
University of North Dakota University of North Dakota 

UND Scholarly Commons UND Scholarly Commons 

Theses and Dissertations Theses, Dissertations, and Senior Projects 

January 2020 

Investigation Of The Neurological Manifestations Of Lyme Investigation Of The Neurological Manifestations Of Lyme 

Disease And The Impact Of Borrelia Burgdorferi On The Disease And The Impact Of Borrelia Burgdorferi On The 

Epigenetic Landscape Of Astrocytes Epigenetic Landscape Of Astrocytes 

Derick Thompson 

Follow this and additional works at: https://commons.und.edu/theses 

Recommended Citation Recommended Citation 

Thompson, Derick, "Investigation Of The Neurological Manifestations Of Lyme Disease And The Impact Of 

Borrelia Burgdorferi On The Epigenetic Landscape Of Astrocytes" (2020). Theses and Dissertations. 3305. 

https://commons.und.edu/theses/3305 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at 
UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized 
administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu. 

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F3305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/3305?utm_source=commons.und.edu%2Ftheses%2F3305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu


INVESTIGATION OF THE NEUROLOGICAL MANIFESTATIONS OF LYME 
DISEASE AND THE IMPACT OF BORRELIA BURGDORFERI ON THE 

EPIGENETIC LANDSCAPE OF ASTROCYTES 

 

by 

 

Derick Kahn-Shung Thompson 

Bachelor of Science, University of Minnesota - Twin Cities, 2011 

 

A Dissertation 

Submitted to the Graduate Faculty 

 

of the 

 

University of North Dakota 

 

In partial fulfillment of the requirements 

 

for the degree of Doctor of Philosophy in Biomedical Sciences 

 

Grand Forks, North Dakota 

August 

2020 

 



ii 

Copyright 2020 Derick Kahn-Shung Thompson 



iii 

 

 

 

 
 

This document, submitted in partial fulfillment of the requirements for the degree from 

the University of North Dakota, has been read by the Faculty Advisory Committee under whom 

the work has been done and is hereby approved.  

 

____________________________________ 

  

 

____________________________________ 

 

 

____________________________________ 

 
 

____________________________________ 

 

 

____________________________________ 

 

 

____________________________________ 

 

 

This document is being submitted by the appointed advisory committee as having met all 

the requirements of the School of Graduate Studies at the University of North Dakota and is 

hereby approved.  

 

____________________________________  

Chris Nelson  

Dean of the School of Graduate Studies  

 

____________________________________  

Date 

Name:   
 

Degree: 
  

DocuSign Envelope ID: 436A3B1A-9827-418D-B706-F23046692420

Diane Darland

Junguk Hur

Catherine Brissette

Derick Thompson

John Watt

Doctor of Philosophy

Archana Dhasarathy

7/14/2020



iv 

PERMISSION 
 
Title:  Investigation of the Neurological Manifestations of Lyme Disease 

and the Impact of Borrelia Burgdorferi on the Epigenetic Landscape 
of Astrocytes 

 
Department: Biomedical Sciences 
 
Degree: Doctor of Philosophy 
 
 
 In presenting this dissertation in partial fulfillment of the requirements for a 

graduate degree from the University of North Dakota, I agree that the library of 

this University shall make it freely available for inspection. I further agree that 

permission for extensive copying for scholarly purposes may be granted by the 

professor who supervised my dissertation work, or in her absence, by the 

Chairperson of the department or the dean of the School of Graduate Studies. It 

is understood that any copying or publication or other use of this dissertation or 

part thereof for financial gain shall not be allowed without my written permission. 

It is also understood that due recognition shall be given to me and to the 

University of North Dakota in any scholarly use which may be made of any 

material in my dissertation.  

 
 

 Derick Kahn-Shung Thompson 
 
 

August, 2020 

 



v 

TABLE OF CONTENTS 

 

LIST OF TABLES ................................................................................................ ix 

LIST OF FIGURES ............................................................................................... x 

ACKNOWLEDGEMENTS .................................................................................... xii 

ABSTRACT ........................................................................................................ xv 

CHAPTER 

I. AN INTRODUCTION TO LYME DISEASE ....................................... 1 

 A Brief History of Lyme Disease ........................................... 1 

 The Genetics of Borrelia burgdorferi .................................... 6 

 The Enzootic Life Cycle of Borrelia burgdorferi   
and Ixodes scapularis ........................................................... 9 

 Symptoms and Treatments: From Tick Bite to the  
Doctor’s Office .................................................................... 12 

 Neuroborreliosis ................................................................. 14 

 Post-Treatment Lyme Disease Syndrome .......................... 16 

 The Host Transcriptional Response to Borrelia burgdorferi 
Sensu Lato ......................................................................... 18 

 Transcriptional Response of Early  
Localized Infection ................................................... 19 

 Dendritic cells ................................................ 20 

 Macrophages ................................................ 22



vi 

 Monocytes..................................................... 25 

 Dermal fibroblasts ......................................... 26 

 Transcriptional Response of Early  
Disseminated Infection ............................................ 28 

 Endothelial/Epithelial ..................................... 28 

 Peripheral blood mononuclear cells. ............. 30 

 Transcriptional Response of Late  
Disseminated Infection ............................................ 34 

 Joint (mouse). ............................................... 34 

 Astrocytes. .................................................... 36 

 Gap in Knowledge .............................................................. 37 

 II. THE LYME DISEASE BACTERIUM, BORRELIA BURGDORFERI, 
STIMULATES AN INFLAMMATORY RESPONSE IN HUMAN 
CHOROID PLEXUS EPITHELIAL CELLS .................................... 40 

 Introduction ......................................................................... 41 

 Methods.............................................................................. 43 

 Bacteria Culture ....................................................... 43 

 Cell Culture .............................................................. 44 

 RNA Isolation ........................................................... 46 

 Library Construction and RNA Sequencing ............. 47 

 RNA Data Analysis .................................................. 47 

 Validation of RNA-seq Using RT-qPCR and  
cDNA Synthesis ....................................................... 49 

 Supernatant Protein Analysis by Enzyme-linked 
Immunosorbent Assays ........................................... 49 

 Statistical Analysis ................................................... 50 

 Results ............................................................................... 51



vii 

 Stimulation of Type I/II Interferon Signaling Pathway 
Following B. burgdorferi Infection ............................ 51 

 B. burgdorferi Infection Induces a Chemokine  
Profile in HCPECs Conducive to the Chemotaxis  
of Immune Cells ....................................................... 60 

 B. burgdorferi Effects on Cellular Components 
Involved in Cell-Cell Junctions and Adhesion .......... 64 

 Discussion .......................................................................... 66 

 Conclusion .......................................................................... 70 

 III. DIFFERENTIAL METHYLATION IN HUMAN ASTROCYTES  
IN RESPONSE TO BORRELIA BURGDORFERI SENSU  
STRICTO STRAINS ...................................................................... 72 

 Introduction ......................................................................... 72 

 Astrocytes ................................................................ 73 

 DNA Methylation ...................................................... 76 

 Materials and Methods ....................................................... 80 

 Bacteria culture ........................................................ 80 

 Cell culture ............................................................... 80 

 Infection ................................................................... 81 

 DNA Isolation and Differential Methylation .............. 81 

 Protein Analysis of Supernatant by ELISA ............... 82 

 Results ............................................................................... 83 

 Global Methylation ................................................... 83 

 Microarray Methylation Profiling .............................. 86 

 Discussion .......................................................................... 97 



viii 

 IV. INVESTIGATING THE CHROMATIN STRUCTURE OF  
HUMAN ASTROCYTES IN RESPONSE TO BORRELIA 
BURGDORFERI SENSU STRICTO STRAINS ........................... 101 

 Introduction ....................................................................... 101 

 Materials and Methods ..................................................... 104 

 Bacteria Culture ..................................................... 104 

 Cell Culture ............................................................ 104 

 Infection ................................................................. 104 

 ATAC-seq .............................................................. 105 

 Data Analysis ......................................................... 107 

 Results ............................................................................. 109 

 Motif and Transcription Factor Enrichment ............ 122 

 Discussion ........................................................................ 128 

 V. DISCUSSION .............................................................................. 130 

 Summary of Findings, Limitations, and  
Future Directions .............................................................. 130 

 Conclusion ........................................................................ 134 

REFERENCES ................................................................................................. 135 

APPENDIX A 

APPENDIX B 

 

 



ix 

LIST OF TABLES 

Table Page 

 I - 1.  Incidence rates of confirmed Lyme disease per 100,000 individuals  
in each state and district. From 2008-2015 ........................................... 5 

 

 II - 1.  Select inflammatory and immune response genes .............................. 59 
 

 II - 2.  Select genes involved in cell-cell junctions, tight junctions,  
and adherens junctions. ...................................................................... 65 

 

 III - 1.  Sample submission ............................................................................. 90 
 

 III - 2.  Summary of differential methylation comparisons ............................... 93 
 

 III - 3.  Selected methylation sites ................................................................... 95 

 

 IV - 1.  List of selected peaks and associated genes .................................... 118 

 

 

 

 



x 

LIST OF FIGURES 

Figure Page 

 
 I - 1.  Incidence and geographical distribution of confirmed Lyme disease ..... 3 
 

 I - 2.  The enzootic life cycle of Borrelia burgdorferi ...................................... 10 
 

 I - 3.  The symptoms of Lyme disease and post-treatment Lyme  
disease syndrome ............................................................................... 13 

 

 II - 1. Structural features of the choroid plexus ............................................. 42 
 

 II - 2. Characterization of primary HCPECs .................................................. 52 
 

 II - 3. RNA-seq was performed on HCPECs that were infected by  
B. burgdorferi for 48 hours and from uninfected controls ..................... 54 

 

 II - 4. Validation of RNA-seq gene expression data ...................................... 55 
 

 II - 5. Network and functional analysis of upregulated DEGs by  
STRING analysis ................................................................................. 57 

 

 II - 6. Network and functional analysis of downregulated DEGs by  
STRING analysis ................................................................................. 58 

 

 II - 7. Signaling Pathway Impact Analysis ..................................................... 61 

 

 III - 1.  DNA methylation and its effects on gene transcription ........................ 77 
 

 III - 2.  Changes in global DNA methylation in astrocytes in  
response to infection. .......................................................................... 84 



xi 

 III - 3.  Analysis of cytokine production by astrocytes infected with   
B. burgdorferi. ...................................................................................... 87 

 

 III - 4.  A representative overview of DNA methylation profiling results........... 91 

 

 IV - 1.  Representative quality control metrics ............................................... 111 
 

 IV - 2.  Differential peak analysis ................................................................... 113 
 

 IV - 3.  Motif enrichment analysis of differential peaks .................................. 123 

 

 

 

 

 

 

 

 



xii 

ACKNOWLEDGEMENTS 

 I would like to extend my sincerest appreciation to my advisors, 

Dr. Catherine A. Brissette and Dr. John A. Watt, for their guidance, support, and 

providing the best educational and professional opportunity during my time at the 

University of North Dakota. Through their kindness, patience, encouragement, 

and mentorship, they provided a basis for my scientific career, and the work 

within this dissertation would not have been possible without this guidance. They 

have helped me grow not only as a professional but as a person as well. During 

these past five years they have been involved in several milestones of my life 

and were present during my marriage to my best friend, Monica Sohrabi 

Thompson. Thank you for all your support and for all the wisdom and knowledge 

you have imparted upon me.  

 To my committee members: Dr. Archana Dhasarathy, Dr. Junguk Hur, and 

Dr. Diane Darland, I still remember the day in which this committee was first 

formed. In the early days of my graduate career and with the next few years of 

my dissertation work laid out before me, the idea of accomplishing this work 

seemed like an impossibility. Through your support, assistance, and advisory 

commitment, you have all helped make this work a reality. To Dr. Dhasarathy, 

your knowledge of epigenetics has been invaluable to all my projects spanning 

my graduate career. To Dr. Hur, your expertise in bioinformatics has provided the 

tools necessary for the analysis of my work and has instilled a newfound passion 



xiii 

within me to pursue these analytical skills. To Dr. Darland, your knowledge of 

neuroscience and epigenetics provided the groundwork that bridged these two 

fields to form the backbone of my dissertation. Thank you all for your patience 

and wisdom that aided in my development to become a scientist.  

 To the Biomedical Sciences faculty and staff at the University of North 

Dakota, thank you for your support in providing a phenomenal educational 

experience. Thank you to Dr. Sergei Nechaev for your guidance in the technical 

and analytical aspects of my projects. I am very appreciative for the help of the 

specialized cores within the Department of Biomedical Sciences. Thank you to 

Sarah Abrahamson of the Imaging Core, and Beth Ann DeMontigny of the 

Histology Core. Additionally, I would like to thank the members of the 

Bioinformatics Core for providing guidance of the development of my projects – 

Dr. Bony De Kumar, Danielle Perley, and Hannah Huffman. A special thanks to 

all supportive staff – Jennifer Hershey, Jennifer Henry, Joyce Rice, Julie Horn, 

and Michael Ullrich. Thank you to Bonnie Kee for all your support and patience 

during these years. 

 I would like to extend my gratitude to all past and present lab members. 

To Dr. Tim Casselli and Dr. Yvonne Tourand – we joined the lab around the 

same time several years ago and during these years you both have been 

phenomenal colleagues. You have both helped in the development of many of 

the technical skills required for my work and you always made time to answer all 

my questions. Thank you for all your help. 



xiv 

 I would like to give a special thank you to all my friends that I grew up with 

and made during my graduate career. Thank you to Sema Oncel, Dr. Emily 

Biggane, Dr. Joe Biggane, and Dr. Gaurav Datta for the time we have spent 

together and for brightening up the most stressful days of research. I would like 

to thank a group of friends that I have grown up with – The UbErs. Our time 

spent playing games together have been invaluable and necessary in providing a 

work-life balance that has brought many late nights of fun into my life. 

 Finally, I would like to express my gratitude and love to my family – My 

parents Randy and Soo-Yin; My brother Ryan, his wife Stephanie, and their son 

Oliver; And my parents-in-law Majid and Minoo, and brother-in-law Soheil. To my 

parents, and with all sincerity, you have provided a life filled with love, support, 

and happiness that is unmatched in this world – all of my past and future 

accomplishments are in part due to your hard work and devotion. During the 

pursuit of my PhD, I most unexpectedly found love – this is to my wife Monica, 

you are the love of my life and my best friend. Through the stressful days and the 

sleepless nights, you have always been there for me and I am forever grateful 

and enamored for your support during my graduate career. I am doubtlessly 

excited for all the adventures of our life that we will share together.  



 

With love and admiration, I dedicate this work to my family.  

You are the foundation of my life and the guiding light of my future.



xv 

ABSTRACT 

 Lyme disease, caused by the spirochete Borrelia burgdorferi (Bb), is the 

most commonly reported vector-borne disease in the United States – with 30,000 

cases being reported to the CDC annually, though it is estimated that 300,000 

individuals are infected each year in the U.S [1–4]. Due to the medical treatment 

of the disease, this equates to an estimated $712 million - $1.3 billion in medical 

costs each year [5]. Conclusively, due to the continued geographical spread and 

increasing incidence rate, Lyme disease is becoming a greater public health 

threat throughout the world.  

 The symptoms of Lyme disease can range from erythema migrans to 

more systematic disorders such as arthritis and neurological complications, 

termed neuroborreliosis [6,7]. Manifestations of neuroborreliosis include 

radiculoneuritis, meningitis, and facial palsy [8–10]. Interestingly, B. burgdorferi 

does not produce any known toxins, and it is thought that the resulting host 

immune response leads to cellular and tissue damage associated with clinical 

symptoms. Although many individuals will be effectively treated through the 

administration of antibiotics, up to 20% of patients will experience on-going 

symptoms termed Post-treatment Lyme Disease Syndrome (PTLDS). PTLDS is 

marked by persistent musculoskeletal pain and neurological complications. 

Inflammatory states have been associated to these symptoms with the invasion 

of peripheral immune cells and an increase of inflammatory cytokines. 
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 Furthermore, the neurological complications of PTLDS has been 

associated with an increase in glial inflammation. It is well-documented that B. 

burgdorferi is capable of penetrating into the central nervous system (CNS); 

however, it is unknown how and where the bacterium does so. Additionally, the 

exact pathogenetic mechanisms of neuroborreliosis and PTLDS are poorly 

understood. The work within this dissertation aims to provide novel insight into 

these gaps in knowledge. 

 This dissertation is laid out into three sections relating to understanding 

the pathogenesis of the neurological effects of Lyme disease. In the first study, 

we aimed to provide an explanation for the dissemination of B. burgdorferi and 

peripheral immune cells into the central nervous system. Clinical presentations of 

neuroborreliosis is associated with an increase of peripheral immune cells, 

inflammatory chemokines, and live B. burgdorferi in the cerebrospinal fluid 

(CSF). To this end, we sought to investigate a direct route from hematogenous 

dissemination into the CSF. The choroid plexus (CP) is a structure within the 

ventricles of the brain that is responsible for the production of CSF, the formation 

of the blood-CSF barrier, and regulation of the immune response. This barrier 

allows for the exchange of specific nutrients, waste, and peripheral immune cells 

between the blood stream and CSF. We hypothesize that during infection of the 

choroid plexus, Borrelia burgdorferi will induce an immune response conducive to 

the chemotaxis of immune cells and subsequently lead to a pro-inflammatory 

state within the CNS. To investigate this hypothesis, we cultured primary human 

choroid plexus epithelial cells and infected with the B. burgdorferi strain B31 MI-
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16 for 48 hours. RNA was isolated and used for RNA sequencing and RT-qPCR 

validation. Secreted proteins in the supernatant were analyzed via ELISA. 

Transcriptome analysis based on RNA sequencing determined a total of 160 

upregulated genes and 98 downregulated genes. Pathway and biological 

process analysis determined a significant upregulation in immune and 

inflammatory genes specifically in chemokine and interferon related pathways. 

Further analysis revealed downregulation in genes related to cell to cell junctions 

including tight and adherens junctions. Protein analysis of secreted factors 

showed an increase in inflammatory chemokines, corresponding to our 

transcriptome analysis. These data further demonstrate the role of the CP in the 

modulation of the immune response in a disease state and give insight into the 

mechanisms by which Borrelia burgdorferi may disseminate into, and act upon, 

the CNS. Future experiments aim to detail the impact of B. burgdorferi on the 

blood-CSF-barrier (BCSFB) integrity and inflammatory response within animal 

models.  

 The second and third study aim to elucidate the pathogenic mechanisms 

of neuroborreliosis and PTLDS, specifically the manifestations of a persistent 

inflammatory state. As B. burgdorferi has previously been shown to elicit an 

inflammatory response in astrocytes, and glial inflammation is associated with 

PTLDS, we sought to investigate the epigenetic modifications associated with the 

astrocytic response in order to determine a mechanistic explanation to these 

disorders. In the second study, we investigated the differential DNA methylation 

of astrocytes in response to three strains of B. burgdorferi – B31 MI-16, B31 e2, 
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and 297 through the use of beadchip array. This study utilized primary human 

astrocytes in vitro. This study was met with a limiting factor in biological replicate 

variability that led to diminished results. Nevertheless, differential methylation 

within specific genes involving vesicle trafficking and cell communication were 

observed. This suggests that DNA methylation may be a mechanistic explanation 

for the changes in gene expression of astrocytes in response to  

B. burgdorferi.  

 In the third study, we utilized the same astrocyte model of the second 

study to investigate the effects of B. burgdorferi on chromatin structure of 

astrocytes. We performed in vitro infection of astrocytes with the B31 MI-16 strain 

for 24, 48, 72, and 96 hours. Following infection, ATAC-seq was performed to 

interrogate the chromatin structure of astrocytes in response to B. burgdorferi. 

We observed a robust change in chromatin accessibility at 24-hours with 25,464 

differential peaks. At 48, 72, and 96 hours, these peaks were reduced to 7,266, 

3,376, and 3,015 respectively. Additionally, while many of the differential peaks 

were associated with open chromatin at 24, 48, and 72 hours, the 96-hour time 

point was marked by a dramatic decrease in chromatin accessibility. Many of the 

peaks within gene bodies at the first three time points were associated with 

changes in anatomical and morphological alterations, while the 96-hour time 

point was highlighted by metabolic and cellular stress. This suggests that 

astrocytes undergo an acute response following infection observed by a large 

change in chromatin structure associated with inflammation and immune 

response genes, which later decrease in accessibility. Motif enrichment analysis 
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provides greater insight into the overall response of astrocytes across time 

points. The AP-1 transcription factor is involved in the transcription of genes in 

response to inflammatory stimuli, stress signals, and infection. This transcription 

factor is made up of a heterodimer that includes the FOS, JUN, ATF, and JDP 

families. Motif analysis indicated significant enrichment of these family members 

at each time point, and in fact, analysis of peaks shared amongst all time points 

indicated AP-1 motif as being the most significantly enriched. These data 

suggest that the response of astrocytes to B. burgdorferi is in part due to the 

changes in chromatin accessibility that provides an environment for the 

transcription of genes associated with the inflammatory and immune response. 

Furthermore, AP-1 has been implicated as a potential transcription factor 

responsible for these changes in gene expression.  

 Together, the work within this dissertation demonstrates potential 

mechanisms for the pathogenesis of neuroborreliosis and PTLDS. This is 

highlighted by the potential of the choroid plexus as a route of dissemination for 

B. burgdorferi and peripheral immune cells into the CNS as an explanation for 

the clinical manifestations of neuroborreliosis. Additionally, these studies are the 

first to implicate B. burgdorferi as an epimutagen which provides insight into the 

mechanisms and development of the neurological and persistent symptoms of 

Lyme disease. In conclusion, this work provides novel insights for the 

pathogenesis of the neurological effects of Lyme disease which may aid in the 

development of future therapeutics. 
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CHAPTER I 

AN INTRODUCTION TO LYME DISEASE 

A Brief History of Lyme Disease 

 In 3300 BCE, a man colloquially known as Ötzi the Iceman died in the 

Ötztal Alps on the Austrian-Italian border, with evidence indicating he had likely 

died a violent death, and it wouldn’t be until 1991 when his body was first 

discovered [6,7]. Following three decades of work and the advent of next-

generation sequencing technologies, researchers were able to uncover a 

detailed medical history of Ötzi which included musculoskeletal abnormalities 

associated with arthritis and the presence of Borrelia burgdorferi (Bb) DNA from 

a bone biopsy of Ötzi’s pelvis – evidence of the earliest human case of Lyme 

disease [8,9]. Though the Iceman may hold the record for the first known case of 

Lyme disease, he most likely was not the first individual to have contracted the 

pathogen, as recent phylogenetic research in the U.S. suggests that B. 

burgdorferi may have first diverged from a common ancestor 60,000 years ago 

[10]. However ancient Borrelia burgdorferi may be, it wasn’t until the 1970’s when 

doctors and scientists first identified Lyme disease.  

 In 1975 a cluster of cases originally thought to be juvenile rheumatoid 

arthritis were identified in the towns of Lyme and Old Lyme, Connecticut [11]. 

This epidemic form of arthritis was initially investigated by Steere et al. and 
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ultimately led to the recognition of what is now known as Lyme disease [12]. 

Upon this investigation, it was initially suggested that a tick was the main vector 

of Lyme arthritis, and in 1978 the first epidemiological evidence was found, 

showing the tick, Ixodes scapularis, was the main vector for the disease [13,14]. 

Though the characterization of the disease and its vector were being 

investigated, the infectious agent was still unknown. It was in 1982 in which 

Burgdorfer and his colleagues first isolated the infectious agent, now known as 

the spirochete bacterium Borrelia burgdorferi [15].  

 Since its discovery, Lyme disease has seen a consistent increase in the 

number of reported cases in the United States, with approximately 30,000 cases 

being reported each year (Figure I-1A) [16]. However, since only a small 

percentage of cases are reported, the total number of individuals who contract 

Lyme disease are estimated to be around 300,000 annually in the US. This 

estimation comes from two studies from the Centers for Disease Control and 

Prevention (CDC) that utilized clinical laboratory testing results of people who 

tested positive for Lyme disease and used medical claims from insurance 

databases [3,4]. These cases are not uniformly distributed throughout the US. In 

fact, 93% of reported illnesses are within 15 states, concentrated within the 

Northeast and upper Midwest regions, but are expanding into other states 

(Figure I-1C, Table I-1) [16]. As the most reported vector-borne disease in the 

US, the economic burden of medical costs are estimated to be between $712 

million to $1.3 billion each year – these figures are attributed to initial testing and 

treatment of Lyme disease and ongoing healthcare associated with post-
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Figure I - 1.  Incidence and geographical distribution of confirmed Lyme 
disease.  
An infographic of Lyme disease incidence and geographical 
distribution. A) The number of reported cases in the United 
States by year from 1996-2018. Changes to case definition were 
made in 2008 to strengthen requirements of a confirmed case. 
The definition for a confirmed case is a positive culture for B. 
burgdorferi and a positive two-tier IgM or IgG serological test or a 
single-tier positive IgG immunoblot. A probable case requires 
evidence of infection and clinical diagnosis of Lyme disease, but 
does not fully meet the confirmed disease definition. B) The 
average number of confirmed cases in the US by month from 
2008-2018. Peak disease onset is in June and July. C) A 
geographical map of the United States indicating the distribution 
of the average annual rate of confirmed Lyme disease from 
2008-2015. High incidence regions are found in the Northeast 
and Upper Midwest regions. Associated values for each state 
can be found in Table 1-1. All data was obtained from the Center 
for Disease Control and Prevention [1]. 
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Table I - 1.  Incidence rates of confirmed Lyme disease per 100,000 individuals 
in each state and district. From 2008-2015 
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treatment Lyme disease syndrome (PTLDS) [10]. Though many individuals will 

recover through effective treatment, Lyme disease can lead to a wide range of 

symptoms that can be long lasting and detrimental to the patient. 

The Genetics of Borrelia burgdorferi 

 In 1997, the genomic sequence of B. burgdorferi strain B31 was 

sequenced, making it the third microbial genome to be sequenced, behind 

Haemophilus influenzae and Mycoplasma genitalium [17–19]. The genome of 

B. burgdorferi is highly complex and quite unusual with respect to other bacterial 

genomes – it consists of a nearly 1 megabase linear chromosome (~950 kb) with 

a highly variable set of circular and linear plasmids that range in size from 5 kb 

(linear plasmid 5, lp5) to 56 kb (lp56) [19,20]. While some plasmids are quite 

evolutionarily stable (i.e. lp54, cp26), many have undergone non-homologous 

and duplicative recombination, accounting for the wide diversity in plasmid 

number and content [21]. The strain B31 MI was shown to contain 21 plasmids 

(12 linear and 9 circular), though a recent study of 14 B. burgdorferi sensu stricto 

(s.s.) strain isolates showed that the bacteria can carry between 9 and 23 

plasmids [20,21].  

 Selective pressure from the environment in which the bacteria persists has 

been shown to cause changes in plasmid content. In fact, one consideration 

researchers must take is the number of in vitro passages that B. burgdorferi 

undergoes, as continual cultivation can lead to loss of plasmids [22–24]. 

Furthermore, plasmid loss, such as lp25, has been shown to be correlated to loss 

of infectivity in in vivo models, suggesting specific genes within these plasmids 
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are required for successful infection but not necessary for survival within in vitro 

environments [23,25]. With regards to plasmid content, changes in gene 

expression have been documented during each stage of the bacterial life cycle 

from tick to host.  

 During its life cycle, B. burgdorferi encounters a wide range of 

environments and has been observed to undergo adaptions to gene expression 

in response to changes in pH, carbon dioxide, oxygen, osmolarity, and nutrients 

[26–31]. The bacteria utilize two major systems to regulate the expression of 

genes during its enzootic life cycle between tick and host: Rrp2-RpoN-RpoS 

regulatory system and histidine kinase (Hk)1-Rrp1 two-component transduction 

system (TCS). RpoS is an alternative RNA polymerase σ-factor necessary for 

transcription of a large number of genes that encode proteins necessary for 

transmission between the tick and host, maintenance of infection within the host, 

as well as persistence within the tick [32,33]. RpoN, another alternative RNA 

polymerase σ-factor, is responsible for the transcription of RpoS, which requires 

an open rpoS promoter complex that is mediated by phosphorylated response 

regulatory protein 2 – Rrp2 [34–36]. TCS proteins generally mediate bacterial 

adaptation to their surroundings. The Hk1/Rrp1 system controls the transcription 

of genes that are essential for survival during enzootic cycle transitions, that 

occur during tick feeding with the uptake or deposition of B. burgdorferi [37]. 

Binding of ligands to the periplasmic domains of Hk1 leads to the initiation of a 

signaling cascade that activates Rrp1, which in turn leads to the production of 

cyclic di-GMP, a secondary messenger. Hk1/Rrp1 is required for the colonization 
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of the tick midgut, and spirochetes that lack either component do not survive 

[37,38].  

 During infection of a host, the Rrp2-RpoN-RpoS system is activated, 

allowing host genes to be expressed, while inversely, genes required within the 

tick are repressed. The outer surface proteins (Osps) of B. burgdorferi exemplify 

these changes in gene expression. Within the host, OspC, allows for the initial 

establishment of early infection, but is later repressed when no longer required to 

maintain the infection. During the uptake of the bacteria from host to tick, the 

Rrp2-RpoN-RpoS system is inactive, and the Hk1/Rrp1 system activates 

expression of tick-phase genes such as OspA, leading to colonization of the tick 

midgut via binding of Tick Receptor for OspA (TROSPA). Spirochetes that lack 

OspA fail to colonize the tick and are later expelled [39–41]. During this initial tick 

phase, Hk1/Rrp1 induces gene expression within the glp operon allowing for 

utilization of glycerol[42]. During the unfed nymphal stage, B. burgdorferi 

encounters a nutrient-deficient environment, where both Bb gene expression 

systems become inactive while tick-phase genes remain expressed [34,35]. 

During the next blood meal, the large influx of nutrients mediates a robust 

change in Bb gene expression that allows B. burgdorferi to take advantage of the 

new environment. Activation of the Rrp2-RpoN-RpoS and Hk1/Rrp1 systems 

provides a shift in gene expression towards mammalian infection and 

transmission, respectively [35]. OspA is subsequently downregulated, allowing 

for the detachment and transmission from tick to host. OspC, conversely is 
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upregulated and required for the initial dissemination and immune evasion 

necessary for the establishment of early infection in mammals [43,44]. 

The Enzootic Life Cycle of Borrelia burgdorferi  
and Ixodes scapularis  

 B. burgdorferi sensu lato (s.l.). is primarily transmitted by four species of 

Ixodes tick throughout the world: Ixodes scapularis in upper Midwestern and 

Northeastern North America, Ixodes pacificus in Western North America, Ixodes 

persulcatus in Asia, and Ixodes ricinus in Europe [45–47]. The life cycle of B. 

burgdorferi and Ixodes scapularis is depicted in Figure I-2. There are three 

stages of the tick life cycle, in which a blood meal is taken at each stage: larva, 

nymph, and adult. As B. burgdorferi cannot be transovarially transmitted, the 

larva hatch from eggs uninfected, requiring each generation to re-acquire the 

pathogen from infected reservoir hosts [48]. Larva will typically hatch in the 

spring and begin seeking a blood meal and acquire B. burgdorferi if feeding on 

an infected reservoir host. Following its first blood meal, infected larva will begin 

molting to the nymph stage, and retain the infection transstadially, that is, the 

infection is maintained between each life stage. Nymphs will emerge in the 

spring, and again, the tick will begin questing for a blood meal by climbing grass 

or other tall structures to increase the likelihood of encountering a host. Though 

nymphs tend to feed on small to medium animals, this provides the first 

opportunity for B. burgdorferi to be transmitted to reservoir species to maintain a 

constant transmission cycle or to be transmitted to dead-end hosts such as 

humans. Following this feeding, the nymphs will detach and molt to adults in the 

fall of the same year. At this stage, adults will find medium to large mammals to 
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Figure I - 2.  The enzootic life cycle of Borrelia burgdorferi.  
Ixodes scapularis, is the predominant vector for B. burgdorferi in 
the United States. The life cycle of I. scapularis generally spans 
two years. There is no transovarian transmission of 
B. burgdorferi, thus eggs and larva are uninfected. Between 
each life stage, the tick must take a blood meal. Larvae acquire 
infection from feeding on an infected reservoir host. The larva 
then molts to a Nymph, maintaining the infection. This is the first 
stage that the tick can transmit the bacteria to a naïve host, such 
as humans, leading to the onset of Lyme disease. Following a 
second blood meal, the tick will mature into an adult. The adult 
tick can infect another host and reestablish the reservoir of 
B. burgdorferi in specific animals such as the white-footed 
mouse. Ticks will mate at this stage, lay uninfected eggs, and the 
cycle repeats. 
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feed – a common host is Odocoileus virgiianus (white-tailed deer). Females and 

males will then mate, and females will find a suitable environment to lay eggs, 

thus starting the cycle again.  

 As illustrated, Ixodes will feed once during each stage of life. Though each 

stage shows an inclination to specific hosts, the ticks are considered generalist 

feeders and will feed on a wide variety of animals, including rodents, birds, 

racoons, and deer [49–53]. Typically, larva and nymphs will show a propensity 

towards smaller to medium mammals such as mice, shrews, or birds, while 

adults will feed on larger animals like the white-tailed deer or coyotes [54,55]. 

Activity of I. scapularis at all stages is based on seasonality and climate, and 

peak activity is observed in spring and summer, though larval activity may occur 

later than nymphs or adults [45,47,56,57]. This correlates with the seasonality of 

confirmed cases of Lyme disease in which peak onset of disease occurs in June 

and July (Figure 1-1B).  

 Furthermore, while B. burgdorferi can infect a wide range of animals due 

to the generalist feeding behavior of Ixodes ticks, only a few animals have been 

observed to maintain a persistent infection, allowing for a natural reservoir for the 

spirochete. One of the most prevalent reservoir species in North America is the 

white-footed mouse Peromyscus leucopus [58–60]. Though white-foot mice can 

harbor the bacteria, they do not exhibit pathology associated with Lyme disease, 

suggestive of co-evolution between the species. This allows for the modulation of 

the host immune response that is beneficial to the bacteria [35,61–63]. 

Understanding the life cycle, preferential hosts, and reservoir species for Ixodes 
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scapularis and B. burgdorferi provides insight into the increasing incidence of the 

disease, both in terms of the number of individuals infected and geographical 

distribution.  

Symptoms and Treatments: From Tick Bite to the Doctor’s Office 

 An overview of the symptoms can be found in Figure I-3. Lyme disease is 

transmitted to humans by a tick bite, typically from Ixodes scapularis or Ixodes 

pacificus on the Pacific Coast of the US [64,65]. During the initial localized stages 

of the disease, the most common and indicative symptom is the erythema 

migrans (EM) rash which presents in 70%-80% of infected individuals [66]. If 

treated by antibiotic therapy during this early stage of the disease, most 

individuals will recover. Typically, an individual will receive a course of antibiotics 

such as doxycycline or cefuroxime for 2-3 weeks. If a patient does not receive 

treatment during this early phase of the disease, the bacteria will disseminate via 

the circulatory system into other tissues and organs. During early B. burgdorferi 

dissemination throughout the body, it commonly enters joints, tendons, or 

bursae. Patients may initially be asymptomatic, but during the late stages of the 

disease when the innate and adaptive immune response are present, clinical 

presentation of arthritis is usually seen within major joints. In a study that 

followed patients with EM rash who did not receive antibiotic therapy, roughly 

60% of patients developed intermittent or chronic arthritis [67]. A more recent 

surveillance of reported cases by the CDC indicates that approximately 30% of 

individuals will develop arthritis [66]. While most symptoms will resolve following 
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Figure I - 3.  The symptoms of Lyme disease and post-treatment Lyme 
disease syndrome.  
Lyme disease is a multi-systemic disease. Symptom severity can 
be variable but increases the longer the disease is left untreated. 
Erythema migrans, also known as the bullseye rash, is a 
common and indicative sign of Lyme disease, appearing in 70% 
of cases. Arthritis occurs in 29% of individuals, and usually 
affects major joints such as the knee. Carditis is rare,1%, but is a 
serious symptom that leads to atrioventricular block, a disruption 
in the electric signals of the heart. The invasion of the central 
nervous system results in neuroborreliosis, with associated 
symptoms including facial palsy, radiculoneuropathy, and 
meningitis. Post-treatment Lyme disease syndrome occurs in up 
to 20% of Lyme disease patients and is defined by the 
continuation or appearance of symptoms after treatment, in 
which an active infection is no longer detectable. Symptoms 
include fatigue, musculoskeletal pain, depression, and cognitive 
decline.  
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treatment, some patients will continue to experience persistent synovial 

inflammation that may last for months to years [68].  

 During the dissemination phase, B. burgdorferi may enter cardiac tissue 

causing 1-4% of patients to develop carditis [66,69]. Involvement in cardiac 

tissue can impair electrical signals between the atria and ventricles of the heart, 

termed atrioventricular block [70]. Clinical manifestations of Lyme carditis present 

as shortness of breath, light-headedness/fainting, heart palpitations, or chest 

pains [70].  

 While many patients will recover from Lyme disease following an 

appropriate antibiotic intervention, the pathophysiology of the disease ranges 

drastically from person to person. Because B. burgdorferi does not produce or 

secrete any known toxins that can be attributed to the manifestations of the 

disease, it is suggested that the host immune and inflammatory response elicited 

by the infection plays a major contributing factor to the pathogenesis of the 

disease.  

Neuroborreliosis 

 The involvement of the central nervous system (CNS) is usually seen in 

the later stages of delayed or untreated Lyme disease but has been observed in 

patients that still present with EM rash [71]. When B. burgdorferi does 

disseminate into the CNS, neurological complications, termed “neuroborreliosis”, 

are typically observed. Neurological manifestations include radiculoneuritis, 

meningitis, and facial palsy [72–74]. It is well-documented that B. burgdorferi is 

capable of penetrating the central nervous system (CNS). This is evident from 
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the direct detection of the pathogen within the cerebrospinal fluid, usually 

performed by lumbar puncture, followed by bacterial culture or PCR [75]. 

Furthermore, other methods suggest of CNS invasion - the detection of 

intrathecal antibodies, an increase in peripheral immune cells, such as 

lymphocytic pleocytosis, and the presence of the chemoattractant cxcl13 [76–79]. 

Though methods of detection and diagnosis of neuroborreliosis continue to grow, 

very little is known about the mechanisms by which B. burgdorferi enters the 

CNS and the pathophysiology of neuroborreliosis. Explants and primary cultures 

of dorsal root ganglia tissue from rhesus macaques that were incubated with 

Borrelia burgdorferi showed an increase in inflammatory cytokines ccl2, il-6, and 

il-8, as well as the apoptosis of sensory neurons [80]. The correlation between 

inflammation and the pathology of the disease is also observed in the 

inflammation and subsequent apoptosis of oligodendrocyte cultures following Bb 

infection [81]. This is further seen in the cerebrospinal fluid (CSF) of patients with 

confirmed neuroborreliosis that show increases in chemokines such as ccl2, ccl5, 

and cxcl1 [82–84]. The presence of these chemokines may indicate a role for 

these factors in the host immune response, notably immune cell trafficking.  

 A major point of contention within the realm of neuroborreliosis is the 

mechanism by which B. burgdorferi enters the CNS. As stated previously, the 

bacteria have been found in the CSF and indeed the commonly used 

B. burgdorferi 297 strain is an isolate from the CSF of a patient [85]. There are 

two possible routes of dissemination into the CNS, retrogradely via peripheral 

nerves or hematogenous dissemination [86]. However, it is more likely that 
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dissemination occurs hematogenously, as it is the major route of dissemination to 

secondary systemic organs after the establishment of localized infection[87,88]. 

Transportation and successful immune evasion through the bloodstream are only 

half of the story. The next hurdle B. burgdorferi has to overcome to enter the 

CNS is successfully passing through the blood-brain barrier. Some researchers 

advocate for the penetration of endothelial cells while others argue the 

transcellular migration of the spirochete [89–91]. Clearly, major work is still 

required to elucidate the mechanisms of CNS entry and pathogenesis of 

neuroborreliosis. One aspect of the work presented herein aims to provide an 

alternative route of entry into the CNS. 

Post-Treatment Lyme Disease Syndrome 

 Several studies have shown that the majority of patients who are treated 

with antibiotics successfully recover; however, individuals presenting with late 

manifestations of Lyme disease may respond more slowly to the antibiotic 

therapy [92–97]. Approximately 10-20% of individuals who complete treatment 

for Lyme disease experience persistent or intermittent symptoms at least 12 

months post-treatment [94,98,99]. Originally named “Chronic Lyme Disease” to 

describe individuals with persistent and non-specific symptoms seen in 

suspected Lyme disease patients, the term has come under considerable 

scrutiny for its failure in specificity and consistency for diagnosis and has since 

been further refined to a more accurate term, Post-Treatment Lyme Disease 

Syndrome [99]. Common symptoms of PTLDS include fatigue, sleeplessness, 

joint and muscular pain, headache, paresthesia, and overall cognitive decline 
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involving difficulties in memory and concentration [93,100]. PTLDS is defined as 

a syndrome in which an individual with a documented diagnosis of Lyme disease 

and associated symptoms, received the generally accepted treatment regimen of 

antibiotics, but has shown persistent symptoms such as fatigue, musculoskeletal 

pain, or cognitive deficits for at least 6 months following the completion of 

treatment with no evidence of an on-going infection or co-morbidities that would 

otherwise explain the individual’s symptoms [77,99,101]. The likelihood of a 

PTLDS diagnosis is correlated to the delay of antibiotic treatment and therefore 

the extent of B. burgdorferi dissemination into other tissue such as the joints or 

central nervous system [102,103]. 

 Currently, there are no effective treatments for PTLDS or strict guidelines 

for clinical care. The complexity of the biological systems involved in PTLDS (i.e. 

CNS, musculoskeletal), the generality of symptoms (i.e. pain, cognitive decline), 

and on-going controversy worsens the ability to provide adequate care. 

Furthermore, studies have shown that extending the duration of antibiotic therapy 

from the typical 2-4 weeks does not provide any additional benefits and is 

associated with adverse side effects that include diarrhea and sepsis, leading to 

hospitalization in some cases [104–106].  

 There is currently no known explanation for the underlying mechanisms of 

post-treatment Lyme disease syndrome, though the cause of PTLDS may be 

multifactorial. There are a number of hypotheses that attempt to explain the on-

going symptoms: persistent B. burgdorferi infection at undetectable levels, 

autoimmune mechanisms, the Amber hypothesis, or epigenetic manipulation 
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within the host as outlined in this work [107,108]. The Amber hypothesis initially 

sought to describe the pathogenesis of Lyme arthritis that is caused by non-

viable B. burgdorferi or bacterial debris in regions that are more difficult to clear 

by resident immune cells [108]. This has been extrapolated to include the CNS, 

and studies have shown that heat-inactivated or sonicated Borrelia induces an 

inflammatory response in microglia [109]. The work described herein provides an 

additional explanation for PTLDS, focusing on epigenetic manipulation of host 

cells in response to B. burgdorferi that creates a transcriptome profile that is 

conducive to a pro-inflammatory state. 

The Host Transcriptional Response to  
Borrelia burgdorferi Sensu Lato  

 With the advent of next-generation sequencing technologies, the ability to 

perform transcriptome analysis has become much more accessible and 

affordable. The past several years have seen a dramatic increase in RNA-seq 

analysis that allows researchers to conduct genome-wide transcriptome profiling 

of both model and non-model organisms. The impact of this technological 

innovation is best seen in studies of host-pathogen interactions. The use of RNA-

seq and microarray technologies aids in understanding the development of the 

host response to a disease. This can better illustrate the host immune response 

towards a pathogen and how the pathogen may overcome these obstacles. 

Particularly, regarding B. burgdorferi, the host immune response and subsequent 

inflammation, while generally beneficial, poses a deleterious outcome for patients 

with Lyme disease, especially if such symptoms are persistent. With such a 

tremendous evolution in sequencing technologies, researchers are able to better 
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understand this dichotomy in Lyme disease. Furthermore, bioinformatics 

provides the tools necessary to analyze the large amounts of data available in 

such experiments. This allows researchers to not only perform transcriptome 

profiling but to determine functional and pathway analysis to quantitatively 

identify key targets for future therapeutics. As the goal of my projects revolved 

around understanding the genetic and epigenetic alterations following B. 

burgdorferi infection, this section highlights many of the past and current studies 

that have utilized RNA-seq and microarray technologies in Lyme disease models 

to understand the host transcriptome response. 

Transcriptional Response of Early Localized Infection 

 Lyme disease begins at the site of the tick bite where B. burgdorferi and 

tick saliva are transmitted to the host during feeding [110]. Though many studies 

cited throughout this review do not utilize ticks as a route of transmission, it is 

important to note the role of tick saliva in Lyme disease. Tick saliva contains a 

milieu of immunomodulatory factors that include antihistamines, antioxidants, and 

anti-complement proteins that promote bacterial survival [111–113]. The saliva 

has been shown to inhibit neutrophil functions and impedes the killing and 

clearing of bacteria; the proteins ISL 929 and ISL 1373 have been shown to 

inhibit neutrophil chemotaxis to the site of infection [114,115]. Furthermore, 

dendritic cell (DC) migration and maturation are also inhibited by tick saliva, 

specifically Prostaglandin E2 [116,117]. These anti-inflammatory and 

immunosuppressive effects aid in the initial establishment of a localized infection 

at the skin of the host. This section summarizes the transcriptional alterations 
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within tissue and cells that first encounter B. burgdorferi during the early phase of 

the disease.  

Dendritic cells. 

 Dendritic cells (DCs) are phagocytic and professional antigen-presenting 

cells that can be found in many tissues including the skin where they monitor for 

and detect invading pathogens. As a part of the innate immune system, DCs act 

as a bridge linking the innate and adaptive immune response through their ability 

to activate naïve T cells following stimulation and migration to lymph nodes 

[118,119]. DCs are one of the first types of immune cells to interact with Borrelia 

and, upon coming into contact with DCs, are quickly engulfed, allowing for the 

processing and presentation of Borrelia antigens for the activation of CD4+ T cells 

[120,121]. Due to the limited number of DCs that can be collected for in vitro 

investigation, it is common to derive DCs either through bone marrow or 

peripheral blood monocytes (PBMCs); however, to date, only one study has 

investigated the transcriptional effects between Borrelia and DCs.  

 Hartiala et al. utilized PBMCs from healthy donors and generated DCs in 

vitro to determine the transcriptional response to Borrelia garinii (Bg), a member 

of the Borrelia burgdorferi sensu lato complex [122]. Like B. burgdorferi, B. garinii 

elicits a phagocytic response from DCs, in which they are processed, induce DC 

maturation, and activate T cells [123]. The microarray experiments performed by 

Hartiala et al. made two comparisons, Bg stimulated vs unstimulated DCs and Bg 

stimulated versus LPS stimulated DCs. In both comparisons, several genes that 

transcribe chemotactic cytokines were upregulated in response to Bg stimulation. 
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The neutrophil chemoattractants CXCL1, CXCL7, and CXCL2, the latter also 

showing chemotactic properties for polymorphonuclear leukocytes and 

hematopoietic stem cells, showed increased expression compared to 

unstimulated and LPS-stimulated groups, and have been previously been 

implicated in the inflammatory response in later manifestations of Lyme disease 

[124–127]. The gene encoding for CSF-1 was induced at greater levels in Bg 

stimulated DCs; CSF-1 functions as a cytokine for hematopoietic stem cell 

differentiation into macrophages, and activates macrophage phagocytosis as well 

as inflammatory and chemotactic functions [128,129]. Transcripts for markers of 

DC maturation and differentiation were found to be upregulated in both the LPS 

and Bg stimulated groups – ADAM19, CD83, and SLAMF1 [130–133]. Further 

evidence of the DC inflammatory response to these stimuli is observed by the 

induction of inflammatory cytokine genes – TNF-α, IL-1α, IL-1β, and IL-6. Though 

it has been previously shown that B. burgdorferi sensu lato can stimulate an 

interferon response, interestingly, such a response was not seen in DCs 

stimulated by Bg. Yet, interferon-inducible genes were upregulated within the 

LPS group – this includes IFIT1, IRF2, and IRF7. One of the principal findings by 

Hartiala et al. was the demonstration of a reduced response in CD38 and CCR7 

expression in DCs stimulated by Bg when compared to LPS. During 

differentiation to immature DCs, CD38 is downregulated, but expressed following 

DC maturation and is required for DC chemotaxis and transendothelial migration 

[134,135]. Similarly, CCR7, a chemokine receptor, is a key promoter for DC 

migration to the lymph nodes [136]. This results in an impaired and weakened 
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humoral response and is posited by the authors as a possible cause for the 

immune abnormalities associated with Lyme disease [122]. This is in line with 

similar experiments that utilize ex vivo skin models injected with B. burgdorferi 

sensu stricto, LPS, or Pam3CSK4 (TLR2 agonist) to measure dendritic cell 

activation and migration [137]. Here, the authors observe the TLR2-mediated 

migration of DCs in response to B. burgdorferi, however, the expression of CCR7 

and CD38 were comparable to PBS controls, while LPS and Pam3CSK4 induced 

significant upregulation of these markers. Infection of monocyte-derived DCs with 

B. burgdorferi, again, did not show an upregulation of CCR7 and CD38[137].  

Macrophages. 

 A second prominent immune cell found in the skin are macrophages. 

Historically, macrophages and dendritic cells have been considered distinct cell 

types based on morphology, phenotypic characteristics, and function; however, 

current understanding has shown that both cell types, while unique in some 

respects, share many of the same functional characteristics. Like DCs, 

macrophages play a central role in the innate immune response during pathogen 

invasion. While both are antigen-presenting, macrophages are predominantly 

phagocytic, clearing cellular debris and pathogens while modulating an 

inflammatory response through the secretion of cytokines to alert the adaptive 

immune system [138,139].  

 To study the innate immune response to B. burgdorferi, Carreras-

González et al. utilized RNA-seq, among other techniques, to investigate the 

transcriptional profile of primary murine bone marrow-derived macrophages 
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(BMMs) following infection. Following stimulation, a large number of differentially 

expressed genes (DEGs) were observed (2,066 upregulated and 2,315 

downregulated), with gene expression consistent with an innate immune and 

inflammatory response. The pattern of gene transcription involved biological 

processes for the recruitment, differentiation, and activation of leukocytes. A 

sizable number of DEGs (317) that were regulated by B. burgdoferi were directly 

related to the inflammatory response, and 64 DEGs were found to be involved in 

phagocytosis, a significant function of macrophages. Transcriptional fingerprint 

analysis identifies expression profiles of signaling pathways to be compared with 

the observed profile. Unsurprisingly, the macrophage expression profile following 

exposure to B. burgdorferi resembled the fingerprint for the recognition of 

bacteria and viruses by pattern recognition receptors (PRRs); more specifically, 

pathway mediators within toll-like receptor (TLR) signaling showed a significant 

increase in stimulated BMMs. TLRs are a well-recognized and studied receptor 

family required for the innate immune response that is activated during Borrelia 

infection, and TLR2 signaling has been extensively shown to be a predominant 

pathway in the induction of a pro-inflammatory response [140–142]. Nonetheless, 

due to the numerous TLRs and their ability to form heterodimers such as TLR1/2 

and TLR2/6, studies have shown that such an immune response to B. burgdorferi 

is not restricted to only TLR2. TLR2-deficient mice show poor response to B. 

burgdorferi which allowed the bacteria to persist at elevated levels for at least 8 

weeks [143]. Furthermore, in the same investigation, though macrophages from 

TLR2-/- mice showed no response to OspA, an outer surface protein known to 
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signal through TLR2, sonicated spirochetes did stimulate a macrophage 

response [143,144]. Additionally, another study showed that in TLR2 knock-out 

mice, macrophages were still able to activate and respond to spirochete lysates 

[142]. However, the role of TLRs is diminished in the current study by Carreras-

González and colleagues. Though there was a significant overlap in the number 

of genes between stimulated BMMs and TLR2 or PAM3CSK4 (a TLR2 agonist) 

signaling pathways, the percentage of shared genes was less than 10% - 

suggesting that a greater diversity in signaling receptors are responsible for the 

overall response, as seen with an upregulation in receptor Nod2 and overlap with 

triggering receptor expressed on myeloid cells-1 (TREM-1) receptor signaling. 

TREM-1 is a receptor that amplifies a pro-inflammatory response, and while a 

more robust inflammatory response could provide efficient clearing of an invading 

pathogen, it can lead to substantial cell death and tissue damage – a concept not 

unfamiliar to the Lyme disease field [80,145–148]. However, in a study using 

TREM1-/- mice infected with Leishmania major, Legionella pneumophila, or 

influenza virus, the mice displayed a significant attenuation of disease pathology 

in regards to inflammatory infiltrates and a reduction in the expression of pro-

inflammatory cytokines, yet were equally capable of clearing the infection 

compared to controls [149]. In fact, additional studies of B. burgdorferi infection 

implicate the TREM1 pathway as a significant contributor to the pathogen-

induced inflammatory response [150,151]. The inflammatory response by BMMs 

was further highlighted by the reduction in signaling intermediates induced by 

peroxisome proliferator-activated receptor (PPAR), an inflammatory suppressor, 
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and the downregulation of Il10ra, the receptor for the anti-inflammatory 

interleukin-10. Furthermore, several pro-inflammatory cytokines were shown to 

be upregulated including IL-1β, IL-6, IFNβ1, and TNF (a regulator of TREM1). 

Overall, the study showed an inflammatory response by BMMs following B. 

burgdorferi infection that was characterized by an increase in pro-inflammatory 

cytokines, a reduction in anti-inflammatory pathways, and an increase in 

phagocytic related genes. 

Monocytes. 

 In addition to transcriptional profiling of murine macrophages, Carreras-

González et al. further characterized the transcriptional response of the 

interaction between B. burgdorferi and human CD14+ peripheral blood monocytes 

via microarray analysis to determine their relevance in the human innate immune 

response. A similar number of DEGs were found in the human monocytes 

compared to BMMs. A significantly reduced number of DEGs were shared 

between the two cell types, most likely attributed to differences across species – 

195 DEGs upregulated and 161 DEGs downregulated in both groups; 168 genes 

were regulated in opposite directions. However, similarities appeared following 

functional and pathway analysis in which pathways involving the recruitment of 

leukocytes, phagocytosis, and endocytosis were increased. Furthermore, 

analysis regarding upstream regulators indicated similar patterns of gene 

expression for receptors TLR3, TLR9, TLR, and NOD2, and proinflammatory 

cytokines TNF, IL-1α, IL-1β, and IFNα2. The gene expression pattern for the 

inhibition of the anti-inflammatory IL10RA pathway was observed in both BMMs 
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and human monocytes. While there were distinct differences between the two 

groups regarding expression of specific genes, it appears that infection with 

B. burgdorferi produces a pro-inflammatory response that overlaps both groups. 

Dermal fibroblasts. 

 The skin represents an important obstacle in the progression of Lyme 

disease as it forms a complex physical barrier comprised of the epidermis, 

dermis, and hypodermis. B. burgdorferi establishes a local infection within the 

dermis, and aside from resident immune cells such as DCs and macrophages, 

dermal fibroblasts are among the first cells to come into contact with the 

spirochetes [152–154]. Fibroblasts are the main resident cells in the dermis and 

play an important role in the formation and reorganization of the extracellular 

matrix (ECM). Moreover, fibroblasts are able to communicate and modulate local 

immunocompetent cells as a functional part of the innate immune response 

through the recruitment of leukocytes, inflammatory regulation, and the 

maturation of dendritic cells [155,156].  

 To understand the role of dermal fibroblasts in skin inflammation during 

the early pathogenesis of Lyme disease, Schramm et al. performed microarray 

analysis of human dermal fibroblasts in response to three different strains of 

Borrelia burgdorferi sensu stricto [154]. The three strains of B. burdorferi were 

isolated from different environments representative of different stages of Lyme 

disease – strain N40 was isolated from a tick, strain Pbre from an erythema 

migrans skin biopsy, and strain 1408 from a skin biopsy of acrodermatitis 

chronica atrophicans (ACA), a late-stage manifestation of Lyme disease. Across 
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all three infection groups, a total of 241 genes were found to be differentially 

expressed, with 103 genes upregulated and 138 downregulated. There were 

47 upregulated and 28 downregulated DEGs that were shared between all three 

groups. The authors state that there were no discernable differences in relevant 

transcriptional pathways across each group and note that while the three 

B. burgdorferi isolates stem from different environments of the pathogen life 

cycle, the dermal fibroblasts produced similar transcriptional profiles in response 

to each pathogen isolate. As one of the major functions of fibroblasts, ECM 

production and remodeling genes were found to be upregulated among the 

shared genes. These involve the structural components that include integrin 

ITGA1, laminin LAMA1, microfibrils MFAP3, and collagen fibrils COL8A1. Most 

importantly, three matrix metalloproteinases (MMPs) were found to be 

upregulated – MMP-1, MMP-3, and MMP-12. The induction of MMPs by the 

bacteria has been linked to the development of Lyme arthritis showing similar 

erosive and inflammatory pathologies to rheumatoid arthritis [157–159]. MMP-1 

and MMP-3 have been shown to be elevated in the synovial fluid of Lyme arthritis 

patients [159,160]. B. burgdorferi appears to induce the production of host MMPs 

to degrade and digest extracellular matrix proteins that allow for greater 

dissemination [161,162].  

 In addition to the upregulation of ECM remodeling pathways, the 

transcriptional response in fibroblasts was largely indicative of a pro-inflammatory 

profile. A high level of cytokines and chemokines were shown to be upregulated, 

including CXCL1 and many interleukins. Additionally, many upregulated genes 
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were representative of signaling mediators that regulate and sustain an 

inflammatory response such as NF-κB transcription factors (NF-κB1, -2), 

interferon-related and inducible genes (IRF1, STAT1/2, OAS2, and IFIH1), and 

genes within the tumor necrosis factor family (TNFSF10, TNFSF13B). Through 

the release of secreted factors, dermal fibroblasts appear to communicate with 

innate immune cells that allow for their attraction, activation, and maturation to 

the site of infection [163–167]. Moreover, during the localized infection phase, 

dermal fibroblasts inadvertently provide a means for B. burgdorferi dissemination 

by the induction of ECM degradation factors like MMPs [154].  

Transcriptional Response of Early Disseminated Infection 

 The next phase, following the initial localized infection of Lyme disease, is 

the early dissemination of B. burgdorferi to other host tissue and organs. 

Hematogenous dissemination is the primary mechanism for the spread of the 

spirochete in the host and the first barrier that the spirochetes interact with is the 

endothelial barrier of the blood vessels. This is also a primary barrier that must 

be overcome by innate and adaptive immune cells.  

Endothelial/Epithelial. 

 Dame et al. sought to determine the role of endothelial cells in Lyme 

disease by performing microarray analysis of a human umbilical vein endothelial 

cell (HUVEC) in vitro system infected with B. burgdorferi [168]. T lymphocytes 

have long been implicated in the pathogenesis of Lyme disease and specifically 

Th1 cells have been shown to be elevated in the synovial fluids of Lyme arthritis 

patients [169,170]. Furthermore, Th1 cells which specifically secrete IFN-γ have 
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shown a migratory affinity towards endothelia that have been stimulated by 

B. burgdorferi, and a significant correlation has been shown between symptom 

score of LD patients and IFN-γ [169,171]. To this end, Dame and colleagues 

further sought to identify the synergistic effects of IFN-γ and B. burgdorferi on the 

transcriptional profile of primary human endothelial cells. 

 In the presence of B. burgdorferi, HUVECs showed poor activation and 

minimal differential gene expression, in which no genes were significantly 

downregulated, and only 23 genes were significantly identified as upregulated 

with a greater than 2-fold change. Of these genes, several have already been 

identified to be induced by B. burgdorferi in a number of in vitro and in vivo 

models – these genes include immune cell adhesion molecules (ICAM-1, VCAM-

1) and leukocyte recruitment chemokines (CXCL8, CCL2), which have been 

specifically shown to promote the transmigration of leukocytes across endothelia 

during B. burgdorferi infection [171–175]. Stimulation of HUVECs with IFN-γ only 

produced a larger transcriptional change in both magnitude and number of genes 

when compared to B. burgdorferi only, with a subset of genes being classified as 

mediators of inflammation. However, the combinatorial effects of IFN-γ and 

infection revealed several inflammatory and immune-related genes that were 

significantly upregulated and showed a robust fold change compared to each 

individual treatment. The authors formulated a synergistic scoring system that 

indicated 34 genes that were differentially upregulated in both individual 

treatments. This effect can be clearly seen in the expression of CCL8: IFN-γ only 

treatment – 17.672 FC; Bb only treatment – 1.31 FC; and Bb+ IFN-γ treatment – 
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113.58 FC. Of these 34 genes that were markedly upregulated, 9 are involved in 

the recruitment of leukocytes which include specifically T lymphocyte 

chemoattractants CCL7, CCL8, CXCL9, CXCL10, CXCL11, CX3CL1 and also 

the aforementioned adhesion molecules (ICAM-1, VCAM-1), as well as the 

neutrophil chemoattractant CXCL2 [124,176–180]. Furthermore, the presence of 

T lymphocytes has been attributed to more persistent inflammatory syndromes 

[181–184]. Many of the 34 genes are mediators in both the innate and adaptive 

immune systems; however, interestingly, the CIITA gene showed downregulation 

in Bb only treatment, but an upregulation in IFN-γ only, and an even greater 

upregulation with the combination of treatments. CIITA encodes for the MHC 

class II transactivator and acts as a master regulator for MHC class II genes, 

involved in antigen processing and presentation. This change in gene expression 

brought upon by IFN-γ treatment is suggestive of a transition towards the 

adaptive immune response. Together, the transcriptional changes observed 

indicate a key role of endothelial cells in conjunction with IFN-γ that leads to a 

greater adaptive immunological response through the selective recruitment of 

T lymphocytes, and as Th1 cells themselves produce and secrete IFN-γ, a 

positive-feedback loop would promote a more chronic inflammatory environment 

which is seen in Lyme disease patients [168–170,185–187].  

Peripheral blood mononuclear cells. 

 During hematogenous dissemination, B. burgdorferi encounters a wide 

variety of immunocompetent cells within the blood circulatory system. Due to the 

ease of access, availability, and as one of the predominate classes of immune 
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cells in the blood, peripheral blood mononuclear cells (PBMCs) are commonly 

used in both ex vivo and in vivo analysis of Lyme disease. PBMCs are defined as 

any peripheral blood cell that has a round nucleus, as opposed to anucleur cells 

such as mature erythrocytes or multi-lobed nucleated cells such as granulocytes. 

They are predominately comprised of lymphocytes (T cells, B cells, and NK cells) 

and to a lesser extent monocytes [188,189].  

 To determine the global and temporal transcriptional pathways involved 

during B. burgdorferi infection in humans, Bouquet et al. performed longitudinal 

transcriptome analysis (RNA-seq) of PBMCs collected from patients with acute 

Lyme disease at three time points: time of diagnosis/pre-treatment, treatment 

completion (3 weeks), and 6 months post-treatment to determine the 

transcriptional profiles of post-treatment symptoms. 29 individuals with acute 

Lyme disease that presented with a documented EM rash and flu-like symptoms, 

such as fever, fatigue, and the onset of muscle or joint pains, were enrolled in 

addition to 13 healthy control individuals. Following 6 months post-treatment, the 

29 individuals were further categorized as having resolved the illness (n=15) or 

experiencing persistent symptoms (n=13); one patient was lost to follow-up. Of 

the 13 with persistent symptoms, 4 were diagnosed with post-treatment Lyme 

disease syndrome. The authors also note that the longer the duration between 

the onset of symptoms and the time of completed treatment was correlated to 

PTLDS diagnosis, in which non-PTLDS patients had an average duration of  

9.7 days between symptom onset and treatment completion and 19.3 days for 

PTLDS patients.  
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 Transcriptional analysis showed a consistent decrease in the number of 

DEGs across the three time points compared to controls – pre-treatment:  

1235 DEGS, treatment completion: 1060 DEGs, 6-months post-treatment: 686. 

Interestingly, when taking into consideration other infectious diseases such as 

Influenza, the gene expression of patients with Lyme disease failed to return to 

baseline levels; however, persistent symptoms were not solely dependent on this 

failure to return to baseline as no DEGs were found between patients with 

resolved symptoms and those with persistent symptoms. Pathway analysis of the 

pre-treatment group indicated activation of the inflammatory response, immune 

cell trafficking, hematological system, as would be expected during the early 

dissemination phase of B. burgdorferi. However, these pathways remained 

activated at treatment completion and to a lesser extent at the 6-month post-

treatment time point. This is reflected in the top 10 enriched pathways in that 

8 pathways of the pre-treatment, 10 pathways in treatment completion group, 

and 4 pathways in 6-month post-treatment group were directly related to the 

immune response. Furthermore, TREM-1 signaling was the top activated 

pathway for both pre- and completed treatment groups. As mentioned previously, 

TREM-1 acts as an amplifier of inflammation, and also acts as a mediator for Th1 

activation through factors such as DAP12, IL-6, IL-12 that were upregulated in 

these two groups. Inversely, the eIF2 signaling pathway was found to be 

downregulated in all three groups and has been found to be involved in protein 

synthesis during cellular stress [190]. The pathogen Legionella pneumophila was 

previously shown to disrupt and downregulate mediators of this pathway through 
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the secretion of effectors, and defective signaling of eIF2 was shown to lead to 

greater susceptibility to intracellular invasion by Yersinia pseudotuberculosis, 

Listeria monocytogenes, and Chlamydia trachomatis [191,192]. However, the 

current mechanism and immunological impact of eIF2 signaling inhibition 

following B. burgdorferi infection is yet to be elucidated. Several TLRs were also 

found to be either upregulated or predicted to be activated that include TLR-1, -2, 

-4, -7, and -8. Additionally, within the first two groups, the majority of upstream 

regulators were proinflammatory cytokines such as CSF2, IFN-γ, TNF-α  

(a master regulator of eIF2, TREM1, and TLR signaling), anti-inflammatory 

cytokines IL-6 and IL-110, and the transcription factor NF-κB. In contrast, the top 

upstream regulators for the 6-month group mainly involved genes associated 

with the regulation of gene expression such as MYCN, MYC, and FOS. Overall, 

Bouquet et al. found that the transcriptional profile of acute Lyme disease 

patients prior to treatment and upon treatment completion shared many 

characteristics, with many overlapping DEGs involved in the inflammatory and 

immune process but the activation of inflammatory T-cell apoptosis and B-cell 

developmental pathways were inhibited when compared to other acute infectious 

diseases. While the 6-month post-treatment group did not produce a marked 

inflammatory response, it failed to return to baseline levels; however, when 

compared to the transcriptional profiles of other immune-mediated chronic 

diseases such as systemic lupus erythematosus, up to 60% of the pathways 

overlapped. 
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Transcriptional Response of Late Disseminated Infection 

Joint (mouse). 

 The late disseminated phase of Lyme disease is characterized by 

successful invasion of secondary tissue and organs, including joints, heart, and 

CNS, followed by subsequent clinical presentations associated with affected 

tissue. A common outcome of dissemination into the joints is Lyme arthritis, in 

which 30% of patients will develop it and up to 60% if treatment was not 

administered at the time of infection [66,67,193]. The laboratory mice have long 

been used as a model for Lyme arthritis, and as such, Crandall et al. used two 

strains of mice that developed either severe arthritis (C3H) or mild disease 

(C57BL/6), as well as C578BL/6-IL-10-/- that lacked the anti-inflammatory 

cytokine IL-10, to study the global gene expression within the joints of these 

animals in response to B. burgdorferi [194–196]. 

 Expression profiles of rear ankle joints were determined by microarray 

analysis at 1, 2, and 4 weeks of infection. At week 1, C3H, C57BL/6, and 

C578BL/6-IL-10-/- had an increase in 156 genes, 119 genes, and 419 genes, 

respectively. Interestingly, only 3 genes overlapped between C3H and C57BL/6. 

At week 2, significant inflammatory response and immune cell infiltration were 

evident through gene expression and histological analysis in all three strains; 302 

DEGs were shared among the three groups. In agreement with histological 

evidence of leukocyte recruitment, an increase in the expression of recruiting 

chemokines was observed: PMN-recruiting (CXCL1, CXCL2, CXCL5), 

mononuclear cell-recruiting (CCL2, CCL3, CCL7, CCL12), and T cell-recruiting 
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(CXCL9, CXCL16, CCL2, CCL7). Transcripts for antigen-presenting cells and 

antigen processing such as MHC, CD1, and TAP1/2 were elevated at 2 and 

4 weeks; this is suggestive of an active adaptive immune response. 

B. burgdorferi is known to activate the production of several pro-inflammatory 

cytokines such as TNF-α, IL-1β, or IFN-γ, many of which are mediated by the 

activation of NF-κB. However, in C3H and C57BL/6 mice, only IL-1β was found to 

be increased in the joints. This is suggestive that these cytokines fail to be 

induced by B. burgdorferi in the presence of the anti-inflammatory cytokine IL-10, 

as the production of many of these inflammatory cytokines were robustly induced 

in IL-10-/- mice, including IL-1β, IFN-γ, IL-15, and members of the TNF family. 

Due to this response in IL-10-/-, these mice were able to more effectively control 

bacterial growth but at the cost of developing more severe arthritis. Though 

induction of Type I and II IFN was not detectable in C3H, a robust IFN induced 

response was displayed – the IFN induced GTPases, Igtp, Iigp2, and Iigp1 saw a 

fold-change of 128, 123, and 113 respectively when compared to control at week 

1. Additional IFN related genes include IFI1, GBP2, OASl2, and signaling 

molecules Stat1, IRF1, IRF2, IRF7, and IRF8. In the study, the authors note that 

the cause of IFN-related transcription cannot be determined as the presence of 

Type I/II IFNs were not detectable in either C3H and C57BL/6. However, more 

recent studies shed light on this phenomenon that indicate receptors 

independent of IFN receptors may be responsible, such as TLRs [197]. However, 

in stark contrast of this, C57BL/6 mice did display any increase of these IFN-

inducible genes at week 1, and only minimal expression at week 2, which 



36 

corresponded to less severe arthritis. This association with arthritis and gene 

expression in further observed in IL-10-/ mice that saw a robust IFN-induced 

response that significantly increased according to a longer time point. 

Furthermore, C57BL/6 mice saw an increase in transcripts related to epidermal 

differentiation and wound repair, compared to either no change or 

downregulation of these same genes in the other two strains across all time 

points. The study performed by Crandall et al., provides transcriptional insight of 

late dissemination associated with Lyme arthritis, showing a robust inflammatory 

response corresponding to disease severity, and upregulation of epidermal and 

wound repair genes correlating to a more protective effect [194]. 

Astrocytes. 

 Neuroborreliosis is defined by the invasion of the CNS by B. burgdorferi 

sensu lato, leading to subsequent neurological manifestations. Due to the 

disease severity and difficulty in treatment of persistent symptoms, many studies 

have been aimed to understand the mechanisms that lead to this pathology. 

Another study performed in the Brissette laboratory, Casselli et al., investigated 

the role of astrocytes in the exacerbation of neuroborreliosis through the use of 

RNA-seq [198]. Astrocytes, a resident glial cell, are the most abundant cell in the 

brain and play a role in a wide variety of functions [199]. Their functions include 

nutrient support, neurotransmitter recycling, aiding in synaptic remodeling and 

plasticity, structural support which includes the formation of the blood-brain 

barrier, and responding to CNS injury and infection through inflammatory and 

immune modulation [199,200]. 
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 Casselli et al. used primary human astrocytes in vitro stimulated by Bb for 

24 and 48 hours. 275 transcripts were found to be differentially expressed at both 

time points with significant overlap between them (221 DEGs). Tumor necrosis 

factor superfamily, member 18 (TNFSF18) showed the strongest induction with a 

fold-change of 440 and 580 for 24 hours and 48 hours, respectively. Additional 

inflammatory and immune-related genes were upregulated that include 

chemokines CXCL1, CXCL6, and CXCL8 as well as ERAP2 which is involved in 

innate immunity and antigen processing and presentation [201]. In line with the 

broad nature of astrocyte functionality, biological and functional analysis 

indicated genes were involved in nervous system development, angiogenesis, 

and cell adhesion. While these experiments indicated an inflammatory and 

immune response following B. burgdorferi infection, it seems the response was 

less concerted compared to more specialized peripheral immune cells. This may 

suggest and provide credibility to disease severity that correlates to the invasion 

of peripheral immune cells into the CNS, as seen in the CSF of neuroborreliosis 

patients. Such an outcome may lead to a dysregulation in astrocytic function and 

result in exacerbation of a more persistent inflammatory environment within the 

CNS. 

Gap in Knowledge 

 The work presented herein aims to elucidate the mechanisms underlying 

two major questions surrounding the neurological manifestations of Lyme 

disease. They are 1) How does B. burgdorferi enter the central nervous system, 
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and 2) How does B. burgdorferi induce persistent neurological symptoms present 

in PTLDS patients. 

 Regarding the first question, it is quite evident that B. burgdorferi is able to 

enter the central nervous system, however, where and how this occurs is still a 

matter of debate. The CNS is a highly regulated system that is selectively 

permeable through its barriers such as the blood-brain barrier and the blood-CSF 

barrier. In order to understand the pathogenesis of Lyme disease and how the 

dissemination into the CNS leads to the clinical presentations of neuroborreliosis, 

it is important to understand the mechanisms of entry. The choroid plexus forms 

the blood-CSF barrier, and due to its anatomical position and functions, it is a 

structure that we have chosen to investigate. The choroid plexus is situated 

within the ventricles of the brain, with the epithelial cells forming the blood-CSF 

barrier through tight and adherens junctions, and it is the predominate producer 

of CSF. Previous studies have shown its predisposition in the transmigration of 

peripheral immune cells and possibly pathogens into the CSF. It is applicable to 

note that a defining characteristic of neuroborreliosis is lymphocytic pleocytosis, 

an abnormal elevation of lymphocytes in the CSF, and B. burgdorferi or its DNA 

is found in the CSF of patients. The next chapter discusses the relevance of the 

choroid plexus’ function, its role in the context of other infectious diseases, and 

the results of our experiments investigating the impact of B. burgdorferi on 

primary human choroid plexus epithelial cells in vivo. 

 Regarding the second question, the history of post-treatment Lyme 

disease syndrome has been plagued by controversy and is frequently and 
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incorrectly referred to as “chronic Lyme disease”, a term since rejected by the 

scientific community [99,202–204]. Much of the confusion is due to a lack of 

evidence for a conclusive cause of PTLDS. The Amber hypothesis suggests that 

the debris of dead B. burgdorferi continues to elicit an inflammatory response, 

and due to the disseminating nature of the bacteria, the debris may be located in 

difficult to clear regions of the body, such as the extracellular matrix of joints or 

the CNS [108]. However, as presented in Chapters 3 and 4, we hypothesized a 

new approach, that is not necessarily mutually exclusive to prevailing lines of 

thought. Our central hypothesis states that during active infection and 

subsequent inflammatory host response, B. burgdorferi induces long-term 

epigenetic modifications in host cells that are conducive to a persistent 

inflammatory state. This hypothesis is extended to our current interests, focusing 

on the central nervous system and more specifically to a resident glial cell, 

astrocytes. Two epigenetic alterations, namely DNA methylation and chromatin 

accessibility, are explored in chapters 3 and 4, respectively. 
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Introduction 

 The choroid plexus (CP) is a complex that has been implicated in the 

trafficking of immune cells across the blood-CSF-barrier (BCSFB). In addition to 

its role in the formation of the BCSFB, it is the major producer of CSF [205,206]. 

The CP is a highly vascularized structure within the ventricles of the brain, and 

unlike the blood-brain barrier (BBB), the capillaries within the choroid plexus are 

highly fenestrated. Instead, the choroid epithelial layer is responsible for the 

selective permeability of the BCSFB through the formation of tight and adherens 

junctions at the apical lateral surfaces [207]. An interesting characteristic of the 

choroid plexus is the presence of immune cells on the basolateral side within the 

stromal matrix – this includes dendritic cells and macrophages (Figure II-1) [208–

211]. A further illustration of the immune-surveillance role of the choroid plexus is 

shown in the presence of cell adhesion molecules on CP epithelium and not the 

neighboring endothelium, which mediate the binding of immune cells [212]. The 

transmigration of macrophages and peripheral blood mononuclear cells (PBMCs) 

across the choroid plexus epithelium was observed in transwell and explant 

cultures in the presence of feline immunodeficiency virus [213]. In a human 

barrier model of the choroid plexus, the transepithelial migration of  

polymorphonuclear neutrophils and monocytes was observed following bacterial 

infection (Neisseria meningitidis) [213]. It is understood that the context of a
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Figure II - 1.  Structural features of the choroid plexus.  
Under healthy conditions, the choroid plexus maintains 
peripheral immune cells within the stromal matrix as a form of 
immunosurveillance. Multiple receptors are present on the 
epithelium, including cytokine and pattern recognition receptors. 
The BCSFB is formed by the epithelium through tight junctions, 
adherens junctions, and desmosomes.  During infection or 
disease states, these junctions may be altered, immune cells 
may transmigrate across the epithelium, and cytokines from both 
the epithelial cells and activated immune cells are released. 
Many of these cytokines induce a pro-inflammatory response 
and act as chemoattractants for innate and adaptive immune 
cells. Created with Biorender.com. 
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bacterial infection and the inflammatory profile of the CSF determines the 

severity and overall outcome of patients [214–216]; therefore, due to the choroid 

plexus’s anatomical position in separating the periphery and CNS, as well as its 

secretory, barrier, and immune response roles, the intent of this project was to 

investigate the effects of Borrelia burgdorferi infection on choroid plexus epithelial 

cells.  

 The overall aim of this study is to determine the transcriptome profile of 

primary human choroid plexus epithelial cells (HCPECs) during B. burgdorferi 

infection. Using HCPECs in culture, we demonstrated differential expression of 

258 genes following infection with B. burgdorferi after 48 hours. Functional and 

pathway analysis of these transcriptional changes revealed upregulation of host 

inflammatory and immune responses, related to interferon, chemokine, and 

cytokine pathways, as well as immune cell trafficking and activation. Although 

this model does not provide a barrier context, interestingly, functional and cellular 

components involving cell-cell junctions and tight junctions were seen to be 

downregulated. Here we present our findings of differential gene expression in 

HCPECs following infection with B. burgdorferi.  

Methods 

Bacteria Culture 

 The Borrelia burgdorferi strain B31-MI-16 is an infectious clone which was 

previously sequenced and described [20,217]. Bacteria cultures were grown to 

approximately 1 x 107 bacteria/ml in modified Barbour-Stoenner-Kelly (BSK-II) 

medium supplemented with 6% rabbit serum at 34°C and used at passage 2.  
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Cell Culture 

 HCPECs were obtained from ScienCell Research Laboratories (Carlsbad, 

CA; catalog #1310). Commercially available human primary cell cultures and 

protocols used throughout this study followed the University of North Dakota IRB 

guidelines outlined in form 504 “Categories of Research”, section 2.19 

“Commercially Available Human Biological Specimens (45 CFR 46.102, 46.103, 

and 46.116)” and therefore do not require IRB review. The purity of cells was 

assessed and confirmed by immunofluorescence, the following primary 

antibodies and concentrations were used: Rabbit anti-Prealbumin (TTR) 

conjugated to Alexa Fluor 488 (Abcam, catalog #ab199074; Conc. 1:50), Mouse 

anti-α-Tubulin (Sigma, catalog #T61999; Conc. 2 ug/ml), Mouse anti-CK18 

(Abcam, catalog #ab82254; Conc. 1:50). The secondary antibody, Donkey anti-

Mouse conjugated to Alexa Fluor 594 (Jackson Immunoresearch, catalog #715-

585-151, Conc. 1:100), was used for anti-CK18 and anti-α-Tubulin antibodies. 

For immunofluorescence, cells were grown on glass coverslips and fixed with a 

4% paraformaldehyde solution for 15 minutes and stored in PBS at 4°C. 

Permeabilization was performed with a 0.1% Triton-PBS solution for 10 minutes 

and blocked with a 10% Donkey (Jackson immunoresearch, catalog #017-000-

121) or Goat Serum (Jackson Immunoresearch, catalog #005-000-121) in 0.1% 

Tween-PBS solution for 1 hour. Primary antibodies were incubated overnight at 

4°C. Secondary antibodies were incubated for 1 hour at room temperature. DAPI 

Fluoromount-G (SouthernBiotech, catalog #0100-20) was used for nuclei 

staining. Western blot analysis was performed on control and infected cell lysates 
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to determine the presence of TTR and CK18 – previously mentioned primary 

antibodies were used in conjunction with the secondary antibodies: Donkey anti-

rabbit conjugated to peroxidase (Jackson Immunoresearch, catalog #711-035-

152, Conc. 1:200,000) and Goat anti-mouse conjugated to peroxidase (Jackson 

Immunoresearch, catalog #115-035-003, Conc. 1:200,000). Signal was produced 

by SuperSignal West Femto Maximum Sensitivity Substrate kit from 

ThermoFisher Scientific (catalog #34094) and imaged on a Licor Odyssey Fc 

Imaging System.  

 Cells were maintained in tissue-treated vented cap T-75 flasks (Corning, 

catalog #430641U) in epithelial cell medium (ScienCell, catalog #4101), 

containing antibiotics penicillin (100 units/ml) and streptomycin (100 ug/ml) 

(ScienCell, catalog #0503), 2% fetal bovine serum (ScienCell, catalog #0010), 

and EpiCGS (ScienCell, catalog #4125). Two groups were used for these 

experiments – Control, non-infected (n=3) and Infected, 48 hours (n=3); a total of 

6 samples. Cells were incubated at 37°C and used at passage 3 at 

approximately 80% confluence for stimulation by Bb. Prior to infection, the cell 

cultures were washed 3 times with sterile Dulbecco’s phosphate buffered saline 

(DPBS) and the medium replaced with antibiotic-free epithelial cell medium. Cell 

cultures were stimulated with B. burgdorferi at a multiplicity of infection (MOI) of 

10:1 (bacteria:cells) for 48 hours. Mean cell count of HCPECs was determined 

using an automated cell counter (Life Countess II, catalog #AMQAX1000) to 

determine an appropriate number of bacteria for infection. Control non-treated 

flasks were prepared identically without infection. Light microscopy was used to 
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monitor cell morphology and confluency. Additionally, cell proliferation was 

monitored using an MTS assay (Abcam, catalog #ab197010) and colorimetric 

plate reader in a 96-well plate under identical conditions. Apoptosis and necrosis 

were determined by fluorescence microscopy using Apopxin Green Indicator 

(Apoptosis) and 7-AAD (Necrosis) on cells grown in 24-well plates on glass 

coverslips under identical conditions (Abcam, catalog #ab176749) and manually 

counted.  

RNA Isolation  

 RNA was isolated via phenol-chloroform extraction and using the RNeasy 

Mini kit from Qiagen (catalog #74106) according to the manufacturer’s 

instructions. In short, cell medium was removed from cultures and used for later 

protein analysis; 1 ml of Trizol was added directly to each flask and a cell scraper 

was used to fully lyse all cells. Homogenized cells were transferred to RNase-

DNase free 1.5 ml Eppendorf tubes, where chloroform was added for 2 minutes 

and centrifuged at 12,000 x g for 15 minutes at 4°C. The upper aqueous phase 

was mixed with 70% ethanol and placed in a Qiagen RNeasy Mini column. The 

flow-through was discarded and the bound RNA fraction remaining on the 

column membrane was further washed and processed per Qiagen’s instructions. 

Genomic DNA was removed with DNA digestion with RNase-free DNase Set 

(Qiagen, catalog #79254). RNA quality was assessed with a NanoDrop and 

integrity assessed by gel electrophoresis on a 2% agarose gel. 
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Library Construction and RNA Sequencing 

 Isolated total RNA, as described above, underwent further quality control 

and purification to obtain mRNA. To assess RNA integrity of total RNA, samples 

were placed in an Agilent 2100 Bioanalyzer with the RNA 6000 Nano kit (catalog 

#5067-1511) – all samples passed with an RNA integrity number (RIN) of ≥8.9. 

To obtain a more accurate concentration, total RNA samples were run on a 

broad range Qubit 2.0 Fluorometer. mRNA was enriched from total RNA samples 

using the NEBNext Poly(A) mRNA Magnetic Isolation Module (catalog #E7490S) 

– in short, oligo d(T) beads are used to bind the poly(A) tail of eukaryotic mRNA. 

The NEBNext Ultra II RNA-seq library kit (catalog #E7775S) was used for library 

construction. Libraries were checked for quality and adaptor contamination on 

the bioanalyzer with the Agilent DNA 1000 kit (catalog #5067-1504). Library 

concentration was assessed with a BioTek Gen5 Wellplate reader with the 

Quant-iT PicoGreen dsDNA Assay kit (catalog #P11496). All samples, 3 control 

and 3 infected, were then pooled and sent to Novogene 

(https://en.novogene.com) for sequencing. An Illumina HiSeq 4000 was used for 

150 bp paired-end sequencing.  

RNA Data Analysis 

 Raw fastq files were received from Novogene and initial quality control 

was assessed using FastQC version 0.11.2 [218]. All samples passed initial QC 

following adaptor trimming using Trimmomatic [219]. Reads were aligned to the 

human (hg19) assembly using Hisat2, version 2.1.0 [220] and indexed by 

Samtools, version 1.9 [221]. Differential gene expression analysis was performed 
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using DESeq2, version 1.24.0 [222], with an FDR of 0.05 or lower, and no fold 

change cut-off. Network mapping and functional analysis was performed with 

STRING database, version 11.0 [223] and verified with PANTHER, version 14.1 

[224]. STRING utilizes Gene Ontology [225,226] to determine functional 

enrichments within our networks.  

 Pathway analysis was performed using Signaling Pathway Impact 

Analysis (SPIA), version 2.36.0 [227,228], which brings fold change and gene 

function into context. SPIA uses the Kyoto Encyclopedia of Genes and Genomes 

[229] (KEGG) database to determine impact of DEGs on the respective pathway 

based on gene enrichment and topology of the pathway. Pathway enrichment is 

determined from the total number of genes within a specific pathway compared 

to the Number of Differential Expressed genes (NDE) observed within that 

pathway; significance of pathway enrichment was set at pNDE < 0.05. 

Furthermore, the topology of a pathway is taken into consideration to determine 

the impact of DEGs within that pathway. The perturbations (PERT) of a pathway 

caused by DEGs is determined based on the location of these genes within the 

pathway; significance was set to pPERT < 0.05. Overall global significance (pG) 

was determined from pNDE and pPERT. Two forms of statistical corrections pG 

were performed – a Bonferroni correction (pGFWER) and a false discovery rate 

(FDR) correction (pGFDR). To determine significance of a pathway, pGFDR < 

0.05 was considered. 
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Validation of RNA-seq Using RT-qPCR and cDNA Synthesis 

 Selected individual transcripts were confirmed using PCR primer sets 

(Qiagen, catalog #330001). cDNA from RNA samples were synthesized using 

Qiagen’s First Strand Kit (catalog #330404). Each reaction was performed 

following the RT2 qPCR Primer Assay instructions – each reaction contained 1 ul 

of the primer mix at 10 uM for each gene of interest, 12.5 ul RT2 SYBR Green 

Mastermix, 1 ul cDNA, and 10.5 ul Nuclease-free water, for a total reaction 

volume of 25 ul. qPCR was initiated with a single 10 min cycle at 95°C for initial 

denaturing and activation of polymerase. Following this, 40 cycles of 15 seconds 

at 95°C and 1 minute at 60°C was performed and fluorescent data was collected 

at the end of each cycle. Melt curve analysis was performed at the end of the 

reaction using the following conditions: 95°C, 1 min; 65°C, 2 mins; 65°C to 95°C 

step-wise at 2°C/min. Expression levels of transcripts were compared and 

normalized to the housekeeping gene ACTB (β-actin). Relative gene expression 

between treated and untreated sample groups were compared using the 2 –ΔΔCT 

method. All samples were analyzed in triplicate from three biological replicates.  

Supernatant Protein Analysis by Enzyme-linked Immunosorbent Assays 

 Supernatants from cultures were removed as previously mentioned 

following treatment. Samples were aliquoted and stored at -20°C until use. 

ELISAs were performed following manufacturer’s instructions (R&D Systems, 

DuoSet ELISA). Briefly, plates were coated and incubated overnight at room 

temperature with 100ul of capture antibody. Following aspiration of this antibody 

and washing, 100 ul of standards and sample were added to each well. Plates 



50 

were than incubated at room temperature for 2 hours, aspirated, and then 

washed. 100 ul of conjugated detection antibody was then added to each well 

and incubated for 2 hours at room temperature. Colorimetric detection was 

performed after the addition of a chromogenic substrate and stop solution. Plates 

were read at a wavelength of 450 nm on a BioTek Epoch plate reader.  

Statistical Analysis 

 Differential gene expression of RNA sequencing data was determined by 

DESeq2. Briefly, DESeq2 utilizes an empirical Bayes approach and makes the 

assumption that genes of similar transcript levels will show similar variability. 

Through this, the package can control for replicate variability at each specific 

gene by taking into consideration the average variability of similarly expressed 

genes, and account for sample size. Furthermore, DESeq2 performs a 

Benjamini-Hochberg adjustment resulting in an adjusted p-value (padj) also 

called a false discovery rate (FDR). Genes with an FDR < 0.05 were considered 

significant.  

 Statistical analysis between control and infected groups for both RT-qPCR 

and ELISA was performed using an unpaired student’s t-test using GraphPad 

Prism Version 8.  Additional post-hoc analysis was performed on RT-qPCR to 

correct for multiple t-test comparisons. The method of Benjamini, Krieger, and 

Yekutieli was used to determine the FDR – this method is an updated version of 

the previously mentioned Benjamini-Hochberg adjustment [230]. Transcripts for 

RT-qPCR were considered significant if FDR < 0.05 (*). Protein levels from 

ELISA were considered significant if p < 0.05 (*). 
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Results 

 Prior to infection, the identity and purity of HCPECs was assessed and 

confirmed through immunohistochemistry (IHC) with cytokeratin 18 (CK18), an 

epithelial cell marker, and transthyretin (TTR), a marker for choroid plexus 

epithelial cells and specific hepatocytes (Figure II-2A and B) – 98% of cells were 

CK18 and TTR positive [231]. Figure II-2A indicates the colocalization of TTR 

within CK18 labeled cells; Figure I-2B further illustrates the cytoplasmic 

localization of TTR by using α-Tubulin to highlight cellular boundaries. Total 

protein from control and infected groups was isolated to check for the presence 

of CK18 and TTR (Figure II-2C). The effects of Bb infection on HCPEC 

proliferation, apoptosis, and necrosis was measured through IHC and 

colorimetric assays - no significant changes were detected between infected and 

control groups.  

Stimulation of Type I/II Interferon Signaling Pathway Following  
B. burgdorferi Infection 

 
 B. burgdorferi infection was performed with primary human choroid plexus 

epithelial cell cultures for 48 hours, and changes in the transcriptome of the 

human cells were compared to untreated controls (3 biological replicates per 

group). Supernatant from each replicate was collected and used for protein 

analysis, and RNA was then isolated. Following RNA isolation, Illumina libraries 

were made and sequenced on an Illumina HiSeq 4000 as outlined in the 

Methods section. Differential gene expression analysis was performed using the 

DESeq2 package in Rstudio. Following count normalization, an MA-plot 
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Figure II - 2.  Characterization of primary HCPECs.  
(A) HCPECs were identified by immunostaining with cytokeratin 
18 (CK18 - red), an epithelial cell marker, and transthyretin (TTR 
– green), a transport protein predominantly expressed by choroid 
plexus epithelial cells and hepatocytes. Nuclei were stained with 
DAPI (blue).  Magnification: 40x, Scalebar: 40 µm. Further 
observations of TTR localization within the cytoplasm of 
HCPECs.  (B) Colocalization of α-Tubulin (red) and TTR (green); 
nuclei stained with DAPI (blue).  Magnification: 60x, Scalebar: 
40  µm. (C) Western blot for the presence of CK18 and TTR 
(dimer).  Lanes C1, C2, C3 – Uninfected HCPECs protein; Lanes 
I1, I2, I3 – Protein from HCPECs infected with Bb for 48 hours. 
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(Figure II-3A) was constructed – this illustrates genome-wide transcriptome 

expression of the 48-hour Bb treated group when compared to the control group. 

Dots in red represent significant differentially expressed genes (DEGs), plotted 

as a function of its log2 fold change versus the mean of normalized counts. Using 

an adjusted p-value (false discovery rate) less than or equal to 0.05, and no fold 

change threshold, a total of 258 genes were shown to have significant differential 

expression. A full list of these differentially expressed genes can be found in 

Appendix A. Of these 258 DEGs, 160 were upregulated and 98 downregulated. 

Hierarchical clustering of replicates based on treatment is further illustrated in the 

heatmap analysis (Figure 2-3B) of the 258 DEGs for each replicate.  

In order to validate our RNA-seq findings, RT-qPCR was performed on a 

set of select genes (Figure II-4A). The upregulated genes cxcl3, cxcl6, ccl5, ifit1, 

and ifitm1 were found to be significantly upregulated by RT-qPCR when 

comparing 48-hour infected group to the untreated group. Although cxcl5 and irf7 

transcripts were not significantly increased, an increasing trend was observed 

that correlates with the RNA-seq data. Additionally, the downregulated genes 

cdh2, flt1, and anxa1 showed a non-significant downward trend that corresponds 

with our previous data. In order to determine if transcriptional changes observed 

in response to Bb resulted in protein production and secretion from the choroid 

plexus epithelial cells, we measured the cytokine levels in cell culture 

supernatants by ELISA (Figure 2-4B-E). Following 48-hours post B. burgdorferi 

stimulation, Cxcl1, Cxcl2, Cxcl5, and Cxcl6 supernatant concentrations were 



54 

 

Figure II - 3.   RNA-seq was performed on HCPECs that were infected by  
B. burgdorferi for 48 hours and from uninfected controls.  
(A) MA-plot representing gene expression patterns of infected 
group compared to control (n=3).  Red dots indicate significant 
differentially expressed genes (DEGs; FDR <0.05). A total of 
258 genes were differentially expressed. (B)  A heatmap of the 
258 DEGs showing clustering patterns between each biological 
replicate.   
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Figure II - 4.  Validation of RNA-seq gene expression data.  
(A) Select differentially expressed genes following 48-hour 
B. burgdorferi treatment were validated by RT-qPCR. Primers 
specific to cxcl3, cxcl5, cxcl6, ccl5, ifit1, ifitm1, irf7, cdh2, flt1, 
anxa1, and actb were used for amplification. The relative gene 
expression between 48-hour B. burgdorferi treated and untreated 
control groups are expressed as Log2FC and normalized to the 
housekeeping gene ACTB.  Significance was calculated by 
Student’s t-test (* p<0.05, n=3). (B-E) Supernatant from infected 
and untreated groups were collected and analyzed by ELISA. 
Concentrations of these secreted cytokines are shown as the 
mean and standard deviation. Significance was calculated by 
Student’s t-test followed by Benjamini, Krieger, Yekutieli 
correction (* FDR < 0.05, n=3). 
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assessed. Cxcl1, Cxcl2, and Cxcl5 were induced and secreted at significantly 

higher levels in the infected samples compared to untreated controls. Though 

Cxcl6 did not show significant elevation, a similar increase in protein levels was 

observed. These data agree with our RNA-seq findings. 

Both subsets of upregulated and downregulated genes were analyzed for 

known interactions of their associated proteins using the STRING (Search Tool 

for the Retrieval of Interacting Genes/Proteins - https://string-db.org/) database 

(Figure II-5 and II-6) [223]. STRING analysis provides insight into the protein-

protein interactions of each gene – each node represents one of the DEGs; lines 

between nodes correspond to known interactions that were experimentally 

determined or curated from databases utilized by STRING. STRING also 

provides information on functional and pathway analysis through the use of Gene 

Ontology (GO) [225,226] and KEGG [229]. Upregulated DEGs (Figure 2-5A) 

show two distinct clusters within the network. The first cluster, shown in the top 

left, is predominantly comprised of chemokines and cytokines – the red nodes 

denote genes within the chemokine-mediated signaling pathway (GO:0070098, 

FDR 8.23E-08). Additionally, the second highly clustered nodes situated within 

the center indicates genes associated with type I (blue) and type II (green) 

interferon pathways (GO:0060337, FDR 2.71E-23; GO:0034341, FDR 9.58E-15, 

respectively). The biological processes that were enriched predominantly 

involved inflammatory/immune response pathways and cell-cell communication 

(Figure 2-5B). A large subset of the upregulated genes was found to be 

interferon pathway genes (Table II-1). Of note, the interferon-induced protein 

https://string-db.org/
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Figure II - 5.  Network and functional analysis of upregulated DEGs by 
STRING analysis.  
(A) STRING network – Each node represents a DEG; lines 
between nodes indicate known protein-protein interactions. 
Nodes in blue and green correspond to type I or type II interferon 
pathways, respectively; Red corresponds to chemokine-
mediated signaling pathway. (B) Table of select GO 
enrichments. 
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Figure II - 6.  Network and functional analysis of downregulated DEGs by 
STRING analysis.  
(A) String network – Nodes in blue and green represent cell-cell 
junctions (GO:0005911) and bicellular tight junctions 
(GO:0005923), respectively.  Nodes in red indicate genes within 
the focal adhesion pathway from KEGG pathway analysis 
(hsa04510). (B) Table of selected GO enrichments. 
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Table II - 1.  Select inflammatory and immune response genes 
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family of genes, ifit1, ifit3, ifitm1, ifitm2, ifitm3, and others, were shown to be 

significantly upregulated. Type I and II interferon related genes, such as gbp2, 

ifit1, and oasl, have been previously reported as being significantly elevated as a 

consequence of B. burgdorferi infection [197,232]. Furthermore, major 

transcription factors that were observed to be upregulated including irf7, stat1, 

and stat2, have been shown to play important roles in regulating the Bb-induced 

interferon response [233–235].  Interferon related genes have traditionally been 

associated with viral, not bacterial, infections, and this is reflected in regard to the 

labeling of gene function and pathway analysis within these data. However, it is 

well documented that such genes are often observed to play key roles during 

bacterial infections, including Lyme disease [236–239]. Signaling Pathway 

Impact Analysis (SPIA) was performed to determine pathway enrichment based 

on an increase in gene enrichment and position of genes within a pathway. A 

total of 14 pathways were identified as being significantly enriched (Figure II-7). 

The top activated pathways involve the activation of viral pathways, including 

Influenza A, Measles, and Herpes simplex infection. As stated before, these viral 

pathways involve the interferon related response as observed in our data. These 

data imply that infection with B. burgdorferi produces a significant immune 

response that encapsulates major interferon-signaling pathways within HCPECs.  

B. burgdorferi Infection Induces a Chemokine Profile in HCPECs Conducive 
to the Chemotaxis of Immune Cells 
 

 Many of the transcripts that were upregulated were categorized into pro-

inflammatory cytokines and chemokines (Table 2-1) - these involved the C-X-C 
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Figure II - 7.  Signaling Pathway Impact Analysis.  
SPIA of all DEGs based on pathway gene enrichment (pNDE) 
and pathway perturbations (pPERT) that take into account gene 
placement and topology within the pathway. Both pNDE and 
pPERT are used to determine global significance, pG. (A) SPIA 
two-way evidence plot.  Each dot represents a pathway that 
contains at least one DEG. The impact analysis plots each 
pathway based on pNDE and pPERT. Pathways above the solid 
blue line are significant following FDR correction (pGFDR < 
0.05).  Pathways above the solid red line are significant following 
Bonferroni correction (pGFWER < 0.05). (B) A table of all 
significant pathways (PGFDR <0.05) and their respective status 
is shown. 
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and C-C motif family of chemokines. cxcl1, cxcl2, cxcl3, cxcl5, and cxcl6 showed 

elevated levels in response to B. burgdorferi infection. In addition to their role in 

modulating immune cell activation and inflammation, these chemokines provide a 

mechanism for the chemotaxis of immune cells. Predominantly, the C-X-C family 

possesses chemoattractant properties for leukocytes, such as neutrophils [124–

126]. In fact, Cxcl1 mediates the recruitment of neutrophils and subsequent 

swelling in Lyme arthritis and carditis [127]. In contrast, the C-C family induces 

the migration of PBMCs, including lymphocytes and monocytes [240]. In our 

experiments, ccl2, ccl5, ccl13, and the receptor, ccr7, were found to be 

upregulated. This is corroborated in a study that previously showed ccl2 (mcp-1) 

and ccl5 (rantes) were elevated in human monocytes in response to B. 

burgdorferi [241]. Ccr7, a receptor for Ccl19 and Ccl21, is constitutively 

expressed in intestinal and gastric epithelial cells and has been shown to be 

upregulated in response to Helicobacter pylori infection [242,243]. Biological 

process analysis performed by GO, via STRING, indicates cytokine and 

chemokine-mediated signaling pathways to be significantly enriched. Moreover, 

processes involving the regulation of leukocyte and neutrophil chemotaxis were 

shown to be enriched as well (Figure 2-5B). These observations are further 

strengthened by SPIA, where the pathways cytokine-cytokine receptor interaction 

and chemokine signaling pathways were found to be significantly enriched and 

activated (Figure 2-7). Further evidence that may imply the immune trafficking 

role of HCPECs comes from the secretion of these proteins at elevated levels 

within the culture media, as previously stated (Figure 2-3B-E). 
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B. burgdorferi Effects on Cellular Components Involved in Cell-Cell 
Junctions and Adhesion 
 

 Although HCPECs were grown in a non-barrier monolayer culture, it was 

found that a number of genes related to cellular junctions and adhesion were 

modestly downregulated (Table II-2). The integrity of the BCSFB at choroid 

plexus epithelium is contingent on the presence of several tight and adherens 

junctions. Adherens junctions, found more basal than tight junctions (Figure II-1), 

mainly involve cadherin proteins, for example E-cadherin, VE-cadherin, and N-

cadherin [244]. The presence of CDH2 (N-cadherin) has been observed on the 

basolateral side of the choroid plexus epithelium in mice [245]. Three genes 

within the cadherin superfamily were found to be downregulated – cdh2, pcdh7, 

and pcdh10. Likewise, genes that code for tight junction components showed 

lowered expression – cldn14 and magi1. Genes within regulatory pathways that 

promote the formation of these junctions or other cellular adhesins were also 

found to have decreased expression – mtss1, atp1b1, and frmd4a. Network 

analysis showed minimal clustering of genes involved in cellular adhesion 

regarding protein-protein interactions (Figure 2-6A). Additionally, genes involved 

in the modulation of surrounding extracellular matrix and vasculature were 

observed to be downregulated, some of which shared overlapping function with 

cellular adhesion – mmp1, flt1, vegfc, and serpine1. GO enrichment indicated 

enriched cellular components that involve cell-cell junction and bicellular tight 

junctions, as well as angiogenesis and epithelium development processes. 
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Table II - 2.  Select genes involved in cell-cell junctions, tight junctions, and 
adherens junctions. 

 Gene 
Symbol 

Log2 Fold 
Change 

p-value 
(adjusted) 

Function (Uniprot ID) 
F

un
ct

io
na

l 
co

m
po

ne
nt

 
CLDN14 -0.77849 0.014354 Tight junction protein; Cell adhesion (O95500) 
PCDH10 -0.70536 0.000243 Protocadherin; cell-cell adhesion (Q9P2E7) 

CDH2 -0.65003 3.70E-07 Adherens junction protein; Cell adhesion 
(P19022) 

MAGI1 -0.42719 0.03935 Scaffolding/Tight Junction Protein; Cell adhesion 
(Q96QZ7)  

PCDH7 -0.39693 0.011885 Protocadherin; cell-cell adhesion (O60245) 

R
eg

ul
at

or
y 

co
m

po
ne

nt
 

PODXL -0.97617 6.91E-07 Positive/negative regulation of cell adhesion 
(O00592) 

TWF1 -0.67896 0.038453 Actin binding; Cadherin binding; Focal adhesion 
(Q12792) 

NEXN -0.63395 0.015809 Actin binding protein; Cell adhesion (Q0ZGT2) 

MTSS1 -0.53155 0.000231 Actin binding protein; Positive regulation of cell-
cell junctions, adhesion (O43312) 

FLT1 -0.50364 0.01255 VEGF receptor; Endothelial proliferation, survival, 
cell adhesion (P17948) 

ATP1B1 -0.47766 0.034878 ATPase non-catalytic beta subunit; Cell adhesion; 
Epithelial cell polarity (PO5026) 

MYLK -0.43527 0.014211 Regulates tight junctions; Regulates epithelial cell 
survival, wound healing (Q15746) 

CCND1 -0.37679 0.008102 Regulates cell cycle; Interactions with tight 
junction proteins (P24385) 

FRMD4A -0.3571 0.017093 Scaffolding Protein – Regulates epithelial cell 
polarity, adherens junctions (Q9P2Q2) 

CAPN2 -0.33762 0.047708 Protease; Negative regulation of junction and 
adhesive pathways (P17655) 

PALLD -0.30542 0.041217 Scaffolding/Cytoskeletal protein; Cell adhesion 
(Q8WX93) 
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Pathway analysis indicates an inhibition of the focal adhesion pathway  

(Figure II-7). The functional and structural impact of these downregulated genes 

in response to B. burgdorferi infection is yet to be determined in an animal model.  

Discussion 

 The neurological symptoms associated with Lyme disease are largely 

attributed to the dissemination of Borrelia burgdorferi into the CNS and the 

resulting host immune response. While previous studies have investigated the 

effects of this bacteria on endothelial models of the BBB, little is known about its 

impact on the epithelium of the choroid plexus which comprises the BCSFB. The 

CP epithelium is situated at a key interface that separates the blood from the 

CSF and has repeatedly been shown to play an important role in modulating the 

immune response between the periphery and CNS during infection. The 

importance of the composition of the CSF in regards to cytokines and infiltrating 

immune cells in Lyme disease patients has been previously reported [76,84,246–

248]. However, in the context of Lyme disease, the choroid plexus has been 

greatly understudied, and given its role as the major producer of CSF, as well as 

its ability to regulate its composition, it constitutes a major gap in knowledge for 

the pathophysiology of the disease [249]. To the best of our knowledge, this is 

the first study to directly investigate the impact of Borrelia burgdorferi sensu lato 

on choroid plexus epithelium.  

 This study demonstrates a robust change in gene expression in HCPECs 

induced by B. burgdorferi infection. The most prevalent outcome was the 

upregulation in immune and inflammatory response genes that were primarily 
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categorized within the chemokine/cytokine mediated pathways and type I and II 

interferon pathways. Consistent with our report, previous studies have observed 

similar results regarding the inflammatory and immune response within 

monocytes, macrophages, and dendritic cells, showing an increase in cytokines 

such as cxcl1, cxcl2, ccl2, and ccl5 [250,251]. Likewise, interferon-stimulated 

genes within a murine model were reported to be upregulated, involving the 

transcripts Ifit1, Ifit3, and Irf7 [234]. Irf7 has been shown to be a master regulator 

of interferon stimulated genes, and in conjunction with the upregulation of ddx58 

(rig-I), ifih1 (mda4), and trim25, may provide insight into the activation of the 

interferon pathway being observed. Additionally, the induction of inflammatory 

cytokines including type I and type III interferons were reported when human 

PBMCs were infected with B. burgdorferi [252]. Furthermore, when 

characterizing the immunophenotypes of infiltrating immune cells and cytokines 

within the erythema migrans (EM) lesions of patients, T cells, monocytes, 

macrophages, and dendritic cells were found to be enriched in addition to 

inflammatory cytokines [169].  

 While this study shows overlapping features common in other cell types or 

animal models infected with Bb, the importance of the choroid plexus’s role in 

immune cell trafficking is further highlighted in other models of infection and 

disease. The concept of the immunosurveillance activity within the choroid plexus 

is not new, and the abundance of immune cells found within the choroid plexus 

and subsequent transmigration following infection or insult has been widely 

reported [208,211,213,253,254]. Functional and pathway analysis indicates that 
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many of these genes are involved in chemotaxis of immune cells [124,125,255–

258]. In fact, Cxcl1 (previously known as Kc) and Ccl2 (previously known as 

Mcp-1) have been shown to mediate the recruitment of neutrophils into the joints 

of mice infected with B. burgdorferi, and are required for the development of 

Lyme arthritis [259]. The upregulation of cxcl1, cxcl2, cxcl3, ccl2, and ccl5, potent 

chemoattractants for immune cells including neutrophils, monocytes, and T cells, 

among others, have also been consistently reported to be elevated in other 

bacterial infections of the CP. In a barrier model of the choroid plexus involving 

infection with Neisseria meningitidis, in addition to an increase in these 

chemoattractants, the recruitment and subsequent transmigration of 

polymorphonuclear neutrophils and monocytes was observed [260,261]. Similar 

results are also seen in response to Streptococcus suis, a gram-positive 

bacterium that can be transmitted to humans from pigs, leading to symptoms 

such as meningitis [262].  In a BCSFB model using human choroid plexus 

papilloma cells, a viral infection with Echovirus 30 showed an enhanced 

secretion of Cxcl1, Cxcl2, Cxcl3, and Ccl5 [263]. Indeed, when investigating the 

composition of the CSF from individuals with B. burgdorferi induced 

meningoradiculitis, an increase in inflammatory cytokines and a large number of 

B cells and plasma cells are observed [264]. Collectively, the choroid plexus has 

been shown to contribute significantly to the pathogenesis of many diseases and 

in regards to Lyme disease, our data implies that the choroid plexus may play an 

important role in the abundance of immune cell invasion of the CSF and the 

exacerbation of CNS inflammation that is seen in patients [265,266].  
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 In our current model, our transcriptome analysis indicates a 

downregulation of key tight junction and adherens junction genes, as well as 

regulatory cell adhesion genes. cldn14, a tight junction protein associated with 

the choroid plexus, as well as cdh2, an adherens junction protein, were found to 

be downregulated [267,268].  The injection of LPS in mice to stimulate a 

peripheral inflammatory response showed a similar gene expression pattern, 

where the majority of upregulated genes within the choroid plexus involved 

immune-mediated pathways, while downregulated genes participated in barrier 

function, including claudins and protocadherins [269]. Though the functions of 

protocadherins are still being fully elucidated, they have been found to play a key 

role in cellular adhesion and barrier integrity [270,271]. In addition, the 

sodium/potassium transporter beta subunit, atp1b1, was found to be 

downregulated, yet, seems to be an unlikely participant in the formation of cell-

cell junctions; however, it has been shown to play an integral part in cell 

adhesion and in both the formation and maintenance of tight junctions in 

epithelial cells [272–275]. The downregulation of a number of these components, 

as well as scaffolding and other regulatory genes such as magi1 and mtss1, 

would indicate a potential dysregulation of the choroid plexus barrier. This may 

lead to the possibility of immune cell invasion as well as an entry site for Borrelia 

burgdorferi into the CSF. In fact, the choroid plexus has already been implicated 

as a possible site of entry for both N. meningitidis and S. suis, specifically from 

the basolateral side [276]. By using two in vitro barrier models constructed by 

human brain microvascular endothelial cells (BMEC) and umbilical vein 
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endothelial cells (HUVEC), Bb was found to differentially transverse these barrier 

systems [89,277,278]. While B. burgdorferi was capable of crossing the HUVEC 

monolayer, the traversal of the bacteria across the BMEC barrier required the 

addition of plasminogen and was found to induce the expression of plasminogen 

activators, receptors, and matrix metalloproteinases – supporting the concept 

that the bacteria is able to utilize the fibrinolytic system which may promote its 

dissemination through the degradation of the extracellular matrix and cell-to-cell 

junctions [89,277,278]. However, in our experiments, we found conflicting results 

– tissue plasminogen activator, tPA (plat), as well as its inhibitor, serpine1, were 

both found to be downregulated. Furthermore, the metalloproteinases, mmp1, 

and adamts15, were found to be downregulated and upregulated, respectively. 

Though our system does not represent a barrier model, the observed outcome 

lends credibility for our future studies involving B. burgdorferi infection in an in 

vivo model to explore the impact of systemic infection on the BCSFB.  

Conclusion 

 Following infection of HCPECs with Borrelia burgdorferi, we identified a 

gene expression pattern that is marked by a robust increase in immune and 

inflammatory genes within the cytokine/chemokine pathways and type I and II 

interferon pathways. Protein analysis showed an enhanced secretion of these 

inflammatory and chemotactic cytokines. Additionally, the downregulation of 

genes involved in cell-cell adhesion, adherens junctions, and tight junctions was 

observed. Overall, our data indicates that the choroid plexus, like in many other 

infectious diseases, may play a key role in the pathogenesis of Lyme 
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neuroborreliosis through the induction of inflammatory factors, the promotion of 

immune cell migration, and potentially through the dysregulation of the BCSFB. 

Our future studies will aim to elucidate the impact of B. burgdorferi infection on 

the BCSFB integrity within an in vivo model. By understanding how the 

inflammatory and immune response is modulated within the CNS, as well as 

mechanisms by which Borrelia burgdorferi is able to traverse into the CNS, new 

treatments for Lyme disease can be developed. 
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CHAPTER III 

DIFFERENTIAL METHYLATION IN HUMAN ASTROCYTES IN RESPONSE TO 
BORRELIA BURGDORFERI SENSU STRICTO STRAINS 

Introduction 

 The pathophysiology of Post-Treatment Lyme Disease Syndrome 

(PTLDS) is currently unknown and many avenues remain to be explored. 

Following treatment, 10-20% of individuals develop or experience a continuation 

of symptoms that commonly include neurological involvement such as fatigue, 

sleep disturbances, and cognitive difficulties. As some evidence has shown, the 

peripheral immune response may indirectly lead to a deleterious state within the 

CNS through the diffusion of inflammatory factors or migration of peripheral 

immune cells across the blood-brain barrier and blood-CSF barrier. Additionally, 

the direct involvement of resident immunity may lead to the exacerbation of 

symptoms seen in patients, as B. burgdorferi has been shown to elicit a strong 

inflammatory response within the CNS. Multiple studies have shown that both 

live and heat or sonicated killed B. burgdorferi are capable of eliciting an immune 

response in a wide variety of tissues, with spirochetal antigens being found in the 

synovium of Lyme arthritis patients and in the CSF of neuroborreliosis patients 

[76,279–282]. In fact, microglia and astrocytes, both resident glial cells of the 

brain, produce an inflammatory response induced by B. burgdorferi [109,198]. 

Furthermore, the release of these inflammatory mediators has been implicated in  
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neuronal apoptosis [80,151,283]. A more recent study in 2018 by researchers at 

Johns Hopkins corroborated this role of glial activation in individuals with PTLDS. 

By measuring the expression of the 18 kDa translocator protein (TSPO), a 

mitochondrial protein that is greatly increased in activated microglia and reactive 

astrocytes, through the use of a radiotracer ([11C]DPA-713) and positron 

emission tomography (PET), the researchers were able to identify an increase of 

this inflammatory marker in PTLDS patients [284]. Many of the symptoms 

experienced by PTLDS patients are difficult to assess and are highly subjective, 

however, these patients exhibit clinically significant levels of pain, sleep 

disturbances, depression, and overall poorer quality of life [101]. As there are few 

quantifiable abnormalities that can be measured in PTLDS, studies aimed at 

investigating objective variables of the syndrome become even more important 

for accurate diagnosis and clinical care that patients receive. Astrocytes are the 

most abundant cell type in the brain, and due to their diverse roles and 

implication to neuroborreliosis and PTLDS, they are the focus of the next two 

chapters [199]. 

Astrocytes 

 Astrocytes, receiving their name from their star-like appearance, are highly 

heterogeneous in their function and morphology. Through their numerous 

processes, they form extensive intercellular networks that allow them to 

communicate with each other through the formation of gap-junction channels 

[285]. These networks extend to form neuro-glial connections that provide 

nutritional support to neurons and, through the trafficking of metabolic substrates 
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such as lactate, aid in sustaining neuronal activity during energy deprivation 

[286,287]. Their relationship with neurons continues through their alterations of 

neuronal synapses, by controlling their formation, removal, and the modulation of 

neurotransmitters [288–292]. Additionally, with their specialized endfeet, 

astrocytes are able to make physical contact with the endothelial cells of brain 

vasculature, enveloping the CNS capillaries to aid in the formation, maintenance, 

and function of the blood-brain barrier [293,294]. 

 During neurological stress such as traumatic injury or disease, astrocytes 

undergo a reactive state termed astrogliosis. This reactive state is marked by an 

increase in proliferation, an increase in the length and number of processes, and 

hypertrophy [295,296]. Intermediate filaments, which are prominent components 

of the cytoskeletal system, are necessary for the morphological changes that 

occur during astrogliosis [297]. Glial fibrillary acidic protein (GFAP), an 

intermediate filament, is a standard marker for astrocytes, and the upregulation 

of GFAP is a hallmark of astrocyte activation [298]. While the roles of astrocytes 

during a healthy state are varied, the functions that follow astrogliosis are highly 

diverse and context dependent. This is emphasized to such a degree that 

reactive astrocytes may provide beneficial and protective roles in one scenario, 

while becoming deleterious and cytotoxic in another [299–301]. In the context of 

infection, reactive astrocytes become involved in the immune response by 

modulating the inflammatory response in the brain [302]. Class II major 

histocompatibility complex (MHC) are molecules that play an important role in the 

immune response through the presentation of antigens and, the expression of 
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MHC II is normally seen on professional antigen-presenting cells such as 

macrophages, dendritic cells, and B cells. However, the expression of MHC II on 

astrocytes has been shown to be induced by immune factors such as IFN-γ and 

enhanced by TNF-α, and in fact, astrocytes were the first CNS cell type to be 

shown to express MHC II upon IFN-γ stimulation [303,304]. In addition to their 

antigen-presenting roles, in the context of diseases or infections, astrocytes are 

able to secrete inflammatory cytokines and express chemokine receptors. These 

can function as anti-inflammatory factors such as IL6 or IL10, or promote 

inflammation such as CCL2, CCL5, CXCL1, and CXCL10 which lead to the 

recruitment and activation of peripheral immune cells [305]. During infection, 

astrocytes may encounter pathogen associated molecular patterns (PAMPS) that 

are recognized by several receptors such as Toll-like receptors (TLRs). 

Activation of TLRs results in a robust cytokine response that leads to a hostile 

environment for resident cells [306]. This inflammatory state can disrupt the 

homeostatic environment and lead to cytotoxicity [306–308]. As stated 

previously, patients with PTLDS show an increased amount of glial inflammation 

within the brain, and evidence has shown that astrocytes may contribute to 

behavioral disturbances that are associated with inflammation, including 

regulation of sleep, pain, and depression [284,309–312]. This is not surprising 

when considering the broad functionality of astrocytes that allow them to regulate 

the immune and inflammatory response, provide structural and nutritional support 

including the blood-brain barrier, and modulate neuronal synapses.  
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A previous study by our laboratory investigated the effects of B. 

burgdorferi on primary human astrocytes in vitro and found differentially 

expressed genes that were involved in the immune response, structural and 

cellular development, cell adhesion, and chromatin assembly [198]. As 

inflammation is an important factor in the development of persistent symptoms of 

PTLDS patients, and astrocytes have been shown to play an important role in 

modulating this response in multiple diseases including Lyme disease, we sought 

to investigate an alternative mechanism for the pathogenesis of PTLDS. 

Therefore, we hypothesized that during infection, B. burgdorferi induces 

epigenetic modifications in host cells that are conducive to a persistent 

inflammatory state. The two epigenetic alterations that we have explored are 

DNA methylation and chromatin accessibility, the former being the subject of this 

chapter.  

DNA Methylation 

 DNA methylation and its equally important counterpart, demethylation, is 

the process in which methyl groups are added, or removed, to genomic DNA 

(Figure III-1) [313]. In mammalian cells, DNA methylation occurs on cytosines at 

position C5 and is predominately found in CpG dinucleotides [314,315]. DNA 

methylation plays an important role in gene expression. When it occurs within 

promoter or enhancer regions, it is typically associated with the silencing of gene 

expression; however, current evidence suggests that the opposite may be true 

when it occurs within the gene body, that methylation within the gene body is 

positively correlated to transcription [316–319]. As such, DNA methylation is 
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Figure III - 1.  DNA methylation and its effects on gene transcription.  
(A) Schematic of DNA methylation depicting the process 
whereby a methyl group is transferred to cytosine by a DNA 
methyl transferase (DNMT1, DNMT3A, DNMT3B). (B) The 
effects of DNA methylation on gene expression is an on-going 
project. Methylation within the promoter region leads to a 
silencing of that gene. While methylation within the gene body 
seems to promote gene transcription.   
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fundamental to several important processes including normal development, 

genomic imprinting, X chromosome inactivation, and cell differentiation [315,320–

324]. DNA methyltransferases (DNMTs) are enzymes that catalyze the transfer 

of a methyl group to cytosine. The main function of DNMT1 is methylation 

maintenance, and it has been shown to preferentially act upon hemimethylated 

CpGs, typically during DNA replication [325]. During DNA replication, DNMT1 

copies the methylation pattern to the newly synthesized strand [326,327]. In 

contrast, DNMT3A and DNMT3B function in de novo methylation and act upon 

unmethylated DNA, though this function may also aid in the maintenance of 

methylation patterns that were not established by DNMT1 [322,328–330]. 

Following fertilization, parental genomes of the zygote undergo dramatic 

demethylation, and in fact, the paternal genome in mice undergoes significant 

active demethylation within 6-8 hours of fertilization, while maternal genome 

demethylation occurs after several cleavage divisions [323]. De novo methylation 

by DNMT3A and DNMT3B re-establishes the DNA methylation pattern following 

this demethylation stage and is in part responsible for cellular-specific 

differentiation [331,332]. 

 Upon microbial invasion, host cells undergo large transcriptional changes 

that involve genes associated with immunity, inflammation, cellular 

protection/apoptosis, adhesion, and motility. It is therefore not surprising that 

such changes in gene expression are not only dependent on transcription factors 

but epigenetic alterations that provide transcriptional regulation through 

chromatin accessibility and DNA methylation. Bacterium-induced epigenetic 
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modifications have gained attention in recent years as mechanisms that underlie 

the host defense response [333]. DNA methylation alterations in response to a 

pathogen have been best documented in H. pylori infections. H. pylori, best 

known to cause gastric ulcers, as well as gastric cancer, has been shown to 

cause aberrant DNA methylation in human gastric mucosa. Notably, this 

occurred at the promoters of genes that were previously found to be methylated 

in gastric cancer cells, such as hypermethylation of tumor-suppressor genes (e.g. 

USF1/2) and DNA repair genes (e.g. MLH1) [334–338]. Furthermore, epigenetic 

regulation of the inflammatory response in infection and chronic inflammatory 

diseases has garnered greater attention in recent years [333,339]. These 

alterations to the epigenetic landscape may have lasting effects and lead to 

epigenetic memory or “imprinting” on the genome. Evidence of this epigenetic 

imprinting is found following the removal of H. pylori infection in human patients, 

in which a decrease but not a return to basal levels of methylation is seen in the 

promoter regions of genes associated with the risk of gastric cancer [340].  

As epigenetic alterations are continuing to be researched in association 

with bacterial infections, we sought to investigate the role of B. burgdorferi as an 

epimutagen, which could be further investigated as a potential mechanism for the 

persistent symptoms seen in PTLDS patients. To this end, we utilized primary 

human astrocytes grown in culture, which were then subjected to B. burgdorferi 

infection. The methylome was then profiled through the Illumina beadchip array. 
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Materials and Methods 

Bacteria culture 

 Three strains of B. burgdorferi sensu stricto were used throughout the 

experiments based on infectivity: B31-e2, a high-passage-number noninfectious 

clone of B31 tick isolate; B31-MI-16, an infectious clone of B31; and 297, an 

infectious and suspected neurotropic isolate from the CSF of a Lyme disease 

patient [19,20,85,217,341,342]. All strains were grown and utilized in an identical 

manner. Bacteria cultures were grown in modified Barbour-Stoenner-Kelly (BSK-

II) medium supplemented with 6% rabbit serum at 34°C to approximately 1 x 107 

bacteria/ml and used at passage 2 [343,344].  

Cell culture 

 Primary human astrocytes were obtained from ScienCell Research 

Laboratories (catalog # 1800). Cultures were maintained in tissue-treated vented 

cap T-75 flasks (Corning, catalog #430641U) in astrocyte cell medium 

(ScienCell, Catalog #1801) that was supplemented with 1% astrocyte growth 

supplement (ScienCell, Catalog #1852), 2% fetal bovine serum (ScienCell, 

Catalog #0010), and antibiotics penicillin and streptomycin at a final 

concentration of 100 units/ml and 100 ug/ml, respectively (ScienCell, catalog 

#0503). Cells were incubated at 37°C and used at passage 3 at approximately 

80% confluency for B. burgdorferi infection. Prior to the addition of B. burgdorferi, 

cell cultures were washed 3 times with sterile Dulbecco’s phosphate buffered 

saline (DPBS) and new antibiotic-free astrocyte medium was added to the 
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cultures. Light microscopy was used to monitor cell morphology and confluency 

before and after infections. 

Infection 

 Cell cultures were stimulated with either B. burgdorferi B31-e2, B31-MI-16, 

or 297 at a multiplicity of infection (MOI) of 10:1 (bacteria:cells) for 24, 48, 72, 

and 92 hours. Global methylation arrays were performed on astrocytes infected 

with B31-e2 and B31-MI-16. To achieve an appropriate MOI, the mean cell count 

of astrocytes was determined using an automated cell counter (Life Countess II, 

catalog #AMQAX1000). The control group was prepared identically without B. 

burgdorferi infection. 

DNA Isolation and Differential Methylation 

 For both the global DNA methylation assays and the Illumina Infinium 

MethylationEPIC beadchip array, DNA was isolated from samples using DNeasy 

Blood and Tissue kit from Qiagen (Qiagen, catalog #69506) according to the 

manufacturer’s instructions. Briefly, culture supernatant was removed to be used 

for protein analysis, and cultures were washed 3 times with DPBS. Following 

washes, cells were collected using Trypsin (ThermoFisher, catalog #15050065), 

centrifuged for 5 min at 300 x g at 4°C, and supernatant was aspirated from the 

cell pellet. The pellet was then resuspended in PBS, and proteinase K and 

RNase A were added. Cells were then fully lysed, and the resulting mixture was 

added to the DNeasy spin columns. Following subsequent washes, RNA-free 

genomic DNA was eluted in 100 ul of nuclease-free water. Initial DNA 

concentration and quality was assessed by NanoDrop.  
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 Samples were submitted to the University of Minnesota Genomics Center 

for differential methylation analysis using the Illumina Infinium MethylationEPIC 

BeadChip array. The array queries 850,000 individual CpG sites in the human 

genome. Prior to this, samples underwent further QC which included PicoGreen 

DNA quantification and QC1 assay, a q-PCR based assay to assess impurities. 

All samples passed quality control. Samples were then subjected to DNA bisulfite 

conversion, in which unmethylated cytosines are converted to uracil and 

methylated cytosines remain. Through this method, single-nucleotide resolution 

of CpG methylation can be obtained via the Illumina Infinium MethylationEPIC 

BeadChip. Data analysis was performed by the University of North Dakota 

Genomics Core at the School of Medicine and Health Sciences. 

 Global Methylation was assessed using the MethylFlash Global DNA 

Methylation (5-mC) ELISA Easy Kit (Colorimetric) (EpiGentek, Catalog #P-030-

48), according to manufacturer’s instructions. In short, this assay provided a one-

step ELISA-like reaction in which the DNA is bound to a 96 well-plate, capture 

and detection antibodies for methylated DNA were added, and the resulting 

signal was quantified colorimetrically using a BioTek Epoch plate reader. Infected 

groups at each time point were compared to uninfected control groups by a 

Student’s t-test. Significance was determined if p < 0.05. 

Protein Analysis of Supernatant by ELISA 

 Supernatants from cultures were removed as previously mentioned 

following treatment. ELISAs were performed following manufacturer’s instructions 

(R&D Systems, DuoSet ELISA). In short, 96 well plates were coated with capture 
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antibody and incubated overnight at room temperature. The antibody was then 

aspirated, and wells were washed, followed by the addition of 100 ul of standard 

or sample to each well. Following incubation at room temperature for 2 hours and 

subsequent aspiration of samples, a conjugated detection antibody was added. 

The addition of a chromogenic substrate and stop solution allowed for 

colorimetric detection on a BioTek Epoch plate reader. 

Results 

Global Methylation 

 Our initial investigation into differential methylation caused by B. burdorferi 

involved assessing changes in global DNA methylation by using the Epigentek 

global methylation assays. Primary human astrocytes were cultured and infected 

with either B31-e2 or B31-MI-16 for 24, 48, 72, and 96 hours (n=3 for each 

group). As B31-e2 is a non-infectious strain, it was used to determine changes in 

global methylation that were associated with infectivity when compared to B31-

MI-16. No significant changes in global methylation were found at any time points 

for astrocytes infected with B31-e2 when compared to control groups and no 

morphological changes were observed under light microscopy (Figure III-2A). For 

infection with B31-MI-16, no significant changes in global methylation were found 

in 24, 48, and 72-hour time points and no morphological changes were apparent. 

However, a significant increase in global methylation was observed at 96 hours, 

resulting in approximately a 0.6% increase in methylation (Figure 3-2B). An 

overall increasing trend in global methylation can be seen in astrocytes infected 
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Figure III - 2.  Changes in global DNA methylation in astrocytes in response to 
infection.  
Astrocytes were infected with either B. burgdorferi strain B31-e2 
or B31-MI-16 for 24, 48, 72, and 96 hours. (A) Infection with e2 
showed no significant changes in global DNA methylation in 
astrocytes. (B) Infection with MI-16 showed a general increase in 
global DNA methylation, and a significant increase at 96 hours 
compared to control. No morphological changes in astrocytes 
were observed in either infection, based on light microscopy. 
Statistical testing was done by Student’s t-test, and significance 
was set at p < 0.05. 
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with B31-MI-16, however, this trend is not observed in cells infected with B31-e2, 

as changes in methylation seemed more sporadic.  

The data obtained from these sets of experiments were limited by the high 

variance between biological replicates, as observed in the plotted error bars of 

the standard deviation. This variability was exacerbated by the low replicate 

number and could be ameliorated by an increase in replicates. At this point in the 

experimentation, we evaluated the cost-benefit of these set of experiments in 

regard to the relevance and importance in further investigating global 

methylation. Though we were able to detect a significant change in global 

methylation in the 96-hour time point of B31-MI-16 infected group, and no 

change in the B31-e2 groups, this data provided little insight. As these assays 

assessed the global methylation status within astrocytes, it provided no 

specificity in the regions or genes that were altered. Furthermore, and of greater 

importance, changes in global methylation or lack thereof, cannot be determined 

as biologically relevant. In other words, the lack of global methylation changes 

that were seen in all but one group does not negate the possibility that region 

specific methylation changes are occurring, e.g. if one gene becomes 

hypermethylated, while another gene becomes hypomethylated, this may be 

correlated to a drastic transcriptional change, but global methylation is not altered 

overall. Due to this, we felt pursuing genome-wide CpG specific analysis would 

provide a greater outcome. 
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Microarray Methylation Profiling 

 Similar to our global methylation experiments, we assessed the alterations 

to specific CpG’s in astrocytes infected with either B31-e2, B31-MI-16, and 297 

for 24, 48, 72, and 96 hours. A total of 9 biological replicates were used for each 

group except for 297 which contained 3 replicates as it was a late addition to the 

experiments. These biological replicates came from 3 separate primary samples 

(e.g. samples taken from 3 different individuals), except for 297 which came from 

a single primary sample. Following these infection time points, the supernatant 

was collected for protein analysis and DNA was isolated from cells. To determine 

if astrocytes responded to infection as expected, protein analysis of the 

supernatant was first assessed by ELISA for the following factors: Serpin G1, IL-

6, CCL20, CXCL1, and CXCL8 (Figure III-3). These proteins were chosen for 

their function in immunity and their differential regulation that was observed in the 

previous study performed in our laboratory regarding astrocytes [198]. SerpinG1, 

also known as C1-inhibitor, functions to inhibit the complement system – no 

significant changes were seen across time points and strains when compared to 

control. Similarly, IL-6, an interleukin that can act as both pro- or anti-

inflammatory, and CCL20, a chemotactic for peripheral immune cells, were not 

seen to be significantly altered. CXCL1 and CXCL8, neutrophil activator and 

attractant, respectively, were found to be significantly upregulated in a number of 

groups. Astrocytes infected with either MI-16 and 297 saw a significant increase 

in these factors at later time points, 72 and 96 hours, while 297 also elicited a 

significant response at 48 hours. Infection with e2 seemed to stay at basal levels 
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Figure III - 3.  Analysis of cytokine production by astrocytes infected with  
B. burgdorferi.  
The supernatant from cell cultures was collected following 
infection with either B. burgdorferi strain B31-e2, B31-MI-16, or 
297 for 24, 48, 72, and 96 hours, and were analyzed by ELISA. 
Serpin G1, IL-6, CCL20, CXCL1, and CXCL8 were analyzed and 
were chosen for their role in the immune response. Strain 
specific and time effects were as expected. In general, e2 
remained at similar levels as control. MI-16 and 297 produced 
similar effects at slightly different magnitudes. Serpin G1, IL-6, 
and CCL20 showed no significant changes. Infection with MI-6 
and 297 produced a significant increase in CXCL1 and CXCL8 at 
72 and 96 hours, while 297 also induced an increase in CXCL8 
at 48 hours.  

 



88 

 

 



89 

relative to the control. Interestingly, 297, a potentially more neurotropic strain, 

showed a generally larger response than MI-16. These data, specifically 

regarding CXCL1/8 indicated that our infections led to an expected immune 

response from astrocyte cultures.  

 Following these experiments, DNA samples were pooled according to 

strain and time point, but primary samples remained separate, to be sent for 

methylation profiling – this was necessary to reduce cost but still maintain an 

appropriate replicate number. Table III-1 indicates the samples that were 

submitted. Data analysis was performed by the University of North Dakota 

Genomics Core – differential methylation was considered significant with an FDR 

< 0.05. Surprisingly, there were no significant differentially methylated regions 

across any time points or strains compared to control which immediately raised 

concerns. DNA samples were isolated from the same samples that the 

supernatant was collected from, which showed a general response to infection 

with B. burgdorferi, as well as being strain specific. Additionally, all DNA samples 

passed QC within our laboratory, QC within the UND genomics core, and QC 

within the University of Minnesota Genomics Center. Figure III-4A depicts 

selected histograms of the adjusted p-values of infected groups compared to 

control. All reads were greater than the significance threshold of FDR < 0.05. A 

multidimensional scaling plot (MDS plot) is a method to visualize the similarity of 

all samples with each other. Through this we can visualize how each treatment 

clusters together e.g. do samples infected with 297 cluster more closely to 

samples infected with MI-16 than with e2 infected groups? When an MDS plot 
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Table III - 1.  Sample submission 
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Figure III - 4.  A representative overview of DNA methylation profiling results. 
Following infection, astrocyte DNA was isolated and DNA 
methylation profile of each sample was analyzed by Illumina 
MethylationEPIC array. (A) Histograms indicating adjusted p-
value frequency at e2 96 hours and MI-16 96 hours, 
representative of all other groups. No significant changes in DNA 
methylation were observed in any strain or time group. Maximum 
frequency of p-values neared a p-value of 1.0. 
(B) Multidimension scaling plot (MDS) by biological replicate and 
B. burgdorferi strain. As no significant results were found, an 
explanation was sought. The MDS plot by biological replicate 
explains a major reason for this – large variability between 
replicates exist due to biological replicates being obtained from 
three different primary samples. The MDS plot by strain indicates 
that greater similarity exists between strain and time point than 
between biological replicates.  
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was generated for our samples, we expected similarities to occur based on 

infectivity of the strain and/or time points. However, as seen in Figure 3-4B, all 

samples densely clustered according to their biological replicate. This was a 

clear indication that the variability between primary samples was far greater than 

anticipated and was to such an extent that the effects of B. burgdorferi strain and 

duration of infection had no significant impact on DNA methylation when 

compared to controls. Additionally, biological replicate 1 was male, while 

replicates 2 and 3 were female and seemed to cluster slightly closer together. 

 In order to control for the variability between biological replicates, 

biological replicate 1 was removed and a number of comparisons were made. A 

summary of these comparisons and results are seen in Table III-2. Removal of 

the first biological replicate provided minimal number of differential methylation 

CpGs. Many of the differentially methylated regions were not associated with any 

gene, let alone within the gene itself. A gene that commonly came up across 

multiple comparisons that was associated with was C4orf22, also known as cilia- 

and flagella-associated protein 299 (CFAP299), which has no well-known 

function but is predicted to play a role in spermatogenesis [345].  

 Pooling MI-16 and e2 groups together provided the most robust change in 

methylation that was seen at 24 hours. It is uncertain the biological relevance of 

this change, as the pooling of the non-infectious strain B31-e2, which previously 

did not induce a response in astrocytes at the protein and methylation level, 

would not be expected to have any significance. Nevertheless, a total of 91 

differentially methylated CpGs were observed, with 78 being methylated and 
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Table III - 2. Summary of differential methylation comparisons 
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13 unmethylated. Table III-3 displays genes of interest that contained a 

differentially methylated CpG. Neuronal growth regulator 1 (NEGR1) shown to be 

differentially methylated within the body of the gene – suggesting an upregulation 

to gene transcription. NEGR1 is associated with neurogenesis as well as 

behavior disorders, intellectual disability, and depression [346–348]. Another 

gene associated with an increased CpG methylation was Myosin-9 (MYH9), 

which encodes the heavy chain of non-muscle myosin of class II, isoform A 

protein (NM IIA). NM IIA is found in most cell types and participates in a number 

of functions that include cytokenisis/proliferation, cell migration and motility, 

maintenance of cell shape and polarization, and adhesion [349,350]. However, 

the methylation occurred within the 5’ untranslated region (UTR) of the gene, 

which may lead to an increase in gene transcription but has also shown 

conflicting correlation to gene expression; it may also play a role in translation 

[351–353]. Additionally, STX8, SNX33, and DYM are genes that have functions 

in cytoskeletal restructuring, endocytosis, cellular vesicle trafficking, and 

secretory pathways [354–360]. All methylated regions predict an upregulation in 

gene expression. 

 Two main functions of astrocytes may be altered in response to infection 

within this same comparison group: neurotransmitter uptake, specifically 

glutamate, and the regulation of the immune response. An increase in 

methylation was found within three genes within the solute carrier family: 

SLC1A3, SLC20A2, and SLC22A23. SLC1A3 and SLC22A23 contained a 

methylated CpG within the body of the gene, associated with an increase in gene 
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Table III - 3.  Selected methylation sites 
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expression; transcription of SLC20A2 is less known as methylation occurred with 

the 5’ UTR. The solute carrier family is a family of transmembrane proteins that 

function as transporters across cell membranes. Of interest is SLC1A3 as it 

encodes for the protein excitatory amino acid transporter 1 (EAAT1), which is 

also commonly called glutamate aspartate transporter 1 (GLAST-1). It is found 

throughout the CNS and is highly expressed in astrocytes [361–363]. GLAST-1 is 

a glutamate transporter that functions to maintain the extracellular glutamate 

concentrations, an important function that aids in regulating neuronal function as 

glutamate is a major neurotransmitter [362]. Through these functions, astrocytes 

are the key players in glutamate regulation and thus are able to modulate 

synapse function and protect from excitotoxicity of neurons that may occur if 

extracellular glutamate concentrations are too high [364–366]. Dysregulation in 

glutamate concentrations is associated with a number of deleterious outcomes. 

Glutamate-induced excitotoxicity can lead to a decrease in neuronal regeneration 

and dendritic branching, as well as behavioral alterations that follow [367–369]. 

This potential upregulation of SLC1A3 through the methylation of the gene body 

would suggest a neuroprotective effect following B. burgdorferi infection. This 

“protective effect” also extends to the methylation within the gene body of NF-κB 

inhibitor alpha (NFKBIA, also known as IκBα), which would have a predicted 

upregulation in gene expression. The protein functions as an inhibitor to the well-

known transcription factor NF-κB, which itself is a major player in the pro-

inflammatory signaling pathway [370]. However, the NF-κB pathway has been 

shown to play many different roles that are context dependent, and as there is a 
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major dichotomy in CNS inflammation as being beneficial or deleterious, it is 

difficult to label such an effect as being “protective”. Interestingly, another role of 

NF-κB appears to be the downregulation of GLAST1 expression, through the 

ERK/PI3K/NF-κB signaling pathway, induced by tumor necrosis factor-α (TNF-α) 

[364,371,372]. Therefore, NFKBIA may provide a pathway for the upregulation of 

GLAST1 (SLC1A3). Finally, phosphodiesterase 7A (PDE7A) has been 

associated with immunity and inflammation and may be required for T cell 

activation, though this requirement may be overstated [373–376]. Regardless, 

demethylation was found in the gene body of PDE7A, associated with 

downregulation of the gene. Unfortunately, no other comparisons that were made 

provided a substantial or relevant change in methylation. 

Discussion 

 Minimal changes were noted across comparisons of B. burgdorferi strains 

and time points. However, through the removal of replicate 1 that showed the 

most dissimilarity compared to the other two replicates, additional insight was 

gained. Increasing statistical power through the pooling of MI-16 and e2 infected 

groups provided the most robust change when compared to control at 24 hours. 

Taking into consideration the effects of methylation on gene transcription, 

astrocytes seemed to respond to infection in several ways. Genes associated 

with cytoskeletal restructuring and cellular trafficking are predicted to be 

upregulated and may be associated with changes in morphology, secretion, and 

cell proliferation, suggesting that astrocytes may be undergoing astrogliosis. One 

of the major functions of astrocytes is the structural and trophic support of 



98 

neurons, specifically the modulation of the neurotransmitter glutamate. Three 

members of the solute carrier family were found to be affected. SLC1A3 encodes 

for a major glutamate transporter, GLAST1 and is responsible for maintaining a 

homeostatic environment of extracellular glutamate. This is important to prevent 

the excitotoxicity of neurons that have been associated with a number of 

neurological disorders. Additionally, there seem to be conflicting results regarding 

immunity and inflammation, with the predicted upregulation of NF-κBIA and 

PDE7A. The CNS is a tightly regulated system that requires strict control of the 

resident immune response in order to maintain functionality. This is compounded 

by the dual nature of inflammation – during infection, an inflammatory response 

aids in the destruction and clearing of a pathogen; however, as seen in Lyme 

disease, specifically PTLDS, prolonged inflammation plays a major role in the 

pathogenesis of these symptoms. Determination of gene expression is uncertain 

and furthermore, the phenotypic outcome is difficult to predict. However, taken 

together, a generous assumption would state that it does seem that infection with 

B. burgdorferi may cause alterations to DNA methylation that could lead to 

phenotypic characteristics associated with PTLDS, but due to many limitations of 

the data, these results must be understated.  

 As highlighted previously, the major issue in the generation of relevant 

data lies in the variability of our biological replicates which came from three 

different primary samples. In hindsight, this can be seen in the large error bars of 

our ELISA experiments. In order to overcome this, we have changed our 

methodology for future experiments utilizing primary samples, such that 
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biological replicates stem from the same primary sample i.e. obtained from a 

single individual. With that said, other methods of data analysis within our current 

data set could provide additional information. Two methods could be adopted. As 

each biological replicate clusters within itself, analysis of each replicate 

individually could be done. The obvious limitation to this would be that each data 

set would only have an N of 1, so the lack of statistical power would limit 

statistically significant results. However, data obtained through this method could 

provide understanding into the variability of symptoms of Lyme disease patients, 

and why some individuals have a poor prognosis while others seemingly recover 

without ill-effects.  

 The second method to reevaluate our data set can be applied to both 

circumstances. As seen in our dataset, methylation occurs at single CpGs, and 

no gene showed multiple CpG differential methylation. This is another factor that 

should be taken into consideration when discussing the biological significance of 

our results. While the methylation of gene regions can be associated strongly 

with either up or down gene expression (e.g. promoter methylation results in 

down-regulation), it is not clear what a change in methylation of a single CpG 

would result in. One method to ameliorate this would be to bin the genome into 

specific regions. For example, the methylation of the entire promoter region of a 

gene would be compared between treatment groups. This would potentially 

provide a larger number of statistically significant differentially methylated regions 

and provide the much-needed context in relation to gene transcription.  
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 Though our experiments were not as fruitful as we had anticipated, the 

importance of research into the epigenetics of infections continues to grow. With 

the advent of newer sequencing technologies, the price of performing these 

experiments are being rapidly reduced. Thus it is hopeful that this topic can be 

reexamined in the context of Lyme disease, and as new therapeutics are being 

developed to target epigenetic markers, such work will become even more 

significant [377–380].
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CHAPTER IV 

INVESTIGATING THE CHROMATIN STRUCTURE OF HUMAN ASTROCYTES 
IN RESPONSE TO BORRELIA BURGDORFERI SENSU STRICTO STRAINS 

Introduction 

 The human genome consists of approximately 6 billion base pairs, and the 

genome of a single cell would span roughly two meters. To cope with the 

physical size needed to fit within the nucleus, DNA is orderly packaged and 

condensed into chromatin, a complex of DNA and protein. This organization of 

the genome facilitates cell division and aids in regulating gene expression and 

DNA replication. At its core, the main protein component of chromatin are 

histones that condense DNA into a basic structural unit called nucleosomes. 

Nucleosomes consist of ~147 bp of DNA wrapped around a histone octamer 

core, which consists of two copies of each of the four histone proteins, H2A, 

H2B, H3, and H4 [381,382]. This tightly condensed chromatin, also called 

heterochromatin, is poorly conducive to gene transcription; however, chromatin is 

a highly dynamic structure that can be regulated to allow for more optimal 

accessibility to transcription factors and thus gene transcription. This lightly 

packed and more accessible structure, also called euchromatin, resembles 

beads on a string and allows for the binding of regulatory proteins and RNA 

polymerase to DNA. 
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 A predominant mechanism that allows for the regulation of chromatin 

structure is the post-translation modification of histones. These modifications 

typically occur on the N-terminal tails of the histones. There is a wide range of 

modifications that can occur, including citrullination, phosphorylation, 

SUMOylation, and ubiquitination. However, some of the most well-studied 

modifications and those that are of interest to this study are methylation and 

acetylation [383,384]. Through these modifications, the interactions between 

histones and DNA can be altered, thus leading to chromatin restructuring and 

modulation of gene transcription [385]. Many modifications and their impact on 

chromatin structure have been investigated, making up a so-called “histone 

code” through the combinatorial effects of these modifications [386,387]. Some of 

these modifications and their subsequent impact of chromatin include – 

H3K4me1: Activation, H3K4ac: Activation, H3K9me1: Activation, H3K9me3: 

Repression, H3K27me3: Repression, and H3K27ac: Activation [387–391]. As 

this is such a significant and global system for regulation of gene transcription, it 

has spanned across all fields of research including infection. Many studies have 

shown that bacterial products such as LPS or host secreted factors such as IFN-

γ can induce histone modifications and therefore chromatin restructuring. This is 

true for Helicobacter pylori and its secreted factor HP0175 which activates TLR4 

and induces NF-κB, ERK, and p38 MAPK activation leading to subsequent 

histone acetylation and IL-6 production [392,393]. Similarly, Listeria 

monocytogenes has been shown to induce similar pathways leading to 

alterations in the phosphorylation of H3S10 and H4 acetylation [394,395]. Of 
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further relevance to the data presented in this chapter, many of these effects 

occur through the activation of TLRs and associated transcription factors within 

the AP-1 complex including JUN and ATF [333,392,396–398]. 

 We sought to investigate the astrocytic response to B. burgdorferi and its 

impact on chromatin structure and histone modifications. As such, we 

hypothesize that infection with B. burgdorferi leads to chromatin remodeling that 

is conducive to a deleterious inflammatory response and dysregulation of normal 

astrocytic functions. Our experimental design utilized primary human astrocytes 

in culture and infected with B. burgdorferi for four time points: 24, 48, 72, and 96-

hours. Through these time points, we aimed to determine temporal and therefore 

dynamic alterations in chromatin accessibility. By using the Assay for 

Transposase-Accessible Chromatin (ATAC) sequencing, we aimed to achieve a 

global profile of these changes. Furthermore, we had simultaneously performed 

identical experiments to provide material for further correlation to gene 

expression and histone modifications by RNA-seq and ChIP-PCR/Seq, 

respectively. Unfortunately, due to technical shortcomings, we had only achieved 

minimal coverage via ATAC-seq and therefore we did not continue further 

investigation. The data presented in this chapter covers our findings of our 

ATAC-seq, highlighting these dynamic changes in the chromatin accessibility and 

the potential impact of gene expression.  
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Materials and Methods 

Bacteria Culture 

 Borrelia burgdorferi strain B31-MI-16 was used for infection. Cultures were 

grown in modified Barbour-Stoenner-Kelly (BSK-II) medium supplemented with 

6% rabbit serum at 34°C to approximately 1 x 107 bacteria/ml and used at 

passage 2 [343,344].  

Cell Culture 

 Primary human astrocytes were obtained from ScienCell Research 

Laboratories (catalog # 1800). Cultures were maintained in tissue-treated vented 

cap T-75 flasks (Corning, catalog #430641U) in astrocyte cell medium 

(ScienCell, Catalog #1801) that was supplemented with 1% astrocyte growth 

supplement (ScienCell, Catalog #1852), 2% fetal bovine serum (ScienCell, 

Catalog #0010), and antibiotics penicillin and streptomycin at a final 

concentration of 100 units/ml and 100 ug/ml, respectively (ScienCell, catalog 

#0503). Cells were incubated at 37°C and used at passage 3 at approximately 

80% confluency for B. burgdorferi infection. Prior to the addition of B. burgdorferi, 

cell cultures were washed 3 times with sterile Dulbecco’s phosphate buffered 

saline (DPBS) and new antibiotic-free astrocyte medium was added to the 

cultures. Light microscopy was used to monitor cell morphology and confluency 

before and after infections. 

Infection 

 Cell cultures were infected with either B. burgdorferi B31-MI-16 at a 

multiplicity of infection (MOI) of 10:1 (bacteria:cells) for 24, 48, 72, and 92 hours. 
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To achieve an appropriate MOI, the mean cell count of astrocytes was 

determined using an automated cell counter (Life Countess II, catalog 

#AMQAX1000). Bacterial cultures were manually counted using a Petroff-

Hausser Counting Chamber (Hausser Scientific, catalog #3900) and dark field 

microscopy. The control group was prepared identically without B. burgdorferi 

infection. N=3 for all groups. 

ATAC-seq 

 ATAC-seq was performed as previously described [399]. Following 

infection, cultures were washed with DBPS and harvested by trypsinization. Cell 

viability and cell number were determined to be >95% by trypan blue staining and 

automated counting. A fundamental aspect of ATAC is the need for only a small 

number of cells – following viability and counting, 50,000 cells were isolated and 

centrifuged. Cells were centrifuged at 500g at 4°C for 5 minutes. The supernatant 

was aspirated and 25 ul of CSK lysis buffer (10 mM PIPES, pH 6.8; 100 mM 

NaCl; 300 mM sucrose; 3 mM MgCl2; 0.1% Triton X-100) was added to the cell 

pellet for nuclei isolation and placed on ice for 5 minutes. The presence of 

isolated nuclei was checked using trypan blue and light microscopy. Prior to this, 

optimization of lysis buffer was determined – astrocytes were subjected to either 

Greenleaf lysis buffer (10 mM Tris-HCl, pH 7.4; 10 mM NaCl; 3 mM MgCl2; 0.1% 

(v/v) Igepal CA-630) or CSK; using trypan blue and light microscopy, it was 

determined that CSK was a more efficient buffer for nuclear isolation, as a 

greater percentage of nuclei were observed. Following lysis, nuclei were pelleted 
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at 500g at 4°C for 10 minutes, supernatant was aspirated, and the resulting pellet 

was placed on ice. 

 For the transposition step of ATAC, the Nextera DNA library preparation 

kit was used (Illumina, catalog #FC-121-1030). 50 ul of the transposition mix (25 

µl TD 2x reaction buffer, 2.5 µl TDE1 Tn5 Transposase, and 22.5 µl nuclease-

free water) was added to the nuclei pellet and resuspended. The transposition 

reaction was incubated at 37°C for 30 minutes. The reaction was then purified 

using Qiagen MinElute PCR Purification Kit according to the manufacturer’s 

instructions (Qiagen, catalog #28004) and DNA was eluted using Buffer EB (10 

mM Tris-Cl, pH 8.5). Transposed DNA was then amplified by PCR. In short, 

primers from the Nextera Index Kit (Illumina, catalog #FC-121-1011) were 

selected to provide unique indexing of each sample during PCR amplification, 

and PCR master mix from NEB (NEB, catalog #M0541S) was used. Thermal 

cycle settings were followed according to Buenrostro et al [399]. The amplified 

library was purified again using the Qiagen MinElute PCR Purification Kit and 

eluted in Buffer EB (10 mM Tris-Cl, pH 8.5). 

 Quality control of samples was performed by the University of North 

Dakota Genomics Core. DNA libraries were placed in an Agilent 2100 

Bioanalyzer with the Agilent High Sensitivity DNA Kit (Agilent, catalog #5067-

4626) to assess DNA fragment size and quality. Concentrations of samples were 

determined by a BioTek Gen5 Wellplate reader with the Quant-iT Picogreen kit 

(ThermoFisher, catalog #P11496). Initial concentrations of most samples were 

below the recommended concentration of 3nM. The concentration was increased 
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by reducing the volume of samples using a speed-vac. Again, samples were 

subjected to the well plate reader, and sufficient concentrations were established. 

Samples were sent to Novogene and an Illumina HiSeq 4000 was used for 150 

bp paired-end sequencing across two lanes.  

Data Analysis 

 Data was received from Novogene in FASTQ format. Initial quality control 

of raw data was performed by FastQC. Adaptor and low-quality base trimming 

were performed by trimmomatic, followed again with a quality check by FastQC – 

all samples passed. Alignment to the human (hg19) assembly was performed by 

Hisat2, version 2.1.0 and indexed by Samtools, version 1.9. Insert size 

calculation was performed by Picard, specifically the collectinsertsize tool, 

version 2.20.2. As expected, sub-nucleosome insert size (<150bp) was most 

predominantly enriched, with minor enrichment at mono-nucleosome (150-

200bp) and di-nucleosome (200-400bp) insert sizes. As mitochondrial DNA do 

not form histone complexes, mitochondrial reads are typically non-negligible in 

ATAC-seq experiments [400]. Mitochondrial reads were removed by 

removeChrom.py (J. M. Gaspar; https://github.com/jsh58/harvard/blob/master/ 

removeChrom.py). PCR artifacts, such as duplicate reads, can arise during 

ATAC-seq. Duplicate reads were flagged by Picard – Markduplicates, and 

removed during peak calling. Peaks were called by MACS2, version 2.1.2 [401].  

 Differential peak analysis was performed by DiffBind on the output peak 

files obtained by MACS2 [402]. To determine differential peaks, the following 

comparisons were made: 24hr infected vs control, 48hr infected vs control, 72hr 
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infected vs control, and 96hr infected vs control. DiffBind produces a consensus 

peakset, which are peaks shared between a minimum number of samples. In this 

analysis, a peak that was found in at least two samples was considered to be 

within the consensus peakset. Diffbind utilizes DESeq2 to perform differential 

analysis between groups that are being compared. Although the number of reads 

differ between our samples, DESeq2 performs read count normalization to 

alleviate this issue. Furthermore, the Benjamini-Hochberg adjustment is a post-

hoc statistical test that is applied to our initial p-values, which produces a false-

discovery rate (FDR). This adjusted p-value, or FDR, was set at < 0.05 for 

statistical significance. Each comparison produced a differential peakset. 

Additional analysis was performed to find overlapping differential peaks between 

datasets as well as to identify unique differential peaks in each condition. Using 

these differential peak sets, the DiffBind contrast and overlapping functions 

allowed us to compare differential peaksets across each group; a Venn diagram 

was produced to summarize these findings. To annotate peaks and assess the 

distance and location of peaks to genomic features, the Homer function 

annotatePeaks was used [403]. This function summarizes the location of peaks 

to genomic features (e.g. intergenic, intron, exon, promoter) and identifies 

specific genes associated with these peaks. Visualization of genomic distribution 

of peaks was performed by ChIPSeeker [404]. Gene ontology analysis was 

performed by the Homer function annotatePeaks with the -go option selected.  

 Motif enrichment analysis was performed by the findMotifsGenome.pl 

script of Homer. This analysis scans all peaks within the given peakset for known 
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motif consensus sequences to identify peaks that overlap with transcription factor 

binding motifs. For motif scanning, region size was set at 200 bp, centered at the 

peak summit; that is ±100 bp from the summit of each peak was scanned for 

matching sequences to known motifs. The lengths of motifs to be found were set 

to 8 bp, 10 bp, and 12 bp. Additionally, the number of unique motifs was limited 

to the top 25 enriched. The output of this analysis simply provides the most 

enriched motifs and their associated transcription factor. To determine the 

location of these motifs, annotatePeaks was used again – the differential peakset 

for a given comparison was paired with its motif enrichment dataset to identify 

peaks that contained specific motifs.  

Results 

 As a continuation of our investigation into the epigenetic modifications that 

occur during B. burgdorferi infection, we performed ATAC-seq to profile structural 

changes in chromatin at four infection time points and non-infection control: 24, 

48, 72, and 96 hours. Several quality control assessments were performed on 

our read files and compared to ENCODE standards 

(https://www.encodeproject.org/atac-seq/#standards). Insert size was determined 

for each sample. ATAC-seq utilizes a Tn5 transposase, which cleaves DNA in 

open chromatin, and as such, the majority of insert sizes will be small fragments, 

specifically subnucleosomal <150bp. Approximately 147 bp of DNA wrap around 

histones, in which the transposase will cleave and index reads at either end of 

the histone – this corresponds to a slight enrichment at 150-200bp. An additional 

minor enrichment in insert size is typically seen at di-nucleosome lengths, 
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approximately 300-400bp. In all of our samples, this pattern can be seen. 

Figure IV-1 shows representative images of these quality control measures. 

Additional quality control metrics can be found in Appendix B. In order for gene 

transcription to initiate, typically the transcription start site (TSS) is in the open 

chromatin configuration. As such, it can be expected that Tn5 accessibility at 

TSS’s is enriched at a genome-wide level. ENCODE standards require an 

enrichment score > 6; all samples passed except for one technical replicate 

within the 96-hour group (#014). Another enrichment criterion assesses the 

fraction of reads in peaks (FRiP) – a fraction >0.2 is considered passable. Again, 

all samples passed except for the same technical replicate, #014. Mitochondrial 

reads and duplicate reads are two concerns that can considerably impact library 

complexity and usable reads. ENCODE requires 25 million non-mitochondrial, 

non-duplicate reads. Following the removal of these reads, only 8 samples 

contained >25 million aligned reads. Nevertheless, while our samples did not 

meet all the requirements set by ENCODE, we continued with downstream 

analysis. 

 Peaks were called by MACS2, and differential peak analysis was 

performed by DiffBind. As stated in the methods, DiffBind forms a consensus 

peakset, which characterizes a consensus peak as being found in at least two 

samples. A total of 120,925 unique peaks were found across all samples, of 

which 82,910 peaks were found in at least 2 samples and placed within the 

consensus peakset for additional analysis. Differential peak analysis by DiffBind 
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Figure IV - 1.  Representative quality control metrics.  
(A) The insert size of control sample #001 indicating a pattern 
associated with ATAC-seq. The Tn5 transposase cleaves open 
chromatin, producing fragments of subnucleosomal size (<150 bp). 
The transposases will also cleave DNA around mono-nucleosomes, 
producing fragments of around 150-200 bp. A second minor 
enrichment can be observed at the 300-400 bp range, indicated di-
nucleosome fragments. The inset graph corresponds to log 
transformation of count numbers. (B) Bar graph of fraction of reads in 
peaks (FRiP). This is a quality control metric to determine if enrichment 
of reads occur within peaks. (C) A bar graph of transcription start site 
(TSS) enrichment for each sample. A minimum TSS enrichment score 
of 6 is required. (D) TSS enrichment peak graph of sample #001. Peak 
enrichment occurs directly above the TSS.   
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utilizes DESeq2 to determine significance, and an FDR < 0.05 was determined to 

be significant. Infected groups were compared to control and the number of 

differential peaks is as follows, while the number of open and closed peaks are in 

parentheses (Open : Closed): 24-hour – 25,464 (18,883 : 6,581); 48-hour – 7,266 

(7,068 : 198); 72-hour – 3,376 (3,372 : 4); 96-hour – 3,015 (207 : 2,808). This 

downward trend in the number of differential peaks indicates that astrocytes are 

responding to B. burgdorferi infection much more rapidly than we had initially 

expected based on our previous gene expression data. Our previous data, 

highlighted in Chapter 3, indicates peak protein production occurring at 72 to 

96 hours. However, chromatin accessibility is a requirement prior to gene 

expression, thus, finding a maximum peak enrichment for open chromatin at 

24 hours would correspond to subsequent increase in gene expression at later 

time points. At each subsequent time point, the number of differential peaks 

continues to decrease; however, it is interesting to note that while at 24, 48, and 

72 hours open chromatin predominates, while at 96 hours, the opposite is found. 

Additionally, overlapping analysis, displayed as a Venn diagram in Figure IV-2A, 

indicates peaks that are shared amongst each group and peaks that are unique 

to each time point. The following number of differential peaks are unique to each 

group: 24-Hour – 18535; 48-Hour – 1223; 72-Hour – 1355; 96-Hour – 2022. A 

total of 57 differential peaks were found in all groups.  

 The location of peaks (i.e. accessibility of chromatin) is important to 

determine the functional relevance of the changes that occur during infection. 

Generally, open chromatin is required near or within the promoter/TSS and exon 
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Figure IV - 2.  Differential peak analysis.  
(A) A Venn diagram of the number of differential peaks in each 
treatment group and those that overlap. The number of unique 
peaks of each group can be identified and the number of peaks 
shared amongst all groups is shown. (B) Differential peaks of 
each group were annotated, and their genomic features mapped 
and frequency plotted on a bar graph. 24-hour and 48-hour 
groups share similar patterns in genomic features – Intergenic 
and Intron regions were more highly enriched compared to 
promoter regions. The opposite is observed in 72 and 96-hour 
groups. (C) Gene Ontology analysis was performed on 
differential peaks; intergenic regions were removed for this 
analysis. The top 10 enriched biological processes for each 
group are shown. (D) 57 differential peaks were shared among 
all four time points. Genomic feature and biological process 
analysis was performed on these.  
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locations for gene expression, while regulatory elements such as enhancers may 

be found in intergenic and intronic regions. Therefore, we sought to determine 

the frequency of peak enrichment within specific genomic features, highlighted in 

Figure 4-2B. The 24 and 48-hour groups shared similar patterns in genomic 

feature enrichment. The majority of peaks were found within intergenic and intron 

regions, with the promoter region showing less enrichment. However, at  

72-hours, this trend changes, such that the greatest enrichment occurs in the 

promoter region, while lower enrichment was found at intergenic and intron 

locations. This continues and is in fact elevated in the 96-hour group, with the 

promoter regions containing nearly 50% of all peaks. It is important to also note 

that this increase in differential peaks at the promoter region corresponds to 

closing of accessibility, in which 2,808 out of 3,015 differential peaks were 

reduced following infection. 

 Gene ontology analysis performed by Homer provides insight into 

biological processes that are enriched. The top 10 enriched biological processes 

of differential peaks for each group and shared peaks are shown in Figure 4-2C. 

Multiple biological processes were shared between 24, 48, and 72-hour time 

points, including: Anatomical Structure development and morphogenesis, 

developmental process, and multicellular organism development. Signaling 

processes were found to be enriched within the 24-hour time point that were 

subsequently reduced at later time points. These include regulation of cell 

communication, regulation of signal transduction, and regulation of signaling. As 

many of the functions performed by astrocytes fall under the large umbrella of 
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these biological terms such as chemokine and cytokine production, this may 

suggest a restructuring of chromatin to promote this activated state. However, 

these processes change quite remarkably at the 96-hour time point; instead of 

structural and signaling processes, the astrocytes undergo chromatin 

rearrangement centered around metabolic and cellular stress. A more concise 

picture is found when analyzing peaks that are common amongst all groups. 

Biological processes based on these differential peaks indicate astrocytes 

undergoing immunological processes that include response to cytokines, immune 

cell activation (leukocytes and mast cells), and T cell chemotaxis. Furthermore, in 

line with the idea that astrocytes are undergoing subsequent chromatin 

restructuring following infection, chromatin and nucleosome assembly was found 

to be shared amongst these groups.  

 Several inflammatory and immune-related genes were found to contain 

differential peaks. Table IV-1 indicates genes of interest that were associated 

with differential peaks. It is important to note that in the table a negative fold 

change corresponds to an open conformation, while a positive fold change 

corresponds to a closed conformation. Many of these genes have previously 

been associated with B. burgdorferi infection that revolve around an inflammatory 

chemokine and cytokine response which function to attract and activate both 

innate and adaptive immune cells. In general, these peaks were found to be 

enriched towards the open configuration of chromatin and were predominately 

found within the earlier time points – 24 and 48-hours. Chemokine C-C motif 

ligands (CCLs) and Chemokine C-X-C motif ligands (CXCLs) are common 
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Table IV - 1.  List of selected peaks and associated genes 
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signaling proteins that are released by a wide range of cells. These proteins act 

as chemotactic and inflammatory cytokines that aid in the attraction of peripheral 

immune cells such as monocytes, T-lymphocytes, and neutrophils. A peak at 

CCL2 was found to be enriched within the promoter-TSS region only at the  

24-hour time point, which may indicate an increase in gene expression. CCL2 

acts as a recruitment factor for monocytes and basophils. Similarly, CCL26, an 

inflammatory and eosinophil chemotactic factor, contained an enriched peak only 

at the 24-hour time point. Additional immune genes that were unique to the  

24-hour group include TLR9, a toll-like receptor that recognizes pathogen-

associated molecular patterns (PAMPs), and CXCL17, a chemoattractant for 

dendritic cells and monocytes. TLR5 (24, 48, and 72-hour) and TLR6 (48-hour) 

were found to be enriched as well throughout multiple time points. CXCL6, a 

neutrophilic chemoattractant was also found to be enriched at 24 and 48-hours, 

and gene expression has previously been shown to be elevated in astrocytes 

[198]. CXCL13, a B lymphocyte chemoattractant that was enriched at both of 

these time points, has shown to be an important factor specifically for 

neuroborreliosis, as it has been implicated as a possible biomarker for the 

neurological condition of Lyme disease [78,79]. In contrast, a reduction at this 

CXCL13 region was observed at 96-hours. STAT1 and STAT2 are signal 

transducer proteins that act as transcription factors. Both have been observed to 

be increased in B. burgdorferi infection studies and play important roles in the 

induction of the interferon response [234,236,237]. However, both were only 

observed at 24-hours and were enriched in opposite directions – STAT1 had 
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enrichment within an intron, STAT2 showed a reduction within the TSS. STAT1 

has previously been shown to be important in mediating the inflammatory 

response for Lyme carditis, however, it is uncertain the possible impact the 

reduction of STAT2 may have within our system [405]. Though it is common for 

STAT1 and STAT2 to form a heterodimer, STAT1 has shown to interact with a 

wide range of other transcription factors including IRF1, which was shown to be 

enriched as well [406,407].  

 Under the assumption that peak enrichment within the gene corresponds 

to gene expression, it appears that at earlier time points, astrocytes elicit an initial 

inflammatory response that is later lost. This may indicate a failure in a positive 

paracrine feedback loop that may be dependent on the presence of additional 

cells and anatomical context as many of these factors function as attractants for 

other immune cells. This is evident in co-culture studies of glial cells and neurons 

in which the addition of astrocytes and microglia during B. burgdorferi infection 

led to an increase in neuronal apoptosis compared to B. burgdorferi infection 

only. In the rhesus macaque model, glial cells have been implicated in the onset 

and progression of neuroborreliosis due to the secretion of similar chemokine 

profiles including CCL2 and CXCL13 [151,283]. It is often observed that in 

comparison to more professional immune cells such as microglia, astrocytes do 

not produce a large immune and inflammatory response in regards to range and 

scale [141,408,409]. However, this seems to underscore the wide repertoire of 

supportive functions that astrocytes perform in a context dependent manner and 

may shed insight into the loss of inflammatory and immunological genes at later 
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time points. G protein-coupled receptor 183 (GPR183) was found to be enriched 

at both introns and promoter regions at all time points except 96-hours, in which 

the fold-change reversed. The function of GPRs in the context of Lyme disease is 

not fully understood, but they have been previously shown to be induced during 

infection, including GPR183, and may be associated with subsequent 

inflammation [168,410,411]. 

 B. burgdorferi has long been shown to induce the production of matrix 

degradative proteins, specifically matrix metalloproteinases (MMP2). The 

induction of these proteinases leads to the degradation of the extracellular matrix 

such as collagen and fibronectin. These have been shown to play an important 

role in the manifestation of many of the inflammatory symptoms of Lyme disease, 

including arthritis and neuroborreliosis [161,412–416]. These factors aid in the 

dissemination of B. burgdorferi through the breakdown of barriers and lead to the 

exacerbation of immune cell invasion. A number of these factors were found to 

be enriched, including MMP2 and MMP16 at a number of time points. 

Importantly, the two main activators of many of these degradative proteins, PLAU 

(urokinase, uPa) and PLAT (tissue plasminogen activator, tPA), were found to be 

enriched from 24 to 72 hours. However, in contrast, the principal inhibitor of both 

activators, SERPINE1 (plasminogen activator inhibitor-1, PAI-1), was also found 

to be enriched at these time points. Furthermore, the receptor for uPA, urokinase 

receptor (PLAUR) was found to be reduced at 96-hours. This provides further 

evidence of B. burgdorferi induction of host extracellular matrix modulators and 

provides insight into the chromatin restructuring that promotes this outcome.  
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Motif and Transcription Factor Enrichment 

 One invaluable aspect of ATAC-seq is the ability to identify specific 

transcription factor motif enrichment based on the opening of chromatin. The 

Homer package and findgenomemotif function provides detailed enrichment 

information of these motifs, their locations, and subsequent annotations of their 

respective peaks. As transcription factors can bind and promote the expression 

of many genes of a more specific function (e.g. immune regulatory genes), we 

can formulate an idea of the mechanisms and expression patterns associated 

with our infection groups. Though our previous discussion on differential peaks 

were focused on enrichment of genes within the gene body, broadening the 

scope of motif enrichment to intergenic regions can provide insight into enhancer 

locations and their respective function based on the specific transcription factor 

that may bind to it. To this end, we sought to identify the top enriched motifs of 

each group, shown in Figure IV-3. 

 Activator protein 1 (AP-1) is a major transcription factor that regulates the 

expression of genes associated with stimuli from cytokines, stress signals, and 

infections [417]. AP-1 has been shown to play important roles in cancer, both in 

tumorigenesis as well as potential tumor-suppressive functions [418–421]. The 

transcription factor has been shown to serve as regulators of the immune 

response during bacterial infection, including the mediation of inflammation and 

persistence of Chlamydia pneumoniae [422,423]. Furthermore, it plays important 

roles in immune cell differentiation [424–426]. Activation of T cells has been 

shown to be dependent on a well organized opening and closing of chromatin, 
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Figure IV - 3.  Motif enrichment analysis of differential peaks.  
Motif enrichment analysis was performed on the differential 
peaksets for each group and shared peaks. The top 5 enriched 
motifs for each group are shown along with their associated 
transcription factor (TF). Only one motif for the shared peakset 
was enriched.  
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and as such, AP-1 has been identified as a required and predominant 

transcription factor that directs this chromatin remodeling [427]. In astrocytes, 

AP-1 serves to activate several pathways that include the induction of GFAP 

production which is a marker of astrogliosis and providing neuroprotective effects 

[164,428,429]. AP-1 has also been shown to play a role in MAPK and STAT 

pathways which have been shown to be required for the induction of MMPs 

(which commonly contain AP-1 motifs) during B. burgdorferi infection [430]. This 

transcription factor has a wide range of functions that generally regulate immune 

and stress responses to a number of stimuli, and such functions seem to have 

conflicting and opposite effects. An important aspect of AP-1 is that it is 

comprised of a heterodimer that is predominately formed by proteins of the FOS 

(c-FOS, FOSB, FOSL1 (Fra1), FOSL2 (Fra2)), JUN (c-Jun, JunB, JunD), and 

ATF (ATF1-7) families, and to a lesser extent JDP (JDP-1, JDP-2). These 

proteins all share a common basic leucine zipper domain (bZIP domain) that 

allows them to dimerize with one another. Additionally, due to this conservation in 

structure, the motif binding sequences share many similarities. However, minor 

differences in binding affinity and gene activation properties highlight differential 

phenotypic outcomes. 

 When motif enrichment analysis was performed on differential peaks of 

each time point, including peaks shared between all four groups, the top enriched 

motif in each group belonged to a member of the AP-1 transcription factor family. 

Furthermore, in multiple instances, the scale of difference between the top 

enriched and second most enriched motif was an order of magnitude in regards 
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to significance – 24-hour: JunB 1e-4044, RUNX 1e-294; 48-hour: ATF3 1e-1308, 

RUNX2 1e-100. The motif for JunB was also the most enriched at 72-hours, and 

Fra1 was shown to be the top motif for 96-hours. The only motif that was not 

flagged as a possible false positive within the group of shared peaks was the 

motif for AP-1. These motifs are highlighted in Figure 4-3, and the degree of 

enrichment can be inferred by the p-value as well as the percent of targets found 

vs the percent of background. The relevance of JunB within our experimental 

model of Lyme disease is highlighted in studies showing its role in the modulation 

of inflammation and its key function in the development and activation of immune 

cells. In T-cells, JunB is essential for the development of Th17 cells and 

regulatory T cells through the promotion of IL-2, and is required for the proper 

regulation of Th2 cell-specific cytokine profile [425,431]. In an experiment 

involving the stimulation of macrophage activation through LPS, JunB was 

confirmed to be a required factor necessary for the full expression of IL-1β, an 

inflammatory cytokine that highlights macrophage activation and was also 

observed to be increased in B. burgdorferi infected astrocytes [198,432]. Though 

its role in Lyme disease is yet to be fully elucidated, it has been previously shown 

to be induced in macrophages infected with B. burgdorferi [411]. However, in 

contrast to this, our differential peak analysis indicates that at 24-hours, JunB 

shows a Log2FC of 0.44 at the promoter-TSS region, corresponding to a closing 

of chromatin, which was observed in later time points. Two conclusions can be 

drawn from this. If we assume that this correlates to a reduction in JunB 

transcription, it may underscore the closing of inflammatory genes at later time 
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points, inferred by the lack of differential opening. However, it is important to 

reiterate the similarities of motif consensus sequence between the members of 

the AP-1 family. As such, the Homer program places these proteins under the 

same or similar motifs, in which they are further ranked by matching score. 

However, in the case of 24-hour time point, JunB, BATF, and Atf3 had identical 

scores, but were ranked as such under the JunB enrichment heading. The 

reason I make this clarification is because BATF3, a member of the BATF/Atf 

family, was found to have a Log2FC -0.39 at 24-hours within the promoter-TSS 

region, corresponding to an open configuration. This continued into 48-hours  

(-0.51) and 72-hours (-0.52) at this same peak and at additional intergenic 

regions. This slight distinction may shed light onto the expression of transcription 

factors themselves as well as their impact on gene transcription. This is again 

highlighted at 48-hour motif enrichment, in which the top motif corresponds to 

Atf3. The BATF/Atf family share similarities in function to Jun in regard to the 

regulation of immunity and inflammation. Atf3 has shown to negatively regulate 

pro-inflammatory cytokine production and its expression is elevated during the 

activation of several TLRs in macrophages [433–435]. Similar motif profiles are 

seen at 72 and 96-hours and suggest a complex mechanism of the regulation of 

inflammation. At this point, without direct gene expression data to overlap with 

our ATAC-seq data, it is difficult to expand on the functional outcomes that may 

be occurring, but we are able to provide potential mechanistic routes that may 

explain and suggest astrocyte dysregulation that may be brought upon by the 

alternation of multiple AP-1 motif openings and closings.  
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Discussion 

 At present, our current study has produced insight into the chromatin 

restructuring of astrocytes in response to B. burgdorferi. We have shown that at 

earlier time points that inflammatory chemokines and interferon-related genes 

show an increase in opening that may close at later time points. Through 

biological process enrichment, we observed large changes in anatomical 

restructuring and cell communication, overlapping with the broad roles that 

astrocytes are known to undertake – this is also highlighted in the astrocyte 

infection study with B. burgdorferi performed by the Brissette lab, which indicated 

differentially expressed genes that cover a wide range of biological processes 

[198]. Of interest for future studies is the drastic change between the earlier and 

later time points, notably the shift to promoter enrichment, away from potential 

enhancer regions, and a flip in differential peak enrichment at 96-hours. 

However, at the 96-hour time point, it is important to take into consideration the 

quality of reads, in which at least one replicate (#014) performed far worse than 

other samples. However, through combining the differential peaks and 

investigating those that are shared amongst all groups, we were able to get 

insight into core functional outcomes that may be taking place. When observing 

these peaks, a common biological process of the immune response was seen. 

This is highlighted by leukocyte and mast cell activation and response to cytokine 

stimulus. Furthermore, to lend credibility to the chromatin restructuring that takes 

place following infection, the biological processes of nucleosome and chromatin 

assembly were enriched.  
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 Our investigation into chromatin restructuring as a potential marker and 

mechanism for neuroborreliosis and PTLDS stemmed from a lack of evidentiary 

findings and further interest was piqued by the observation of chromatin 

assembly processes being enriched in the aforementioned astrocyte-Borrelia 

paper by Casselli et al. From this, our initial experimental design sought to 

perform ATAC-seq to obtain a global, genome-wide view of the changes in 

chromatin structure. Additionally, based on goals, our methodology was to 

correlate these changes to gene expression through RNA-seq and to determine 

specific histone modifications as a mechanistic outcome. At the onset of this 

project, we had set up our experiments such that we collected enough astrocytes 

to be used for RNA-seq and ChIP-PCR or ChIP-seq to find direct correlations to 

changes in chromatin structure. Unfortunately, we had encountered numerous 

technical limitations during the ATAC-seq procedure. Not shown are the multiple 

infection experiments and subsequent ATAC-seq experiments performed on 

Illumina Miseq instruments to determine the efficacy of the procedure. 

Eventually, we were able to meet quality control prerequisites for greater 

coverage sequencing on Illumina HiSeq machines. However, as shown, many 

samples did not meet the final ENCODE data standards. With this in mind, and 

though the depth of coverage was not optimal, we were able to garner brief 

insight into alternative mechanistic routes of the astrocytic response to B. 

burgdorferi. It is hopeful that with further investigation into bacterial infections, 

including Lyme disease, and their impacts as epimutagens, that a more explicit 

pathogenesis of neuroborreliosis and PTLDS will soon be revealed. 
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CHAPTER V 

DISCUSSION 

Summary of Findings, Limitations, and Future Directions 

 At the beginning of my graduate career and with the Borrelia burgdorferi 

expertise of Dr. Catherine Brissette and neuroscience expertise of Dr. Watt, I had 

sought to investigate and expound two major gaps in knowledge that center on 

the neurological effects of Lyme disease. To date there is no clear evidence on 

the route of entry for B. burgdorferi into the CNS. Additionally, once within the 

CNS, the pathogenesis of the neurological effects of PTLDS is unknown. Though 

there are multiple competing theories within the field, we sought to investigate 

alternative and novel hypotheses for these questions. 

 In Chapter II, our experiments investigated an alternative route of entry 

into the CNS aside from the blood-brain barrier. Though previous research had 

been done on endothelial cells simulating this barrier, further methods on the 

dissemination into the CNS have yet to be performed. This uncertainty is further 

exacerbated by the logical conclusion that if B. burgdorferi enters the CNS via 

the blood-brain barrier, it would therefore be inferred that the bacteria will be 

commonly found within the brain parenchyma. However, due to obvious 

limitations in performing brain biopsies on living humans, and the fact that Lyme 

disease is rarely fatal preventing post-mortem analysis, this outcome is currently 
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unanswered. In defense of this approach, there is some evidence to suggest 

invasion of the parenchyma through the use of animal models, but such data is 

limited. Considering this, we sought to follow clinical evidentiary findings that 

would lead to a better understanding of this phenomenon. As stated previously, 

B. burgdorferi is able to enter the CNS – this is evident by lumbar puncture and 

direct culturing of the bacteria from the CSF of neuroborreliosis patients. 

Furthermore, it is well-known that the choroid plexus is highly implicated in 

bacterial and viral infections in allowing passage of the pathogen or peripheral 

immune cells directly into the CSF as the choroid plexus epithelium composes 

the Blood-CSF barrier. We therefore sought to use this as a system to determine 

the impact of B. burgdorferi on cultured choroid plexus epithelium cells.  

 Our findings had indicated what we initially hypothesized and what is in 

line with current research – a robust inflammatory and immune response that is 

produced by these epithelial cells. Furthermore, as observed in other infections, 

a common cytokine profile of the epithelium was that of secreted factors for the 

chemotaxis of peripheral immune cells. At the onset of our experiments, it was 

unknown how barrier related genes would be altered. As this was performed in 

vitro the choroid plexus epithelial cells lacked important physiological and 

anatomical context that may inhibit findings into barrier properties. However, to 

our surprise, we found a number of genes of barrier components and regulatory 

and structural factors to be downregulated. An extrapolation into an in vivo 

context would suggest that the integrity of the blood-CSF barrier may be 

compromised. Additionally, our downstream pathway analysis supported these 
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conclusions. Based on these promising results, investigating this system within 

an in vivo model is our aim for future experiments. 

 In Chapters III and IV, we had sought to investigate a novel mechanism 

behind PTLDS. Current hypotheses include the establishment of a low and 

undetectable infection of B. burgdorferi even after antibiotic treatment, and the 

amber hypothesis which states that the dead bacteria or debris from the bacteria 

is sufficient to produce a continual inflammatory response. The former hypothesis 

has not been well confirmed, while the later has shown promising results in which 

cell components of B. burgdorferi have been shown to elicit an immune 

response. Both ideas revolve around a persistent inflammatory state that would 

lead to deleterious outcomes. With this in mind, we sought to investigate 

mechanisms that would allow for inflammatory and immune genes to remain in a 

high transcript state that would persist after infection had been cleared. Through 

previous work of the epimutagen properties of other bacterial infections, we 

aimed to apply this to Lyme disease, specifically the neurological aspects of 

PTLDS. Due to the important and wide scope of astrocytic functions, we aimed to 

investigate the impact of B. burgdorferi infection of the astrocyte methylome and 

chromatin landscape.  

 In Chapter III, investigating the impact on DNA methylation, we ran into a 

major technical limitation within our methodology. As our primary human samples 

were obtained from three different individuals, our variability amongst replicates 

was so great that no differential methylation states were found. However, through 

the pooling of specific infection groups, we were able to gain limited findings that 
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included changes in methylation at sites of genes whose functions involved cell 

signaling and modulation of immune response. These genes were specifically 

involved in extracellular glutamate modulation and downregulation of NF-κB.  

 In Chapter IV, we investigated the chromatin landscape in response to 

B. burgdorferi through the use of ATAC-seq. Though we had altered our 

methodology to take into account the variability of primary samples, we ran into a 

number of technical issues that limited our access to high coverage sequencing 

data. However, our data was sufficient to provide a clear indication into the 

changes in that are occurring within astrocytes in response to infection. We 

observed large initial change in chromatin accessibility that predominately lead to 

open states throughout the genome. Interestingly, at later time points, these 

enriched regions continued to reduce in number. Many of the initial differential 

peaks were found to be involved in innate immunity, specifically cell signaling 

through cytokine production. However, looking at peaks shared amongst all time 

points, we were able to clearly see that immune cell activation and chromatin 

restructuring was a shared characteristic between all groups. In support of this, 

motif enrichment analysis indicated AP-1 transcription factor motifs were highly 

enriched across each group. Our conclusion indicates that an initial innate 

immune response is produced by astrocytes, that may not persist at later time 

points; however, based on motif analysis, this may just indicate a change gene 

profile that still remains within the inflammatory and immune response group. Our 

experiments were started with the expressed intent to provide correlative data of 

gene expression and histone modifications to our ATAC-seq data. However, due 
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to limitations in the ATAC-seq procedure, such analysis was not undertaken. Our 

future directions would aim to continue this line of thought. 

Conclusion 

 B. burgdorferi has been around for thousands of years, inflicting pain and 

suffering in countless individuals, and though research has made great advances 

in providing medical care of patients, there are still many avenues of the disease 

to uncover. For the five years that span my graduate career, I had set out to add 

to the wealth of information within the Lyme disease field, to contribute some 

helpful piece of knowledge in understanding this disease. Although some 

experiments were met with limitations, I have felt I have met this goal to a 

degree. It is hopeful that with the gain in publicity, understanding of the disease 

will becoming even more widespread within the public. Through this education, 

we can ameliorate many aspects of the disease through simple administration of 

antibiotics. My research had focused on the aspect of the disease in which there 

is high correlation between a failure in timely antibiotic treatment and the onset of 

late stage and persistent symptoms – the effects of neuroborreliosis and PTLDS 

can be drastic, lowering the quality of life for a lifetime, and unfortunately at this 

stage, there are no current therapeutics for patients. It is my anticipation that 

future research will be successful in uncovering these mechanisms and provide 

treatment options for the endless number of patients who suffer from Lyme 

disease. 
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Table 1 Full list of significant differentially expressed genes for choroid plexus 
epithelial cells infected with B. burgdorferi – Chapter 2 

Gene Names Base Mean log2FoldChange padj Control 
Mean 

Treated 48 
Mean 

OASL 448.17 1.9238 7.63E-18 93.654 802.687 

RSAD2 764.51 1.4247 7.87E-09 230.775 1298.247 

IFIT1 8346.65 1.4001 1.51E-10 3453.899 13239.393 

CCL5 430.80 1.3553 4.67E-09 174.752 686.852 

IFITM1 27173.06 1.3364 1.99E-13 13318.547 41027.568 

IFIT3 12167.59 1.2283 6.81E-11 6356.379 17978.807 

PPP1R1B 241.47 1.1815 9.29E-07 108.641 374.307 

CMPK2 1451.15 1.1521 7.77E-06 588.991 2313.305 

HERC6 4050.63 1.0908 2.80E-08 2287.800 5813.465 

HERC5 188.00 1.0886 2.14E-07 103.688 272.312 

OAS2 10016.30 1.0649 3.93E-06 5325.848 14706.761 

OAS1 6135.39 1.0618 1.35E-05 3142.753 9128.029 

RTP4 221.62 0.9955 0.000254 104.579 338.651 

HSD11B1 718.06 0.9951 1.70E-08 443.592 992.533 

USP18 2146.79 0.9890 1.70E-05 1222.883 3070.692 

XAF1 2054.46 0.9762 1.13E-07 1271.616 2837.299 

INMT 1711.12 0.9706 1.70E-05 999.312 2422.929 

IFI44L 2995.77 0.9699 3.27E-07 1845.838 4145.700 

ISG15 21665.63 0.9699 0.000247 11334.942 31996.328 

SECTM1 79.24 0.9674 0.000655 30.397 128.073 

PARP9 4958.89 0.9354 2.80E-08 3192.496 6725.287 

NGF 153.50 0.9319 0.00033 85.767 221.243 

CXCL2 2684.76 0.9276 3.00E-07 1716.511 3653.008 

CDKN1C 1645.23 0.9239 3.66E-06 1033.178 2257.291 

SPOCK2 455.73 0.9175 6.00E-05 276.124 635.345 

BATF2 240.06 0.9165 0.000655 132.148 347.970 

IDO1 68.63 0.9158 0.001608 31.734 105.521 

IFI27 1735.28 0.9145 0.00125 889.410 2581.152 

GAS1 6260.61 0.8966 1.19E-06 4058.639 8462.586 

LRG1 112.72 0.8912 0.000847 64.483 160.947 

EPSTI1 4404.34 0.8881 9.00E-07 2880.335 5928.340 

CXCL3 364.31 0.8654 0.000102 231.804 496.815 

ODF3B 642.22 0.8466 0.001328 389.511 894.921 

PLSCR1 3923.08 0.8455 5.73E-07 2654.131 5192.032 

ELANE 23.80 0.8378 0.005424 8.920 38.672 

CRLF1 398.20 0.8353 0.000538 253.603 542.789 

AP3B2 30.46 0.8275 0.00616 11.530 49.387 
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CD38 311.03 0.8235 8.32E-05 205.946 416.114 

MX1 21861.91 0.8191 0.007334 8805.820 34917.998 

SMOC1 2802.39 0.8188 0.00248 1721.887 3882.899 

LGALS9 2257.86 0.7920 0.008757 1319.674 3196.040 

IRF7 4832.52 0.7805 0.002187 3159.848 6505.187 

PDK4 452.86 0.7759 0.006053 285.628 620.089 

CAMK1G 157.80 0.7704 0.001414 105.371 210.235 

EFNA1 38.45 0.7647 0.015876 16.329 60.564 

IFI35 9889.28 0.7647 0.004436 6442.943 13335.619 

ATOH8 450.69 0.7617 3.52E-05 317.181 584.195 

ISG20 170.06 0.7598 0.012529 103.827 236.303 

PF4V1 431.88 0.7551 0.009922 273.020 590.735 

GBP4 203.89 0.7533 0.013558 125.275 282.513 

CDH23 105.83 0.7532 0.01992 59.603 152.055 

CYP26B1 3324.10 0.7459 3.12E-05 2365.098 4283.106 

SIGLEC17P 15.10 0.7455 0.007334 2.980 27.220 

CEBPD 13416.80 0.7417 8.23E-08 9756.188 17077.418 

PDE4B 453.60 0.7397 0.018726 276.549 630.641 

CXCL1 24802.58 0.7349 1.35E-05 17850.741 31754.418 

STAT1 24312.97 0.7346 1.89E-05 17469.009 31156.939 

TNFSF10 45.87 0.7335 0.028897 24.007 67.731 

OAS3 11840.52 0.7259 0.008201 7931.005 15750.037 

IGFBP5 6435.36 0.7204 0.01255 4253.875 8616.835 

NGFR 103.34 0.7162 0.032294 61.544 145.129 

MYT1L 19.93 0.7161 0.022778 7.255 32.607 

CCL13 31.53 0.7147 0.032672 14.274 48.789 

LOC101929412 20.08 0.7132 0.01231 4.563 35.602 

SMTNL2 21.59 0.7107 0.025255 7.871 35.317 

SAMHD1 4581.76 0.7051 8.13E-09 3411.478 5752.051 

KCNG2 163.54 0.7048 0.021866 106.579 220.496 

TRIM25 7492.37 0.6973 0.000481 5423.863 9560.882 

SOCS3 4237.99 0.6951 4.60E-05 3112.299 5363.684 

DACT2 199.21 0.6905 0.005831 140.424 257.992 

C3 413.70 0.6893 0.037701 264.141 563.268 

CA8 25.93 0.6879 0.04867 12.722 39.129 

FGFR4 342.51 0.6878 0.032358 223.631 461.395 

LINC00475 143.98 0.6859 0.020191 97.426 190.537 

C1QTNF1 4196.86 0.6800 2.77E-07 3153.018 5240.702 

IFITM3 134616.32 0.6778 2.45E-05 100183.682 169048.962 

CPZ 7805.47 0.6735 0.0019 5679.915 9931.032 

DHX58 3020.72 0.6698 0.006368 2167.513 3873.921 
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HELZ2 11186.20 0.6676 0.007739 8014.161 14358.236 

KCNJ8 265.72 0.6624 0.013697 188.958 342.483 

CCR7 158.55 0.6597 0.009835 113.688 203.407 

AMPH 247.46 0.6571 0.002201 181.992 312.937 

ENPP2 1627.81 0.6568 0.024745 1138.721 2116.909 

G0S2 562.19 0.6562 0.001042 416.806 707.580 

CXCL6 37203.61 0.6550 2.30E-05 28074.261 46332.957 

CXCL5 884.05 0.6525 0.009551 640.126 1127.972 

APOC1 658.41 0.6506 0.010323 476.348 840.480 

ISYNA1 29489.12 0.6481 3.17E-07 22525.219 36453.014 

PAQR5 694.55 0.6479 0.016003 498.674 890.436 

FAM65C 3790.29 0.6446 3.80E-05 2873.558 4707.021 

ALG9 6918.94 0.6427 0.00616 5089.152 8748.729 

DDX58 2349.17 0.6413 0.019759 1687.631 3010.712 

SELENBP1 1305.74 0.6399 0.00025 986.655 1624.817 

TLE2 212.86 0.6376 0.046517 148.204 277.519 

THEMIS2 713.55 0.6253 0.010589 528.144 898.959 

ZP1 97.82 0.6251 0.038453 70.043 125.591 

IFIH1 1398.22 0.6235 0.002252 1054.007 1742.431 

RAB20 611.30 0.6202 0.000668 465.030 757.576 

SLC1A3 1256.51 0.6195 0.029817 913.147 1599.882 

SOD2 8623.19 0.6129 0.000137 6635.243 10611.145 

PARP10 8678.95 0.6118 0.042829 6278.935 11078.964 

ADAMTS15 20417.38 0.6101 0.000254 15704.121 25130.643 

SLC15A3 2246.48 0.6071 0.049637 1624.078 2868.879 

TGFB3 2571.68 0.6051 0.001641 1967.566 3175.788 

ID1 1018.16 0.6027 0.00616 772.151 1264.159 

OLFM2 552.76 0.6020 0.004436 421.328 684.199 

DTX3L 4507.30 0.5998 0.000723 3474.141 5540.461 

IGFBP4 323911.54 0.5998 8.23E-08 254032.810 393790.277 

CFB 2104.02 0.5988 0.003654 1607.879 2600.170 

SAMD11 307.62 0.5956 0.006791 234.535 380.711 

UNC93B1 6459.08 0.5929 0.014694 4882.722 8035.439 

RGMA 679.66 0.5897 0.000466 528.371 830.955 

IFI44 1716.37 0.5832 0.004908 1322.751 2109.992 

APOE 94745.90 0.5739 0.006346 73314.091 116177.699 

IFITM2 18767.24 0.5717 0.000815 14705.382 22829.098 

SERPINA3 7499.36 0.5659 0.023579 5752.195 9246.524 

NDUFA4L2 1429.86 0.5589 0.007507 1116.554 1743.163 

CLEC3B 7705.91 0.5588 0.001414 6071.223 9340.600 

CYP4X1 3141.67 0.5517 0.023579 2436.368 3846.969 
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IGFBP3 14520.21 0.5425 0.001586 11542.732 17497.698 

C19orf66 6649.66 0.5393 0.034535 5178.861 8120.457 

THOC6 1333.77 0.5382 0.002789 1060.170 1607.363 

ASS1 12719.21 0.5371 4.11E-05 10222.203 15216.216 

UBE2L6 16178.97 0.5343 0.034193 12652.521 19705.421 

BEST1 464.03 0.5297 0.041217 363.008 565.059 

TRIM21 4075.79 0.5291 0.046668 3184.880 4966.697 

APOL6 3085.57 0.5244 0.003758 2470.408 3700.736 

PPAP2B 2533.78 0.5238 0.006346 2024.429 3043.132 

PODN 804.54 0.5188 0.042954 634.538 974.538 

RNF213 14441.39 0.5183 0.008846 11553.140 17329.644 

AKR1C1 1478.84 0.5124 0.02802 1177.365 1780.305 

NR1H3 1265.29 0.5122 0.007334 1017.278 1513.298 

TNFRSF1B 17682.52 0.5020 6.92E-05 14452.644 20912.388 

AKR1C3 1193.07 0.5017 0.017555 960.488 1425.651 

CA11 1516.51 0.4992 0.002759 1232.563 1800.450 

COLEC11 4957.41 0.4960 0.016607 4004.743 5910.071 

HES4 4140.44 0.4911 0.038453 3333.376 4947.503 

C11orf96 5527.48 0.4877 0.001058 4531.730 6523.222 

CCL2 25983.24 0.4794 0.002206 21356.008 30610.466 

PDGFRL 6152.46 0.4766 0.002187 5064.676 7240.238 

KCNE4 4198.15 0.4705 0.000655 3474.862 4921.445 

VWCE 451.84 0.4647 0.018312 371.498 532.186 

PISD 10446.39 0.4610 0.001201 8678.277 12214.495 

DDIT4 16547.00 0.4602 0.005091 13710.057 19383.947 

C10orf10 4334.99 0.4586 0.030155 3567.986 5101.989 

SP110 2553.40 0.4581 0.011885 2111.436 2995.357 

STAT2 19287.98 0.4566 0.026725 15905.159 22670.802 

COL5A3 14742.58 0.4564 0.003422 12251.194 17233.967 

HSPA2 2392.15 0.4497 0.038887 1976.499 2807.804 

PHYHD1 754.55 0.4420 0.009585 629.842 879.259 

MPZ 1948.44 0.4240 0.00894 1642.458 2254.427 

GBP2 3103.50 0.4001 0.049661 2633.342 3573.661 

PLEKHG3 2343.67 0.3895 0.009922 2008.383 2678.957 

TXNIP 14707.53 0.3848 0.042325 12587.712 16827.341 

PAMR1 67991.66 0.3830 0.008846 58469.176 77514.136 

CHST7 2414.89 0.3733 0.028897 2081.125 2748.655 

GGT5 48308.77 0.3662 0.014077 41840.675 54776.864 

RASL10B 2537.26 0.3604 0.034321 2199.725 2874.805 

CHST2 59735.18 0.3296 0.042954 52523.474 66946.882 

CPT1A 7587.48 0.3285 0.034825 6677.758 8497.195 
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PALLD 35487.29 -0.3054 0.041217 39421.193 31553.388 

CAPN2 111661.34 -0.3376 0.047708 125532.075 97790.597 

SORT1 20012.41 -0.3431 0.014077 22505.069 17519.752 

FRMD4A 10217.04 -0.3571 0.017093 11550.012 8884.064 

OSBPL10 3241.84 -0.3674 0.042705 3684.217 2799.458 

DKK1 3380.17 -0.3707 0.019039 3840.965 2919.377 

BHLHE40 13633.08 -0.3747 0.020191 15515.633 11750.530 

CCND1 121589.23 -0.3768 0.008102 138294.436 104884.033 

PCDH7 3082.73 -0.3969 0.011885 3533.661 2631.802 

CLCN4 650.56 -0.4071 0.034193 750.239 550.886 

FRMD5 1238.87 -0.4245 0.01386 1434.914 1042.835 

NES 21224.21 -0.4246 0.008757 24564.138 17884.290 

MAGI1 1725.13 -0.4272 0.03935 2006.774 1443.490 

FAM92A1 1212.11 -0.4273 0.014354 1405.986 1018.234 

MYLK 1346.72 -0.4353 0.014211 1566.508 1126.924 

C12orf75 7263.94 -0.4509 0.001852 8467.286 6060.595 

KIAA1549L 2019.21 -0.4637 0.040845 2384.735 1653.690 

NTN4 8292.00 -0.4644 0.001042 9704.817 6879.174 

CSPG4 25934.42 -0.4668 0.034321 30644.203 21224.646 

LTBP2 49121.85 -0.4692 0.010762 57848.256 40395.452 

ATP1B1 1279.56 -0.4777 0.034878 1519.140 1039.990 

ARL4C 7714.00 -0.4842 0.000847 9089.598 6338.397 

CDKN2B 16386.28 -0.4957 1.70E-05 19317.945 13454.622 

MMP1 947.51 -0.4965 0.01112 1127.636 767.376 

DIRAS3 5886.67 -0.5023 0.005859 7008.484 4764.856 

FLT1 962.05 -0.5036 0.01255 1149.131 774.978 

PDGFC 3292.89 -0.5057 4.18E-05 3897.518 2688.269 

TM6SF1 494.04 -0.5059 0.015561 591.441 396.640 

LAMA3 761.06 -0.5083 0.015414 911.261 610.855 

ITGBL1 14063.57 -0.5090 0.000512 16706.643 11420.504 

LXN 7618.86 -0.5133 0.002481 9091.339 6146.387 

SIGLEC15 524.95 -0.5184 0.032672 634.177 415.728 

KCNMA1 570.93 -0.5206 0.046696 692.577 449.279 

FGF1 588.74 -0.5241 0.042964 714.932 462.558 

COMMD8 1395.17 -0.5248 0.031748 1690.895 1099.450 

SERPIND1 733.45 -0.5264 0.03935 890.764 576.129 

TPD52L1 598.81 -0.5268 0.024515 724.842 472.773 

SERPINE1 346899.04 -0.5281 0.006053 417291.420 276506.653 

ZDHHC2 1273.03 -0.5282 0.019212 1539.857 1006.212 

MTSS1 2163.89 -0.5315 0.000231 2587.983 1739.797 

MYOZ2 384.74 -0.5350 0.017172 466.460 303.025 
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LMO7 10944.04 -0.5480 0.022213 13372.659 8515.425 

ANKRD1 7067.23 -0.5549 2.29E-06 8485.715 5648.743 

VEGFC 1349.71 -0.5697 0.000961 1641.112 1058.300 

4-Mar 944.63 -0.5788 0.001857 1154.753 734.505 

AHNAK2 23919.03 -0.5840 0.002201 29322.810 18515.250 

C5orf28 621.66 -0.5869 0.033145 778.005 465.316 

EDN1 162.77 -0.5913 0.03609 204.381 121.166 

MAMDC2 1053.76 -0.5924 0.000301 1288.716 818.809 

ANXA1 21179.88 -0.5933 0.02466 26497.676 15862.085 

PTPRR 126.07 -0.5997 0.047248 160.023 92.124 

PLAT 113441.44 -0.6000 0.01255 141402.940 85479.930 

TMEM200A 7045.78 -0.6032 1.08E-06 8591.029 5500.521 

CRHBP 600.20 -0.6160 0.001694 744.354 456.054 

SMURF2 3482.59 -0.6220 0.001857 4333.109 2632.067 

PDCD10 1390.63 -0.6326 0.017432 1770.018 1011.236 

NEXN 3077.42 -0.6339 0.015809 3914.026 2240.813 

STXBP3 1218.20 -0.6358 0.018604 1554.927 881.469 

WNT5B 2835.30 -0.6366 0.001201 3542.047 2128.549 

TNFRSF10D 13044.79 -0.6375 0.003695 16396.121 9693.465 

7-Sep 9071.48 -0.6386 0.039818 11785.485 6357.479 

LCA5 166.00 -0.6390 0.047248 217.154 114.838 

GIPC2 84.82 -0.6396 0.047708 111.147 58.484 

PLCH2 616.93 -0.6406 0.005979 778.841 455.019 

C15orf65 181.02 -0.6412 0.009835 229.828 132.219 

LARP7 1740.54 -0.6486 0.014077 2228.296 1252.792 

CDH2 4337.00 -0.6500 3.70E-07 5365.299 3308.703 

VRK2 316.24 -0.6502 0.022213 408.638 223.846 

STAG2 1086.30 -0.6585 0.04535 1444.038 728.566 

AKAP5 227.55 -0.6617 0.029817 298.536 156.555 

BLZF1 707.74 -0.6668 0.044212 948.297 467.174 

SCOC 2913.60 -0.6781 0.025915 3856.985 1970.217 

TWF1 2914.00 -0.6790 0.038453 3925.453 1902.548 

ST6GAL2 170.75 -0.6803 0.017615 223.927 117.564 

NXT2 253.22 -0.6803 0.020191 333.674 172.771 

MAP3K7CL 4170.24 -0.6852 1.44E-05 5244.675 3095.805 

STK38L 897.36 -0.6925 0.019776 1191.938 602.788 

NEK7 5457.83 -0.7038 0.014441 7246.618 3669.044 

PCDH10 8287.41 -0.7054 0.000243 10579.977 5994.834 

TRIM23 367.97 -0.7088 0.020113 496.282 239.650 

SMC6 1013.08 -0.7107 0.011535 1343.726 682.430 

ZDHHC20 1586.52 -0.7108 0.016003 2124.814 1048.218 
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DYNLT3 2962.65 -0.7199 0.004263 3884.350 2040.952 

ASPN 489.31 -0.7234 0.020191 670.258 308.358 

DNAJB4 4610.34 -0.7244 0.006346 6097.170 3123.502 

E2F7 426.92 -0.7248 0.00033 550.295 303.549 

ARPP21 405.79 -0.7273 3.34E-05 519.482 292.093 

LOC100126784 562.67 -0.7275 1.70E-05 718.673 406.659 

NAV2 2237.87 -0.7299 5.46E-07 2844.299 1631.446 

GREM1 5666.75 -0.7448 3.15E-07 7232.619 4100.881 

PTPRB 813.68 -0.7568 4.60E-05 1054.405 572.949 

LACC1 361.02 -0.7597 0.008256 492.903 229.139 

FGF5 119.94 -0.7660 0.004125 161.680 78.201 

KRT34 148.20 -0.7737 0.002252 198.858 97.552 

CLDN14 41.45 -0.7785 0.014354 64.146 18.763 

DCSTAMP 128.12 -0.7895 0.001852 172.890 83.356 

KCNN4 262.98 -0.7953 0.00493 363.743 162.214 

PODXL 2583.24 -0.9762 6.91E-07 3594.753 1571.733 
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Figure Appendix B – 1: TSS enrichment – Chapter IV 
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Figure Appendix B – 2: PCR Bottleneck Coefficient – Chapter IV 
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Figure Appendix B – 3: Percent of duplicate and mitochondrial reads 
 – Chapter IV 
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