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ABSTRACT 

The studies in this dissertation investigate neurodegenerative conditions 

of the central and peripheral nervous system utilizing bioinformatics and systems 

biology approaches. Various neurodegenerative conditions are associated with 

neuroinflammation or the inflammation of nervous tissue. We utilized Parkinson’s 

disease as our system for neuroinflammation in the central nervous system and 

diabetic peripheral neuropathy for the peripheral nervous system. Parkinson’s 

disease is associated with loss of dopaminergic neurons in the substantia nigra 

and consequent loss of dopamine signaling in the striatum of the central nervous 

system. Characteristics of Parkinson’s Disease include symptoms such as 

shaking, rigidity, slowness of movement, difficulty walking, dementia, depression, 

anxiety, sleeping disorders, and hallmark formation of misfolded α-synuclein 

aggregates called Lewy bodies. Diabetic peripheral neuropathy is a 

microvascular complication associated with diabetes mellitus. Degeneration of 

the peripheral nervous system in diabetes presents as neuropathic pain in the 

periphery with eventual loss of sensation in a stocking and glove like pattern. The 

loss of sensation is an underlying cause of diabetic foot syndrome which is the 

leading cause of lower limb amputations.  

This dissertation consists of three studies. The first study compared 

multiple murine models of diabetic peripheral neuropathy at different stages of
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 the disease against human subjects in effort to identify an underlying cause of 

disease using publicly available microarray transcriptomic data. Pathway and 

network analysis were performed in conjunction on differentially expressed genes 

identified by comparing healthy controls to diabetic mice and progressive to non-

progressive human subjects with diabetic peripheral neuropathy. Clusters of 

pathways in this network were related to inflammation, degradation, apoptosis, 

as well as kinase and immune signaling, as conserved changes across multiple 

time points, models, and species of DPN. These observed pathways, commonly 

disrupted across progression, species, and various murine models of the 

disease, are likely the key responses associated with diabetic peripheral 

neuropathy.  

The second study further investigated a single high dose streptozotocin 

model of type 1 diabetes mellitus by comparing tissues related to diabetic 

peripheral neuropathy (sciatic nerve and dorsal root ganglia) and diabetic 

nephropathy (renal glomerulus and cortex). RNA-sequencing identified 

differentially expressed genes in each complication-prone tissue between healthy 

controls and streptozotocin-treated mice. Genes with a conserved directional 

change were analyzed using network and pathway analysis. Clusters related to 

DNA-damage response, oxidative stress, and immune response were 

represented in shared genes between diabetic nephropathy and diabetic 

peripheral neuropathy tissue experiencing a common directional change. These 

cluster themes are likely key conserved disruptions in microvascular 

complication-prone tissue. 
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The third study explored neuroinflammation of the central nervous system 

utilizing mice overexpressing α-synuclein under the mouse thymidine1 promoter 

as an animal model of Parkinson’s disease. This murine model exhibits 

parkinsonian motor and non-motor symptoms as well as α-synuclein aggregation 

pathology. Early activation of microglia, the resident innate immune cells of the 

brain, and an inflammatory response can be measured in the brains of these 

animals as early as one month of age. RNA and DNA were extracted from 

microglia isolated from these animals at 3 and 13 months of age for RNA-

sequencing and reduced representation bisulfite sequencing, respectively. The 

time points for tissue collection involve the beginning of motor symptoms at 3 

months and 13 months is immediately prior to a loss of 40% of dopamine 

signaling which occurs at 14 months of age. The overexpression of α-synuclein-

induced both genomic methylation and gene expression changes that are 

indicative of an immunologically activated M1 state of microglia. Correlation 

between gene expression and a change in methylation status were investigated 

but only intronic CG rich sites held a significant correlation with observed gene 

expression (r=-0.15, p=0.008). Profiling the changes induced by α-synuclein 

provides valuable insight into the systems contributing to disease progression.  

Overall, these results warrant further investigation into the role 

inflammation plays on the progression of neurodegenerative diseases. Our wide 

range of models and techniques lends strength to the notion of common immune 

activation pathways induced by a variety of disease insults in both the central 

and peripheral nervous systems. 
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CHAPTER I 

INTRODUCTION 

Preface 

The topic of this dissertation is focused on bioinformatics analysis of 

neurodegenerative conditions in the peripheral and central nervous system and 

the possible contributions from interactions with the immune system. 

Inflammation of the nervous tissue or neuroinflammation, has been associated 

with many neurodegenerative conditions. However, the question of whether the 

immune response contributes to the cause of the disease or is an effect of the 

disease condition has not been determined. Elucidating the role 

neuroinflammation has on neurodegeneration as a cause or accelerator of 

disease progression would provide essential insight for understanding the 

pathophysiology of these debilitating conditions. 

 For this dissertation, three studies were conducted examining the 

transcriptome of both peripheral and central nervous tissue in neurodegenerative 

conditions. The first study compares the transcriptome of nerve biopsies from 

patients with diabetic peripheral neuropathy (DPN) to sciatic nerve tissue from 

various animal models of diabetes at different stages of DPN. This study 

attempts to uncover a possible shared mechanism of injury in DPN across 

progression of disease, types of diabetes, and species in order to identify new 
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therapeutic targets to treat DPN. The second study addresses the question of 

gene expression changes as a result of vascular complications by examining 

common differentially expressed genes in both DPN and diabetic nephropathy in 

an STZ model of Type 1 Diabetes Mellitus (T1DM). The third study provides the 

jump from peripheral nervous system (PNS) into the central nervous system 

(CNS) by examining methylation and gene expression changes in a prominent 

type of immune cell of the brain, microglia, from an animal model of Parkinson’s 

Disease.  

Neuroinflammation 

 The concept of neuroinflammation is by definition inflammation of nervous 

tissue often referring to the central nervous system (CNS). The CNS is 

considered immunologically privileged since peripheral immune cells are blocked 

by the blood-brain barrier (BBB). The BBB is composed of astrocytes, pericytes, 

and endothelial cells. The CNS has resident immune cells that play roles in 

homeostasis and tissue repair as well as protect from infection. These cells 

include microglia, astrocytes, and oligodendricites. Pio del Rio Hortaga was the 

first to distinguish between microglia, oligodendrocytes, and astrocytes in the 

central nervous system1–3. The inflammatory response is often initiated by 

microglia which become activated by sensing pathogen or damage-associated 

molecular patterns (PAMPs and DAMPs). Microglia then excrete cytokines and 

chemokines which activate astrocytes and recruit other microglia. Not only can 

this form a pro-inflammatory feedback loop between glia, but cytokines such as 

TNF-α, IL-1β, IL-1α, C1q, and IL-6 may directly induce apoptosis in resident 
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neurons and oligodendrocytes4–8. In most cases this inflammatory state is 

resolved naturally once the infection has been removed or tissue damage 

repaired. Sustained inflammation suggests either a persistent stimulus or a 

failure in resolution and may result in production of neurotoxic factors amplifying 

disease conditions. This sustained inflammation has been implicated in multiple 

neurodegenerative diseases, including but not limited to, Alzheimer’s Disease 

(AD), Parkinson’s Disease (PD), multiple sclerosis (MS), and amyotrophic lateral 

sclerosis (ALS)9–12.  

Cellular Response to Inflammation in the CNS 

Rudolf Virchow first proposed the idea of neuroglia in 1856; however, 

Robert Remak is widely thought to be the first to include images of glia structures 

in his figures as far back as 183813. Microglia are a type of glia cell that form the 

front line of defense as resident macrophages of the innate immune system in 

the brain and spinal cord. Microglia hold an essential role in the maintenance and 

homeostasis of tissue as well as their role in response to infection and injury. In a 

resting state, microglia exhibit a deactivated phenotype and produce anti-

inflammatory cytokines and neurotrophic factors14. Microglia switch to an 

activated state in response to cellular injury or recognition of foreign material and 

in such cases, produce pro-inflammatory cytokines to induce an inflammatory 

response. Activated microglia recruit astrocyte’s participation in the inflammatory 

response by secreting IL-1α, TNFα, and C1q, which together induce reactive 

astrocytes15. 
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Astrocytes often present a star-shape with many processes extending 

from the cell body and are commonly identified by their expression of glial 

fibrillary acidic protein (GFAP)16. These cells are involved in a wide variety of 

brain functions such as BBB maintenance, axon guidance during development, 

provisioning of nutrients, and the repair process in response to injury or 

inflammation17. The role of astrocytes in CNS regeneration are not well 

understood, but upon injury, they will fill the space to form a glial scar, which is 

required for regeneration to occur18. However, reactive astrocytes during 

inflammation lose their neuroprotective status and instead induce death in both 

oligodendrocytes and neurons15. 

Oligodendrocytes surround the axons of neurons with their processes 

similar to a Schwann cell in the PNS. Their main function is to insulate and 

support axons by creating the myelin sheath which increases impulse speed and 

decreases ion leakage19. Oligodendrocytes also contribute to the local cell 

environment by producing glial cell line-derived neurotrophic factor (GDNF), 

brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1). 

However, these cells still play an active role during inflammation by secreting 

cytokines as well as communicating with other glial cells20,21. These cells are 

vulnerable to an inflammatory environment, which can lead to apoptosis of 

oligodendrocytes affecting myelination of neurons as well as the cellular 

microenvironment21.  

Neurons are electrically excitable cells that receive, process, and transmit 

information using electrical and chemical signals transmitted through specialized 
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connections called synapses. The communication between neurons is how all 

information in the CNS is processed, including motor, sensory, and cognitive 

information. This communication can be either electrical neurotransmission, 

between two neurons at the electrical synapse, or chemical neurotransmission, 

where neurotransmitters cross the synaptic cleft between neurons and act as a 

chemical messenger22. An inflammatory environment can disrupt plasticity and 

excitability in neurons and interfere with endoplasmic reticulum stress pathways. 

Cell recruitment through inflammation has been shown to increase the 

progression of neurodegenerative diseases. In PD multiple inflammatory 

mediators such as reactive oxygen species, nitrous oxide, tumor necrosis factor-

α, and interleukin-1β, have all been shown to modulate the progression of 

dopaminergic cell loss23,24. Further evidence supporting the role an inflammatory 

response can have in PD is the lipopolysaccharide (LPS)-induced model of PD, 

which displays dopaminergic neurodegeneration25.  

Parkinson’s Disease 

Parkinson’s Disease (PD) is the second most common neurodegenerative 

disease appearing in nearly 1% of the population over 50 years old26. James 

Parkinson first described what would become known as Parkinson’s Disease in 

his Essay on the Shaking Palsy back in 181727. PD is a neurodegenerative 

condition demonstrating intraneuronal protein aggregates referred to as Lewy 

bodies and early death of dopaminergic neurons in the substantia nigra which 

leads to a dopamine deficiency in the basal ganglia28. This deficiency leads to a 

movement disordered characteristic of PD with tremors, bradykinesia, rigidity, 
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and postural instability29. The onset of these symptoms is typically not apparent 

until approximately 80% of dopamine has been depleted and 60% of 

dopaminergic neurons in the substantia nigra are already lost30–32. Non-motor 

symptoms are also recognized with PD such as executive dysfunction, increased 

risk of dementia, difficulty with impulse control, hallucinations, depression, and 

anxiety33. PD is diagnosed based on medical history, signs and symptoms, and a 

neurological examination while successful improvements under medication often 

confirm the diagnosis34. 

 Lewy bodies (LBs) are not only associated with PD but can also be seen 

in patients with dementia with LBs, multiple systems atrophy, and some other 

disorders35. These protein aggregates are composed of α-synuclein, ubiquitin, 

neurofilament, alpha B crystalline, and sometimes Tau36. LBs are mainly thought 

to be in dopaminergic neurons in the substantia nigra of PD patients. However, at 

late stages of disease they can also be found in noradrenergic, serotonergic, and 

cholinergic systems as well as the cerebral cortex, olfactory bulb, and autonomic 

nervous system37. The role LBs have in PD is not fully understood. They have 

served as prediction sites for neuronal loss and proposed as a major correlative 

factor in cognitive impairment38. However, recent studies have also suggested 

that the fibrillary aggregates may be protective against the toxic oligomer and 

protofibril forms of α-synuclein39–41. 

Treatments and Proposed Causes 

Treatments for PD aim to replace the loss of dopamine. Carbidopa-

levodopa is the most commonly prescribed treatment. Levodopa provides the 
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dopamine precursor so that more dopamine may be produced while carbidopa 

inhibits the peripheral metabolism of levodopa so that it may be delivered to the 

brain42. This is often given with an inhibitor to monoamine oxidase B (MAOB) and 

catechol O-methyltransferase (COMT) to slow the metabolism of active 

dopamine. Dopamine agonists have also been used to treat the symptoms of PD 

and while they often aren’t as effective as levodopa they may last longer and 

help to reduce the on-off effect of levodopa33. Deep brain stimulation has been 

an effective surgical treatment providing advanced stage patients with sustained 

benefit43. Non-motor symptoms are also targeted by pharmacological agents 

used for their associated symptoms, such as erectile dysfunction being treated 

with sildenafil citrate or isosmotic macrogol treating constipation44. Current 

treatments involve targeting symptoms of PD rather than slowing or stopping the 

progression of the disease since the cause and contributing factors are not well 

defined. 

The current hypotheses concerning causative factors in PD revolve 

around environmental toxins, genetic factors, and oxidative stress. The 

environmental hypothesis proposes that exposure to dopaminergic neurotoxins 

lead to PD related neurodegeneration. This began when it was found that people 

using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) develop a condition 

very similar to PD45. Other insecticides and herbicides such as rotenone or 

paraquat can also act as a dopaminergic neurotoxin46,47. This review outlines 

studies that have shown living in a rural environment with greater exposure to 

these chemicals increases the risk for developing PD48. Environmental factors 
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that play a protective role from PD have also been identified such as smoking 

cigarettes, drinking coffee, non-steroidal anti-inflammatory drug use, and use of 

calcium channel blockers49,50. While exposure to various environmental factors 

modify susceptibility to PD, genetic mutations or familial forms of the disease 

have also been observed51–57.  

The first gene associated with autosomal dominant PD was alpha-

synuclein (SNCA) in 199751, which encodes the α-synuclein protein found 

aggregated within LBs. The most common risk factor mutations involve leucine-

rich repeat kinase (LRRK) and parkin (PRKN) genes, while the greatest genetic 

risk for developing PD are mutations to the GBA gene, encoding β-

glucocerebrosidase52,53. Overall, multiple genetic association studies have been 

conducted in PD and over 24 loci have been identified as increasing the risk 

factor of developing PD41,58–60. Genetic mutations in SNCA have also been 

shown to modify environmental risk factors affecting the risk for PD development 

associated with head injury54. Interestingly, multiple PD associated genes are 

involved in the ubiquitin-proteasome pathway55. While inherited or familial forms 

of PD are not as common as the idiopathic form, the discovery of PD-associated 

genes has been critical to PD research through the development of animal 

models of the disease widely used in research today52,53. Overall, studies in both 

toxin and inherited forms of PD suggest mechanisms that contribute to the loss of 

dopaminergic neurons such as misfolding and aggregation of proteins, 

mitochondrial dysfunction and associated oxidative stress, including oxidized 

dopamine species36,56,57. 
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Animal Models of Parkinson’s Disease 

 Many studies examining PD have used chemically induced models of the 

disease including MPTP61, rotenone62, paraquat46,47, amphetamine model63, and 

6-OHDA64. These neurotoxin models of PD are best used to test degeneration of 

nigrostriatal dopaminergic neurons, but they often possess their own drawbacks 

as well. Degeneration in these models usually progresses very quickly over a 

couple days, while PD progression takes place over years in humans65. The 

MPTP and 6-OHDA models do not present the characteristic LB formations in 

neurons66–68. Both the rotenone and paraquat models have had high mortality 

rates and variable cell death or loss of striatal dopamine69,70. Models using 

methamphetamine (METH) or 3,4-methylenedioxymethamphetmaine (MDMA) 

also demonstrate serotonergic toxicity and are often used in conjunction with 

other toxins to influence the progression of symptoms71–75. The challenge of 

inducing a PD phenotype into a mouse model has led to a variety of models that 

demonstrate the death of dopaminergic neurons along with unique sets of 

symptoms and abnormalities for each model. 

 Genetic models of PD are also often used to study familial forms of the 

disease with the idea that similar phenotypic changes indicate common 

mechanisms in the more common, sporadic form of PD. The most commonly 

studied PD genes: α-synuclein, LRRK2, PINK1, PRKN, and Protein Deglycase 

(DJ-1) can all be linked to the ubiquitin-proteasome pathway30. The most 

fundamental drawback to many of these disease models is that they do not 

demonstrate a significant loss of dopaminergic neurons76–79. The knockout (KO) 
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mice for PINK1, PRKN, and DJ-1 all have similar phenotypes with decreased 

locomotor activity and slightly decreased dopamine levels but without loss of 

dopaminergic neurons80–85. LRRK2-mutated mice typically experience mild 

disruption of nigrostriatal dopaminergic neurons without neuropathological 

symptoms, but they do display α-synuclein or ubiquitin accumulation77,86–88. 

There are many different α-synuclein transgenic models. While some have 

behavioral impairments and lowered dopamine levels, there is usually not a 

significant amount of neurodegeneration89–92. Overexpression models of α-

synuclein can display neurodegeneration and behavioral alterations depending 

on the promoter used93,94. 

 The mouse thymidine 1 promoter (m-Thy1) is used to drive 

overexpression of full-length human wild-type α-synuclein in the C57B16/DBA2 

background mouse as a PD model95. This model shows progressive changes in 

both motor and non-motor symptoms, striatal dopamine levels, α-synuclein 

pathology, and inflammation typically observed in PD96. These mice overexpress 

the α-synuclein protein at 1.5-3.4 fold higher than wild-type littermates in most 

regions of the brain, which is similar to levels observed in patients with gene 

triplication of α-synuclein associated with a familial form of PD96. These mice 

rapidly lose 40% of striatal dopamine between 12 and 14 months of age, but 

there is no reduction in the amount dopaminergic neurons97. At 14 months, this 

model also fails many motor tests such as decreased locomotion and slowness 

in sensory motor tests without motor neuron pathology. These deficits can both 

be reversed with levodopa treatment, suggesting they are more reflective of 
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human PD95,97–99. This model also shows early innate inflammation in the brain 

and late peripheral inflammation similar to PD patients100–102. Microglia can be 

found activated in the striatum as early as 1 month and in the substantia nigra at 

5-6 months along with increased tumor necrosis factor-α100,103. One PD hallmark 

this model does not demonstrate is the loss of dopaminergic neurons; however, a 

progressive process of terminal loss has been observed, which suggests this 

system as a model of early stages of PD prior to neuronal cell death104. 

Peripheral Inflammation 

 Inflammation is the body’s response to pathogens, damaged cells, and 

irritants. This process utilizes immune cells and molecular mediators to eliminate 

the cause of cell injury or clear out damaged cells/tissue and initiate tissue repair. 

When microorganisms invade the body they are usually destroyed by lysozymes 

or phagocytosis with intracellular digestion as the typical mechanisms of the 

innate immune system105. The first component of the innate immune system 

encountered by a pathogen after breaching the body is generally neutrophils and 

residential cells trying to neutralize intruders by either ingestion by phagocytosis, 

degranulation with anti-microbials, or by trapping with neutrophil extracellular 

traps (NETs)106. This is closely followed by a response of the complement 

system107 as a collection of proteins in bodily fluid, which coat the pathogen in 

complement proteins to assist phagocytic cells108,109. The cells involved in the 

innate immune system consist of macrophages, dendritic cells, mast cells, innate 

lymphoid cells, neutrophils, natural killer cells, basophils, and eosinophils107. 

Natural killer cells and eosinophils are responsible for destroying host cells 
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infected by a virus or parasite110. Macrophages, dendritic cells, mast cells, and 

neutrophils are all characterized as phagocytes which protect the body by 

ingesting foreign particles, bacteria, and dead cells. Phagocytes have specialized 

receptors on their surface called pattern recognition receptors (PRRs) to detect 

harmful objects not normally found in the body making them critical for fighting 

infection and maintaining healthy tissue111.  

PRRs are germline-encoded host sensors that identify PAMPs, such as 

microbial pathogens, or DAMPs which are endogenous stress signals112. These 

receptors can be grouped into toll-like receptors (TLRs), c-type lectin receptors 

(CLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs)113. The 

resultant signaling from these various families of receptors interact in a complex 

system to promote the appropriate immune response to neutralize the current 

inflammatory stimulus. Often, multiple families of PRRs are activated at the same 

time with signaling pathways that can be both inhibitory and facilitatory to each 

other resulting in a dynamic system of regulation to engage immune activation at 

a cellular level114.  

 If the innate immune system is unable to clear the inflammatory stimulus 

after four to seven days then the adaptive immune response may be activated115. 

The adaptive immune response is a learned response to a specific pathogen that 

offers long term protection. The cells that carry out the adaptive immune 

response are B cells and T cells. Plasma cells (fully differentiated B cells) secrete 

antibodies, while T cells control intracellular infections by playing various roles in 

the inflammatory response. T cells can secret mediators to activate other cells 
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and enhance defense mechanisms such as when T helper cells activate B cells 

in the presence of antigens116. T cells can also become a cytotoxic type of T cell 

which kill the target organism117.  

Communication and recruitment of both adaptive and innate immune cells 

is conducted using small soluble molecules called cytokines including 

chemokines, interleukins, growth factors, and interferons. These proteins 

regulate the amplitude and duration of the immune response and require tight 

regulation, since they can be highly active at low concentrations. The specific 

action of each cytokine is dependent on the stimulus, cell type and other 

mediators and receptors. For example, cytokines can serve as a means of 

communication between the peripheral nervous system and immune system by 

increasing membrane excitability in nociceptor neurons118–120. In chronic 

inflammatory cases, it is not uncommon for tissue and cellular death to occur as 

a result of cytotoxic defense mechanisms of the immune system121–123. Anti-

inflammatory cytokines play a crucial role in limiting these potentially dangerous 

inflammatory effects124. Successful resolution of the inflammatory process relies 

on shifting the balance of pro and anti-inflammatory cytokines toward anti-

inflammatory expression.  

Diabetic Peripheral Neuropathy 

Diabetes mellitus or, diabetes, is a metabolic disorder, in which blood 

sugar control is lost due to either a lack of insulin or the body becoming insulin 

insensitive. There are three types of diabetes with type 1 diabetes mellitus 

(T1DM) being associated with an insulin deficit due to a loss of pancreatic beta 
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cells125. Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance 

usually associated with obesity. Type 3 is termed gestational diabetes, occurring 

in women during pregnancy. This family of conditions is associate with acute 

complications such as ketoacidosis, hyperosmolar hyperglycemic state, and 

death as well as long-term complications including nephropathy, retinopathy, 

cardiovascular disease, and neuropathy126. Diabetic peripheral neuropathy 

(DPN) is the most common complication of diabetes, presenting with numbness, 

tingling, and pain in the extremities127. This, in conjunction with damaged blood 

vessels, can lead to skin damage, which is associated with diabetic foot ulcers as 

well as muscle atrophy and weakness128.  

 Current treatments for DPN are limited to tight blood glucose control and 

pain management. Most common medications prescribed include 

anticonvulsants, antidepressants, and opioids to help manage pain. Glucose 

control is significantly more effective as a treatment for patients with DPN in 

T1DM than T2DM129,130. This leaves the majority of patients with DPN resigned to 

pain medication.  

The major mechanisms thought to influence DPN involve hyperglycemia, 

dyslipidemia, and disrupted insulin signaling. Hyperglycemia leads to increased 

oxidative stress through increase flux pathway activity and overwhelming the 

electron transport chain to generate reactive oxygen species (ROS)131–133. 

Chronically high blood sugar can also increase production of advanced glycation 

end products (AGEs) that bind extracellularly to the receptor for AGE (RAGE), 

which initiates an NF-kB inflammatory pathway and generates ROS134–136. 
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Dyslipidemia, which is thought to be critical in T2DM, has been linked to DPN 

progression through high levels of free fatty acids (FFAs), oxysterols, low-density 

lipoproteins (LDLs)137. FFAs have been shown to directly injure Schwann cells 

and promote proinflammatory cytokine release from surrounding immune cells. 

LDLs modified by either oxidization or glycation can bind to toll-like receptor 

(TLR) and RAGE136,138,139. The insulin resistance (T2DM) or deficiency (T1DM) 

that disrupts normal insulin signaling increases mitochondrial stress within 

neurons140. There is some evidence that insulin can may have a neurotrophic 

effect which is lost in diabetes. Removing the native neurotrophic effect that 

insulin has on neurons may also contribute to DPN progression141. All of these 

mechanisms result in various cell stress processes creating a damaging 

environment for all resident cells. This can trigger the recruitment of 

macrophages engaging a feedback loop of inflammatory cell stress and death 

with a persistent stimulus related to the diabetes phenotype142,143. The insight 

into these contributing mechanisms has largely been obtained through the study 

of multiple animal models of diabetes used in scientific studies.  

Animal Models of Diabetic Peripheral Neuropathy 

Several animal models of diabetes have been developed for both T1DM 

and T2DM, which demonstrate varying levels of DPN. While the models that 

have been developed demonstrate a diabetic phenotype along with mild 

neuropathy, they do not reflect the severity of the human disease144–146. This 

dissertation contains studies utilizing the single high dose (SHD) streptozotocin 

(STZ), leptin receptor mutated (db/db), and leptin knockout (ob/ob), which we will 
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focus on while discussing some advantages and disadvantages for these and 

alternative models. 

The mouse models of T1DM are either chemically induced using STZ or 

genetic models of the disease. The chemically induced model utilizes STZ to 

target the pancreatic β cells where it interferes with glucose transport and 

induces DNA double strand breaks147,148. Two different dosing regiments of STZ 

are commonly used to induce β cell death in this model, either a SHD or multiple 

low doses (MLD). The changes in dosing assist with the severe toxicity and post 

injection mortality observed in the SHD, but the MLD model will often show 

moderate to no signs of neuropathy dependent on the strain. The genetic models 

of T1DM include the non-obese diabetic (NOD) and B6Ins2Akita mice. NOD mice 

have an immunodeficiency similar to that seen in humans with T1DM149. NOD 

mice experience the onset of diabetes around 12 to 14 weeks150,151, but very little 

neuropathy characterization has been done in this model besides the observation 

of hyperalgesia at 8 weeks and hypoalgesia at 12 weeks152,153. The B6Ins2Akita is 

induced through a point mutation in the Ins2 insulin gene which impairs insulin 

secretion and results in hyperglycemia154. This model demonstrates a diabetic 

phenotype by 7 weeks of age and neuropathy around 16 weeks of age155. 

However, there has been some conflicting studies suggesting that there were no 

significant impairments in nerve conduction velocities at 24 weeks of age156. 

While further characterization of DPN in the B6Ins2Akita model is required, their 

ability to respond to insulin treatments is unique157.  



17 

Models of T2DM are either genetic or diet-induced and here we will focus 

on models characterized with a neuropathy phenotype158. Genetic models were 

generated by identifying a spontaneous mutations disrupting leptin signaling 

through either a leptin receptor mutation (db/db159) or leptin knockout (ob/ob160). 

The db/db mouse develops diabetes at 4 weeks, hyperalgesia at 8 weeks, then 

allodynia and hypoalgesia after 12 weeks144,161–163. This along with deficits in 

motor and sensory nerve conduction velocities make the db/db mouse a robust 

model of DPN. However, there is some strain variability with the C57BL/6 mice 

only having limited or no neuropathy while C57BKS mice have a robust 

phenotype144,158,163,164. The ob/ob mouse is not as well studied in DPN, but as a 

model of mild T2DM, decreased neuron conduction velocity can be observed at 

11 weeks of age along with other measurements of neuropathy165.  

Diet-induced models involve a high-fat diet (HFD), which will develop diet-

induced obesity in the mice through a gradual onset of metabolic imbalances 

characteristic of human T2DM138,166–168. This model also allows a unique 

examination of prediabetes which has been shown to be a contributing factor to 

neuropathy in nondiabetic patients169. These obese HFD mice do not 

demonstrate elevated glucose levels and never fully develop diabetes, although 

other phenotypic changes have been observed168. The hallmarks of DPN have 

been observed after 16 weeks of age in HFD mice characterized as 

prediabetic170. Strain variability has also been observed in this model with 

different amounts of vulnerability to diet-induced obesity, but most DPN studies 

have been conducted using the C57/BL6 background171. One unique feature of 
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this model is the ability to observe DPN reversal by switching HFD mice back to 

a standard diet168. This finding could allow further insight into restorative 

mechanisms. 

Dissertation Research Objective 

The objective of this dissertation is to characterize transcription signatures 

associated with central and peripheral inflammation, with an emphasis on 

Parkinson’s disease and diabetic peripheral neuropathy. Our wide range of 

models and techniques lends strength to the notion of common immune 

activation pathways induced by a variety of disease insults.  

 



19 

CHAPTER II 

CONSERVED TRANSCRIPTIONAL SIGNATURES IN HUMAN AND MURINE 
DIABETIC PERIPHERAL NEUROPATHY 

Abstract 

Diabetic peripheral neuropathy (DPN) is one of the most common 

complications of diabetes. In this study, we employed a systems biology 

approach to identify DPN-related transcriptional pathways conserved across 

human and various murine models. Eight microarray datasets on peripheral 

nerve samples from murine models of type 1 (streptozotocin-treated) and type 2 

(db/db and ob/ob) diabetes of various ages and human subjects with non-

progressive and progressive DPN were collected. Differentially expressed genes 

(DEGs) were identified between non-diabetic and diabetic samples in murine 

models, and non-progressive and progressive human samples using a unified 

analysis pipeline. A transcriptional network for each DEG set was constructed 

based on literature-derived gene-gene interaction information. Seven pairwise 

human-vs-murine comparisons using a network-comparison program resulted in 

shared sub-networks including 46 to 396 genes, which were further merged into 

a single network of 688 genes. Pathway and centrality analyses revealed highly 

connected genes and pathways including LXR/RXR activation, adipogenesis, 

glucocorticoid receptor signaling, and multiple cytokine and chemokine 

pathways. Our systems biology approach identified highly conserved pathways
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 across human and murine models that are likely to play a role in DPN 

pathogenesis and provide new possible mechanism-based targets for DPN 

therapy. 

Introduction 

According to the United States Centres for Disease Control and 

Prevention (CDC), more than 29 million Americans, over 9% of the United States 

population, are living with diabetes and another 86 million have prediabetes172. 

The most common microvascular complication of diabetes is diabetic peripheral 

neuropathy (DPN) which occurs in approximately 60% of patients and is the 

leading cause of non-traumatic lower-limb amputations173,174. DPN is 

characterized by distal to proximal degeneration of peripheral nerves which 

results in symptoms such as numbness, pain, and weakness175. Other than 

glucose control, there are no disease-modifying treatments for DPN. 

Understanding DPN pathology and identifying the underlying mechanisms of 

peripheral nerve degeneration are therefore critical to the development of new 

mechanism-based therapies for DPN. 

Over the past decade with the advent of high-throughput gene expression 

profiling assays such as microarrays and RNA-Seq, we and others have 

examined genome-wide gene expression changes from the peripheral nerve 

tissues of various diabetic murine models176–180 and human subjects181,182 with 

diabetes. Bioinformatics analyses of these high-throughput datasets identified 

numerous genes in human and murine peripheral nerves that are significantly 

dysregulated by diabetes. Suggested mechanisms of injury such as 
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inflammation, oxidative stress, lipid and carbohydrate metabolism, regulation of 

axonogenesis, mitochondrion, and peroxisome proliferator-activated receptor 

(PPAR) signaling were also reported during diabetes onset and 

progression177,178,180,181.  

Yet, one limitation of the previous studies, including ours, is that the 

analyses didn’t account for the differences in species, strains, procedure of 

diabetes induction, and diabetes duration. Another critical issue that hasn’t been 

addressed thus far is the identification of common injurious pathways and 

networks conserved across various mouse models of diabetes as well as 

between mouse and human. In this study, we reanalyzed previously published 

DPN-related microarray datasets from human and multiple murine models using 

a unified analysis pipeline. Compared with the existing literature, this study 

provides a unique opportunity to uncover a possible common mechanism of 

injury shared across DPN stages, types of diabetes, and species. Such 

mechanisms could unravel new important therapeutic targets to treat DPN. 

Research Design and Methods 

Microarray Data 

All datasets used were gathered from the University of Michigan Diabetic 

Neuropathy Microarray Knowledge-Base (DNMKB; 

http://hurlab.med.und.edu/DNMKB/). The data from the type 1 diabetes mellitus 

(T1DM) model were originally generated from male DBA/2J mice treated with 

streptozotocin (STZ) at 10 weeks that were terminated at 34 weeks180. The two 

type 2 diabetes mellitus (T2DM) models included BKS.Cg-Leprdb/db (db/db) mice 
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and BTBR.Cg-Lepob/ob (ob/ob) mice. The male db/db mice were 8, 16, and 24 

weeks176,178,183, while male ob/ob mice were 5 and 13 weeks of age177. A female 

ob/ob dataset was also available from 26 weeks old BTBR.Cg-Lepob/ob mice184. 

Each dataset was originally generated using sciatic nerve samples on the 

Affymetrix Mouse Genome 430 2.0 array platform. As previously reported each 

model displayed the features typical of diabetes by the termination of their 

respective studies as well as the hallmarks of DPN176,177,184. The human sural 

nerve data used was generated using the Affymetrix Human Genome U133 Plus 

2.0 array platform178. As previously reported these samples were evaluated for 

features of DPN and were separated into progressive and non-progressive 

groups based on the myelinated fibre density lost over a 52 week period178.  

Study Design 

Figure 1 illustrates the overall workflow of the current study, designed to 

reanalyse these microarray data from sciatic nerve (SCN) samples taken from 

our T1DM and T2DM murine models when compared to controls and the human 

microarray data from sural nerve biopsies, from patients with progressive and 

non-progressive DPN. The original datasets were separated into these groups 

(either diabetic vs healthy or progressive vs non-progressive) and were 

compared using ChipInspector (Genomatix Software GMBH, 

http://www.genomatix.de) to identify the differentially expressed genes (DEGs) 

between groups. The DEG lists identified from each murine model were 

converted to the human orthologue equivalent when possible using the 

Genomatix annotation orthologue database. These DEG lists of human gene IDs 
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were then compared across datasets to identify the conserved DEGs between 

the different murine models and human. Each DEG set was also analyzed using 

Ingenuity Pathway Analysis (IPA; http://www.ingenuity.com) from Qiagen (Hilden, 

Germany) and the identified pathways were compared across models and 

species to identify the commonly disrupted pathways. To identify gene networks 

common between models, networks were generated from these DEG datasets 

using SciMiner185. The networks generated were analyzed for common network 

nodes and disrupted pathways using IPA.  

Transcriptome Profiling 

Transcriptomic data generated from Affymetrix GeneChips were analyzed 

using BioConductor (https://www.bioconductor.org/) and their Affymetrix QC 

packing in R (http://www.arrayanalysis.org/). All data passing our quality 

threshold were then analyzed using ChipInspector and up-to-date gene 

annotation. Expression signals from the microarray image files were analyzed at 

the single probe level. Significant transcripts were defined using a minimum of 

five significant probes and a false discovery rate of <1% by the Significance 

Analysis of Microarrays algorithm using exhaustive comparisons between control 

and diabetic mice. Eight datasets of DEGs were generated based on significant 

transcripts between control and diabetic groups for each murine model (8, 16, 

and 24 week db/db; 5, 13, 26 week ob/ob; and 34 week STZ) as well as between 

progressive and non-progressive groups for the human dataset176–178,180,181,183,184. 
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Figure 1. Model and Network DEG Comparison Workflow. Previously 
published microarray datasets were reanalyzed using ChipInspector to identify 
DEGs at various time points from murine models of type 1 diabetes (STZ), type 2 
diabetes (db/db and ob/ob), and human patients. DEG datasets from all murine 
models were generated by comparing diabetic to healthy control mice. The 
human samples were grouped into progressive and non-progressive groups to 
determine the DEG dataset used. All DEG datasets were compared in order to 
find the DEGs shared across models and stages of DPN. These shared DEGs 
were analyzed using IPA to identify possible disrupted signaling pathways. 
Seven pairwise comparisons were performed to determine the shared networks 
between each murine dataset with our human dataset. These DEGs were then 
analyzed using IPA to identify possible disrupted signaling pathways.  
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Diabetes- and Age- Comparisons of DEGs Sets 

The eight DEG sets were compared to find shared DEGs between 

species, stages of neuropathy, and diabetes type at a gene and network level. 

Each dataset was assessed in previous publications for characteristics of DPN 

and defined as a specific stage of DPN176–178,180,183,184. All DEG sets were 

examined for overlap to identify the conserved pathways or genes responsible for 

the underlying cause of DPN in the different murine and human samples. 

Transcriptional Network Comparison 

Each DEG set was used to generate transcriptional networks based on 

gene-gene associations that were identified from biomedical literature using 

SciMiner185. SciMiner is our in-house literature mining system that analyses over 

24 million abstracts in PubMed to automatically extract potential gene-gene 

interactions based on their co-occurrence at the sentence level. The network for 

each of the eight DEG sets were constructed individually following mouse gene 

to human gene orthologue conversion according to the Geomatics annotation 

orthologue database. Cytoscape version 3.3.0 (http://www.cytoscape.org)186, an 

open-source platform for visualizing complex networks, was used to visualize 

SciMiner-generated transcriptional networks. 

Each mouse DEG network was compared to the human DEG network in a 

pairwise manner, using a Tool for Approximate Subgraph Matching of Large 

Queries Efficiently (TALE)187. TALE compares network structure and extracts 

overlapping conserved relationships between two networks. The mismatch 

parameter used allows 10% mismatch when generating seed gene nodes and 
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extended networks as in our previous studies188,189. Conserved nodes across 

networks were then examined and analyzed for overlapping pathways using IPA.  

Functional Enrichment Analysis 

IPA was used to identify enriched pathways within each of the eight DEG 

sets as well as the seven TALE generated network comparison datasets 

(comparing each mouse DEG set to our human DEG set). These pathways for 

the eight DEG sets were compared to identify conserved disrupted pathways that 

may indicate an underlying cause to DPN. The disrupted pathways observed in 

our TALE datasets were also compared in order to identify a possible central 

pathway based on nodes and subnetworks generated from our transcriptional 

network comparison. The background list of genes used for this analysis was the 

Affymetrix Human Genome U133 Plus 2.0 Array.  

Construction of Merged Human-Mouse-Conserved Transcriptional 

Network and Network Centrality Analysis 

Eight TALE networks were combined using the merge function in 

Cytoscape. Edges supported by less than three citations according to SciMiner 

were removed from the network. The merged human-mouse-conserved 

transcriptional network was examined to identify the most central genes in the 

network. Using package ‘sna’, tools for social network analysis, in R 

(https://CRAN.R-project.org/package=sna), four centrality metrics (degree, 

eigenvector, closeness, and betweenness) were computed to identify the most 

important nodes (i.e., genes) in the merged transcriptional network. These four 

different centrality metrics measures different aspects of node 



27 

characteristics190,191.  

Briefly, the degree centrality is the number of nodes that are its first 

neighbors (i.e., directly connected to the given node). The more connections a 

node has, the more central it is, based on degree centrality. In eigenvector 

centrality, a node contributes to the centrality of another node proportionally to its 

own centrality. A node is more central, if it is connected to many central nodes. 

The other two metrics (closeness and betweenness) is dependent on the position 

of a node in the network. Closeness centrality is based on the distance of a node 

to the other nodes in the network. The closer a node is to the other nodes, the 

more important it is considered to be. Betweenness centrality is based on the 

number of shortest paths connecting two nodes that pass over the given node. A 

node is more central, if it acts like a bridge in the network, i.e., lies on many 

shortest paths. In the current study, we defined the top 10 or 50 most central 

genes, belonging to the ranks of the genes using each metric. These gene sets 

were further examined for their enriched biological functions using IPA. 

The validity of the central genes was examined by comparing against the 

average centrality scores from randomly generated transcriptional networks. We 

generated 1,000 gene sets for each of the eight DEG sets containing the same 

number of genes randomly selected from all the genes available on the 

microarray platform. These random gene sets were processed in the same exact 

way as the real data sets, which resulted in 1,000 merged shared networks. The 

four centrality scores were measured for each gene in the networks and were 
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used as the background distribution for a Z-test of the centrality scores from the 

real data. 

Results 

Identification of Changes in Gene Expression 

Gene expression profiles were generated using eight published datasets 

from sciatic nerve samples from both T1DM and T2DM murine models with DPN 

as well as human sural nerves from patients with T1DM and T2DM176–

178,180,181,183,184. Metabolic and neuropathy phenotyping on all animal models as 

well as human subjects are summarized in Table 1 based on the published 

reports. Briefly, T2DM mouse models (ob/ob and db/db) were significantly 

heavier and displayed higher levels of fasting glucose levels and glycosylated 

hemoglobin, when compared with age-matched non-diabetic controls (ob/+ and 

db/+, respectively). Triglyceride levels were significantly increased in T2DM mice. 

STZ-induced T1DM mice had significantly reduced body weight and higher 

fasting blood glucose and glycosylated hemoglobin levels relative to non-diabetic 

controls. Motor and sensory nerve conduction velocities (NCVs) were 

significantly lower in diabetic mice at all stages of diabetes. Intra-epidermal nerve 

fiber density (IENFD) was significantly decreased in ob/ob mice at 9 and 13 

weeks compared with age-matched control littermates. Similar changes were 

observed in the db/db mouse model at 16 and 24 weeks of age. Both IENFD loss 

and reduced NCVs confirm the development of DPN in murine models of 

disease192. In the human subjects, there was a change in myelin fibre density 

(MFD) over the course of the 52-week study between subjects with progressive 
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versus non-progressive neuropathy181. However, other factors, including gender, 

age, insulin treatment, triglyceride levels, glycosylated hemoglobin and body 

mass index (BMI), were not significantly different between the two groups. 

ChipInspector was used to reanalyze each dataset and identified between 

438 – 5,757 DEGs within each dataset (Table 2). Gene expression profiles were 

based on a healthy control vs DPN comparison for each murine model while the 

human sural nerve comparison was based on comparing patients with 

progressive versus non-progressive DPN181. Across all eight datasets, over 

11,000 genes were identified with at least 2,100 being shared across at least 3 

datasets. Most murine models displayed a similar expression pattern while our 

T1DM model (STZ-treated) showed a distinct pattern (Figure 2). Some of the 

most common genes identified across these models include interleukin 1 

receptor antagonist (IL1RN)193,194, complement component 3a receptor 1 

(C3AR1), macrophage scavenger receptor 1 (MSR1)195,196, and matrix 

metallopeptidase 12 (MMP12)197, which have been implicated in the 

pathogenesis of DPN. Table 3 illustrates the enrichment levels of the most 

frequently enriched pathways identified in at least five DEG sets in these 

datasets by IPA. These pathways include many genes related to lipid 

metabolism, extracellular matrix homeostasis, and immune signaling, which have 

all been implicated in the pathogenesis of DPN177,178,180,182–184,188,198,199.  
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Table 1. Metabolic and neuropathy phenotypic measures of microarray datasets. The previously published datasets 
included in this study have all been tested for measurements of metabolic disturbances and neuropathic phenotyping 
independently. The increase (+) or decrease (-) indicates the changes observed in diabetic animals compared to their 
respective non-diabetic controls and between the progressive and non-progressive human patients. Not all studies 
underwent the same testing and measurements not included are indicated by an N/A, while non-significant results 
(p>0.05) are indicated by N/S. The superscript numbers in the header row correspond to the reference numbers in the 
manuscript. BMI: body mass index; M: male; F: female. wks: weeks. * indicates that measurements taken at 9 weeks in 
the published study.  

Published Datasets Included
db/db

8 wks (M)
183

db/db

16 wks 

(M)
178

db/db

24 wks 

(M)
176

ob/ob

5 wks (M)
177

ob/ob

13 wks 

(M)
177

ob/ob

26 wks 

(F)
184

DBA2J-STZ

34 wks 

(M)
180

Human

DPN
181

Body weight ↑ ↑ ↑ ↑ ↑ ↑ ↓ BMI: N/S

Fasting glucose ↑ ↑ ↑ ↑ ↑ N/A ↑ N/A

Triglycerides N/A ↑ ↑ ↑ ↑ ↑ N/A N/S

% Glycosylated hemoglobin ↑ ↑ ↑ ↑ ↑ ↑ ↑ N/S

Hindpaw latency N/S ↑ ↑ ↑* N/A N/A ↑ N/A

Motor nerve conduction velocity ↓ ↓ ↓ ↓* ↓ ↓ ↓ N/A

Sensory nerve conduction velocity ↓ ↓ ↓ ↓* ↓ ↓ ↓ N/A

Intra-epidermal nerve fiber density N/S ↓ ↓ ↓* ↓ ↓ N/A N/A

Myelinated fiber density changes over 52 wks N/A N/A N/A N/A N/A N/A N/A ↓

Neuropathy phenotype measures

Metabolic measures
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Table 2. Study 1 Dataset Summary. The number of samples for both control 
and diabetic samples within each dataset is represented in the 2nd and 3rd 
column. The human dataset rather than being healthy versus diabetic samples 
were grouped into non-progressive and progressive groups based on myelin fibre 
density lost. The amount of DEGs identified by ChipInspector ranged from 482 to 
5,757 for each dataset. 

Dataset

Number of 

Control 

Samples

Number of 

Diabetic 

Samples

DEGs identified 

by 

ChipInspector

8wk db /db 6 5 2,955
16wk db /db 6 6 871
24wk db /db 6 6 5,068
5wk ob /ob 8 8 2,096
13wk ob /ob 6 6 723
Female 26wk 
ob /ob

5 5 482

34wk DBA2J-
STZ

4 5 3,022

Human sural 
nerve

17 non- 
progressive

18 
progressive

5,757
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Figure 2. DEG patterns in study 1 DPN models. Over 11,000 genes were identified and at least 2,100 were shared 
across a minimum of 3 datasets. This heat map shows the pattern of distribution for DEGs across models to display how 
similar or different each model used in this analysis appeared to be on a transcription level.  
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Table 3. Most frequently dysregulated canonical pathways in study 1 datasets identified by Ingenuity Pathway 

Analysis (IPA). Each dataset was analyzed using IPA for canonical pathway enrichment then compared to determine the 
most frequently enriched pathways across datasets. The numbers and color gradient within the table are -log (p values) to 
represent significant enrichment within each column.  

pathway count 8wk_dbdb 16wk_dbdb 24wk_dbdb 5wk_obob 13wk_obob F26wk_obob 34wk DBA2J-STZ Human

Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 7 3.32 2.45 3.50 1.42 1.75 4.98 1.95
Clathrin-mediated Endocytosis Signaling 7 2.72 2.05 1.92 3.90 2.27 2.19 1.53

Hepatic Fibrosis / Hepatic Stellate Cell Activation 6 3.42 6.24 8.70 1.97 3.09 2.12
Growth Hormone Signaling 6 2.48 1.46 2.23 1.55 1.32 1.55
Atherosclerosis Signaling 6 2.15 2.17 11.50 2.22 3.14 5.67

LXR/RXR Activation 6 1.33 5.79 7.11 1.36 1.99 4.63
Axonal Guidance Signaling 6 3.27 1.61 3.62 3.32 3.83 2.59

Inhibition of Matrix Metalloproteases 6 1.58 1.57 1.93 3.36 1.83 4.44
Leukocyte Extravasation Signaling 6 1.74 1.30 4.95 2.91 3.00 5.76

Production of Nitric Oxide and Reactive Oxygen Species in Macrophages 6 1.59 1.82 2.01 6.53 2.01 2.91
Type II Diabetes Mellitus Signaling 6 1.44 1.53 2.41 1.80 1.53 1.75

PPARγ/RXRα Activation 5 1.50 2.50 2.06 3.85 2.65
Calcium Signaling 5 1.73 3.02 2.05 2.15 2.29

Glioma Invasiveness Signaling 5 4.15 2.12 1.87 1.68 2.26
Paxillin Signaling 5 1.59 2.28 1.95 1.60 2.19

Renin-Angiotensin Signaling 5 1.38 1.34 1.68 1.42 2.04
Aryl Hydrocarbon Receptor Signaling 5 2.73 5.05 1.32 1.61 1.67

Reelin Signaling in Neurons 5 2.43 2.04 1.95 3.10 1.65
Role of JAK1 and JAK3 in Î³c Cytokine Signaling 5 1.73 1.99 1.78 1.50 1.62

MSP-RON Signaling Pathway 5 1.35 2.08 2.26 2.55 1.37
Angiopoietin Signaling 5 2.06 3.22 1.63 2.08 1.86
ERK/MAPK Signaling 5 1.64 1.46 2.15 2.30 1.79

IL-8 Signaling 5 5.19 2.43 2.57 4.30 2.22
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Transcriptional Network Analysis 

Our network analysis refines the datasets by examining the connections 

between identified DEGs to allow prioritization of possibly centrally influential 

genes or pathways. Prior to pathway analysis with IPA, transcriptional networks 

are generated based on gene-gene associations, among DEGs, that are 

identified for each dataset using SciMiner185. These networks were then 

compared in a pairwise manner between murine and human datasets using 

TALE with a 10% mismatch parameter to limit the shared network187. Networks 

ranging from 46 – 396 genes were identified as shared between each murine set 

of DEGs and the progressive human set of DEGs (Table 4; Figure 3). The top 

network DEGs identified as shared across datasets within the compared 

networks are presented in Table 5. Among these shared DEGs there is a large 

number of immune factor genes such as CD44, Interleukin 1 receptor antagonist, 

and macrophage scavenger receptor 1.  

Other notable genes identified in this shared network include dipeptidyl 

peptidase 4 (DPP4), a serine peptidase that modulates the levels of incretin 

hormones, major regulators of glucose homeostasis200. The antidiabetic action of 

DPP4 inhibition has been associated with a partial amelioration of NCV deficit in 

T1DM rats as well as a reduction in nerve fiber loss201,202. The identification of the 

immune genes previously described as well as other target genes associated 

with DPN suggests that our network approach can successfully narrow the focus 

of transcriptomic data.
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Table 4. Summary of the microarray datasets. The number of samples for both control and diabetic samples within 
each dataset is represented in the 2nd and 3rd column. The human dataset rather than being healthy versus diabetic 
samples were grouped into non-progressive and progressive groups based on myelin fiber density lost. The amount of 
DEGs identified by ChipInspector ranged from 482 to 5,757 for each dataset. The superscript numbers in the header row 
correspond to the reference numbers in the manuscript. wks: weeks. 

Dataset

Number of 

control 

samples

Number of 

diabetic 

samples

DEGs 

identified by 

ChipInspector

Orthologue 

mapped 

Human 

Gene IDs

Genes 

included in 

the literature-

derived 

network

db/db 8 wks (M)183 6 5 2,955 2,782 2,194

db/db 16 wks (M)178 6 6 871 794 579

db/db 24 wks (M)176 6 6 5,068 4,743 3,762

ob/ob 5 wks (M)177 8 8 2,096 1,910 1,535

ob/ob 13 wks (M)177 6 6 723 685 509

ob/ob 26 wks (F)184 5 5 482 438 338

DBA2J-STZ 34 wks (M)180 4 5 3,022 2,482 1,932

Human DPN181 17 non-
progressive

18 
progressive

5,757 5,757 4,232
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Figure 3. Shared transcriptional networks between murine and human datasets identified by TALE, a graph 

matching software. Using a graphical matching software (TALE), each network generated using the murine datasets 
were examined for overlap with the human gene network. The resulting networks are below with the number in 
parenthesis representing the total genes within the network. Node size indicates amount of degree relative to the size of 
the network.  
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Table 5. The most commonly dysregulated differentially expressed genes among the shared transcriptional 

networks. Shared network genes between each murine dataset and human dataset were identified. The fold change for 
each dataset is represented by the value in each cell and the color displays the relative change within the table, with red 
being an increased fold change and blue being a decreased fold change. Many of the represented DEGs are directionally 
consistent across murine models but not necessarily between the human and murine comparison. 
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Cytoscape was then used to visualize each shared TALE network. Each 

individual shared network based on the TALE comparison between the human 

dataset and each murine dataset is visualized in Figure 3. Networks were 

merged using the merge network feature in Cytoscape in order to identify the 

most connected DEGs (Figure 4). The top five most highly connected genes, 

based on degrees within the merged network, were PIK3CA, MPAK8, CD44, 

MAPK1, and CREB. These most connected genes are not biased by the amount 

of dataset in which they appear, but instead depend on the connections that each 

node has within the network. The majority of highly connected genes do appear 

in four or more datasets and all genes are observed in our human data. 

The genes in the shared transcriptional networks between human and 

each murine model were analyzed for pathway enrichment using IPA. Over 380 

pathways were found to be significantly enriched and the top pathways shared 

across each network are shown in Table 6, which displays a fold change based 

on the average fold change of the pathway genes identified by IPA. The 

directionality is indicated by color (with red being an increase and blue being a 

decrease) based on the percentage of genes involved that have increased or 

decreased expression levels. These pathways were often directionally similar to 

our human dataset, unlike the originally described DEGs. The T1DM STZ model 

used in our study does display consistent up-regulation of the subset of enriched 

pathways identified as shared across models in Table 6. The top pathways 

shared across each network included LXR/RXR activation, agrin interactions at 
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Figure 4. Highly connected DEGs across TALE networks. (A) TALE networks were combined using the merge 
network feature in Cytoscape. Node size is based on the degree of connections and organized as a radial tree. (B) This 
table shows the fold changes of the most highly connected genes in each dataset with red coloring being an increased 
fold change and blue being a decreased fold change. A total of 688 genes were included in the network with the degree of 
connections between genes ranging from 304 and 1. Each connection between genes were supported by a minimum of 3 
citations as defined by SciMiner. 
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Table 6. Disrupted Pathways Based on TALE DEGs. The most frequently perturbed pathways within each shared 
network are represented in the table. The cell value indicates the average change in fold change for the genes involved in 
this pathway while the color indicates the overall direction of the genes. Red indicates that more genes involved in the 
pathway have increased expression while blue indicates the genes involved have decreased expression values. The most 
common theme among these pathways are inflammation with multiple interleukin signaling pathway as well as some 
autoimmune pathways commonly found in rheumatoid arthritis.  
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neuromuscular junctions, hepatic fibrosis, and role of osteoblasts, osteoclasts, 

and chondrocytes in rheumatoid arthritis. The common themes that underlie 

these enriched pathways are lipid metabolism, extracellular matrix, and disrupted 

inflammation. 

Merged Transcriptional Network and Centrality Analysis 

Seven human and murine shared networks were merged into a single network, 

consisting of 688 genes that interacted with up to 304 other genes in the network 

(Figure 4A). Using the sna package in R, this merged network was analyzed to 

identify the most central and influential genes within the network. The four 

measures of centrality used included closeness, betweenness, degree, and 

eigenvector values. Table 7 lists the 14 most central genes that are ranked 

among top 10 in each centrality measure. While these genes exhibit overlap with 

Figure 4B, they also represent a more thorough and analytical measure of gene 

influence within the network, while the previous figure assists in clarifying the 

complex merged network. These genes include interleukin 1 beta (IL1B), 

hepatocyte growth factor (HGF), c-c motif chemokine ligand 2 (CCL2), CD36, 

FOS, and JUN. While transcription factors such as FOS and JUN are likely to be 

central to a network as regulators of many genes, the inclusion of cytokine and 

chemokines such as IL1B, HGF, and CCL2 further supports the involvement of 

the immune system in DPN198,203–205.  

The 14 most central genes were also used as input to IPA in order to 

identify enriched pathways represented by these influential genes. The top 20 

canonical pathways are shown in Table 8 with –log10(p-value) as a measure of 
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significance; the ratio represents the proportion of the 14 central genes to all the 

genes involved in the canonical pathway. Ratio values in this case are expected 

to be low since our input gene list was only the 14 genes identified as most 

central within the network. The most significant pathways include HMGB1 

signaling and Glucocorticoid receptor signaling.  

We further extended our pathway enrichment analysis to the 64 most 

central genes, belonging to the top 50 in at least one centrality measure. Based 

on gene overlap and shared directionality among pairs of these pathways, we 

constructed a contextual similarity network in Figure 5, where edges from the top 

25% similarity scores are included. InfoMap206, a network clustering algorithm, 

was used to identify sub-networks or clusters that are highly interconnected. 

These clusters shared common functional themes, and the largest cluster of 

canonical pathways was associated with immune response and inflammation (in 

green in Figure 5). 
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Table 7. Centrality Analysis Gene Results. Centrality analysis was conducted using the Cytoscape plug-in CentiScaPe 
and four centrality metrics (degree, eigenvector, closeness, and betweenness) to identify the most important nodes (i.e., 
genes) in the merged transcriptional network. The top 10 ranked genes in each perspective centrality metric is included in 
the table and indicate the most influential genes within the network. The centrality scores of each node were compared 
against the background distribution of centrality scores that were obtained from randomly generated 1,000 random 
merged networks. P-values were calculated using z-test to examine the significant difference between the real and 
random networks.  

Symbol Description Degree (p-value) Closeness (p-value) Betweenness (p-value) Eigenvector (p-value)

PIK3CA
phosphoinositide-3-kinase, 
catalytic, alpha polypeptide

406 (p=1.8E-08) 0.00081 (p=6.4E-01) 43246.5 (p=0.0E+00) 0.16 (p=2.9E-03)

MAPK8 mitogen-activated protein kinase 8 372 (p=3.8E-07) 0.00078 (p=6.6E-01) 30937.8 (p=0.0E+00) 0.15 (p=6.3E-03)

CD44 CD44 molecule (Indian blood group) 349 (p=1.3E-08) 0.00075 (p=6.6E-01) 32129.4 (p=0.0E+00) 0.13 (p=7.3E-03)

MAPK1 mitogen-activated protein kinase 1 280 (p=3.5E-03) 0.00074 (p=6.5E-01) 19719.2 (p=1.7E-03) 0.13 (p=3.9E-02)

CREB1
cAMP responsive element binding 
protein 1

283 (p=1.2E-08) 0.00073 (p=6.4E-01) 15524.7 (p=0.0E+00) 0.12 (p=3.0E-03)

LEP leptin 301 (p=8.7E-10) 0.00072 (p=6.6E-01) 22639.7 (p=0.0E+00) 0.12 (p=5.6E-03)

CCL2 chemokine (C-C motif) ligand 2 276 (p=3.3E-03) 0.00071 (p=6.9E-01) 13595.3 (p=4.5E-03) 0.12 (p=1.0E-01)

JUN jun proto-oncogene 232 (p=5.9E-03) 0.00071 (p=6.7E-01) 11905.8 (p=1.2E-02) 0.12 (p=4.3E-02)

ESR1 estrogen receptor 1 269 (p=4.7E-09) 0.00071 (p=6.6E-01) 17433.2 (p=0.0E+00) 0.11 (p=5.8E-03)

FOS
FBJ murine osteosarcoma viral 
oncogene homolog

229 (p=3.1E-03) 0.00070 (p=6.4E-01) 21885.2 (p=2.5E-07) 0.10 (p=7.4E-02)

CD36
CD36 molecule (thrombospondin 
receptor)

247 (p=5.0E-07) 0.00070 (p=6.5E-01) 11865.1 (p=6.5E-13) 0.11 (p=7.2E-03)

IL1B interleukin 1, beta 224 (p=6.5E-03) 0.00070 (p=6.6E-01) 12492.5 (p=3.4E-03) 0.09 (p=1.6E-02)

HGF
hepatocyte growth factor 
(hepapoietin A; scatter factor)

213 (p=9.4E-06) 0.00069 (p=6.6E-01) 8254.8 (p=2.6E-07) 0.12 (p=4.6E-03)
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Table 8. Top 20 IPA Canonical Pathways Based on the Most Central Genes. 
The 14 genes identified by CentiScaPe to be the most central genes within the 
merged network based on the four centrality measures were used as input for 
IPA to analyze pathway enrichment. This table represents the enriched pathways 
based on these genes with –log10(p-value) as a significance measure and the 
ratio as the proportion of significant DEGs measured over the total genes within 
the pathway. HMGB1 signaling, Glucocorticoid receptor signaling, as well as the 
various interleukin pathways indicate disrupted inflammation as a central 
influence within the cross-species shared network. The ratio represents the 
proportion of the 14 central genes to all the genes involved in the canonical 
pathway. 

Ingenuity Canonical Pathways  -log10(p-value) Genes Ratio

HMGB1 Signalling 14.2 FOS, PIK3CA, JUN, CCL2, MAPK1, MAPK8, IL1B, PLAT 0.06

Glucocorticoid Receptor Signalling 13.6
FOS, PIK3CA, JUN, CCL2, MAPK1, CREB1, MAPK8, 
IL1B, ESR1

0.03

GDNF Family Ligand-Receptor 
Interactions

11.3 FOS, PIK3CA, JUN, MAPK1, CREB1, MAPK8 0.08

Neurotrophin/TRK Signalling 11.3 FOS, PIK3CA, JUN, MAPK1, CREB1, MAPK8 0.08

Estrogen-Dependent Breast Cancer 
Signalling

11.2 FOS, PIK3CA, JUN, MAPK1, CREB1, ESR1 0.08

LPS-stimulated MAPK Signalling 11 FOS, PIK3CA, JUN, MAPK1, CREB1, MAPK8 0.07

HGF Signalling 10.2 FOS, PIK3CA, JUN, MAPK1, HGF, MAPK8 0.05

Renin-Angiotensin Signalling 10.1 FOS, PIK3CA, JUN, CCL2, MAPK1, MAPK8 0.05

IL-6 Signalling 9.92 FOS, PIK3CA, JUN, MAPK1, MAPK8, IL1B 0.05

Aryl Hydrocarbon Receptor Signalling 9.66 FOS, JUN, MAPK1, MAPK8, IL1B, ESR1 0.04

Role of Macrophages, Fibroblasts and 
Endothelial Cells in Rheumatoid 
Arthritis

9.38 FOS, PIK3CA, JUN, CCL2, MAPK1, CREB1, IL1B 0.02

IL-2 Signalling 9.37 FOS, PIK3CA, JUN, MAPK1, MAPK8 0.08

UVB-Induced MAPK Signalling 9.3 FOS, PIK3CA, JUN, MAPK1, MAPK8 0.08

IL-10 Signalling 9.23 FOS, JUN, MAPK1, MAPK8, IL1B 0.07

EGF Signalling 9.23 FOS, PIK3CA, JUN, MAPK1, MAPK8 0.07

Acute Phase Response Signalling 9.17 FOS, PIK3CA, JUN, MAPK1, MAPK8, IL1B 0.04

Chemokine Signalling 9.14 FOS, JUN, CCL2, MAPK1, MAPK8 0.07

Toll-like Receptor Signalling 9.05 FOS, JUN, MAPK1, MAPK8, IL1B 0.07

CD40 Signalling 8.93 FOS, PIK3CA, JUN, MAPK1, MAPK8 0.06

Dendritic Cell Maturation 8.86 PIK3CA, LEP, MAPK1, CREB1, MAPK8, IL1B 0.03
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Figure 5. IPA Enriched Pathway Clustering. The pathways found to be enriched by IPA based on the top 64 
most central genes, belonging to the top 50 in at least one centrality measure, within the merged network. 272 
canonical pathways determined significantly enriched by IPA were examined for their similarity in terms of gene 
content and shared directionality among the pathways. Edges, connections between pathways, are only included if 
their similarity scores were among the top 25%. InfoMap206, a network clustering package in R, was used to identify 
clusters, which are represented in different colors. These clusters shared common functional themes, which are 
noted in the figure. The largest cluster of canonical pathways were associated with immune response and 
inflammation (in green). Colors of the node denote the clusters identified by InfoMap. 
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Discussion 

In our first study, we compared transcriptomic changes in peripheral 

nerves isolated from humans and mouse models of T1DM and T2DM at various 

stages of DPN to identify potential molecular pathways contributing to disease. 

We previously examined these changes during the development of DPN in both 

mouse models and human patients177,178,180,181 and determined critical genes and 

pathways that play an important role in DPN. However, no systematic 

comparison of these transcriptomics datasets has been made. In the current 

study, using our published datasets, transcriptomic changes were compared in 

multiple mouse models of diabetes at different stages of the disease as well as in 

human subjects with DPN. Changes in one human and seven murine microarray 

datasets - at both the gene and pathway level – were examined using a single 

unified analysis pipeline to identify common pathways involved in the 

development of DPN. In total, we identified over 380 pathways that were 

enriched across all data sets, providing new insights into DPN pathogenesis. 

Many of the pathways that were dysregulated in our previous reports were 

similarly dysregulated when compared across the seven murine models and 

human samples, including pathways associated with immune system, cellular 

development and cellular survival176,178,181,188,199. In addition, we show that key 

pathways governing lipid metabolism (LXR/RXR, adipogenesis and PIK3CA) and 

extracellular matrix homeostasis (chondrocytes, paxillin, and fibrosis), that have 

been highlighted in our previous study, were also altered in the current setting178. 

Consistent with previous reports, transcriptional changes associated with 
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estrogen signaling were observed, as sex-specific risk levels for diabetic 

complications have been well documented in human207 and mouse184,208 models.  

In agreement with our previous studies176–178,182–184,199, we observed 

transcriptomic and functional pathway changes in multiple immune-related 

pathways in all of the data sets. In particular, our results indicate that key 

pathways involved in the control of immune and inflammatory functions were 

upregulated during DPN, including NF-κB and JAK/STAT pathways. In fact, 

these pathways are activated in the DRGs of diabetic rats and have been 

associated with nerve injury in diabetes188,209,210. Our findings support targeting 

these pathways in murine models of diabetes to understand their 

pathophysiological roles in DPN189,211. We found that both pro- and anti-

inflammatory cytokine pathways were dysregulated across data sets: IL-2, IL-6, 

and IL-10 as well as chemokines were all altered in DPN. Studies have shown 

that cytokines and chemokines not only promote existing inflammatory and 

immune responses, but also induce oxidative and nitrosative stress, further 

exacerbating cellular injury in experimental models of DPN212. In fact, during 

inflammation, both pro- and anti-inflammatory pathways are often simultaneously 

engaged as a disease process such as DPN transitions from active to chronic 

inflammation. For instance, neuronal repair is initiated by neutrophils213 and 

driven by macrophages214 under specific environmental conditions that are anti-

inflammatory; however, as the disease process progresses, the introduction of 

pro-inflammatory signals overrides the anti-inflammatory response, resulting in 

tissue destruction. This concept is established in neurodegenerative disorders 
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such as amyotrophic lateral sclerosis215, and our data strongly suggest a similar 

process is occurring in DPN.  

The importance of the immune system is further highlighted by the fact 

that many of the pathways we observed dysregulated across all murine models 

and human samples, including those involved with transcription, cellular 

development, and lipid metabolism are also involved in the immune response. 

We show that HMGB1 signaling, which is centrally involved in the regulation of 

gene transcription, is one of the most highly dysregulated canonical pathways. 

However, HMGB1 is also secreted by macrophages and damaged cells and 

mediates systemic inflammation216 by signaling through receptors such as the 

Receptor for Advanced Glycation End-products (RAGE) and Toll-Like receptors 

(TLRs), both of which have been implicated in obesity-driven inflammation and 

DPN217–220. This signaling cascade may drive NF-κB pathway that further 

exacerbates the inflammatory response and increases tissue damage.  

Moreover, disrupted lipid metabolism is associated with inflammation. 

PPAR-γ, a major regulator of lipid and glucose metabolism, is altered in murine 

models as well as in human and has been previously implicated as a common 

factor in both DPN and diabetic nephropathy176,180. Yet, PPAR-γ can also control 

inflammation in macrophages and dendritic cells221,222. Besides its established 

role in inflammation, the LXR/RXR system has emerged as a key regulator of 

cholesterol, fatty acid and glucose homeostasis, and neuroprotection223–225. 

Additionally, LXR/RXR has been increasingly shown to play an important role in 

diabetic complications225–228. Interestingly, LXR/RXR is observed as a shared 
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pathway across murine models222,229. To a further extent, our results show an 

initial downregulation of the LXR/RXR pathway in the db/db mouse model after 8 

weeks of diabetes and an upregulation at late stages of the disease. In contrast, 

LXR/RXR expression was upregulated in the ob/ob mouse model throughout the 

duration of diabetes and after 34 weeks of diabetes in STZ-induced T1DM mice, 

while no data were reported at earlier time points for T1DM mice. Collectively, 

our findings point toward a potential involvement of the LXR/RXR pathway in 

DPN. Taken together, our data further support a pivotal role of the immune 

system in DPN, though it is unclear from the current data to what extent this 

involvement is a cause or consequence of neuronal damage. We are currently 

addressing this question in both experimental198 and clinical settings 

(https://clinicaltrials.gov/show/NCT02936843).  

On a different note, while numerous pathways were dysregulated across 

data sets, the direction of transcriptional change was rarely universal. For many 

pathways, we found that mouse models of DPN and human tissue transcription 

were differentially expressed in opposite directions; whereas pathways in mice 

were upregulated, they were frequently downregulated in human patients. Similar 

cross-species discrepancy in gene expression direction was also observed in 

diabetic nephropathy between human and murine models189. There are several 

potential explanations for these discrepancies. The first is that the kinetics of 

murine and human DPN progression are different; we observed transcriptomic 

changes in mouse models of DPN up to 24 weeks (T2DM) and 34 weeks 

(T1DM), but it is unlikely these mice completely represent the advanced stages 
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of DPN encountered in human after decades of disease. Tissue sources may 

also account for these differences, as human data sets were obtained from sural 

nerves while mouse data were collected from sciatic nerves. We are currently 

exploring discordant transcriptomic dysregulation in the sciatic and sural nerves 

of mouse models, as a similar effect may be occurring here.  

Alternatively, the nature of the controls in each species may have 

influenced the results. Whereas changes observed in the murine models are a 

result of a diabetic versus non-diabetic comparison, human transcriptomic data 

are a result of comparisons between progressive and non-progressive DPN. We 

recently conducted a transcriptional network analysis of DPN progression using 

the same db/db microarray data at 8, 16, and 24 weeks183 used in the current 

study. This study identified various DPN progression-associated genes and 

pathways, which were overlapping with those identified in the present study, such 

as TLR signaling, dendritic cell maturation, LXR/RXR activation, and various 

cytokine pathways. Furthermore, O’Brien et al.’s original publication on the ob/ob 

mouse model data at 5 and 13 weeks177 included a similar comparative analysis 

result. In this study, inflammatory mechanisms were found to have a critical role 

in early development and progression of DPN, and genes related to 

inflammation, immune response, and chemotaxis were highly enriched at 5 

weeks rather than 13 weeks. Both studies identified MMP12 as the most 

significantly up-regulated gene across different time points, which was also found 

to be shared between human and murine DPN in the current study, suggesting 

its potentially critical role in the progression of DPN in both the experimental and 
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clinical settings. Finally, in order to compare changes between species, an 

orthologue conversion was also used to convert murine gene identifiers to their 

human equivalent genes; as such it is possible that some murine genes were not 

captured in the current analyses.  

We also found that many pathways that were downregulated or a mix of 

up/down regulation in T2DM-driven DPN were strongly upregulated in the data 

set from the T1DM STZ mouse model. To validate these data, we re-examined 

the outlier parameters in the data set as well as the background levels of each 

microarray; in both cases the exclusion criteria remained unmet (data not 

shown). The STZ dataset was held to the same criteria as all other murine 

models which allows for a unified comparison across models and species, yet we 

still found that most of the detected pathways were highly upregulated in T1DM. 

These data suggest that while similar molecular pathways are involved in DPN 

progression, the utilization of these pathways may be very different in T1DM and 

T2DM. This is supported by our previous study examining transcriptional 

changes in diabetic peripheral neuropathy and nephropathy in both T1DM and 

T2DM mouse models; we found that while there was a high transcriptional 

concordance in diabetic nephropathy, DPN-associated pathways were often 

highly discordant188. Together these data suggest that key molecular pathways 

are commonly involved in DPN but that they may be differentially regulated in 

T1DM and T2DM. This concept is further supported by our reports in man, where 

a systemic review of clinical trials strongly suggest different pathogenic 

mechanisms underlying DPN in T1DM versus T2DM230. 
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In summary, our transcriptional network-based approach, integrating 

multiple bioinformatics analyses, identified DPN-associated pathways that are 

highly conserved across multiple murine models and human. Many of the 

pathways identified highlight the importance of the immune system through 

cytokine and chemokine signaling as well as the observed dysregulated 

pathways associated with transcription, cellular development, and lipid 

metabolism are all involved in the immune response. The observed conserved 

pathways are likely the key responses in DPN and provide new therapeutic 

targets for the potential treatment of DPN, a disorder that remains without a drug 

intervention to date. 
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CHAPTER III 

CONSERVED GENE EXPRESSION CHANGES AND DYSREGULATED 
PATHWAYS IN COMPLICATION-PRONE TISSUES OF STREPTOZOTOCIN-

INDUCED DIABETIC MICE 

Abstract 

Diabetic peripheral neuropathy (DPN) and diabetic nephropathy (DN) are 

two common complications of diabetes that are associated with a high degree of 

morbidity. Currently, treatments only manage the symptoms of these 

complications rather than targeting cause of the disease. There is therefore a 

critical need to identify treatment strategies that impact the underlying disease 

pathogenesis. In this study, diabetes was induced in Male C57BLKS db/+ mice 

with a single high-dose 150 mg/kg (i.p.) streptozotocin (STZ) injection at 6 weeks 

of age. STZ-treated mice developed type 1 diabetes mellitus (T1DM) 

phenotypes: significantly lowered body-weight and insulin level, and highly 

elevated levels of fasting glucose, triglyceride and cholesterol. Sciatic nerves, 

dorsal root ganglia, kidney renal cortex, and glomeruli tissues were harvested at 

16 weeks of age and examined for differential expression between control and 

STZ-diabetic mice using an RNA-Sequencing (RNA-seq) approach. We identified 

differentially expressed genes (DEGs) ranging from 76 to 4130 in four tissues. 

242 DEGs were common in three or more tissues, with three quarters of genes 

displaying concordance in the directions of expression change across tissues. 

We also identified 309 significantly enriched pathways, 38 of which were shared 
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across at least three tissues. Network analysis revealed clusters of pathways 

involving oxidative stress, cell cycle regulation, and inflammation as being 

important enriched pathways from the list of concordant genes. These findings 

provide transcriptomic profiles of complication-prone tissue in the STZ model of 

T1DM and describe factors influencing both DPN and DN. 

Introduction 

T1DM accounts for approximately 5% of the diabetic population and 

typically describes the autoimmune destruction of pancreatic β cells leading to 

insulinopenia and systemic hyperglycemia231. This condition is managed through 

rigorous insulin therapy but even under strict glycemic control patients can 

experience the microvascular complications associated with T1DM. DPN and DN 

are two of the most common complications associated with diabetes occurring in 

20% of patients with T1DM232–234.  

DPN is characterized by the chronic, symmetrical, and distal degeneration 

of peripheral nerves in a progressive manner leading to symptoms including pain, 

hypersensitivity, and burning or tingling sensations235. Progression of this 

condition can lead to the loss of sensory input and is often associated with the 

diabetic foot condition which is the leading cause of non-traumatic lower limb 

amputations236. DN involves the loss of kidney function and is the leading cause 

of end stage renal disease (ESRD) accounting for around 50% of cases237. DN is 

often identified by proteinuria due to glomeruli damage, such as basement 

membrane thickening, which can lead to low serum albumin levels. DN is usually 

a slowly progressive condition but due to current treatments limitations, ultimately 



55 

many patients reach ESRD. These complications are in dire need of mechanism-

based therapies and to better examine these diseases many animal models have 

proven invaluable to the support of basic and translational studies aiming to 

uncover novel therapeutic strategies192,238. 

The most common model used to study T1DM is the STZ-induced model. 

STZ is a glucosamine-nitrosourea compound isolated from Streptomyces 

achromgenes as a broad spectrum antibiotic and antineoplastic agent239. Single 

high dose (SHD) or consecutive multiple low dose (MLD) of STZ can induce a 

T1DM like condition in murine models by ablating pancreatic β cells through the 

glucose transporter 2240,241. These dosing paradigms have been shown to have 

critical differences with SHD having a robust and early complication phenotype 

as well as high mortality while the MLD regiment exhibits a low to moderate 

complication phenotype242–244.  

This study utilized the SHD paradigm to examine the transcriptomic 

changes occurring in DPN (sciatic nerve and dorsal root ganglia) and DN 

(glomeruli and renal cortex) prone tissues. Many transcriptomic studies have 

been conducted using microarray data in an attempt to investigate underlying 

causes of diabetic complications which have indicated mechanisms involving 

inflammation, oxidative stress, as well as various metabolic processes176,180,245. 

Comparisons between DPN and DN have been previously conducted in an effort 

to identify a possible unified approach to treating these microvascular 

complications associated with T1DM and type 2 diabetes mellitus (T2DM)246,247. 

However, the significance of this study is that it examines and compares the 
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transcriptomic profiles in the STZ-model of T1DM in an effort to identify possible 

shared mechanisms. 

Methods 

Sample Collection and Processing 

Male C57BLKS (BKS) db/+ were fed a standard diet (AIN76A; 11.5% kcal 

fat; Research Diets, New Brunswick, NJ, USA) and cared for in a pathogen-free 

environment by the University of Michigan Unit for Laboratory Animal Medicine. 

Diabetes was induced in BKS db/+ mice with a single high-dose 150 mg/kg (i.p.) 

STZ injection at 6 weeks of age. STZ-treated mice developed T1DM phenotypes 

according to Diabetic Complications Consortium guidelines248,249 including 

significantly lowered body-weight and insulin level, and highly elevated levels of 

fasting glucose, triglyceride and cholesterol (Figures 6,7,8). 

Total RNA was isolated from sciatic nerves (SCN, n=6), dorsal root 

ganglia (DRG, n=6), kidney renal cortex (Cortex, n=6), and glomeruli (Glom, n=6) 

tissues harvested at 16 weeks of age from both untreated and STZ-treated BKS 

db/+ mice. RNA quality was evaluated using TapeStation (Agilent, Santa Clara, 

CA) with an RNA integrity number of ≥8 as the cutoff for further sample 

processing with the Illumina TruSeq mRNA Sample Prep v2 kit (Catalog #s 

RS122-2001, RS-122-2002; Illumina, San Diego, CA, USA). Resulting cDNA was 

sequenced with a paired-end read length of 100 bases using an Illumina HiSeq 

2000 (Illumina, Inc., San Diego, CA, USA) by the University of Michigan DNA 

Sequencing Core (http://seqcore.brcf.med.umich.edu/). 
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Figure 6. Metabolic Phenotype db/+ mice testing following STZ treatments. 
Metabolic phenotyping including body weight (A), fasting blood glucose (B), 
fasting plasma insulin (C), and glycated hemoglobin (D).  

 

 Metabolic phenotyping
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** **
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Figure 7. Neuropathy Phenotype db/+ mice testing following STZ 

treatments. Neuropathy phenotyping included sural nerve conduction velocity 
(NCV) (A), sciatic NCV (B), and hindpaw withdrawal latency (C).  

 

Neuropathy phenotyping

A B C

** ** NS 
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Figure 8. Nephropathy Phenotype db/+ mice testing following STZ 

treatments. (C) Nephropathy phenotyping included glomerular periodic-acid 
schiff (PAS)-positive area (A), Mesangial Index (B), glomerular area (C), and 
albumin/creatinine ratio (D). All measurements were taken at 16 weeks of age in 
all mice. *, p<0.05, **, p<0.01, ***, p<0.001, NS, not significant. 

 

 Nephropathy phenotyping
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Raw sequencing reads were cleaned using Trimmomatic to remove reads with 

adapter or Poly-N sequences as well as reads with a quality score <30250. Quality 

control assessment of RNA-Seq data was completed using the FastQC version 

0.10.1251. Cleaned reads were mapped to the mouse reference genome m38.p6 

Refseq using HISAT2252. FeatureCounts253 was used to count uniquely mapped 

reads while genes with zero expression across samples were omitted from 

differential expression analysis. Fragments per kilobase of exon per million 

mapped reads (FPKM) as a measurement of transcript expression were 

calculated using an in-house script. 

Differential Expression and Pathway Enrichment 

 Differentially expressed genes (DEGs) were identified using the DESeq2 

R package254. All genes with a Benjamini-Hochberg adjusted p-value less than 

0.05 were determined to be differentially expressed between untreated and STZ-

treated groups for each tissue type. These DEG lists were used as input for 

Ingenuity Pathway Analysis (IPA, QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) to 

determine significantly enriched canonical pathways based on a negative log p-

value greater than 1.3255. All four tissue types were analyzed for unique and 

overlapping DEGs and pathways. 

Network Clustering 

DEGs with shared directional changes across tissues were used as input 

gene sets for canonical pathway enrichment analysis through IPA. Pathways 

were determined to be significantly enriched based on a negative log p-value 
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greater than 1.3 and were then examined for their similarity of gene content. 

Gene overlap within each pathway were used to determine network edges, while 

pathways are represented as nodes. The R package InfoMap was used to 

identify clusters of highly interconnected pathways256. 

Results 

Changes in Gene Expression 

Global gene expressions were profiled in Cortex, Glom, DRG, and SCN 

isolated from the STZ-induced murine model of T1DM. DEGs were determined 

based on a comparison between STZ-treated animals and untreated control 

animals with a sample size of 6 for each group although one SCN sample from 

the STZ-treated group failed our quality control assessment. Each tissue had a 

varying number of DEGs identified with cortex having the most (4,130 DEGs) and 

DRG holding the least (76 DEGs) while the remaining tissues were much closer 

in terms of total DEGs with Glom (2,719 DEGs) and SCN (2,621 DEGs).  

Figure 9A illustrates the overlap among the four DEG sets identified from 

each tissue. Of the DEGs only 242 were shared across three or more tissues. 

While there is a low amount of conserved expression changes across tissues, 

the overlapping DEGs show a high degree of similarity in regard to direction with 

188 concordant and 54 discordant genes across tissue types (Figure 9B). Five 

genes were differentially expressed across all 4 tissues and down-regulated in all 

cases except for Galnt16 in the renal cortex (Table 9). Approximately, half of the 

DEGs, were found to be unique to the specific tissue except for DRG. The DRG 

samples had a low number of unique genes with only 32% (24 genes) most likely 
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due to the low total DEGs identified. The other tissue samples had 52% (SCN, 

1368), 55% (Glom, 1496), and 63% (Cortex, 2597) unique gene expression. 

Enriched Canonical Pathways 

Complete DEG lists were analyzed using IPA to determine enriched 

canonical pathways. Pathways were determined to be significantly enriched with 

a –log p-value greater than 1.3. Cortex had the most enriched pathways 

represented by the DEG list with 182 while DRG had the least with 36. The other 

tissues, SCN and Glom, had 104 and 162 pathways, respectively. The pathways 

identified totaled 309 with 6 enriched in all four tissue types and another 32 in at 

least three tissues (Figure 10). Pathway directionality was not always able to be 

determined based on Z-score. However, among the top six enriched pathways, 

acute phase response signaling and colorectal cancer metastasis signaling 

appear to be up-regulated in nephropathy and down-regulated in neuropathy 

(Table 10). Within the top six enriched pathways, PI3K/AKT signaling according 

to the Z-score was down-regulated in all tissues besides DRG. The discrepancy 

with DRG in this case is likely due to the low gene input being inadequate to 

calculate the Z-score. Within the larger list of pathways shared across at least 

three tissue types for which a Z-score was calculated, there are some interesting 

patterns. Signaling pathways such as p53, protein kinase A, and ILK all showed 

similar directional changes across tissues.
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Figure 9. Gene Overlap Common between Complication-Prone Tissue. (A) 
The bar graph represent the overlapping differentially expressed (DEG) genes 
common among tissue types. (B) The venn diagram shows the proportion of 
DEGs common across at least three tissue types with either concordant or 
discordant expression changes.  

 

A B
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Table 9. Gene Overlap Common between Complication-Prone Tissue. Each 
tissue was analyzed for differential expression using the DESeq2 package in R 
with an adjusted P value<0.05 as the significance cutoff. The color gradient and 
values within the table are log2 fold change for each gene within the tissue 
columns. 

 

Gene 

Symbol
Description Cortex DRG Glom SCN

Gm10639 predicted gene 10639 -6.42 -1.95 -2.41 -1.90

Galnt16
Polypeptide N-

Acetylgalactosaminyltransferase 16
1.20 -0.96 -0.82 -1.05

Txnip thioredoxin interacting protein -1.40 -1.56 -0.87 -0.80
Mt2 metallothionein 2 -2.48 -1.97 -4.13 -2.26
Mt1 metallothionein 1 -2.06 -1.42 -2.81 -1.74

Slc25a16
solute carrier family 25 (mitochondrial 
carrier, Graves disease autoantigen), 

member 16
-0.34 -0.45 -0.47

Exoc5 exocyst complex component 5 -0.39 -0.40 -0.37

Mgea5
meningioma expressed antigen 5 

(hyaluronidase)
-0.37 -0.54 -0.39

Agfg2 ArfGAP with FG repeats 2 -0.77 -1.04 -0.81
Brap BRCA1 associated protein -0.34 -0.31 -0.38

Agt
angiotensinogen (serpin peptidase 

inhibitor, clade A, member 8)
-2.19 -1.62 -1.51

Shank3 SH3/ankyrin domain gene 3 0.53 -0.76 -0.66
Tc2n tandem C2 domains, nuclear 1.30 -1.44 -1.61

Prss23 protease, serine, 23 -0.74 -0.80 -0.84

Pnpla2
patatin-like phospholipase domain 

containing 2
-1.43 -0.78 -1.13
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Figure 10. Enriched Pathways Common Between Complication-Prone 

Tissue. The bar graph represents the overlapping canonical pathways identified 
by IPA common among tissue types. 
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Table 10. Enriched Pathways Common Between Complication-Prone 

Tissue. Each DEG set was analyzed for pathway enrichment using IPA then 
compared to identify common canonical pathways across tissues. The numbers 
within the table are -log (p values) representing significant enrichment while 
colors represent Z-scores indicating pathway directionality. Colorless boxes 
represent no directional change or a Z-score which could not be calculated. 

 

Ingenuity Pathway Analysis 

Enrichment
Cortex DRG Glom SCN

Acute Phase Response Signaling 4.51 2.10 1.76 1.50
Adipogenesis pathway 2.34 1.38 3.47 2.22

Colorectal Cancer Metastasis Signaling 2.81 1.66 1.95 2.28
Role of Macrophages, Fibroblasts and 

Endothelial Cells in Rheumatoid Arthritis
2.56 1.41 2.58 2.02

PI3K/AKT Signaling 1.78 1.44 2.19 1.77
PTEN Signaling 1.77 1.47 2.40 1.43

Molecular Mechanisms of Cancer 6.99 4.97 4.87
Axonal Guidance Signaling 2.77 6.26 6.29

p53 Signaling 6.41 4.00 3.41
Hepatic Fibrosis / Hepatic Stellate Cell 

Activation
3.00 2.95 7.65

Aryl Hydrocarbon Receptor Signaling 5.30 3.93 2.87
Glioblastoma Multiforme Signaling 3.86 2.67 3.93

Aldosterone Signaling in Epithelial Cells 4.05 2.70 1.82
Germ Cell-Sertoli Cell Junction Signaling 2.02 2.73 3.54
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Conversely, glioblastoma multiforme signaling, glioma invasiveness signaling, 

and integrin signaling was up-regulation in DN and down-regulated in DPN, 

suggesting different roles between complications. Insulin receptor signaling was 

down-regulated in DN related tissues while no Z-score was able to be calculated 

for DPN associated tissues. 

Network Analysis of Concordant Gene Pathways  

To further investigate possible shared characteristics influencing multiple 

complications, we isolated the 188 concordant genes out of the 242 genes 

shared across at least three tissues and used this list as input for IPA. The 

resulting list of enriched pathways was subjected to network analysis by 

evaluating for gene overlap to form the edges while pathways served as nodes 

(Figure 11). InfoMap was then used for community structure analysis which 

identified five different clusters within the network. This network level analysis 

explores the interconnections shared across our tissue datasets based on gene-

gene associations in order to find related/associated pathways.  

The main green cluster involving 17 out of 29 total pathways is a dense 

group involving pathways related to DNA damage stress responses, oxidative 

stress, immune response, and cell cycle. The blue cluster of five pathways is 

related to reactions in response to oxidative stress and maintaining a reducing 

environment257,258. The red cluster of four pathways includes metabolic pathways 

involved in both salvage and biosynthesis. The smallest clusters of one and two 

nodes also involve immune response with antigen presentation and histamine 

biosynthesis.
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Figure 11. Clustering of Enriched Concordant Pathways. IPA identified 29 
significantly enriched canonical pathways based on the list of 188 concordant 
genes shared across at least three tissue types. Pathways were then examined 
for their similarity of gene content to determine edges. InfoMap256, a network 
clustering package in R, was used to determine clusters as represented by the 
differently colored nodes.  
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This small cluster has roles in multiple systems but its immune response is most 

evident in the context of the other network elements259,260. These network-level 

data of concordant shared genes indicate that both DPN and DN complications 

involve immune system response, oxidative stress, and cell cycle regulation in 

T1DM.  

 As expected, some pathways involved in our concordant DEG network 

were also enriched across 3 or more including glucocorticoid receptor signaling, 

aldosterone signaling in epithelial cells, p53 signaling, d-myo-inositol (1,4,5)-

triphosphate biosynthesis, and PI3K/AKT signaling. Most other pathways 

involved in our network were also enriched in one or two individual tissues such 

as the NRF2-mediated oxidative stress response being upregulated in both DN 

associated tissues (Table 11).



70 

 

Table 11. Concordant Gene IPA results from Complication-Prone Tissues. 
IPA enriched pathway results from our list of concordant DEGs are listed above. 
Ratio indicates the number of genes included in our submitted list to their total 
annotation list for that canonical pathway. Z-scores are used to determine 
directionality. NaN indicates when a Z-score cannot be calculated and 0 indicates 
no directionality based on the submitted genes and their fold change.  

 

Ingenuity Canonical Pathways
 -log(p-

value)
Ratio z-score Molecules

NRF2-mediated Oxidative Stress Response 2.96 0.04 NaN
GSTA5,JUNB,DNAJB2,FKBP5,MAFF,ENC1,GST
O1

Glucocorticoid Receptor Signaling 2.58 0.03 NaN
BCL2L1,NFKBIA,HSP90AB1,SGK1,FKBP4,CEB
PB,FKBP5,AGT

IL-17A Signaling in Fibroblasts 2.54 0.09 NaN NFKBIA,LCN2,CEBPB
Salvage Pathways of Pyrimidine 
Ribonucleotides 2.11 0.04 NaN NME3,PIM1,SGK1,HIPK1
Histamine Biosynthesis 2.09 1.00 NaN HDC
Unfolded protein response 1.98 0.05 NaN CALR,PDIA6,CEBPB
GADD45 Signaling 1.98 0.11 NaN GADD45B,GADD45G
Antioxidant Action of Vitamin C 1.92 0.04 NaN PLCB4,NFKBIA,PDIA3,GSTO1
Aldosterone Signaling in Epithelial Cells 1.90 0.03 NaN PLCB4,HSP90AB1,PDIA3,SGK1,DNAJB2
p53 Signaling 1.88 0.04 NaN HDAC9,BCL2L1,GADD45B,GADD45G
Pyridoxal 5'-phosphate Salvage Pathway 1.79 0.05 NaN PIM1,SGK1,HIPK1
Proline Degradation 1.79 0.50 NaN LOC102724788/PRODH
PPARÎ±/RXRÎ± Activation 1.78 0.03 0 PLCB4,NFKBIA,HSP90AB1,PDIA3,INSR
Lipid Antigen Presentation by CD1 1.72 0.08 NaN CALR,PDIA3
PI3K/AKT Signaling 1.71 0.03 0 BCL2L1,NFKBIA,HSP90AB1,INPP5K
D-myo-inositol (1,4,5)-Trisphosphate 
Biosynthesis 1.69 0.07 NaN PLCB4,PI4K2A
Biotin-carboxyl Carrier Protein Assembly 1.61 0.33 NaN ACACB
VDR/RXR Activation 1.58 0.04 NaN CXCL10,CEBPB,KLF4
Glutathione-mediated Detoxification 1.58 0.06 NaN GSTA5,GSTO1
ATM Signaling 1.55 0.04 NaN NFKBIA,GADD45B,GADD45G
Hereditary Breast Cancer Signaling 1.51 0.03 NaN HDAC9,GADD45B,GADD45G,WEE1
Arsenate Detoxification I (Glutaredoxin) 1.49 0.25 NaN GSTO1
Ascorbate Recycling (Cytosolic) 1.49 0.25 NaN GSTO1
Glutathione Redox Reactions II 1.49 0.25 NaN PDIA3
PEDF Signaling 1.46 0.03 NaN BCL2L1,NFKBIA,PNPLA2
Antigen Presentation Pathway 1.41 0.05 NaN CALR,PDIA3
PPAR Signaling 1.36 0.03 NaN NFKBIA,HSP90AB1,INSR
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Discussion 

Bioinformatics analysis in previous studies examined the shared factors 

between DPN and DN. However, no study has specifically examined the STZ-

model of T1DM with a RNA-seq transcriptomic approach. While both T1 and 

T2DM have related phenotypes in terms of their complications, these diseases 

have quite different incidences of complications. For example, T1DM 

complications such as DPN and DN have an incidence rate of approximately 

20%, while 42-45% of T2DM patients will also experience these 

complications261,262. Differences between T1 and T2DM complications extend 

beyond the rate of incidence. For instance, development of changes and 

neurotrophic support also leading to separate outcomes despite similar 

hyperglycemic conditions263–266. Findings such as these indicate a direct need for 

examination of T1DM complications as unique in order to develop future 

approaches for treating and preventing these complications.  

The DRG dataset clearly showed a lower amount of expression change 

due to STZ treatment with only 76 DEGs compared to the other tissues which 

identified from 2,621 to 4,130 DEGs. The separation seen within the PCA plot 

suggests that this tissue was not heavily affected by the 10 weeks of 

hyperglycemia following STZ treatment (Figure 12). However, despite the minor 

gene expression changes induced in DRG tissue, mice involved in this study still 

demonstrated clear changes in neuropathic phenotyping (Figure 7). Due to the 

individual treatment of each tissue, the low amount of DEGs influence our 

conserved analysis by weighting the study more heavily toward tissues affected 
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Figure 12. Principal Component Analysis of Four Tissues in STZ Treated 

Mice and Wild Type Controls. Principal component analysis (PCA) uses an 
orthogonal transformation to convert correlated variables into linear uncorrelated 
variables so that variance between samples can be visualized in the dot plot 
above. Each tissue groups into separate clusters although samples from both 
STZ treated and wild type mice intermix within those clusters.  
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by DN complication rather than DPN. While the conserved genes were most 

often represented in cortex, glomerulus, and sciatic nerve we had very little 

contribution to the total genes from the DRG tissue. However, despite this 

caveat, this study has identified potentially critical genes, pathways, and 

functions that may influence both DPN and DN in T1DM. 

The initial examination of genes in the kidney and nerve of the SHD-STZ 

model after 10 weeks of hyperglycemia in this study revealed that although a low 

number of genes were disrupted in both DPN and DN, the genes affected in both 

conditions often showed a similar change when compared to healthy tissue. Over 

three quarters of shared genes showed a concordant directional change across 

tissues indicating that these shared genes are most often being influenced in a 

similar way for both conditions. DRG was the only tissue which did not 

demonstrate discordant expression directionality within the genes shared across 

three or more tissues. The other three tissues all had discordant genes with 

Cortex having the most (22) followed by Glom (16) and then SCN (15). The 

genes with discordant or opposite directionality between complication tissues 

need to be carefully considered whenever proposing treatments as these targets 

may exacerbate one condition while assisting in another. Roughly half of the 

genes identified as differentially expressed when comparing complication-prone 

tissue in our STZ-model to the healthy control were unique to the tissue used 

with the exception of DRG being 32% unique likely due to the low total DEGs. 

These unique DEGs should also be considered for similar reasons as discordant 
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genes but are most likely unique due to the different gene expression profiles of 

separate tissues.  

In an effort to further elucidate the cellular systems influencing DPN and 

DN of the STZ T1DM model, pathway analysis of DEGs through IPA was also 

performed on each tissue as well as on the list of DEGs shared across three or 

more tissues. Unlike the DEGs shared across tissues which shared a high 

amount of concordance, the pathways shared across tissues between DPN and 

DN tissues. Out of 38 shared pathways, 21 were unable to support the Z-score 

calculation in any tissue (Table 11). However, it is of note that based on the low 

DEG count of DRGs, no Z-score was able to be calculated for the enriched 

pathways from DRG tissue. Within the group of pathways enriched in three or 

more tissues, acute phase response signaling, colorectal cancer metastasis 

signaling, glioblastoma multiforme signaling, glioma invasiveness signaling, and 

integrin signaling were all up-regulated in DN and down-regulated in SCN. 

Shared concordant pathways included ILK signaling and protein kinase A 

signaling which were up-regulated while PI3K/AKT signaling and p53 signaling 

were down-regulated. Many of the above pathways revolve around cell 

proliferation, cell cycle progression, and cell motility in a way that these cellular 

processes are increased in DN and decreased in DPN. This indicates that 

progression in both diseases is being observed through proliferation within the 

kidney tissue and degeneration in the sciatic nerve tissue267–269.  

 Pathway analysis was also performed on the list of 188 concordant genes 

across tissues. To investigate connections and synergies between complications 
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the pathway results from concordant genes were also subjected to network 

analysis with overlapping genes as edges while pathways served as nodes. 

When compared with the list of shared DEGs, the concordant pathway network 

also showed shared edges (genes) between five pathways enriched within the 

full DEG data for each tissue as well. These pathways include D-myo-inositol 

(1,4,5)-trisphosphate biosynthesis, p53 signaling, aldosterone signaling in 

epithelial cells, glucocorticoid receptor signaling, and PI3k/AKT signaling which 

share BCL2L1, HSP90AB1, NFKBIA, and PLCB4. These genes were 

differentially expressed in all tissues, besides DRG, with HSP90AB1 and PLCB4 

being upregulated while NFKBIA and BCL2L1 are downregulated. These genes 

are involved in the cell survival components of these pathways and may be an 

important influence in the progression of complications via their involvement in 

multiple pathways affecting three of our complication-prone tissues.  

Network analysis also identified clusters of pathways associated with 

inflammation and oxidative stress as important components involved in the 

concordant expression profile across tissues (Figure 11). Oxidative stress and 

the glutathione pathways involved in our network structure specifically, have 

been shown to be directly linked to the risk of kidney complications in T1DM258. 

Inflammation has also been heavily linked to the progression of diabetic 

complications132,270–274. The pathways involved in our network influencing 

inflammatory response include glucocorticoid receptor signaling, IL-15 

production, histamine biosynthesis, and the antigen presentation pathways. 

These pathways have been previously linked to diabetic complications with 
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elevated histamine levels observed in diabetic patients and linked to peripheral 

vascular diseases275. Glucocorticoids have been shown to induce a similar 

neurochemical pattern to a diabetic state in DPN276. PPAR signaling is also 

involved in our network structure and has been a therapeutic target of T2DM. 

Pioglitazone, a PPAR agonist, has been shown to have a therapeutic benefit in 

DN and for reducing neuropathic pain and nervous system inflammation in 

DPN247,277–280. Based on links within the literature, these pathways are also likely 

involved in the progression of diabetic complications in peripheral nerve and 

kidney tissues as observed in this study.  

In a previous manuscript from our lab examining both DN and DPN in 

T1DM and T2DM using microarray data we observed both similar results188. The 

previous study examined common dysregulation between T1DM and T2DM. 

Gene expression in DPN tissue differed between T1DM and T2DM and DN 

tissue had similar expression patterns between T1DM and T2DM. The data 

presented here investigated multiple tissues for DN (Glom and Cortex) and DPN 

(SCN and DRG) while the previous study only examined Glom and SCN. Our 

previous study saw 62% concordance between DN and DPN in STZ-treated mice 

while we saw slightly higher with 77.7% of shared genes also sharing a 

directional change. Similar pathway enrichment reflecting oxidative stress and 

inflammation were also identified by both studies. 

In summary, our comparison of the transcriptomic profiles of nephropathy 

and neuropathy prone tissues using the STZ-model of T1DM indicate that 

oxidative stress, cell cycle regulation, and immune response are important 
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factors conserved between conditions. These findings support previously 

identified factors influencing microvascular complications in T1DM and provide 

transcriptomic profiles of multiple tissues within the SHD STZ-model of the 

disease.  
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CHAPTER IV 

ΑLPHA-SYNUCLEIN-INDUCED METHYLATION AND GENE EXPRESSION 
CHANGES IN MICROGLIA 

Abstract 

 Parkinson’s disease (PD) is the second most common neurodegenerative 

condition characterized by loss of dopaminergic neurons, α-synuclein 

accumulation, and neuroinflammation. Alpha synuclein (α-syn) has been 

implicated as a contributing factor in PD and can induce an innate immune 

response in the brain281,282. This protein is tightly regulated by methylation, 

however, the influence α-syn can have on methylation and expression patterns 

has not been examined281–286. Here we used reduced representation bisulfite 

sequencing (RRBS) to determine DNA methylation changes and RNA-

sequencing to examine gene expression changes induced in microglia, the 

innate immune cell of the brain, by α-syn. The mThy1-Asyn mouse, which 

overexpresses human α-syn as a model of PD, has been used to study the 

influence α-syn has on microglia activation. Microglia DNA and RNA were 

isolated at 3 and 13 months of age from these mice and used for RRBS and 

RNA-sequencing to capture genomic methylation changes at CpGs and changes 

in gene expression. These transgenic mice have been shown to present markers 

of neuroinflammation as early as 1 month and begin to show motor and non-

motor symptoms at 3 months similar to a pre-parkinsonian phenotype. 
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Reduction in dopamine levels and a more severe phenotype are observed at 14 

months indicating an early stage Parkinson’s phenotype. At 3 months, 27,175 

differentially methylated CpGs (DMCs) were identified between healthy and 

transgenic mice representing 5,315 unique genes and 119 differentially 

expressed genes (DEGs). Identified genes represented by our DMCs 

(differentially methylated genes, DMGs) and DEGs from RNA-seq were subject 

to enrichment analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes 

and Genomes (KEGG), and Reactome pathways annotation databases. 

Biological functions related to adhesion, cellular movement, synaptic 

transmission, and immune functions were over-represented within our lists of 

DMGs and DEGs at 3 months, suggesting a possible shift to an activated 

microglia phenotype at an early stage of PD. The more phenotypically advanced 

mice at 13 months had 15,226 DMCs representing 3,742 DMGs and 3,766 

DEGs. Enriched biological functions and pathways related to migration, 

adhesion, proliferation, and cellular metabolism/mitochondrial dysfunction were 

identified from our DEG and DMG lists at 13 months. Network analysis was also 

used on each dataset to further elucidate possible connections within the data. 

Networks produced from 3-month DMGs and DEGs were heavily influenced by 

immune and migration terms. While 13-month networks involved terms related to 

metabolism and proliferation linked to neurodegenerative functions. Migration 

and adhesion functions with an emphasis on cell surface interaction were also 

prominent. Possible correlations between changes in methylation and gene 

expression were investigated, but the only significant correlation was a negative 
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correlation with increased methylation in intronic DMCs associated with a 

decrease in gene expression. Overall, α-syn-induced changes in methylation and 

gene expression observed in microglia were related to immune response, 

synaptic transmission, and cellular movement in early stages. Then shifted to cell 

cycle, immune response, and metabolism in later stages. These pathways are 

associated with an active immune response from microglia, which influence 

synaptic transmission as well as induce apoptosis and phagocytose dead 

cells287–290.  

Introduction 

 Parkinson’s disease (PD) is a common neurodegenerative condition 

associated with the loss of dopaminergic neurons in the substantia nigra. The 

loss of dopamine signaling accounts for motor symptoms of PD, including 

tremors, rigidity, slowness of movement, and postural instability28. Patients often 

experience nonmotor symptoms such as depression, anxiety, sleep disorders, 

constipation, and cognitive impairment291. A hallmark of this disease is protein 

aggregates called Lewy bodies, which are primarily composed of α synuclein292.  

Alpha synuclein (α-syn) is a protein whose oligomerization and 

aggregation have been implicated as a contributing factor to a variety of 

neurodegenerative diseases such as dementia with Lewy bodies, multiple 

system atrophy, and PD281. The function of α-syn is still a subject of debate, but it 

has been shown to be involved in regulating synaptic transmission and 

transcription293–297. α-syn is highly enriched at the synapse co-localizing with 

reserve pools of synaptic vesicles and involved with synaptic vesicle cycling, 
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vesicle pool size, mobilization, and endocytosis298,299. Both histone and direct 

DNA interactions have been shown with α-syn in the nucleus through binding to 

gene promoters and regulation of acetylation-deacetylation cycles of histones300–

303. Due to the diverse function of α-syn, it is tightly regulated at multiple levels. 

Transcriptional regulation involving epigenetics such as micro RNAs (miRNA) 

and particularly DNA methylation have been shown to play a key role in gene 

expression of α-syn283–286. Reduced DNA methylation has been reported to lead 

to increased α-syn levels in the brain of PD and patients experiencing dementia 

with Lewy bodies303,304. While α-syn has been shown to influence histone 

acetylation, its influence on genomic methylation patterns has yet to be 

investigated302. Methylation plays a critical role in the regulation of α-syn and the 

ability to influence changes in methylation may create a positive feedback loop 

contributing to disease progression283. However, the influence α-synuclein has on 

DNA methylation and gene expression patterns have not been thoroughly 

explored. Transcriptional and post-translational mechanisms regulating 

expression levels may play a critical role in PD development305. 

A common challenge to studying α-syn is the heterogeneity of structures it 

can be found in281. Various in vitro studies suggest that α-syn is predominantly a 

monomer in its native state, but conformational changes can be induced by a 

wide variety of processes306–313. In disease conditions, α-syn oligomers are found 

in axons and presynaptic terminals where they may damage axons and 

presynaptic terminals314–319. To overcome the challenge of structural diversity, in 

vivo models have been designed, which overexpress the SNCA gene313,320,321. 
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While some models overexpress mutant forms of SNCA, such models only 

represent the familial form of the disease, which accounts for around 27% of 

cases322. Models expressing unmutated forms of α-syn may better recapitulate 

the progression of PD in idiopathic cases323–325.  

. The murine model used in this study drives overexpression of full-length 

human wild-type α-syn under the murine Thy-1 promoter (mThy1-Asyn). This 

model demonstrates progressive motor and nonmotor symptoms, loss of striatal 

dopamine, α-syn associated pathology, and similar neuroinflammatory markers 

typically found in PD patients96. These mice present with 1.5-3.4-fold higher α-

syn expression than littermate controls. These levels are close to that observed 

in patients with a familial form of PD with a gene triplication of α-syn96. The 

symptoms these mice experience are progressive; however, no loss in the 

amount of dopaminergic neurons have been recorded96,97. As such, they are 

often considered as an early-stage progressive model of PD. As early as one 

month of age, an active immune response was observed through elevated 

mRNA of cytokines and activated microglia103,326. Motor and non-motor 

symptoms become evident at 3 month, which has been observed using various 

motor and behavioral tests98,99. Dopamine levels rapidly decrease at 14 months 

along with increase mortality96. The time points selected for our study revolve 

around these observed phenotypic changes. The three-month time point is after 

initiation of inflammation and once a phenotype begins to develop, representing a 

pre-parkinsonian time point. The 13-month time point demonstrates an early 

stage of PD directly before the decline in dopamine levels that occurs at 14 
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months. These critical time points of initiation of neuroinflammation and 

progression of PD symptoms provide the opportunity to identify potential 

biomarkers and therapeutic targets associated with α-synuclein-induced 

inflammation. 

The increase inflammation and activated microglia in this model are 

consistent with the neuroinflammation measured in patients99–101. Microglia are a 

particular cell of interest in the initiation and progression of PD based on their 

involvement in the immune response which can be engaged via aggregated α-

syn282. The M1 activated status is associated with a proinflammatory phenotype 

and expression of various cytokines and neurotoxic compounds327–331. 

Alternatively, an M2 state related to resting microglia, is associated with the 

healing and maintenance of neural environment332–334. Clinical trials involving 

inhibition of the immune system using NSAIDs and ibuprofen have yielded mixed 

results and shown that a non-specific inflammatory blockade will most likely not 

be a beneficial treatment for patients335–342. However, some evidence from these 

studies does support the prevention and delay of symptoms associated with PD. 

Therapeutic intervention targeting the phenotype shift between M1 and M2 

microglia might be a more effective approach to treatment. Regulatory changes 

in microglia induced by α-syn would be a novel and unique mechanism involved 

in PD progression that could uncover new therapeutic targets and strategies. 

This investigation focused on changes in DNA methylation and gene expression 

induced by α-syn in microglia involved in shifting microglia to an M1 state.  

Materials and Methods 
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Study Design 

This study is an ex vivo investigation of the effect of α-syn on 

transcriptional regulation via methylation and gene expression levels in microglia. 

Figure 13 outlines and describes the workflow of our study. Briefly, microglia 

were isolated from 3- and 13-month-old mThy1-Asyn mice and wild type 

littermate controls for DNA and RNA extraction. Reduced representation bisulfite 

sequencing (RRBS) was used to identify methylation changes induced by α-syn 

overexpression. RNA-sequencing was used to measure gene transcription levels 

to assess the effect of methylation changes on transcription and expression 

changes in response to α-syn stimulation.  

Animals 

Mice overexpressing full-length human wild-type α-syn under the murine Thy-1 

promoter on the X chromosome were procured from the Chesselet laboratory at 

the University of California, Los Angeles. The corresponding background of these 

mice are the B6D2F1/J mice (stock# 100006) from The Jackson laboratory (Bar 

Harbor, ME). In all performed studies, male animals were used in order to avoid 

adverse effects produced by females’ ability to inactivate the X chromosome, 

which may contain the inserted human α-syn gene under the m-Thy1 promoter. 

The genotype of all mice was verified with PCR analysis of tail snip DNA via 

general endpoint PCR.  



85 

 

Figure 13. Study 3 Workflow and Description. mThy1-Asyn mice along with 
littermate controls were aged to 3 and 13 months then euthanized for tissue 
collection. Microglia were isolated from homogenized whole brains using a 
percoll gradient. Both RNA and DNA were dually extracted, while the RNA was 
used transcription sequencing and DNA underwent bisulfite conversion for 
RRBS. Data were analyzed for DEGs and DMGs in order to identify possible 
biomarkers. Gene lists were also analyzed for function enrichment using GO, 
KEGG, and Reactome databases.  
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The hypoxanthine guanine phosphoribosyl transferase (HPRT) gene was used 

as the internal control with a forward primer of 

GAAGAGCTACTGTAATGATCAGTCAACGG and a reverse primer of 

GAGAGGTCCTTTTCACCAGCAAGC. The forward primer used for the human 

SNCA gene was GCTACTGCTGTCACACCCGTC and the reverse primer was 

GATGATGGCATGCAGCACTGG. 

Animal Use 

All procedures were approved by the University of North Dakota 

Institutional Animal Care and Use Committee (UND IACUC) protocol 1506-2 ID 

47. Mice were provided food and water ad libitum and housed in a 12-hour 

light/dark cycle. The investigation conforms to the National Research Council of 

the National Academies Guide for the Care and Use of Laboratory Animals (8th 

edition)343. 

Microglia Isolation 

The protocol used for the isolation of adult mouse microglia was adapted 

from Lee and Tansey 2013 in Methods Molecular Biology344. Briefly, freshly 

perfused brains from euthanized mice were minced using a razor blade and 

dissociated in medium containing 1mg/mL papin, DMEM, Dispase II (1.2 

units/mL) and DNAse I (20 units/mL). After removing the dissociation medium, 

the tissue was homogenized using various sized serological pipettes and then 

filtered using a 40µm cell strainer. A percoll gradient of 30%, 37%, and 70% 

percoll diluted with hank’s balanced salt solution (HBSS) was established with 

homogenized tissue diluted into the 37% solution. The percoll gradient was 
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centrifuged at 300xg for 40 minutes at 18C to separate microglia cells from other 

tissue. The interphase containing the microglia was collected and washed three 

times with HBSS to remove the remaining percoll. RLT plus buffer (Qiagen, 

ID:80204) was added to the isolated microglia and this lysed solution was added 

to QIAshredder homogenizer tubes (Qiagen ID:79654) and spun for 2 minutes at 

maximum speed. The collection tube below the QIAshredder was then flash 

frozen with liquid nitrogen and stored at -80C to preserve the solution for later 

isolation of DNA and RNA. 

Dual DNA/RNA Extraction and Isolation 

The flash-frozen cells prepared during the microglia isolation protocol 

were used with the Qiagen AllPrep DNA/RNA Mini Kit (Qiagen: 80204) to collect 

the DNA and RNA from the microglia isolated from our wild type and mThy1-

Asyn mice. Our procedure followed the described Qiagen AllPrep protocol345. 

Briefly, homogenized lysates were thawed and DNA was isolated from RNA via 

spin column. RNA and DNA were purified using silica-membrane RNeasy and 

AllPrep DNA spin columns. All RNA and DNA isolations from this preparation 

were then frozen at -80C to be later used for a global methylation ELISA and 

library preparations for sequencing. 

Global Methylation Assay 

Genomic DNA isolated from microglia preparations was quantified using 

the Epoch microplate spectrophotometer (BioTek). The global DNA methylation 

status of the microglial DNA from mThy1-Asyn and wild-type mice were 

determined using the MethylFlash Global DNA Methylation (5-mC) ELISA Easy 
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Kit (Epigentek: P-1030) according to Epigentek instructions. Briefly, 100ng of 

genomic DNA was bound to each well. After washing, 5-methylcytosine detection 

complex solution was added to each well and incubated for 50 minutes. Wells 

were washed again, developer solution was added, and optical absorbance was 

measured at 450nm. The percentage of methylated DNA was calculated based 

on linear regression analysis.  

Methylation Processing using Reduced Representation Bisulfite 
Sequencing (RRBS) 

This procedure for RRBS was adapted from Garrett-Bakelman et al346. 

Briefly, Genomic DNA was extracted from our microglia isolation preparations as 

per the methods described above. DNA quantity was a measured using a Qubit 

fluorometer and quality was assessed using TapeStation (Agilent). Due to 

sample limitations, a DNA integrity number (DIN) could not be used as a defined 

cut off and sample selection for RRBS processing was based on quantity of DNA 

where DINs were not measurable. Genomic DNA was digested with the Msp1 

restriction enzyme and purified using phenol:chloroform extraction and ethanol 

precipitation. Following Msp1 digestion, genomic DNA underwent blunt-end 

digestion, phosphorylation, and ligation of adapters with methylated cytosines. 

Ligated fragments were cleaned and processed for size selection on an agarose 

gel. Selected fragments were bisulfite converted, amplified by PCR, and cleaned 

using AMPure XP beads. The libraries were quantified using the Qubit assay and 

Agilent’s High Sensitivity D1000 assay and sequenced on the Illumina Hi-Seq 

4000 platform to generate raw sequence RRBS reads.  
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Quality control assessment of RRBS data was completed using FastQC 

version 0.11.5251. Raw Sequencing reads were cleaned using Trim Galore! 

(version 0.5.0 Babraham Bioinformatics, UK) to remove reads with adapter 

contamination and reads with a Phred quality score <30347. Trim Galore also has 

a special setting for RRBS data that was utilized (--rrbs). Cleaned reads were 

mapped to an in silico bisulfite converted mouse reference genome m38.p6-

Refseq using Bismark v0.20.0348 and Bowtie2 v2.3.4.2349. The R package 

MethylKit v1.8.1350 was used to count uniquely mapped reads and assess 

changes in methylation between wild-type and mThy1-Asyn mice at both our 3 

month and 13 month time points. Differentially methylated CpGs (DMCs) were 

defined as a 10% or greater difference in cytosine methylation levels between 

wild-type and mThy1-Asyn mice with an adjusted p-value <0.01. Differentially 

methylated genes (DMGs) were based on the total unique gene identifiers within 

the list of DMCs. DMCs were annotated based on genes and CpG island 

features using gene bodies and 2,5, and 10 kb regions upstream from 

transcription start sites (TSSs) using the genomation351 R package. Annotation of 

murine CpG islands were obtained from the University of California, Santa Cruz 

(http://genome.ucsc.edu/ :GRCm38/mm10), and annotation of the murine genes 

were obtained from Ensembl352 (http://www.ensembl.org) and Entrez353 

(http://www.ncbi.nlm.nih.gov/Entrez/).  

RNA-Sequencing Processing 

Total RNA was obtained from isolated microglia preparations as per the 

methods described in dual DNA/RNA extraction and isolation section above. 
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RNA quality was evaluated using TapeStation (Agilent, Santa Clara, CA). Due to 

sample limitations, a RNA integrity number of 5 was used as a cutoff for further 

processing. These samples were processed using the NEBNext Ultra II RNA 

Library Prep Kit (Catalog #E7770L/#E7775L) for Illumina. Resultant cDNA was 

sequenced with a paired-end read length of 150 bases using and Illumina HiSeq 

2000 by Novogene (https://en.novogene.com/). 

Raw sequencing reads were cleaned using Trimmomatic to remove reads 

with adapter or Poly-N sequences as well as reads with a quality score <30250. 

Quality control assessment of RNA-Seq data was completed using the FastQC 

version 0.11.5251. Cleaned reads were mapped to the mouse reference genome 

m38.p6 Refseq using HISAT2252. FeatureCounts253 was used to count uniquely 

mapped reads while genes with zero expression across samples were omitted 

from differential expression analysis. Fragments per kilobase of exon per million 

mapped reads (FPKM) as a measurement of transcript expression were 

calculated using an in-house script. Differentially expressed genes (DEGs) were 

identified using the DESeq2254 R package using a significance cut off of a <0.05 

adjusted p-value (adj. p-value). 

Enrichment and Network Analysis 

Enrichment analysis of both DEGs and DMGs was conducted using our 

in-house enrichment analysis R package RichR (http://github.com/hurlab/RichR). 

Gene Ontology354 (GO), Kyoto Encyclopedia of Genes and Genomes354–356 

(KEGG) and Reactome Pathway Database357,358 were used to identify enriched 
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biological functions and pathways represented within our gene lists. An adjusted 

p-value <0.05 was used as a significance cutoff.  

The enrichment results using three different annotation databases were 

combined and visualized in a network by RichR with enrichment terms as nodes 

and shared gene contents of nodes indicated by edges. The top 20 (or less) 

terms selected based on adjusted p-value from each annotation set were used in 

network visualization. Cytoscape359 was used to visualize the network and 

colorize nodes based on adjusted p-value. Within the network, node shape 

indicates the annotation data each term is from. All networks were organized 

using the inverted self-organizing map layout with minimal manual node 

rearrangement for visibility.  

Results 

 Microglia were isolated from the brains of mThy1-Asyn mice and their 

littermate wild type controls to profile the DNA methylation patterns and gene 

expression changes induced by the overexpression of α-synuclein. This model of 

PD experiences changes in striatal dopamine levels, progressive motor and non-

motor symptoms, α-synuclein associated pathology, and inflammation similar to 

what is observed in PD patients95,96. The time points (3 and 13 months) of tissue 

collection were selected based on phenotypic changes observed in this model 

associated with progressive symptoms and microglia associated inflammation. 

Inflammatory markers can be observed as early as 1 month indicating early 

stage neuroinflammation before mice become symptomatic360. Dopamine levels 

rapidly decrease between 12 and 14 months and motor symptoms of PD become 
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evident representing an early stage of PD similar to when patients become 

symptomatic97,100,361. Methylation and gene expression profiles at these time 

points offer unique insight into the initiation of neuroinflammation and progression 

of PD symptoms associated with α-synuclein induces inflammation.  

α-synuclein-Induced Methylation Changes in Microglia 

 Changes in methylation induced by α-synuclein overexpression were first 

examined by quantifying global DNA methylation using the MethylFlash ELISA 

which indicated an increase in methylation in the microglia from our transgenic 

animals (Figure 14). These changes were further investigated using global 

methylation patterns from RRBS of DNA isolated from microglia within the 

mThy1-Asyn mouse. Quality assessment using FASTQC did not identify any 

samples of low quality to be omitted from the study. Trim Galore was used for 

quality and adapter trimming of reads to be passed to Bismarck and Bowtie2 for 

alignment. The summary of prepared samples including number of reads 

obtained (M seqs), duplicate sequences (% Dups), GC content (%GC), 

percentage of reads trimmed (% Trimmed), and percentage of reads successfully 

aligned (Bismarck Alignment %) can be found in Table 12. The R package 

MethylKit assessed changes in methylation between transgenic and control mice 

to determine DMCs based on a change in methylation (delta beta) and an 

adjusted p-value<0.01. DMCs were annotated to CpG island features and 

genetic regions in relation to the transcription start site of genes using the 

genomation R package.  
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Figure 14. Global DNA Methylation ELISA Results. Isolated DNA from 13-
month-old wild-type (n=3) and mThy1-Asyn (n=6) mice were also used in a 
Global DNA methylation ELISA Easy kit from Epigentek. The results demonstrate 
a significant increase in global 5-methylcytosine in the transgenic model’s DNA. 
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Table 12. Sample Alignment Summary. Each mouse in both the 13- and 3-
month groups are listed on the left. Their inclusion in either RRBS (DNA) or RNA-
seq (RNA) is indicated by the blue and green coloring, respectively. The 
assessment of each sample in terms of DNA included the millions of sequences 
provided, percentage trimmed, and percentage of alignment using Bismarck 
along with the percent of duplicated sequences and GC content. The RNA 
assessment of each included sample includes the total reads, reads after 
trimming, and the percentage of reads aligned using HISAT2.

Sample 

Name D
N

A

R
N

A

Bismarck 

Alignment 

%

% Trimmed % Dups % GC

Total 

Reads 

(millions)

RNA Total 

Reads 

(millions)

Reads 

after 

trimming

HISAT2 

Alignment 

%

13H01 67.70% 1.00% 89.50% 32% 125.2 44.2
43.0 

(97.25%)
93.26%

13H02 64.90% 1.00% 89.00% 33% 113.9 48.2
46.9 

(97.31%)
93.20%

13H03 65.00% 1.00% 87.40% 32% 104.9 46.1
43.8(95.17

%)
91.99%

13H04 64.10% 1.10% 88.30% 32% 143.1 NA NA NA

13H05 66.60% 1.00% 87.20% 33% 125.2 49.9
48.7 

(97.67%)
93.07%

13H06 65.30% 1.20% 87.60% 32% 103.6 46.4
45.3 

(97.42%)
93.29%

13H07 61.30% 1.00% 90.40% 32% 176.6 NA NA NA

13H08 64.20% 1.00% 86.80% 32% 110.2 55.9
54.6 

(97.64%)
92.77%

13H09 NA NA NA NA NA 70.0
68.4 

(97.71%)
91.88%

13H10 65.00% 1.10% 86.80% 32% 104.7 68.8
67.4 

(97.91%)
93.01%

13W01 59.60% 1.10% 87.40% 32% 81.1 NA NA NA
13W02 40.60% 1.10% 88.40% 33% 111.7 NA NA NA

13W03 42.10% 1.00% 89.80% 33% 93 62.9
61.4 

(97.63%)
94.32%

13W04 39.60% 0.90% 89.10% 32% 93.7 82.0
80.3 

(97.88%)
94.50%

13W05 NA NA NA NA NA 70.3
68.6 

(97.65%)
94.34%

13W06 NA NA NA NA NA 86.9
85.0(97.88

%)
94.05%

3H01 59.60% 1.10% 89.90% 32% 123.2 57.2
55.9 

(97.73%)
94.78%

3H02 58.50% 1.00% 90.00% 32% 110.1 NA NA NA

3H03 55.10% 1.00% 88.70% 33% 98.5 75.8
74.2 

(97.91%)
95.01%

3H04 NA NA NA NA NA 57.8
56.2 

(97.07%)
83.39%

3H05 45.90% 1.00% 89.50% 33% 127.1 66.7
65.1 

(97.48%)
93.59%

3W01 63.40% 1.00% 90.30% 31% 146.4 71.6
69.7 

(97.37%)
94.83%

3W02 54.00% 1.00% 87.30% 32% 84 61.0
59.2 

(96.97%)
93.84%

3W03 56.30% 1.00% 90.00% 31% 187.9 NA NA NA

3W04 49.80% 1.10% 86.70% 32% 95.3 57.2
55.3 

(96.72%)
93.64%
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Microglial DNA harvested from our 3-month-old mice (4 wild type, 4 

mThy1-Asyn) had 27,175 DMCs between transgenic and wild type mice based 

on a minimum delta beta of 10% and an adjusted p-value<0.01. Across our 

samples from 3-month animals, 1,234,490 total sites were measured with 11,441 

significant CpGs showing an increase in methylation (hypermethylation) and 

15,734 showing a decrease in methylation (hypomethylation). The delta beta for 

the identified CpGs range from a 65% increase to a 72% decrease in 

methylation. The top and bottom 20 DMCs, based on delta beta, and their 

associated genes can be found in Tables 13 and 14. Based on the murine 

annotation from University of California, Santa Cruz (UCSC), 6% of identified 

CpGs can be found in CpG island regions and 8% in CpG shore regions (Figure 

15A). These areas in relation to transcription start sights have been shown to 

influence gene expression362,363. Annotation for promoter, exon, intron, and 

intergenic gene regions were also used to evaluate and classify the DMCs 

identified (Figure 15B). While 10% of DMCs were in promoter regions and 15% 

located in exon regions of genes, the vast majority were found in intron (38%) or 

intergenic regions (37%).  

Multiple CpGs are assigned to the same genes in various locations on the 

genome, which prevents any gene level determinations from this data without 

further information. However, identifying all unique genes associated with the 

DMCs provides a list of genes that could be influenced by methylation changes in 

our model, or DMGs.
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Table 13. Top 20 DMCs at 3 Months. Differentially methylated CpGs were 
determined between wild type and mThy1-Asyn mice at 3 months of age and 
paired with their gene annotation. The 20 CpGs with the greatest increase in 
methylation (∆β) along with their associated gene annotation.  

 

EntrezID
Gene 

Symbol
Description ∆β Adj. 

Pvalue
Gene Location

84704 Snurf SNRPN upstream reading frame 65.35 3.76E-69 chr7 , 60005200
84704 Snurf SNRPN upstream reading frame 64.27 3.41E-64 chr7 , 60005229
84704 Snurf SNRPN upstream reading frame 61.71 1.30E-59 chr7 , 60005187
27412 Peg12 paternally expressed 12 54.90 3.96E-10 chr7 , 62464177
20280 Scp2 sterol carrier protein 2, liver 48.33 7.94E-54 chr4 , 108136742

74387
4932438
H23Rik

RIKEN cDNA 4932438H23 gene 45.79 7.32E-47 chr16 , 91104256

17880 Myh11
myosin, heavy polypeptide 11, 
smooth muscle

45.28 2.28E-34 chr16 , 14271833

57440 Ehd3 EH-domain containing 3 44.59 4.15E-59 chr17 , 73823939
545677 Gm12888 predicted gene 12888 42.79 1.67E-55 chr4 , 121355852
56429 Dpt dermatopontin 41.64 7.64E-07 chr1 , 164823213
56280 Mrpl37 mitochondrial ribosomal protein L37 41.01 1.29E-18 chr4 , 107013861
57440 Ehd3 EH-domain containing 3 40.17 1.82E-33 chr17 , 73820506
329015 Atg2a autophagy related 2A 39.02 1.81E-43 chr19 , 6248005

20680 Sox7 SRY (sex determining region Y)-box 7 38.63 2.41E-07 chr14 , 63942190

63913 Fam129a
family with sequence similarity 129, 
member A

38.22 5.55E-15 chr1 , 151621799

76422 Mroh3
maestro heat-like repeat family 
member 3

38.02 1.22E-16 chr1 , 136162561

14538 Gcnt2
glucosaminyl (N-acetyl) transferase 2, 
I-branching enzyme

37.92 1.41E-04 chr13 , 40888061

252974 Tspear
thrombospondin type laminin G 
domain and EAR repeats

37.23 1.01E-03 chr10 , 77664526

320772 Mdga2
MAM domain containing 
glycosylphosphatidylinositol anchor 2 

36.97 8.13E-14 chr12 , 66932444

12145 Cxcr5 chemokine (C-X-C motif) receptor 5 36.44 7.10E-27 chr9 , 44514115
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Table 14. Bottom 20 DMCs at 3 Months. Differentially methylated CpGs were 
determined between wild type and mThy1-Asyn mice at 3 months of age and 
paired with their gene annotation. The 20 genes that demonstrate the greatest 
decrease in methylation (∆β) along with their associated gene annotation. 

 

EntrezID
Gene 

Symbol
Description ∆β Adj. 

Pvalue
Gene Location

26381 Esrrg estrogen-related receptor gamma -72.17 2.98E-38 chr1 , 187630622
329540 Nol4l nucleolar protein 4-like -61.77 1.27E-51 chr2 , 153422452
16558 Kif16b kinesin family member 16B -53.81 7.96E-61 chr2 , 142788388
21873 Tjp2 tight junction protein 2 -48.50 4.79E-17 chr19 , 24216202

66230 Mrps28 mitochondrial ribosomal protein S28 -46.97 1.12E-09 chr3 , 8894548

215303 Camk1g
calcium/calmodulin-dependent 
protein kinase I gamma

-46.30 1.93E-50 chr1 , 193384944

17463 Psmd7
proteasome (prosome, macropain) 
26S subunit, non-ATPase, 7

-43.77 3.17E-32 chr8 , 108009687

57278 Bcam basal cell adhesion molecule -43.56 7.56E-12 chr7 , 19767561

18109 Mycn
v-myc avian myelocytomatosis viral 
related oncogene, neuroblastoma 
derived 

-41.28 7.48E-28 chr12 , 12694576

70881 Nt5c1b 5'-nucleotidase, cytosolic IB -40.61 7.38E-18 chr12 , 10242598
68498 Tspan11 tetraspanin 11 -40.46 2.17E-70 chr6 , 127866059
56748 Nfu1 NFU1 iron-sulfur cluster scaffold -39.54 1.19E-15 chr6 , 86949756
26381 Esrrg estrogen-related receptor gamma -39.52 2.01E-39 chr1 , 187630781

67755 Ddx47
DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 47

-39.21 4.23E-26 chr6 , 135035635

13195 Ddc dopa decarboxylase -38.89 6.88E-08 chr11 , 11822370
233081 Ffar1 free fatty acid receptor 1 -37.80 2.03E-07 chr7 , 30866410

20927 Abcc8
ATP-binding cassette, sub-family C 
(CFTR/MRP), member 8

-37.62 1.80E-09 chr7 , 46178186

71517
9030624
J02Rik

RIKEN cDNA 9030624J02 gene -37.44 1.68E-47 chr7 , 118773890

217364 Engase endo-beta-N-acetylglucosaminidase -37.38 1.71E-07 chr11 , 118487128
18314 Olfr17 olfactory receptor 17 -37.21 5.91E-08 chr7 , 107085773
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Figure 15. Genomic Regions of 3 Month DMCs. DMCs were identified from 
our 3-month animals through RRBS. (A) The DMCs identified composed of 6 % 
island and 8% shore CpG regions. (B) The majority of DMCs are intergenic or 
located in the intron of genes with only 10% found in the promoter regions.  

 

A 
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These DMCs are located in genomic locations associated with 5,315 unique 

DMGs. The list of DMGs from our 3-month-old mice were used for functional 

analysis with an in-house R package RichR. Enriched biological functions and 

pathways represented within our gene list were identified which consisted of 

1904 GO terms, 115 Reactome Pathways, and 26 KEGG functions based on a 

significance cutoff of adjusted p-value <0.05. The top 20 enriched terms from 

each database based on adjusted p-value were merged together for network 

analysis. The network of associated terms was created using RichR with 

enriched terms serving as nodes and shared DEGs forming edges between 

nodes (Figure 16). Visualization of the network was executed using Cytoscape to 

color nodes based on an adjusted p-value scale and to change node shape 

based on their annotation database. All GO terms are circular nodes, KEGG 

terms are represented by triangle nodes, and Reactome pathways have diamond 

nodes. Network layout was minimally adjusted for visibility from the inverted self-

organized map layout from Cytoscape. Subnetworks of nodes related to neuronal 

development, synaptic transmission, intracellular signaling, and 

adhesion/migration can all be identified within the network.  

Similarly, microglial DNA was harvested from 13-month-old mice (4 wild 

type, 9 mThy1-Asyn) for methylation profiling. Although our later 13-month 

animals exhibit a more severe phenotype, there were less DMCs identified in 13-

month than in the previous 3-month group. Across our samples from 13-month 

animals, 1,151,250 total sites were measured, with 10,436 DMCs being 

hypermethylated and 4,790 DMCs hypomethylated. The older mice had 15,226 
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Figure 16. Enrichment Network from 3 Month DMCs. DMCs were focused to a gene level and used for enrichment 
analysis through GO (circle), KEGG (triangle), and Reactome (diamond). Top 20 adjusted p-value enrichment terms from 
each list make up the nodes of the network while shared genes between terms are represented by the edges. Node color 
correlates to adjusted p-value. Network layout is from the Cytoscape inverted self-organized map layout. 
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DMCs, which were annotated to 3,742 genes (DMGs) using a 10% change in 

methylation as a minimum and a cutoff of an adjusted p value <0.01. The DMCs 

identified had a delta beta range from a 43% increase to a 55% decrease in 

methylation. The top and bottom 20 DMCs, based on delta beta, and their 

associated genes can be found in Tables 15 and 16. From the DMCs identified, 

5% are found in CpG islands with another 9% in CpG shores (Figure 17A). 

Similar to our 3-month group, the majority of DMCs are located in intron (41%) 

and intergenic regions (35%) while 10% were located in promoters and 15% in 

exons (Figure 17B).  

The DMG list from our 13-month mice were also assessed for enrichment 

of biological functions and pathways from GO (1782 terms), Reactome Pathway 

(106 pathways), and KEGG (54 functions) databases. An adjusted p-value<0.05 

was used as a cutoff in determining if a term was significantly enriched. The top 

20 enriched terms based on adjusted p-value were selected to be used for 

network analysis to further identify thematic clusters within the data (Figure 18). 

Network files were generated with RichR files while Cytoscape was used to 

visualize the network with node shapes corresponding to a terms database and 

color indicating the adjusted p-value. Cytoscape’s inverted self-organized map 

layout was used to organize the network with slight manual adjustments for 

visibility. Terms related to adhesion and locomotion are the most common within 

the network. The largest cluster of highly connected terms is largely related to 

proliferation and development, such as neurogenesis, generation of neurons, 

regulation of cell process, and neuronal differentiation.
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Table 15. Top 20 DMCs at 13 Months. Differentially methylated CpGs were 
determined between wild type and mThy1-Asyn mice at 13 months of age and 
paired with their gene annotation. The 20 CpGs with the greatest increase in 
methylation (∆β) along with their associated gene annotation.  

 

EntrezID
Gene 

Symbol
Description ∆β Adj. 

Pvalue
Gene Location

14873 Gsto1 glutathione S-transferase omega 1 43.06 1.26E-47 chr19 , 47856960
71972 Dnmbp dynamin binding protein 39.50 2.26E-30 chr19 , 43901230
74287 Kcmf1 potassium channel modulatory factor 1 39.01 1.03E-17 chr6 , 72869748
12306 Anxa2 annexin A2 38.21 4.99E-11 chr9 , 69517991

93685 Entpd7
ectonucleoside triphosphate 
diphosphohydrolase 7

37.45 1.91E-10 chr19 , 43706608

217837 Itpk1 inositol 1,3,4-triphosphate 5/6 kinase 36.85 4.88E-11 chr12 , 102706751

243308
A43003
3K04Rik

RIKEN cDNA A430033K04 gene 36.12 4.62E-22 chr5 , 138647371

171167 Fut10 fucosyltransferase 10 35.43 1.58E-30 chr8 , 31262370
13819 Epas1 endothelial PAS domain protein 1 34.85 1.17E-08 chr17 , 86786799
226251 Ablim1 actin-binding LIM protein 1 34.34 1.47E-12 chr19 , 57238326
240667 Sec31b Sec31 homolog B (S. cerevisiae) 33.51 5.97E-49 chr19 , 44531201

20361 Sema7a
sema domain, immunoglobulin domain 
(Ig), and GPI membrane anchor, 
(semaphorin) 7A

33.39 1.19E-06 chr9 , 57954086

105782 Scrib scribbled planar cell polarity 33.35 1.21E-07 chr15 , 76059286
56280 Mrpl37 mitochondrial ribosomal protein L37 33.26 7.34E-10 chr4 , 107056075
53626 Insm1 insulinoma-associated 1 32.91 8.51E-04 chr2 , 146184015
15445 Hpd 4-hydroxyphenylpyruvic acid dioxygenase 32.88 5.22E-18 chr5 , 123197372
140703 Emid1 EMI domain containing 1 32.69 1.33E-06 chr11 , 5139618

101434
Ceacam
15

carcinoembryonic antigen-related cell 
adhesion molecule 15

32.65 5.68E-04 chr7 , 16670321

12306 Anxa2 annexin A2 32.47 6.57E-08 chr9 , 69518031

14683 Gnas
GNAS (guanine nucleotide binding 
protein, alpha stimulating) complex locus

32.34 4.07E-04 chr2 , 174326956
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Table 16. Bottom 20 DMCs at 13 Months. Differentially methylated CpGs were 

determined between wild type and mThy1-Asyn mice at 13 months of age and 

paired with their gene annotation. The 20 genes that demonstrate the greatest 

decrease in methylation (∆β) along with their associated gene annotation. 

 

EntrezID
Gene 

Symbol
Description ∆β Adj. 

Pvalue
Gene Location

68243
A930018
P22Rik

RIKEN cDNA A930018P22 gene -55.44 2.36E-28 chr2 , 104167970

17076 Ly75 lymphocyte antigen 75 -54.50 4.25E-70 chr2 , 60396648

68243
A930018
P22Rik

RIKEN cDNA A930018P22 gene -47.07 3.18E-32 chr2 , 104167969

75051 Ccdc173 coiled-coil domain containing 173 -45.94 3.79E-47 chr2 , 69766312

68243
A930018
P22Rik

RIKEN cDNA A930018P22 gene -44.71 4.26E-82 chr2 , 104168099

68243
A930018
P22Rik

RIKEN cDNA A930018P22 gene -44.48 7.73E-83 chr2 , 104168129

21838 Thy1 thymus cell antigen 1, theta -44.12 1.85E-30 chr9 , 44049625

68243
A930018
P22Rik

RIKEN cDNA A930018P22 gene -42.83 6.73E-56 chr2 , 104168158

329421 Myo3b myosin IIIB -40.23 1.54E-16 chr2 , 70149298
241556 Tspan18 tetraspanin 18 -39.35 1.96E-64 chr2 , 93351814
22174 Tyro3 TYRO3 protein tyrosine kinase 3 -39.26 7.53E-23 chr2 , 119805409
21838 Thy1 thymus cell antigen 1, theta -37.36 8.57E-16 chr9 , 44049669
19089 Prkcsh protein kinase C substrate 80K-H -37.29 4.20E-06 chr9 , 22015846
21838 Thy1 thymus cell antigen 1, theta -36.96 9.69E-20 chr9 , 44049598

21938 Tnfrsf1b
tumor necrosis factor receptor 
superfamily, member 1b

-36.15 1.56E-10 chr4 , 145222523

56369 Apip APAF1 interacting protein -36.03 7.26E-26 chr2 , 103112082
74194 Rnd3 Rho family GTPase 3 -35.64 4.17E-22 chr2 , 51076402
387511 Tas2r134 taste receptor, type 2, member 134 -35.58 7.20E-58 chr2 , 51667495
71918 Zcchc24 zinc finger, CCHC domain containing 24 -35.13 3.10E-06 chr14 , 25780948

54120 Gipc2
GIPC PDZ domain containing family, 
member 2

-35.08 3.81E-06 chr3 , 152092787
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Figure 17. Genomic Regions of 13-Month DMCs. DMCs were identified from 
our 13-month animals through RRBS. (A) The DMCs identified in the 13-month 
comparison were composed of 5% CpG islands. (B) The majority of DMCs were 
in intron or intergenic regions but 10% were from promoter regions of genes. The 
list of DMCs were focused down to gene level and used for enrichment analysis. 

 

A 

B 
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Figure 18. Enrichment Network from 13-Month DMCs. The top 20 adjusted p-value terms from GO (circle), KEGG 
(triangle), and Reactome (diamond) represent the nodes and shared genes between term annotations form the edges. 
Node color is based on adjusted p-value and the network layout is adjusted from the Cytocape inverted self-organized 
map for visibility. 
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The subnetwork related to cell surface interactions with terms such as focal 

adhesion, integrin cell surface interactions, extracellular matrix, and collagen 

chain trimerization is connected to platelet-derived growth factor (PDGF) and 

receptor tyrosine kinase signaling (RTK). PDGF and RTK have been shown to 

induce proliferation in glial cells364–366. 

α-synuclein-induced Gene Expression Changes in Microglia 

 Gene expression changes induced by α-synuclein overexpression were 

measured in microglia isolated from wild type and mThy1-Asyn mice using RNA-

sequencing. Adapter and low-quality reads were trimmed before alignment using 

Trimmomatic. The quality of data obtained from sequencing was assessed using 

FastQC, which did not identify any samples for exclusion based on read quality. 

HISAT2 aligned cleaned reads to the mouse reference genome and DESeq2 

determined DEGs based on read counts using an adjusted p-value <0.05 as a 

cutoff. The summary, including reads obtained, reads after trimming, and 

percentage of reads aligned for each sample, can be found in Table 12.  

 Microglial RNA harvested from 3-month-old wild-type (n=3) and mThy1-

Asyn (n=4) mice had 119 DEGs based on an adjusted p-value cutoff of <0.05. 

The top and bottom 20 DEGs based on log2 fold change (log2FC) are available 

in Tables 17 and 18. Some of the most upregulated genes include chemokines 

such as Ccl1 and Ccl17. The complete DEG list was investigated for functional 

terms and pathways represent in our gene lists based on annotation from GO (38 

terms), Reactome pathways (3 pathways), and KEGG (3 functions) databases 

and an 
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Table 17. 20 most up-regulated DEGs at 3 Months. Differentially expressed 
genes were determined between wild type and mThy1-Asyn mice at 3 months of 
age. The 20 genes with the greatest increase in expression are presented in this 
table.  

 

EntrezID Gene Symbol Description
Adj. 

Pvalue
log2FC

76237 6430628N08Rik RIKEN cDNA 6430628N08 gene 0.01 6.31

105349 Akr1c18
aldo-keto reductase family 1, member 
C18

0.03 6.04

235379 Gldn gliomedin 0.00 3.38
20290 Ccl1 chemokine (C-C motif) ligand 1 0.03 3.02

12919 Crhbp
corticotropin releasing hormone 
binding protein

0.00 2.66

12823 Col19a1 collagen, type XIX, alpha 1 0.05 2.26

66673 Sorcs3
sortilin-related VPS10 domain 
containing receptor 3

0.03 2.00

21838 Thy1 thymus cell antigen 1, theta 0.01 1.89
16161 Il12rb1 interleukin 12 receptor, beta 1 0.01 1.87

15561 Htr3a
5-hydroxytryptamine (serotonin) 
receptor 3A 

0.04 1.80

320429 Trank1
tetratricopeptide repeat and ankyrin 
repeat containing 1 

0.03 1.78

20303 Ccl4 chemokine (C-C motif) ligand 4 0.01 1.74

15563 Htr5a
5-hydroxytryptamine (serotonin) 
receptor 5A

0.03 1.72

14810 Grin1
glutamate receptor, ionotropic, NMDA1 
(zeta 1)

0.03 1.70

20295 Ccl17 chemokine (C-C motif) ligand 17 0.02 1.69
319942 A530016L24Rik RIKEN cDNA A530016L24 gene 0.02 1.63
14417 Gad2 glutamic acid decarboxylase 2 0.02 1.62
242773 Slc45a1 solute carrier family 45, member 1 0.04 1.60
67331 Atp8b3 ATPase, class I, type 8B, member 3 0.03 1.59

72978 Cnih3
cornichon family AMPA receptor 
auxiliary protein 3 

0.04 1.55
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Table 18. 20 most down regulated DEGs at 3 Months. Differentially expressed 
genes were determined between wild type and mThy1-Asyn mice at 3 months of 
age. The 20 genes that demonstrate the greatest decrease in expression are 
presented in this table. 

EntrezID
Gene 

Symbol
Description

Adj. 

Pvalue
log2FC

13861 Epx eosinophil peroxidase 0.00 -2.51

16521 Kcnj5
potassium inwardly-rectifying 
channel, subfamily J, member 5

0.01 -2.47

76615 Got1l1
glutamic-oxaloacetic transaminase 1-
like 1 

0.00 -2.20

53856 Prg3 proteoglycan 3 0.05 -2.17
68509 Ptx4 pentraxin 4 0.01 -2.16
22262 Uox urate oxidase 0.02 -2.12
229277 Stoml3 stomatin (Epb7.2)-like 3 0.02 -2.05
403180 Ccdc121 coiled-coil domain containing 121 0.02 -2.04
67747 Ribc2 RIB43A domain with coiled-coils 2 0.00 -2.03
75573 Prr29 proline rich 29 0.02 -2.00
381522 Ccdc180 coiled-coil domain containing 180 0.00 -1.97

53873 Ear6
eosinophil-associated, ribonuclease 
A family, member 6

0.02 -1.76

66758 Zfp474 zinc finger protein 474 0.02 -1.75
213248 Wdr49 WD repeat domain 49 0.05 -1.75
434756 Akap14 A kinase (PRKA) anchor protein 14 0.03 -1.74

320159 Fam179a
family with sequence similarity 179, 
member A

0.02 -1.69

74338 Slc6a19
solute carrier family 6 
(neurotransmitter transporter), 
member 19

0.02 -1.66

381284 Crocc2
ciliary rootlet coiled-coil, rootletin 
family member 2 

0.02 -1.63

56087 Dnah10 dynein, axonemal, heavy chain 10 0.01 -1.63
110082 Dnah5 dynein, axonemal, heavy chain 5 0.02 -1.63
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adj. p-value <0.05. RichR performed enrichment analysis and constructed a 

network using the top 20 terms from GO (adj. p-value) and the full lists of 

enrichment terms from KEGG and Reactome (Figure 19). The network file was 

visualized using Cytoscape with an inverted self-organized map layout which was 

manually adjusted for visibility.  

The more severe phenotype associated with the older (13 month) mice 

used in our study was reflected by the higher number of DEGs identified between 

wild type (n=5) and mThy1-Asyn (n=8) mice. RNA harvested from isolated 

microglia in these older animals identified 3,766 DEGs using an adjusted p-value 

cutoff of <0.05. The top and bottom 20 DEGs based on log2 fold change (FC) are 

shown in Tables 19 and 20. RichR was used to determine functional enrichment 

terms and pathways represented within the DEG list. Overall 1,509 GO terms, 

230 Reactome pathways, and 35 KEGG functions were determined to be 

enriched within our dataset. The top 50 enriched terms from GO enrichment 

based on adjusted p-value can be found in Figure 20. Many of the GO terms are 

related to development, migration, and adhesion.  
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Figure 19. Enrichment Network from 3-Month DEGs. The differentially expressed genes from the 3-month analysis 
were assessed for enrichment of biological functions and pathways using the GO (circle), KEGG (triangle), and Reactome 
(diamond) databases. The top 20 (adj. p-value) enrichment terms from each database serve as the network nodes and 
the shared genes between term annotations serve as the edges connecting them. Node shape is based on the terms 
database (see above), while color represents the adjusted p-value score of each term. The network layout is adjusted 
from Cytoscape’s inverted self-organized map for visibility. 
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Table 19. 20 most up regulated DEGs at 13 Months. Differentially expressed 
genes were determined between wild type and mThy1-Asyn mice at 13 months 
of age. The 20 genes with the greatest increase in expression are presented in 
this table.  

 

EntrezID
Gene 

Symbol
Description

Adj. 

Pvalue
log2FC

NA Igkv8-34
immunoglobulin kappa variable 
8-34 

0.0329 6.76

15891 Ibsp integrin binding sialoprotein 0.0004 5.75

NA Ighg1
immunoglobulin heavy constant 
gamma 1 (G1m marker)

0.0007 5.69

380683 Sec14l3 SEC14-like lipid binding 3 0.0020 5.07
24108 Ubd ubiquitin D 0.0419 4.68
22431 Wt1 Wilms tumor 1 homolog 0.0075 4.34
192188 Stab2 stabilin 2 0.0002 4.28
15378 Hnf4a hepatic nuclear factor 4, alpha 0.0411 4.23

NA Trav12-3
T cell receptor alpha variable 
12-3

0.0077 4.19

50701 Elane elastase, neutrophil expressed 0.0000 4.02

53873 Ear6
eosinophil-associated, 
ribonuclease A family, member 
6 

0.0000 3.81

16833 Ldhc lactate dehydrogenase C 0.0010 3.80
442829 Ccin calicin 0.0396 3.80

619288 Fam71a
family with sequence similarity 
71, member A

0.0304 3.78

170813 Ms4a3
membrane-spanning 4-
domains, subfamily A, member 
3

0.0000 3.67

19074 Prg2 proteoglycan 2, bone marrow 0.0005 3.66
13861 Epx eosinophil peroxidase 0.0002 3.66
17523 Mpo myeloperoxidase 0.0000 3.64
13035 Ctsg cathepsin G 0.0000 3.39
19152 Prtn3 proteinase 3 0.0001 3.36
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Table 20. 20 most down regulated DEGs at 13 Months. Differentially 
expressed genes were determined between wild type and mThy1-Asyn mice at 
13 months of age. The 20 genes that demonstrate the greatest decrease in 
expression are presented in this table. 

 

EntrezID
Gene 

Symbol
Description

Adj. 

Pvalue
log2FC

75512 Gpx6 glutathione peroxidase 6 0.0015 -4.21
56184 Msgn1 mesogenin 1 0.0303 -2.05

74556 Themis3
thymocyte selection associated family 
member 3

0.0199 -2.01

380780 Serpina11
serine (or cysteine) peptidase inhibitor, 
clade A (alpha-1 antiproteinase, antitrypsin), 
member 11 

0.0049 -1.97

332396 Kcnk18 potassium channel, subfamily K, member 18 0.0000 -1.84

NA Gm10570 predicted gene 10570 0.0065 -1.76
259114 Olfr570 olfactory receptor 570 0.0180 -1.75
234724 Tat tyrosine aminotransferase 0.0038 -1.51

14539 Opn1mw
opsin 1 (cone pigments), medium-wave-
sensitive (color blindness, deutan)

0.0484 -1.50

14765 Gpr50 G-protein-coupled receptor 50 0.0486 -1.49
26380 Esrrb estrogen related receptor, beta 0.0000 -1.48
75600 Calml4 calmodulin-like 4 0.0000 -1.38

69083 Sult1c2
sulfotransferase family, cytosolic, 1C, 
member 2

0.0197 -1.37

68800 Prr32 proline rich 32 0.0003 -1.35
13393 Dlx3 distal-less homeobox 3 0.0162 -1.34
14836 Gsc goosecoid homeobox 0.0023 -1.32
12869 Cox8b cytochrome c oxidase subunit VIIIb 0.0005 -1.32
230824 Grhl3 grainyhead-like 3 0.0000 -1.31
18256 Oc90 otoconin 90 0.0029 -1.30

72789 Veph1
ventricular zone expressed PH domain-
containing 1

0.0182 -1.30
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Figure 20. GO Enrichment in 13-Month DEGs. DEGs identified from the 13-
month comparison were analyzed for enrichment in terms of GO annotation. The 
top 50 most significantly enriched terms are listed. Dot size corresponds to the 
number of genes in each group, while color represent the significance level of 
enrichment. Rich factor indicates the ratio of genes submitted to the number of 
genes annotated to a function or pathway as an addition measure of enrichment.  
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The top 50 most enriched KEGG pathways (Figure 21) includes terms 

involved with various cancer pathways along with immune and adhesion related 

functions. While Reactome pathways identified enriched pathways related to cell 

cycle, immune system, and mitochondrial dysfunction (Figure 22). Network 

analysis through RichR and Cytoscape were used to visualize associations 

between terms based on common genes (Figure 23). A clear subnetwork 

associated with cell cycle and mitosis can be seen and a smaller subnetwork 

related to immune system function is also present. The largest subnetwork 

includes many terms involved in cellular metabolism, which share edges with 

neuroinflammatory conditions such as Parkinson’s, Alzheimer’s, and 

Huntington’s disease.  

 Potential DEGs related to the progression of the mTHy1-Asyn phenotype 

were investigated by examining both 3- and 13-month DEG lists for shared 

genes. Table 21 shows the 9 shared genes between the two groups. Out of the 9 

shared genes, 4 appear to be directionally discordant while the other 5 are 

concordant between groups. The genes demonstrating a decrease in expression 

at 3 months but increased expression at 13 include Epx, Prg3, and Ear6. The 

only other discordant gene is Stra6, which has increased expression at 3 months 

and decreased at 13 months. All other genes display an increase in expression 

levels at both time points. These genes, including Zfp683, Il12rb1, Ccl4, Ccl3, 

and Ccrl2, are related to a proinflammatory status involving macrophage 

inflammatory proteins. 
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Figure 21. KEGG Enrichment in 13 Month DEGs. DEGs identified from the 13-
month comparison were analyzed for enrichment in terms of KEGG annotation. 
The top 50 most significant terms are listed. Dot size corresponds to the number 
of genes in each group, while color represent the significance level of 
enrichment. Rich factor indicates the ratio of genes submitted to the number of 
genes annotated to a function or pathway as an addition measure of enrichment. 
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Figure 22. Reactome Pathway Enrichment in 13 Month DEGs. DEGs identified from the 13-month comparison were 
analyzed in terms of Reactome annotation. The top 50 most significant pathways are listed. Dot size corresponds to the 
number of genes in each group, while color represent the significance level of enrichment. Rich factor indicates the ratio 
of genes submitted to the number of genes annotated to a function or pathway as an addition measure of enrichment. 
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Figure 23. Enrichment Network from 13 Month DEGs. The differentially expressed genes from the 13-month analysis 
were assessed for enrichment of biological functions and pathways using the GO (circle), KEGG (triangle), and Reactome 
(diamond) databases. The top 20 (adj. p-value) enrichment terms from each database serve as the network nodes and 
the shared genes between term annotations serve as the edges connecting them. Node shape is based on the terms 
database (see above) while color represents the adjusted p-value score of each term. The network layout is adjusted from 
Cytoscape’s inverted self-organized map for visibility.  
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Table 21. DEGs shared between 3- and 13-Month Groups. Nine genes were 
found to be differentially expressed at both time points within this study. The 
gene symbols are on the left, followed by a description and the log2FC values in 
13- and 3-month comparisons. The color gradient indicates an increase (red) or 
decrease (blue) in log2FC. Out of the 9 common DEGs, 5 are concordant while 4 
are discordant between groups.  

 

Gene 

Symbol
Description

13 

Month 

Log2FC

3 Month 

Log2FC

Zfp683 zinc finger protein 683 1.53 1.62
Stra6 stimulated by retinoic acid gene 6 -0.50 0.62
Il12rb1 interleukin 12 receptor, beta 1 1.05 1.87
Ccl4 chemokine (C-C motif) ligand 4 2.39 1.74
Ccrl2 chemokine (C-C motif) receptor-like 2 1.91 1.44
Epx eosinophil peroxidase 3.66 -2.51
Ccl3 chemokine (C-C motif) ligand 3 1.91 1.29
Prg3 proteoglycan 3 3.20 -2.17

Ear6
eosinophil-associated, ribonuclease A 
family, member 6 3.81 -1.76
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Correlation between Identified DMGs and DEGs 

 Changes in DNA methylation are often thought to influence gene 

expression levels based on CpG location in relation to the gene and transcription 

start sight. Possible correlations between changes in methylation and changes in 

expression between identified DMGs and DEGs were investigated and the 

results are summarized in Figure 24A. DMCs were separated into their annotated 

regions such as CpG islands and shores as well as gene promoter, intron, exon, 

and intergenic regions. Gene names for each DMC belonging to these groups 

were obtained from the UCSC annotation and matched to their corresponding 

DEGs. The overlap between DMCs related genes and DEGs ranged from 1 to 

320 shared genes. Pearson correlation tests were used to determine correlation 

coefficients. Each DMC with gene annotation matching identified DEGs were 

used in the Pearson correlation calculation. When one gene had multiple DMCs, 

the expression value obtained during DEG analysis was counted multiple times 

for each DMC. All five genomic regions of interest were examined for correlation 

but only intronic DMCs in 13-month-old animals had a significant slightly negative 

correlation (r=-0.15, p=0.008) between delta beta and fold change (Figure 24B). 
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Figure 24. Correlation Summary of Genes Both Differentially Methylated and Expressed. Genomic and CpG 
associated regions for the identified DMCs from both comparisons were assessed for their correlation with measured 
gene expression from RNA-sequencing. (A) The summary table of DMC annotation shows the total amount of DMCs 
identified and how many DMGs are represented in that list along with the associated DEGs identified. DMCs that belong 
to genomic promoter, exon, or intronic regions or from CpG associated island or shore regions were used to assess the 
correlation between methylation and gene expression changes. (B) The only region which showed a significant correlation 
was the intronic region in the 13-month dataset.  

 

A B
DataSet Annotation CpGs Genes Shared RNA Pearson Pearson P

13 Month Island 310 121 1 NA NA
 DEGs        3766 Shore 536 358 66 -0.05 0.7
 DMCs      15226 Promoter 590 373 65 -0.2 0.11
 DMGs       3742 Exon 1157 673 120 -0.002 0.98

Intron 2817 1442 320 -0.15 0.008
3 Month Island 888 329 2 -1 NA

 DEGs         119 Shore 1283 834 3 0.56 0.67
 DMCs      27175 Promoter 1602 961 8 -0.33 0.42
 DMGs       5315 Exon 3046 1607 10 -0.144 0.69

Intron 6789 3033 28 0.07 0.74
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Discussion 

This study examined regulation of the immune response in the central 

nervous system by examining changes related to genomic methylation and gene 

expression in microglia from the mThy1-Asyn mouse model of PD. This model 

overexpresses human wild-type α-syn and exhibits a neuroinflammatory 

phenotype with progressive PD like symptoms96. RRBS and RNA-seq were used 

to measure methylation and gene expression changes at 3 and 13 months of 

age. These time points were selected based on phenotypic changes associated 

with a pre-parkinsonian phenotype at 3 months and an early stage symptomatic 

phenotype with a decrease of striatal dopamine occurring at 14 months96–98,361. 

This study provides a unique opportunity to identify changes induced by 

aggregate and oligomerized α-syn on microglia, which are largely responsible for 

the neuroinflammation associated with PD367.  

 The examination of changes induced in our early stage mice at 3 months 

identified a wide variety of changes in methylation and relatively few in gene 

expression. Overall, 11,441 DMCs were identified from the microglia of our 

transgenic mice at 3 months with 6% positioned within CpG islands and 10% in 

promoter regions. The genes which were annotated to the DMCs identified were 

associated with neuronal development, synaptic transmission, intracellular 

signaling, adhesion, and migration functions based on enrichment analysis using 

GO, Reactome pathways, and KEGG databases. Microglia are highly involved in 

the regulation of synaptic activity and have been shown to be the major players 

in synaptic pruning368. The enrichment of these pathways may suggest a shift 
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from a resting phenotype, involved in maintaining neuronal homeostasis, to an 

active inflammatory state requiring mobility. Gene expression data from these 

mice also reflect this possible shift in phenotype. We identified 119 DEGs when 

comparing transgenic to wild-type controls. Some of the most upregulated genes 

include Ccl1 which is a chemokine that attracts immune cells and Ccl17 which 

induces chemotaxis, both are indicative of a proinflammatory response. 

Enrichment analysis of the complete list of 119 DEGs using GO, Reactome, and 

KEGG, identified biological functions involved in immune function and cellular 

movement represented by our gene list. Both methylation and expression 

changes were annotated to similar functional terms; however, no significant 

correlations between DMC locations and gene expression were identified within 

our 3-month animals.  

 Changes induced in methylation and gene expression in 13-month-old 

animals reflect a more severe phenotype representing the early stages of 

Parkinson’s symptoms. Examination of global genome methylation patterns 

identified 10,436 DMCs of which 5% were located within CpG islands and 10% in 

promoter regions. When focused to a gene level based on gene annotation for 

each CpG, these DMCs represent 3,742 DMGs. Enrichment analysis on this list 

of DMGs revealed function terms involving cell locomotion, adhesion, and 

development. Network analysis of these terms identified a subnetwork of 

interconnected terms involving cell surface interactions, adhesion, and 

extracellular matrix with platelet derived growth factor signaling (PDGF) and 

receptor tyrosine kinases (RTK). Both PDGF and RTK signaling have been 
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shown to be strong inducers of proliferation364,366 and our DMG enrichment 

network exhibits a wide variety of terms indicative of proliferation (Figure 18). 

Increased mobility and proliferation of microglia has been linked to 

neurodegeneration369. Gene expression changes in these animals represent 

similar functions to that identified in the methylation analysis.  

Overall, 3,766 DEGs were identified and examined for functional 

enrichment as well. Gene ontology identified adhesion and migration functions 

that were enriched, KEGG results indicate involvement of the immune system, 

and Reactome pathways represented in the data are highly related to 

metabolism and the immune system. However, all three annotation databases 

represented an abundance of terms reflecting proliferation. Network analysis 

examining the top 20 enriched terms from each annotation database also 

provided insight into how these systems interact. While proliferation and cell 

cycle terms were present throughout this analysis, in the network they form an 

isolated cluster. This may not mean that these functions are not related to other 

themes observed in the data such as metabolism and immune function since our 

network analysis is limited to gene overlap and is non-directional. Another small 

cluster of terms related to immune involvement is also isolated from the main 

body of the generated network. The main subnetwork is composed of terms 

related to metabolism that have shared edges with neurodegenerative conditions 

such as Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease. 

Terms relating to mitochondrial dysfunction, which is often proposed as a 

causative factor in neurodegenerative diseases24,57,370–372, were also identified in 
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this data. In our network analysis, while some mitochondria terms are 

disconnected islands, others involved in cellular respiration were directly linked to 

disease terms. The data representing our early stage PD animals indicate that 

activated microglia are subjected to the mitochondrial stress associated with 

exposure to aberrant α-syn371,373,374.  

 Correlations between identified methylation changes and gene expression 

changes were investigated for DMCs located in CpG Islands, CpG shores, 

promoters, exons, and introns. The only significant correlation between the data 

was identified from DMCs in intronic regions which had a negative correlation 

with gene expression (r=-0.15, p=0.008). Furthermore, overlap between 3- and 

13-month animals were also evaluated for genes related to progression of the 

disease. Comparing DEG lists resulted in 9 genes that were represented in both 

datasets from the comparison between wild type and transgenic mice. Of those 9 

genes, 5 showed an increase in expression in both datasets while the other 4 

genes were directionally discordant going up in one group and down in the other. 

Three of the concordant genes are immune related (Ccl4, Ccrl2, and Il12rb1) and 

involved in immune recruitment and chemotaxis375. All but one of the genes that 

change during the progression of the disease from 3 to 13 months have a 

lowered expression level at 3 months and are over expressed at 13 months. 

These genes include eosinophil peroxidase (Epx), proteoglycan3 (Prg3) and 

eosinophil-associated, ribonuclease A family member 6 (Ear6).  

Epx has been linked to the serpine superfamily of proteins which 

commonly serve as protease inhibitors controlling proteolytic cascades376–379. 
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Serpineb9 which is a cysteine protease is slightly upregulated at 13 months in 

our data (data not shown) and not significantly different at 3 months. Cysteine 

proteases are important for microglia as they are critical for accelerated collagen 

and elastin degradation at sites of inflammation and play a role in MHC class II 

immune response, apoptosis, and extracellular matrix remodelling370,380. One of 

the enriched functions in the 13-month DMCs was collagen chain trimerization 

which was connected to cell surface interactions, extracellular matrix 

organization, focal adhesion, signaling by RTK and PDGF signaling. The 

evidence for this cascade from Epx expressions levels and interactions are not 

direct and require further investigation. However, this potential interaction may 

warrant further investigation. In our data, little overlap between 3 and 13-month-

old mice is observed. This is most likely due to a low sample size in the 3-month 

group which resulted in a low amount of DEGs being identified.  

 When considering these findings and their biological meaning it is 

important to keep in mind certain limitations of this study. One such limitation 

likely affecting the correlation between RNA and DNA is that we were not able to 

use both DNA and RNA samples from each mouse due to sample quality 

concerns. Samples with the highest quantity and quality of RNA/DNA were 

selected, while attempting to limit the number of non-overlapping animals 

between DNA and RNA analysis to 2 or less. Another challenge to analyse the 

data regarding the samples used is that no validation experiments certifying that 

the isolated cells from the brain were in fact microglia. Due to low cell counts 

from isolations and limited number of animals, all possible sources of DNA and 
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RNA from each cell isolation had to be preserved with the intent of validating 

representative isolations experiments at a later date. One caveat to the data 

presented is that interpreting immune function such as cytokine expression from 

RNA levels has proven to be inconsistent with protein levels381. The model used 

also presents some limitations to our study, since we are studying immune 

function and the murine immune system differs from humans in some significant 

ways such as toll receptors, nitric oxide synthase, cytokines, and cytokine 

receptors382. These difference between human and mouse may influence the 

translatability of results observed in this study. All data presented in this study are 

in silico results from high-throughput sequencing and as such will require wet lab 

validation likely through pyrosequencing to measure methylation sites and 

reverse transcription polymerase chain reaction (RT-PCR) to measure gene 

transcription levels. 

 Despite its limitations, this investigation has identified interesting 

candidates for further evaluation in regard to α-syn-induced microglial activation 

and associated progression of PD. The possible influence α-syn has on genomic 

methylation patterns may act as a feedback loop based on the regulatory role 

methylation plays in the genes expression and this possibility warrants further 

investigation. Investigation into the Epx genes involvement in collagen 

degradation via serpine may be important insight into microglia’s role of synaptic 

regulation in the progression of PD. In order to better understand the biological 

implications of the data presented, similar analysis involving other phenotypic 

time points for in this model system would be necessary.  
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In summary, from the data presented we have shown that α-syn 

overexpression can induce methylation changes in microglia in the mThy1-α-syn 

model of PD. At 3 months, or pre-parkinsonian, these mice show an increase in 

cell mobility and inflammatory functions related to activation of microglia early on. 

While at 13 months, immune and mobility related functions are still present but 

metabolic functions are more prevalent and linked to neurodegenerative disease 

annotation as well. Despite observed changes in functional terms being similar 

between methylation and gene expression, there was a low amount of correlation 

between these changes. Intronic CpGs at 13 months were the only significant 

correlation with gene expression with an increase in methylation correlating to a 

decrease in expression. Few genes were differentially expressed at both 3 and 

13 months however, the conserved change in Epx may warrant further 

investigation. 
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CHAPTER V 

DISCUSSION 

 The goal of the first study was to identify a possible common underlying 

cause of DPN across models, species, and time points. This study was executed 

using a unified analysis pipeline to examine eight publicly available microarray 

datasets from sciatic nerve tissue and identify highly conserved pathways 

associated to DPN. DEGs related to DPN were identified between non-diabetic 

and diabetic samples in murine models, and non-progressive and progressive 

human samples. DEG lists were constructed into literature association networks, 

which were graphically compared between human and each murine network to 

obtain shared subnetworks. Identified subnetworks were merged and subjected 

to pathway and centrality analysis. The top 50 of multiple measures of centrality 

identified the 64 most central genes which showed enrichment of 272 canonical 

pathways. Network and cluster analysis of the most central pathways revealed 

themes such as apoptosis, inflammatory response, degradation, as well as 

immune and kinase signaling were the most involved in the network. These 

conserved pathways are likely the key responses in DPN and provide new 

therapeutic targets for the potential treatment of DPN, a disorder that remains 

without a drug intervention to date.
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The second study of this dissertation focused on the SHD STZ model of 

T1DM by examining gene expression changes in tissues associated with DN and 

DPN at 16 weeks. RNA-sequencing was used to examine expression changes in 

renal glomerulus and cortex (DN) as well as sciatic nerve and dorsal root ganglia 

(DPN) following RNA extraction and library preparation. Lists of DEGs were 

analyzed using IPA to describe enriched pathways represented in each tissue. 

Overlap of DEGs and Pathways were examined with 244 genes and 38 

pathways being conserved across three or more tissues. The conserved 

pathways included PTEN signaling, PI3K signaling, adipogenesis pathway, acute 

phase response signaling, and colorectal cancer metastasis signaling. Of the 244 

genes, 188 of them were directionally concordant. The 188 concordant genes 

were analyzed using IPA and subjected to network analysis, which identified 

clusters relating to oxidative stress, cell cycle, and immune response. These 

findings provide transcriptomic profiles of complication-prone tissue in the SHD 

STZ model and support previously identified factors influencing microvascular 

complications in T1DM. 

Our findings regarding DPN in both studies largely agree with the 

established literature regarding this complication246,247,383–385. Various cellular 

stress mechanisms have been implicated in DPN such as hyperglycemia, 

dyslipidemia, hypoxia, ischemia, vascular insufficiency, metabolic syndrome, 

impaired insulin signalling, and inflammation as summarized by this review386. 

The data presented here largely revolve around the role of inflammation. Diabetic 

patients have been shown to experience chronic inflammation through both 
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RAGE and TLR activation by circulating high levels of glycation end products216–

220. Lipid signaling involvement in the immune response has also been 

established in the literature and diabetic patients have been shown to display 

dyslipidemia387. The first study, which examined multiple models of DPN, 

observed a possible central role involving LXR/RXR signaling which is 

responsible for regulating lipid metabolism, inflammation, as well as cholesterol 

efflux and catabolism225–228. While our second study did not observe a similar 

change in our model of type 1 diabetes, other studies regarding unified 

complication analysis have observed changes in PPAR-γ signaling which is also 

a lipid metabolism regulatory pathway388. It is possible these changes are unique 

to the type 2 diabetes form of DPN, since therapeutic strategies such as a PPAR-

γ agonist (pioglitazone)199 did not yield any benefit in STZ-treated mice (data not 

shown). Strict glycemic control is also less beneficial in slowing the progression 

of DPN in patients with type 2 diabetes than it is in type 1 patients230 suggesting 

some differences between these diseases despite symptom similarity. 

Many proposed stress mechanisms can be linked to the chronic 

inflammation in both type 1 and type 2 diabetes. Hyperglycemia and dyslipidemia 

may induce an inflammatory response389 and hypoxic or ischemic conditions can 

drive immune cell dysregulation390. One of the main mechanisms of the immune 

response to eliminate pathogens is via production of reactive oxygen species391 

which have been shown to be neurotoxic392. Largely the role of inflammation in 

the progression of DPN remains unclear despite supporting evidence in the 

studies presented. However, this is currently being explored both 
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experimentally198 as well as in clinical trials involving the use of non-steroidal 

anti-inflammatory drugs (salsalate) in type 1 diabetic patients 

(https://clinicaltrials.gov/ct2/show/NCT02936843).  

 In the third study of this dissertation, an overexpression model of PD was 

used to investigate the methylation and gene expression changes induced by α-

syn in microglia. Microglia were isolated from mThy1-Asyn mice at 3 and 13 

months for DNA and RNA extraction. Generated libraries from this procedure 

were used for RRBS and RNA-sequencing, respectively. These transgenic mice 

have been shown to present markers of neuroinflammation as early as 1 month 

and begin to show motor and non-motor symptoms at 3 months similar to a pre-

parkinsonian phenotype. Reduction in dopamine levels and a more severe 

phenotype can be observed at 14 months indicating an early stage Parkinson’s 

phenotype. However, this model of PD has not been shown to have a reduction 

in total number of dopaminergic neurons as is observed in PD patients96,104.  

The mThy1-Asyn mice at 3 months, or pre-parkinsonian stage, 

demonstrate an increase in cell mobility and inflammatory functions related to 

activation of microglia. These results are congruent with the established 

phenotype of these mice at 3 months with increased levels of neuroinflammation. 

The early stage PD phenotype observed in mice at 13 months demonstrated 

enrichment in immune and cell mobility functions as well, but the majority of 

functional terms are related to metabolism and mitochondria dysfunction. 

Mitochondrial dysfunction has well established literature support its role in PD 

and is the target of many chemically induced models and genetic forms of 
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PD30,57. However, it has also been shown to create a feedback loop by promoting 

inflammation while many pro-inflammatory mediators may disrupt mitochondrial 

activity372.  

Despite similar functional enrichment in methylation and gene expression 

changes observed at both time points, there was very little correlation between 

changes in methylation and observed expression changes. Intronic CpGs in our 

13-month dataset held a negative correlation with the associated DEGs. Nine 

genes were differentially expressed at both 3 and 13 months with 5 concordant 

and 4 discordantly expressed. The concordant gene list was associated with 

inflammatory genes related to recruitment and chemotaxis. The discordant genes 

may indicate progressive changes in the course of disease such as the 

involvement of Epx which may influence microglia activity through its interaction 

with serpine.  

 While these studies examine inherently different systems in DPN and PD, 

there is evidence supporting systemic inflammatory events influencing the 

neurocognitive decline in Alzheimer’s Disease393. By monitoring TNF-α serum 

levels in Alzheimer’s patients Holmes et al. observed a 2- and 4-fold increase in 

cognitive decline associated with acute and system inflammatory events, 

respectively. In healthy individuals systemic infections lead to a sickness 

behavior associated with decreased appeptite394 and lethargy395 but these 

responses are often short lived up and not thought to have long-term 

consequences. It is possible that in the elderly or a diseased state, microglia are 

influenced by their microenvironment into a prepared state leading to a more 
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profound inflammatory response that contributes to disease symptoms and 

progression. Studies examining activated microglia in neurodegenerative models, 

at the first sign of behavioral changes, have shown chemokine ligand 2 (CCL2) to 

be one of the early activated inflammatory mediators396. Investigation into CCL2 

null mice have shown that microglia have a less dramatic inflammatory response 

than wild type mice397. This evidence may implicate CCL2 signaling in the 

prepared microglia status proposed. Further investigation into the communication 

between the peripheral and central immune system and the influence it may have 

on the nervous system would provide valuable insight into the progression of 

neurodegenerative conditions. 

Future Directions 

In order to further investigate the role of inflammation in DPN it would be 

useful to further characterize DPN progression in the non-obese diabetic (NOD) 

mouse which is an immunodeficient mouse strain. The NOD mouse displays 

hyperalgesia at 8 weeks and hypoalgesia at 12 weeks suggesting development 

of neuropathic pain and may represent DPN progression133,152. A possible DPN 

comparison between the NOD mouse, SHD STZ-treated model of T1DM, a 

healthy wild-type control, and mice treated with a non-steroidal anti-inflammatory 

drug (NSAID) as well as STZ would yield valuable information on the involvement 

of inflammation. These models, assuming they had the same background, would 

provide similar systems with varying levels of inflammation or immune response. 

The NOD mouse is considered immune deficient, STZ treatment along with a 

NSAID would knockdown immune activity to a lesser degree than the NOD 



134 

mutation, and STZ treatment alone would provide a T1DM model with a fully 

functioning immune system. Measurements of disease progression and severity 

of symptoms would offer insight into the physiologic contribution that 

inflammation may or may not have on DPN. Transcriptomic analysis may provide 

insight into molecular mechanistic difference within the disease system in the 

absence or presence of an immune response. This would also open avenues for 

addition research into potential immune specific therapeutic targets by 

investigating DEGs only present when immunodeficient models (NOD and 

NSAID-treated) are compared with a healthy immune system in the STZ model. If 

the NOD mouse does not demonstrate symptomatic DPN naturally then an 

alternative approach is to use STZ to induce a more severe T1DM phenotype 

associated with DPN.  

Insight into the role inflammation has on the progression of T2DM 

associated DPN could also be obtained by exacerbating the already low grade 

inflammation that is experienced with diabetes using a treatment regimen with an 

inflammatory stimulus143,398,399. Ideally, RAGE135 would be targeted rather than 

engaging another aspect of the immune system; however, pharmacological 

agents that currently target this receptor consist of only antagonists400. A study 

examining the progression of DPN in a model of T2DM, such as the db/db 

mouse, compared to a healthy wild-type control, LPS-treated db/db, NSAID-

treated db/db, and RAGE antagonists-treated db/db would provide a scale of 

differing levels of immune response. This could allow a way to determine the 

level of contribution inflammation has to DPN progression.  
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Further insight into the role that neuroinflammation plays in the mThy1-

Asyn phenotype and the methylation and expression changes induced by α-syn 

in microglia can be approached in multiple ways. The current approach has 

indicated some promising results and is worthy of being applied in another study 

examining further time points in these animals such as at one month before 

appearance of symptoms, after 14 months following the loss of 40% of striatal 

dopamine, and a midway time point around 7 months would all yield interesting 

results. Studies involving a higher number of animals and biological validation of 

sampling would likely yield more insight than the current study provides into the 

methylation and expression changes that α-syn can induce. Another interesting 

option is the use of a CSF1R inhibitor such as PLX3397 to deplete the brain of 

the mThy1-Asyn mouse of microglia401. The use of CSF1R inhibitors to reduce 

microglia proliferation has been shown to improve recovery after CNS 

injury402,403. In our system, it would provide a way to examine the rate of 

progression of symptoms in the absence of microglia to evaluate the influence 

inflammation has disease progression. This may also uncover underlying causes 

and new therapeutic targets by eliminating a confounding factor in examination of 

the condition.  

There has been shown to be an increased prevalence of peripheral neuropathy 

in PD compared to age matched controls404. It may be worth investigating if the 

mThy1-Asyn mouse also experiences peripheral neuropathy. A simple ELISA on 

blood samples from the mThy1-Asyn would establish if this model experiences 

peripheral inflammation similar to what is observed in PD patients405. The 
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aggregate α-syn pathology has been observed in the peripheral nervous system 

of the mThy1-Asyn mouse which is likely to engage the peripheral immune 

system similar to what is observed in the CNS. If these mice experience 

peripheral inflammation and neuropathy, then a possible unified analysis of the 

above described studies could provide thorough insight into the interaction 

between the nervous and the immune system. A similar approach could be 

investigating the cognitive and neurodegenerative status of a chronic 

inflammation model such as the interleukin 10 (IL-10) knockout mouse.  

Limitations of the Work Presented in this Dissertation 

 The research presented in this dissertation supports the involvement and 

contribution of inflammation and the immune response in progression of 

neurodegeneration. The limitations of the work discussed in this dissertation are 

presented as follows.  

 In the first study, the murine models of DPN that were used were on 

varied backgrounds. The genetic background of mice has been shown to affect 

the progression of neuropathy and presentation of symptoms in murine model 

systems158. All data used in this study was publicly available after being used in 

other publications and were not originally designed to be compared but were 

processed through a unified pipeline to allow comparison between datasets. 

However, generation of these model animals on a unified background strain for 

the purposes of this study were not feasible so this is a caveat of any information 

gathered from these results. Another limitation in both studies related to DPN is 

that the sciatic nerve biopsy process taken from the animals includes Schwann 
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cells during the RNA isolation. Much of the signal captured from both RNA 

expression analysis performed originated from Schwann cells surrounding the 

sciatic nerve.  

 The use of a murine model when examining inflammatory changes should 

always be considered a caveat since the murine immune system differs from 

humans in some significant ways such as toll receptors, nitric oxide synthase, 

cytokines, and cytokine receptors just to name a few which may influence the 

results observed in this study382. All data presented in these studies are in silico 

results from high throughput sequencing and as such will require technical 

validation and would be strongly supported by biological validation experiments.  

Summary Conclusions 

 The work presented in this dissertation strongly implicates inflammation as 

a contributing factor to neurodegenerative conditions of both the peripheral and 

central nervous system (Figure 25). Analysis of transcriptomic data from multiple 

models of DPN to human patients identified clusters of terms related to 

inflammation, degradation, apoptosis, as well as kinase and immune signaling as 

conserved changes across multiple time points, models, and species of DPN. 

Further analysis into the STZ model of T1DM across multiple complication-prone 

tissues identified clusters related to DNA-damage response, oxidative stress, and 

immune response between diabetic nephropathy and DPN. These results 

suggest that peripheral inflammation may be an underlying cause of DPN. α-syn 

overexpression-induced methylation and gene expression changes are indicative 

of an M1 microglia phenotype in concert with symptomatic progression of PD. 
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These results warrant further investigation into the role inflammation plays on the 

progression of neurodegenerative disease and the neuro-microenvironment in 

both the central and peripheral nervous systems. 
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Figure 25. Summary Figure. The biological systems displayed within the human 
body include the nervous system and immune system (www.innerbody.com). 
Red areas highlight the nervous tissue of interest for this dissertation. Each 
study’s results are summarized by their final network figures. The first study 
found immune signaling, inflammation, apoptosis, and degradation as conserved 
centrally influential pathways in both diabetic patients and mouse models of 
DPN. The second study examined both nephropathy and neuropathy associated 
with diabetes in an STZ-induced mouse model to identify DNA damage 
response, oxidative stress, immune response, cell cycle signaling, as well as 
salvage and biosynthesis pathways as being influenced in both complications. 
The third study examined the microglia from an α-synuclein overexpression 
mouse model of Parkinson’s disease. Microglial changes associated with 
aberrant α-synuclein included an inflammatory response, cellular metabolism 
dysfunction, as well as cell cycle and proliferation. These results may indicate a 
vulnerability of nervous tissue to an inflammatory environment. 
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