and is transmitted by Rhipicephalus microplus, a hard-shell tick that 

parasitizes livestock (17). B. lonestari and B. turcica are genetically similar to 

relapsing fever borreliae and carried by the hard-shell ticks Amblyomma 

americanum and Hyalomma aegyptium, respectively (18, 19). The status of 

B. lonestari and B. turcica as an animal or human pathogens is unknown. 
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 B. recurrentis and B. miyamotoi are the only relapsing fever Borrelia 

transmitted by a vector other than Ornithodoros that are confirmed to cause 

human disease (82, 87–93, 311). Despite the different vectors, pathology of 

B. miyamotoi disease (BMD) or hard tick-borne relapsing fever (HTBRF) 

appears to be similar to tick-borne relapsing fever (TBRF) with 

immunocompetent patients reporting mild, recurrent but self-resolving febrile 

episodes (Fig. 4.1) (87–93). Due to the generally mild nature of B. 

miyamotoi infection, much of the attention given to B. miyamotoi has been 

from researchers intrigued by this unusual pathogen. 

 There are several questions surrounding B. miyamotoi. So far, all of 

these questions stem from our current knowledge of B. burgdorferi and the 

relapsing fever Borrelia. Without an identified natural reservoir for B. 

miyamotoi, we are limited in our ability to study the physiology of B. 

miyamotoi as well as transmission and maintenance in Ixodes in the 

laboratory. An initial hurdle to studying B. miyamotoi was the inability to 

culture B. miyamotoi in vitro. Despite initial reports of growth in Barbour-

Stoenner-Kelly-II (BSK-II) medium (20, 21, 175, 200), more recent attempts 

to culture B. miyamotoi had been unsuccessful (310, 312). In 2014 and 

2015, however, a major breakthrough was made when two in vitro culture 

systems were developed (172, 313) and subsequently modified for use in our 

laboratory (314). Additionally, to study transmission and maintenance in 

Ixodes requires an adequate animal model. Immunocompromised mice are 

able to maintain an infection (176, 315). However, an immunocompetent 

mouse model would allow for more accurate investigations of the acquisition 
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of B. miyamotoi by Ixodes as well as allow further study into the 

immunological responses by hosts. 

 

 

 

 
Figure 4. 1.  Depiction of the general course of tick-borne relapsing fever. 

Approximately seven days after an infected tick bites, an 

increase is observed in the concentration of spirochetes in 
blood. Concomitant with a peak in spirochete concentration is 

the onset of the first febrile episode. As spirochetes are 
cleared from the blood, antigenic variation of variable 
membrane proteins (VMPs) allows a second population of 

spirochetes to expand. This leads to another, yet slightly less 
severe, peak in spirochetemia and febrile episode. This cycle 

of clearing and expansion occurs for an average of three to 
ten times.  
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An Overview of the Complement System  
 

 The complement system, composed of the classical, lectin, and 

alternative branches, is a crucial component of the immune system 

(Fig. 4.2). Components of complement continuously circulate in blood making 

complement one of the first lines of defense against pathogens. Complement 

initiates an immune response by: 1. Triggering phagocytosis through 

opsonization, 2. Mediating inflammation through the release of chemotactic 

peptides, and 3. Lysing cells via the membrane attack complex (MAC, also 

called the terminal complement complex or TCC) (Fig. 4.2) (316).  

 The classical pathway is generally mediated by non-specific antibodies, 

immunoglobulin G (IgG) or IgM, binding a bacterial antigen. Importantly, 

recent studies have shown Borrelia-specific IgM is produced by a subset of B 

cells during infection and play a crucial role in clearing Borrelia (125–127, 

129–131, 317–319).  The C1 complex, composed of C1q, C1r, and C1s, 

forms upon recognition of bound IgG or IgM. C1 cleaves C2 (C2a, C2b) and 

C4 (C4a, C4b). C4b covalently binds the target’s cell surface and complexes 

with C2a to form C3 convertase, which cleaves C3 into C3a and C3b. C3b 

covalently binds the target cell surface (opsonization, facilitates phagocytosis 

of foreign cells and cellular debris), while C3a remains soluble to act as a 

mediator of inflammation. C5 convertase forms when C3b binds C3 

convertase. Not surprisingly, C5 convertase cleaves C5 into C5a, a soluble 

inflammatory mediator, and C5b. C5b binds the target cell surface and C6 

forming C5b6, which binds C7 (C5b-7) then C8. The C5b-8 complex binds C9 

(C5b-9) and facilitates polymerization of several additional C9 proteins.  
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Figure 4. 2.  Activation and regulation of complement pathways relevant to 

Borrelia spp. infection. Points of complement inhibition 
utilized by Borrelia spp. are indicated by red octagons. (A) 
Classical pathway. (B) Mannose-lectin pathway. (C) 

Alternative pathway. Red arrows indicate borrelial proteins 
that interact with a host regulatory protein. 
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These polymerized C9 proteins form the transmembrane pore of the MAC 

allowing an influx of extracellular fluid and subsequent lysis of the target cell. 

 The lectin pathway is very similar to the classical pathway, differing 

only in the initiation steps. The lectin pathway is typically initiated through 

mannose-binding lectins, a group of pattern recognition receptors (PRRs) on 

host cells, binding specific sets of carbohydrates on foreign cells (pathogen-

associated molecular patterns, PAMPs). The lectin and classical pathways 

converge at the cleavage of C2 and C4 by different mechanisms. In the lectin 

pathway, C4 and C2 cleavage occurs through mannose-binding lectin-

associated serine proteases (MASPs) (316).  

 Like the classical and lectin pathways, the alternative pathway forms a 

C3 convertase, C5 convertase, and results in the formation of the MAC. 

Unlike the classical and lectin pathways, the alternative pathway may not 

require antibody-antigen or PAMP-PRR interactions for activation. Rather, this 

pathway is initiated through hydrolysis of C3 to C3(H2O), which is thought to 

occur continuously at low levels. The pathway is propagated through 

interactions with bacterial antigens or a lack of host surface markers (e.g. 

sialic acid, glycosaminoglycans, sulfated polysaccharides) (316). 

 Factor B, after binding C3(H2O), is cleaved by factor D into Ba and Bb 

resulting in C3(H2O)Bb, the fluid-phase C3 convertase (cleaves C3 to C3a 

and C3b). C3b binds the bacterial cell surface where it complexes with 

additional factor B. Factor D again cleaves factor B, which results in the 

second, predominant and cell-bound C3 convertase (C3bBb). This cell-bound 

C3 convertase is stabilized by properdin (C3bBbP). Binding of additional C3b 



111 

to C3 convertase results in the formation of C5 convertase (C3bBbC3b), 

which cleaves C5 and initiates the formation of the MAC as described above.   

Inhibition of the Mammalian Complement System 
by Borrelia and Ixodes 

 

 Regulation of complement is critical for the survival of host cells (320, 

321). Numerous mechanisms have evolved in hosts to prevent aberrant 

activation of complement on host cells including the use of complement 

regulatory factors and host cell surface components (e.g. sialic acid).  

Pathogens that inhibit host complement use mechanisms that are 

inextricably tied to host regulatory processes. Borrelia use several native 

proteins to inhibit complement (i.e. factor H-binding proteins or CRASPs, 

p43, BBK32, BGA66, BGA71, CD59-like protein) (322). The following sections 

focus on the complement regulators factor H (FH), factor H-like protein-1 

(FHL-1), factor I (FI), C4-binding protein (C4bp), and CD59.  

 At least for Lyme borreliae, resistance to complement varies by strain 

and species (115, 323–327). Roughly 10% of B. burgdorferi s.s. are serum-

resistant and 90% are intermediately resistant to serum; 75% of B. afzelii 

isolates are resistant, 25% are intermediate; 100% of B. garinii isolates are 

sensitive (specifically, OspA serotypes 3, 5, 6, 7); B. bavariensis (formerly B. 

garinii OspA serotype 4) is intermediately resistant. To the best of our 

knowledge, similar comparisons of multiple strains and species have not 

been published for relapsing fever Borrelia, though complement resistance is 

not universal among relapsing fever species among the strains observed. 

Resistance to complement is important for the transmission, survival, and 

dissemination of some Borrelia spp. in mammalian and rodent hosts and 
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reservoirs (328). Infectious strains of Borrelia are masters of complement 

evasion due to the native anti-complement proteins some possess and the 

ability all infectious strains possess to co-opt tick and host complement 

regulatory proteins. 

Factor H, Factor H-Like Protein 1 (FHL-1), and Factor I 

 
 FH is an ubiquitous 150-kDa soluble protein produced by diverse cell 

types throughout the human body (e.g. hepatic cells, fibroblasts, monocytes, 

endothelial cells) (329). FH consists of 20 short consensus repeats, while 

FHL-1 is a truncated variant of FH consisting of the FH N-terminal short 

consensus repeats 1 through 7. Both FH and FHL-1 are major direct 

regulators of the alternative complement pathway. In addition, FH and FHL-1 

can directly regulate the classical and lectin pathways, though the regulatory 

roles in these pathways are minor compared to other classical and lectin 

regulatory mechanisms. Regulation is achieved through the recognition of 

self and non-self molecules via domains located on the C- and N-terminals, 

respectively (330–332). The C-terminal discriminates self from non-self 

through interactions with sialic acids, glycosaminoglycans, and sulfated 

polysaccharides, which are typically found only on host cells (333–337). FH 

binds self-molecules with high affinity to prevent activation of complement. 

FH regulates the classical and lectin pathways by acting as a co-factor for FI. 

In this capacity, FH facilitates the serine protease activity of FI in cleaving 

and inactivating C3b. The alternative pathway is regulated through FH 

targeting factor Bb, which prevents the formation of fluid-phase C3 

convertase and promotes decay (“decay acceleration activity”) of C3 and C5 
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convertases (338). For comprehensive reviews of FH and FHL-1 see 

references (329, 338, 339). 

Factor H-Binding Proteins and CRASPs 
 
 Interactions with FH are the best-studied mechanism for Borrelia 

complement inactivation and complement resistance is correlated with 

binding FH (114). Borrelia spp. bind FH and/or FHL-1 through various native 

proteins collectively termed factor H-binding proteins (FHBPs) or 

Complement Regulator-Acquiring Surface Proteins (CRASPs) (115–117). 

CRASPs can be grouped by their ability to bind only FH or both FH and FHL-1 

as well as the species specificity of binding (that is, whether a FHBP can bind 

FH from only one or several host species) (115, 117): CRASP-1 (CspA) and 

CRASP-2 (CspZ) bind both FH and FHL-1, while CRASP-3 (ErpP), CRASP-4 

(ErpC), and CRASP-5 (ErpA) bind only FH. CRASPs bind soluble FH and 

maintain it in an active conformation thereby allowing FH to inhibit 

completion of the complement response (i.e. MAC formation).  

 Several relapsing fever spirochetes bind FH in vitro (115, 340–345). 

Two FHBPs, FhbA and BhCRASP-1, have been identified in B. hermsii strains 

YOR and HS1, respectively (346, 347). However, binding FH is not as 

important for relapsing fever spirochetes to establish infection as it is for 

Lyme disease Borrelia (122, 123). Further supporting the non-essential 

nature of binding FH, Woodman et al. (122) found that despite FhbA being 

surface-exposed and strongly binding FH in vitro, only 16% of B. hermsii 

recovered from the blood of infected mice had detectable levels of bound FH.  
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C4b-Binding Protein 
 

 C4b-binding protein (C4bp) has regulatory roles in all three pathways, 

though is the major regulator of the classical and lectin pathways. C4bp 

facilitates inactivation of C4b (classical, lectin) and fluid-phase C3b 

(alternative) by binding C4b, displacing C2a, and facilitating FI-mediated 

inactivation of C3 and C5 convertases (348). 

 Some Lyme and relapsing fever Borrelia spp. bind human and various 

animal C4bp (114, 342, 343, 349, 350). A comprehensive analysis identified 

outer surface proteins associated with C4bp including OspA, Vlps, Vmps, and 

several unidentified outer surface proteins (351). Other studies, however, 

have observed no binding of C4bp by Borrelia spp. (114, 344, 352). These 

contradictory data may be due to differences in experimental design 

including the use of different strains, growth medium, temperatures, growth 

phases, and the use of recombinant versus native human C4bp. A putative 

C4bp receptor, p43, has been identified in B. burgdorferi s.l. (349). The 

relapsing fever spirochetes B. recurrentis and B. duttonii produce CihC, a 

surface lipoprotein homologous in sequence and function to fibronectin-

binding proteins of other relapsing fever spirochetes, which also binds C4bp 

(342). 

FHBP, C4bp, and Borrelia Niche 

 
 Resistance to complement is positively correlated to the infectivity of 

some Borrelia strains (327). With a higher resistance to complement, the 

more likely a bacterium can survive, disseminate, and proliferate. Co-opting 

tick proteins will protect spirochetes during the initial stages of transmission 
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and dissemination but sustained dissemination requires Borrelia to resist 

complement via its own native mechanisms.  

 This leads to the question of how complement sensitive strains can 

cause infection. An interesting hypothesis was developed regarding 

complement resistance and spirochete niche when a relationship was noted 

between binding of the complement inhibitors, C4bp and FH (79, 349, 350). 

Neurotropic strains (e.g. B. bavariensis, B. garinii, B. turicatae, B. duttonii, 

and to a lesser extent B. hermsii) do not have to be highly resistant to 

complement in immunoprivileged sites, such as the central nervous system. 

Finding neurotropic species strongly bind C4bp and very weakly bind FH and 

FHL-1, while species that are not neurotropic bind C4bp but preferentially 

bind FH and/or FHL-1 supports this hypothesis (349). Alitalo et al. (353) did 

find B. garinii strains isolated from neuroborreliosis patients not only express 

FHBPs not expressed by strains cultured in vitro for an extended time, but 

the FHBPs also bind FH. This implies complement-resistance, though this was 

not reported and one of the isolates (LU59) was later reported to be highly 

but not completely sensitive to complement (354). It is possible strong 

binding of FH is an artifact seen in vitro, similar to that observed with 

relapsing fever spirochetes (see section: Factor H binding proteins and 

CRASPs). Thus, binding FH is not required for neurotropic strains. Perhaps 

C4bp is sufficient to prevent complement activation during migration of 

neurotropic species from the site of inoculation to immunoprivileged sites. On 

the other hand, binding FH may be important for neurotropic strains to resist 

complement during migration and the incomplete sensitivity observed by 
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Sandholm et al. (350) may be due to in vitro culturing resulting in the 

population losing its ability to bind FH. It could also be that neither C4bp nor 

FHBPs play a role in complement-sensitive borreliae disseminating and a 

novel mechanism is utilized by complement-sensitive strains.  

CD59-Like Protein 

 
 Little information is available regarding the CD59-like protein of B. 

burgdorferi. Pausa et al. (355) demonstrated an increase in serum sensitivity 

and MAC formation in a serum-resistant B. burgdorferi isolate treated with 

anti-CD59 antibodies compared to the control treated B. burgdorferi and the 

serum-sensitive B. garinii isolate. In eukaryotic cells, CD59 is a surface-

exposed membrane protein that prevents C9 polymerization and thus the 

formation of the MAC (19,20). Still, it is not clear Borrelia possesses a 

protein homologous to mammalian or rodent CD59. While human anti-CD59 

antibodies bound a surface-exposed integral membrane protein (29 kDa), 

this protein has never been identified though several known borrelial proteins 

can and have been ruled out based on molecular weight (e.g. BGA66, 

BGA71, OspA, OspB, OspC) (322). Given the demonstrated complement-

resistance conferred by this unknown borrelial protein, more attention should 

be given to identifying and clarifying the role this protein plays in 

complement resistance. 

Complement Inhibition by Ixodes  

and Ornithodoros Salivary Proteins  
 
 A large number of proteins with a vast array of functions have been 

identified in the saliva of feeding Ixodes spp. with more being identified and 

characterized (106, 107, 356–358). While the details and mechanisms for 
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some of these proteins remain to be elucidated, the beneficial nature of 

Ixodes salivary proteins to spirochete transmission and survival has been 

established (359–363, 274, 364, 365). Ixodes saliva contain adaptive and 

innate immunomodulatory and anti-complement proteins (106, 108–113). A 

recent study demonstrated changes in the salivary protein profile over the 

course of a feeding, which has implications for the efficacy of the host 

immune response at the feeding pit and for transmitting spirochetes (357). 

Currently, several members of the anti-complement family of proteins have 

been characterized from I. scapularis, I. ricinus, and I. persulcatus including 

Salp15, Salp20, Isac, Irac I, Irac II, and Ixac-B1, -2, -3, -4, -5. 

 Salp15 is able to inhibit both adaptive and innate immune responses 

(366, 367). Salp15 binds OspC, which both serum-resistant and serum-

sensitive B. burgdorferi s.l. produce, to inhibit deposition of the MAC and 

block the recognition and binding of antibodies to OspC (361, 368–370). In 

addition, Salp15 expression increases when ticks are infected with B. 

burgdorferi (361). Interestingly, mice passively immunized with anti-Salp15 

antibodies were protected from infection with B. burgdorferi (371). 

 Salp20 inhibits the alternative complement pathway through binding 

properdin, which prevents stabilization of C3 convertase and propagation of 

the alternative pathway (113, 372, 373). In addition, Salp20 enhances the 

activity of factor H to inhibit the alternative pathway (113). Incubating a 

serum-sensitive B. garinii strain with Salp20 protected the strain from 

complement activation and lysis (372). The mechanism(s) by which Salp20 

confer(s) protection to B. garinii is unknown.  
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 The Isac-like family of proteins includes Isac (Ixodes scapularis 

anticomplement), Irac I (I. ricinus anticomplement), Irac II, and Ixac-B1 

through -5 (I. ricinus anticomplement). Proteins in this family are similar in 

function to Salp20 (110, 112, 374). Inhibition of the alternative complement 

pathway is achieved through targeting C3 convertase via interactions with 

properdin, as Salp20 does, and by preventing factor B from binding C3b or 

displacing factor B from C3 convertase.  

 Ornithodoros salivary gland extracts also possess proteins that inhibit 

the host immune response (118). To date, however, one complement 

inhibitor has been identified and characterized from one Ornithodoros spp. O. 

moubata, found in Africa, is the vector of the relapsing fever spirochete B. 

duttonii (119). O. moubata complement inhibitor (OmCI) is a lipocalin that 

binds to and prevents cleavage of C5 (120, 121). OmCI was found to be 

effective at inhibiting C5 cleavage in different mammalian and rodent hosts 

(121). It is unknown if OmCI protects B. duttonii or if homologous proteins 

are found in other Ornithodoros spp. 

Purpose 
 

 In this study, we investigated the acquisition of B. miyamotoi by larval 

I. scapularis and found B. miyamotoi is efficiently acquired by uninfected 

larval I. scapularis and maintained through the molting process. Unlike other 

relapsing fever Borrelia (75), B. miyamotoi does not appear to be specific to 

an Ixodes spp. In addition, we found B. miyamotoi binds human factor H in 

vitro and a potential effect of mouse age on the duration of infection in 

immunocompetent C3H/HeN. 
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Methods 
 

B. miyamotoi 
 

 An original Japanese strain of B. miyamotoi, FR64b, was kindly sent 

from Dr. Robert Gilmore (Centers for Disease Control, Fort Collins, CO) 

(chromosome sequence available under NCBI Reference Sequence ID 

NZ_CP004217.2). 

Culture Conditions 
 

 B. miyamotoi FR64b and mouse blood were cultured in MKP-F medium 

at 34°C with 5% CO2 in capped Falcon tubes (8 or 16 mL), 1 mL deep-well 

96-well plates sealed with silicone mat lids, or microcentrifuge tubes (1.5 or 

2.0 mL) (314). Rifampicin (50 µg/mL) and phosphomycin (20 µg/mL) was 

added when appropriate. For growth curves, B. miyamotoi was cultured for 

four days in MKP-F medium at 34°C + 5% CO2. Cultures were then diluted 

1:100 into fresh MKP-F, incubated at 34°C + 5% CO2. Total cells (i.e. motile 

and non-motile) were counted every 24 hours using a Petroff-Hausser 

Counting Chamber (Cat # 3900; Hausser Scientific, Horsham, PA). Cultures 

were diluted in 1X PBS when appropriate to facilitate accurate cell counts. 

Serum Sensitivity 
 
 Ten mL of 107 B. miyamotoi were centrifuged at 6000 x g for 15 min 

at room-temperature. Pellets were washed once with 1X PBS, resuspended in 

10 mL filter-sterilized normal human serum (NHS), and incubated at 34°C + 

5% CO2 for 27.5 hours. To verify spirochetes were still alive after transfer to 

human serum donated by Dr. Travis Alvine, 10 µL was viewed under 
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Darkfield. After incubation, the presence of motile spirochetes was 

determined by placing 10 µL on a slide and viewing 10 fields under Darkfield. 

Factor H Binding 

 
 1 x 106 B. miyamotoi were harvested by centrifugation and 

resuspended in 100 µL veronal buffered saline supplemented with 1mM Mg2+, 

0.15mM Ca2+, and 0.1% gelatin. Normal human serum (NHS) was incubated 

with 0.34 M EDTA to inhibit complement activation. The cell suspension was 

incubated with 1.5 mL NHS for 1 hour, washed with PBSA, and then proteins 

bound to the cells were eluted with 0.1 M glycine-HCL, pH 2. Cells were 

removed by centrifugation and the supernatant was analyzed by Western 

blotting with a mouse monoclonal anti-human Factor H antibody (Quidel). 

One µg recombinant human Factor H (aa 860-1231; ~65kDa on SDS-PAGE; 

R&D Systems) was used a positive control. 

Mouse Infections  

 
 Two to four week-old Rag1-/- C57BL/6J mice and 2-4 week-old and 6-8 

week-old C3H/HeN were infected by intraperitoneal injection of 107 

spirochetes.  Blood was collected from saphenous veins every 12 hours for 

two weeks. Mice were subcutaneously injected with sterile 0.9% saline as 

necessary. The collected blood was immediately added to 90 µL 0.11 M 

sodium citrate solution, pH 7.2. Spirochetes were cultured by adding 10 µL of 

diluted blood to 1 mL prewarmed MKP-F. The remaining blood solution was 

stored at -20°C for DNA isolation. 

 Four mice of strains 129S1, C57BL/6J, C57BL/10J, NOD/ShiLtJ, SJL, 

CBA/CaJ, DBA/1J, DBA/2J, A/J, BALB/cJ, CBA Jackson, and FVB/NJ (3-4 
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weeks old) were infected subcutaneously with 107 B. miyamotoi FR64b. Blood 

was collected from saphenous veins every 24 hours for two weeks and 

cultured as described above. Four weeks after infection, mice were perfused 

with 1X PBS. Blood, ear pinnae, brain, thymus, heart, lungs, liver, pancreas, 

spleen, kidneys, bladder, and tibiotarsal joints were collected for PCR and 

culture. 

 To determine the minimum infectious dose, groups of three 4-6 week-

old C3H/H3N mice were infected subcutaneously with the following doses of 

B. miyamotoi FR64b: 101, 102, 103, 104, or 10 5 spirochetes. Blood was 

collected every 24 hours as described above. 

Ixodes scapularis Feeding 

 
 Uninfected larval I. scapularis were obtained from the Centers for 

Disease Control (Atlanta, GA). Uninfected larvae were fed to repletion on 

infected Rag1-/- C57BL/6J. Replete larvae were collected once per day. One 

to ten larvae per day were collected, placed in 70% ethanol, and stored at 

4°C for DNA isolation and PCR. The remaining larvae were stored in vented 

conical tubes in a 95-99% humidified chamber at 23°C to molt. Ten larvae 

were collected once per week throughout the molting process. One week 

after molting, three flat nymphs were collected, placed in 70% ethanol, and 

stored at 4°C for DNA isolation and PCR. 

DNA Isolation and PCR from Ixodes Larvae and Nymphs 

 
 I. scapularis DNA was isolated by modifying a previous protocol (59). 

Ticks stored in 70% ethanol were dried at room temperature overnight. Ticks 

were crushed in 600 µL of buffer ATL (Qiagen). 20 µL proteinase K (Qiagen) 
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was added. Tubes were vortexed briefly and incubated overnight at 56°C. 

Tubes were briefly vortexed and incubated at 56°C for an additional 2 hours 

then centrifuged at maximum speed for 3 minutes at room temperature. 

Supernatants were transferred to a clean microcentrifuge tube. Ethanol 

precipitations were performed using 1/10 volume 3 M sodium acetate and 

3 volumes 95% ethanol. Samples were incubated overnight at -20°C then 

centrifuged at maximum speed for 30 minutes at 4°C. Ethanol was decanted, 

and the pellet was resuspended in 1 mL nuclease-free water. If necessary, 

resuspension of the pellet and salt was facilitated by incubating the tube at 

56°C. Samples were filtered through a Microcon DNA Fast Flow Centrifugal 

Filter Unit (Millipore). The filter membrane was washed once with 500 µL 

nuclease-free water. DNA was eluted twice with 100 µL nuclease-free water. 

Purified DNA was stored at 4°C overnight for use in PCR. 

 PCR was performed with primers for TROSPA  

(F: GTTGCTGTCCATGCTG; R: AAGTGTTCGTTTCCCTTT),  

bipA (F: AAATCCAGGAAATGTTGATG; R: GCCACCAGACTTAATAGCAC), and 

oppA1 (F: ACTCAAATGAAGTAGAATTAGAAGAG; R: 

GTAAGCGTTTCTCTGTCAATAG) using Platinum PCR SuperMix High Fidelity 

(ThermoFisher). For each reaction, 200 nM of each primer and 1 µL of DNA 

was added to 45 µL of Platinum PCR SuperMix and the following PCR cycle 

was performed: 94°C for 2 min, 45 cycles of 94°C for 15 sec, 50°C for 30 

sec, 68°C for 15 sec. Ten µL of each reaction was run on a 2% TBE gel and 

stained with ethidium bromide.  
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Rosetting Erythrocytes 
 

 The ability of B. miyamotoi FR64b to rosette human erythrocytes was 

tested as previously described (375, 376). Briefly, B. miyamotoi FR64b and 

B. burgdorferi MI-16 were cultured to approximately 106 spirochetes/mL. Red 

blood cells were separated and diluted to a final concentration of 5% in RPMI. 

The remaining whole blood was diluted 1:10 in 1X PBS. Four and six mL of B. 

miyamotoi and B. burgdorferi were centrifuged and resuspended in 500 µL 

diluted whole blood or RPMI. For one protocol, 5% erythrocytes and 

resuspended Borrelia were incubated separately for 15 minutes at 37°C. 

Erythrocytes and Borrelia were mixed at a 1:1 or 2:1 ratio then placed on a 

glass slide with a coverslip and sealed with clear nail polish. Slides were then 

incubated for 15 minutes at 23°C or 37°C. Slides were viewed under 

Darkfield immediately after incubations. For a second protocol, Borrelia were 

resuspended in diluted whole blood, placed on a glass slide, covered, and 

sealed with clear nail polish. Slides were incubated for 30 minutes at 23°C 

and 37°C then viewed under Darkfield. 

Results 
 

Growth of B. miyamotoi 
 

 B. miyamotoi was grown in modified MKP-F medium to assess the 

growth rate (Fig. 4.3). Generation time at 34°C + 5% CO2 is approximately 

16 hours, slightly longer than B. burgdorferi with a generation time of 8-12 

hours. Maximum cell density peaked at approximately 5 x 107 

spirochetes/mL, again, slightly lower than B. burgdorferi, which reaches a 

maximum density of approximately 108 spirochetes/mL. Growth curves were 
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Figure 4. 3.  Growth of B. miyamotoi in modified MKP-F medium. 

Spirochetes were counted every 24 hours. Generation time is 
approximately 16 hours and peak density is approximately 

5 x 107 cells/mL. 
 

not performed at 23°C or 37°C, however, B. miyamotoi did grow at both 

temperatures.  

Minimum Infectious Dose and the Effect  

of Mouse Strain on Infection  
 

 None of the cultures from C3H/HeN mice infected with different 

concentrations of B. miyamotoi were positive. As we have successfully 

infected C3H/HeN mice with B. miyamotoi, negative cultures represent either 

mice were not sufficiently infected or there was a problem with the medium. 

One blood sample obtained at 24 hours for each of the 129S1, C57BL/6J, 

C57BL/10J, NOD/ShiLtJ, SJL, CBA/CaJ, DBA/1J, DBA/2J, A/J, BALB/cJ, CBA 

Jackson, and FVB/NJ mice was viewed via microscopy and showed viable 

spirochetes. Unfortunately, subsequent cultures were also negative.  
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B. miyamotoi Resists Human Serum  
and Binds Human Factor H 

 
 B. miyamotoi was incubated with normal human serum (NHS). 

Immediately after resuspending spirochetes in NHS, no dead spirochetes 

were observed. This was important to ensure spirochetes were not killed 

during transfer and resuspension in NHS. Spirochetes were incubated for 

27.5 hours, after which, ten random fields were observed with Darkfield 

microscopy. Motile spirochetes were observed in all fields showing B. 

miyamotoi is resistant to human serum. 

 Sequence alignments revealed a putative factor H binding protein 

homologous to factor H binding proteins of other relapsing fever spirochetes 

(B. turicatae, B. parkeri, and B. hermsii) (Fig. 4.4). B. miyamotoi was 

incubated with normal human serum to determine whether it binds human 

factor H. Proteins bound to the surface of B. miyamotoi were removed and 

analyzed via Western blot using anti-human factor H antibodies (Fig. 4.5). A 

band of approximately 65 kDa is visible in the eluate fraction, demonstrating 

human factor H was bound by B. miyamotoi.   

Infection by Needle Inoculation is Detectable 12 Hours  

Post-Infection in Rag1-/- C57BL/6J  
and Immunocompetent C3H/HeN Mice 

 
 Spirochetes were visible in wet whole blood mounts in all six mice 24 hours post-

infection (hpi) (Fig. 4.6). However, all mice were positive by culture 12 hpi (Table 4.1). 

Rag1-/- mice became persistently infected, whereas the 3-4 week-old C3H/HeN mice 

were negative by culture 96 hpi. Blood was not routinely collected from Rag1-/- mice after 

144 hpi. Even with saline injections, it became difficult to collect blood every 12 hours. 
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As a result, blood was collected from these mice at 252 and 336 hpi. The 6-8 week-old 

C3H/HeN mice were positive by culture 12 to 72 hpi. Both mice were negative by  

culture at 84 hpi but one mouse produced a positive culture 96 hpi, while the 

other mouse produced a positive culture 144 hpi.  

 

 

Figure 4. 4.  Protein alignment shows homology between a putative factor 
H binding protein in B. miyamotoi and factor H binding 

proteins from B. turicatae, B. parkeri, and B. hermsii. 
Identical residues are highlighted in bright yellow and 

denoted with an asterisk. Residues strongly sharing similar 
biochemical properties are highlighted in light yellow and 
denoted with a colon. Residues weakly sharing similar 

biochemical properties are denoted with a period. 
 

 
 

 

 
Figure 4. 5.  B. miyamotoi binds human factor H. Recombinant human 

factor H (rhFH) is approximately 65 kDa. A band of similar 
size is present in the B. miyamotoi eluate fraction. 
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Figure 4. 6.  Spirochetes were detected in whole blood mounts 24 hpi in all 

six mice. Three representative images are shown. (A) Rag1-/- 
C57BL/6J, (B) C3H/HeN, 2-4 week-old, (C) C3H/HeN, 6-8 

week-old. 
 
 
Table 4. 1.  Presence of spirochetes determined from culture and/or microscopy. 

Time (h) Rag1-/- C57BL/6J 2-4 

wo 

WT C3H/HeN 2-4 wo WT C3H/HeN 6-8 wo 

0 -a - - - - - 

12 +b + + + + + 

24 + + + + + + 

36 + + + + + + 

48 + + + + Cc + 

60 + + + + + C 

72 + C + + + + 

84 + + + + - - 

96 + + - - - + 

108 + + - - - - 

120 + + - - - - 

132 + + - C - - 

144 + + - - + - 

156 NCd NC - - - - 

168 NC NC - - - - 

180 NC NC C C - C 

192 NC NC - - - - 

204 NC NC - - - - 

216  NC NC - - - - 

228 NC NC - - - - 

240 NC NC - - - - 

252 + + - - - - 

264 NC NC - - - - 

276 NC NC - - - - 

288 NC NC - - - - 

300 NC NC - - - - 

312 NC NC - - - - 

324 NC NC - - - - 

336 + + - - - - 
a No spirochetes detected by microscopy or culture 
b Spirochetes observed by microscopy and/or culture 
c Culture contaminated 
d No blood collected 
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B. miyamotoi does not Appear to be Vector-Specific or Exclusive 
 

 To determine whether B. miyamotoi is specific to an Ixodes spp., 

North American I. scapularis larvae were fed to repletion on infected Rag1-/- 

mice infected with a Japanese strain of B. miyamotoi (FR64b). B. miyamotoi 

FR64b was isolated from Apodemus argenteus (small Japanese field mouse) 

but is vectored by I. persulcatus (20). If B. miyamotoi is exclusive to its 

respective vector, we would not expect a Japanese strain to survive in North 

American I. scapularis. DNA extracted from I. scapularis larvae was positive 

for bipA immediately after feeding and in the weeks leading up to molting 

(Fig. 4.7). A faint PCR band is present for ticks collected from mouse 2 (M2) 

on the first day replete ticks began dropping (D1) (Fig. 4.7A). Importantly, I. 

scapularis were positive for bipA after molting to nymphs meaning B. 

miyamotoi is able to establish an infection in I. scapularis and survive the 

molting process (Fig. 4.7C). This suggests B. miyamotoi is not exclusive to 

one Ixodes spp. 

Rosetting Erythrocytes 

 
 To determine whether B. miyamotoi is capable of rosetting 

erythrocytes like some relapsing fever Borrelia, B. miyamotoi was incubated 

with whole blood and purified erythrocytes. No erythrocyte rosetting was 

observed under any conditions used (Fig. 4.8). 
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Figure 4. 7.  B. miyamotoi DNA was detected in I. scapularis throughout 
and after the molting process. PCR was performed for the 

tick-specific TROSPA gene, the relapsing fever-specific bipA 
gene, and the Lyme Borrelia-specific oppA1 gene. bipA was 
detected in each tick sample except M1 week 2 and 4. oppA1 

was not detected in any tick samples analyzed showing the 
ticks and mice are not infected with B. burgdorferi. D1: Day 

1, first day replete ticks fell off each mouse; M1: mouse 1, 
M2: mouse 2; W1: week 1, one week after ticks were 
collected; B. miya: B. miyamotoi genomic DNA, B. burg: B. 

burgdorferi genomic DNA, NTC: no DNA template added. 
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Figure 4. 8.  B. miyamotoi does not appear to rosette erythrocytes.  

B. miyamotoi was incubated 1:1 with 5% purified 
erythrocytes at 23°C. Similar results were observed at 37°C, 

with whole blood, at 1:2 (B. miyamotoi:erythrocytes) ratios, 
and with B. burgdorferi. 

 

Discussion 

 
 We can develop effective treatment and prevention methods by 

understanding the mechanisms by which a pathogen causes disease. 

Modeling human infection in the laboratory is difficult. Various animals can 

model isolated aspects of disease but generally fall short of recapitulating a 

complete human disease. To gain a full understanding of a human pathogen 

requires patching together several pieces of information, such as identifying 

virulence factors. An additional method to assess a pathogen’s ability to 

establish an infection is by determining serum susceptibility; a pathogen 



131 

susceptible to human sera will likely not be able to establish infection in 

humans (328, 377). B. miyamotoi has previously been shown to resist 

human serum (171, 172), however, complement resistance varies by strain 

and species with B. burgdorferi s.l. species (115, 323–327). Without a 

complete history for the strain and culture of B. miyamotoi used in our lab, 

we verified serum resistance for B. miyamotoi FR64b.  

 We showed B. miyamotoi FR64b possesses a putative FHBP and is 

capable of binding human factor H in vitro (Fig. 4.4, Fig. 4.5). Whether B. 

miyamotoi binds factor H in vivo and is a biologically relevant function 

remains to be determined. Species of the B. burgdorferi s.l. complex rely 

heavily on complement inactivation to establish an infection, while relapsing 

fever Borrelia do not (122, 123). Still, several relapsing fever Borrelia 

possess FHBPs (346, 347) and bind factor H in vitro (115, 122, 340–345). 

This begs the question if binding factor H is not biologically relevant for 

relapsing fever Borrelia, why maintain FHBPs? FHBPs are located on plasmids 

in B. burgdorferi and while significant rearrangement has occurred between 

plasmids across strains, the content has remained relatively unchanged (23). 

That is, B. burgdorferi moves genes around but has not removed or added 

genes. In addition, the FHBP found in relapsing fever Borrelia, FhbA, is also 

found on a plasmid, which is also stable (123, 346, 347). Species of the B. 

burgdorferi s.l. complex maintain numerous FHBPs but only one, FhbA and 

homologs, has been identified in relapsing fever Borrelia  (123, 346). 

Perhaps, despite plasmid stability, relapsing fever Borrelia once had but has 
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since lost several FHBPs from their genomes and FhbA may be on the 

genomic chopping block. 

Mechanisms of Immune Evasion by B. miyamotoi:  
Where We Are  

 

 Given the genetic similarity of B. miyamotoi to relapsing fever 

spirochetes, it is likely B. miyamotoi utilizes some homologous mechanisms 

to evade host immune responses. While B. miyamotoi is resistant to 

complement in vitro (171, 172), complement inactivation is not required for 

relapsing fever spirochetes to establish infection. OspE homologues have 

been identified in B. miyamotoi FR64b (isolated from the blood of A. 

argenteus) however, McDowell et al. were unable to demonstrate FH-binding 

(115). This suggests, as is the case for relapsing fever spirochetes, 

inactivation of complement may not be required to resolve spirochetemia 

during infection with B. miyamotoi (126, 174).  

 Instead, it appears B. miyamotoi utilizes a Vmp system (175) and 

Wagemakers et al. (176) recently demonstrated antigenic variation of Vmps 

in B. miyamotoi. C3H/HeN mice infected with B. miyamotoi LB-2001 

produced anti-Vsp1 IgM and IgG antibodies that were effective in clearing the 

initial spirochetemic peak of B. miyamotoi from SCID mice. Despite this 

clearing, a second spirochetemic relapse occurred. Analyses of the secondary 

B. miyamotoi population revealed expression of vlpC2, not vsp1, as would be 

expected in the case of antigenic variation. They also noted vlpC2 was 

present in the initial B. miyamotoi population in a much lower prevalence 

compared to vsp1.  
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 An additional mechanism some relapsing fever Borrelia use to evade 

host immune responses is by rosetting erythrocytes or coating the outer 

membrane in erythrocytes (375, 376, 378). Infection with species capable of 

rosetting erythrocytes, B. duttonii and B. crociduriae, is generally more 

severe than infection with species unable to rosette erythrocytes (378, 379). 

In addition to shielding Borrelia from an immune response, rosetting 

erythrocytes can result in microemboli and tissue damage (379, 379). The 

apparent inability of B. miyamotoi to rosette erythrocytes may, at least in 

part, explain the decreased severity of B. miyamotoi infection in 

immunocompetent patients.  

Mechanisms of Immune Evasion by B. miyamotoi:  

Where We Need to Be 
 
 Even though B. miyamotoi is genetically similar to relapsing fever 

spirochetes, it has evolved and exists in different vectors (Ixodes not 

Ornithodoros) with different enzootic cycles and different co-pathogens 

compared to relapsing fever spirochetes. We should not assume B. 

miyamotoi utilizes the same set of mechanisms as other relapsing fever 

spirochetes. B. miyamotoi may use a combination of relapsing fever and 

Lyme Borrelia mechanisms as well as completely novel mechanisms. There 

are many open questions regarding how B. miyamotoi evades host responses 

and establishes infection. 

 The role of IgM in clearing B. miyamotoi has not been demonstrated. 

As discussed above, IgM is key in clearing relapsing fever infections. During 

B. hermsii infections, IgM targets FhbA and other surface proteins (131). IgM 

likely is important in clearing B. miyamotoi. All immunocompromised patients 
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diagnosed with a B. miyamotoi infection developed meningoencephalitis. A 

shared factor with these patients has been treatment with rituximab, a 

monoclonal anti-CD20 antibody targeting IgM-producing CD20-positive B 

cells. Depletion of B cells may explain how B. miyamotoi is able to migrate to 

the CNS and causes meningoencephalitis in patients treated with rituximab. 

The presence of unknown complement inhibitors, however, could contribute 

to the complement-resistance of B. miyamotoi and may be useful in 

establishing infection (171, 172). 

 The effects of tick saliva on B. miyamotoi survival have not yet been 

studied. However, being vectored by Ixodes, B. miyamotoi likely takes 

advantage of the protective proteins in tick saliva. In addition, understanding 

interactions between host, vector, and pathogen will aid in the development 

of Lyme and relapsing fever prevention strategies and thus requires more 

attention. 

Needle Infection 

 
 Via intraperitoneal injection, Rag1-/- C57BL/6J mice became 

persistently infected, as expected. These mice lack mature B cells, which are 

the cells responsible for mounting a response to other relapsing fever 

Borrelia and provide an alternative immunodeficient mouse model to severe 

combined immunodeficiency (SCID) mice (125–127, 129–131, 317–319). 

Also, as expected, the C3H/HeN mice became infected. Wagemakers et al 

(176) had previously infected 6-8 week-old C3H/HeN mice and shown 

spirochetes were detected at 24 hpi. They also found three of eight mice had 

a brief relapse at 6 and 7 dpi. This lead us to wonder whether the age of the 
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mouse affected the duration and/or recurrence of spirochetemia since as with 

humans, mice show deterioration of the immune system as they age (380). 

Indeed, no recurrent spirochetemia was observed in young 

immunocompetent C3H/HeN mice (Table 4.1). A brief spirochetemic event 

was observed in older immunocompetent C3H/HeN mice (Table 4.1). It is 

possible the 6-8 week-old mice did not experience a relapse and the negative 

cultures observed were due to inadequate culturing. If this is true, the older 

mice were still infected longer than the 2-4 week-old mice.  DNA isolation 

and PCR of blood during this potential clearing event would clarify these data. 

Unfortunately, DNA isolation failed.  

Limitations of Needle-Infection 

 
 There are several inherent limitations to be considered. The use of 

needle infections as this is a less desirable method to replicate tick-borne 

infections. In addition to being an artificial method to introduce Borrelia, 

spirochete physiology and adaptation to a host can be negatively impacted. 

Tick saliva is known to contain factors that help B. burgdorferi in establishing 

infections in hosts (106–113, 274, 356–365). However, needle infections, if 

successful, represent the most efficient method for introducing Borrelia to a 

host for additional experiments. In addition, injection site can affect disease 

pathology in mice when infecting with B. burgdorferi (381). For example, 

subcutaneous injections of B. burgdorferi near the hind end of a mouse 

results in more severe joint pathology. Whether the pathology of relapsing 

fever is affected by injection site is unknown. Injection site may not affect B. 

miyamotoi disease progression considering B. burgdorferi establishes 
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persistent infections in tissues while relapsing fever Borrelia are mainly 

blood-borne pathogens. Still, it is important to keep in mind that hosts will 

not be exposed to Borrelia (Lyme or relapsing fever) by an intraperitoneal 

tick bite.  

 Multiple methods should be used to confirm infection results. A 

negative culture or blood smear does not mean an infection has cleared. One 

2-4 week-old C3H/HeN mouse was negative by microscopy but positive by 

culture at 84 hpi.  

Vector Specificity 

 
 Tick-borne relapsing fever Borrelia demonstrate strong vector 

exclusivity. For example, B. hermsii cannot establish an infection in any 

Ornithodoros spp. besides O. hermsi. The reason for this specificity is 

unknown but does appear to be universal among the soft tick-borne Borrelia. 

Analyses have shown B. miyamotoi forms regional clades or group types (85, 

86, 382). The exact groupings are still in flux as more researchers obtain 

field-caught ticks and sequence B. miyamotoi. It appears a slightly different 

strain of B. miyamotoi is carried by each species of Ixodes (vector 

specificity). For example, strains of B. miyamotoi found in I. scapularis is 

slightly different than strains found in I. pacificus, I. ricinus, or I. persulcatus 

but strains found in I. scapularis are highly similar to each other. However, 

dissimilarity in sequences should not automatically translate to vector 

specificity. It can be difficult to test vector specificity in the US as it can be 

difficult to obtain either European and Asian Borrelia or Ixodes. Through 



137 

sheer luck, we were able to investigate vector specificity using a Japanese 

strain of B. miyamotoi and North American I. scapularis. 

 PCR demonstrated B. miyamotoi DNA was present in Ixodes 

immediately after feeding and in the weeks leading up to the molt (Fig 4.2). 

Acquisition, however, is not sufficient to determine vector specificity. The 

presence of Borrelia DNA or ability to culture Borrelia from a tick before 

molting only demonstrates the spirochete was present in the host. For 

Borrelia to establish an infection in ticks it must survive the tick molting, a 

process during which the blood meal is digested and the tick undergoes a 

traumatic restructuring process (47, 383). 

 Detecting B. miyamotoi DNA is flat nymphs confirms the Rag1-/- mice 

were infected (Fig 4.1 and 4.2). It also demonstrates B. miyamotoi is 

acquired by feeding ticks and survives the tick molting suggesting B. 

miyamotoi can establish an infection.  

Concluding Remarks 

 
 Although B. miyamotoi is similar to other relapsing fever Borrelia, it 

has evolved, adapted, and exists in dramatically different vectors with 

different enzootic cycles and different co-pathogens. In addition, infection 

with B. miyamotoi in immunocompromised patients generally results in non-

specific symptoms (e.g. headache, malaise), recurrent fever, and 

spirochetemia characteristic of relapsing fever. However, additional 

symptoms characteristic of relapsing fever have not been demonstrated, 

namely rapid symptom onset with a crisis event. This suggests B. miyamotoi 

infection is not synonymous with relapsing fever and is, rather, a relapsing 
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fever-like illness (90). The cause of this slightly different disease pathology is 

unknown but there is no doubt the different lifestyle of B. miyamotoi plays a 

role. Though the differences between B. miyamotoi and other relapsing fever 

spirochetes identified thus far are minor, we should exercise caution and not 

assume B. miyamotoi is like other relapsing fever Borrelia.
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https://www.ncbi.nlm.nih.gov/protein/XP_020711614.1?report=genbank&log$=prottop&blast_rank=55&RID=4RHP8S8Y015
https://www.ncbi.nlm.nih.gov/protein/WP_045105250.1?report=genbank&log$=prottop&blast_rank=56&RID=4RHP8S8Y015
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