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ABSTRACT 
 
 The medial entorhinal cortex (MEC) is a critical region for both limbic functions as 

well as learning and memory. In addition to these normal processes, the MEC is also 

implicated in several disorders including epilepsy, Alzheimer’s disease, and several 

neuropsychiatric disorders. The MEC’s function and role in various disorders is 

intimately related to its underlying cellular activity. The primary neuronal cell types in 

this region consist of glutamatergic principle cells and GABAergic local inhibitory 

interneurons. This dissertation consists of three aims related to the neuromodulation of 

these cells located in the superficial layers of the MEC—the primary input source to the 

hippocampus. The first aim addresses how dopamine (DA) alters GABAergic 

transmission. The second aim also considers GABAergic transmission but examines its 

modulation by histamine (HA). Finally, the third aim investigates mechanisms of group I 

metabotropic glutamate receptor(mGluR)-induced increases in layer III principal cell 

excitability. 

 For Study 1, exogenous application of DA increases spontaneous inhibitory 

postsynaptic currents (sIPSCs) recorded from layer II neurons. This increase is mediated 

by a promiscuous interaction with the 1 adrenergic receptors (1 ARs) found on the 

MEC interneurons. Application of amphetamine to elevate extracellular DA 

concentrations mimic theses effects in an 1 AR-dependent fashion. Activation of 

interneuron 1 AR-induced depolarization is mediated by inhibition of inwardly 

rectifying K+ channels (Kirs). 



xvi 

 For Study 2, exogenous application of HA increases sIPSCs recorded from layer II 

principal neurons. This increase requires both H1 and H2 receptors located on 

GABAergic interneurons. The magnitude of HA-induced depolarization is significantly 

larger within one class of tested interneurons and HA-induced depolarization of 

interneurons involves both the inhibition of (Kirs) and activation of a TTX-insensitive 

Na+ current.  

 For Study 3, activation of group I mGluRs increases action potential firing, 

depolarization and generation of inward currents in layer III pyramidal neurons. This 

increase is sensitive to antagonists for both mGluR1 and mGluR5, indicating the 

functional presence of both receptors. The mGluR-induced currents are mediated by a 

non-selective cation channel that contains TRPC4 and TRPC5 subunits. 
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CHAPTER I 

INTRODUCTION 

Preface 

 The topic of this dissertation is focused on neuromodulatory mechanisms within 

the entorhinal cortex (EC), a region located within the medial temporal lobe (MTL). The 

EC is a crucial component for learning and memory processes, as well as a component of 

the limbic system. Expanding the knowledge base regarding how activity is modulated in 

this region is necessary to more accurately understand the EC functional role and its role 

in disease. 

 Both glutamate and -aminobutyric acid (GABA) are the primary 

neurotransmitters in the EC. The goal of this dissertation is to address some of the gaps in 

knowledge regarding modulation of glutamatergic and GABAergic transmission within 

the EC. It is important to have a fundamental appreciation of the cytoarchitecture, 

anatomical wiring, and both the functional and pathophysiological roles of the EC. This 

introduction serves to provide the reader with a background of the EC. 

 For this dissertation, three separate neuromodulatory studies were conducted. The 

first two concern the monoamines dopamine and histamine and their modulation of the 

GABAergic system in the EC. The third study concerns glutamatergic transmission and 

specifically examines group I metabotropic glutamate receptor (mGluR)-dependent 

modulation of principal cell excitability in the EC. Each results chapter provides 

additional introductory material relevant to that study.
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Memory Systems Reside in the Medial Temporal Lobe 

Lesions to the MTL Impair Learning and Memory 

 A study published in 1957 described treatment outcomes following bilateral 

surgical excision of a substantial portion of the MTL from a patient suffering from 

intractable epilepsy. The procedure rendered the patient, referred to as H.M, with partial 

retrograde and profound anterograde amnesia (Scoville and Milner, 1957). H.M. 

remained capable of learning new motor tasks (Milner, 1962), suggesting that different 

memory systems involve different brain regions. The tragic outcome of H.M.’s procedure 

established that the MTL is an important brain structure involved in the encoding and 

retrieval of explicit (i.e. episodic- and semantic-based) memories and initiated decades of 

intense research into the underlying structures of the MTL responsible for these 

processes.  

 Both the hippocampus and amygdala were known targets of H.M.’s surgery but 

how these structures and what—if any—other related regions were impacted remained 

unknown. Subsequent lesion studies targeting similar MTL structures in non-human 

primates (Mishkin, 1978; Mahut et al., 1982) and rodents (Olton et al., 1978; Becker et 

al., 1980) validated the key role of the MTL in learning and memory tasks. Removal of 

both amygdala and hippocampus produced the most profound cognitive deficits. 

However, subsequent studies that produced more selective lesions of the amygdala while 

minimizing damage to adjacent cortical regions did not impact performance on memory 

tasks (Zola-Morgan et al., 1989a). This finding suggests that the amygdala is not 

important for lesion-induced memory impairment. An alternative hypothesis was that the 

resultant damage to the surrounding cortical regions in previous, less-selective lesion 
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studies where both amygdala and hippocampus were targeted was actually the source of 

the additive impairment seen, compared to lesioning only the hippocampus. Indeed, 

selective lesions to only the perirhinal and parahippocampal regions produced significant 

impairments similar to those originally described in earlier combined hippocampal-

amygdala removals (Zola-Morgan et al., 1989b). Thus, it appeared H.M.’s profound 

memory loss was due to parahippocampal-hippocampal ablations.  

 Subsequent advances in imaging technologies ultimately demonstrated that 

smaller than originally conceived portions of the hippocampus and amygdala were 

removed in patient H.M., whereas all the adjacent EC was removed. The perirhinal and 

parahippocampal cortex were relatively preserved in H.M.’s surgery (Corkin et al., 1997). 

These lesion and imaging studies firmly established the medial temporal lobe—

specifically the parahippocampal, entorhinal, and hippocampal regions—as being a 

crucial structure for learning and memory processes. 

Early Structural and Functional Investigations Aimed at Understanding MTL 

Parahippocampal-Entorhinal-Hippocampal Regions  

 

 Early descriptions of EC were noted by Santiago Ramon y Cajal and, later, Rafael 

Lorente de No (Ramon y Cajal, 1902; Lorente de No, 1933). Both noted dense 

projections extending to the dentate gyrus (DG), indicating a strong connection between 

the EC and hippocampus. This projection ultimately became known as the perforant 

pathway, owing its name to the perforating fibers through the subiculum as they extend to 

the DG. What was unclear was the direction of connections and what upstream sites 

project to the EC. 

 Silver impregnation studies in non-human primates demonstrate that several 

cortical regions converge onto parahippocampal regions, including the EC (van Hoesen et 
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al., 1972), suggesting that the hippocampus is a site for integration of information from 

many sensory modalities. Electrophysiological and degeneration studies conducted in the 

1960’s and 1970’s began clarifying the connections of EC-hippocampal structures and 

led to the establishment of the lamellar hypothesis of the hippocampus (Andersen et al., 

1971). This hypothesis essentially held that wiring of the hippocampus was 

topographically restricted to the transverse plane and that individual lamellae were 

functional units of the hippocampus. Central to the lamellae was the tri-synaptic circuit 

which, stated briefly, holds that cortical information is relayed into the hippocampus via 

excitatory connections from the EC to the DG. Information is then propagated via fibers, 

referred to as the mossy fiber pathway, that connect the DG to CA3. The next fiber 

connection—the Schaffer collateral pathway—connects CA3 to CA1. Finally, the CA1 

region projects out of the hippocampus to septum, hypothalamus, and contralateral 

hippocampus (Andersen et al., 1971). 

 The synapses, of this circuitry are excitatory in nature and exhibit a high degree of 

plasticity in response to stimuli. The first detailed account of this process described a 

long-lasting potentiation phenomena at the EC-DG synapse resulting from a brief, high-

frequency electrical stimulation of the perforant pathway (Bliss and Lømo, 1973). Such 

plasticity became considered as the cellular basis for learning and memory. Around the 

same time, unit-recording in the hippocampus of awake and behaving rats suggested that 

activity of individual cells corresponded to an animal’s specific spatial position (O’Keefe 

and Dostrovsky, 1971).  

 These combinatorial approaches involving anatomical, functional, and behavioral 

experiments provided early evidence of the substrates within the MTL that are important 
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for learning and memory. The rodent provides a useful model for investigating the 

anatomical and functional aspects of the parahippocampal-hippocampal system and was 

the model used in this dissertation. The following section provides a more detailed 

overview of the anatomical connections of the rodent brain.  

Connectivity of the Rodent Parahippocampal-Entorhinal-Hippocampal System 

 Tracing studies have provided a detailed understanding and working model of the 

anatomical connections between the parahippocampal and hippocampal regions. The 

parahippocampal regions consist of the postrhinal (POR) cortex, perirhinal (PER) cortex, 

EC, parasubiculum, and presubiculum; whereas the hippocampal proper regions consist 

of DG, CA1-4, and subiculum (Witter et al., 2000; van Strien et al., 2009). Improved 

anatomical retrograde (e.g. tracing dyes or wheat germ agglutin conjugated with 

horseradish peroxidase) or anterograde (e.g. Phaeseolus vulgaris-leucoagglutinin or 

biotinylated dextran amine) tracing methods enabled precise and detailed mapping 

studies to be conducted. From these studies, a standard conventional understanding of 

information flow into and out of the parahippocampal-entorhinal-hippocampal system 

has been established. 

 Under the standard model, convergence of cortical information occurs at the POR 

and PER cortices, however the sources of cortical input to each region differ 

considerably. For example, the visual association cortices provide almost 40% of the 

input to the POR, whereas only about 4% of PER cortical input is derived from visual 

regions. Conversely, the PER receives more somatosensory, olfactory, and auditory 

cortical input relative to the POR (Burwell and Amaral, 1998a; b; Furtak et al., 2007). 

The PER and the POR are extensively interconnected, indicating that integration of visual 
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and other sensory modalities occurs prior to entry into entorhinal-hippocampal systems. 

Outputs from layers II, III, and V of the PER and POR connect to superficial layers II and 

III of the EC (Burwell and Amaral, 1998a). Projections from the PER preferentially 

connect to the lateral EC (LEC) whereas the POR connects to both the LEC and medial 

EC (MEC) (Burwell and Amaral, 1998a). However, some studies have indicated an equal 

amount of PER and POR input to the MEC (Kerr et al., 2007), suggesting that these 

conventional models are not fully accurate. The standard model holds that the MEC and 

LEC regions largely handle different sensory information (e.g. LEC more olfactory vs. 

MEC more visual) and functional evidence is in line with these views. However, because 

the PER and POR are highly interconnected and because the POR inputs to both EC 

regions (Burwell and Amaral, 1998a), there may be more integration of inputs than what 

is conventionally considered (van Strien et al., 2009). 

 As indicated above, downstream of the PER and POR is the EC. In addition to 

PER and POR inputs, both EC regions also receive direct inputs from other cortical 

regions including piriform, insular, temporal, frontal, cingulate, parietal, and occipital 

regions (Kerr et al., 2007). Cortical information enters the EC primarily at layers II and 

III, where it is subsequently processed and input into the hippocampus via two distinct 

input pathways. The superficial layer II LEC and MEC neurons project to the molecular 

layer of the DG to make up the perforant pathway. Superficial layer III LEC and MEC 

neurons project stratum lacunosum of area CA1, forming the temporoammonic pathway 

(Steward, 1976; Steward and Scoville, 1976). There is a topographical distinction worth 

noting between perforant and temporoammonic inputs with respect to EC origin. Both 

LEC and MEC perforant efferents converge on to the same DG populations. With the 
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temporoammonic inputs, LEC efferents preferentially input to distal CA1 and proximal 

subiculum, whereas MEC temporoammonic efferents preferentially input to proximal 

CA1 and distal subiculum (Witter et al., 2000, 2006). After information is processed in 

the hippocampus via either tri-synaptic or monosynaptic inputs, the information is 

returned to the deeper layers of the EC via connections from CA1 and subiculum (Witter 

et al., 2000, 2006). Additionally, many hippocampal subfields as well as para- and pre-

subicular regions may also provide hippocampal-processed information back to the EC 

(Kerr et al., 2007), suggesting a high degree of complexity exists with entorhinal-

hippocampal connections. Because the EC forms extensive reciprocal connections with 

regions that provide cortical input to the EC (Kerr et al., 2007), it is generally presumed 

that the EC then redistributes information back to other cortical areas. 

 From this conventional understanding of parahippocampal-entorhinal-

hippocampal connectivity, it is evident that the EC plays a pivotal role in gating 

information input and output of the hippocampus. The following section will expand in 

more detail on the EC, specifically the MEC, and provide descriptions of its 

neuroanatomy and physiology.  

The Medial Entorhinal Cortex 

Structural Overview of the MEC 

 The MEC is transitional zone between the 3-layered allocortex observed in the 

hippocampus proper and the six-layered neocortex. In this transition, the cytoarchitecture 

begins to assume a more organized distribution, especially more so relative to the 

adjacent para and presubicular regions (Witter et al., 2000; Canto et al., 2008). 

Depending on lateromedial and rostrocaudal anatomical positions, the laminar 
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composition of the MEC is between five and six layers. The transition to a more 

neocortical-like structure is nearly complete at the MEC/LEC border. While both LEC 

and MEC are adjacent cortical regions and share similar columnar organization, there are 

a few subtle morphological and electrophysiological differences between regions, which 

are most pronounced in layer II (Canto and Witter, 2012a; b). Within each layer of the 

MEC, there are different cell types with unique morphological and functional features 

that are likely crucial to MEC function. The primary neurotransmitters of the MEC are 

glutamate released from the principal cells and -aminobutric acid (GABA) released from 

the interneurons. 

Principal Cells of Layer I  

 The superficial molecular layer (layer I) is sparsely populated with cell bodies. 

Two types of cells have been described and are classified as either horizontal or 

multipolar. These cells have wide-spanning dendritic arbors that are primarily confined to 

layer I and, to a lesser extent, layer II. The electrophysiological properties are largely 

consistent with layer II stellate cells (see below) (Canto and Witter, 2012a). 

Principal Cells of Layer II  

 The external granule layer (layer II) of the MEC is densely populated with very 

large cell bodies. Two broad classes of principal cell types have been consistently 

described by different labs in this layer (Alonso and Klink, 1993; Canto and Witter, 

2012a; Kitamura et al., 2014; Fuchs et al., 2016; Ferrante et al., 2017; Winterer et al., 

2017). Generally, principal neurons are referred to as either stellate or pyramidal (non-

stellate) cells, although some researchers have established criteria to identify additional 

related cell types (Canto and Witter, 2012a; Fuchs et al., 2016). 
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 Detailed studies examining morphological and electrophysiological 

characterizations of layer II MEC principal neurons have revealed several unique features 

between cell types. Many thick primary dendrites emanate in both apical and basal 

directions from the soma of stellate cells. The apical span of stellate dendritic arbors 

tends to be spiny and quite expansive—covering a large area of layer I and II (Klink and 

Alonso, 1997a). Unlike the multipolar stellate neurons, pyramidal neurons typically 

exhibit an apical-facing dendrite with spiny branches that span less of a medio-lateral 

distance (Klink and Alonso, 1997a). These morphological criteria are useful but there is a 

relatively large degree of variability, as evidenced by the report of intermediate types of 

stellate and pyramidal neurons (Canto and Witter, 2012a; Fuchs et al., 2016).  

 Differences between cell types are more apparent with respect to their 

electrophysiological properties. Both stellate and pyramidal neurons exhibit a “sag” 

response to subthreshold current injections (Alonso and Klink, 1993; Canto and Witter, 

2012a; Fuchs et al., 2016; Winterer et al., 2017). This response reflects the presence of a 

relatively slow-to-activate hyperpolarization-dependent current (Ih). A ratio of the 

steady-state membrane potential following a negative current injection over the peak 

membrane potential early in the injection provides an index of the sag ratio (Canto and 

Witter, 2012a). The sag ratio is smaller for stellate compared to pyramidal neurons, 

providing an electrophysiological means for distinction (Canto and Witter, 2012a). 

Stellate neurons also display pronounced subthreshold membrane potential oscillations 

(MPOs) at potentials positive to -60 mV but below threshold. Little to no MPOs are 

detected in pyramidal neurons (Alonso and Klink, 1993; Canto and Witter, 2012a). 

MPOs require Ih, vary in frequency along the dorso-ventral axis (Giocomo and 
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Hasselmo, 2008) and may permit spike clustering characteristics typical of these cells 

(Alonso and Klink, 1993). Finally, a short latency to AP firing, higher AP firing 

frequency, and the presence of an afterdepolarization are also characteristic features of 

stellate neurons (Alonso and Klink, 1993; Canto and Witter, 2012a; Fuchs et al., 2016). 

 The morphological and electrophysiological distinctions between stellate and 

pyramidal neurons correspond to differential anatomical projections layer II cell-type 

specific inputs to the hippocampus. Recent studies investigating molecular markers found 

in layer II principal neurons uncovered two distinct populations (Varga et al., 2010). 

Layer II pyramidal (non-stellate) neurons express the calcium-binding protein calbindin 

and exhibit hexagonal patch-like distributions. Their dendritic projections colocalize with 

acetylcholinesterase and their axons do not innervate the DG(Ray et al., 2014). The 

endoplasmic reticulum transmembrane protein, wolframin, also colocalizes with 

calbindin, providing another molecular marker for layer II pyramidal neurons (Kitamura 

et al., 2014). On the other hand, reelin—an extracellular matrix glycolprotein—

predominantly colocalizes with layer II EC principal neurons (Chin et al., 2007) that 

project to the DG (Varga et al., 2010). Reelin-positive cells do not colocalize with 

calbindin or wolframin (Kitamura et al., 2014). Because layer II pyramidal neurons (i.e. 

calbindin- and wolframin-positive cells) exhibit a patch-like distribution, they have come 

to be referred to as “island” cells (Kitamura et al., 2014). Stellate neurons (i.e. reelin-

positive) are defined as “ocean” cells (Kitamura et al., 2015). 

Principal Cells of Layer III 

 The external pyramidal cell layer (layer III) is thicker than layer II but less 

densely packed. Principal cells of this layer consist of medium to large pyramidal 
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neurons. Although there are several descriptions of the morphology and 

electrophysiology of layer III pyramidal neurons (Dickson et al., 1997; Gloveli et al., 

1997; Canto and Witter, 2012a; Tang et al., 2015), this layer has received considerably 

less attention than layer II. Layer III pyramidal neurons are rather uniform and typically 

exhibit a prominent, apical-facing dendrite that extends into layers II and I. (Dickson et 

al., 1997; Gloveli et al., 1997; Canto and Witter, 2012a). A classification system 

employed by Gloveli et al. (1997) distributed principal cells into one of four categories 

(type I-IV). Type I and type II were considered projection neurons since antidromic APs 

were generated with deep stimulation. Type III and IV were presumed to be part of the 

local circuity since no antidromic AP was elicited, yet these two types still resemble 

pyramidal morphology (Gloveli et al., 1997). An analysis by Canto and Witter (2012a) 

identified five distinct morphological types: three pyramidal cell types, a multipolar cell 

type, and a stellate cell type (Canto and Witter, 2012a). Layer III pyramidal neurons are 

physiologically distinct from layer II in that they exhibit very little sag (i.e. high sag 

ratio), are absent of MPOs, have a high input resistance, fire quick and regular action 

potentials, and can fire rhythmically in vitro (Dickson et al., 1997; Canto and Witter, 

2012a). 

 Like layer II, there are unique markers selective for this layer. Purkinje cell 

protein 4 (PCP4) is a selective marker for deeper layer III and V pyramidal neurons and 

their apical dendrites (Lein et al., 2007; Tang et al., 2015; Ray et al., 2017). PCP4-

positive apical layer III dendrites form clusters between calbindin-positive layer II 

neurons (Tang et al., 2015) and overlap with zinc-positive modules (Ray et al., 2017), 

suggesting their inputs preferentially overlap with stellate reelin-positive neurons. 
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Layer IV 

 In the MEC, layer IV is a thin, fiber-rich, cell-sparse layer referred to as the 

lamina dissecans. The lamina dissecans gradually disappears near the LEC border of the 

MEC and transitions to a more evident layer IV (Canto et al., 2008). Cells in this regions 

are generally considered to be members of either adjacent layers III or V (Canto and 

Witter, 2012a). 

Principal Cells of Layer V 

 The internal pyramidal layer (layer V) consists primarily of medium to large-sized 

principal neurons. The morphology of layer V principal neurons is divided into three 

types: pyramidal, horizontal, and polymorphic (Hamam et al., 2000); although additional 

subtypes are also described (Canto and Witter, 2012a). Both pyramidal and horizontal 

neurons extend an apical dendrite that reaches layers I and II, whereas multipolar 

dendrites are typically confined to deeper layers. Electrophysiological data obtained from 

morphologically different cells are variable, resulting in no clear electrophysiological 

signatures for respective types. Layer V principal cells have the highest input resistance 

of MEC principal cells and a large sag ratio (Hamam et al., 2000; Canto and Witter, 

2012a). MPOs in layer V is thought to be age-dependent (Canto and Witter, 2012a) 

because there is conflicting evidence either in support (Schmitz et al., 1998; Hamam et 

al., 2000) or against (Canto and Witter, 2012a) their presence. 

Principal Cells of Layer VI 

 The morphology of layer VI principal neurons has been divided into three types: 

horizontal pyramidal, tilted pyramidal, and multipolar. Unlike layer V, the dendritic 

arbors of these three types do not extend apically and are largely confined within layer 
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VI. Layer VI principal cells have input resistances comparable to layer III, a high sag 

ratio, and no MPOs. Layer VI show no physiological differences among morphologically 

different cell groups (Canto and Witter, 2012a). 

GABAergic Interneurons of MEC 

 Inhibitory GABAergic interneurons influence neuronal excitability, shape 

synaptic inputs, and regulate network mechanisms important for learning and memory. 

Cortical GABAergic interneurons comprise a broad class of cells with varying 

morphological, electrophysiological, and neurochemical features (Ascoli et al., 2008). 

Interneurons of different shapes including ovoid, round, spindle-shaped, bipolar, 

horizontal, or irregular are distributed throughout all layers of the MEC. There are three 

different interneuron classes based on molecular marker expression which comprise 

nearly all cortical GABAergic interneurons. Interneurons may be parvalbumin (PV)-

positive, ionotropic serotonin receptor (5HTR3a)-positive, or somatostatin (SOM)-

positive. The MEC expresses all three of these classes  (Miettinen et al., 1996; 

Wouterlood and Pothuizen, 2000; Yekhlef et al., 2015; Fuchs et al., 2016; Ferrante et al., 

2017), as well as sub-classes of 5HTR3a interneurons. The 5HTR3a subclasses include 

cholecystokinin (CCK)-positive, vasoactive intestinal polypeptide (VIP)-positive, and 

neuropeptide Y (NPY)-positive interneurons, the latter of which can be further classified 

as neurogliaform (NGF) and non-neurogliaform (Non-NGF) (Varga et al., 2010; Ferrante 

et al., 2017). PV-positive interneurons are generally confined to the layer they occupy, 

exhibit extensive dendritic arborization, and typically resemble chandelier or basket 

interneurons (Ascoli et al., 2008; Ferrante et al., 2017). SOM-positive interneurons 

extend their dendrites to apical layers and can span layers I, II, and III. The morphology 
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of SOM-positive interneurons typically resembles the Martinotti interneurons (Ascoli et 

al., 2008; Ferrante et al., 2017). 5HT3Ra-positive interneurons are often bipolar and 

multipolar interneurons and their dendritic arbors can extend throughout the entire MEC 

cortical column (Ascoli et al., 2008; Ferrante et al., 2017). 

 Interneurons are distinguished from principal neurons by electrophysiological 

markers including a fast-spiking (FS) action potential firing profile, narrow action 

potential half-width, and a steep after hyperpolarization (Canto and Witter, 2012a). 

Because interneurons are typically confined to the local circuitry, an additional indicator 

of an interneuron is a significantly smaller capacitance relative to principal cells. PV-

positive interneurons are most often FS interneurons and, in the MEC, this class co-

localizes with 80% of regulator of calcineurin 2 (RCan2)-positive neurons (Ferrante et 

al., 2017). All three classes are relatively abundant in the superficial MEC layers. The FS 

class is the most abundant GABAergic neuron (~26% of interneurons), followed by 

5HTR3a-positive (~21%), and SOM-positive (~14%). Some intrinsic properties, such as 

input resistance or threshold for first AP, are predictive of FS RCan2-positive (and 

presumably PV-positive) interneurons. Intrinsic properties are more variable for SOM-

positive and 5HTR3a-positive interneurons (Ferrante et al., 2017). Some general guides 

for electrophysiological identification are available, however. FS interneurons typically 

have a lower input resistnace relative to SOM-positive interneurons and SOM-positive 

interneurons are typically endowed with Ih, as evidenced by a pronounced sag-response 

(Yekhlef et al., 2015; Fuchs et al., 2016; Ferrante et al., 2017). Classification schemes in 

the MEC have been employed describing type I and type II interneurons (Kumar and 

Buckmaster, 2006; Lei et al., 2007; Deng and Lei, 2008; Xiao et al., 2009b; Deng et al., 
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2010b; Cilz et al., 2014; Zhang et al., 2014b; Cilz and Lei, 2017) and these types likely 

correspond respectively to PV- and SOM-positive GABAergic interneurons based on 

similar firing properties reported in molecularly identified interneurons (Yekhlef et al., 

2015; Ferrante et al., 2017). 

MEC Connectivity with the Hippocampus and Connectivity within MEC 

 As stated earlier, extrinsic outputs to the hippocampus from the MEC are 

provided by the superficial layers and consist of either the perforant or temporoammonic 

pathways. Extrinsic inputs from the hippocampus to the MEC are primarily through the 

subiculum, parasubiculum, and presubiculum. These connections terminate in layers 

throughout the MEC but, generally, prefer to terminate in layer V (van Strien et al., 

2009). Intrinsic recurrent, intralaminar connections between deeper and superficial MEC 

layers provide a possible mode for “re-entry” of information back to the hippocampus. 

The local GABAergic circuitry serves to fine-tune the MEC excitatory activity. This 

section will expand on the extrinsic connections between the MEC and hippocampus and 

intrinsic connections within the MEC by highlighting recent work that has uncovered 

vital details regarding the MEC microcircuitry. 

Connections Between MEC and Hippocampus 

 The perforant pathway arises from layer II neurons of the MEC (Steward and 

Scoville, 1976). As described above, two cell populations make up layer II: stellate 

(ocean cells) and pyramidal (island cells). Circuit studies dissecting roles for these two 

distinct cell populations indicate that layer II ocean cells provide excitatory input to DG 

and CA3 regions (Kitamura et al., 2015) while layer II island cells provide excitatory 

input to parvalbumnin-expressing interneurons of the CA1 region (Kitamura et al., 2014; 
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Yang et al., 2016). Thus, modulation of these sub-populations of layer II neurons will 

differentially influence information input to the hippocampus, whereby an increase in 

ocean cell activity will presumably increase CA1 activity via the tri-synaptic pathway; 

whereas island cells will reduce CA1 activity through feed-forward inhibition of CA1. 

The definitive presence of an island cell-CA1 connection remains unclear (Fuchs et al., 

2016). Selective inactivation of layer III pyramidal neurons significantly reduces 

excitatory drive onto hippocampal CA1 and subiculum regions (Suh et al., 2011), 

validating the excitatory nature of the temporoammonic pathway (Steward, 1976).  

 In addition to hippocampal inputs, both layer II and layer III also provide 

substantial contralateral superficial MEC excitatory input (Varga et al., 2010; Tang et al., 

2015; Fuchs et al., 2016). Because there is a high degree of overlap between 

hippocampal-projecting and contralateral-projecting layer III neurons, it is presumed that 

distinct projecting cell populations are not present in layer III (Tang et al., 2015). On the 

other hand, layer II island cells preferentially connect to contralateral MEC ocean cells 

(Fuchs et al., 2016). Although these studies suggest layer specific wiring diagrams, it is 

important to recall that early tracing studies suggest that all MEC layers, including—

albeit to a lesser degree—deeper layer V neurons, contribute to perforant inputs (Witter et 

al., 2000). Regardless, these studies underscore the detail and complexity of MEC-MEC 

and MEC-hippocampal connections. 

 The terminals of both perforant and temporoammonic pathways exhibit unique 

topographical distributions (Witter et al., 2006). Perforant terminals from both LEC and 

MEC, presumably from ocean cells, converge onto different portions of the DG 

molecular layer but do overlap onto the same population of granule cells. The LEC inputs 
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are at the outer portion, whereas MEC inputs are at more intermediate sites of the 

molecular layer. Such differences might suggest the MEC exerts more control over DG 

excitability. Conversely, inputs from LEC and MEC do not appear to converge in the 

temporoammonic pathway. The LEC temporoammonic-fibers preferentially synapse onto 

distal and proximal regions of CA1 and subiculum, respectively; whereas, MEC 

temporoammonic-fibers synapse on to proximal and distal regions of CA1 and subiculum 

regions, respectively (Witter et al., 2000, 2006). Both CA1 and subiculum are highly 

interconnected and maintain parallel streams of information based on respective EC 

inputs. Once processed, information is ready to be returned to the EC.  

 Both CA1 (Cenquizca and Swanson, 2007) and subiculum (Kloosterman et al., 

2003) provide hippocampal output back to deeper layers V and VI of the MEC. Once 

again, outputs are largely segregated based on origin and mirror EC inputs, suggesting 

that parallel streams of information are maintained in entorhinal-hippocampal circuits 

(Witter et al., 2006). CA1 fields more extensively innervate subiculum relative to EC 

(Cenquizca and Swanson, 2007), consistent with the subiculum being regarded as the 

primary output of the hippocampus (Kim and Spruston, 2012). Additionally, the 

presubiculum and parasubiculum regions are highly interconnected with the subiculum 

(van Strien et al., 2009) and the presubiculum innervates superficial layers of the MEC 

(Caballero-Bleda and Witter, 1993). Subiculum provides largely excitatory input to the 

MEC (Kloosterman et al., 2003) whereas MEC inputs from the presubiculum may 

include a GABAergic component (van Haeften et al., 1997). 

 Finally, in addition to the excitatory connections between MEC-hippocampus and 

hippocampus-MEC described above, long-range GABAergic projections in both 
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directions also exist (Germroth et al., 1989; Melzer et al., 2012; Zhang et al., 2013a). 

Many of the GABAergic projections from the MEC are PV-positive, whereas others are 

molecular marker-unknown. Such projections provide inhibitory input to the stratum 

lacunosum of CA1 and molecular layer of DG (Melzer et al., 2012). Reciprocal inhibitory 

connections between hippocampal interneurons and the MEC also exist. Projections arise 

from interneurons located in the stratum oriens of CA1 and hillus of DG—many of which 

co-localize with SOM. These long-range hippocampal-MEC interneuron connections 

preferentially target MEC interneurons (Melzer et al., 2012), suggesting that they provide 

a source of disinhibition. 

Connections Within the MEC 

 The microcircuitry within the MEC display a rich multitude of intra- and inter-

laminar connections. These connections were inferred from an early layer-specific tracing 

study (Swanson and Kohler, 1986). Intralaminar recurrent excitatory connections provide 

a mechanism for local amplification that may be important for generation of a cell 

assemblies involved in working memory tasks (Durstewitz et al., 2000). 

 Paired-recordings in the MEC indicate a relatively high degree of intralaminar 

recurrent excitation in layers III and V, whereas recurrent connections were absent in 

layer II (Dhillon and Jones, 2000). Electrical coupling, presumably via gap junctions, is 

also present in layer III MEC (Dhillon and Jones, 2000). The absence of layer II recurrent 

excitation was challenged by experiments using caged-glutamate release at large 

distances away from the recorded soma, as these conditions elicit EPSCs (Kumar et al., 

2007; Beed et al., 2010). While caged-glutamate experiments are not as stringent as 

paired recordings, the generation of EPSCs resulting from glutamate release at long 
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distances away from the soma is consistent with layer II axon collaterals extending long 

distances away horizontally in the MEC (Lingenhohl and Finch, 1991). Subsequent 

investigations utilizing either paired-recordings or optical activation of layer II neurons 

are consistent with a lack of stellate to stellate recurrent excitation (Couey et al., 2013; 

Pastoll et al., 2013), however, neither study completely ruled out their existence. On the 

basis that two distinct populations exist in layer II and these populations form discrete 

and periodic patches (Varga et al., 2010; Kitamura et al., 2014) , both Fuchs et al. (2016) 

and Winterer et al. (2017) addressed whether connections existed between specific cell-

types (Fuchs et al., 2016; Winterer et al., 2017). In both studies, recurrent excitatory 

connections were found in layer II. Winterer et al. (2017) found robust excitatory 

recurrent drive between layer II pyramidal (calbindin-positive) to stellate (reelin-positive) 

neurons, but the reverse was not true. Furthermore, weaker recurrent excitation was also 

found between stellate to stellate and pyramidal to pyramidal neurons (Winterer et al., 

2017). Thus, input to layer II pyramidal neurons might be expected to encourage stronger 

activation of perforant versus temporoammonic activities due to layer II pyramidal-

mediated inhibition of CA1 activity (Yang et al., 2016) and increased excitation of 

stellate activity (Winterer et al., 2017). 

 In addition to intralaminar connections, the MEC displays a high degree of 

interlaminar excitatory connections between deeper and superficial layer (Dickson and 

Alonso, 1997; van Haeften et al., 2003; Quilichini et al., 2010). Layer V is interconnected 

with layer III (Quilichini et al., 2010) and layer III pyramidal neurons drive excitation of 

layer II stellate neurons (Winterer et al., 2017). In addition to this feed-forward excitation 

of superficial layers, deep MEC neurons also provide weak feed-forward inhibition to 
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both layer II and III principal cells via excitation of MEC interneurons (van Haeften et 

al., 2003). Thus, deeper layers provide a means for information to enter back into the 

hippocampus, which may play an important function in learning and memory processes. 

 Inter- and intra-laminar coupling between MEC principal neurons and 

interneurons is much more commonly observed than is recurrent excitation with paired-

recordings. For example, there is a ~40-50% chance of connectivity between layer II FS-

to-principal and principal-to-FS cells (Couey et al., 2013). PV-positive or FS interneurons 

appear to be rather non-discriminant in targeting specific principal cell types (Varga et 

al., 2010). However, although high degrees of reciprocal connections are observed 

between FS and stellate neurons, there is considerably less connectivity between FS and 

pyramidal (Fuchs et al., 2016). The same holds to be largely true for SOM-positive 

interneurons. Many cortical 5HT3Ra interneurons co-release CCK (Morales and Bloom, 

1997). CCK-positive interneurons specifically target principal neurons that are calbindin-

(pyramidal) but not reelin-positive (stellate) (Varga et al., 2010), which suggests layer II 

pyramidal cells receive inhibitory input primarily from 5HT3Ra-interneurons. Consistent 

with Varga et al. (2010), 5HT3Ra-positive interneurons form a high degree of reciprocal 

inhibitory connections with pyramidal and intermediate cells, although a very low degree 

of connections with stellate cells was observed (Fuchs et al., 2016). These studies suggest 

that layer II principal cells might receive differential inhibitory input. Unlike layer II, 

layer III pyramidal neurons receive robust GABAA-mediated IPSCs from both SOM-

positive or PV-positive interneurons (Yekhlef et al., 2015). The significance of such 

differential inhibitory inputs between layers remains unclear. 
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Specialized Features of Neurons within the MEC 

 Specialized cell types reside within the MEC are modulated by spatial and visual 

information and may be part of the neural circuitry important for internal representations 

of surrounding environments (Fyhn et al., 2004). Tetrode-recording in rats reveal cell-

firing patterns analogous to hippocampal place cells but with periodic firing distributions 

that overlap with the animal’s environment. Firing maps are distributed about in a 

hexagonal array and the receptive fields vary in size from small to large along the dorso-

ventral axis (Hafting et al., 2005). Grid fields are established rapidly in novel 

environments, set by external landmarks, and persist after removal of visual inputs. The 

anchoring of grid fields to external landmarks is illustrated by a 90 rotation of the visual 

cues resulting in a learning environment immediately corresponding to a 90 rotation of 

the grid fields (Hafting et al., 2005). Head direction cells, like those seen in the 

hippocampus, are also found in the MEC. These cells increase their firing frequency 

when the animal is facing a particular direction (Sargolini et al., 2006). Many MEC cells 

in deeper layers are conjunctive grid and direction cells. This might suggest cells in 

deeper layers—layers III and V—are important for integrating both grid and directional 

elements (Sargolini et al., 2006). Border cells fire near the perimeter border or near one 

side of a barrier within an animal’s environment. Border cells typically display a 

dominant border firing position (Solstad et al., 2008). Grid cells reside primarily in layer 

II (Hafting et al., 2005; Sargolini et al., 2006; Tang et al., 2015) and are generally 

considered to be the stellate neuron type. However, layer II pyramidal neurons also 

exhibit grid-like activity (Kitamura et al., 2014; Sun et al., 2015) and are modulated by 

animal speed. Although the majority of grid cells appear to reside in layer II, there is 
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conflicting evidence documenting their presence throughout all MEC layers (Sargolini et 

al., 2006; Tang et al., 2015). Understanding how synaptic activity and modulatory 

processes influence these cells will be useful in understanding how the unique features of 

these cells arise and may be important to their contribution to animal behavior. 

The MEC and Learning and Memory 

 Activity in the MEC is necessary for multiple forms of learning and memory. 

Selective lesions to the rat dorso-ventral MEC reduces firing rates in a subpopulation of 

hippocampal neurons and causes place fields to broaden (Hales et al., 2014). MEC-only 

lesioned rats also display impaired learning abilities in the Morris water maze, while 

other hippocampal-dependent memory processes, including novel-object working 

memory and tone-fear associational memory, are preserved (Hales et al., 2014). Baclofen 

significantly and long-lastingly reduces layer II stellate neuron excitability (Deng et al., 

2009). Pharmacologically-induced suppression of MEC activity with baclofen during 

Morris water maze acquisition stages significantly increases the latency time to target and 

impairs recall in rats (Deng et al., 2009). Conversely, the neuropeptide neurotensin (NT) 

produces a significant, long-lasting increase in layer II excitability (Xiao et al., 2014), 

facilitates glutamate release onto DG granule cells (Zhang et al., 2015b), and increases 

DG granule cell excitability (Zhang et al., 2016), indicating NT strongly promotes 

perforant pathway activity. Consistent with perforant activity in spatial navigation 

(Kitamura et al., 2015) , increasing MEC activity with neurotensin reduces latency time 

to target in the Barnes maze and enhances recall relative to saline controls (Xiao et al., 

2014). Thus, entorhinal inputs are crucial for spatial learning and memory tasks. 
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 Perforant input to the DG and CA3 regions is implicated in another hippocampal-

dependent process, pattern separation (Leutgeb et al., 2007). In this paradigm, an animal 

learns to discern differences between two novel contexts. Place-cell fields at either DG or 

CA3 will change, or re-map, as a result of exposure to a new environment (Leutgeb et al., 

2007). Monitoring activity of MEC layer II ocean cells in vivo reveals that different 

populations of ocean, but not island cells, are active within different contexts and the 

respective cells are re-activated upon return to the appropriate context (Kitamura et al., 

2015). The extent of similarities between the two contexts influences the percentage of 

cells that are active in both contexts, whereas more differences correspond to less 

overlapping active cells (Kitamura et al., 2015). Furthermore, inhibition of ocean but not 

island cells during context-fear conditioning reduces freezing behavior upon re-exposure 

to the conditioning context (Kitamura et al., 2015). Thus, MEC perforant pathway input 

is essential for contextual representations. 

 Temporal associational memory is a component of both episodic and working 

memory insofar as it provides a means to associate temporally discontinuous events (Suh 

et al., 2011). At the cellular level, a model for temporal associations is expected to 

involve prolonged activity of a cell ensemble engaged during an initial encoding event 

that persists after the sensory information related to that ensemble’s activity is 

terminated. If that activity overlaps with a subsequent encoding event, there is a 

likelihood that elements of the previous ensemble will be incorporated into the 

subsequent ensemble, and vice versa. This processes is called persistent firing and is 

considered to be a cellular model for working memory (Hasselmo and Stern, 2006). In 

the MEC, cholinergic and group I mGluR agonists induce persistent firing throughout 
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layers II, III, and V (Klink and Alonso, 1997b; Egorov et al., 2002; Yoshida et al., 2008). 

These responses can be graded, meaning repeated stimuli in the presence of agonist can 

enhance the magnitude of persistent firing. Persistent firing does not require synaptic 

input but, rather, is intrinsic to the neurons themselves (Egorov et al., 2002). Selective 

inactivation of temporoammonic inputs to CA1 impairs temporal associations involved 

with fear conditioning (Suh et al., 2011). Co-administration of cholinergic and group I 

mGluR antagonists to the EC also impairs these associations, suggesting that persistent 

firing may enable the association between the tone and subsequent shock. 

 Finally, as part of the MTL, the EC plays a key role in semantic and episodic 

memory processes. Whereas semantic memory processes dependent on the LEC, episodic 

memory is dependent on the MEC (Eichenbaum et al., 2012). Episodic memory requires 

an ability to recognize environmental events or cues, organize them by their subjective 

temporal sequence, and to recall information via an internally driven reactivation process. 

Features of specialized cells within the MEC may equip this region to accomplish these 

tasks (Buzsaki and Moser, 2013; Sanders et al., 2015). 

Pathological Conditions Related to the EC 

 The EC has been implicated in: neurodegenerative disorders, such as Alzheimer’s 

Disease (AD) (Hyman et al., 1984; Gómez-Isla et al., 1996); neurological disorders, such 

as epilepsy (Du et al., 1993); and neuropsychiatric disorders, such as schizophrenia 

(Falkai et al., 1988; Prasad et al., 2004), depression (Watkins, 2008; Tu et al., 2012) and 

anxiety (Watkins, 2008; Hattingh et al., 2013). This section will examine more closely 

the relationship between the EC and some of these conditions. 
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Alzheimer’s Disease 

 Cognitive decline is a naturally occurring process associated with aging. In a 

subset of the general population, the rate of decline is substantially larger and is 

considered pathological. Pathological forms of cognitive decline include mild cognitive 

impairment (MCI) and dementia. MCI involves a subtle loss in cognitive function and 

typically will convert to full dementia, including Alzheimer’s disease (AD), in about half 

of MCI patients. Thus, MCI is considered as a transition period between normal function 

and dementia (Sanes and Jessell, 2013). Dementias are categorized into two broad 

classes: nondegenerative and degenerative. Nondegenerative dementias arise secondarily 

from factors including stroke, infections, or metabolic disorders. Degenerative dementias 

involve a primary loss of central function that is associated with histopathological 

markers and a degree of hereditary transmission (Kaufer and Dekosky, 1999). The most 

prevalent degenerative dementia is AD and the remainder of this subheading will focus 

on the relationship between the EC and AD. 

 AD is characterized by three pathological markers accompanying clinical signs of 

cognitive impairment. First, the extent of brain atrophy, neuron death, and enlargement of 

the ventricles correlates to progression of AD. Second, postmortem AD tissue exhibits 

large extracellular senile plaques consisting of 40 or 42 amino acid-length amyloid 

fragments (A40/42). A fragments are derived from proteolytic cleavage of amyloid 

precursor protein (APP) by - or -secretases. Third, AD tissue exhibits neurofibrillary 

tangles (NFTs) resulting from aggregates of cytoskeletal elements consisting of 

hyperphosphorylated isorforms of the microtubule-associated protein, tau (Sanes and 

Jessell, 2013). However, the pathogenesis of AD remains poorly understood. 
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 The EC, in particular layer II, is a region of interest in the pathogenesis of AD 

(Stranahan and Mattson, 2010). There is considerable cell death of superficial EC 

neurons reported in AD (Hyman et al., 1984; Gómez-Isla et al., 1996). No significant loss 

in cell number is seen between the sixth and ninth decade of life in healthy control 

persons, suggesting that AD is not simply an exacerbated condition of aging (Gómez-Isla 

et al., 1996). An accumulation of histopathological markers, such as NFTs and A 

depositions, commences prior to clinical symptoms of AD (Braak and Braak, 1991). 

Plaque loads are variable at different stages in AD patients, whereas NFTs present in a 

more systematic fashion and are generally located near entorhinal regions at early stages 

(Braak and Braak, 1991). Both NFT density and neurite plaque density are negatively 

correlated in a significant fashion with cell number in AD (Gómez-Isla et al., 1996), 

although this does not imply causality. A loss of synapses is hypothesized to be the initial 

contributing factor to cognitive decline in AD and precedes the appearance of 

pathological markers (Selkoe, 2002). Consistent with this hypothesis, a reduction in 

synapse density, rather than the presence of NFTs or plaques, is the strongest physical 

correlate to cognitive impairment (Terry et al., 1991). Furthermore, significantly fewer 

synapses are found at the EC-DG synapse in patients at the transition stage of MCI 

(Scheff et al., 2006). Understanding what factors contribute to both the reduced synaptic 

density and development of pathological markers may lead to better treatments for AD. 

 Transgenic mice permit expression of mutant APP or tau in the EC to examine 

disease progression and potential causality of AD pathological markers. Harris et al 

(2010) asked whether expression of mutant APP in the EC would impair cognitive 

function (Harris et al., 2010). Crossing mice with restricted superficial layer II/III EC 
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expression of tetracycline transactivator (tTA-EC) (Yasuda and Mayford, 2006) with 

mice carrying the inducible expression of mutant APP, (tet-APP) (Jankowsky et al., 

2005) yield EC-restricted mutant APP-producing mice (EC-APP). Plaques are primarily 

in the EC of younger EC-APP mice but begin to appear in the DG at older ages, 

suggesting AD-like pathology may spread between anatomically connected areas. 

Moreover, EC-APP mice display modest synaptic deficits at perforant pathway synapses 

and impaired acquisition and retrieval in Morris water maze at thirteen months (Harris et 

al., 2010). A similar study (Harris et al., 2012) crossed tTA-EC mice with TetO-

TauP301L mice—an inducible model that produces prototypical NFTs (Terwel et al., 

2005)—to evaluate EC-specific NFT contributions to cognitive decline. While significant 

NFTs were detected in an age-dependent fashion, no significant cognitive deficits in 

spatial memorect recognition, or contextual fear learning were observed (Harris et al., 

2012). Using the same EC-inducible tau expression system, Polydoro et al. (2014) asked 

whether soluble pathological tau that is expected to precede NFT formation and overt 

neurodegeneration may contribute to impaired synaptic function (Polydoro et al., 2014). 

They too found no substantial behavioral differences, however, there were significant 

reductions in Arc, an early inducible plasticity, with older mutant tau-expressing mice. 

Moreover, transgenic mice also displayed larger paired-pulse depression and reductions 

in long-term potentiation (LTP) (Polydoro et al., 2014), suggesting early changes in 

soluble tau may have a causal role in AD-related synaptic dysfunction. Finally, APP 

potentiates tau toxicity at younger ages in mice capable of EC-selective inducible 

expression of both mutant APP and tau (Khan et al., 2014), suggesting an interaction 

between tau and mutant APP-processing facilitates cognitive impairments, although 



28 

behavior was not assessed. In vitro studies show nanomolar concentrations of AB42 

oligimers impair EC layer II long-term potentiation LTP (Criscuolo et al., 2015). Taken 

together, an interaction likely exists between the pathological markers and their early 

expression in the EC may contribute to early impairments, like those seen in early stages 

of AD. Although either mutant APP or tau can impair synaptic function in this region, 

their underlying mechanism as it relates to AD remains unknown. 

 There is no cure for AD but there are strategies to manage symptoms. Two major 

pharmacological approaches currently employed target either cholinergic or 

glutamatergic transmission. The cholinergic strategy is emerged on the basis that brains 

of AD patients have reduced levels of the acetylcholine (ACh) synthesizing enzyme, 

choline acetyltransferase (Bowen et al., 1976; Davies and Maloney, 1976). ACh is an 

important neuromodulator for learning and memory (Hasselmo, 2006). The degradation 

of ACh is mediated by acytlcholinesterase (AChE) and inhibitors of AChE, e.g. 

rivastigmine or donepezil, result in elevated ACh levels and provide modest pro-

cognitive effects in AD (Silvestrelli et al., 2006). The modulatory role of ACh in the 

MTL has been extensively studied, including in the MEC, where its actions likely 

contribute to the pro-cognitive effects. Cholinergic activation of layer II neurons 

increases their excitability (Klink and Alonso, 1997b) and elicits depolarization via a 

Ca2+-activated cationic conductance (Klink and Alonso, 1997c) with TRPC-like 

requirements (Zhang et al., 2011). Moreover, cholinergic activation enables persistent 

firing in layer II and V MEC neurons (Klink and Alonso, 1997b; Egorov et al., 2002) and 

inhibiting cholinergic signaling in the MEC impairs novel object working memory 

(McGaughy et al., 2005) grid cell firing patterns (Newman et al., 2014). 
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 The second approach to managing AD symptoms targets the NMDAR, since 

excitotoxicity is implicated in AD (Silvestrelli et al., 2006). The EC is implicated in this 

approach since its superficial layers are especially vulnerable to excitotoxic insults 

(Schwarcz and Witter, 2002). Excitotoxic insults can be mediated by increased Ca2+ 

influx through excessive activation of NMDAR. Extrasynaptic NMDAR activation 

increases AD-like phenotypes, including A production (Bordji et al., 2010) and 

taopathies (Xu et al., 2015). Memantine is a low affinity non-competitive antagonist of 

NMDARs and may impact the kinetics of channel function but not impair physiological 

glutamatergic transmission (Silvestrelli et al., 2006). In animals with lesions to the EC, 

infusions of memantine but not MK-801—another NMDAR antagonist—reversed lesion-

induced memory impairments (Zajaczkowski et al., 1996), suggesting memantine’s 

actions are distinct from simply blocking channel activity. 

 Both AChE inhibitors and memantine involve neuromodulatory approaches that 

manage symptoms and extend the end-of-life period before assisted care is necessary. 

However, neither of these treatments cure AD. The most promising treatment would be to 

target the underlying cause of AD. 

Temporal Lobe Epilepsy 

 Seizures are temporary disruptions in the brain that result in abnormal, 

synchronous, and excessive neuronal activity. Epilepsy is a neurological disorder that 

consists of a chronic condition of repeated seizures (Westbrook, 2013). The etiology of 

most epilepsies is not well understood and may include aspects such as age, 

environmental factors (e.g. traumatic head injury, stress, diet), and genetics. Currently 

available pharmacological treatments for epilepsies include drugs that stabilize voltage-
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gated Na+ channels in their inactive state, increase GABAergic tone, and inhibit voltage-

gated Ca2+ channels (Nestler et al., 2009a). The most prevalent case of human epilepsy is 

temporal lobe epilepsy (TLE). TLE is characterized by hippocampal sclerosis—most 

often in CA1 and DG subfields—and is often resistant to anti-epileptic treatments (Engel, 

2001).The MEC is uniquely situated upstream of both DG and CA1 and coordinates 

information input to and output from the hippocampus. Therefore, it is perhaps not 

surprising that the MEC is implicated in both seizures and TLE. Reductions in entorhinal 

volume (Jutila et al., 2001) and preferential loss of layer III principal neurons is reported 

in patients with pharmacoresistant TLE (Du et al., 1993; Schwarcz et al., 2000). Surgical 

resection of the seizure focus typically involves removing portions of the hippocampus, 

parahippocampal regions (i.e. MEC), and amygdala. Surgery is an effective treatment for 

pharmacoresistant TLE, however, there are considerable risks of cognitive impairment 

(Bonelli et al., 2013) and a possibility of relapse (Thom et al., 2010). A better 

understanding of the pathology of epilepsies may lead to better treatment strategies. 

 The intra- and inter- laminar connections in the MEC are extensive and provide a 

re-entry pathway between deep and superficial layers that closes the hippocampal circuit. 

Recurrent connections within layers III and V are more prevalent than other cortical 

regions (Dhillon and Jones, 2000) and connections between layer III and II (Winterer et 

al., 2017) and recurrent connections within layer II (Fuchs et al., 2016; Winterer et al., 

2017) may facilitate synchronization of EC circuits that could lead to hyperexcitability. 

Additionally, GABAergic tone in deeper MEC layers is much lower than in superficial 

layers (Woodhall et al., 2005) and may enable layer V neurons to become hyperexcitable 

and readily propagate excitation to superficial layers. 
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 Consistent with clinical observations, animal seizure models exhibit preferential 

loss in layer III using either local application of aminooxyacetic acid (Scharfman et al., 

1998) or systemic administration of pilocarpine (Kumar and Buckmaster, 2006). In the 

pilocarpine model, an increase in excitability of layer II principal neurons concurrent 

with a reduction in GABAergic tone is also observed (Kumar and Buckmaster, 2006). 

One possible explanation for this observation could be due to reduced layer III excitatory 

drive onto intralaminar-spanning GABAergic interneurons. Such a possibility fits with a 

dormant GABAergic hypothesis (Du et al., 1995; Schwarcz et al., 2000). However, a loss 

of GABAergic interneurons and synapses is more likely the cause for reduced 

GABAergic tone seen in layer II (Kumar and Buckmaster, 2006; Kumar et al., 2007). 

Methods to increase GABAergic activity in superficial layers will likely dampen epileptic 

activity by restoring a lower excitability of layer II principal neurons. 

 Bathing parahippocampal-hippocampal slices in a recording solution lacking 

extracellular Mg2+ is a common method to study pharmacoresistant epileptic activity in 

vitro (Li Zhang et al., 1995). Under these conditions, increased excitability results from 

increased NMDAR activity and recurrent connections provide synchronization. Using 

this paradigm, a number of different modulators interacting with the GABAergic system 

reduce epileptic-like discharges, including serotonin (Deng and Lei, 2008), thyrotropin-

releasing hormone (Deng et al., 2006) and bombesin (Zhang et al., 2014a). Targeting 

group II mGluR receptors using this in vitro approach also decreases epileptic-like 

discharges in layer III of the MEC (Zhang et al., 2015a). These receptor systems may be 

useful targets in the future of treatment for pharmacoresistant TLE. 
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Depression and Anxiety 

 Depression and anxiety are related but distinct neuropsychiatric mood disorders 

that involve negative emotional states. Different forms of depression include, but are not 

limited to, single episode depression, bipolar depression, and major depressive disorder 

(MDD). MDD is most common and may be characterized by several negative symptoms 

including feelings of hopelessness, irritability, fatigue, guilt, and thoughts of suicide. Like 

depression, there are different forms of anxiety including, but not limited to, social 

anxiety, post-traumatic stress disorder, panic disorders, and generalized anxiety disorder. 

Anxiety may be characterized by excessive self-consciousness, restlessness, fatigue, 

irritability, difficulty concentrating, and intense feelings of worry. The risk factors and 

diagnostic criteria associated with both disorders are distinct but there is often a high 

degree of co-morbidity (Kessler et al., 2008). Moreover, there is considerable overlap of 

involved limbic structures between both disorders (Krishnan and Nestler, 2008; Tovote et 

al., 2015) and there is emerging evidence for a role of the MEC. 

 The MEC is a component of the limbic system and thus involved in emotional 

processing (Papez, 1937; MacLean, 1949; Shah et al., 2012). The anterior cingulate 

cortex is consistently implicated in MDD (Hyman and Cohen, 2013) and this region 

forms reciprocal connections with the MEC (Insausti et al., 1997; Kerr et al., 2007). The 

amygdala is a key structure involved with anxiety (Hyman and Cohen, 2013) and 

provides input to the MEC (Sparta et al., 2014). In humans, thinning of EC and reduced 

EC volume are reported in MDD patients (Tu et al., 2012; Harel et al., 2016) and 

increased EC activation is triggered by emotional stimuli in patients diagnosed with an 

anxiety disorder. Both depression and anxiety involve a negative ruminating tendency 
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that concerns one’s self or autobiographical memory (Watkins, 2008). Although 

rumination is not a negative behavior per se, for example rumination can facilitate 

adaptive preparedness and anticipatory planning, it can contribute to anxiety and 

depression when it involves worry, counterfactual thinking, and negative self-views 

(Watkins, 2008). Rumination is associated with increased EC activity (Piguet et al., 2014; 

Harel et al., 2016). Taken together, these findings support a role for EC activity in 

depression and anxiety disorders. 

 The involvement of the EC in anxiety has been demonstrated in rodent studies. 

Pavlovian fear conditioning involves a conditioned stimuli (CS), e.g. an audible tone, 

paired with an unconditioned stimulus (US), e.g. a foot shock. Through training, the 

procedure produces learned fear responses or a conditioned response (CR), e.g. freezing 

behaviors following the CS. Electrolytic lesions of the EC 1 week prior to Pavlovian fear 

conditioning results in anterograde impairments producing deficits in acquisition of the 

CR to US (Maren and Fanselow, 1997). Inactivation of ventral hippocampal structures, 

including MEC, also disrupt auditory fear conditioning (Maren and Holt, 2004). CRs are 

sensitive to conditioning contexts. Extinction of the CR in a new context can occur when 

the CS is not paired with the US over many trials but the CR will remain intact if the 

animal is subsequently returned to a third novel context, indicating that formation of new 

associations—learning—occurs regarding context interactions with the CS. Lesions to the 

EC impair maintenance of the CR in subsequent novel contexts following extinction 

procedures, whereas sham-treated animals continue to exhibit a CR (Ji and Maren, 2008). 

The basolateral amygdala (BLA) provides substantial glutamatergic input to the EC 

(Sparta et al., 2014). Using a fear conditioning paradigm, photoinhibition of BLA-EC 
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connections during the acquisition stages impaired contextual fear memories in mice 

(Sparta et al., 2014). A delay between the CS and US requires temporal associations to 

occur in order to elicit a CR. Inactivation of layer III MEC temporoammonic inputs 

prevents temporal associational memory in fear condition (Suh et al., 2011). These 

studies strongly support a role for EC function in anxiety. 

 Molecules linked to anxiety and depression are potent modulators of EC activity. 

The neuropeptide cortico-releasing factor (CRF) is found throughout limbic structures 

and CRF mRNA expression increases in the amygdala under periods of psychological 

stress (Makino et al., 1999). Whereas stress is a risk factor for both anxiety and 

depression (Belmaker and Agam, 2008), suggesting an increase in resultant CRF 

signaling may occur. Application of CRF significantly increases the activity of principal 

cells in the MEC (Kurada et al., 2014), suggesting psychological stress may increase EC 

activity. CCK is another neuropeptide expressed throughout the limbic structures. CCK 

exerts both anxiogenic actions (Bowers et al., 2012) and antagonism of CCK-receptors 

reduces depressive-like behaviors in rodents (Becker et al., 2008). In the EC, CCK 

transiently increases the excitability of the temporoammonic-projecting layer III 

pyramidal neurons (Wang et al., 2011) and facilitates glutamate release at the perforant 

synapse via a presynaptic mechanism (Deng et al., 2010a). Furthermore, infusion of CCK 

into the DG—downstream of MEC inputs—increases anxiety-like behavior in rats (Xiao 

et al., 2012). 
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Neuromodulation 

General Overview 

 Neuromodulation adds depth to a relatively stable infrastructure of connections in 

the brain by modifying the cellular and network activity underlying an animal’s internal 

state and behavior. Such cellular and network activity may be important for homeostatic 

or behavioral processes such as nociception, thermoregulation, metabolism, attention, 

mood, learning, and memory (Richerson et al., 2013; Marder et al., 2014). Small 

chemical mediators, neurotransmitters, peptides, and gases all have modulatory actions in 

the brain and these compounds can act at short-range (e.g. purines or endocannabinoids) 

or intermediate/long-range distances (e.g. glutamate, GABA, monoamines or peptides) to 

modify activity (Hille, 1992; Nestler et al., 2009b). 

 It is important to distinguish between neurotransmitter and neuromodulator. The 

former elicits a direct response on the target cell whereas the latter influences the former. 

Many of the molecules mentioned above can act as either neurotransmitters or 

neuromodulators. It is the receptor-function involved that generally defines whether a 

molecule acts as a modulator or transmitter (Nestler et al., 2009b). For example, 

glutamate, GABA, serotonin, and ACh interact with both ionotropic and metabotropic 

receptors. Ionotropic receptors are ligand-gated ion channels that, upon ligand-binding, 

provide a direct conduit for ion permeation and thereby directly influence excitability. 

Metabotropic receptors are most often G protein-coupled receptors (GPCRs) and engage 

different cell signal transduction and effector systems to elicit downstream changes in 

excitability. 
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 G protein signaling involves the classic heterotrimeric complex of , , and  

subunits. The  subunit binds to the guanine nucleotides, guanosine triphosphate (GTP) 

and guanosine diphosphate (GDP). In the absence of ligand, the G complex exists in 

a GDP-bound state. Upon ligand binding, receptor conformational changes facilitate 

exchange of GDP for GTP, at which point the G subunit can dissociate from G 

subunits. Both  and  can interact with effector molecules and different types of G 

subunits interact differently with effector systems. Three major G proteins are 

commonly studied and include Gs, Gi/o, and Gq. Adenylate cyclase (AC) converts 

adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) and is 

stimulated by Gs. cAMP is a secondary messenger molecule that leads to increased 

protein kinase A (PKA) activity. On the other hand, Gi/o is negatively-coupled to AC 

and results in decreased production of cAMP and, in turn, reduced levels of PKA activity. 

Gq increases phospholipase C  (PLC) activity, which converts phosphoinositide 

bisphosphate (PIP2) to diacylglycerol (DAG) and inositol trisphosphate (IP3). These 

secondary messengers can in turn activate many downstream effectors. Ca2+ release and 

resultant elevations in cytoplaismic Ca2+ occurs via activation of IP3 receptors located on 

the smooth endoplasmic reticulum. Ca2+ then interacts with many proteins but most 

commonly increases activity of protein kinases, such as protein kinase C or 

Ca2+/calmodulin-dependent protein kinase. Additionally, DAG increases PKC activation. 

Altered kinase activity resulting from G protein signaling will lead to phosphorylating 

events that directly or indirectly alter ion channel function. Such channels may include 

ligand binding receptors mediating fast synaptic events (e.g. AMPA, NMDA, GABAA, 

etc.) or intrinsic ion channels (e.g. background K+, inwardly-rectifying K+ channels, non-
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selective cation channels, voltage-gated Na+/Ca2+/K+ channels, for example) and 

consequences of changes may include changes in receptor kinetics, subunit composition, 

receptor density, action potential kinetics, subthreshold depolarization, or spike discharge 

rates. Once ligand is no longer present, endogenous GTPase activity of the G subunit 

will result in hydrolysis of GTP to GDP, at which point the trimeric complex will re-

associate, thus terminating the transduction events. Thus, these modulatory actions 

represent a complex sequence of cellular events that ultimately influence incoming 

ionotropic-mediated inputs and modify the integrating properties of the neuron, which 

will modify its output and the activity of the circuit. 

Dissertation Research Objective  

 This dissertation is intended to continue our lab’s mission to characterize 

neuromodulatory mechanisms within the MEC. Glutamate and GABA are the two 

primary neurotransmitters contributing to MEC activity. Our lab focuses on the 

modulatory aspects of both glutamatergic and GABAergic transmission to discern how 

different systems might regulate MEC activity. Our attention is primarily directed at the 

superficial layers because this layer mediates information entry into the hippocampal 

circuit. The MEC receives extensive subcortical modulatory input (ACh, DA, NE, 5-HT, 

and HA) and these molecules are expected to modulate MEC activity and performance. 

Moreover, the metabotropic receptors for glutamate and GABA will also influence MEC 

activity. The objective of this dissertation is to continue our lab’s efforts in characterizing 

neuromodulatory mechanisms within this region. This dissertation is broken into three 

studies aimed at addressing the following questions: 

1. Does dopamine modulate GABAergic transmission within the MEC? 
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2. Does HA modulate GABAergic transmission within the MEC? 

3. How does group I activation modulate MEC excitability? 
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CHAPTER II 

METHODS 

Acute Slice Preparation 

 Animal protocols conformed to procedures approved by the University of North 

Dakota Animal Care and Use Committee. For Study 1, horizontal brain slices (400 µm) 

were prepared from 14- to 21-day-old Sprague-Dawley rats. For Study 2, horizontal brain 

slices (350 µm) from Sprague-Dawley rats were prepared. In this study, the age of the 

rats used were usually postnatal 14 to 22 days for most experiments. However, for some 

experiments involving recordings from interneurons, we extended the age of the rats to 

30 days after birth because the number of interneurons in slices were low. Furthermore, it 

was difficult to find a specific type of interneuron required for experiments. We did not 

notice significant age-related differences for the effects of HA on spontaneous inhibitory 

postsynaptic currents (sIPSCs) or interneuron excitability. For Study 3, horizontal slices 

(350 μm) were prepared from 15- to 34-day old Sprague Dawley rats. TRPC1 knock-out 

(KO) and wild-type (WT) mice were provided by Dr. Brij Singh and animal ages used ~3 

months old. In each study, a mix of female and male rats or mice were used and potential 

sex differences were not noticed.  

 Animals were deeply anesthetized in a bell jar using an isoflurane drop method. 

Brains were rapidly dissected into an ice-cold slurry of a cutting solution containing 

(in mM) 130 N-methyl-D-glucamine (NMDG)-Cl, 24 NaHCO3, 3.5 KCl, 1.25 NaH2PO4,
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 0.5 CaCl2, 5.0 MgCl2, and 10 glucose and saturated with 95% O2 and 5% CO2. Slices 

were prepared using the same cutting solution and a vibratome (VT1000s or  

VT1200, Leica, Wetzlar, Germany). After cutting, slices were transferred to a holding 

chamber with the same solution, except NMDG was replaced with NaCl. For studies 2 

and 3, the concentrations of CaCl2 and MgCl2 were modified to 2.5 mM and 1.5 mM, 

respectively. Slices recovered in these solutions for at least ~1 hr at 37C, after which 

they held at room temperature until recordings. 

Organotypic Slice Preparation 

 Horizontal sections were obtained from P8-P16 Sprague Dawley rats under 

aspectic conditions using a vibratome (VT1000s, Leica) and the above cutting solution 

(filter-sterilized). After isolating the MEC, slices were transferred to culture inserts and 

kept in petri dishes containing 1.1 mL of pre-warmed media comprised of 50% Hank’s 

minimum essential medium without glutamine (Lonza cat#: 12-137F), 25% heat-

inactivated horse serum (Hyclone cat #: SH30074.03HI), 25% Hank’s buffered saline 

solution (Life technologies cat #: 24020), 2 mM glutamine (ThermoFisher cat#: 

25030081), 5.95 mg/mL glucose, and 100 ug/mL penicillin and streptomycin (100x 

Pen/strep stock; Cellgro cat#: 30-002-CI). Culture media was changed on day-in-vitro 

(DIV) 1 and then every other day, thereafter. Experiments were conducted between DIV 

4 and DIV 10. 

Electrophysiological Recordings 

 For all studies, slices were transferred to a submersion recording chamber fitted 

on an Olympus BX51WI microscope equipped for both epifluorescence and differential 

interference contrast (DIC) imaging mounted on an air-table. Cells were identified using 
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video DIC microscopy with the use of top-mounted CCD cameras (Hitatchi for DIC and 

Optimos CMOS for epifluorescence). Slices were continuously bathed using a gravity-

driven perfusion system that had a constant flow-rate of ~1 mL/min. Whole-cell patch-

clamp recordings were made using a Multiclamp 700B patch-clamp amplifier and signals 

were digitized using an Axon 1550 Digidata System (Axon Instruments). Recordings 

were filtered at 2 kHz, digitized at 10 kHz, and acquired using either Clampex versions 

9.0 or 10.2 software versions. Patch electrodes had a tip resistance of 4-10 MΩ. A period 

of 10–15 min followed establishment of the whole-cell configuration and prior to 

recording stable responses. The extracellular solution, unless otherwise specified, was 

comprised of (in mM) 130 NaCl, 24 NaHCO3, 3.5 KCl, 1.25 NaH2PO4, 1.5 MgCl2, 2.5 

CaCl2, and 10 glucose, continuously saturated with 95% O2 and 5% CO2 (pH = 7.4). For 

experiments using NMDG, the extracellular NaCl was replaced with equimolar NMDG-

Cl (pH = 7.4 with HCl). In experiments where extracellular Ca2+ was reduced, the 

extracellular CaCl2 was replaced with equimolar MgCl2 and ethylene glycol-bis-(2-

aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA, 0.1 to 1 mM) was added to chelate 

any potentially residual Ca2+. In experiments where extracellular Na+ was reduced and 

Ca2+ was replaced, equimolar MgCl2 replaced the CaCl2 used in the NMDG+ solution 

above. In Study 3, the 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES)-

buffered extracellular solution was comprised of (mM) 147 NaCl, 3.5 KCl, 1.5 MgCl2, 

2.5 CaCl2, 10 HEPES, and 10 glucose (pH = 7.4 with NaOH).  

Recordings of GABAA Receptor-Mediated  
sIPSCs, mIPSCs, and eIPSCs 

 
 GABAergic inhibitory postsynaptic currents (IPSCs) were recorded in studies 1 

and 2. Spontaneous IPSCs (sIPSCs), minature IPSCs (mIPSCs), and evoked IPSCs 
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(eIPSCs) were obtained using whole-cell patch-clamp recordings from principal cells 

located in layers II, III, and V of the MEC. Recording electrodes were filled with (in 

mM) 100 Cs+-gluconate, 0.6 EGTA, 5 MgCl2, 8 NaCl, 2 ATPNa2, 0.3 GTPNa, 

40 HEPES and 1 QX-314 (pH 7.3 adjusted with CsOH). To record GABAA receptor-

mediated sIPSCs, cells were voltage-clamped at +30 mV and the external solution was 

supplemented with dl-2-amino-5-phosphonopentanoic acid (dl-APV; 50 µM) and 6,7-

dinitroquinoxaline-2,3-dione (DNQX; 10 µM). Confirmation that sIPSCs were in fact 

GABAergic was determined by bath applying the GABAA receptor antagonist bicuculline 

(10 μM) to a subset of slices. For recordings of mIPSCs, tetrodotoxin (TTX; 0.5 µM) was 

added to the dl-APV- and DNQX-supplemented extracellular solution. Both sIPSCs and 

mIPSCs were filtered during on-line acquisition with lowpass and highpass settings at 

2kHz and 1Hz, respectively. eIPSCs were recorded from principal neurons using the 

same internal and external solution as sIPSCs and by placing a stimulation electrode (a 

patch-clamp recording pipette filled with extracellular solution) locally (∼200 μm from 

the recorded neuron). Stimulations were delivered using an A360 stimulus isolator 

operated with pClamp. Data for both sIPSCs and mIPSCs were analyzed using Mini 

Analysis 6.0.1 (Synaptosoft Inc.) and recordings were visually inspected to exclude any 

obvious artifacts. Each detected event was inspected visually to exclude any obvious 

artifacts before analysis. The threshold for detection was set to 3 times the standard 

deviation of the noise as recorded in an event-free stretch of data. Mean amplitude, 

frequency, cumulative amplitude and frequency histograms were generated using this 

program. Because the basal frequency of sIPSCs and mIPSCs varied considerably among 
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cells, we normalized the frequency or amplitude of events to the averages recorded for 

5 minutes prior to DA or HA application. 

Recordings of Resting Membrane Potentials, Action Potentials,  
Holding Currents, and Current-Voltage Relationships  

from Layer III MEC Interneurons 
 

 For studies 1 and 2, recordings were made directly from local MEC interneurons. 

Resting membrane potentials (RMPs), action potentials (APs), holding currents (HCs), 

and current-voltage (I-V) relationships were recorded from interneurons in layer III of the 

MEC. Unless stated otherwise, the intracellular solution contained (in mM) 100 K+-

gluconate, 0.6 EGTA, 5 MgCl2, 8 NaCl, 2 ATPNa2, 0.3 GTPNa, 7 phosphocreatine, and 

33 HEPES (pH 7.3 adjusted with KOH). Interneurons were initially selected based on 

morphological criteria including a relatively small soma size as opposed to that of 

adjacent principal neurons and shapes that were unipolar, bipolar, spindle, irregular, or 

round. Following establishment of whole-cell configuration, interneurons were further 

identified based on electrophysiological properties including a putative fast-spiking 

narrow AP profile and steep afterhyperpolarization. The classification of interneurons 

was based on the presence or absence of a membrane potential sag-response to a 

hyperpolarizing current injection. Neurons exhibiting no sag were classified as Type I 

and those with a sag-response were classified as type II interneurons (Kumar and 

Buckmaster, 2006; Deng and Lei, 2008). The membrane capacitances of both 

interneurons were much smaller (~40-90 pF) compared to those of the principal neurons 

(~130-200 pF), as determined in pClamp. 

 Interneuron RMPs and HCs were recorded in the extracellular solution containing 

TTX (0.5 μM) to block AP generation and potential contaminations from DA- or HA-
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dependent changes in synaptic inputs. Recordings of APs were made using the 

extracellular solution supplemented with (in μM) 50 dl-APV, 10 DNQX, 10 bicuculline, 

and 1 CGP55845 to exclude any possible DA- or HA-induced contributions of synaptic 

transmission on the firings of the recorded interneurons. Current was injected to the soma 

to raise the RMP to near threshold to elicit spontaneous AP firing. For the recordings of 

I-V relationships, the external solution contained (in μM) 0.5 TTX, 100 CdCl2, 

200 NiCl2, 10 DNQX, 50 dl-APV, and 10 bicuculline. For voltage ramps, cells were 

clamped at -60 mV and a ramp protocol was applied at 0.05 Hz from -120 mV to 40 mV 

(velocity = 80 mVs-1). For I-V relationships, because maximal DA- or HA-induced 

responses were typically seen around ~8 and ~5 min, respectively, an average of at least 

3 ramp traces from these maximal time points were used for comparison to control 

ramps. For the recording of Kirs in Study 2, cells were clamped at -70 mV and 400 ms 

voltage steps from -150 mV to -60 mV were delivered every 10 seconds. The 

extracellular medium for K+-mediated I-V relationships contained NMDG, TTX  

(0.5 μM) and zero Ca2+. For the recording of the delayed rectifier K+ channels (IK), cells 

were clamped at -60 mV before being briefly stepped to -50 mV for 50 ms, followed by 

500 ms steps from -60 mV to +70 mV every 3 seconds. Access resistance was rigorously 

monitored before and after each protocol using the pClamp seal test. Cells with access 

resistance changes of greater than 15% were discarded.  

Recordings of APs, RMPs, HCs, and I-Vs from  
Principal Neurons of the MEC 

 
 For Study 3, AP recordings were made from layers II, III, and V MEC principal 

neurons, whereas RMPs, HCs and I-Vs were made exclusively from layer III neurons. 

Intracellular recording electrodes were filled with, unless otherwise stated, either a K-
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gluconate-containing or Cs-gluconate-containing internal solution. The K-gluconate 

internal solution was comprised of (mM) 100 K-gluconate, 0.6 EGTA, 5 MgCl2, 8 NaCl, 

2 ATPNa2, 0.3 GTPNa, 7 phosphocreatine, and 33 HEPES (pH 7.3 adjusted with KOH). 

The Cs-gluconate internal solution was comprised of (mM) 100 Cs-gluconate, 0.6 EGTA, 

5 MgCl2, 8 NaCl, 2 ATPNa2, 0.3 GTPNa, 40 HEPES and 1 QX-314 (pH 7.3 adjusted 

with CsOH). As done with interneuron AP recordings, blockers for glutamatergic and 

GABAergic synaptic transmission were included in the extracellular solution to isolate 

direct actions of (S)-3,5-dihydroxyphenylglycine (DHPG). Positive current was injected 

to elicit spontaneous AP firing and baseline AP firing frequencies for layer III pyramidal 

neurons were set to ~-.5 Hz. Recordings of HCs were made by voltage-clamping the 

membrane to -60 mV. Both RMPs and HCs were recorded in the presence of TTX to 

block synaptic transmission and prevent AP generation. A Cs-containing intracellular 

solution was used for I-V relationships to isolate non-K+-mediated currents and the 

extracellular solution contained the same blockers as those described in interneuron I-V 

relationships. For layer III pyramidal ramps, the membrane potential was voltage-

clamped at -60 mV and the ramp range was from -100 to +60 mV. The DHPG-induced 

net current was generated by subtracting from control ramp traces from responses 

following five minutes of application of DHPG. Intracellular dialysis of TRPC-targeting 

antibodies for HC experiments were performed using a Cs-based intracellular solution 

containing 4 ug/mL antibodies targeting TRPC1 (Alomone Labs, ACC-010), TRPC3 

(Alomone Labs, ACC-016), TRPC4 (Alomone Labs, ACC-018), TRPC5 (Alomone Labs, 

ACC-020), or both TRPC4 and 5. 
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Western Blot 

 For Study 2, western blot analysis was performed on lysates prepared from MEC 

slices. Horizontal slices were prepared as described above and the MEC was isolated 

under a stereomicroscope from 3 rats. Tissue lysates and samples were processed as 

described previously (Deng et al., 2009; Ramanathan et al., 2012; Xiao et al., 2014). To 

each lane of a 12% polyacrylamide gel, 10 µg of protein was added and run at 120 

constant volts for 60 minutes. Samples were then transferred to PVDF membranes at 

300 mA for 60 minutes. Membranes were rinsed and blocked in tris-buffered saline 

supplemented with 0.1% Tween 20 (TBS-T) and 3% bovine serum albumin (BSA) for 

30 minutes. Membranes were then incubated with antibodies for either H1 (1:400; AHR-

001, Alomone Labs) or H2 (1:400, SC-33974, Santa Cruz Biotechnology) receptors on a 

rocking platform overnight at 4C. As a negative control, additional blots were processed 

in parallel using a primary antibody solution that had been pre-adsorbed with appropriate 

blocking peptide provided by the vendors (1 μg blocking peptide: 1 μg antibody, 

prepared 20 min prior to membrane application). Membranes were washed 2 times in 

TBS-T and then incubated for 1.5 hours with either anti-rabbit IgG-HRP for H1 (1:1000, 

SC-2357, Santa Cruz Biotechnology) or anti-goat IgG-HRP for H2 (1:1000, SC-2020, 

Santa Cruz Biotechnology) receptors. Following 3 rinses with TBS-T, membranes were 

then processed using SuperSignal West Pico Chemiluminescent Substrate kit (catalog 

No. 34080, Pierce) and developed using a UVP Imaging System and VisionWorks 

software. 
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Immunohistochemistry 

 Animals were deeply anesthetized using a xylazine/ketamine cocktail and 

transcardially perfused with saline (0.9% NaCl) followed by 4% paraformaldehyde 

(PFA) in saline. Brains were extracted and stored in 4% PFA overnight and subsequently 

transferred to a 30% sucrose solution for 3 days. Brains were then embedded in Tissue-

Tek O.C.T compound and sectioned at 10 μm using a cryostat (CM3050s, Leica) and 

fixed to frosted slides. After washes 3 times (2 min each) in 0.1 M phosphate buffered 

saline (PBS), slides were heated to 90C in a 10 mM sodium citrate buffer containing 

0.1% Tween 20 for 20 min. After cooling to room temperature, slides were again washed 

with PBS 3 times. Non-specific binding was blocked using a buffer (IHC buffer) 

comprised of PBS, 0.5% BSA, 0.1% Triton X-100, and 5% fetal bovine serum for 

30 minutes. Slides were then individually incubated for 48 h at 4C with either anti-H1 

(1:500) or anti-H2 (1:200) receptors and mouse anti-GAD-67 (1:500, MAB5406, 

Millipore) to demonstrate co-localization of either HA receptor with GABAergic 

neurons. Slides were rinsed twice (3 min each) and then underwent a secondary 

incubation with fluorophore-conjugated donkey anti-rabbit IgG-TR (1:200, SC-2784, 

Santa Cruz Biotechnology) or donkey anti-goat IgG-TR (1:200, SC-2783, Santa Cruz 

Biotechnology) and bovine anti-mouse IgG-FITC (1:200, SC-2366, Santa Cruz 

Biotechnology) in IHC buffer for 2 hours at room temperature in the dark. After washes 

in PBS 6 times (5 min each), slides were coverslipped using Prolong mounting media 

(P36931, Life Technologies) and imaged using a Fluoview 300 confocal microscope 

(Olympus). 
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Knock-Down of TRPC4 and TRPC5 

 Unique shRNA constructs targeting either rat TRPC4 (rTRPC4) or TRPC5 

(rTRPC5) in retroviral red fluorescent protein-(pRFP-C-RS) or green fluorescent protein-

(pGFP-V-RS) containing vectors were purchased from Origene (Rockville, MD). 

Plasmids were amplified in E. coli and isolated using a mega prep kit purchased from 

Qiagen (cat#: 12181). DNA working solutions of 1 μg/μL in TE were prepared for HEK-

293 and biolistic transfection. TRPC4 was targeted using the 29-mer sequence 

CAGCATTCCTGGTCTCAATGAACAGTGTG and TRPC5 was targeted using the  

29-mer sequence AGCTTCTAACCTGCATGACCATTGGATTC. Knockdown 

efficiency was validated for each shRNA by co-transfecting HEK-293 with cDNAs for 

rTPRC4 (kindly provided by Dr. Brij Singh) or hTPRC5 (purchased from Origne 

(pCMV6-XL4, GenBank accession number NM_012471)), with their corresponding 

shRNA sequences. Concurrent scramble controls were performed using proprietary 

scramble sequences provided by Origene that were inserted into appropriate RFP-

carrying or GFP-carrying vectors. After 48 hours of transfection, cells were lysed in 

RIPA buffer containing 1x protease and phosphatase inhibitors. Protein concentrations 

were determined with a Bradford assay and western blot analysis (using similar methods 

as those described above) was performed to determine expression levels using anti-

TRPC5 (1:500, Alomone Labs cat #ACC-020) and anti-TPRC4 (1:500, NeuroMab 

N77/15). 

Biolistic Transfection of Organotypic Slice Cultures 

 Transfection bullets were prepared by coating 12.5 mg of 1.6 μm gold pellets with 

25 ug of each shRNAs for TRPC4 and TRPC5 or their corresponding scramble controls 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=NM_012471
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using a tubing prep station (Biorad). Particles were delivered to MEC organotypic slices 

using a Helios Gene Gun (Biorad) on DIV 2 at 150 psi from a shooting distance of 

1.25 inches above slice sections. Recordings were made on DIV 4-6 using methods 

described above.  

Data Analysis 

 Data are presented as the mean ± SEM. Throughout the text, n refers to the 

number of cells examined. The concentration-response curve for DA, HA, and DHPG 

was fit using the Hill equation: I = Imax x {1/[1+EC50/(ligand)n]}, where Imax is the 

maximum response, EC50 is the ligand concentration producing a half-maximal response, 

and n is the Hill coefficient. Student’s paired or unpaired t-test, or analysis of variance 

was used for statistical analysis. Statistical analysis was performed using Origin 7 or 

GraphPad Prism 6. P-values are reported throughout the text and significance was set at 

P < 0.05. For sIPSC cumulative probability plots, events were pooled and used the same 

bin size across all cells (25 ms for frequency and 2 pA for amplitude) and only those 

recorded in the last minute of DA or HA application (maximal response) were compared 

to the average recorded in the control condition for 5 minutes. 

Chemicals 

 SCH2339, LE300, SKF38393, SKF81297, sulpiride, corynanthine, mibefradil, 

ZD7288, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), 

thapsigargin, doxazosin, cetirizine, ranitidine, thioperamide, 2-pyridylethylamine, 

dimaprit, (R)-(-)--methylhistamine, DHPG, LY456236, MPEP, U73122, edelfosine, 

MDL 12330A, genistein, PP1, 2-APB, KB-R7943, ruthenium red, ML-204, dl-APV, 

DNQX, bicuculline, CGP55845, kynurenic acid, and TTX were purchased from Tocris 
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Cookson Inc. (Ellisville, MO, USA). GDP--S was purchased from Enzo Life Sciences. 

Other chemical reagents, including DA, HA, DMSO, FFA, LaCl3 and NMDG, were 

purchased from Sigma-Aldrich.  

 All of the drugs were initially prepared as a stock solution that was frozen below 

−20°C until use. The stock solution was diluted in the extracellular solution to reach the 

final working concentrations applied to slices. When dimethyl sulfoxide (DMSO) or 

other vehicles were required to dissolve drugs, the final concentration of the vehicles was 

kept < 0.1%. For experiments involving inhibitors, slices were usually pretreated with the 

extracellular solution containing the inhibitors for at least 20 min and the same 

concentration of the drugs were continuously applied, unless otherwise stated, in the bath 

to ensure a complete inhibition of the targets. For DA experiments, a stock DA solution 

at 100 mM was initially prepared, aliquoted, and frozen until use. To prevent oxidation of 

DA, 15 µL of the frozen DA stock solution was dissolved in 15 mL of the extracellular 

solution used for the experiment immediately prior to DA application. Using this method, 

we did not observe any changes in color of the solution during the experiment, suggesting 

oxidation was minimal. 
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CHAPTER III 

RESULTS 

Study 1 – Dopaminergic Modulation of MEC GABAergic Transmission 

Introduction 

 Catecholamines including dopamine (DA) and norepinephrine are 

neurotransmitters or neuromodulators involved in the modulation of a variety of 

physiological functions such as working memory (Phillips et al., 2008; Sara, 2009) and 

neurological and psychiatric disorders, including Parkinson's disease, addiction, 

schizophrenia, bipolar disorder, Huntington's disease, attention deficit hyperactivity 

disorder, and Tourette's syndrome (Beaulieu and Gainetdinov, 2011; Kurian et al., 2011). 

DA activates 5 types of G protein-coupled receptors that can be classified as D1- (D1 and 

D5) and D2-like (D2, D3, and D4) receptors (Beaulieu and Gainetdinov, 2011), whereas 

norepinephrine interacts with α1, α2, β1, β2, and β3 adrenergic receptors. However, 

evidence suggests that there are promiscuous interactions among dopaminergic and 

adrenergic receptors. For example, DA has been shown to activate α1 (Leedham and 

Pennefather, 1986; Rey et al., 2001; Cornil et al., 2002; Zhang et al., 2004; Lazou et al., 

2006; Lin et al., 2008), α2 (Leedham and Pennefather, 1986; Cornil et al., 2002), and β 

(Rajfer et al., 1988; Anfossi et al., 1993; Lee et al., 1998; Ouedraogo et al., 1998) 

adrenergic receptors, whereas norepinephrine activates D2 dopaminergic receptors 

(Robbins et al., 1988). At least 4 major dopaminergic pathways have been identified in 

the mammalian brain; the nigrostriatal, mesolimbic, mesocortical, and tuberoinfundibular 
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tracts that originate from the dopaminergic neurons in the substantia nigra, ventral 

tegmental areas, arcuate nucleus, and periventricular area of the hypothalamus, 

respectively. Like other cortical regions, the EC receives profuse dopaminergic 

innervation mainly from the ventral tegmental areas in the midbrain (Akil and Lewis, 

1993). Similarly, the EC also receives prominent noradrenergic projections from the 

locus coeruleus (Fallon et al., 1978; Palkovits et al., 1979; Wilcox and Unnerstall, 1990). 

Consistent with the anatomical dopaminergic and noradrenergic innervations of the EC, 

the EC also expresses dopaminergic receptors such as D1- (Savasta et al., 1986; Huang et 

al., 1992; Tarazi et al., 1999) and D2-like (Richfield et al., 1989; Weiner et al., 1991; 

Hemby et al., 2003; Rivera et al., 2008) receptors and adrenergic receptors including α1 

(Wilcox and Unnerstall, 1990), α2 (Unnerstall et al., 1984, 1985; Boyajian et al., 1987), 

and β (Booze et al., 1993) receptors. Functionally, DA increases Na+ channel currents 

(Rosenkranz and Johnston, 2007), inhibits the excitability of pyramidal neurons 

(Rosenkranz and Johnston, 2006; Mayne et al., 2013), and modulates excitatory synaptic 

transmission (Pralong and Jones, 1993; Stenkamp et al., 1998; Behr et al., 2000; Caruana 

et al., 2006; Caruana and Chapman, 2008) and plasticity (Caruana et al., 2007; Hamilton 

et al., 2010) in the EC. Application of norepinephrine in the EC inhibits glutamatergic 

transmission (Pralong and Magistretti, 1994, 1995) and neuronal excitability (Xiao et al., 

2009a) via activation of α2 receptors and facilitates GABAergic transmission via the 

activation of α1 receptors (Lei et al., 2007). However, the effects of DA on inhibitory 

synaptic transmission and GABAergic interneurons are elusive, although DA slightly 

depresses evoked IPSPs in the EC (Pralong and Jones, 1993). In this study, we 

thoroughly examined the effects and the underlying mechanisms of DA in GABAergic 
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transmission in the EC. Our results showed that DA increased the frequencies of 

spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSCs), but slightly depressed the 

amplitude of evoked IPSCs (eIPSCs). Further investigation revealed that DA augmented 

the frequencies of sIPSCs and mIPSCs not by DA receptors, but by the activation of α1 

adrenergic receptors. Determination of the underlying ionic and signaling mechanisms 

indicated that functions of the inward rectifier K+ channels (Kirs) and the T-type Ca2+ 

channels were required for DA-mediated facilitation of GABAergic transmission. 

DA Increases the Frequency Not the Amplitude of sIPSCs Recorded from  

Entorhinal Neurons Via Activation of α1 Adrenergic Receptors 

 

 We examined the effects of DA on GABAA receptor-mediated sIPSCs recorded 

from the principal neurons in each layer of the EC. Stellate and pyramidal neurons are the 

principal neurons in layer II, whereas pyramidal neurons are the major neuronal type in 

layers III and V. In layer II stellate neurons, application of DA (100 µM) for 8 min 

significantly increased the frequency of sIPSCs to 198 ± 18% of control (n = 13, P < 

0.001, Fig. 1A, B, and C) without altering the amplitude of sIPSCs significantly (103 ± 

4% of control, n = 13, P = 0.97, Fig. 1A and D). DA concentration dependently increased 

the frequency of sIPSCs (effective concentration range: 3–100 µM) with an EC50 value of 

3.6 μM (Fig. 1E). Similarly, application of DA significantly increased the frequency (F) 

with no effects on the amplitude (A) of sIPSCs recorded from the pyramidal neurons in 

layer II (F: 227 ± 20% of control, n = 5, P = 0.003; A: 114 ± 13% of control, n = 5, P = 

0.35, Fig. 1F), layer III (F: 189 ± 23% of control, n = 5, P = 0.02; A: 113 ± 12% of 

control, n = 5, P = 0.34, Fig. 1F), and layer V (F: 229 ± 20% of control, n = 5, P = 0.003; 

A: 109 ± 6% of control, n = 5, P = 0.22, Fig. 1F). Whereas these results indicate that DA 

http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F1
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F1
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F1
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F1
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F1
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F1
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Figure 1.  DA increases the frequency but not the amplitude of sIPSCs recorded 
from entorhinal neurons. (A) sIPSCs recorded from a layer II stellate 
neuron before, during, and after the application of DA (100 μM). (B) Time 
course of the sIPSC frequency averaged from 13 stellate neurons. (C) 
Cumulative frequency distribution from a layer II stellate neuron before, 
during, and after the application of DA. (D) Cumulative amplitude 
distribution from the same cell before, during, and after the application of 
DA. The flat line part of the curves was generated because zero events 
were detected at the amplitudes below threshold. (E) Concentration–
response curve of DA. Numbers in the parenthesis are the numbers of cells 
recorded. (F) Bath application of DA (100 μM) significantly enhanced the 
frequency, F, with no effects on the amplitude, A, of sIPSCs recorded 
from the pyramidal neurons in layer II (L2), layer III (L3), and layer V 
(L5). *P < 0.05, **P < 0.01.
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facilitates the frequency of sIPSCs in all the principal neurons in the EC, we used layer II 

stellate neurons as an example to determine the underlying cellular and molecular 

mechanisms for the rest of the experiments. 

 We probed the involvement of DA receptors. Slices were pretreated with the 

selective D1-like receptor antagonist, SCH23390 (10 μM), and the extracellular solution 

continued to contain the same concentration of SCH23390. Under these circumstances, 

bath application of DA for 8 min failed to increase, but slightly and significantly 

decreased the frequency (80 ± 6% of control, n = 8, P = 0.01, Fig. 2A) and amplitude  

(82 ± 4% of control, n = 8, P = 0.004, data not shown) of sIPSCs. We further tested the 

effects of another D1 antagonist of distinct structure and higher potency, LE300. 

Application of LE300 (100 nM, Ki = 1.9 nM for D1 receptors (Kassack et al., 2002)) 

failed to block DA-mediated augmentation of the frequency of sIPSCs (187 ± 32% of 

control, n = 9, P = 0.025, Fig. 2B). Because of the distinct effects of these 2 D1 

antagonists, we further tested the roles of D1-like receptors by using the agonists 

selective for D1-like receptors. Bath application of SKF38393 (20 µM), a selective D1-

like receptor agonist, failed to significantly alter the frequency (99 ± 6% of control, n = 5, 

P = 0.87, Fig. 2C) and the amplitude (88 ± 5% of control, n = 5, P = 0.11) of sIPSCs. 

Similarly, bath application of SKF81297 (20 µM), another selective D1-like receptor 

agonist, did not significantly alter the frequency (102 ± 4% of control, n = 6, P = 0.64, 

Fig. 2D) and the amplitude (87 ± 8% of control, n = 6, P = 0.14) of sIPSCs. These results 

suggest that activation of D1-like receptors does not increase the frequency of sIPSCs. 

The effect of SCH23390 may thus not be mediated by blockade of D1-like receptors but 

due to its inhibition on Kirs, which were required for the effects of DA (see below) 

http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F2
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F2
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F2
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F2
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Figure 2. DA facilitates sIPSC frequency via the activation of α1 adrenoreceptors, 
but not DA receptors. (A) Pretreatment of slices with and continuous bath 
application of the D1-like receptor antagonist, SCH23390 (10 μM), 
blocked DA-induced facilitation of sIPSC frequency. (B) Application of 
another D1-like receptor antagonist, LE300 (100 nM), in the same fashion 
failed to block DA-mediated enhancement of sIPSC frequency. (C) Bath 
application of the selective D1-like receptor agonist, SKF38393 (20 μM), 
did not increase sIPSC frequency. (D) Bath application of SKF81297 (20 
μM), another selective D1-like receptor agonist, failed to facilitate the 
frequency of sIPSCs. (E) Application the D2-like receptor antagonist, 
sulpiride (100 μM), failed to alter DA-induced facilitation of sIPSC 
frequency significantly. (F) Bath application of the D1- and D2-like 
receptors agonists did not enhance the frequency of sIPSCs. (G) 
Application of the selective α1 antagonist, corynanthine (100 μM), 
blocked DA-induced enhancement of sIPSC frequency. (H) Application of 
another α1 antagonist, doxazosin (25 μM), failed to block DA-induced 
increases in sIPSC frequency at 10, 30, and 100 μM and in the presence of 
the dopamine-β-hydroxylase inhibitor, fusaric acid (100 μM), DA still 
increased sIPSC frequency. **P < 0.01, N.S., no significance. 



57 



58 

because SCH23390 is also a blocker of Kirs (Kuzhikandathil and Oxford, 2002; Shankar 

et al., 2004; Sosulina et al., 2008; Chee et al., 2011). We then tested the roles of D2-like 

receptors by applying the selective D2-like receptor antagonist, sulpiride. In the presence 

of sulpiride (100 μM), application of DA still significantly increased the frequency  

(207 ± 4% of control, n = 7, P = 0.02, Fig. 2E) but failed to alter the amplitude (96 ± 7% 

of control, n = 7, P = 0.65) of sIPSCs, suggesting that D2-like receptors are not involved. 

We further tested whether the facilitatory effect of DA on sIPSC frequency requires both 

D1- and D2-like receptors. Bath application of SKF38393 (20 µM, D1-like agonist) and 

quinpirole (20 µM, D2-like agonist) still failed to increase the frequency (108 ± 6% of 

control, n = 5, P = 0.27, Fig. 2F) and amplitude of (93 ± 4% of control, n = 5, P = 0.19) 

sIPSCs. These unexpected results suggest that DA receptors are not required for DA-

induced enhancement of sIPSC frequency. 

 There is accumulating evidence indicating that DA can also act via the activation 

of α1 adrenergic receptors (Leedham and Pennefather, 1986; Rey et al., 2001; Cornil et 

al., 2002; Zhang et al., 2004; Lazou et al., 2006; Lin et al., 2008) and α1 adrenoreceptors 

enhance GABAergic transmission in the EC (Lei et al., 2007). We therefore tested the 

hypothesis that DA increases sIPSC frequency via the activation of α1 receptors in the 

EC. In the presence of the selective α1 receptor antagonist, corynanthine (100 µM), 

application of DA (100 µM) failed to increase either the frequency (111 ± 9% of control, 

n = 7, P = 0.26, Fig. 2G) or the amplitude (94 ± 2% of control, n = 7, P = 0.311) of 

sIPSCs. We also used another α1 receptor antagonist, doxazosin, which is distinct in 

structure compared with corynanthine. Pretreatment of slices with and continuous bath 

application of doxazosin (25 µM) blocked the increase of sIPSC frequency induced by 

http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F2
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F2
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F2
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DA at 10 (93 ± 8% of control, n = 5, P = 0.45, Fig. 2H), 30 (109 ± 6% of control, n = 8,  

P = 0.21, Fig. 2H), and 100 µM (111 ± 7% of control, n = 9, P = 0.16, Fig. 2H). These 

results suggest that DA facilitates sIPSC frequency not by the activation of dopaminergic 

receptors, but instead by the activation of α1 adrenoreceptors. 

 DA could activate α1 adrenoreceptors directly or indirectly by transformation into 

norepinephrine within the slices via DA-β-hydroxylase. The generated norepinephrine 

could then bind to α1adrenoreceptors to mediate the effects of DA. We therefore tested 

this possibility by applying fusaric acid, a DA-β-hydroxylase inhibitor (Nagatsu et al., 

1970; Hidaka, 1971). Slices were pretreated with fusaric acid (100 µM) and the same 

concentration of fusaric acid was continuously applied in the bath. Under these 

circumstances, application of DA induced a comparable enhancement of sIPSC 

frequency (190 ± 22% of control, n = 4, P = 0.81 vs. DA alone, Fig. 2H), suggesting that 

it is unlikely that the effects of DA were mediated by its conversion to norepinephrine. 

Endogenously Released DA Also Increases sIPSC Frequency  

Via Activation of α1 Receptors 

 

 We next probed the roles of endogenously released DA in modulating 

GABAergic transmission. Because the EC expresses DA transporter (DAT (Erickson et 

al., 1998)), we initially bath applied DAT inhibitor to elevate synaptic DA concentration. 

Bath application of the selective DAT inhibitor, GBR 12935 (5 μM), failed to 

significantly increase the frequency of sIPSCs (91 ± 2% of control, n = 8), compared with 

vehicle application (91 ± 4% of control, n = 8, P = 0.95, Fig. 3A,F). One possible 

explanation for the negative result is that there was no tonic spontaneous DA release at 

the dopaminergic terminals in the EC. We therefore used an alternative approach to 
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Figure 3. Endogenously released DA enhances sIPSC frequency via the activation 
of α1 receptors. (A) Bath application of the DAT inhibitor, GBR 12935 
(5 μM), had no significant effect on sIPSC frequency compared with that 
of vehicle (0.1% DMSO). (B) Bath application of AMPH (100 μM) 
significantly increased the frequency of sIPSCs. (C) In the presence of 
GBR 12935, bath application of AMPH (100 μM) induced a significantly 
smaller increase in sIPSC frequency. (D) AMPH-mediated increase in 
sIPSC frequency was blocked by α1 receptor antagonist, doxazosin 
(25 μM). (E) Application of talopram (1 μM) failed to alter AMPH-
induced enhancement of sIPSC frequency. (F) Summary bar graph. n.s., 
no significant difference; **P < 0.01 compared with AMPH alone. 
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stimulate DA release. Amphetamine (AMPH) is a drug that increases transporter-

mediated DA release (Leviel, 2011). Application of AMPH (100 μM) for 8 min 

significantly increased the frequency of sIPSCs (191 ± 29% of control, n = 8; P = 0.02, 

Fig. 3B and F). To test the involvement of DAT, we applied AMPH together with the 

DAT inhibitor. In the presence of GBR 12935 (5 μM), application of AMPH induced a 

significantly smaller increase in the frequency of sIPSCs (108 ± 5% of control, n = 8), 

compared with the effect of the application of AMPH alone (P = 0.007, Fig. 3C and F). 

We further validated the involvement of α1 receptors. Application of AMPH for 8 min in 

the presence of doxazosin (25 μM) failed to increase sIPSC frequency significantly  

(108 ± 8% of control, n = 6, P = 0.35, Fig. 3D). Because AMPH has been reported to 

increase the releases of both DA and norepinephrine (Rothman et al., 2001; Smith and 

Greene, 2012), we tested whether norepinephrine transporter was involved in AMPH-

induced increases in sIPSC frequency. Application of talopram (1 μM), a selective 

blocker for the norepinephrine transporter (McConathy et al., 2004), failed to alter 

AMPH-induced increases in sIPSC frequency (175 ± 22.3% of control, n = 10, P = 0.7 

vs. AMPH alone, Fig. 3E and F). These data together demonstrate that endogenously 

released DA also facilitates sIPSC frequency via the activation of α1 receptors in the EC. 

DA Enhances the Frequency of mIPSCs,  

But Slightly Reduces the Amplitude of eIPSCs 

 

 sIPSCs represent events caused by both AP-dependent and -independent release 

of GABA. In contrast, mIPSCs recorded in the presence of TTX, a voltage-gated Na+ 

blocker, should be independent of APs. We therefore recorded mIPSCs in the presence of 

TTX (0.5 µM). Application of DA significantly increased the frequency (135 ± 6% of 

control, n = 6, P = 0.003, Fig. 4A, B, and C) without affecting the amplitude (99 ± 4% of 
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control, n = 6, P = 0.89, Fig. 4A, B, and D) of mIPSCs. These results suggest that DA 

augments presynaptic GABA release without modulating postsynaptic GABAA receptors. 

We also examined the effects of DA on the GABAA receptor-mediated inhibitory 

postsynaptic current (IPSC) recorded from stellate neurons evoked by placing a 

stimulation electrode in a location of approximately 200 μm from the recorded neurons. 

We used a protocol of paired stimulation (interval: 50 ms and frequency: 0.1 Hz) to 

measure the paired-pulse ratio (PPR) simultaneously. Bath application of DA slightly but 

significantly reduced the amplitude of eIPSCs evoked by the first stimulation (87 ± 4% of 

control, n = 6, P = 0.023, Fig. 4E). DA-induced depression of eIPSC amplitude was 

presynaptic in origin, because DA significantly increased the PPR (n = 6, P = 0.002, 

Fig. 4F). Two potential mechanisms could be proposed to explain the discrepancy of the 

results regarding sIPSCs and eIPSCs. The first explanation for DA-induced depression of 

eIPSCs is that DA-induced enhancement of spontaneous GABA release depletes the 

readily releasable vesicle pool that is subsequently available for eIPSCs as suggested for 

5-HT3 (Cui et al., 2012) and muscarinic (Xiao et al., 2009b) receptors. Alternatively, 

DA-mediated depression of eIPSCs could be due to its inhibitory effect on the AP 

amplitude of GABAergic interneurons, because DA-induced membrane depolarization 

could inactivate Na+ channels resulting in APs of lower amplitude (see below). Because 

sIPSCs, mIPSCs, and eIPSCs represent distinct modes of GABAergic transmission, the 

diverse effects of DA on these IPSCs suggest that DA exerts different actions depending 

on the status of the neural circuitry. The results that DA increased the frequency of 

sIPSCs and mIPSCs suggest that DA facilitates GABA release. We therefore further 

determined the mechanisms underlying DA-induced GABA release.
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Figure 4. DA augments the frequency with no effects on the amplitude of mIPSCs 
recorded in the presence of TTX, but attenuates the amplitude of eIPSC. 
(A) mIPSC current traces recorded from a stellate neuron before, during, 
and after the application of DA. (B) Time course of mIPSC frequency 
summarized from 6 stellate neurons. (C) Cumulative frequency 
distribution of mIPSCs before, during, and after the application of DA. 
Note that DA reduced the interval of mIPSCs suggesting an increase in 
mIPSC frequency. (D) Cumulative amplitude distribution of mIPSCs 
before, during, and after the application of DA. Note that DA did not 
change the amplitude of mIPSCs. The flat line part of the curves was 
generated because zero events were detected at the amplitudes below 
threshold. (E) DA depressed the amplitude of eIPSCs recorded from layer 
II stellate neurons by application of a protocol comprising paired 
stimulation (50 ms interval at 0.1 Hz). The amplitudes of the eIPSCs 
evoked by the first stimulation were normalized to the average of the 5 
min before application of DA. Upper panel shows the average of 6 eIPSCs 
before and during the application of DA. (F) DA increased the PPR. Upper 
panel shows the eIPSCs before and during the application of DA scaled to 
the amplitude evoked by the first stimulation. Note that the amplitude of 
the second eIPSC in the presence of DA is larger than control. 
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 Because mIPSCs recorded in the presence of TTX are AP-independent, our 

results that DA facilitated the frequency of mIPSCs recorded in the presence of TTX 

suggest that there should be at least an AP-independent mechanism involved. We 

therefore tested whether extracellular Ca2+ was required for the effects of DA on 

GABAergic transmission by recording sIPSCs and mIPSCs from layer II stellate neurons 

in a Ca2+-free extracellular solution. The extracellular Ca2+ was replaced by the same 

concentration of Mg2+, and 1 mM of EGTA was included in the extracellular solution to 

chelate the ambient residual Ca2+. Under these circumstances, bath application of DA 

failed to increase the frequencies of sIPSCs (n = 11, P = 0.42, Fig. 5A) and mIPSCs  

(n = 6, P = 0.94, Fig. 5B). These data together suggest that extracellular Ca2+ is required 

for the effects of DA on GABAergic transmission. Since extracellular Ca2+ is required for 

DA's presynaptic actions, we also tested whether Ca2+ influx via voltage-gated Ca2+ 

channels is necessary for DA-mediated increases in the frequencies of sIPSCs and 

mIPSCs. Inclusion of CdCl2 (100 µM), a blocker for high-threshold voltage-dependent 

Ca2+ channels, in the extracellular solution, failed to block DA-induced increases in the 

frequency of sIPSCs (n = 5, P = 0.67 vs. control, Fig. 5C) and mIPSCs (n = 5, P = 0.004, 

Fig. 5D). However, addition of NiCl2 (200 µM), a blocker for the low-threshold T-type 

Ca2+ channels, significantly reduced DA-induced increases in the frequency of sIPSCs  

(n = 14, P = 0.033 vs. control, Fig. 5E). DA-mediated augmentation of mIPSC frequency 

was blocked in the extracellular solution containing Ni2+ (n = 5, P = 0.96, Fig. 5F). We 

further examined the involvement of T-type Ca2+channels with mibefradil, another T-

type Ca2+ channels blocker. Bath application of mibefradil (15 µM) significantly reduced 

DA-induced increases in sIPSC frequency (113 ± 5% of control, n = 8, P = 0.04 vs. DA 
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alone, Fig. 5G) but blocked completely DA-mediated facilitation of mIPSC frequency 

(106 ± 11% of control, n = 5, P = 0.64 vs. baseline, Fig. 5H). These data together indicate 

that T-type Ca2+ channels are required for DA-induced facilitation of GABAergic 

transmission. 

DA Depolarizes GABAergic Interneurons in the EC 

 Because our results point to a presynaptic mechanism underlying DA-induced 

facilitation of GABA release, we also examined the effects of DA on GABAergic 

interneurons by recording from the interneurons in layer III of the EC. As demonstrated 

previously (Deng and Lei, 2008), interneurons in the EC can be divided into 2 types 

according to their electrophysiological properties. Type I interneurons showed little 

voltage sag in response to hyperpolarizing current injection and no rebound burst firing 

(Fig. 6A1), whereas Type II interneurons displayed prominent voltage sag in response to 

hyperpolarizing current injection and rebound burst firing (Fig. 6B1). After having 

electrophysiologically identified the interneurons, we recorded the RMPs by washing 

with TTX (0.5 µM) in the extracellular solution. Because application of DA-induced 

depolarization in both types of interneurons (Fig. 6A2 and B2), the data recorded from 

Type I and Type II interneurons were pooled. Application of DA depolarized the 

interneurons recorded at the RMPs (Control: −66.2 ± 0.8 mV; DA: −62.0 ± 1.0 mV, n = 

9, P < 0.001; Fig. 6C, left) and slightly but significantly increased the input resistance of 

the interneurons (Control: 304 ± 54 MΩ; DA: 330 ± 55 MΩ, n = 9, P = 0.047; Fig. 6C, 

right). Furthermore, application of DA induced a small inward HC recorded at −60 mV 

from interneurons (−7.5 ± 1.9 pA, n = 5, P = 0.018, Fig. 6D). We also probed the roles of 

DA in AP firing by including in the extracellular solution containing (in µM) 10 DNQX,

http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F5
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F5
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F6
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F6
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F6
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F6
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F6
http://cercor.oxfordjournals.org/content/24/12/3195.full?sid=84ef1013-8c4e-4b47-af65-22545ae2cdf1#F6


67 

Figure 5. Ca2+ influx via T-type Ca2+ channels is required for DA-induced 
facilitation of GABAergic transmission. (A and B) Depletion of 
extracellular Ca2+ by replacing extracellular Ca2+ with Mg2+ and inclusion 
of 1 mM EGTA in the extracellular solution prevented DA-induced 
enhancement of sIPSC (A) and mIPSC (B) frequency. (C and D) Bath 
application of the high-threshold voltage-gated Ca2+ channel blocker, Cd2+ 
(100 μM), failed to block DA-induced enhancement of sIPSC (C) and 
mIPSC (D) frequency. (E and F) Bath application of the low-threshold T-
type Ca2+ channel blocker, Ni2+ (200 μM), significantly reduced DA-
induced augmentation of sIPSC frequency (E) and blocked DA-mediated 
increment of mIPSC frequency (F). (G and H) Bath application of the T-
type Ca2+ channel blocker, mibefradil (15 μM), significantly reduced DA-
induced increase of sIPSC frequency (G) and blocked DA-mediated 
enhancement of mIPSC frequency (H). 
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Figure 6. DA depolarizes GABAergic interneurons in the EC. (A1 and A2) Bath 
application of DA generated membrane depolarization and increased the 
input resistance of Type I interneurons in the EC. (A1) Voltage changes in 
response to current injection (±150 pA) in a Type I interneuron. (A2) 
Application of DA (100 μM) generated membrane depolarization and 
increased input resistance in the same interneuron. RMP was recorded in 
the current-clamp mode and a hyperpolarizing current (−50 pA, 500 ms) 
was injected every 20 s to measure the input resistance. Note that DA 
generated depolarization and increased the input resistance. To exclude the 
influence of DA-induced membrane depolarization on the input resistance, 
a negative current (−8 pA indicated by the horizontal bar) was injected 
briefly to bring the membrane potential back to the initial level. Under 
these conditions, the voltage responses induced by the injection of 
hyperpolarizing currents (−50 pA, 500 ms) were still larger compared with 
control, suggesting that DA-induced increases in input resistance are not 
secondary to its effect on membrane depolarization. Inset is the voltage 
traces taken before (a) and during (b) the application of DA when the 
negative current was injected. (B1 and B2) Bath application of DA 
generated membrane depolarization and increased the input resistance of 
Type II interneurons in the EC. The experiment was performed in the 
same fashion as Type I interneurons. (C) Pooled data for DA induced 
depolarization (left) and increase in input resistance (right). Empty circles 
represent values from individual cells and solid symbols denote the 
average values. (D) Application of DA induced an inward HC in 
interneurons (n = 5). (E1 and E2) Bath application of DA increased AP 
firing frequency in interneurons. APs were evoked by injecting a positive 
current to elevate the membrane potential just above the threshold for 
firing. (E1) APs recorded from an interneuron before, during, and after the 
application of DA. (E2) Pooled time course of AP firing (n = 7). 
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50 APV, 10 bicuculline, and 2 CGP55845 to block glutamatergic and GABAergic 

transmission. Because the RMPs of the interneurons were usually negative to −60 mV, 

interneurons did not show spontaneous firing at their RMPs. The depolarization 

generated by DA was not large enough to raise the RMPs to the threshold for AP firing. 

We therefore injected positive currents to elevate the membrane potential to just above 

the threshold to induce AP firing. Under these circumstances, application of DA 

significantly increased the firing frequency of APs (n = 7, P = 0.036, Fig. 6E1, E2), but 

slightly decreased the AP amplitude (89 ± 1% of control, n = 7, P < 0.001, Fig. 6E1). 

DA-induced depression of AP amplitude might be due to its depolarizing effect resulting 

in inactivation of Na+ channels. 

Ionic Mechanisms Underlying DA-Induced  

Depolarization of Interneurons 

 

 We recorded the RMPs of the interneurons to further determine the underlying 

ionic mechanisms. DA facilitates the hyperpolarization-activated channels (Ih channels) 

in layer V pyramidal neurons (Rosenkranz and Johnston, 2006). We therefore examined 

whether Ih channels are involved in DA-induced depolarization. Extracellular application 

of the selective Ih channel blocker, ZD7288 (20 µM), failed to block DA-induced 

depolarization (n = 5, P = 0.7 vs. DA alone, Fig. 7A and G), suggesting that DA-

mediated membrane depolarization of interneurons is not dependent on Ih channels. If 

DA-induced membrane depolarization of interneurons is due to the opening of cation 

channels, the influx of extracellular Na+ should be the major ions to mediate membrane 

depolarization. However, replacement of extracellular NaCl with the same concentration 

of NMDG-Cl failed to alter DA-induced depolarization (n = 5, P = 0.47 vs. DA alone, 

Fig. 7B and G). Because extracellular Ca2+ is required for 
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Figure 7. DA-induced depolarization of interneurons does not require the function 
of Ih channels and is independent of extracellular Na+ and Ca2+, but is 
affected by intracellular Ca2+ concentration. (A) Bath application of the Ih 
channel blocker, ZD7288 (20 μM), did not block DA-induced 
depolarization. (B) Replacement of extracellular NaCl with NMDG-Cl did 
not alter DA-induced depolarization. (C) Substitution of extracellular Ca2+ 
with Mg2+ and inclusion of EGTA (1 mM) in the extracellular solution 
failed to change DA-induced depolarization. (D) Inclusion of Ni2+ (200 
μM) in the extracellular solution did not block DA-induced depolarization. 
(E) Inclusion of BAPTA (10 mM) in the recording pipettes reduced DA-
induced depolarization, suggesting that intracellular Ca2+ concentration is 
related to DA-induced depolarization possibly by affecting Ca2+-
dependent intracellular signals. (F) Intracellular application of 
thapsigargin (10 μM) via the recording pipettes failed to modify DA-
mediated depolarization, suggesting that intracellular Ca2+ release is not 
required for DA-mediated depolarization. (G) Pooled data. **P < 0.01 

 

DA-induced increases in the frequencies of sIPSCs and mIPSCs, we also tested whether 

extracellular Ca2+ is required for DA-induced depolarization of interneurons. 

Replacement of extracellular Ca2+ with the same concentration of Mg2+ and simultaneous 

inclusion of 1 mM EGTA in the extracellular solution did not significantly change DA-

induced depolarization (n = 7, P = 0.41 vs. DA alone, Fig. 7C and G). These data 

together suggest that DA does not depolarize interneurons by opening a cation channel. 

Furthermore, bath application of NiCl2 (200 µM) failed to significantly change DA-
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induced depolarization (n = 6, P = 0.82 vs. DA alone, Fig. 7D and G), suggesting that T-

type Ca2+ channels are not involved in DA-mediated depolarization of the interneurons. 

Finally, we determined the requirement for intracellular Ca2+ in mediating the 

postsynaptic DA response. DA induced a smaller level of depolarization (n = 6,  

P = 0.005 vs. DA alone, Fig. 7E and G) when BAPTA (10 mM) was included in the 

recording pipettes. However, inclusion of thapsigargin (10 µM) in the pipettes failed to 

alter DA-induced depolarization significantly (n = 5, P = 0.69 vs. DA alone, Fig. 7F and 

G), suggesting that intracellular Ca2+ release is not required for DA-induced 

depolarization. One explanation for the result that intracellular application of BAPTA 

significantly reduced DA-induced depolarization is that the effects of DA may require the 

functions of some Ca2+-dependent signals. 

 DA can inhibit background K+ channels to generate membrane depolarization. 

Our result that DA increased the input resistance also supports the involvement of K+ 

channels. To test the roles of K+ channels, we first replaced the intracellular K+-gluconate 

with NMDG-gluconate and recorded the changes of membrane potentials in response to 

DA. Under these circumstances, bath application of DA failed to induce membrane 

depolarization (n = 5, P = 0.31, Fig. 8A and K). Secondly, we used a ramp protocol to 

measure the reversal potential of the current induced by DA. The DA-induced current had 

a reversal potential of −85.6 ± 6.5 mV (n = 5, Fig. 8B and C), which was close to the 

calculated K+ reversal potential (−85.4 mV). These data indicate the involvement of K+ 

channels. We also noticed that the current generated by DA showed an inward 

rectification (Fig. 8C), suggesting that DA inhibits Kirs. Consistent with this, inclusion of 

Ba2+ (1 mM) in the extracellular solution blocked DA-induced depolarization (n = 6, P = 
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0.78 vs. baseline, Fig. 8D and K), further supporting the involvement of Kirs. Moreover, 

bath application of Ba2+ alone significantly increased the frequency of sIPSCs (n = 3,  

P = 0.004, Fig. 8E). In the presence of Ba2+, application of DA did not increase but 

slightly reduced the frequency of (n = 3, P = 0.015, Fig. 8E) sIPSC. Similarly, Ba2+ 

application blocked DA-induced increases in mIPSC frequency (n = 6, P = 0.72, Fig. 8F). 

We also tested the effects of SCH23390 on DA-induced depolarization. Slices were 

pretreated with SCH23390 (10 µM) and the extracellular solution was continuously 

perfused with the same concentration of SCH23390. Application of SCH23390 prevented 

DA-induced depolarization (n = 6, P = 0.97, Fig. 8G and K). However, application of the 

selective D1-like agonist, SKF38393 (40 µM), failed to depolarize interneurons (n = 6,  

P = 0.27 vs. baseline, Fig. 8H and K), but subsequent application of DA still induced 

depolarization in the same neurons (Fig. 8H). These results suggest that the blocking 

effect of SCH23390 was not mediated by antagonizing D1-like receptors, but by 

blockade of Kirs. We further tested the roles of α1 receptors in DA-induced 

depolarization of interneurons. Application of the α1 receptor antagonist, corynanthine 

(100 µM), blocked DA-induced depolarization (n = 5, P = 0.41 vs. baseline, Fig. 8I and 

K) and application of the selective α1 receptor agonist, phenylephrine (100 µM), induced 

depolarization of interneurons (n = 6, P = 0.002, Fig. 8J and K) demonstrating the 

involvement of α1 receptors.
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Figure 8. DA-induced depolarization of interneurons is mediated by inhibition of 
Kirs. (A) DA did not induce conspicuous depolarization when the 
intracellular K+ was replaced with NMDG. (B) Current–voltage 
relationship recorded by a ramp protocol (from −110 to −50 mV) in the 
extracellular solution containing 3.5 mM K+ before and during the 
application of DA. Traces in the figure were averaged traces from 5 cells. 
(C) The DA-generated net current obtained by subtraction of the control 
from that in the presence of DA has a reversal potential at approximately −
85.6 mV close to the calculated K+ reversal potential (∼ −85.4 mV). Note 
that the DA-sensitive current showed an inward rectification. (D) Bath 
application of Ba2+ blocked DA-induced depolarization. (E) Bath 
application of Ba2+ increased sIPSC frequency and subsequent application 
of DA slightly reduced sIPSC frequency. (F) Bath application of Ba2+ 
increased mIPSC frequency and blocked DA-induced increases in mIPSC 
frequency. (G) Pretreatment of slices with and continuous bath application 
of SCH23390 blocked DA-induced depolarization. (H) Bath application of 
SKF38393 (40 μM) did not induce depolarization, but subsequent 
application of DA still induced depolarization in the same cell. (I) 
Pretreatment of slices with and continuous bath application of 
corynanthine (100 μM) blocked DA-induced depolarization. (J) Bath 
application of the selective α1 receptor agonist, phenylephrine (100 μM), 
induced depolarization of an interneuron. (K) Pooled data. **P < 0.01 
versus baseline. 
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CHAPTER IV 

RESULTS 

Study 2 - Histaminergic Modulation of MEC GABAergic Transmission 

Introduction 

 The tuberomammillary nucleus (TMN) of the hypothalamus produces several 

neurotransmitters, yet is unique in being the sole neuronal source of histamine (HA). The 

TMN projects extensively throughout the brain and HA signaling is important for 

wakefulness, thermoregulation, energy homeostasis, nociception and learning and 

memory (Haas and Panula, 2003; Haas et al., 2008a). Aberrant HA signaling is 

implicated in a variety of neurological disorders including narcolepsy, schizophrenia, 

Alzheimer’s Disease (AD), Parkinson’s Disease, epilepsy, and depression (Haas et al., 

2008a). Understanding the neuromodulatory actions of HA in the brain is critical toward 

comprehending its intrinsic functions and informing potential therapeutic strategies 

involving the histaminergic system. 

 Receptors known to mediate HA signaling are G-protein-coupled and include H1, 

H2, H3, and H4. H1, H2, and H3 are widely expressed throughout the brain, whereas H4 is 

less abundant (Hill et al., 1997; Haas et al., 2008a). The H1 is coupled to Gq and its 

activation increases phosphotidylinositol turnover (Claro et al., 1986) and elevates 

intracellular Ca2+ (Leurs et al., 1994). H2 activation increases cAMP production (Traiffort 

et al., 1992), consistent with Gαs-coupling. The H3 is coupled to Gαi and regulates HA 

synthesis (Arrang et al., 1987; Moreno-Delgado et al., 2006), voltage-activated Ca2+ 
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channels (Takeshita et al., 1998) and release of HA and several other neurotransmitters 

(Haas et al., 2008a). Atypical signaling has also been described for both H1 and H2 and 

colocalization of both receptors is consistent with functional overlap and synergism 

between H1 and H2 (Garbarg and Schwartz, 1988; Leopoldt et al., 1997; Maruko et al., 

2005; Alonso et al., 2013). Neuromodulatory actions of HA typically involve 

enhancement of neuronal excitability via H1 and/or H2 and both receptors influence a 

variety of different ionic conductances. The H1 is implicated in the inhibition of 

background K+ channels(McCormick and Williamson, 1991; Reiner and Kamondi, 1994; 

Whyment et al., 2006) and inward rectifier K+ channels (Kirs) (Gorelova and Reiner, 

1996; He et al., 2016), activation of a TTX-insensitive Na+ channels (Gorelova and 

Reiner, 1996; Bell et al., 2000), nonselective cation channels (Hardwick et al., 2005) and 

Na+-Ca2+ exchanger (Zhang et al., 2013b). Activation of H2 results in inhibition of K+ 

conductances (Munakata and Akaike, 1994; Starodub and Wood, 2000) including the 

voltage-gated (Atzori et al., 2000) and Ca2+-activated (Haas, 1984) K+ channels, and 

activation of hyperpolarization-activated cation channels (Ih) (McCormick and 

Williamson, 1991; Zhang et al., 2013b).  

 The medial entorhinal cortex (MEC) is positioned such that it gates the majority 

of cortical information into and out of the hippocampus (Steward and Scoville, 1976; 

Witter et al., 2006). The MEC is an important structure for spatial memory (Steffenach et 

al., 2005; Hales et al., 2014) and implicated in neurological disorders including AD 

(Hyman et al., 1984; Gómez-Isla et al., 1996), schizophrenia (Joyal et al., 2002; Baiano et 

al., 2008), and temporal lobe epilepsy (Du et al., 1993; Avoli et al., 2002). The MEC 

exhibits a moderate intensity of HA-immunoreactive fibers (Panula et al., 1989) and 
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receives projections from the TMN (Köhler et al., 1985; Staines et al., 1987). Consistent 

with the distribution of histaminergic fibers, the MEC also expresses HA receptors 

including the H1, H2, and H3 as demonstrated by autoradiography studies (Bouthenet et 

al., 1988; Vizuete et al., 1997; Pillot et al., 2002). Collectively, these observations 

suggest the existence of a functional neuromodulatory action for HA on MEC circuitry 

and MEC-related behaviors and disorders, yet there are few studies examining the actions 

of HA in the MEC.  

 GABAergic transmission is critical for maintenance of network activity and its 

dysfunction is implicated in MEC-related disorders. Although HA has been reported to 

reduce the frequency of miniature inhibitory postsynaptic currents (mIPSCs) recorded in 

the presence of TTX via an H3-dependent manner (He et al., 2016), it remains unknown 

whether HA modulates other forms of GABAergic transmission. We tested this 

possibility and observed that HA increased the frequency of spontaneous inhibitory 

postsynaptic currents (sIPSCs) via activation of H1 or H2 receptors. We also made direct 

recordings from MEC interneurons and found that both H1 and H2 are involved in HA-

induced subthreshold membrane depolarization. Using immunohistochemical staining, 

we further showed that both H1 and H2 are expressed on GABAergic interneurons in the 

MEC. We propose that HA increases the excitability of GABAergic interneurons via a 

mixed ionic mechanism comprised of inhibition of the cesium(Cs+)-sensitive Kirs and 

activation of a TTX-insensitive, Na+-permeable cation channel. Some of these results 

were previously published in abstract form (Cilz and Lei, 2014). 
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HA Increases the Frequency without Significant Effects on the Amplitude  

of sIPSCs Recorded from Principal Neurons in the MEC 

 

 We examined the effects of HA on GABAA receptor-mediated sIPSCs recorded 

from principal neurons in each layer of the MEC. Stellate and pyramidal neurons are the 

principal cells in layer II whereas pyramidal neurons are the predominant type in layer III 

and layer V. In layer II principal neurons, application of HA (30 µM) significantly 

increased the frequency (Control: 9.6 ± 1.2 Hz, HA: 15.1 ± 1.1 Hz, 196 ± 29% of control, 

n = 16, P < 0.001, Fig. 9A, B, C, and E) but not the amplitude (Control: 34.0 ± 2.8 pA, 

HA: 36.5 ± 4.1 pA, 107 ± 12% of control, n = 16, P = 0.33, Fig. 9D and F) of sIPSCs. 

Application of bicuculline (10 μM) completely blocked sIPSCs recorded in the presence 

of HA (data not shown), confirming that the recorded events were mediated by GABAA 

receptors. The EC50 value of HA was determined to be 1.3 µM (Fig. 9G). Similar to layer 

II principal neurons, application of HA (30 μM) significantly increased the frequency of 

sIPSCs recorded from layer III (Control: 6.7 ± 1.1 Hz, HA: 11.8 ± 1.3 Hz, 207 ± 36% of 

control, n = 7, P = 0.002, Fig. 9H) and layer V (Control: 1.2 ± 0.2 Hz, HA: 2.6 ± 0.6 Hz, 

230 ± 57% of control, n = 10, P = 0.03, Fig. 9H) pyramidal neurons, but did not affect the 

amplitude of layer III (Control: 26.9 ± 2.3 pA, HA: 30.1 ± 4.8 pA, 114 ± 18% of control, 

n = 7, P = 0.52, Fig. 9H) or layer V (Control: 22.4 ± 1.5 pA, HA: 21.9 ± 1.3 pA, 100 ± 

7% of control, n = 10, P = 0.72, Fig. 9H) pyramidal neurons. These results indicate that 

HA augments the frequency of sIPSCs in all layers of the MEC. Application of HA to 

slices prepared from weaned animals (ages p23-p26) increased the frequency of sIPSCs 

to 159 ± 22% of control (Control: 7.8 ± 6.6 Hz, HA: 12.3 ± 1.5 Hz, n = 5, P = 0.04 vs. 

baseline, Fig. 9I), which was not significantly different than slices prepared from pups 

(p14-p17, n = 16, P = 0.54). These results demonstrate that HA augments GABAergic 
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transmission in both younger and older animals used in this study. We used layer II 

principal neurons as an example to determine the underlying cellular and molecular 

mechanisms and applied HA at the concentration of 30 µM for the rest of the 

experiments.  

 

Figure 9. HA increases the frequency but not the amplitude of sIPSCs recorded 
from the principal neurons in the MEC. (A) Spontaneous IPSCs recorded 
from a layer II principal neuron before, during and after the application of 
HA (30 µM). (B) Time course of the sIPSC frequency averaged from 16 
principal neurons. (C) Cumulative frequency distribution averaged from 
16 layer II principal neurons before and during the application of HA. (D) 
Cumulative amplitude distribution averaged from 16 cells before and 
during the application of HA. (E) Frequency of sIPSCs pooled from 16 
cells before and during the application of HA. Gray symbols are values 
from individual cells and black symbols are their averages. (F) Amplitude 
of sIPSCs pooled from 16 cells before and during the application of HA. 
(G) Concentration-response curve of HA. Numbers in the parenthesis are 
numbers of cells recorded. (H) Bath application of HA (30 µM) 
significantly enhanced the frequency with no effects on the amplitude of 
sIPSCs recorded from the pyramidal neurons in layer III and layer V.  * P 

< 0.05, ** P < 0.01 vs baseline. (I) HA increased sIPSC frequency 
recorded from layer II principal neurons of both younger (p14-p17, n = 16 
slices) and older (p23-p26, n = 5 slices) animals. HA increases 
spontaneous GABAergic transmission by facilitating presynaptic GABA 
release.
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HA Increases Spontaneous GABAergic Transmission  

by Facilitating Presynaptic GABA Release 

 

 Spontaneous IPSCs are the product of both AP-dependent and AP-independent 

release of GABA, whereas mIPSCs recorded in the presence of TTX should be 

independent of APs. We therefore recorded mIPSCs in the presence of TTX (0.5 µM) to 

test whether the effects of HA on spontaneous GABAergic transmission are AP-

dependent. Application of HA failed to alter either mIPSC frequency (Control: 4.3 ± 0.5 

Hz, HA: 4.2 ± 0.6 Hz, 98 ± 5% of control, n = 14, P = 0.64, Fig. 10A, B and C) or 

amplitude (Control: 18.1 ± 0.8 pA, HA: 17.5 ± 0.7 pA, 97 ± 2% of control, n = 14,  

P = 0.08, Fig. 10D), indicating that generation of APs was necessary to augment 

spontaneous GABAergic transmission in the MEC. We further examined whether Ca2+ 

influx was required for HA-mediated increases in sIPSCs. Exclusion of extracellular Ca2+ 

blocked HA-induced increases in sIPSCs (90 ± 5% of control, n = 7, P = 0.12, Fig. 10E 

and F). The requirement of both AP generation and Ca2+ influx supports a presynaptic 

mechanism for HA-induced increases in sIPSCs. To exclude a postsynaptic mechanism 

of action, sIPSCs were recorded with GDP--S (2 mM) in the pipette to block any direct 

receptor-mediated effects of HA on the recorded neurons. After waiting ~20 minutes for 

GDP--S to diffuse into the cells, application of HA continued to elicit a significant 

increase in the frequency of sIPSCs (151 ± 13% of control, n = 7, P = 0.007, Fig. 10G 

and H). Collectively, these results suggest that HA acts presynaptically at a step upstream 

of action potential generation to increase GABAergic transmission in the MEC. 
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Figure 10. HA-induced augmentation of spontaneous GABAergic transmission is 
dependent on APs and extracellular Ca2+, but does not involve 
postsynaptic HA receptors. (A) Example mIPSC current traces recorded 
from a principal neuron in layer II before, during and after the application 
of HA. (B) Time course of normalized mIPSC frequency summarized 
from 14 principal neurons. (C) Summary cumulative frequency 
distribution for mIPSCs averaged from 14 cells before and during the 
application of HA. (D) Summary cumulative amplitude distribution of 
mIPSCs averaged from 14 cells before and during the application of HA. 
(E) Spontaneous IPSCs recorded from a principal neuron in layer II 
before, during and after the application of HA in the extracellular solution 
containing zero Ca2+. (F) Time course of normalized frequency for sIPSCs 
averaged from 7 cells recorded in the extracellular solution containing 
zero Ca2+. (G) Spontaneous IPSCs recorded from a layer II principal 
neuron before, during and after the application of HA with GDP-β-S in the 
recording pipette. (H) Time course of normalized frequency for sIPSCs 
averaged from 7 cells recorded with the intracellular solution 
supplemented with GDP-β-S (2 mM).
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HA Increases the Excitability of Local Interneurons in the MEC 

 We next tested the hypothesis that HA augments spontaneous GABAergic 

transmission by increasing the excitability of local MEC interneurons. We have shown 

previously that interneurons in layer III can be divided into two types according to their 

electrophysiological properties (Deng and Lei, 2008; Cilz et al., 2014). Type I 

interneurons showed little voltage sag in response to a hyperpolarizing current injection 

and no rebound burst firing (Fig. 11A1) whereas Type II interneurons displayed 

prominent voltage sag and rebound burst firing in response to a hyperpolarizing current 

injection (Fig. 11B1). After having electrophysiologically identified interneurons, we 

recorded the RMPs by washing in TTX (0.5 µM) in the extracellular solution. Current 

injections (50 pA, 500 ms) were delivered at 0.05 Hz to monitor changes in input 

resistance. Application of HA caused significant depolarization in both Type I (Control: -

67.8 ± 1.1 mV, HA: -66.4 ± 0.9 mV, n = 10, P = 0.003, Fig. 11A2 and C, left) and Type II 

(Control: -63.2 ± 0.7 mV, HA: -59.6 ± 1.0 mV, n = 14, P = 0.00001, Fig. 11B2 and D, 

left) interneurons and was accompanied by a significant reduction in the input resistance 

for both Type I (Control: 174 ± 16 MΩ, HA: 166 ± 16 MΩ, n = 10, P < 0.05, Fig. 11A2 

and C, right) and Type II (Control: 371 ± 30 MΩ, HA: 342 ± 41 MΩ, n = 14, P = 0.005, 

Fig. 11B2 and D, right) interneurons. The magnitude of the average HA-induced 

depolarization was significantly different between Type I and Type II interneurons (Type 

I: 1.4 ± 0.4 mV, Type II: 3.6 ± 0.5 mV, P = 0.005, Fig. 11E). When interneurons were 

voltage-clamped at -65 mV, application of HA induced a small inward holding current in 

both Type I (-7.8 ± 1.0 pA, n = 6, P = 0.0005, Fig. 11F) and Type II (-11.9 ± 1.9 pA, n = 

9, P = 0.0003, Fig. 11F) interneurons and HA-induced inward currents were significantly  
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Figure 11. HA depolarizes GABAergic interneurons in the MEC. (A1-A2) Bath 
application of HA generated membrane depolarization in Type I 
interneurons in the EC. (A1) Voltage changes in response to current 
injection (±200 pA) in a Type I interneuron. (A2) Application of HA (30 
µM) generated membrane depolarization. RMP was recorded in current-
clamp mode and a hyperpolarizing current (-50 pA, 500 ms) was injected 
every 20 s to measure the input resistance. Note that HA generated 
depolarization and slightly decreased the input resistance. To exclude the 
influence of HA-induced membrane depolarization on the input resistance, 
a negative current (-12 pA indicated by the horizontal bar) was injected 
briefly to bring the membrane potential back to the initial level. Under 
these conditions, the voltage responses induced by the injection of 
hyperpolarizing currents (-50 pA, 500 ms) were slightly smaller compared 
with control, suggesting that the HA-induced reduction in input resistance 
is not secondary to its effect on membrane depolarization. (B1-B2) Bath 
application of HA generated membrane depolarization and decreased the 
input resistance of Type II interneurons in the EC. The experiment was 
performed in the same fashion as Type I interneurons. (C) Data for Type I 
interneurons (n = 10) depicting HA-induced depolarization (left) and 
decrease in input resistance (right). Gray squares represent values from 
individual cells and black symbols denote the average values. (D) Data for 
Type II interneurons (n = 14) depicting HA-induced depolarization (left) 
and decrease in input resistance (right). (E) Average HA-induced change 
in membrane potential ( Vm) for Type I and Type II interneurons from C 
and D, respectively. (F) Application of HA induced a significant inward 
holding current in both Type I (filled squares, n = 6) and Type II (open 
circles, n = 9) interneurons. P = 0.02, two-way ANOVA. (G) APs 
recorded from a Type II interneuron before, during and after the 
application of HA. Bath application of HA increased AP firing frequency 
in interneurons. APs were evoked by injecting a positive current to elevate 
the membrane potential to just above the threshold for firing. (H) Average 
time course of normalized AP firing for Type II interneurons (n = 6). 
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different between the two classifications (P = 0.02, two-way ANOVA). Because AP 

generation was required for HA-induced increases in sIPSCs, we also tested whether HA 

increased AP firing frequency. The extracellular solution contained blockers for both 

glutamatergic and GABAergic receptors to exclude any HA-mediated changes in 

synaptic input. Because interneurons typically did not exhibit spontaneous firing at their 

RMPs, we injected a positive current to elevate the membrane potential to just above 

threshold in order to induce spontaneous AP firing. We only tested Type II interneurons 

because Type I cells usually stopped firing APs after long periods of sustained current 

injection. Application of HA significantly increased the firing frequency of Type II 

interneurons (1143 ± 337% of control, n = 6, P = 0.03, Fig. 11G and H) but slightly 

decreased the amplitude of APs (90 ± 2% of control, n = 6, P = 0.003, Fig. 11G). HA-

induced depression of AP amplitude might be due to its depolarizing effect resulting in 

inactivation of voltage-gated Na+ channels.  

Both H1 and H2 Receptors are Involved in HA-Induced Enhancement 

 of Spontaneous GABAergic Transmission  

 

 Activation of H1, H2, and H3 can modulate neuronal excitability in various regions 

of the brain. We next probed the involvement of each of these receptors in HA-mediated 

enhancement of spontaneous GABAergic transmission by recording sIPSCs from layer II 

principal neurons. Slices were pretreated with the selective H1 receptor antagonist, 

cetirizine (10 µM), for at least 10 minutes and the same concentration was continuously 

bath-applied. Under these circumstances, application of HA continued to increase sIPSC 

frequency (124 ± 10% of control, n = 11, P = 0.04 vs. baseline, Fig. 12A and I) but did 

not affect sIPSC amplitude (95 ± 10% of control, n = 11, P = 0.38 vs. baseline, data not 

shown). The average maximal effect elicited in the presence of cetirizine was not 
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Figure 12. HA facilitates sIPSC frequency via activation of H1 and H2 but not H3. 
(A) Pretreatment of slices with and continuous bath application of the H1 
antagonist, cetirizine (10 µM, n = 11), did not completely block HA-
induced facilitation of sIPSC frequency. (B) Application of H2 antagonist, 
ranitidine (10 μM, n = 8), in the same fashion also failed to block HA-
mediated enhancement of sIPSC frequency. (C) Application of H3 
antagonist, thioperamide (10 μM, n = 8), in the same fashion also failed to 
block HA-mediated enhancement of sIPSC frequency. (D) Bath 
application of the selective H1 agonist, 2-pyridylethylamine (2PEA, 300 
µM, n = 12), facilitated sIPSC frequency. (E) Application the H2 agonist, 
dimaprit (100 µM, n = 7), significantly increased sIPSC frequency. 
(F) Bath application of the selective H3 agonist R--methylhistamine  
(R--mHA, 10µM) significantly reduced sIPSC frequency. The effect of 
R--mHA was blocked when slices were pretreated with and continuously 
exposed to the H3 antagonist, thioperamide (10 μM). Filled boxes indicate 
average time course of sIPSC events for R--mHA alone (n = 6) whereas 
open circles indicate average time course of sIPSC events for R--mHA in 
presence of the H3 antagonist (n = 6). P = 0.006, two-way ANOVA. 
(G) Pretreatment with and continuous bath co-application of both H1 and 
H2 antagonists (10 μM each, n = 8) blocked HA-induced facilitation of 
sIPSC frequency. (H) Bath co-application of H1 (300 μM) and H2  
(100 μM, n = 6) agonists significantly increased sIPSC frequency to a 
maximal level reached at 13 minutes. (I) Summary data for A-H.  
# P < 0.05 one-way ANOVA with Tukey posthoc. 
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significantly different from control (P > 0.05 vs. HA, one-way ANOVA with Tukey). 

The presence of a selective H2 antagonist, ranitidine (10 µM), did not prevent HA-

induced augmentation of sIPSC frequency (145 ± 12% of control, n = 8, P = 0.008 vs. 

baseline, Fig. 12B and I) and no changes in amplitude were observed (107 ± 16% of 

control, n = 8, P = 0.48 vs. baseline, data not shown). The average maximal effect 

elicited in the presence of ranitidine was also not significantly different from control  

(P > 0.05 vs. HA, one-way ANOVA with Tukey). Thioperamide (10 µM), a selective H3 

antagonist, also did not prevent HA-induced increases in sIPSC frequency (200 ± 23% of 

control, n = 8, P = 0.003 vs. baseline, Fig. 12C and I), nor did it alter sIPSC amplitude 

(126 ± 14% of control, n = 8, P = 0.12 vs. baseline, data not shown). Application of 

thioperamide did not significantly alter the maximal HA-induced effect compared with 

control (P > 0.05 vs. HA, one-way ANOVA with Tukey). One explanation for these data 

is that multiple HA receptors are involved in HA-elicited augmentation of sIPSC 

frequency and blockade of single subtype of HA receptors is unable to annul the effect of 

HA. 

 We next tested whether HA receptor agonists mimic the effects of HA on sIPSCs. 

Bath application of the selective H1 agonist, 2-pyridylethylamine (2-PEA, 300μM, pKi = 

3.7 (Ratnala et al., 2004)), significantly increased the sIPSC frequency to a maximal level 

of 153 ± 14% of control (n = 12, P = 0.003 vs. baseline, Fig. 12D and I) but did not 

significantly alter the amplitude (101 ± 7% of control, n = 12, P = 0.82 vs. baseline, data 

not shown). Similarly, application of the selective H2 agonist, dimaprit (100 μM, pKi = 

4.6 (Lim et al., 2005)), significantly increased the maximal sIPSC frequency (127 ± 10 % 

of control, n = 7, P = 0.04 vs. baseline, Fig. 12E and I) but did not alter the amplitude  
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(88 ± 8 % of control, n = 7, P = 0.18, data not shown) of sIPSCs. Application of the 

selective H3 agonist, R--methylhistamine (R--mHA, 10µM) for 10 min, failed to 

increase but rather significantly decreased sIPSC frequency (86 ± 5% of control, n = 6,  

P = 0.03 vs. baseline, Fig. 12F and I). The amplitude of sIPSCs was also significantly 

reduced by R-α-mHA (87 ± 6% of control, n = 6, P = 0.005 vs. baseline, data not shown). 

Application of thioperamide (10 µM) blocked R-α-mHA-mediated inhibition of sIPSC 

frequency (107 ± 5% of control, n = 6, P = 0.26 vs. baseline, Fig. 12F) and amplitude 

(104 ± 5% of control vs. baseline, n = 6, P = 0.52, data not shown), confirming the 

involvement of H3 receptors. Collectively, these results indicate that activation of either 

H1 or H2 receptors increases sIPSC frequency, whereas activation of H3 receptors reduces 

sIPSC frequency and amplitude.  

 Since activation of either H1 or H2 increased sIPSC frequency, we tested the roles 

of both receptors in augmenting GABAergic transmission by combining both H1 and H2 

antagonists. In the presence of both H1 antagonist (Cetirizine, 10 µM) and H2 antagonist 

(Rantidine, 10 µM), application of HA significantly reduced, instead of increased, sIPSC 

frequency (90 ± 4% of control, n = 8, P = 0.04 vs. baseline, P < 0.05 vs. HA, one-way 

ANOVA with Tukey, Fig. 12G and I) and amplitude (87 ± 5% of control, n = 8,  

P = 0.002 vs. baseline, data not shown). One possible explanation for this result is that 

the facilitatory effect of H1 and H2 overwhelmed the inhibitory effect of H3 on sIPSCs 

and blockade of both H1 and H2 uncovered the inhibitory effect of H3 in response to HA. 

Moreover, co-application of both H1 and H2 agonists induced a maximal increase in 

sIPSC frequency at 13 min (201 ± 24% of control, n = 6, P = 0.009 vs. baseline, Fig. 12H 

and I) with no significant effect on amplitude (127 ± 20% of control, n = 6, P = 0.16 vs. 
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baseline, data not shown). There was no significant difference for the facilitation of 

sIPSC frequency in response to HA or the co-application of H1 and H2 agonists (P > 0.05, 

one-way ANOVA with Tukey). These results demonstrate that both H1 and H2 contribute 

to HA-induced increases in sIPSC frequency in the MEC. 

 Because our results indicate a direct modulatory action of HA on interneurons and 

that both H1 and H2 mediate HA-induced increases in sIPSCs, we next examined the 

expression of H1 and H2 in the MEC. Western blot analysis from MEC lysates of 3 rats 

displayed intense bands slightly below 72 kDa for H1 receptors (Fig. 13B, Top) and near 

52 kDa for H2 (Fig. 13C, Top). Based on the amino acid sequence, the predicted 

molecular weight is ~56 kDa for H1 and ~40 kDa for H2. Our observations for both 

receptors are consistent with previous reports demonstrating higher molecular weights for 

these two receptors, possibly due to post-translational modifications such as receptor 

glycosylation (Mitsuhashi and Payan, 1989; Fukushima et al., 1995). Pre-incubation of 

the antibodies to H1 or H2 for 15 minutes with their corresponding blocking peptides 

eliminated the detection of the bands (Fig. 13B and C, Bottom), confirming the specificity 

of the antibodies. Because our data demonstrate that HA facilitates GABA release via 

activation of H1 and H2 on interneurons, we performed co-immunofluorescence staining 

for either H1 or H2 and the GABA synthesizing enzyme, GAD-67. Our results validated 

that both receptors are clearly found on the soma of GABAergic interneurons in layer III 

of the MEC, as well as on the adjacent principal neurons (Fig. 13D and E), which is 

consistent with the electrophysiological data showing that both H1 and H2 are involved in 

HA-induced increases in spontaneous GABAergic transmission. 
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Figure 13. Both H1 and H2 are expressed in MEC and co-localize to GABAergic 
interneurons. (A) Example of a differential interference contrast image of 
a horizontal acute slice provided for reader orientation. Dashed line 
indicates region cut to isolate EC from the rest of slice for lysate 
preparation. Box indicates layer III region where images from D and E 
were acquired. Scale bar: 1 mm. (B-C) Western blot demonstrated the 
expression of H1 (B) and H2 (C) in the MEC and pre-incubation of H1 or 
H2 antibody with their corresponding blocking peptides blocked the 
detection of the bands. (D-E) Immunostaining demonstrated the co-
expression of GAD-67 and H1 (D) or H2 (E) on the interneurons of the 
MEC. Note presence of H1 and H2 on surrounding principal neurons in 
addition to GAD-67+ cells. Scale bar: 25 µm.
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 Having confirmed the presence of H1 and H2 on GABAergic neurons within the 

EC, we next verified their functions in modulating interneuron excitability. Because the 

magnitude of HA-induced depolarization was larger and more distinguishable for Type II 

interneurons, we focused primarily on these neurons. Bath application of HA resulted in a 

significant depolarization of > 1 mV in 25 of 26 Type II interneurons tested, with an 

average of 3.6 ± 0.3 mV (Control: -64.1 ± 0.5 mV, HA: -60.5 ± 0.6 mV, n = 26, P < 

0.001 vs. baseline, Fig. 14A and F). Application of HA in the presence of cetirizine failed 

to block HA-induced depolarization (Control: -65.1 ± 0.7 mV, HA: -62.3 ± 1.0 mV,  

n = 6, P = 0.003 vs. baseline, P > 0.05 vs. HA, Fig. 14B and F). Similarly, application of 

ranitidine failed to block HA-induced depolarization (Control: -64.9 ± 1.0 mV, HA: -62.3 

± 1.3 mV, n = 8, P = 0.01 vs. baseline, P > 0.05 vs. HA, Fig. 14C and F). Consistent with 

our sIPSC data, application of HA in the presence of both antagonists completely blocked 

HA-induced depolarization (Control: -65.9 ± 1.0 mV, HA: -65.8± 1.0 mV, n = 4,  

P = 0.42 vs. baseline, P < 0.05 vs. HA, Fig. 14D and F). Furthermore, co-application of 

both H1 and H2 agonists induced a significant depolarization (Control: -65.3 ± 0.8 mV, 

both agonists:  -62.6± 1.0 mV, n = 6, P = 0.0004 vs. baseline, Fig. 14E and F), which was 

comparable to control (P > 0.05 vs. HA, P < 0.05 vs. both antagonists, Fig. 14F). HA also 

significantly depolarized Type I interneurons with an average of 1.4 ± 0.3 mV (Control: -

67.3 ± 0.8, HA: -65.9 ± 0.8, n = 17, P < 0.001 vs. baseline, Fig. 14G). Due to the small 

magnitude of HA-induced depolarization in Type I interneurons and variability of 

individual neurons, resolving the roles of either H1 or H2 with their respective antagonists 

was challenging. However, application of both H1 and H2 antagonists completely blocked 
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Figure 14. HA depolarizes MEC interneurons via both H1 and H2. (A) Representative 
trace showing HA-induced depolarization of Type II interneurons. 
(B) Representative trace demonstrating that the H1 antagonist, cetirizine 
(10 μM), failed to block HA-induced depolarization of Type II 
interneurons. (C), Representative trace demonstrating the H2 antagonist, 
ranitidine (10 μM), also failed to block HA-induced depolarization of 
Type II interneurons. (D) Representative trace demonstrating that the 
presence of both H1 and H2 antagonists completely blocked HA-induced 
depolarization of Type II interneurons. (E) Representative trace 
illustrating that co-application of H1 and H2 agonists, 2-PEA (300 μM) and 
dimaprit (100 μM), induced significant depolarization of Type II 
interneurons (n = 6). (F) Summary data from Type II interneurons for HA 
(n =26), cetirizine (n = 6), ranitidine (n = 8), both antagonists (n = 4), and 
both agonists (n = 6). * P < 0.05, ** P < 0.01, ***, P < 0.001 vs baseline. 
# P < 0.05, One-way ANOVA with Tukey. (G) Summary data from 
Type I interneurons for HA (n = 17), both antagonists (n = 4), and both 
agonists (n = 5). * P < 0.05, ** P < 0.01 vs baseline. # P < 0.05 One-way 
ANOVA with Tukey. 
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HA-induced depolarization (Control: -73.7 ± 0.9 mV, HA: -74.1 ± 1.1 mV, n = 4,  

P = 0.14 vs. baseline, P < 0.05 vs. HA, Fig. 14G). Furthermore, co-application of both H1 

and H2 agonists significantly depolarized Type I interneurons, mimicking the effect of 

HA (Control: -67.8 ± 1.9 mV, HA: -66.0 ± 2.0 mV, n = 5, P = 0.006 vs. baseline,  

P > 0.05 vs. HA, P < 0.05 vs. both antagonists, Fig. 14G). These results indicate that both 

H1 and H2 are involved in HA-induced depolarization of MEC interneurons.  

Partial Involvement of a Na+-Permeable Cation Channel in  

HA-Induced Depolarization of Interneurons  

 

 To investigate the underlying ionic mechanisms mediating HA-induced 

augmentation of interneuron excitability, we first constructed the voltage-current 

relationships before and during HA application using a voltage-ramp protocol for both 

Type I and Type II interneurons. Figure 15A and 15E show the average traces of voltage-

current relationship from Type I (n = 7) and Type II (n = 10) interneurons, respectively, 

before and during the application of HA. HA-induced net currents were obtained through 

subtraction (Fig. 15B, C, D, F, G, and H). The averaged reversal potential for HA-

induced net current in Type I interneurons was -99.1 ± 2.1 mV, which is negative to the 

expected K+ reversal potential (~-86 mV). In Type II interneurons, HA-elicited current 

did not fully reverse but rather exhibited a small outward bump between -55.0 ± 1.6 mV 

and -24.7 ± 5.7 mV. Because the net current was largely inward for majority of the ramp 

in both Type I and Type II interneurons, a mixed ionic mechanism is implicated. The 

transient bump for the Type II interneurons may reflect a range in which a non-selective 

cation channel conductance predominates but becomes occluded at more depolarized 

potentials, possibly due to inhibition of a larger K+ current (see below). As indicated by 

the standard (Fig. 15B, C, F, and G) and margin (Fig. 15D and H) of error presented for 
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Figure 15. HA-induced depolarization is mediated by a mixed ionic mechanism 
including activation of a TTX-insensitive Na+ permeable channel. (A-D) 
Voltage-current relationship of HA-elicited currents in Type I 
interneurons. (A) Voltage-current relationship averaged from 7 Type I 
interneurons before and during the application of HA. (B) Average 
voltage-current relationship of the net currents obtained by subtraction for 
individual cells in A. The gray shaded region represents the standard 
errors. (C) Average voltage-current relationship of the net currents from B 
was enlarged to highlight HA-induced inward currents within the 
subthreshold voltage range. Arrow indicates the reversal potential of the 
net currents. (D) Average net currents with margin of error based on a 
95% confidence interval. Inset shows expanded subthreshold region.  
(E-H) Voltage-current relationship of HA-induced currents in Type II 
interneurons. The graphs were arranged in the same fashion. (I) Typical 
RMP trace demonstrating that removal of extracellular Ca2+ failed to block 
HA-induced depolarization of Type II interneurons. (J) Example RMP 
trace demonstrating that replacement of extracellular NaCl with NMDG-
Cl did not completely block HA-induced depolarization of Type II 
interneurons. (K) Representative trace illustrating that substitution of 
extracellular NaCl with NMDG-Cl and removal of extracellular Ca2+ still 
did not completely block HA-induced depolarization. (L) Summary data 
for HA-induced depolarization of Type II interneurons from I-K.  
* P < 0.05, **P < 0.01, ***P < 0.001 vs. baseline. # P < 0.05, one-way 
ANOVA with Tukey. 
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average traces, both Type I and Type II net currents were very consistent, especially for 

subthreshold regions near the RMP. 

 We then recorded the RMPs under various ion substituting conditions to identify 

the contribution of cation influx in HA-induced facilitation of interneuron excitability. 

Type II interneurons were again used because HA induced a relatively larger 

depolarization in these neurons. Extracellular Ca2+ was replaced with the same 

concentration of Mg2+ and 0.1 mM EGTA was added to the extracellular solution to 

chelate trace amounts of Ca2+. Under these circumstances, HA depolarized interneurons 

by 3.5 ± 0.5 mV (Control: -63.1 ± 1.5 mV, HA: -59.6 ± 1.2 mV, n = 6, P = 0.0006 vs. 

baseline, Fig. 15I and L), which was insignificantly different from control (P > 0.05 vs. 

HA), suggesting that extracellular Ca2+ is not required for HA-induced depolarization of 

interneurons. Reduction of extracellular Na+ by replacing NaCl with equimolar NMDG-

Cl did not prevent HA-induced depolarization (Control: -63.0 ± 1.0 mV, HA: -61.2 ± 1.3 

mV, n = 7, P = 0.03 vs. baseline, Fig. 15J and L) but significantly reduced the magnitude 

of depolarization compared with control (P < 0.05 vs. HA), indicating that HA-induced 

depolarization is partially but not exclusively mediated by cation influx. Substitution of 

extracellular NaCl with NMDG-Cl and Ca2+ with Mg2+ should largely abolish cation 

influx. In this situation, application of HA still induced an average depolarization of 1.3 ± 

0.2 mV (Control: -64.7 ± 1.0 mV, HA: -63.5 ± 1.0 mV, n = 11, P = 0.002 vs. baseline, 

Fig. 15K and L), which was significantly smaller than control (P < 0.05 vs HA). It is 

possible that the residual depolarization may be due to inhibition of a K+ current. 

Attempts were made to block HA-induced depolarization of Type II interneurons using 

different cation channel blockers. HA-induced depolarization was not sensitive to the 
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non-selective cation channel blockers, gadolinium (Gd3+, 100 μM, Control: -63.3 ± 0.7 

mV , HA: -60.2 ± 1.2 mV , n = 5, P = 0.03 vs. baseline, data not shown) or lanthanum 

(La3+, 100 μM, Control: -66.9 ± 1.2 mV, HA: -64.1 ± 1.3 mV, n = 5, P = 0.005 vs. 

baseline, data not shown). Intracellular delivery of Ih channel blocker ZD7288 (20 μM) 

also failed to block HA-elicited depolarization of Type II interneurons (Control: -67.6 ± 

0.8 mV, HA: -63.0 ± 1.4 mV, n = 4, P = 0.04 vs. baseline, data not shown). These results 

indicate that HA-induced depolarization of interneurons was partially dependent on the 

function of a TTX-insensitive Na+-permeable channel.  

HA Inhibits Kirs and IK in MEC Interneurons 

 Stimulation of H1 and H2 leads to inhibition of K+ currents in many brain regions 

(Reiner and Kamondi, 1994; Whyment et al., 2006; Zhou et al., 2006). Because HA-

induced net currents were largely inward across the range of the voltages tested in our 

ramp experiments and preventing cation influx failed to completely block HA-induced 

depolarization, we reasoned that HA-induced facilitation of interneuron excitability may 

involve a mixed ionic mechanism including activation of cation channels and inhibition 

of K+ channels. Such a mixed ionic mechanism has been observed elsewhere in the brain 

(Gorelova and Reiner, 1996). We tested this possibility by making voltage-clamp 

recordings from interneurons. Because cation influx is a mechanism responsible for HA-

elicited depolarization, we isolated K+ currents by using a K+-containing intracellular 

solution and replacing extracellular Na+ and Ca2+ with the same concentration of NMDG+ 

and Mg2+, respectively. Following electrophysiological identification of interneurons, the 

normal extracellular solution was changed to the modified solution for at least 15 min 

before the experiment started. After application of HA for 5 minutes, 8 of 11 Type I  
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(n = 8, Fig. 16A and B) and 7 of 9 Type II (n = 7, Fig. 16A and C) interneurons showed 

inhibition of K+ currents. A total of 5 cells across both groups were not included in our 

analysis because they displayed atypical and unexplainable inward currents. Because Cs+ 

blocks Kirs, we used Cs+ (3 mM) to further identify the properties of the K+ channels. 

Since HA inhibited K+ currents in both Type I and Type II interneurons, we pooled the 

data together for our Cs+ experiments (Type I: n = 4, Type II: n = 6). Under these 

conditions, application of HA in the presence of Cs+ failed to further inhibit any currents 

in interneurons (n = 10, Fig. 16D and E) and Cs+ completely abolished HA-induced net 

currents (Fig. 16F). These results indicate that HA inhibited Kirs in both Type I and 

Type II MEC interneurons. 

 Because HA has been reported to block IK in hippocampal interneurons (Atzori et 

al., 2000), we also explored the effects of HA on IK in MEC interneurons using the same 

recording conditions to isolate K+ currents as performed above. HA significantly reduced 

IK in Type I (n = 6, Fig. 16G and H) and Type II (n = 9, Fig. 16G and I) interneurons. We 

next tested whether HA-induced inhibition of IK was also sensitive to Cs+. Because 

inhibition of IK was seen in both types of interneurons, we again pooled data from both 

types of interneurons (Type I: n = 3, Type II: n = 6). Extracellular Cs+ was unable to 

prevent further HA-induced inhibition of the IK currents (Fig. 16J and K) and the pooled 

HA-induced net currents were not significantly different (Fig. 16L). Together, these 

results suggest that HA inhibited both Kirs and IK in entorhinal interneurons although 

only the HA-induced inhibition of Kirs was sensitive to Cs+.
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Figure 16. HA inhibits both Kirs and IK recorded from Type I and Type II 
interneurons of the MEC. (A) Kirs recorded from a Type I (Upper) and a 
Type II (Lower) interneuron in the MEC before (Left) and during (Right) 
the application of HA using the extracellular solution containing NMDG+ 
and zero Ca2+ and intracellular solution containing K+-gluconate. The 
voltage protocol is shown at the bottom. (B) Voltage-current relationship 
of Kirs before and during the application of HA for Type I interneurons (n 
= 8). For each cell, the steady-state currents were measured just before the 
end of the voltage step and were normalized to the current evoked at -150 
mV in control condition. (C) Voltage-current relationship of Kirs before 
and during the application of HA for Type II interneurons (n = 7). (D) K+ 
currents recorded from a Type I (Upper) and a Type II (Lower) 
interneuron in the above-mentioned extracellular solution containing Cs+ 
(3 mM) before (Left) and during (Right) the application of HA using the 
same voltage protocol (bottom) as in A. (E) Voltage-current relationship 
of K+ currents in the presence of Cs+ (3 mM) for pooled MEC 
interneurons (Type I: n = 4, Type II: n = 6). (F) Net currents obtained by 
subtraction in control condition (pooled from B and C) and in the 
extracellular solution containing  Cs+ (from E). Note that the HA-elicited 
net currents in control condition showed inward rectification and 
application of Cs+ blocked HA-induced net currents. (G) IK recorded from 
a Type I (Upper) and a Type II (Lower) interneuron in the MEC before 
(Left) and during (Right) the application HA using the extracellular 
solution in which NaCl and Ca2+ were replaced with NMDG+ and Mg2+, 
respectively, and the K+-gluconate-containing intracellular solution. The 
voltage protocol is shown at the bottom. (H) Voltage-current relationship 
of IK before and during the application of HA for Type I interneurons (n = 
6). For each cell, the steady-state currents were measured just before the 
end of voltage steps and were normalized to the current evoked by +70 
mV in control condition. (I) Voltage-current relationship of IK before and 
during the application of HA for Type II interneurons (n = 9). (J) IK 
recorded from a Type I (Upper) and a Type II (Lower) interneuron in the 
presence of Cs+ (3 mM) before (Left) and during (Right) the application of 
HA using the same recording conditions as in G. (K) Voltage-current 
relationship of IK in the presence of Cs+ (3 mM) for pooled interneurons 
(Type I: n = 3, Type II: n = 6) before and during application of HA. 
(L) Net currents generated by subtraction pooled in control condition 
(from H and I) and in the extracellular solution supplemented with Cs+ 
(from K). * P < 0.05, ** P < 0.01.  
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Extracellular Cs+ Reduces HA-Induced Depolarization and Prevents  

HA-Elicited Increases in sIPSCs Independent of Changes to Ih 

 

 Because HA inhibited K+ currents of interneurons, including Cs+- sensitive Kirs, 

we next tested whether Cs+ reduced HA-induced depolarization of interneurons. In Type 

II interneurons, application of HA in the presence of Cs+ did not result in significant 

depolarization (Control: -66.2 ± 0.8 mV, HA: -64.9 ± 1.8 mV, n = 9, P = 0.21 vs. 

baseline, Fig. 17A and B) and was significantly different from HA alone (P = 0.005, 

Fig. 17B). Similar results were also obtained in Type I interneurons (Control: -67.7 ± 1.6 

mV, HA: -67.3 ± 1.3 mV, n = 6, P = 0.44 vs. baseline, data not shown). Because Cs+ 

blocked Kirs and inhibited HA-induced depolarization, we tested whether HA-induced 

augmentation of sIPSCs was sensitive to extracellular Cs+. Because application of Cs+ 

(3 mM) alone significantly increased the basal sIPSC frequency (data not shown) and the 

resulting elevated basal frequency may have narrowed the window for detection of HA-

dependent increases in sIPSCs, we reduced the extracellular Ca2+ concentration to 

0.75 mM and elevated Mg2+ concentration to 3.25 mM to reduce the basal frequency of 

sIPSCs in the presence of Cs+. Under these conditions, application of HA still 

significantly increased sIPSC frequency in the absence of Cs+ (155 ± 29% of control,  

n = 4, P = 0.01 vs. baseline, Fig. 17D). However, in the extracellular solution containing 

0.75 mM Ca2+ and 3 mM Cs+, application of HA failed to significantly increase sIPSC 

frequency (94 ± 10% of control, n = 7, P = 0.56, Fig. 17C and D). In addition to Kirs and 

other K+ channels, Cs+ also blocks Ih. To test whether the effect of Cs+ may have been 

due to blockade of Ih, we tested whether selectively blocking Ih using ZD7288 prevented 

HA-induced increases in sIPSCs. Slices were pretreated with ZD7288 (20 μM) and the 

same concentration of ZD7288 was continuously bath applied. Under these
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Figure 17. Extracellular Cs+ inhibits the depolarization of interneurons and blocks the 
facilitation of sIPSC frequency in response to HA. (A) Example RMP 
trace from a Type II interneuron demonstrating that HA-induced 
depolarization is significantly inhibited in the presence of 3 mM Cs+. 
(B) Summary data comparing the depolarization of Type II interneurons in 
the absence and presence of 3 mM Cs+. (C) Representative traces of 
sIPSCs recorded before, during and after the application of HA in the 
extracellular solution containing 0.75 mM CaCl2 with Cs+ (3 mM). 
(D) Time course of HA-induced increases in sIPSC frequency in the 
extracellular solution containing 0.75 mM CaCl2 with or without Cs+  
(3 mM). (E) Example traces of sIPSCs recorded in the presence of 
ZD7288 before, during and after the application of HA. (F) Time course of 
HA-mediated increases in sIPSC frequency in the presence of ZD7288.
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circumstances, HA still increased the frequency of sIPSCs (165 ± 25% of control, n = 7, 

P = 0.04 vs. baseline, Fig. 17E and F), which was comparable to the control (P = 0.52). 

These results suggest that blockade of Ih channels is not sufficient to prevent HA-induced 

increases in sIPSCs and the inhibitory effect of extracellular Cs+ may be mediated by 

inhibition of interneuron Kirs. 
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CHAPTER V 

RESULTS 

Study 3 - Group I mGluR Modulation within the Entorhinal Cortex 

Introduction 

 Glutamate interacts with two types of receptors: the ionotropic (iGluR) and 

metabotropic (mGluR) glutamate receptors (Niswender and Conn, 2010; Traynelis et al., 

2010). The iGluRs are divided into three subtypes based on sequence homology and 

pharmacology. The three iGluR types are kainate, AMPA, and NMDA receptors. The 

mGluRs are GPCRs that engage in several different signal transduction mechanisms upon 

ligand binding. There are eight known subtypes (mGluR1-8) of mGluRs. The mGluRs 

are distributed across three broad groups that are defined by sequence homology, 

pharmacology, and coupled signaling systems. Group I receptors consist of mGluR1 and 

5; group II consist of mGluR2 and 3; and, group III consist of mGluR4, 6 ,7, and 8 

(Niswender and Conn, 2010). Classically, group I receptors are coupled to Gq/11 signaling 

pathways and their activation results in PLC activity, IP3 production, and Ca2+ signaling 

(Sladeczek et al., 1985; Nicoletti et al., 1986; Houamed et al., 1991; Masu et al., 1991; 

Abe et al., 1992). On the other hand, group II and III receptors are coupled to Gi signaling 

pathways and their activation leads to reductions in cAMP production (Tanabe et al., 

1992, 1993). Other than mGluR6 (Nakajima et al., 1993), members of each group are 

abundantly expressed throughout the central nervous system (Niswender and Conn, 
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2010). Functionally, mGluRs modulate cellular excitability and many aspects of synaptic 

plasticity (Conn and Pin, 1997; Anwyl, 1999; Niswender and Conn, 2010).  

 Members of group I, II, and III mGluRs are present in the EC. In the rat, in situ 

hybridization studies for group I mGluRs indicate high levels of mGluR5 transcripts, 

whereas mGluR1 levels are present but at comparatively lower levels relative to other 

hippocampal areas (Shigemoto et al., 1992; Fotuhi et al., 1994). Similar studies for group 

II and III mGluRs also indicate the presence of mGluR2 (Ohishi et al., 1993a; Fotuhi et 

al., 1994), mGluR3 (Ohishi et al., 1993b; Fotuhi et al., 1994), mGluR4 (Fotuhi et al., 

1994; Ohishi et al., 1995), and mGluR7 (Ohishi et al., 1995). Although the EC is not 

mentioned, mGluR8 mRNA is also moderately present in the hippocampus and cortex 

(Saugstad et al., 1997). mGluR6 is absent from the hippocampus (Nakajima et al., 1993; 

Schools and Kimelberg, 1999) as these receptors are primarily localized to the “ON” 

bipolar cells of the retina (Nakajima et al., 1993). Moreover, immunostaining indicates 

the presence of both group II mGluRs (Zhang et al., 2015a) as well as mGluR7a, and 

mGluR8 (Shigemoto et al., 1997), however, group I mGluRs have not been examined. 

The existence of members from each group of mGluRs in the MEC suggests a functional 

role for these receptors in modulating MEC activity. 

 Functional evidence indicates group I mGluRs modulate both GABAergic and 

glutamatergic transmission within the MEC. In layer III, either the glutamate transporter 

inhibitor TBOA—used to elevate extracellular glutamate levels—or application of the 

non-selective group I/II mGluR agonist tACPD (Schoepp et al., 1999) reduces the 

amplitude of both AMPA and NMDA eEPSCs (Iserhot et al., 2004), suggesting a 

presynaptic site of action. The tACPD-induced depression is sensitive to a non-selective 
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mGluR antagonist and a selective group I antagonist blocks the TBOA-induced 

depression (Iserhot et al., 2004), specifically implicating group I mGluRs. Selective 

activation of group I mGluRs with DHPG (Schoepp et al., 1999) enhances persistent 

firing in layer III (Yoshida et al., 2008), although the underlying mechanism remains 

unexplored. Regarding GABAergic transmission, group I activation elicits differential 

effects whereby DHPG significantly increases sIPSCs but reduces eIPSCs in the 

superficial MEC (Deng et al., 2010b). The DHPG-induced increase in sIPSCs involves a 

direct modulatory action on MEC interneurons via mGluR5, but not mGluR1, resulting in 

the inhibition of a background K+ channel (Deng et al., 2010b).  

 Group II receptors are both pre- and postsynaptically functional in the MEC. 

Presynaptic activation of mGluR2/3 using the selective mGluR2/3 agonist LY354740 

(Schoepp et al., 1999) reduces AMPA-mediated eEPSCs but exerts no effect on GABAA-

mediated eIPSCs (Wang et al., 2012). This depression of eEPSCs involves the inhibition 

of presynaptic P/Q voltage-gated Ca2+ channels (Wang et al., 2012). Postsynaptically, 

group II activation transiently hyperpolarizes principal neurons throughout the MEC but 

this hyperpolarization is most pronounced and long-lasting in layer III pyramidal neurons 

(Zhang et al., 2015a). Mechanistically, this group II-induced hyperpolarization involves 

both the inhibition of a cation conductance and activation of a K+ conductance (Zhang et 

al., 2015a). 

 Group III receptors modulate both excitatory and inhibitory transmission in the 

MEC. Group III mGluRs are tonically activated with each stimulation and constrain 

eEPSC amplitudes in layer V (Woodhall et al., 2007). Moreover, application of the 

selective mGluR4 agonist ACPT-1 (Schoepp et al., 1999) depresses eEPSCs in layer V 
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(Woodhall et al., 2007). However, spontaneous glutamate release in layer V is 

unexpectedly increased in response to either ACPT-1 or the group III selective agonist  

L-AP4 applied at a concentration selective for mGluR4/8, but not mGluR7 (Evans et al., 

2000, 2001; Woodhall et al., 2007). This group III-induced faciliatory action on 

spontaneous glutamate release is unique to layer V, since group III mGluR activation 

reduces glutamate release in layer II (Evans et al., 2000). Thus, group III mGluRs exert 

distinct modulatory actions on glutamatergic transmission depending on both network 

activity and the MEC cortical layer. With respect to GABAergic transmission, ACPT-1 

significantly reduces the frequency of spontaneous GABA release in layer V but not layer 

II (Woodhall et al., 2001) and no constitutive regulation of eIPSCs is seen in layer V 

(Woodhall et al., 2001), unlike what is seen with eEPSCs.  

 Overall, mGluR members of all 3 groups are present in the MEC and these 

functional studies indicate an important modulatory role on both excitatory and inhibitory 

synaptic transmission, as well as MEC intrinsic excitability.  

Study 3 Rationale 

 Group I mGluRs are commonly regarded as postsynaptic receptors and their 

activation generally leads to increased excitability in various brain regions. Group I 

mGluRs can increase excitability by inhibiting K+ channels, including  Ca2+-activated K+ 

channels (Charpak et al., 1990), M-current K+ channels (Chuang et al., 2002), or 

background-leak K+ channels (Mannaioni et al., 2001). Alternatively, group I mGluRs 

may increase excitability by activating a cation channel, including voltage-gated Ca2+ 

channels (Park et al., 2010), Ca2+-dependent cation channels (Congar et al., 1997; Gee et 

al., 2003; Kim et al., 2003), Ca2+-independent cation channels (Guerineau et al., 1995), 
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persistent Na+ channels (D’Ascenzo et al., 2009), or activation of the Na+-Ca2+ exchanger 

(NCX) (Keele et al., 1997). As stated above, group I mGluR activation enhances 

persistent firing of layer III pyramidal neurons (Yoshida et al., 2008), however, the 

underlying mechanism mediating this increase in excitability remains unknown. We 

wanted to examine this mechanism because our lab is interested in modulation of 

hippocampal inputs derived from the MEC at the cellular level and because persistent 

firing is proposed to be a cellular model for working memory (Hasselmo and Stern, 

2006). Although persistent firing is a phenomenon seen throughout the MEC (Klink and 

Alonso, 1997b; Egorov et al., 2002; Yoshida et al., 2008), we chose to focus primarily on 

layer III because the axons of this cell layer make up the temporoammonic pathway, 

which is important for temporal associational memory processes (Suh et al., 2011). We 

therefore set out to examine the underlying ionic mechanisms mediating group I mGluR-

induced increases in layer III excitability. 

Activation of Group I mGluRs Increases the Excitability of  

MEC Principal Neurons and Requires Both mGluR1 and mGluR5 

 

 We recorded APs from layer III pyramidal neurons within the MEC in the 

presence of synaptic blockers to examine any potential direct modulatory effect of group 

I mGluR activation. Constant direct current was injected to the soma to simulate synaptic 

input and drive spontaneous action potential firing. After recording at least five minutes 

of stable baseline, we applied the group I selective agonist (S)-3,5-

dihydroxyphenylglycine (DHPG, 10 μM) for 5 minutes. DHPG significantly increased 

the AP firing frequency to 350 ± 96 % of control (Control: 0.51 ± 0.03 Hz, DHPG:  

1.97 ± 0.38 Hz, n = 11, P < 0.005 vs. baseline, Fig. 18A, B, and J). This increase 

gradually returned to near-baseline levels by 20 minutes into washout (Washout: 0.68 ± 
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0.12 Hz, Fig. 18A and B). Similar increases were seen for layer II (Control: 0.75 ± 0.01 

Hz, DHPG: 4.34 ± 0.50 Hz, n = 9, P < 0.0001 vs. baseline, data not shown) and layer V 

(Control: 0.20 ± 0.004 Hz, DHPG: 0.85 ± 0.09 Hz, n = 5, P < 0.005 vs. baseline, data not 

shown) principal neurons, indicating that DHPG increased excitability throughout all 

layers of the MEC. We chose to focus on layer III neurons for the remainder of this study 

to examine underlying molecular mechanisms mediating DHPG’s effect in the MEC. The 

effect of DHPG-induced increased AP firing had a dose-dependent response with a 

calculated EC50 value of 1.76 μM (Fig. 18C). We used a concentration of 10 μM for the 

remainder of all experiments. 

 The group I mGluR subtypes underlying DHPG-dependent increased AP firing 

were examined using selective antagonists for mGluR1 and mGluR5. Pretreatment and 

continuous bath application of slices with the selective mGluR1 antagonist LY456236  

(5 μM) prevented any significant DHPG-induced increases in AP firing frequency 

(Control: 0.51 ± 0.06 Hz, DHPG: 1.01 ± 0.27 Hz, n = 8, P = 0.13 vs. baseline, Fig. 18D, 

E, and J), however, LY456236 alone did not significantly reduce DHPG-induced 

increased AP firing compared to control (P > 0.05 vs. control, One-Way ANOVA with 

Tukey, Fig. 18E and J). In a similar fashion, DHPG failed to significantly increase the 

frequency of APs in the presence of 5 μM MPEP (Control: 0.45 ± 0.04 Hz, DHPG: 1.11 

± 0.35 Hz, n = 7, P = 0.09 vs. baseline, Fig. 18F, G, and J), although MPEP did not 

significantly reduce DHPG-induced increased AP firing compared to control (P > 0.05 

vs. control, One-Way ANOVA with Tukey, Fig. 18G and J). However, when slices were 

exposed to both MPEP and LY456236, DHPG failed to increase AP firing frequency 

(Control: 0.55 ± 0.03 Hz, DHPG: 0.60 ± 0.09 Hz, n = 7, P = 0.66 vs. baseline, Fig. 18H, 
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I, and J) and DHPG’s effect was completely blocked compared to control conditions  

(P < 0.05 vs. control, One-Way ANOVA with Tukey, Fig. 18I and J). No significant 

difference in baseline AP firing frequency was observed between conditions, mitigating 

any concerns about experimental conditions influencing these results (P = 0.44, One-Way 

ANOVA with Tukey, Fig. 18J). 

 

 

Figure 18.  DHPG significantly increased the AP firing frequency of a layer III 
pyramidal neurons. (A) Example of AP trace from a layer III pyramidal 
neuron before, during, and after application of 10 μM DHPG. 
(B) Summary data for 11 cells. (C) Concentration-response curve for 
DHPG-induced increases in normalized AP firing. (D) Example AP trace 
from a layer III pyramidal neuron before, during and after application of 
DHPG in the presence of 5 μM LY456236, an mGluR1-selective 
antagonist. (E) Summary data showing 8 cells in the presence of 
LY456236 alongside control. (F) Example AP trace from a layer III 
pyramidal neuron before, during, and after application of DHPG in the 
presence of 5 μM MPEP, a selective mGluR5 antagonist. (G) Summary 
data showing 7 cells in the presence of MPEP alongside control. 
(H) Example AP trace from a layer III pyramidal neuron before, during, 
and after application of DHPG in the presence of both LY456236 and 
MPEP. (I) Summary data showing 7 cells in the presence of both group I 
antagonists alongside control cells. (J) Summary figure for DHPG receptor 
pharmacology in layer III MEC. * P < 0.01 vs. baseline; # P < 0.05, one-
way ANOVA with Tukey; N.S., Not Significant.  
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DHPG Induces Subthreshold Changes in Principal Cell Excitability 

 Subthreshold modulatory actions that destabilize the RMP can increase 

excitability and AP generation. To examine potential DHPG-induced changes in 

subthreshold excitability, we made RMP recordings in the presence of TTX (0.5 μM). 

Changes in the input resistance were monitored by applying brief current injections  

(-100 pA, 100 ms) every 20 seconds. After a five-minute stable baseline recording, 

application of DHPG induced a significant maximal depolarization of 6.2 ± 1.8 mV 

(Control: -62.8 ± 0.5 mV, DHPG: -56.6 ± 2.1 mV, n = 12, P = 0.005 vs. baseline, 

Fig. 19A, B left). To offset any voltage-dependent changes in the input resistance 

resulting secondarily from DHPG-induced depolarization, we injected negative current to 

briefly return the RMP to baseline levels and calculated DHPG-induced changes in input 

resistance. DHPG did not significantly change the input resistance (Control: 277 ± 17 

MΩ, DHPG: 284 ± 17 MΩ, n = 12, P = 0.08 vs. baseline, Fig. 19A, B right). Application 

of DHPG to layer III neurons voltage-clamped at -60 mV induced a maximal inward 

current of -16.8 ± 1.7 pA (n = 22, P < 0.00001 vs. baseline, Fig. 19C). The magnitude of 

this current was not significantly different compared to the baseline-returning current we 

injected in RMP current-clamp experiments above (-11.3 ± 2.6 pA, n = 12, P = 0.08 vs. 

voltage-clamp experiments, data not shown). Plotting maximal DHPG-induced inward 

currents versus animal ages used in this study did not reveal a strong correlation 

(Pearson’s r = 0.261, Fig. 19D), suggesting that age did not influence DHPG-induced 

currents for our experiments. These data demonstrate that DHPG-induced increases in 

excitability are due, at least in part, to changes in subthreshold excitability.
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Figure 19.  DHPG induced a significant RMP depolarization. (A) Example illustrating 
DHPG-induced depolarization with minimal effects on input resistance. A 
hyperpolarizing current (-100 pA, 100 ms) was injected every 20 s to 
measure the input resistance. Note that DHPG generated a clear 
depolarization. A negative current (-8.5 pA) was injected to briefly return 
the RMP to baseline levels. (indicated by the horizontal bar). 
(B) Summary data for DHPG-induced changes in RMP and input 
resistance (Rn). (C) Voltage-clamp experiments at -60 mV reveal DHPG-
induced a significant inward current. (D) DHPG-induced inward currents 
across animal age-ranges tested in this study do not indicate a strong 
relationship. 

 

Potential Signaling Mechanisms Underlying DHPG-Induced  

Changes in Subthreshold Excitability 

 

 Both G protein-dependent (Congar et al., 1997; Gee et al., 2003; Kubota et al., 

2014) and -independent (Heuss et al., 1999; Gee et al., 2003; Kubota et al., 2014)  
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signaling is implicated in group I mGluR signaling. We therefore sought to determine 

whether G proteins are involved in DHPG-induced changes in subthreshold excitability 

using voltage-clamp experiments. Because DHPG-induced changes in excitability for 

both RMP and HC typically appeared to be maximal around 7-8 minutes after start of 

application, this time point was chosen for comparisons across different conditions. The 

G protein inactivator GDP--S (2 mM) was included inside the K-gluconate-containing 

internal solution. DHPG was applied after waiting ~30 minutes to allow for complete 

exchange between the recording pipette and cell. Under these conditions, DHPG induced 

a significant maximal inward current of -7.7 ± 1.0 pA (n = 9, P = 0.00006 vs. baseline, 

Fig. 20A and G), which was significantly reduced compared to control alone (P = 0.003 

vs. control alone). Because group I mGluRs are Gq-coupled, we next determined whether 

PLC was involved in DHPG-induced inward currents. Pretreatment of slices for 

30 minutes and continuous bath application of the PLC inhibitor U73122 (10 μM), did 

not prevent DHPG-induced currents (-15.8 ± 4.2 pA, n = 8, P = 0.007 vs. baseline, P = 

0.79 vs. control alone, Fig. 20B and G). A 2-hour pretreatment of slices and continuous 

bath application of another structurally distinct PLC inhibitor edelfosine (10 uM) also 

failed to prevent DHPG-induced inward currents (-15.0 ± 2.9 pA, n = 11, P = 0.0004 vs. 

baseline, P = 0.58 vs. control alone, Fig. 20C and G). These results indicate that PLC is 

not involved, which might suggest downstream PLC-dependent signaling pathways are 

also not likely involved. Group I mGluRs can increase cAMP and it is possible DHPG-

induced changes may be due to Gs-coupling to AC. We therefore tested whether AC is 

involved by pretreating, but not continuously bath applying, slices with the selective AC 
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Figure 20. DHPG-induced inward currents may require G proteins and AC but not 
PLC or Src. (A) DHPG continued to induce a smaller but significant 
current while G proteins were inhibited (n = 9). (B) Inhibition of PLC with 
10 μM U73122 did not affect DHPG-induced currents (n = 8). 
(C) Another PLC inhibitor, 10 μM edelfosine, also failed to block DHPG-
induced currents (n = 11). (D) Inhibition of AC by pretreatment with 
30 μM MDL 12330A prevented DHPG-induce currents (n = 7) (E) 
Inhibition of Src with 30 μM genistein failed to affect DHPG-induced 
currents (n = 6). (F) Another Src inhibitor, 20 μM PP1, also failed to affect 
DHPG-induced currents (n = 8) (G) Summary data for A-F.  

 

inhibitor MDL 12330A (30 μM). MDL 12330A pretreatment prevented DHPG-induced 

currents (-4.5 ± 2.0, n = 7, P = 0.06 vs. baseline, P = 0.0009 vs control alone, Fig. 20D 

and G), suggesting involvement of AC. Because DHPG can also modulate excitability 

independent of G proteins and because inhibiting G proteins did not completely prevent 

DHPG-induced currents, we also tested for a G protein-independent signaling pathway 

mediating DHPG’s effect. Pretreatment and continuous bath application of slices with the 

Src inhibitor genistein (30 μM) did affect DHPG-induced currents (-15.1 ± 2.7 pA, n = 6, 

P = 0.002 vs. baseline, P = 0.65 vs. control alone, Fig. 20E and G). Pretreatment and 

continuous bath application of another inhibitor of Src, PP1 (20 μM), also did affect 

DHPG-induced currents (-15.7 ± 5.9 pA, n = 8, P = 0.03 vs. baseline, P = 0.81 vs. control 
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alone, Fig. 20F and G). Taken together these results suggest that G proteins and AC may 

be involved, but more experiments are necessary to support this conclusion. 

DHPG-Induced Changes in Subthreshold Excitability Involve  

Activation of a Non-Selective Cationic Current 

 

 To examine a role for Ca2+ influx in DHPG-induced inward currents, we replaced 

extracellular Ca2+ with Mg2+ and supplemented the external solution with TTX (0.5 μM) 

to block voltage-gated Na+ channels and EGTA (100 μM) to chelate any residual Ca2+ 

ions. Under these conditions DHPG continued to induce a significant inward current  

(-12.7 ± 5.1 pA, n = 8, P = 0.04 vs. baseline, P = 0.34 vs. control alone, Fig. 21A and E). 

We next tested a role for Na+ influx by replacing extracellular NaCl with equimolar 

NMDG-Cl. Under these conditions, DHPG continued to induce a significant inward 

current (-5.5 ± 1.8 pA, n = 9, P = 0.02 vs. baseline, Fig. 21B and E) but this current was 

reduced compared to control (P = 0.0007 vs. control alone). To determine whether 

changes in K+ flux contributed to DHPG-induced inward currents, we replaced 

intracellular K+ with Cs+. With Cs+ inside the pipette, DHPG continued to induce a 

significant inward current (-22.2 ± 3.7 pA, n = 23, P < 0.00001 vs. baseline, P = 0.2 vs. 

control alone, Fig. 21C and E). When both NaCl and extracellular Ca2+ were replaced, 

DHPG no longer induced a significant inward current (7.9 ± 5.4 pA, n = 8, P = 0.19 vs. 

baseline, P < 0.00001 vs. control alone, Fig. 21D and E). Together, these experiments 

suggest DHPG-induced inward currents occur via activation of a predominantly Na+-

permeant non-selective cation channel. 

 We next recorded I-V relationships from layer III pyramidal neurons prior to and 

following application of DHPG (Fig. 21F). The DHPG-induced net current (INet,, 

Fig. 21G) was obtained by subtracting control traces from current recorded in the 
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Figure 21. DHPG activated a non-selective cationic conductance. (A) Removal of 
extracellular Ca2+ failed to block DHPG-induced currents (n = 8). (B) 
Removal of extracellular Na+ reduced DHPG-induced currents (n = 9). (C) 
Replacement of intracellular K+ with Cs+ failed to block DHPG-induced 
currents (n = 23). (D) Removal of both extracellular Na+ and Ca2+ 
prevented DHPG-induced inward currents (n = 8). (E) Summary data for 
A-D. (F) Voltage-ramps before and after application of DHPG (n = 12). 
(G) Average DHPG-induced net current obtained from subtracting control 
from DHPG currents in F. Shaded region indicates S.E.M. 

 

presence of DHPG. INet had experimental reversal potential of -48.7 ± 2.0 mV (n = 12). 

This reversal potential is not near an expected potential for any one ion species and 

supports a role for a non-selective cation channel (NSCC) in DHPG-induced inward 

currents.  

 To further establish the involvement of a NSCC in DHPG-induced currents, we 

made voltage-clamp recordings using various pharmacological inhibitors. We used a Cs+-

containing internal solution to isolate only cation influx. Pretreatment and bath 

application of slices with the NSCC blocker flufenamic acid (FFA, 100 μM) prevented 
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Figure 22. DHPG-induced currents require Ca2+ signaling but not Ca2+ release and 
are sensitive to NSCC blockers. (A) The NSCC blocker FFA (100 μM) 
prevented DHPG-induced currents (n = 9). (B) Another NSCC blocker 2-
APB (100 μM) prevented DHPG-induced currents (n = 11). (C) The 
selective TRPV blocker did not affect DHPG-induced currents (n = 8). (D) 
Blockade of NCX did not prevent DHPG-induced currents (n = 7). (E) 
Intracellular BAPTA prevented DHPG-induced currents, indicating a role 
for Ca2+ signaling (n = 7). (F) Intracellular application of 2-APB (100 μM) 
did not prevent DHPG-induced currents, suggesting Ca2+ release is not 
involved (n = 5). (G) Summary figure for A-F. # P < 0.05 vs. Control, 
One-Way ANOVA with Tukey 

 

DHPG-induced currents (-5.4 ± 3.6 pA, n = 9, P = 0.17 vs. baseline, P < 0.05 vs. control, 

Fig. 22A and G). Pretreatment with and continuous bath application of another NSCC 

blocker 2-aminoethoxydiphenylborane (2-APB, 100 μM) prevented DHPG-induced 

inward currents (-5.1 ± 2.4 pA, n = 11, P = 0.06 vs. baseline, P < 0.05 vs. control, 

Fig. 22B and G). Application of DHPG to slices pretreated and continuously exposed to 

the selective TRPV cation channel inhibitor ruthenium red (RuRed, 20 μM) continued to 

induce a significant inward current (-16.8 ± 4.0 pA, n = 8, P = 0.004 vs. baseline, P > 

0.05 vs. control, Fig. 22C and G), suggesting TRPV channels are not the involved NSCC. 

Because group I mGluRs increase activation of the electrogenic NCX (Keele et al., 1997; 
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Huang and van den Pol, 2007) which would be affected by removal of extracellular Na+, 

we next tested whether NCX may be involved in DHPG-induced currents. When slices 

were pretreated with and continuously exposed to the selective NCX inhibitor KB-R7943 

(20 μM), DHPG continued to elicit a significant inward current (-22.2 ± 6.5 pA, n = 7, P 

= 0.01 vs. baseline, P > 0.05 vs. control, Fig. 22D and G). Because NSCCs can be Ca2+-

dependent, we tested a role for intracellular Ca2+
. Inclusion of BAPTA (25 mM) inside 

the pipette blocked DHPG-induced currents (-2.8 ± 2.3 pA, n = 7, P = 0.28 vs. baseline, 

P < 0.05 vs. control, Fig. 22E and G). To test if intracellular Ca2+ release via IP3 receptors 

was involved, we patched cells with 2-APB (100 μM) inside the pipette. Under these 

conditions, DHPG continued to induce a significant inward current (-22.1 ± 5.7 pA,  

n = 5, P = 0.02 vs. baseline, P > 0.05 vs. control, Fig. 22F and G). These results suggest 

that DHPG-induced inward currents are mediated by non-TRPV-containing NSCCs that 

requires intracellular Ca2+ signaling.  

Group I mGluRs Activate a TRPC-Like Conductance That May  

Involve TRPC1, TRPC4, and TRPC5 

 

 A candidate group of NSCCs for DHPG-induced currents are TRPC channels 

because these channels are sensitive to FFA, 2-APB, and require intracellular Ca2+ 

signaling. Trivalent lanthanides are NSCC blockers but augment currents of some TRPC 

channels (TRPC4/5), making them a useful tool to probe for certain TRPCs. We therefore 

tested the sensitivity of DHPG-induced currents to La3+ (100 μM). After obtaining a 

stable baseline, DHPG was applied for 10 minutes to ensure the maximal effect had been 

achieved. DHPG induced a significant inward current of -25.8 ± 3.8 pA (n = 13,  

P = 0.00001 vs. baseline, Fig. 23A). We subsequently applied La3+ in the presence of 

DHPG for an additional 10 minutes. At 8 minutes into application, the inward current 
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Figure 23. DHPG-induced currents involve a TRPC-like conductance that involves 

TRPC4 and TRPC5. (A) Following 10 min of DHPG application, 
subsequent application of La3+ (100 μM) potentiated DHPG-induced 
currents. (n = 13). (B) The selective TRPC4/5 channel blocker ML-204 
(50 μM) prevented DHPG-induced currents (n = 10). (C) Intracellular 
application of antibodies targeting an intracellular TRPC4 epitope did not 
prevent DHPG-induced currents compared to control IgG (n = 7). (D) 
Intracellular application of antibodies targeting an intracellular TRPC5 
epitope did not prevent DHPG-induced currents compared to control IgG 
(n = 9). (E) Co-administration of both TRPC4 and TRPC5 antibodies 
significantly reduced DHPG-induced currents compared to control IgG n 
= 9). (F) Intracellular application of antibodies targeting an intracellular 
TRPC1 epitope significantly reduced DHPG-induced currents compared 
to control IgG (n = 11). (G) Intracellular application of antibodies 
targeting an intracellular TRPC3 epitope did not prevent DHPG-induced 
currents compared to control IgG (n = 7). (H) DHPG continued to induce a 
significant inward current in both TRPC1 KO (n = 6) and WT (n = 7) 
mice. 

 

was potentiated to a maximal value of -10.9 ± 3.8 pA (n = 13, P = 0.004 vs. DHPG, 

Fig. 23A). These experiments were carried out using a HEPES-based extracellular 

solution to prevent the precipitation of La3+. Because La3+ potentiated rather than blocked 

DHPG-induced currents, we suspected a role for TRPC4/5 subunits. To test this 

hypothesis, we used an antagonist selective for TRPC4 and, to lesser extent, TRPC5 
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channels (Miller et al., 2011). In the presence of ML-204 (50 μM), DHPG failed to 

induce a significant inward current (-5.5 ± 3.2 pA, n = 10, P = 0.12 vs. baseline, 

Fig. 23B). We next applied antibodies (4ug/uL) targeting intracellular epitopes of TRPC 

channels to probe their involvement in DHPG-induced currents. We waited  

20-30 minutes after patching the cells to allow for dialysis of antibodies into the cell. 

Application of DHPG to cells patched with control IgG antibodies in the pipette 

continued to elicit a significant inward current of -23.9 ± 3.2 pA (n = 10, P = 0.00004 vs. 

baseline, Fig. 23C-G). DHPG continued to induce a significant inward current in cells 

patched with antibodies directed at TRPC4 (-14.8 ± 5.7 pA, n = 7, P = 0.04 vs. baseline, 

P > 0.05 vs. IgG, Fig. 23C), TRPC5 (-12.2 ± 2.6 pA, n = 9, P = 0.002 vs. baseline,  

P > 0.05 vs. IgG, Fig. 23D), and TRPC4 and TRPC5 together (-4.3 ± 1.7 pA, n = 9,  

P = 0.04 vs. baseline, Fig. 23E). DHPG-induced current was reduced compared to control 

only when both TRPC4 and TRPC5 antibodies were administered (P < 0.05 vs. IgG, 

Fig. 23E), implicating the involvement of both subunits. Because TRPC4 and TRPC5 can 

form heteromeric channels with TRPC1, we also looked at a role for TRPC1. Application 

of DHPG to cells patched with TRPC1 antibodies failed to elicit a significant inward 

current (-4.4 ± 2.6 pA, n = 11, P = 0.13 vs. baseline, P < 0.05 vs. IgG, Fig. 23F), 

indicating TRPC1 is also involved. We also considered a role for TRPC3 because this 

subunit can also interact with TRPC1. DHPG continued to elicit a significant inward 

current in cells patched with antibodies targeting TRPC3 (-15.0 ± 4.0 pA, n = 7, P = 0.01 

vs. baseline, P > 0.05 vs. IgG, Fig. 23G), suggesting these channels alone are not 

significantly involved. Taken together, these results strongly indicate a role for TRPC 

1/4/5-containing heteromeric channels in DHPG-induced currents. 
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 Because antibodies targeting TRPC1 were sufficient to block DHPG-induced 

currents, we next used a knock-out mouse to further test the involvement of TRPC1. 

Application of DHPG induced a significant inward current in cells of slices prepared 

from either wild-type (WT, -25.3 ± 9.9 pA, n = 7, P = 0.04 vs. baseline, Fig. 23H) or 

knock-out mice (KO, -28.5 ± 7.2 pA, n = 6, P = 0.01 vs. baseline, P = 0.80 vs. WT, 

Fig. 23H). These results might suggest that either TRPC1 is not involved in DHPG-

induced currents or some compensatory change has occurred during development that 

enables DHPG-currents to persist.  

 Because the pharmacological and antibody dialysis evidence supported a role for 

both TRPC4 and TRPC5 channels in DHPG-induced currents, we employed an shRNA 

knock-down strategy using an organotypic slice model of the MEC. Transfection of MEC 

cultured slices with shRNAs against TRPC4 (indicated by a RFP marker) or TRPC5 

(indicated by a GFP marker) demonstrate a high degree of co-transfection of layer III 

principal neurons (Fig. 24A). We validated both shRNAs in HEK-239 cells co-

trasnfected with appropriate TRPC channel (Fig. 24B). Application of DHPG for 7 

minutes to slices co-transfected with scramble shRNA controls carrying either RFP or 

GFP markers induced a significant inward current of -22.4 ± 3.2 pA (n = 10, P = 0.00006 

vs. baseline, Fig. 24C). Application of DHPG to co-transfected slices with shRNAs 

targeting both TRPC4 (RFP marker) or TRPC5 (GFP marker) still induced a significant 

inward current (-14.2 ± 3.7 pA, n = 10, P = 0.004 vs. baseline, Fig. 24C). Although no 

significant difference in maximal DHPG-induced current was seen (P = 0.11 vs. 

scramble), there was a significant difference in the time course of DHPG-induced current 

in knock-down slices (P < 0.05, two-way ANOVA, Fig. 24C). When slices were co-
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transfected with rTRPC5 + GFP (Fig. 24D), DHPG elicited a significantly larger inward 

current (-29.7 ± 5.2 pA, n = 5, P = 0.005 vs. baseline, P = 0.01 vs. non-transfected, 

Fig. 24E) compared to non-transfected cells (-10.7 ± 3.1 pA, n = 5, P = 0.03 vs. baseline, 

Fig. 24E). These results confirm that endogenous activation of group I mGluRs in layer 

III of the MEC couple to TRPC5. 

 

 

Figure 24. Knock-down of TRPC4 and TRPC5 did not reduce maximal DHPG-
induced currents and endogenous group I mGluRs couple to TRPC5. (A) 
Representative example of a cultured MEC slice that was transfected with 
shRNAs for TRPC5 (GFP) and TRPC4 (RFP). (B) Western blot analysis 
of TRPC4 and TRPC5 from HEK-293 lysates that were co-transfected 
with TRPC4 or TRPC5 and either the appropriate shRNA or scramble 
shRNA corresponding to the respective channel. (C) Summary data of 
DHPG-induced currents from both scramble-transfected and shRNA-
transfected MEC slices. (n = 10, each). (D) Representative MEC layer III 
cell transfected with both GFP and TRPC5. (E) Summary data of DHPG-
induced currents from either control non-transfected slices or slices over-
expressing TRPC5 (n = 5, each).  
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CHAPTER VI 

DISCUSSION 

Study 1 – Dopaminergic Modulation of MEC GABAergic Transmission 

 Our results demonstrate that DA increases the frequency without affecting the 

amplitude of sIPSCs and mIPSCs in the MEC. The effects of DA are not mediated by DA 

receptors, but by α1 adrenoreceptors. Endogenously released DA exerts the same effects 

on GABAergic transmission. DA-induced increases in the frequencies of sIPSCs and 

mIPSCs are due to DA-mediated depolarization of GABAergic interneurons resulting in 

the facilitation of AP firing frequency and the activation of T-type Ca2+ channels. DA-

mediated depolarization of interneurons is caused by the inhibition of Kirs (Fig. 25). 

 

 

Figure 25. Summary figure for Study 1. Dopamine activates 1 adrenoreceptors (1-
AR) on MEC local interneurons. This activation results in the inhibition of 
Kirs, via an unknown mechanism. Inhibition of Kirs results in membrane 
depolarization that enables activation of t-type Ca2+ channels, which 
facilitates GABAergic transmission secondarily to inhibition of Kirs-
induced increases in interneuron excitability. The net result is an increase 
in GABAergic transmission onto the superficial principal MEC cells.
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DA-Induced Facilitation of Transmitter Release Involves T-Type Ca2+  

Channels Secondary to RMP Depolarization  

 

 DA increases the frequencies of sIPSCs and mIPSCs with no effects on their 

amplitudes in the MEC. These results indicate that DA increases presynaptic GABA 

release with no effects on postsynaptic GABAA receptors. Because sIPSCs are usually 

considered to be AP-dependent, whereas mIPSCs recorded in the presence of TTX are 

not, our results suggest that DA facilitates GABA release at least in part by an AP-

independent mechanism. Because DA-mediated increases in the frequencies of sIPSCs 

and mIPSCs are dependent on extracellular Ca2+, we examined the involvement of 

voltage-gated Ca2+ channels. Bath application of Cd2+, a blocker of high-threshold 

voltage-gated Ca2+ channels, failed to block DA-mediated increases in the frequencies of 

sIPSC and mIPSC, whereas application of Ni2+ and mibefradil—two blockers of T-type 

Ca2+ channels—significantly reduced DA-induced facilitation of the frequency of sIPSCs 

and mIPSCs, indicating the involvement of T-type Ca2+ channels. Furthermore, whereas 

DA depolarizes GABAergic interneurons, T-type Ca2+ channels are not required for DA-

induced depolarization of interneurons because bath application of Ni2+ did not alter DA-

mediated depolarization. Our results therefore suggest that DA depolarizes interneurons, 

which in turn facilitates the activity of T-type Ca2+ channels. Increased influx of Ca2+ 

through T-type Ca2+ channels leads to increases in GABA release. 

 T-type Ca2+ channels are low-voltage-activated Ca2+ channels that control Ca2+ 

entry in excitable cells during small depolarization above resting potentials. For example, 

sustained depolarization generated by elevation of extracellular K+ concentration (Barish, 

1991; Varnai et al., 1995; Bao et al., 1998; Boyer et al., 1998; Jensen et al., 2004) or 

direct neuronal depolarization (Varnai et al., 1995; Lu et al., 1997; Kawai and Miyachi, 
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2001; Pan et al., 2001; Bessaih et al., 2008) activates T-type Ca2+ channels. Although bath 

application of DA increases the firing frequency of APs when the membrane potential of 

the interneurons is raised above threshold by injection of positive current, application of 

DA is incapable of inducing APs when interneurons are at rest. Under our recording 

conditions, interneurons rest negative to −60 mV and the average depolarization 

generated by DA is approximately 3–4 mV. The threshold for AP firing in the 

interneurons is at least positive to −50 mV. Therefore, DA makes little contribution to 

increasing the firing rate of the interneurons at rest. However, DA-induced, small 

subthreshold depolarization would likely shift the activation curve of T-type Ca2+ 

channels to the direction of negative potentials (Varnai et al., 1995) thereby increasing 

Ca2+ influx. Ca2+ influx via T-type Ca2+ channels has been shown to facilitate the release 

of neurotransmitters including GABA (Carbone et al., 2006). 

 Our results do not support a role of nonselective cation channel activation in DA-

induced depolarization of interneurons. If opening of a nonselective cationic conductance 

is responsible for DA-induced facilitation of GABA release, the influxes of extracellular 

Na+ and Ca2+ should be the major cations to mediate the depolarization of interneurons. 

The result that substitution of extracellular NaCl with NMDG-Cl failed to alter DA-

induced depolarization does not support a role for Na+ in DA-induced depolarization of 

interneurons. However, our results suggest a role for extracellular Ca2+ influx in DA-

mediated enhancement of GABA release, because depletion of extracellular Ca2+ blocked 

DA-induced increases in the frequencies of sIPSCs and mIPSCs. Because exclusion of 

extracellular Ca2+ does not alter the DA-induced depolarization of interneurons, the 

effects of Ca2+ are likely secondary to DA-induced depolarization. Our results that 
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blocking T-type Ca2+ channels reduces DA-induced increases in the frequencies of 

sIPSCs and mIPSCs, but does not alter DA-mediated depolarization of interneurons, 

indicate that the required Ca2+ is through T-type Ca2+ channels secondary to membrane 

depolarization. 

 Activation of D1-like receptors in the pyramidal neurons of the EC generates 

membrane hyperpolarization via the activation of Ih channels (Rosenkranz and Johnston, 

2006). Our results do not support a role of Ih channels in DA-induced facilitation of 

GABA release based on the following lines of evidence. First, at the RMP (∼ −60 mV) of 

the interneurons, Ih channels should be open. If Ih channels are involved, DA should 

increase the function of Ih channels to generate membrane depolarization. Bath 

application of the Ih channel blocker, ZD7288, should block DA-induced depolarization. 

However, bath application of DA still induced a comparable depolarization in the 

presence of ZD7288. Secondly, if Ih channels are involved, influx of Na+ should be 

responsible for depolarization. However, replacing extracellular Na+ with NMDG did not 

alter DA-induced depolarization. Thirdly, whereas Type II interneurons exhibit a sag 

response that is generated by the activation of Ih channels, Type I do not show noticeable 

sag, suggesting that Type I interneurons do not express Ih channels. However, DA 

depolarizes both Type I and Type II interneurons, suggesting that Ih channels are not 

responsible for DA-induced depolarization. Fourthly, if Ih channels are involved, DA-

mediated activation of Ih channels should reduce the input resistance. Nevertheless, 

application of DA increases the input resistance further excluding the contribution of Ih 

channels. Therefore, we conclude that the depolarization of interneurons is largely 

independent of cation influx. 
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Promiscuous Activity of DA Linked to Inhibition of Kirs 

 Our results support a role of Kirs in DA-induced depolarization of interneurons 

based on the following pieces of evidence. First, the reversal potential of DA-generated 

currents is close to the K+ reversal potential. Secondly, replacement of intracellular K+ 

with NMDG blocked DA-induced depolarization. These two lines of evidence buttress 

the involvement of K+ channels. Thirdly, the I-V relationship of the DA-induced current 

exhibits an inward rectification. Fourthly, bath application of Ba2+, a Kir blocker, annuls 

the DA-induced depolarization of interneurons and the facilitatory effects of DA on 

sIPSCs and mIPSCs, further supporting the participation of Kirs. Whereas the results that 

application of SCH23390 blocks both DA-mediated increases in sIPSC frequency and 

DA-mediated depolarization of interneurons could be explained either by the 

involvement of D1-like receptors or by SCH23390-mediated blockade of Kirs, our results 

support the latter. If the blocking effects of SCH23390 are mediated by blockade of D1-

like receptors, application of the selective D1-like receptor agonists should also exert the 

same actions as DA. However, our results showed that application of D1-like receptor 

agonists or co-application of the agonists for D1- and D2-like receptors failed to have any 

effects on sIPSCs and the RMPs of the interneurons, suggesting that the blocking effects 

of SCH23390 are not mediated by interaction with D1-like receptors. Coincidently, we 

found that DA generates membrane depolarization in the MEC interneurons via 

inhibition of Kirs, which can be blocked by SCH23390 (Kuzhikandathil and Oxford, 

2002; Shankar et al., 2004; Sosulina et al., 2008; Chee et al., 2011). Further evidence to 

support the idea that the effects of SCH23390 were mediated by blocking Kirs instead of 

D1-like receptors is that application of a structurally distinct D1 receptor antagonist, 
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LE300, failed to prevent DA-induced facilitation of sIPSC frequency. Moreover, the 

results that DA-induced facilitation of sIPSCs and mIPSCs and depolarization of 

interneurons are blocked by application of α1 adrenoreceptor antagonists suggest that D1-

like receptors are not involved. Our results demonstrate that DA depolarizes GABAergic 

interneurons via α1 receptor-mediated inhibition of Kirs. Consistent with our findings, 

DA has been shown to inhibit Kirs (Gorelova et al., 2002; Dong et al., 2004; Witkowski 

et al., 2008; Govindaiah et al., 2010; Podda et al., 2010). Different from our results is that 

application of the D1-like receptor agonists in these studies exerts the same actions as 

DA, suggesting the involvement of D1-like receptors. 

 Whereas our results demonstrate that DA facilitates GABAergic transmission via 

activation of α1 adrenoreceptors, there are still differences between the effects of DA and 

norepinephrine, which also facilitates GABAergic transmission in the MEC. First, DA 

increases only the frequency of sIPSCs, whereas norepinephrine facilitates both the 

frequency and amplitude of sIPSCs. Secondly, extracellular Ca2+ is required for DA-

induced increases in the frequency of sIPSCs and mIPSCs, but not required for the effects 

of norepinephrine on GABA release. Thirdly, DA transiently increases the action 

potential firing frequency in interneurons, whereas norepinephrine has no obvious effects 

on the firing frequency of action potentials and holding currents recorded from the 

interneurons. Several mechanisms can be proposed to explain the discrepancy between 

the effects of DA and those of norepinephrine on GABAergic transmission. First, 

norepinephrine interacts with many different types of receptors including α1, α2, and β 

adrenoreceptors as well as D2 DA receptors (Robbins et al., 1988), whereas DA activates 

α1, α2, and β adrenoreceptors (Rajfer et al., 1988; Anfossi et al., 1993; Lee et al., 1998; 
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Ouedraogo et al., 1998; Ooi and Colucci, 2001; Cornil et al., 2002) in addition to 

activating DA receptors. Activation of these receptors likely produces distinct or even 

opposite effects. Whereas our previous results demonstrate a role for α1 receptors in 

norepinephrine-induced facilitation of GABAergic transmission in the MEC, the 

permissive or shrouded roles of other receptors activated by norepinephrine are unknown. 

Secondly, there are several different subtypes of α1 adrenoreceptors. As demonstrated 

previously (Rey et al., 2001), norepinephrine and DA may activate distinct subtypes of α1 

receptors. Thirdly, whereas DA and norepinephrine exert promiscuous effects on 

different receptors, there are significant differences with regard to the affinities of the 

receptors activated by DA and norepinephrine. For example, DA has only 1 of 50 the 

affinity of norepinephrine for α1 receptors (Leedham and Pennefather, 1986). Receptors 

activated by distinct agonists of different affinities likely generate distinguishable 

intracellular signaling events resulting in dissimilar actions. Lastly, although our results 

do not support a role for D1- and D2-like receptors in the effects of DA on GABAergic 

transmission, it is still possible that DA modulates GABAergic transmission by a 

cooperative effects on α1, D1, and D2 receptors because there is strong evidence 

demonstrating an interaction of α1, D1, and D2 receptors (Gioanni et al., 1998; Wadenberg 

et al., 2000; Stuchlik et al., 2008). 

 Synaptic DA concentrations can reach approximately 100 µM (Ford et al., 2009). 

At this concentration, DA or DA receptor agonists have been reported to increase sIPSC 

frequency in the lateral amygdala (Lorétan et al., 2004), cerebral cortex (Zhou and 

Hablitz, 1999; Seamans et al., 2001), and thalamus (Munsch et al., 2005). In the MEC, 

the effect of DA on GABAergic transmission was reliably observed when DA was 
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applied at a concentration range of 3–100 µM. In the present study, we performed a series 

of experiments to test the role of endogenously released DA in modulating GABAergic 

transmission. We initially tried to elevate synaptic DA concentration by bath application 

of the DAT inhibitor, GBR 12935. However, bath application of the DAT inhibitor failed 

to increase the frequency of sIPSCs significantly. One explanation is that there is no tonic 

DA release at the dopaminergic projections in the EC possibly due to the severing of the 

terminals from their somas in our slice preparation. We also used AMPH, a drug that 

promotes DA efflux via interaction with the DAT (Leviel, 2011). Bath application of 

AMPH increases the sIPSC frequency and the effect of AMPH is almost completely 

abolished by application of GBR 12935, suggesting that the effect of AMPH is mediated 

by increasing endogenous DA efflux. We further demonstrate that bath application of α1 

receptor antagonist block AMPH-induced increases in the frequency of sIPSCs, whereas 

application of the inhibitor for the norepinephrine transporter failed to affect the effect of 

AMPH. These results together indicate that endogenously released DA is capable of 

facilitating GABA release in the EC. 

DA and MEC GABAergic System: Functional Implications 

 In the MEC, DA usually exerts an overall inhibitory effect. For example, DA has 

been shown to inhibit the excitability of pyramidal neurons (Rosenkranz and Johnston, 

2006; Mayne et al., 2013), excitatory synaptic transmission (Pralong and Jones, 1993; 

Stenkamp et al., 1998; Behr et al., 2000; Caruana and Chapman, 2008), and synaptic 

plasticity (Caruana et al., 2007). DA has bidirectional effects on excitatory synaptic 

transmission with low concentrations enhancing, and high concentrations depressing it 

(Caruana et al., 2006). Consistent with the generally inhibitory roles of DA in the MEC, 
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our results indicate that DA facilitates GABA release. GABAergic transmission in the 

MEC synchronizes neural network activities and serves as the precision clockwork for 

gamma and theta oscillations (Cutsuridis and Hasselmo, 2012). Neural oscillatory events 

are thought to be crucially involved in various cognitive processes. Because the functions 

of the EC are closely related to the processes of learning and memory (Steffenach et al., 

2005), Alzheimer's disease (Hyman et al., 1984) and schizophrenia (Prasad et al., 2004), 

DA-mediated modulation of GABAergic transmission would likely play a role in the 

modification of these physiological functions and neurological diseases. 

 In conclusion, our results demonstrate that DA facilitates the frequency of sIPSCs 

and mIPSCs, indicating that DA increases GABA release in the MEC. The facilitatory 

effects of DA are not mediated by DA receptors but via the activation of α1 adrenergic 

receptors. DA inhibits Kirs to generate a small depolarization of GABAergic interneurons 

resulting in facilitation of T-type Ca2+ channels. Our results have revealed a collaborative 

role of α1 adrenoreceptors, Kirs, and T-type Ca2+ channels in DA-induced augmentation 

of GABA release in the MEC. 

Study 2 – Histaminergic Modulation of MEC GABAergic Transmission 

 We demonstrate that HA increased the frequency but not the amplitude of sIPSCs 

recorded from principal neurons in each layer of the MEC. HA-mediated facilitation of 

spontaneous GABAergic transmission was AP-dependent and required the influx of 

extracellular Ca2+. Application of HA decreased the input resistance and induced 

significant subthreshold depolarization in both Type I and Type II interneurons. 

Activation of H1 or H2 was sufficient to significantly augment sIPSCs and combination of 

both H1 and H2 antagonists blocked the effect of HA. Conversely, activation of H3 
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slightly, but significantly, reduced sIPSCs whereas application of the H3 antagonist did 

not significantly affect HA-elicited augmentation of sIPSCs. Both H1 and H2 were 

expressed on GABAergic interneurons, as well as on principal neurons, of the MEC and 

HA-induced increases in the excitability of interneurons involved both H1 and H2. 

Because HA-induced net currents in both Type I and Type II interneurons were largely 

inward and did not reverse near an expected reversal potential for one ion, we concluded 

that a mixed ionic mechanism is responsible for HA-elicited increases in interneuron 

excitability. Accordingly, we found that HA-induced depolarization of Type II 

interneurons was due partially to the opening of a TTX-insensitive Na+ permeable cation 

channel and HA inhibited both IK and Cs+-sensitive Kirs in Type I and Type II 

interneurons. Finally, extracellular Cs+ inhibited interneuron depolarization and blocked 

HA-induced increases in sIPSC frequency, whereas HA-induced increases in sIPSCs 

were not sensitive to Ih blocker ZD7288, suggesting that the effect of extracellular Cs+ is 

on Kirs and not on Ih channels. Taken together, our results strongly indicate that both H1 

and H2 mediate HA-induced increases in GABAergic transmission in the MEC via 

excitation of local interneurons and HA-induced inhibition of Cs+-sensitive Kirs in 

GABAergic interneurons contributes to the facilitatory action of HA on sIPSCs (Fig. 26). 

 Modulation of synaptic transmission can occur by changes in presynaptic 

transmitter release and/or the functions or numbers of postsynaptic receptors. Our results 

demonstrate that HA-dependent increases in spontaneous GABAergic transmission in the 

MEC are mediated by increased excitability of GABAergic interneurons based on the 

following lines of evidence. First, changes in frequency, but not amplitude, of 
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Figure 26. Summary figure for Study 2. Application of HA results in activation of 
both interneuron expressing H1 and H2 to induce increased interneuron 
excitability. Increases in excitability occur via activation of a TTX-
insensitive Na+ channel and inhibition of Cs+-sensitive Kirs, although the 
precise signaling mechanism downstream of receptor activation remains 
unknown. This increased excitability increases action potential generation 
and results in elevated GABAergic transmission onto superficial principal 
neurons. 

 

spontaneous synaptic events typically connote a presynaptic locus of action (Yang and 

Calakos, 2013). Our experiments showed a consistent increase in the frequency of sIPSCs 

whereas changes in amplitude were varied and insignificant. Second, application of HA 

in the presence of TTX to block AP generation did not produce any changes in the 

frequency or amplitude of mIPSCs. This indicates that HA-induced increases in 

spontaneous GABAergic transmission are dependent on the generation of presynaptic 

APs. Consistent with a role for AP generation, removal of extracellular Ca2+ also blocked 

HA-dependent increases in sIPSCs, suggesting that the action of HA lies upstream of 

Ca2+ influx, possibly at the level of AP initiation. Third, if HA increases GABAergic 

transmission by increasing interneuron excitability, recordings from local interneurons 

should reveal elevations of intrinsic excitability following HA application. Direct 
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recordings from interneurons in the presence of TTX showed HA-dependent increases in 

excitability as illustrated by HA-induced depolarization and generation of an inward 

holding current in both Type I and Type II interneurons, as well as increased AP firing of 

Type II interneurons in the presence of synaptic blockers. Fourth, HA-induced increases 

in GABAergic transmission via facilitation of interneuron excitability would require that 

HA receptors be expressed on GABAergic interneurons. Our immunostaining 

demonstrated a clear somatic co-localization of H1 or H2 with GAD-67, a marker of 

GABAergic interneurons. Furthermore, our recordings demonstrated that HA directly 

increased the excitability of local interneurons via activation of H1 and H2 receptors. 

Finally, if HA enhances spontaneous GABAergic transmission in the MEC via a 

postsynaptic mechanism, postsynaptic HA receptors, which are G protein-coupled, 

should be involved. However, inclusion of GDP-β-S in the recording pipettes did not 

prevent HA-induced increases in sIPSCs, suggesting that it is unlikely that HA increased 

GABAergic transmission by interacting with postsynaptic GABAA receptors. In the 

medium septum, HA facilitates GABAergic neurons indirectly by increasing 

acetylcholine release (Xu et al., 2004). However, such an indirect mechanism is unlikely 

in the MEC because application of HA in the presence of TTX, which non-discriminately 

blocks synaptic transmission, still induced remarkable interneuron depolarization. We 

therefore conclude that HA directly facilitates the excitability of GABAergic interneurons 

in the MEC to increase action potential firing and GABAergic output. 

 HA increases interneuron excitability and GABAergic transmission via activation 

of both H1 and H2, whereas application of a H3-selective agonist reduced GABAergic 

transmission. Consistent with our results, HA has been shown to increase neuronal 
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excitability by activation of either H1 or H2 or both H1 and H2 receptors in a variety of 

brain regions including the thalamus (McCormick and Williamson, 1991), neostriatum 

(Munakata and Akaike, 1994), ventrolateral preoptic nucleus (Liu et al., 2010), and 

vestibular nucleus (Zhang et al., 2013b). Evidence supporting the involvement of both H1 

and H2 receptors in the MEC is provided by our immuohistochemical staining and the 

requirement of both H1 and H2 antagonists to block HA-induced interneuron 

depolarization and facilitation of sIPSCs. It is difficult to conclude whether H1 and H2 

receptors are colocalized to the same MEC interneurons because sIPSCs reflect inputs 

presumably from many GABAergic interneurons. Our data may hint at such a possibility 

but more evidence is necessary to unequivocally reach this conclusion.  

Ionic Mechanisms Mediating HA-Induced  

Increased Excitability of Interneurons 

 

 The ionic mechanisms underlying HA-induced increases in interneuron 

excitability in the MEC appear to involve both the activation of a TTX-insensitive Na+ 

channel and the inhibition of a K+ conductance. This conclusion is based on the following 

lines of evidence. First, the HA-induced net current in both Type I and Type II 

interneurons was predominantly inward across the range of the voltage ramp protocol and 

the reversal potentials for the net current did not conform to one permeating ion species. 

Second, the opening of cation channels is consistent with the significantly reduced input 

resistance observed in both types of interneurons following application of HA. Third, 

replacement of extracellular NaCl with NMDG-Cl or the same solution containing no 

extracellular Ca2+ significantly reduced HA-induced depolarization, confirming a partial 

role for cation influx. However, a significant depolarization in response to HA was still 

detected in both solutions, suggesting the contribution of K+ channel inhibition. Fourth, 
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recording K+ currents demonstrated that HA inhibited both IK and Cs+-sensitive Kirs. 

Lastly, our results that HA-induced depolarization of interneurons was sensitive to 

extracellular Cs+, which blocks several K+ channels and Ih, but was insensitive to the 

selective Ih channel blocker, ZD7288, implicate the inhibition of Cs+-sensitive K+ 

channels in HA-induced depolarization. Because inclusion of Cs+ in the extracellular 

solution blocked HA-induced inhibition of Kirs but had no effects on HA-mediated 

depression of IK, these results further suggest that inhibition of Kirs may underlie HA-

induced depolarization of MEC interneurons. In line with our results, Kirs are involved in 

controlling RMPs whereas IK are largely responsible for the AP shapes. Consistent with 

our study, a mixed ionic mechanism including activation of a TTX-insensitive Na+ 

channel and inhibition of Kirs has been identified to explain HA-induced depolarization 

of cholinergic neurons in the medial septum (Gorelova and Reiner, 1996). 

 Our results demonstrate a partial role for Na+-permeable cation channels in HA-

mediated depolarization of entorhinal interneurons but the identity of the involved cation 

channels have not been determined. Whereas HA has been reported to modulate neuronal 

excitability via changes in Na+-conducting Ih channels (McCormick and Williamson, 

1991; Zhang et al., 2013b) and Ih channels are found in cortical interneurons similar to 

Type I and II interneurons described in this study (Williams and Hablitz, 2015), our 

results do not support a role for Ih channels because ZD7288, a selective Ih channel 

blocker, was unable to block either HA-induced interneuron depolarization or increases 

in sIPSCs. Several alternative mechanisms for cation influx are worth consideration. 

First, the Na+-permeable TRPC4/5 channels have been proposed in H1-mediated 

regulation of neuronal excitability (Hardwick et al., 2005). Because TRPC4/5 channels 
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are potentiated by Gd3+ or La3+ (Strübing et al., 2001), our results that application of Gd3+ 

and La3+ did not alter HA-mediated depolarization suggest that TRPC4/5 channels are not 

targeted in MEC interneurons. Furthermore, because HA-induced depolarization was not 

sensitive to either Gd3+ or La3+, several other TRP channels may be excluded. 

Experiments using several more non-selective cation channel blockers would help to 

identify any potential involvement of other TRP members. Second, HA directly interacts 

with and potentiates NMDA receptor function (Burban et al., 2010), which could increase 

cation influx and excitability of interneurons. However, this mechanism is unlikely to be 

responsible for HA-induced facilitation of GABAergic transmission because, firstly, the 

extracellular solution used to record sIPSCs contained dl-APV to block NMDA receptors 

and, secondly, direct NMDA receptor interactions with HA would not be blocked by HA 

receptor antagonists but our results demonstrate that both H1 and H2 are involved. Lastly, 

because activation of H1 receptors has been reported to increase the activity of the 

electrogenic Na+-Ca2+ exchanger (Zhang et al., 2013b) and replacement of extracellular 

Na+ with NMDG+ would annul the currents generated by the Na+-Ca2+ exchanger, our 

results showing that replacement of extracellular NaCl with NMDG-Cl significantly 

reduced HA-mediated depolarization of interneurons can also be explained by this 

mechanism. Further research is required to identify the exact cationic mechanism 

involved in HA-mediated facilitation of GABAergic transmission in the MEC.   

 Whereas HA has been demonstrated to inhibit the background “leak” K+ channels 

(McCormick and Williamson, 1991; Munakata and Akaike, 1994; Reiner and Kamondi, 

1994; Whyment et al., 2006), it seems that this mechanism is not applicable to the 

interneurons in the MEC because the background K+ channels belong to the family of 
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two-pore domain K+ channels and most members of the two-pore domain K+ channels are 

insensitive to Cs+. Our results that HA-induced net currents displayed an inward 

rectification and are Cs+-sensitive suggest that Kirs are involved. Similar to the leak K+ 

channels, Kirs are also involved in the controlling of RMPs (Hibino et al., 2010) and are 

targets for HA-induced increases in neuronal excitability (Gorelova and Reiner, 1996; He 

et al., 2016).  

 It remains unknown to what extent, if any, either synergistic or differential actions 

of H1 or H2 may mediate HA’s effects on cation influx and inhibition of Kirs/IK in MEC 

interneurons. The reductions seen in interneuron IK are likely due to the activation of H2 

(Atzori et al., 2000), whereas H1-mediated depolarization is linked to inhibition of Kirs 

(He et al., 2016). The activation of a TTX-insensitive Na+ permeable channel is also 

likely due to H1 activity (Gorelova and Reiner, 1996; Bell et al., 2000); however, H2 may 

also increase Na+ influx via a non-selective cation channel, as seen is in promyelocytes 

(Suh et al., 2001). Future work using selective receptor agonists and methods to isolate 

particular ionic mechanisms will be helpful in clarifying the roles of H1 and H2 in HA-

induced activation of TTX-insenstive Na+ currents and inhibition of Kirs/IK. 

HA and GABAergic Systems 

 The effects of HA on GABAergic transmission vary in different brain regions. 

HA facilitates the excitability and transmission of GABAergic neurons in substantia nigra 

(Zhou et al., 2006), ventral tegmental area (Korotkova et al., 2002), medial septum (Xu et 

al., 2004), and the ventrolateral preoptic nuclei (Liu et al., 2010; Williams et al., 2014), 

but depresses GABAergic neuronal excitability and transmission in ventromedial nucleus 

of the hypothalamus (Jang et al., 2001), thalamic perigeniculate nuclei (Lee et al., 2004), 
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anterior hypothalamus (Lundius et al., 2010), and the striatum (Ellender et al., 2011). In 

the MEC, HA has been reported to reduce mIPSCs recorded in the presence of TTX via 

an H3-dependent mechanism (He et al., 2016), whereas we did not observe a significant 

change in mIPSCs in response to HA application. Because the analysis of frequency for 

spontaneous activity and its modulation are very sensitive to exact experimental 

conditions (Ascoli et al., 2008), differences in experimental procedures and conditions 

could be proposed to explain the discrepancy. However, we indeed observed that 

activation of H3 receptors slightly but significantly reduced sIPSCs. One explanation for 

this result is that the facilitatory action of H1 and H2 receptors on sIPSCs overwhelmed 

the inhibitory effect of H3 receptors in response to HA application.  

HA and Disease 

 HA is involved in the modulation of a variety of physiological functions including 

wakefulness, thermoregulation, energy homeostasis, nociception and learning and 

memory (Haas and Panula, 2003; Haas et al., 2008b). Aberrant HA signaling is 

implicated in a plethora of neurological disorders including narcolepsy, schizophrenia, 

AD, Parkinson’s Disease, epilepsy, and depression (Haas et al., 2008b). Many of the 

physiological functions and neurological diseases are closely associated with the MEC. 

For instance, stimulation of H1 receptors suppresses seizures in experimental studies, 

while antagonizing either H1 or H2 receptors can occasionally induce convulsions in 

children, epileptic or critically ill patients (Yokoyama and Iinuma, 1996). Knockout of H1 

(Dai et al., 2007; Dere et al., 2008; Zlomuzica et al., 2009) or H2 (Dai et al., 2007) 

receptors impairs spatial memory in rodents. Furthermore, antagonizing H1 or H3 but not 

H2 in the superficial MEC impairs spatial learning in rats (He et al., 2016). In humans, 
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reduced H1 binding has been reported in AD patients (Higuchi et al., 2000). Our results 

that HA facilitates GABA release in the MEC via activation of H1 and H2 receptors likely 

provide a cellular mechanism to explain some of the physiological functions and 

neurological diseases. 

Study 3 – Group I mGluR Modulation within the Entorhinal Cortex 

 We demonstrate that DHPG increases the AP firing frequency of layer III 

pyramidal neurons via both mGluR1 and mGluR5. Application of DHPG causes a 

subthreshold RMP depolarization and generation of inward currents that may contribute 

to increases in AP firing. The precise signaling mechanism mediating DHPG’s effect 

remain unclear at this point. DHPG induces inward currents that are sensitive to 

extracellular Na+ substation and removal of both extracellular Na+ and Ca2+ prevents 

DHPG-induced currents. Accordingly, DHPG activates a NSCC with TRPC4- and 

TRPC5-like pharmacology and endogenous group I receptors couple to at least TRPC5 

(Fig. 27). 

Both mGluR 1 and mGluR5 are Functionally  

Present in the MEC 

 

 DHPG-induced increases in AP firing involve both mGluR1 and mGluR5. The 

inability of either MPEP or LY456236 alone to significantly reduce DHPG-induced 

increases in AP firing support this conclusion and suggest that both mGluR1 and 

mGluR5 subtypes are present within the MEC. Although immunostaining for both 

receptors would strengthen this conclusion, these results are in-line with previous reports 

suggesting that both group I mGluRs are found in the EC (Fotuhi et al., 1994; Luján et 

al., 1996; Shigemoto et al., 1997). 
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Figure 27. Summary figure for Study 3. DHPG activates both mGluR1 and mGluR5 
and results in an increase in layer III pyramidal cell excitability. These 
increases in excitability require G proteins and AC. The ionic mechanism 
of DHPG-induced increases in excitability involves activation of a 
TRPC4/5-containing non-selective cation channel.  

 

 Although both receptors are involved in DHPG-induced increases in AP firing, it 

remains unknown to what extent either group I mGluR subtype contributes to DHPG-

induced subthreshold currents. One possibility is that the two receptors participate in a 

redundant form of signaling. Alternatively, one subtype may be primarily responsible for 

the DHPG-induced subthreshold current. In CA3, group I mGluRs induce slow EPSCs 

and inhibit afterhyperpolarizations (AHPs) in a mGluR1-dependent manner (Heuss et al., 

1999), whereas in CA1, DHPG-induced depolarization and inhibition of AHPs is 

dependent on mGluR1 and mGluR5, respectively (Mannaioni et al., 2001). Comparing 

DHPG-induced depolarization of pyramidal neurons in both CA1 and CA3 of mGluR1 

KO and WT mice indicate a primary role for mGluR1 in DHPG-induced depolarization 

of both populations (Chuang et al., 2002); however, in CA1 interneurons, DHPG-induced 
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depolarization requires mGluR5, not mGluR1 (Gee and Lacaille, 2004). On the other 

hand, pharmacological functional evidence in both CA3 (Gee et al., 2003) and CA1 (Rae 

and Irving, 2004; Park et al., 2010) suggest a dual-role for both subtypes in group I-

induced changes in excitability. Future studies may address the group I subtype 

involvement in DHPG-induced inward currents in the MEC using the above selective 

mGluR1 and mGluR5 antagonists and/or a knock-down approach in cultured slices. 

Selective agonists could also be employed, however, such agonists are limited in 

availability for group I mGluRs and results with the available mGluR5-specific agonist 

(CHPG) should be interpreted with caution (Kammermeier, 2012). These future studies 

in the MEC would be useful toward addressing any potential convergent or independent 

receptor involvement in DHPG-induced currents. 

DHPG-Induced Currents are Mediated by TRPC-Like NSCCs 

 Whereas activation of group I mGluRs inhibits K+ channels (Charpak et al., 1990; 

Guérineau et al., 1994) and the group I selective agonist DHPG inhibits a variety of K+ 

channels (Mannaioni et al., 2001; Chuang et al., 2002; Sohn et al., 2007; Deng et al., 

2010b); our results do not support the involvement of a DHPG-modulated K+-

conductance based on the following pieces of evidence. First, using a K-gluconate-based 

intracellular solution, we did not observe any significant increase in the input resistance 

following application of DHPG, which would be expected if the closure of a K+ channel 

was exclusively involved in mediating DHPG-induced depolarization. Second, 

replacement of intracellular K+ with Cs+ failed to prevent DHPG-induced currents 

whereas changes to extracellular cation composition did annul DHPG’s effect. Third, a 

clear DHPG INET typical of a non-selective cationic conductance continued to be elicited 
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in the presence of intracellular Cs+. Together, these results suggest that DHPG-induced 

currents were not mediated by the inhibition of a K+ channel. 

 Our study supports a role for a NSCCs in mediating DHPG-induced currents 

based on the following lines of experimental evidence. First, replacement of extracellular 

Na+ significantly reduced DHPG-induced inward currents compared to control 

conditions, indicating a Na+ permeable channel is involved. Second, whereas substitution 

of extracellular Na+ reduced but did not block DHPG-induced currents, substitution of 

extracellular Ca2+ with Mg2+ and reducing extracellular Na+ did prevent DHPG-induced 

currents, consistent with a NSCC. Third, the DHPG INET is reflective of a non-selective 

cationic conductance. Lastly, the NSCC blockers FFA and 2-APB were effective in 

reducing DHPG-induced currents. Although a decrease in the input resistance would be 

expected if the opening of a cation channel were involved, the lack of a significant 

change in either direction is not necessarily inconsistent with a role for cation influx. One 

possible explanation may be due to a non-detectable change in a K+ conductance that 

obfuscates the opening of a cation channel. Because our experiments for measuring RMP 

depolarization and input resistance used a K+-based intracellular solution, we cannot rule 

out this possibility. An experiment designed to monitor DHPG-induced changes in input 

resistance using a Cs+-based intracellular solution may address this apparent discrepancy.  

 In line with a NSCC being involved in DHPG-induced currents, we provide 

further evidence indicating that a TRPC-like channel is involved. This conclusion is 

supported by the following lines of evidence. First, the NSCC blockers FFA and 2-APB 

reduced DHPG-induced currents and both are blockers of TRPC-like channels (Clapham 

et al., 2005; Guinamard et al., 2013). Second, elevations in intracellular Ca2+ lead to 
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activation of TRPC channels (Birnbaumer, 2009). Inclusion of BAPTA in the pipette 

blocked DHPG-induced currents, indicating a requirement for intracellular Ca2+ 

signaling. Third, unlike many NSCCs which are inhibited by La3+, TRPC4 and TRPC5 

are unique in that they are potentiated by La3+ (Schaefer et al., 2000; Strübing et al., 

2001). DHPG-induced currents were potentiated by La3+, suggesting that TRPC4 and/or 

TRPC5 are involved. Fourth, the selective TRPC4/TRPC5 blocker ML-204 (Miller et al., 

2011) prevented DHPG-induced currents. Fifth, intracellular dialysis of antibodies 

targeting TRPC1 or co-administration of TRPC4 and TRPC5 targeting antibodies 

reduced DHPG-induced currents. Sixth, although shRNA knock-down of TRPC4 and 

TRPC5 did not significantly reduce maximal DHPG-induced currents, it did significantly 

alter the time course of DHPG-induced currents. Finally, overexpression of rTRPC5 in 

MEC neurons significantly increased DHPG-induced inward currents compared to non-

transfected cells, indicating that activation of endogenous mGluRs couples to, at least, 

TRPC5-containing channels. 

 Whereas DHPG is known to facilitate NCX activity (Keele et al., 1997), this 

mechanism is not involved in DHPG-induced currents since they were insensitive to KB-

R7943. Agonists for the NSCC TRPV1 can modulate DHPG-induced LTD in the CA1 

(Bennion et al., 2011) and TRPV1 is functionally present in the MEC (Banke, 2016). 

Because DHPG-induced inward currents were insensitive to the TRPV blocker ruthenium 

red, these channels were not involved.  

 The fact that intracellular dialysis of antibodies targeting either TRPC1 or both 

TRPC4 and TPRC5 reduced DHPG-induced currents is consistent with these channels 

forming heteromultimeric ion channels in the MEC (Birnbaumer, 2009). This possibility 
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might explain why targeting either TRPC4 or TRPC5 alone was ineffective in reducing 

DHPG-induced currents. For example, if TRPC4 is targeted, functional TRPC1:TRPC5 

heteromultimers may still be functional and permit DHPG-induced currents. The fact that 

DHPG continued to induce a significant inward current in TRPC1 KO mice suggests that 

either TRPC1 is not involved in DHPG-induced currents or that some compensatory 

change has occurred during development in the KO mice to preserve DHPG-induced 

currents. In support of the latter, TRPC6 is upregulated in response to silencing of 

TRPC1 in the rat aorta (Selli et al., 2009; Erac et al., 2010). Consistent with a role for 

TRPC1, TRPC4, and TRPC5 channels in DHPG-induced currents, all three TRPC 

subunits are present in the MEC (von Bohlen und Halbach et al., 2005; Fowler et al., 

2007). Additionally, in the MEC both cholecystokinin (Wang et al., 2011) and muscarinic 

(Zhang et al., 2011) receptors are linked to TRPC4 and TRPC 5. Although knock-down 

of TRPC4 and TRPC5 in MEC slice cultures failed to reduce DHPG-induced currents, 

these results do not necessarily exclude their involvement. One possibility is that a 

compensatory change has occurred during the transfection period. Future experiments 

utilizing dominant negative-forms of TRPC4 and TRPC5 will be more useful in 

evaluating their involvement. Taken together, these results support a role for TRPC1/4/5 

in DHPG-induced currents. 

 At present, the source of Ca2+ involved in DHPG-induced activation of 

TRPC1/4/5 currents remains unknown. DHPG-induced inward currents were sensitive to 

BAPTA, indicating that Ca2+ must be involved. However, we demonstrate that neither 

extracellular Ca2+ influx nor intracellular Ca2+ release is involved. It may be possible that 

both sources of Ca2+ are involved and are able to compensate for the other when one 
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source is inhibited. Alternatively, a baseline level of intracellular Ca2+ might be required 

for DHPG-induced currents and our BAPTA experiments resulted in a level below such a 

baseline.  

Signaling Mechanism Involved in DHPG-Induced Currents 

 Our results indicate that a G protein-dependent mechanism contributes to DHPG-

induced inward currents, although the involved downstream effectors remain unclear. 

Because group I receptors are generally regarded as Gq-coupled and because TRPC4 and 

TRPC5 channels are receptor-activated most often via Gq/PLC-dependent pathways 

(Schaefer et al., 2000), it is somewhat surprising that we were unable to inhibit DHPG-

induced currents with two different PLC inhibitors. However, the mechanisms of TRPC 

activation is still controversial and other pathways have been described. 

 Because group I activation increases cAMP production (Aramori and Nakanishi, 

1992; Joly et al., 1995; Reid et al., 1996), we tested a hypothesis involving adenylate 

cyclase, which would be downstream of a DHPG-induced Gs-dependent pathway. Our 

finding that pretreatment with the AC inhibitor MDL 12330A reduced DHPG’s effect is 

intriguing. It is worth noting that MDL 12330A has previously been used to inhibit 

DHPG-induced TRPC-like currents in area CA3, however its inhibitory action was 

attributed to a direct interaction with SOCE channels. The effects of MDL 12330A on 

AC are reported as irreversible (Guellaen et al., 1977) but its effects on SOCE channels 

are rapidly reversible (van Rossum et al., 2000). For our experiments, slices were 

pretreated with MDL 12330A for 30 minutes and then bathed in external solution for 

~20-30 minutes prior to DHPG application. Thus, under our conditions, the inhibition of 

DHPG-induced inward currents with MDL 12330A being absent from the recording 
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solution might suggest its inhibitory action is due to inhibition of AC. It is worth 

highlighting that Gee et al. (2003) report that the DHPG-induced current reduced by 

MDL 12330A in area CA3 washed out in only 1 of 6 cells treated, which is not 

convincing evidence of MDL 12330A’s effect being reversible. Consistent with an AC-

dependent mechanism, activation of the Gs cascade in HEK cells activates TRPC5 and 

this effect is mimicked by the AC activator, forskolin (Sung et al., 2011; Hong et al., 

2012). Because intracellular ATP inhibits TRPC5 activity (Dattilo et al., 2008), AC-

dependent depletion of ATP may result in TRPC5 activation. An analogous mechanism 

would be PLC-dependent depletions of PIP2, which gates TRPC5 activity, however the 

precise relationship to PIP2-TPRC5 activity is unclear (Trebak et al., 2009). On the 

contrary, cAMP also negatively modulates TRPC5 activity through PKA-mediated 

phosphorylation of TRPC5 (Sung et al., 2011), which provides a negative feedback 

mechanism for Gs-mediated TRPC5 activation. These studies support a role for AC in 

DHPG-induced TRPC-mediated currents in the MEC, and this pathway will be the 

subject of future research. 

 Group I mGluR activation results in production of IP3 (Masu et al., 1991; Aramori 

and Nakanishi, 1992) and modulation of voltage-gated calcium channels (McCool et al., 

1998) in a pertussis toxin-sensitive manner—indicating a role for Gi signaling in group I 

mGluR activation. Because Gi is an activator of TRPC4 (Jeon et al., 2012; Thakur et al., 

2016) and TRPC5 (Jeon et al., 2012) and because mGluR1 couples to TRPC4 by this 

mechanism (Kang et al., 2014), a role for Gi in DHPG-induced currents in the MEC 

should be considered. To test this possibility, experiments using pertussis toxin, 
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intracellular antibodies directed at Gi, and dominant-negative over-expression of Gi in 

MEC cultures will be useful.  

 With G proteins blocked, DHPG continued to induce a significant inward current, 

suggesting the involvement of a G protein-independent mechanism. Such mechanisms 

downstream of group I mGluR activation are well established with regard to modulation 

of excitability and synaptic transmission and may involve -arrestins, Src, and MAPK 

members (Heuss et al., 1999; Kubota et al., 2014; Eng et al., 2016). Although Src-

dependent tyrosine phosphorylation is implicated in function of different TRPC members 

(Hisatsune et al., 2004; Vazquez et al., 2004; Odell et al., 2005; Kawasaki et al., 2006; 

Gervásio et al., 2008), such a mechanism may not be involved in the MEC. Because two 

different Src inhibitors failed to block DHPG-induced inward currents, we conclude that 

Src is not involved. However, additional experiments are required to examine other 

modes of mGluR G protein-independent signaling.  

 The precise mechanism of TRPC activation continues to be unclear and this study 

in the MEC does not clarify the mechanism involved in TRPC4 and TRPC5 activation. 

Clearly, a multitude of possibilities exist for signaling between group I mGluRs and 

activation of TRPC channels. Future work using molecular biological approaches in EC 

slice cultures will be useful in systematically addressing MEC group I coupling to these 

channels. 

Group I mGluRs and Neuropsychiatric Disorders 

 Dysfunctional glutamatergic signaling is implicated in several neuropsychiatric 

disorders including schizophrenia (Conn et al., 2009), depression (Sanacora et al., 2012), 

and anxiety (Bergink et al., 2004). 
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 Schizophrenia is a neuropsychiatric disorder characterized by both positive 

(hallucinations and delusions) and negative (social withdrawal and poor working 

memory) symptoms. The etiology of schizophrenia is unclear but a strong genetic 

component is implicated. One hypothesis of schizophrenia states that low levels 

glutamatergic transmission are an underlying cause. This hypothesis is based on 

observations that administration of ketamine or phencyclidene (PCP), both of which 

antagonize NMDA receptors, produce psychotic-like episodes in humans that resemble 

the positive symptoms of schizophrenia (Nestler et al., 2009c). Consistent with this 

hypothesis, targeting group I mGluRs has emerged as a promising target for treatment of 

schizophrenia. Impaired sensorimotor gating describes a process by which an individual 

is unable to effectively filter irrelevant external or internal information and is a symptom 

of schizophrenia. This process is measured in rodents using prepulse inhibition of startle 

responses (PPI). In mGluR5 KO mice, the ability to suppress startle responses is 

significantly reduced, suggesting mGluR5 is necessary for effective sensorimotor gating 

(Brody et al., 2004). In another way, positive allosteric modulators of mGluR5 reverse 

amphetamine-induced PPI deficits, which is a model that also responds to antipsychotic 

treatments (Kinney et al., 2005). The impaired working memory seen in schizophrenia 

may be due to impaired glutamatergic transmission in the MEC. Although the prefrontal 

cortex is most often implicated in working memory tasks, the MEC is important for 

working memory of novel information (McGaughy et al., 2005; Hasselmo and Stern, 

2006). The results of this study, in conjunction with previous reports, support a role for 

targeting mGluRs to enhance MEC activity. This preclinical evidence supports a 
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therapeutic potential for group I mGluRs as a candidate for the treatment of 

schizophrenia. 

 Whereas hypoglutamatergic conditions are implicated in schizophrenia, 

hyperglutamatergic conditions may underlie anxiety. In support of this view, antagonists 

for group I receptors produce anxiolytic actions (Brodkin et al., 2002; Mikulecká and 

Mareš, 2009). Our study indicates that TRPC4 and TRPC5 are effector channels 

mediating increases in MEC excitability following group I activation. Because KO mice 

for TRPC4 (Riccio et al., 2014) or TRPC5 (Riccio et al., 2009) display decreased 

anxiety-like behaviors, it is possible that enhanced MEC group I mGluR activity may 

contribute to anxiety. This study may provide some cellular and molecular insights into 

the mechanisms of action involved for these disorders. 

Limitations of the Work Presented in this Dissertation 

 This dissertation provide insights into some of the mechanisms of action for three 

different modulatory systems within the MEC. Presented below are some of the 

limitations associated with these projects and proposed improvements for future studies.  

 Direct recordings from MEC interneurons are made in Study 1 and Study 2 with 

an assumption that they are GABAergic. This assumption is based on both visual 

morphology of the soma at the time of patching and subsequent electrophysiological 

validation that is consistent with previous reports (Kumar and Buckmaster, 2006; Ascoli 

et al., 2008; Deng and Lei, 2008; Canto and Witter, 2012b). However, this classification 

scheme, while effective in producing a population to test, may be rather simplistic given 

the rich diversity of interneurons within the cortex (Ascoli et al., 2008) and, specifically, 

the MEC (Ferrante et al., 2017). With our classifying system, Type I and Type II 
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interneurons likely correspond to PV-positive and SOM-positive interneurons (Yekhlef et 

al., 2015). However, SOM-positive interneurons are about half as prevalent as 5HT3Ra 

interneurons, meaning we might be missing out on understanding the modulatory 

consequences of a sizable pool of MEC interneurons. Alternatively, 5HT3Ra-positive 

interneurons might possess a mild sag response (Ferrante et al., 2017), in which case our 

type II classification might include both SOM and 5HT3Ra interneurons. Thus, these 

studies would benefit from clarification of from which interneuron sub-populations are 

being recorded. One approach to address this issue is the technically-demanding 

procedure of post-hoc immunohistochemical validation to confirm that recorded neurons 

are in fact GABAergic and co-stain for a maker of interest (e.g. PV). A better high-

throughput approach to address these questions would be to make use of transgenic mice 

carrying a fluorescent marker controlled by a unique promoter for an interneuron of 

interest. Study 2 found a significant difference between the two interneuron classes 

analyzed with respect to HA-induced changes in excitability. This difference might 

suggest weighted modulatory control of HA over MEC interneurons that favors one 

population over another. Such interneuron-specific modulation may not be trivial as 

discrete interneuron populations might preferentially influence different projecting 

neuron populations, as might be the case for 5HTR3a+CCK-positive interneurons that 

appear to preferentially target island cells of the MEC (Varga et al., 2010). 

 Study 1 and 2 focus specifically on postsynaptic changes in GABAergic activity 

of layer II. Whereas this cell layer contains at least two distinct cell types (Alonso and 

Klink, 1993; Canto et al., 2008; Fuchs et al., 2016) that differentially project to specific 

hippocampal subfields (Kitamura et al., 2014, 2015), changes in the magnitude of 
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modulator-induced enhancement of GABAergic transmission between cell populations, if 

any exist, would likely be functionally relevant to hippocampal dependent processes. For 

instance, although not significant, it appears that some cells display very robust increases 

in GABAA-mediated amplitudes following HA application, suggesting a post-synaptic 

action of HA (N.C. unpublished observation). Posthoc analysis for stellate vs pyramidal 

classes with regard to modulation of sIPSC might provide novel findings of cell-specific 

changes in GABAergic transmission. Posthoc analysis would be necessary because the 

reliable electrophysiological marker of a sag response that distinguishes between stellate 

and pyramidal neurons is not available when using a Cs-gluconate-based intracellular 

solution for IPSC recordings. 

 Each of these studies is limited by the fact that the work is all conducted in situ 

and involves exogenous introduction of compounds, which may raise questions about the 

physiological significance of the observations reported. We do demonstrate an 

endogenous action of DA in Study 1 but this is with the use of another compound at a 

high concentration to stimulate DA release. In Study 2, we do not provide any evidence 

of endogenous actions. In Study 3, we use a selective agonist to trigger the receptor 

activation whereas as attempts to endogenously activate these receptors with electrical 

stimulation were not successful (N.C. unpublished observation).  

 The potential anxiogenic contribution of group I receptor activation in the MEC 

hypothesized above is based on the involvement of TRPC4 and TRPC5 channels 

contributing to increased DHPG-induced excitability, as these channels contribute to 

anxious behavior (Riccio et al., 2009, 2014). Intercranial injections of DHPG directly to 

the MEC and behavioral assays for anxiety could test this proposed mechanism. 
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Behavioral assays involving temporal (e.g. trace fear-conditioning) or contextual (e.g. 

conditional place preference) association processes might be effective in testing this 

hypothesis. The elevated-plus maze is commonly used to screen anxiolytic compounds; 

however, this test may not be useful for MEC-dependent activity related to anxiety 

because injections of anxiolytic group II agonists failed to produce change in behavior 

(N.C. and S.L. unpublished observations). However, the plus maze does not involve 

associational processes which are hippocampal dependent. Thus, a role for mGluRs in the 

MEC contributing to anxiety awaits more investigation.  
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List of Abbreviations 

2-APB; 2-Aminoethoxydiphenyl borate 

5-HT; Serotonin 

5HTR3a; Serotonin receptor 3a  

A; Amyloid beta 

AC: Adenylate cyclase 

ACh; Acetylcholine 

AChE; Acetylcholinesterase 

AD; Alzheimer’s disease 

AMPA; -amino-3-hydroxy-5-methyl-4isoxazolpropionic acid  

AP; Action potential 

ATP; Adenosine triphosphate 

BAPTA; 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid 

BLA; Basolateral Amygdala 

BSA; Bovine serum albumin  

CA; Cornu ammonis 

cAMP; Cyclic Adenosine monophosphate  

CCK; Cholecystokinin 

CR; Conditioned response 

CRF; Cortico-releasing factor 

CS; Conditioned stimulus 

DA; Dopamine 

DAG; Diacylglycerol  

DG; Dentate gyrus 

DHPG; (S)-3,5-Dihydroxyphenylglycine 

DIV; Day-in-vitro 

dl-APV; DL-2-Amino-5-phosphonopentanoic acid
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DNQX; 6,7-Dinitroquinoxaline-2,3-dione 

EC; Entorhinal Cortex 

eEPSCs; Evoked excitatory postsynaptic currents 

EGTA; ethylene glycol-bis-(2-aminoethylether)-N,N,N’,N’-tetraacetic acid;  

eIPSCs; Evoked inhibitory postsynaptic currents 

FFA; Flufenamic Acid 

FS; Fast-spiking 

GABA; -aminobutric acid 

GAD; Glutamic acid decarboxylase  

GDP; Guanosine diphosphate  

GFP; Green fluorescent protein 

GTP; Guanosine triphosphate 

HA; Histamine 

HC; Holding current 

HEK-293; Human embryonic kidney-293 cell line 

HEPES; 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid 

iGluR; Ionotropic glutamate receptor 

Ih; Hyperpolarization-activated cation current 

INet; A drug-induced current (e.g. DA-, HA-, DHPG- induced) 

IP3; Inositol trisphosphate  

IPSCs; Inhibitory postsynaptic currents 

I-V; Current-voltage relationship 

KO; Knock-out  

LEC; Lateral entorhinal cortex 

LTP; Long-term potentiation 

MCI; Mild cognitive impairment 

MDD; Major depressive disorder 

MEC; Medial entorhinal cortex 

mGluR; Metabotropic glutamate receptor 

mIPSCs; miniature inhibitory postsynaptic currents 

MPO; Membrane potential oscillations   
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MTL; Medial temporal lobe 

NE; Norepinephrine 

NCX; Na+-Ca2+ Exchanger 

NFT; Neurofibrillary tangle  

NGF; Neurogliaform 

NMDA; N-methyl-D-aspartate 

NMDG; N-Methyl-D-glucamine 

NPY; neuropeptide Y 

NSCC; Non-selective cation channel 

NT; Neurotensin  

pA; Picoamp 

PBS; Phosphate buffered saline 

PCP4; Purkinje cell protein 4 

PER; Perirhinal cortex 

PFA; Paraformaldehyde 

PIP2; phosphoinositide bisphosphate 

PKA; Protein kinase A 

PKC; Protein kinase C 

PLC(); Phospholipase C 

POR; Postrhinal cortex 

PPR; Paired-pulse ratio 

PV; Parvalbumin 

RCan2; regulator of calcineurin 2 

RFP; Red fluorescent protein 

RMP; Resting membrane potential 

Rn; Input resistance 

RuRed; Ruthenium red 

sIPSCs; Spontaneous inhibitory postsynaptic currents 

SOCE; Store-operated Ca2+ entry 

SOM; Somatostatin 

TLE; Temporal lobe epilepsy  
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TRPC; Transient receptor potential canonical cation channel 

TRPV; Transient receptor potential vanilloid cation channel 

TTX; Tetrodotoxin  

US; Unconditioned stimulus 

VIP; Vasoactive intestinal peptide 

Vm: Membrane potential 

WT; Wild-type  
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