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ABSTRACT 

 

Klebsiella pneumoniae (Kp) is a Gram-negative bacterium that can cause serious 

infections in humans. Autophagy-related gene 7 (Atg7) has been involved in certain 

bacterial infections; however, the role of Atg7 in macrophage-mediated immunity against 

Kp infection has not been elucidated. To gain a better understanding of Kp-host 

interaction which may provide insight into the design of novel and effective therapeutics 

for this infection, we set out to investigate the potential immune role for autophagy in Kp 

infection in vitro and in vivo. We found that Atg7 was significantly induced in murine 

alveolar macrophages (MH-S) upon Kp infection, indicating that Atg7 participated in 

host defense in this infection. Knocking down Atg7 with siRNA increased bacterial 

burdens in MH-S cells. Using cell biology assays and whole animal imaging analysis, we 

found that compared to WT mice, atg7 knockout (KO) mice exhibited increased 

susceptibility to Kp infection, with decreased survival rates, decreased bacterial 

clearance, and intensified lung injury. Moreover, Kp infection induced excessive 

proinflammatory cytokines and superoxide in the lung of atg7 KO mice. Similarly, Atg7 

silencing in MH-S cells markedly increased expression levels of proinflammatory 

cytokines. These findings indicate that Atg7 offers critical resistance to Kp infection by 

modulating both systemic and local production of proinflammatory cytokines.  

 

We further investigated the molecular mechanism by which Atg7 regulates Kp-induced 

inflammatory responses. We found that Atg7 expression and p-IκBα level were increased 
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in a time-dependent pattern in MH-S upon Kp infection. We also revealed an interaction 

between Atg7 and p-IκBα, which was decreased upon Kp infection, whereas the 

interaction between ubiquitin (Ub) and phosphorylated-IκBα (p-IκBα) was increased in 

MH-S. We further demonstrated that knocking down Atg7 with siRNA increased p-IκBα 

ubiquitylation and promoted NF-κB translocation into the nucleus, and increased 

proinflammatory cytokine production (TNF-α). Moreover, overexpression of Ub in MH-

S increased Kp infection-induced proinflammatory cytokines (TNF-α) and silencing 

ubiquitinase decreased cytokine production. In addition, infection of cells with lentivirus-

shUb particles decreased binding of p-IκBα to Ub and inhibited expression of TNF-α in 

the primary alveolar macrophage (AM) cells and lung tissue of atg7 KO mice upon Kp 

infection. Thus, loss of Atg7 switched binding of p-IκBα from Atg7 to Ub, resulting in 

an increased ubiquitylation of p-IκBα, which facilitated NF-κB nuclear translocation and 

intensified inflammatory responses against Kp. Our current findings reveal a regulatory 

role of Atg7 in ubiquitylation of p-IκBα. Collectively, research of this dissertation 

provides new insight into the molecular detail of host-pathogen interaction for Kp, which 

may be beneficial for design of novel therapeutics to control Kp infection. 
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CHAPTER I 

INTRODUCTION 

Klebsiella pneumoniae 

Klebsiella pneumoniae (Kp) is a Gram-negative bacterium that can infect various human 

organs such as lung and gut. When the bacterium invades the lung, it can cause 

pneumonia, which is a lung infection that primarily impacts on the lung alveoli. 

Pneumonia is one major cause of adult health care associated infections with a population 

of 15% or 20% for children (Figure 1). Although many factors can cause pneumonia 

(Wunderink & Waterer, 2014), the major causes are bacteria, viruses, or a combination of 

both (Campbell, Marrie, Anstey, Ackroyd-Stolarz, & Dickinson, 2003; Khasawneh et al., 

2014).  

 

Figure 1. Major causes of health care-associated infections. Pneumonia affects a 
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population of 15% in the adult health care associated infections or 20% for children 

(Heller, 2010).  

 

Most pneumonia infections (i.e., bacterial and viral pneumonia) usually share common 

symptoms such as cough, chest pain, fever, and difficulty in breathing (Watkins & 

Lemonovich, 2011), while certain types of bacterial pneumonia may exhibit specific 

symptoms. For example, Legionella pneumoniae may occur with abdominal 

pain, diarrhea, or neurological disorders (Darby & Buising, 2008; Mercante & Winchell, 

2015); Streptococcus pneumoniae may have rusty colored sputum (Altiner et al., 2009); 

Kp can be associated with bloody sputum, described as currant jelly (Kawai, 2006). 

Pneumonia caused by Kp is commonly diagnosed by X-rays or culture of the sputum. 

 

The treatment of pneumonia is mainly based on the underlying causes. Bacterial 

pneumonia is treated with antibiotics. Although pneumonia used to be called as "the 

captain of the men of death" in the 19th century, with the development of antibiotics, the 

incidence and corresponding mortality of bacterial pneumonia have been greatly reduced 

(Ruuskanen, Lahti, Jennings, & Murdoch, 2011). Unfortunately, overuse of antibiotics 

also stimulate antibiotics-resistant bacterial strains. Healthy people can usually defend 

against bacterial pneumonia, however, if they have health issues (e.g. 

immunocompromised individuals), their weakened immune systems greatly increase the 

susceptibility to bacterial pneumonia. Therefore, bacterial pneumonia is still one of the 

major infectious causes of hospitalization and death in the United States and worldwide, 

and incurs enormous costs in economic and human terms (Mizgerd, 2008; Moore & 
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Standiford, 1998). Given the above circumstances, the study of bacterial pneumonia is 

still of great importance. 

 

Three types of bacterial pneumonia have been identified so far: Gram-negative, Gram-

positive, and atypical pneumonia. Compared to the two other types of pneumonia, Gram-

negative pneumonia is a less frequent one and has received less attention. To fill this gap 

in knowledge about bacterial pneumonia, Gram-negative pneumonia has been one of our 

long-term laboratory interests (Q. Guo et al., 2012; Wu et al., 2011; Yuan et al., 2011). 

Previous work focused on the mechanism of different Gram-negative pneumonia, such as 

how bacteria is delivered and degraded in phagocytes (Yuan et al., 2011). My dissertation 

project is focusing on one type of Gram-negative pneumonia, Kp. As an encapsulated 

Gram-negative bacterium, Kp normally resides in the flora of the mouth, skin, and 

intestines of human body as well as in natural environment (Y. Guo et al., 2012). 

Clinically, Kp is the third commonest organism isolated from intensive care units in the 

United States (Bedenic et al., 2005; Jones, 2010). Thus, Kp is a frequently encountered 

hospital-acquired opportunistic pathogen and often infects patients through indwelling 

medical devices. This pathogen is difficult to eradicate since it can rapidly develop 

resistance to multiple antibiotics, including broad-spectrum cephalosporins and β-lactams 

(Gouby et al., 1994), resulting in severe and persistent infections in immunodeficient or 

immunocompromised individuals. Kp can invade a variety of tissues and organs, such as 

lung, urinary tract, blood (sepsis), liver, etc. (Williams, Ciurana, Camprubi, & Tomas, 

1990), which suggests that host environments and immune competency are important for 

modulating the outcomes of infection progression. Due to the clinical significance, a 
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variety of underlying virulence factors have been characterized and implicated in the 

pathogenesis of Kp (Ko, Chiang, Yan, & Chuang, 2005; Nassif, Fournier, Arondel, & 

Sansonetti, 1989).  

 

Kp consists of two important virulence surface structural components, capsular 

polysaccharides (CPS) and lipopolysaccharides (LPS). Each component has its own 

antigen for serotyping of pathogenesis potency: K antigens for CPS structure and O 

antigens for LPS structure (Kubler-Kielb et al., 2013). In addition, non-structural 

components might assist invasion of Kp. Adherence factors, such as fimbriae, can 

increase the binding of bacteria to epithelial cells through mannose-sensitive attachment, 

thus facilitating invasion to host tissue. Biofilms that are often found in the respiratory or 

urinary tracts of chronically infected patients might aid Kp in subverting immune systems 

and establishing infection in adverse host environments.  

 

Host-pathogen interaction 

 

The human body employs a full spectrum of anti-infectious apparatus within the host 

defense system to combat bacterial invasion in a complex manner, which includes 

mechanical, phagocytic and immunologic components (Standiford, Kunkel, Greenberger, 

Laichalk, & Strieter, 1996).  

 

The epithelial surfaces of our body, e.g., skin, gut and respiratory tract, are constantly 

challenged by pathogens since they are frontiers of the bodies to the environment. The 
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respiratory epithelial surface also encounters a great deal of microorganisms inhaled from 

the air due to its larger extension surface area (about 150 m
2
) (Figure 2). The epithelial 

cells in the small units of the lung, alveoli, have to be efficient in the host defense against 

inhaled pathogens. The alveoli have more concerns about the sterility compared to gut or 

skin, whose prime job responsibility is to maintain normal flora. On the other hand, the 

alveoli have increased risks of dissemination due to their localization between the 

environment and the bloodstream, compared to any other body boundary (Blasi, Tarsia, 

& Aliberti, 2005).  

 

Figure 2. The immunological homeostasis in the respiratory tract (Holt, Strickland, 

Wikstrom, & Jahnsen, 2008) .  

 

Innate immunity serves as the first line of host defense system to invading pathogens. 

Such defense includes recognition of the alien pathogens and executing function, e.g., 

release substances to directly kill or neutralize microbes, secrete cytokines and 

chemokines to recruit inflammatory cells to the infection site. In addition, it also activates 

adaptive immune response mediated by lymphocyte priming (Medzhitov & Janeway, 

1997). 
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The innate response occurs very quickly (within minutes after the pathogen invasion) and 

to the same extent every time, no matter how many times the infectious agent is 

encountered, while the adaptive immunity responses are slower in developing and to a 

greater extent if repeatedly exposed to a given agent. Phagocytic cells (macrophages, 

monocytes and neutrophils) in the innate responses can cooperate or release 

inflammatory mediators (basophils, mast cells and eosinophils, and natural killer cells). 

There are also some other molecular components involved in innate responses including 

complement protein, acute phase protein, and cytokines (Delves & Roitt, 2000a, 2000b; 

Standiford et al., 1996). 

  

The initial barriers including cough reflex, airway secretions and intact mucociliary 

system line the surface of the airways to fight off the invasion of bacteria (Nelson, 

Mason, Kolls, & Summer, 1995; Onofrio, Toews, Lipscomb, & Pierce, 1983). Once this 

first line of defense of airways is beaten, the phagocytic cells are recruited to the infected 

sites for the clearance of injurious agents of the lung. Macrophages are the primary 

resident phagocytic cells of the alveolus and constitute a critical cell type in the innate 

immune response (Chow, Brown, & Merad, 2011; Murray & Wynn, 2011). Macrophages 

express, on their membrane surface, pattern recognition receptors/sensors (PRRs) that 

help recognize various moieties from microbes. The microbial molecules being 

recognized by PRRs are termed pathogen-associated molecular patterns (PAMPs) and 

also danger-associated molecular patterns (DAMPs) (Kawai & Akira, 2010). PAMPs can 

be a variety of molecules, such as lipopolysaccharide (LPS), lipids, nucleic acids, 



 7 

proteins, lipoproteins, oligosaccharides, glycans derived from various bacteria, viruses, 

parasites, and fungi. Once a specific receptor (PPR) for PAMP/DAMP is engaged, 

various downstream effectors/pathways are activated. Activation of the immune active 

cells in the immune system aids in the host cells combating the invading agents by 

activating degradation pathways and relaying signals such as cytokines to alert other cells 

of the innate and adaptive immune system in the proximal and distal sites (Blander & 

Sander, 2012; Mihalache & Simon, 2012). Many inflammatory cytokines (TNF-α, IFN-γ 

and IL-1β) and chemokines (CXCL1, CXC1 and CCL3) could be highly produced or 

secreted following phagocytosis by neutrophils and macrophages (J. Z. Liu, Pezeshki, & 

Raffatellu, 2009; Woodford, Turton, & Livermore, 2011). The recruitment and activation 

of other inflammatory cells, such as neutrophils, also contribute to the clearance of 

bacteria including Kp (Standiford et al., 1996; Toews, Gross, & Pierce, 1979). In 

addition, adaptive immune cells including dendritic cells, T and B lymphocytes, are 

activated to defend the body against Kp. These cells also play an important role in killing 

the pathogen or neutralizing the toxic components (K. Chen & Kolls, 2013). Recent 

studies suggest that a subset of novel cytokines in Th17 family, such as IL-17 and IL-22, 

is critical in the host defense against Kp. Both cytokines stimulate the expression of 

antimicrobial peptides and neutrophil chemoattractants to the infectious sites (Curtis & 

Way, 2009).  

 

The lung progenitor epithelial cells responsible for infection and injury also play a crucial 

role in defense against Kp infection by contributing to host innate immunity. Research 

has also shown that murine alveolar macrophages (MH-S, a well-established cell line) 
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can kill Kp by recognizing their CPS either through the capsular structures 

by macrophage mannose receptors or opsonization by the lung surfactant protein 

(Keisari, Kabha, Nissimov, Schlepper-Schafer, & Ofek, 1997). Despite intense research 

on pathogenesis and host-pathogen interaction, the mechanism by which Kp is cleared 

from the lung by alveolar macrophages is largely unknown, thereby impeding the 

development of effective strategies for control of this infection. 

Classic inflammatory response pathways 

The launch of inflammatory responses in humans to combat infection after bacterial 

challenge is a complex and dynamic process, which often involves the production and 

function of cytokines and chemokines. Innate immune cells residing in tissues, such as 

alveolar macrophages, are responsible for initiating inflammatory response and their 

function are dependent on the specific receptor-PAMP/DAMP to activate various 

downstream effectors/pathways. Activated pattern recognition receptors (PRRs) then 

assemble to large multi-subunit complexes that initiate signaling cascades to stimulate the 

release of factors and promote the recruitment of leukocytes to the infected sites. So far, 

several classical signaling pathways (see Figure 3) have been identified, including TLR, 

RIG-I, TNFR, NLRs (NOD-like receptors containing pyrin domain) signaling, etc. 

(Coggins & Rosenzweig, 2012; Newton & Dixit, 2012). In TLR signaling, the TLRs 

could be bound by various PAMPs- or DAMP to activate the intracellular signaling. The 

pathway shown in Figure 3 is typical of TLR4, whose ligand is LPS. In RIG-I (retinoic 

acid-inducible gene I) signaling, RIG-I or other members of the RIG-I–like receptor 
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family could recognize viral RNA and activated the transcription factor IFN regulatory 

factor (IRF)-3. In addition, RIG-I can also activate the inflammasome together with  

 

 

 
 

Figure 3. The signaling events involved in inflammation. Three classical signaling 

pathways including TLR signaling, TNFR signaling and IFN signaling have been 

identified (Coggins & Rosenzweig, 2012; Newton & Dixit, 2012).  
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apoptosis-associated speck-like protein containing C-terminal caspase recruitment 

domain [CARD] and procaspase-1. As for TNFR signaling, the binding of TNF-α to its 

receptor recruits the TNF receptor-associated death domain (TRADD) and activates the 

TNF receptor-associated protein complex. The type-1 IFNs bind to the two subunits of 

IFN-γ, leading to activation of tyrosine kinases JAK1 and TYK2, thus followed by the 

phosphorylation of transcription factors STAT1 and STAT2. The activated STAT 

proteins could regulate the expression of a large number of IFN-stimulated genes. Most 

of these signaling systems are associated with four major downstream transcriptional 

factors, such as NF-κB, CREB, STATs, and IRF3 (Newton & Dixit, 2012), which 

promote transcription of target genes. Importantly, most of these target genes drive 

inflammation, while others regulate (generally inhibit) cell death. Many inflammatory 

pathways ultimately converge on NF-κB signaling. In the present study, I focus on NF-

κB signaling pathway because the NF-κB signaling pathway is thought to play an 

essential role in our Kp infection model (X. Li et al., 2014).  

 

Nuclear factor-κB (NF-κB) pathway 

Nuclear factor-κB (NF-κB) was discovered by Dr. Ranjan Sen in the lab of Nobel 

Prize laureate David Baltimore (Sen & Baltimore, 1986b). It is widely recognized as an 

essential transcription factor that is involved in a variety of physiological and abnormal 

processes such as cancer, inflammation, septic shock, bacterial infection and oxidative 

stress (Beutler & Cerami, 1989; Jing & Lee, 2014; Sha, 1998). In bacterial infection, the 

translocation of NF-κB to the nucleus facilitates the transcription and translation of a 
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number of downstream pro-inflammatory cytokine genes, such as TNF-α and IL-6 

(Beutler & Cerami, 1989; Sha, 1998). The NF-κB signaling pathway is illustrated in 

Figure 4.  

 

Figure 4. The NF-κB signaling pathway (Oeckinghaus, Hayden, & Ghosh, 2011).  

The discovery of IκB, a cytoplasmic inhibitor of the NF-κB (Sen & Baltimore, 1986a) is 

another remarkable achievement in NF-κB research. These discoveries inspired studies to 

identify the mechanisms to liberate NF-κB from the suppressing effects of IκB. During 

that time, there were two major views regarding the NF-κB liberation mechanism. One 
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group supported the idea that IκB phosphorylation induced the release of NF-κB from 

IκB, thus activating NF-κB (Baldwin, 1996; Ghosh & Baltimore, 1990), while other 

experiments demonstrated that IκB phosphorylation itself was not adequate for NF-κB 

activation, and that IκB degradation was required for NF-κB activation (Brown, Park, 

Kanno, Franzoso, & Siebenlist, 1993; Sun, Ganchi, Ballard, & Greene, 1993). Later on, 

several laboratories indicated that signal-induced ubiquitylation and proteasomal 

degradation of IκB were necessary for NF-κB activation (Z. Chen et al., 1995; 

Palombella, Rando, Goldberg, & Maniatis, 1994), which for the first time showed that 

ubiquitin-dependent proteolysis itself acted as a signal to induce transcriptional 

activation. Among the six highly conserved amino acids in the N-terminal of IκB, two 

serine residues (32 and 36) can be phosphorylated upon phorbol ester stimulation. The 

mutations at S32 and S36 are resistant to phosphorylation, thus abrogating IκB 

ubiquitylation and proteasomal degradation (Brown, Gerstberger, Carlson, Franzoso, & 

Siebenlist, 1995; Z. Chen et al., 1995). These findings led studies to characterize the 

degradation mechanisms of IκB, especially via IκB kinase and ubiquitin ligase. In 

addition to IκB kinase and Ubiquitin-proteasome system (UPS), the degradation of IκB 

kinase may also be regulated by an autophagy pathway (Sha, 1998). A recent study 

demonstrated that the liver of beclin1 mutant mice exhibited increased apoptosis and 

TNF-α production as well as NF-κB activation due to the accumulation of p62 (Mathew 

et al., 2009). These findings suggest that autophagy may negatively impact inflammatory 

responses via NF-κB signaling pathways. Herein, I will present a brief introduction to the 

two degradation systems, ubiquitin-proteasome system and autophagy, and especially to 

how they play a role in inflammatory responses.  
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Ubiquitylation and inflammatory responses  

Ubiquitin-proteasome system (UPS) is an intracellular protein degradation system, which 

plays crucial roles in various basic cellular processes. Two successive steps are involved 

in targeting the protein to degradation through UPS: 1) conjugation of ubiquitin to the 

substrate; 2) degradation of proteins by 26S proteasome complex and recycling of 

ubiquitin. Ubiquitin is a highly conserved protein that is ubiquitously expressed in all 

eukaryotes (J. Chen & Chen, 2013). This 76-amino-acid protein is a crucial player for 

UPS, which is accomplished in a three step-cascade mechanism with three classes of 

enzymes, ubiquitin -activating enzymes (E1), ubiquitin-conjugating enzymes (E2) and 

ubiquitin protein ligases (E3) (Figure 5) (S. Liu & Chen, 2011). Firstly, E1 activates 

ubiquitin in an ATP-requiring condition. Secondly, ubiquitin is transferred to E2. Finally, 

ubiquitin is added to the substrate, which is catalyzed by E3.  The C-terminal glycine of 

ubiquitin can be attached to the epsilon amine of lysine on the substrate via an isopeptide 

bond. Additionally, the C-terminal of ubiquitin can bind to one of seven lysines (K6, 

K11, K27, K29, K33, K48, K63) or N-terminal methionine of another ubiquitin to form 

polyubiquitin chain. The linkage of polyubiquitin can influence the destination of the 

substrate by adding another layer of complexity to this modification. For instance, K48 or 

K29-linked ubiquitylation coordinates proteins for degradation in a proteasome-

dependent way, while other polyubiquitylation, such as K63, K11 or K6-linked 

ubiquitylation functions are involved in the regulation of DNA damage repair, 

inflammation, vesicle trafficking and translation (Z. J. Chen & Sun, 2009). Ubiquitylation 

is a reversible process, which can be modulated by deubiquitylating enzymes. Proteins 

containing a ubiquitin binding domain can transmit signals from ubiquitylated substrates 
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to other proteins, which helps regulate specific signaling pathways in cells (Hicke, 

Schubert, & Hill, 2005).  

 

Ubiquitylation accounts for 80% of the intracellular protein turnover and has been 

reported to play an important role in the development of inflammatory and autoimmune 

disease through various pathways including NF-κB pathways. UPS regulates NF-κB 

activity by promoting both scaffolding and degradation. In the resting state, NF-κB binds 

to IκB and is sequestered in the cytoplasm. Upon stimulation with various agents such as 

inflammatory cytokines or TLR ligands, IκB is phosphorylated by IκB kinase (IKK) 

complex (IKKα and IKKβ) and one essential modulator (NEMO, also known as IKKγ). 

Phosphorylated IκB is further ubiquitylated and degraded by 26S proteasome, thus 

releasing NF-κB and allow its translocation to the nucleus, where it serves as a master 

regulator of the expression of a plethora of inflammatory response genes (Hayden & 

Ghosh, 2008).  

 

Figure 5. The ubiquitylation pathway. UPS is accomplished in three sequential steps 

with three classes of enzymes, ubiquitin -activating enzymes (E1), ubiquitin -conjugating 

enzymes (E2) and ubiquitin protein ligases (E3). 

(http://e3miner.biopathway.org/help_intro.html) 
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Autophagy and inflammatory responses 

Autophagy, through a lysosomal degradation mechanism, is essential for cell survival, 

differentiation, development, and homeostasis (Marino & Lopez-Otin, 2004). Cellular 

homeostasis requires the degradation of long-lived stable proteins and recycling of 

organelles and foreign agents (Larsen & Sulzer, 2002; Marino & Lopez-Otin, 2004). At 

least three types of autophagy currently have been recognized according to their target 

molecules: 1) macroautophagy−degradation of bulky cytoplasmic components e.g., 

macromolecules and large organelles; 2) chaperone-mediated autophagy− degradation of 

cytosolic proteins with specific motifs; and 3) microautophagy−degradation of small 

organelles and molecules (Klionsky & Ohsumi, 1999).  

 

Among these three types of autophagy, we focused on macroautophagy (hereafter 

autophagy) because it is the major type of autophagy that is responsible for the host 

defense against bacterial or viral infections (Gong, Devenish, & Prescott, 2012; L. T. Lin, 

Dawson, & Richardson, 2010).  

 

Several critical steps including initiation of autophagy or the autophagosome, nucleation, 

maturation, transportation to lysosomes (autolysosome formation), and degradation and 

utilization of products (Mizushima, 2007) contribute to the autophagy process. The 

mechanisms of autophagosome formation have been well demonstrated while the exact 

mechanisms of the origin or initiation of the autophagosomal membrane remain unknown 

(Marino & Lopez-Otin, 2004). Such a process needs the coordination of autophagy-

related gene encoded proteins (Atg), two ubiquitin-like (UBL) conjugation systems 



 16 

(Atg12-Atg5 and Atg8-phosphatidylethanolamine (PE)), and Atg9 related membrane 

complex.  

 

Currently, more than 32 Atgs have been identified and in this dissertation, I mainly focus 

on one of them, Atg7.  Atg7 was discovered as a critical E1-like ubiquitin enzyme in 

yeast in 1998 by Dr. Ohsumi (Mizushima et al., 1998). The atg7 gene encodes a 630-

amino-acid protein and the Cys 507 is a putative active site cysteine. Atg7 participates in 

both canonical ubiquitin-like (UBL) conjugation systems (Atg12-Atg5-Atg16 and Atg8-

PE conjugates). In the Atg12-Atg5 conjugation system, Atg7 activates the carboxy-

terminal glycine of Atg12. The activated Atg12 is transferred to Atg10, an E2-like 

conjugating enzyme. Subsequently, Atg12 binds to Atg5 through an isopeptide bond. The 

Atg12-Atg5 conjugate then forms a large protein complex with Atg16. The Atg12-Atg5-

Atg16 conjugates are essential for the elongation of the isolated membrane. Similarly, in 

the Atg8-UBL system, Atg8 is first processed by a protease, Atg4, to expose its glycine. 

Atg8 is also activated by Atg7 and then transferred to Atg3 (an E2). Ultimately, Atg8 

forms a conjugate with PE. The Atg8-PE conjugation may also depend on the Atg12-

Atg5 complex from the first UBL pathway. Atg8 could be recycled with the help of Atg4 

once autophagosomes are completed, since Atg4 can deconjugate Atg8-PE (Ohsumi, 

2001). Among the three mammalian orthologs of yeast Atg8, only (MAP-) LC3 

(microtubule-associated protein light chain 3) is found in autophagosomes and in the 

small piece of membrane structure. LC3 is an important marker of autophagosomes and it 

has three isoforms: (1) ProLC3 represents the full-length molecule; (2) LC3-I is the 

proteolytic form; and (3) LC3II is the membrane bound form after PE-lipid conjugation 
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(Marino & Lopez-Otin, 2004). The lipid conjugation of LC3 to phagophore-membrane as 

LC3-II is useful as a mammalian autophagic marker. Consequently, Atg8 with additional 

factors contributes to the elongation and closure of the phagophore, thereby forming the 

double membrane autophagosome. Eventually, the autophagosomes fuse with lysosomes 

where their contents are digested by lysosomal hydrolytic enzymes (Settembre, Fraldi, 

Medina, & Ballabio, 2013) (see Figure 6). 

 

Figure 6. The main steps in autophagy and the main genes involved. Several steps 

include sequestration (induction of autophagy and autophagosome formation), nucleation 

(transportation to lysosomes), maturation (autolysosome formation), and degradation and 

utilization of products (Yang, Carra, Zhu, & Kampinga, 2013).  

 

The autophagy response associates with a variety of general stress-response pathways 

and the close relationship between autophagy pathway and innate immune responses 
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have been well studied recently. For instance, autophagy could help to clear invading 

pathogens, regulate inflammasome-dependent signaling pathways, impact phagocytosis, 

etc. (Oh & Lee, 2012). Impaired autophagy pathway can lead to various infectious 

diseases and inflammatory syndromes (Deretic, 2012a). As a result of such considerable 

contributions to innate inflammatory responses, autophagy has been receiving growing 

attention in the immunology field (Deretic, 2012b). 

 

Autophagy’s involvement in bacterial infection has been studied as early as in 2004 by a 

group of scientists. Nakagawa et al suggested that Streptococcus pyogenes could trigger 

autophagy in HeLa cells (non-phagocytic) to defense against the infection (Nakagawa et 

al., 2004). In addition, Atg5 deficient cells had higher bacterial viability, suggesting the 

importance of Atg5 in bacterial killing activity (Nakagawa et al., 2004). At same time, 

another study observed that Mycobacterium tuberculosis is co-localized with LC3 and 

Beclin-1 in the phagolysosome and the degradation of M. tuberculosis is dependent on 

lysosome function (Gutierrez et al., 2004). After that, many studies suggest autophagy 

plays an essential role in immune response to viral or bacterial infection including 

bacterial pneumonia (Colombo, 2007; Levine & Klionsky, 2004; Levine & Kroemer, 

2008; Ogawa et al., 2005). In A549 cells, autophagy is induced by Streptococcus 

pneumoniae via PI3K-I/Akt/mTOR pathway (Li et al., 2015). Use inhibitors of 

autophagy, such as 3-methyladenine and chloroquine, suppress the induction of 

inflammatory responses in TLR2 KO macrophages after challenging with Mycoplasma 

pneumoniae (Shimizu et al., 2014). Knock-down of the autophagy gene, Atg9a, induced 

the production of IFN-β in Streptococcus pneumoniae infected aged macrophages 
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(Mitzel, Lowry, Shirali, Liu, & Stout-Delgado, 2014).  Mi et al demonstrated that using 

autophagy inhibitor reverses the therapeutic effect of IL-17A in bleomycin-induced 

pulmonary inflammation or fibrosis (Mi et al., 2011).  

 

Autophagy also reportedly responds to a variety of intracellular pathogens including 

bacteria, viruses, fungi, etc. (Deretic, 2010, 2011), which is termed xenophagy. On the 

one hand, autophagy selectively uptakes invading microorganisms or aggregated protein 

via signals, adaptors (sequestosome 1/p62 like receptors, termed SLRs) or receptors, and 

then drives them to the autophagosomes. The outcome of autophagy is pathogen specific, 

indicating that subtle and varied mechanisms exist to counter intracellular bacteria 

(Ogawa et al., 2005). Autophagy potentially captures bacteria having escaped into the 

cytoplasm from phagosomes, and further delivers them into 

autophagosomes/autolysosomes for degradation (Campoy & Colombo, 2009). On the 

other hand, bacteria can escape from phagosomes and enter autophagosomes for survival 

and replication (Campoy & Colombo, 2009; Dorn, Dunn, & Progulske-Fox, 2002). To 

date, whether autophagy plays a role in Kp pathogenesis is still poorly understood. We 

have studied autophagy in Kp-infected murine alveolar macrophage (MH-S) cells, and 

for the first time revealed the induction of autophagy by Kp through the important 

regulator Atg7. This observation may provide useful information for further 

understanding the role of autophagy in airway Kp infection. 

 

Atg7 and bacterial infection 
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As a critical autophagy member, Atg7 is implicated in multiple physiological and 

pathological conditions (Komatsu et al., 2005; Kuma et al., 2004) including viral and 

bacterial infection (Inoue et al., 2012; Lenz, Vierstra, Nurnberger, & Gust, 2011; 

Shrivastava, Raychoudhuri, Steele, Ray, & Ray, 2011; Vural & Kehrl, 2014). Recent 

studies have delineated Atg7’s function in cells challenged by bacteria or viruses. 

Japanese encephalitis virus replication is remarkably increased in neuronal cells where 

autophagy is impaired by Atg7 depletion (Sharma et al., 2014). Knockdown of Atg7 

stimulates the innate immune response in hepatitis C virus-infected hepatocytes 

(Shrivastava et al., 2011). Mice with B cell-specific deletion of Atg7 fail to give rise to 

the protective secondary antibody responses, even though they showed normal primary 

antibody responses when infected with influenza viruses (M. Chen et al., 2014). T cell 

specific deletion of Atg7 results in enhanced apoptosis and decreased survival rate in a 

sepsis disease model (C. W. Lin et al., 2014). Atg7 deficient macrophages exhibit 

higher bacterial uptake when challenged with M. tuberculosis (Bonilla et al., 2013). In 

Atg7-depleted macrophages, protein expression of two types of macrophage scavenger 

receptors is enhanced by up-regulation of one nuclear factor, and the nuclear factor is 

caused by accumulated sequestosome 1 (SQSTM1 or p62). Using the same bacteria, Kim 

et al. demonstrate that Atg7 mutant drosophila exhibited decreased survival rates in M. 

tuberculosis-infected host cells (Kim et al., 2012). Atg7 deficiency impaired Citrobacter 

rodentium clearance in the intestinal epithelium (Inoue et al., 2012). Nevertheless, some 

studies also indicate that Atg7 may not be particularly critical in the inflammatory 

responses under some circumstances. For instance, at the early time point of post-
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infection, virus or gene expression in host cells showed no significant changes with the 

depletion of Atg5 or Atg7 (McFarlane et al., 2011).  

 

A few studies suggested that one possible mechanism for how Atg7 regulates 

inflammatory responses in the bacterial infection is the activation of inflammasome. 

Impaired autophagy promotes NLRP3 activation and IL-1β release in murine sepsis 

models (Nakahira et al., 2011; van der Burgh et al., 2014).  Bonilla et al. suggested that 

Atg7 regulated phagocytosis activity through accumulation of p62 and nuclear factor 

(erythroid-derived 2)-like 2 (NFE2L2) transcription factor, thus modulating the 

expression of scavenger receptors (Bonilla et al., 2013). Atg7 might dampen cytokine 

gene expression and thereby regulate Citrobacter rodentium infectious colitis (Inoue et 

al., 2012). Besides Atg7, other Atgs may regulate several inflammatory transcriptional 

responses. For example, increased levels of p62, the adaptor protein of autophagy, 

activates NF-κB in autophagy-deficient cells (Moscat & Diaz-Meco, 2009). 

Lipopolysaccharide (LPS) could induce TNF-α production and IL-1β mRNA, and 

nuclear translocation of NF-κB in the intestines of autophagy conditional knockout mice 

(Fujishima et al., 2011), suggesting that a loss of autophagy enhances the immune 

response to bacteria through activation of the transcriptional factor NF-κB (Inoue et al., 

2012).  

 

Although many studies reported the role of Atg7 in virus or bacterial infection, whether 

Atg7 or autophagy participates in host defense against Kp infection has not been 

elucidated. Previously, our lab was the first to report that Pseudomonas aeruginosa (PA) 
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infection could induce autophagy in alveolar macrophages, as evidenced by the dose- and 

time-dependently increased LC-puncta after PA infection (Yuan et al., 2012). Further, 

knocking down Atg7 or Beclin-1 downregulates autophagy and impairs bacterial 

clearance (Yuan et al., 2012). In this study we aim to demonstrate the involvement of 

Atg7 in the Kp infection disease model, and explore the mechanisms by which Atg7 

regulates inflammatory responses. 

 

Crosstalk between autophagy and ubiquitin-proteasome system (UPS) 

UPS and autophagy are the two major protein independent degradation systems in the 

eukaryotic cell (Lilienbaum, 2013). There has been enormous interest in the protein 

degradation processes or mechanisms within the cells recently, considering its crucial 

roles in the modulation of many cellular activities, such as the cell cycle, cell 

differentiation and apoptosis (Wojcik, 2013). In addition, clinical evidence also strongly 

suggested an intimate relationship between ubiquitylation and autophagy in the 

pathogenesis of many diseases (Ding et al., 2007; Lilienbaum, 2013). Both UPS and 

autophagy play important roles in the modulation of inflammatory processes as well as in 

aiding cancer treatment. The failure to clear the misfolded or aggregated proteins in nerve 

and glial cells is a very typical pathogenic event in different neurodegenerative diseases. 

Despite intense research on both the UPS and autophagy pathways, the crosstalk of these 

two systems is not fully understood (Wojcik, 2013). 

 

Several review articles summarized the interplay and crosstalk of the two systems, such 

as the activation of autophagy upon inhibition of UPS (Ding et al., 2007; Lilienbaum, 
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2013). For example, large protein aggregates, even ubiquitylated, cannot be degraded by 

UPS and can be degraded only through the autophagy pathway. One well-studied protein 

involved in both degradation systems is p62. With ubiquitin-associated domain, p62 

binds to the ubiquitin of polyubiquitylated proteins, and they together eventually merge 

to cytosolic, nuclear or lysosomal aggregates. Also, p62 could bind to LC3 through 

specific regions and bridge ubiquitylated protein aggregates to autophagosomes 

(Komatsu et al., 2007; Zheng et al., 2009). Interestingly, p62 is known as an inhibitory 

factor of proteasomal degradation of LC3 as well (Gao et al., 2010). Wilde et al. 

confirmed that upon proteasome inhibition, p62 expression is highly induced and 

colocalized with ubiquitin in the large aggregates (Wilde, Brack, Winget, & Mayor, 

2011). Deletion of p62 in ΔF508 macrophages released Beclin1 from aggregates, which 

subsequently interacts with LC3 and improves Burkholderia cenocepacia clearance 

activity (Abdulrahman et al., 2013). Several proteasome inhibitors are also associated 

with autophagy. Recently, there has been growing interest in these inhibitors’ therapeutic 

potential in the treatment of chronic inflammation and cancer. It has been shown that 

suppression of proteasomal activities stimulated autophagy pathway, eventually caused 

cell death (Ding et al., 2007; Zhang et al., 2014), which suggested that these two protein-

degradation systems could coordinate and complement with each other.  

 

An alternative relationship between UPS and autophagy pathways was proposed by 

Rubinsztein and his colleagues, who found blockage of autophagy might lead to the 

impaired degradation of UPS substrates or proteins (Korolchuk, Menzies, & Rubinsztein, 

2009). They further demonstrated that long-term inhibition of autophagy caused an 
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accumulation of p62, which sequestered ubquitilyated substrates like p53, and impaired 

their delivery to the proteasome, thus preventing them from degradation. Overexpression 

of p62 inhibited UPS, which is dependent on the Ub binding domain. (Korolchuk, 

Mansilla, Menzies, & Rubinsztein, 2009). The Goldberg laboratory showed that FoxO3 

stimulated UPS in muscle through the activation of autophagy, and that both UPS and 

autophagy pathways contribute to muscle atrophy (Zhao et al., 2007). Although much 

work has been done elucidating the link between these two degradation systems, much 

still remains to be explored. 

 

 Significance and rationale  

When most bacterial pneumonia studies focus on pathogenesis and/or antibiotics against 

this bacterium, our study focuses on the host response mechanism. Here, we identify a 

novel role of Atg7 in the host defense against Kp in the lung by demonstrating that Atg7 

deficiency potentiates an impaired bacterial killing, induces inflammatory responses, and 

lung injury. Another highlight of this work is the identification of the underlying 

mechanisms that Atg7 serves as an inhibitory regulator of ubiquitylation of p-IκBα to 

limit NF-κB-initiated inflammatory responses. These observations provide a new insight 

into the role of Atg7 in innate immunity against Kp and indicate a novel therapeutic 

target in Kp infection. Such regulatory mechanism of Atg7 is not restricted to Kp 

infection but also extended to other gram-negative bacterium, such as PA infection. 

Considering the awkward situation of antibiotics in bacterial infection because of the 

stimulation of antibiotic resistant strains, our study strongly suggests that Atg7 

stimulation and/or UPS inhibition could be therapeutic strategies to uncontrolled 
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inflammatory responses induced by bacterial infections. The proposed studies are shown 

in Figure 7. 

 

                    Figure 7. The proposed studies and rationale of this project. 
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CHAPTER II 

MATERIALS AND METHODS 

 

 

MATERIALS 

Animals.  

Atg7 wild type mice or control mice were C57BL/6J background with no health issues. 

Mice were kept and bred in the animal facility at the University of North Dakota, and the 

animal experiments were performed under the NIH guidelines and approved by the 

institutional animal care and use committee (IACUC). 

atg7 KO mice details: 

atg7 KO mice (in a C57BL/6J background) were kindly provided by  Dr. Youwen He 

(Duke University) (W. Jia, Pua, Li, & He, 2011). Atg7 
Flox

 (Atg7
F/F

) mice were generated 

as reported (Komatsu et al., 2005). Mouse atg7 gene has 17 exons that span 216-kb long 

genomic DNA. Exon 14 encoded the active site cysteine residue. Cre-loxP technology 

was used to conditionally disrupt the exon 14 by breeding Atg7
F/F

 mice with ER-cre mice 

(Vooijs, Jonkers, & Berns, 2001). Atg7 deficiency was induced by intraperitoneally 

injecting tamoxifen 0.5 mg three times every other day. 
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Cell types. Murine alveolar epithelial cell line (MLE-12) and murine alveolar 

macrophage (AM) cell line (MH-S) were obtained from American Type Culture 

Collection (ATCC, Manassas, VA). HEK-Blue
TM

TLR4 cells were kindly provided by Dr. 

Matthew L. Nilles (University of North Dakota). The cells were originally bought from 

InvivoGen.   

 

Bacterial strains. The Kp strain (ATCC 43816 serotype II strain) was provided by Dr. 

V. Miller (University of North Carolina, Chapel Hill) (Lawlor, Hsu, Rick, & Miller, 

2005). 

Reagents. All chemicals were obtained either from Sigma Aldrich or from Fisher 

Scientific Corp unless specified. Safety precautions were followed while handling toxic 

chemicals.  

Antibodies. Antibodies to the following proteins, anti-Atg7, IL-6, NF-κB, phospho-NF-

κB (ser536, sc-33020), GAPDH, p38, p-p38 (D-8, SC-7973), IL-1β, and β-actin were 

purchased from Santa Cruz Biotechnology, Inc. Fluorescent secondary antibodies were 

bought from Molecular probes (Invitrogen).  

Equipment. Equipment needed for the study was located primarily in the lab resources 

and Department of Basic Sciences Core facilities. Microscopy was performed at the UND 

Imaging facility.  
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Methods 

Primary cell isolation and culture. Mouse AM cells were isolated by Bronchoalveolar 

lavage (BAL) as described (Yuan et al., 2011). Briefly, mice were anesthetized with 0.1 

mg Ketamine and the trachea was exposed through a neck incision and cannulated using 

a sterile 20GA (BD angiocath, Becton Dickson, Utah) catheter. The lungs were lavaged 

with 5 ml of AM isolation buffer (140 mM NaCl, 5 mM KCl, 2.5 mM sodium phosphate 

buffer, 10 mM HEPES, 6 mM Glucose, 0.2 mM EGTA, pH 7.40) in 0.5 ml increments. 

BAL fluid was centrifuged to isolate AM cells and cultured in RPMI 1640 medium 

supplemented with 10% new born calf serum (NBS) and antibiotics. The cells were 

grown in culture overnight and used next day.  

Cell line culture 

MLE-12 and MH-S cells were maintained in F12/DMEM medium (1:1) and RPMI 1640 

medium with 5% newborn calf serum and penicillin/streptomycin antibiotics in a 5% CO2 

incubator, respectively. HEK-Blue
TM

TLR4 cells maintained in DMEM medium with 

10% fetal bovine serum, 50 U/ml penicillin, 50 mg/ml streptomycin, 100 mg/ml 

Normocim, and 2 mM L-glutamine.  

 

Animal handling 

Mice were given 45 mg/kg ketamine and intranasally infected with 5×10
5
 CFU/mouse 

(six mice/group). The mice were killed when they became moribund to obtain survival 

curves (Yuan et al., 2011), while additional mice were used to attain data at designated 



 29 

times. After BAL procedure, the trachea and lung were obtained for cell biology assays 

or fixed in 10% formalin for histological analysis (see Figure 8).  

 

Figure 8. Schematic illustration of animal experiments in this research.  
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Bacterial culture and infection  

Bacteria were grown overnight in Luria-Bertani (LB) broth at 37 °C with vigorous 

shaking. The next day, the bacteria were pelleted by centrifugation at 5000 × g and 

resuspended in 10 ml of fresh LB broth and allowed to grow until the mid-logarithmic 

phase. Optical density (OD) was measured at 600 nm, 0.1 OD=1×10
8 
cells/ml. Cells were 

washed once with PBS and changed to serum-free and antibiotic-free medium 

immediately before infection. Cells were infected by Kp with a 10:1 (bacteria-cell) ratio 

(Yuan et al., 2011) for indicated time points. 

Cell transfection 

Cells were transfected with Atg7 siRNA (Invitrogen) using LipofectAmine 2000 reagent 

(Invitrogen) in serum-free RPMI 1640 medium following the manufacturer’s instructions. 

The cells were lysed after 24 h of transient transfection to evaluate the expression (Yuan 

et al., 2011). 

Tandem GFP-RFP-LC3 plasmids were transfected to MH-S cells for 24 h as reported 

previously (Yuan et al., 2012). The tandem RFP-GFP-LC3 plasmid was generated and 

kindly provided by Dr. Tamotsu Yoshimori of Osaka University, Japan (Kimura, Noda, 

& Yoshimori, 2007). The RFP-GFP-LC3B plasmids allow enhanced dissection of the 

maturation of the autophagosome to the autolysosome. By combining an acid-sensitive 

GFP with an acid-insensitive RFP (TagRFP), the change from autophagosome (neutral 

pH) to autolysosome (acidic pH) can be microscopically determined by loss of GFP 

fluorescence but not red fluorescence, indicating that RFP-LC3 can label the autophagic 
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compartments both before and after fusion with lysosomes.  After Kp infection, the cells 

were observed by confocal fluorescence microscopy. 

In vivo transduction.  

Mice were anesthetized using 45 mg/kg ketamine. The lentiviral reagent Ub shRNA 

(Santa Cruz, sc-36770-V) was delivered intranasally (Wilson et al., 2013). Thirty minutes 

prior to infection, all viral supernatants were mixed with LipofectAmine 2000 (5% final 

vol/vol; Invitrogen) to increase transduction efficiency (Wilson et al., 2010). 

Inflammatory cytokine profiling 

After infection, BAL fluid was collected to measure the cytokine concentrations using an 

ELISA kit (eBioscience Co., San Diego, CA). The trachea was surgically exposed and 

lungs were lavaged five times with 1.0 ml volume of lavage fluid to obtain BAL fluid 

except the first lavage 0.6 ml. The supernatant was collected after centrifugation. For 

ELISA assay, 96-well plates (Corning Costar 9018) were firstly coated with 100 µl/well 

capturing antibodies in coating buffer overnight at 4 °C (Yuan et al., 2011). 100 µl 

aliquots of serum samples were added to the coated wells. After incubating with 

corresponding detection-HRP-conjugated antibodies, the plate was read at 450 nm and 

analyzed to determine the cytokine concentrations using the known cytokine standards.  

Western blotting assay 

Cells or lung homogenates were collected and lysed with RIPA lysis buffer [50 mM Tris–

Cl, 1% NP-40, 0.35% sodium-deoxycholate, 1 mM EDTA, 150 mM NaCl, 1 mM EGTA, 
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pH 7.4, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM NaF, 1 mM Na3VO4] 

containing a protease inhibitor cocktail (Thermofisher, Rockford, IL). Protein 

concentrations were determined by Bio-Rad Protein Assays (Bio-Rad, USA). Equal 

amounts of individual protein samples were resolved by SDS-PAGE and then electro-

transferred onto the nitrocellulose membrane (10). Membranes were blocked for 30 min 

with 5% skim milk in TBST buffer composed of 50 mM Tris (pH 7.6), 150 mM NaCl 

and 0.1% Tween-20 and incubated with the primary antibody overnight at 4 °C. 

Antibodies against Atg7 was purchased from Invitrogen; Anti-IL-6, NF-κB, phospho-

NF-κB (ser536, sc-33020), GAPDH, p38, p-p38 (D-8, sc-7973), IL-1β, and β-actin were 

purchased from Santa Cruz Biotechnology, Inc. GAPDH or β-actin was used as loading 

control. After incubation with secondary antibodies, ECL detection reagents (Santa Cruz 

Biotechnology, Inc.) were used to detect signals.  

Co-immunoprecipitation (IP) 

For co-immunoprecipitation, the supernatants were incubated with bare protein G-

Sepharose beads (Invitrogen, Carlsbad, CA) for 2 h at 4 °C and then incubated with anti-

Atg7 or IκBα antibodies (Santa Cruz Biotechnology) bound to protein G-Sepharose 

beads overnight at 4 °C. The beads were then washed three times in lysis buffer and 

boiled after resuspension in SDS sample loading buffer. The proteins were then resolved 

by SDS-PAGE electrophoresis and analyzed by Western blotting. 

Confocal microscopy and indirect immunofluorescence staining 
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Alveolar macrophages or epithelial cells were grown in 3 cm glass-bottomed dishes 

(MatTek, Ashland, MA). After infection, the cells were fixed in 4% paraformaldehyde 

and then permeabilized with 0.2% Triton X-100 in PBS. After been incubated with the 

blocking buffer for 30 min, primary Abs were added at a 1:500 dilution in blocking 

buffer and incubated overnight. The next day, cells were washed three times with 

washing buffer (X. Chen, Hui, Geiger, Haughey, & Geiger, 2013; Wu, Pasula, Smith, & 

Martin, 2003). After incubation with appropriate fluorophore-conjugated secondary Abs, 

the cells were mounted on slides with mounting medium before taking images (Kannan, 

Pang, Foster, Rao, & Wu, 2006). The images were taken by an LSM 510 Meta confocal 

microscope (Carl Zeiss MicroImaging, Thornwood, NY). 

Nitroblue tetrazolium (NBT) assay 

NBT assay is used to detect the released superoxide.  The color of NBT dye changes 

upon reduction by released superoxide. The dye is yellow in color, and after reduction by 

superoxide becomes a blue formazan product. After 24 h infection with Kp, the dye was 

added as previously described (Yuan et al., 2011).  

Dihydrodichlorofluorescein diacetate assay 

Dihydrodichlorofluorescein diacetate dye (Molecular Probes, Carlsbad, CA) only emits 

green fluorescence upon reaction with superoxide inside cells. Cells were seeded in the 

96 well plates and treated as above. After 10-min incubation with the dye, fluorescence 

was measured using a fluorescence plate reader (BioTek, Winooski, VT) (Hui et al., 

2012; Wu et al., 2011). 
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Lipid peroxidation assay 

After infection, lungs were homogenized and lysed in 62.5 mM Tris-HCl (pH=6.8) 

supplemented with protease inhibitor (Thermofisher, Rockford, IL). Malondialdehyde 

could be measured in a colorimetric assay (Calbiochem) according to the manufacturer’s 

instructions. Then the protein concentration is measured and normalized for the assay 

(Wu et al., 2009).  

Phagocytosis assay 

MH-S cells or primary AM were plated in 24-well plates and grown overnight. The cells 

were treated with the antibiotic-free medium immediately followed by Kp infection. 

After 1 h incubation at 37 °C, the wells were washed and treated with 100 µg/ml 

polymyxin B for 1 h to kill extracellular bacteria (Kannan, Audet, Huang, Chen, & Wu, 

2008; Yuan et al., 2011). After washing with PBS three times, the cells were lysed in 1% 

Triton X-100. Then, colony-forming units (CFU) were counted to quantify phagocytosis.  

Myeloperoxidase (MPO) assay 

Lung tissue samples were homogenized in 50 mM hexadecyltrimethylammonium 

bromide, 50 mM KH2PO4, pH 6.0, 0.5 mM EDTA at 1 ml/100 mg of tissue and 

centrifuged for 15 min at 12,000 rpm at 4 °C. Precipitate was collected and 100 ml of 

reaction buffer (0.167 mg/ml O-dianisidine, 50 mM KH2PO4, pH 6.0, 0.0005% mM 

H2O2) were added to 100 ml of the sample. Absorbance was read at 460 nm at 2 min 

intervals. Triplicates were used for each sample and control (Kannan et al., 2008; Yuan et 

al., 2011).  
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Bacterial burden assay 

AM cells from BAL fluid and lungs were homogenized in PBS and spread on LB plates 

to determine the number of bacteria (Yuan et al., 2011).  

Luciferase reporter assay-NF-κB activity 

 

The p-NF-κB Luciferase reporter plasmid was obtained commercially to measure NF-κB 

activity. The plasmid encodes three repeats of NF-κB binding consensus sequences 

followed by the Luciferase gene. If NF-κB becomes activated then it will induce 

expression of luciferase protein in the transfected cells which can be measured using the 

substrate. Transient transfections were performed in 70% confluent MHS cells plated in 

12-well plates with NF-κB-reporter-luc plasmid following the manufacturer's instruction. 

24 h after transfection, the cells were infected with Kp. Cell lysates were subjected to 

luciferase activity analysis by using the Luciferase Reporter Assay System (Promega) 

(Zhou et al., 2014). The Renilla Luciferase control construct commercially obtained from 

Promega was used as internal control for basal levels of expression. 

 

Electrophoretic mobility-shift assay (EMSA) 

Nuclear extracts from the cells with different treatment were isolated with Nuclear 

Extraction Kit according to the manufacture’s introduction (Thermofisher). 

Oligonucleotide labeling and binding reactions were performed by using the reagent 

supplied in the NF-κB EMSA Gel Shift Assay System (Thermofisher). After gel 

electrophoresis and transfer to a NC membrane, the signals were visualized using a digital 



 36 

imaging system (Bio-Rad, CA, USA). The specificity of the bands has been confirmed by 

adding an excess amount of cold oligonucleotide to the reaction mixture. 

Histopathology analysis 

Lung tissues were fixed in 10% formalin in PBS using a routine histologic procedure. 

The fixed tissue samples were processed for obtaining standard H&E staining and 

examined for differences in morphology post infection (Wu et al., 2001).  

Statistical analysis 

All experiments were performed in triplicate and repeated at least three times. Data were 

presented as percentage changes compared to controls ± S.D. from the three independent 

experiments. Group means were compared by one-way ANOVA (Tukey’s post hoc) or 

Student t test using prism software, and a difference was accepted at p<0.05 (Wu et al., 

2011). The survival test results were represented by Kaplan-Meier survival curves using 

prism software.  
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CHAPTER III 

RESULTS 

 

SECTION 1: Atg7 suppresses inflammatory responses in Kp-infected mice  

(Adopted from Ye et al. Atg7 deficiency impairs host defense against Klebsiella 

pneumoniae by impacting bacterial clearance, survival and inflammatory responses in 

mice. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2014; 

307 (5): 355-63.) 

Atg7 was involved in Kp clearance in MH-S cells  

MH-S and MLE-12 cells are widely used as models for studying molecular 

characteristics of murine lung macrophage and epithelial cells, respectively (Haranaga, 

Yamaguchi, Ikejima, Friedman, & Yamamoto, 2003; Mbawuike & Herscowitz, 1989). 

To study whether autophagy is involved in Kp infection, we first screened several 

autophagy related proteins including beclin-1, Atg5, and Atg7 and found that the 

expression of Atg7 was significantly increased upon Kp infection, especially in MH-S 

cells (about 2 fold) compared to uninfected controls (Figure 9A). Thus, we chose MH-S 

cells for the following experiments. We further observed that LC-3 was converted from 

LC3-I to LC3-II after Kp infection, suggesting that autophagy was induced by Kp 

infection (Figure 9A). To clearly identify the induction of autophagy by Kp, we 
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transfected a tandem RFP-GFP-LC3 plasmid into MH-S cells. RFP-GFP-LC3 plasmid 

was designed to differentiate the autophagosome and autolysosome. The tandem RFP–

GFP–LC3 construct can form puncta after stimulation when transfected to target cells, 

suggesting autophagosome formation. Once an autophagosome fuses with a lysosome, 

the GFP moiety degrades while RFP–LC3 maintains the puncta and fuses with 

autolysosomes. After tandem construct transfection and followed by Kp infection, we 

observed an increase of LC3 puncta in both green and red fluorescence (Figure 9B and 

9C). However, infected cells showed markedly increased RFP-puncta than control cells, 

confirming the induction of autolysosome formation. Taken together, these findings 

established that Kp infection could specifically induce autophagy in MH-S cells, because 

transfection of the tandem plasmid as a measure can exclude the possibility of lysosome 

deficiency-induced LC-3 accumulation (Yuan et al., 2012). These findings prompted us 

to further characterize the role of Atg7 in bacterial clearance. Bacterial burden assay 

demonstrated that a down-regulated Atg7 by siRNA silencing strategy led to decreased 

bacterial phagocytosis and clearance activity compared to scrambled siRNA transfection 

controls (Figure 10A and 10B). Successful knockdown about 50% of Atg7 was 

confirmed by measuring protein expression using western blot analysis (Figure 10C). To 

examine the effect of autophagy on inflammation, we measured cytokine levels after 

Atg7 siRNA silencing and found that suppressing Atg7 increased cytokine secretions 

(e.g., IL-6 and IL-1β) in MH-S cells compared to uninfected and scrambled siRNA 

controls using ELISA (Figure 10D and E). Although IL-1β was also increased, the 

change in IL-6 levels was more substantive, suggesting a possible IL-6 dominant 

inflammatory response. To assess which component of Kp is a major immune stimulator, 
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we also compared the potency of whole organism and LPS in inducing cytokine secretion 

in MH-S cells. We showed that both LPS and live Kp increased cytokine production, but 

live Kp (vs. LPS alone) induced higher IL-6 levels in Atg7 siRNA groups than scrambled 

siRNA groups (Figure 10F). These results suggest that the whole pathogen is required for 

inducing robust inflammatory responses despite the involvement of LPS (Deng et al., 

2013). 

 

Figure 9. Atg7 and autophagy were involved in Kp infection in MH-S cells. (A) 

Increased expression of Atg7 in MH-S and MLE-12 cells 2 h post Kp infection as 

assessed by Western blot analysis. Gel data were quantified using densitometry with 

ImageJ software. The expressions of the proteins were quantified relative to β-actin. (B) 

Tandem GFP-RFP-LC3 plasmids were transfected into MH-S cells for 24 h. Then the 

cells were infected with Kp for 1 h (MOI=10:1). Arrows indicate LC3 puncta. (C) Puncta 

numbers (>10 in each cell) were considered as positive cells (at least 100 cells per group).  
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Figure 10. Atg7 contributed to bacterial clearance and inflammatory responses in 

MH-S cells. (A) and (B) Knocking known Atg7 with siRNA in MH-S cells decreased 

bacterial phagocytosis and clearance after Kp infection as determined by CFU assay with 

polymyxin B treatment (see methods). (C) Atg7 was knocked down with siRNA and 

followed by Kp infection detected by Western blotting. (D) and (E) Increased cytokine 

secretion in MH-S cells by knocking down Atg7 with siRNA silencing and Kp infection 

(ELISA). Data were representative of three experiments with similar results (student t-

test). (F) IL-6 secretion in Atg7 siRNA silencing MH-S cells after LPS challenge. LPS 

was derived from Kp. Cells were treated with different doses of LPS (10 and 100 µg/ml) 

for 2 h and then the medium were collected to detect cytokine secretion by ELISA.  
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atg7 KO mice exhibited decreased survival rates upon Kp infection  

To investigate the physiological relevance of Atg7 in Kp infection, we used atg7 KO 

mice to examine outcomes following Kp invasion. After intranasally instilling 

luminescence emitting Kp (5×10
5 
CFU/mouse), we noted an increased bacterial retention 

and dispersion in the lung of atg7 KO mice compared to that of WT mice (Figure 11A 

and B) by a small animal imaging system (IVIS XRII, Caliper). The powerful in vivo 

imaging enabled the convenient determination of accumulated bacteria in a spatio-

temporal manner without sacrificing animals. We found that atg7 KO mice exhibited 

quicker spread, wider distribution (both left and right lung lobes vs. only left lung lobes), 

and longer persistence than those in WT mice, confirming the critical role of Atg7 in host 

defense against Kp infection.  In addition, atg7 KO mice exhibited increased lethality 

(40% atg7 KO mice died within 24 h post-infection) as shown in Figure 11C. At 48 h, 

80% of KO mice died, whereas 80% of WT control mice remained alive (n=6). This 

result was analyzed using Kaplan-Meier survival curves (p<0.05, log-rank test). Taken 

together, these findings indicate that Atg7 is critically required for host defense against 

Kp infection in acute pneumonia models.  
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Figure 11. atg7 KO mice displayed an increased susceptibility to Kp infection. (A 

and B) in vivo imaging (whole body) of Kp infection was taken in mice. atg7 KO mice 

(n=6) and WT mice (n=6) were intranasally challenged with 5×10
5
 CFU/mouse. Images 

showing bioluminescence of different time points using IVIS XRII small animal imaging 

machine (Caliper) (arrows indicating Kp spread region). Images are representative of 6 

mice. Data are presented as mean ± SDEVs. (C) Survival of atg7 KO and WT mice was 

represented by Kaplan-Meier survival curves (n=6, p=0.0195; 95% confidence interval, 

log-rank test). 
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atg7 KO mice showed increased bacterial burdens and oxidation 

As a direct measure of lung injury, we examined lung histology of mice at 24 h post 

infection. We found that both atg7 KO mice and WT mice exhibited signs of pneumonia 

while exposed to Kp, whereas histological alterations and PMN infiltration were further 

intensified in the lungs of atg7 KO mice compared to those of WT mice (see arrows, 

Figure 12A). These results indicated that the loss of Atg7 in mice exacerbated the lung 

tissue injury after infection.  

We also noted that atg7 KO mice showed significantly increased colony-forming units 

(CFU) of Kp in the lung tissue (Figure 12B; p=0.001) compared with WT mice, 

indicating more severe pneumonia occurring in atg7 KO mice. We also found increased 

polymorphonuclear neutrophils (PMN) infiltration in both BAL fluid and serum of atg7 

KO mice compared to those of WT mice (Figure 12C and D).  
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Figure 12. Increased bacterial burdens and PMN penetration in the lungs of atg7 

KO mice following Kp infection. (A) Increased lung injury and inflammation as 

detected by histology evaluation. atg7 KO mice and WT mice were infected 5×10
5
 

CFU/mouse for 24 h. Mice were dissected, and lungs were embedded in formalin. 

Sections were analyzed by H&E staining. (B) atg7 KO mouse lungs showed significantly 

increased bacterial burdens after infection with Kp compared to those of WT mice. After 

infection, tissues were homogenized in PBS (n=6). The same amounts of tissue were 

evaluated for bacterial colonies for CFU/g of tissue. (C) and (D) Increased PMN 

infiltration was observed in the lung and serum of atg7 KO mice compared to that of WT 

mice. After HEMA-3 staining, PMN cell percentages were calculated versus total nuclear 

cells. The data were representative of 6 mice/group (Student t-test). RLU, relative 

luciferase units; RFU, relative fluorescence units.  
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Kp infection has been previously shown to induce the release of reactive oxygen species 

(ROS), whose accumulation may compromise lung injury and eventually lead to lung 

breakdown (Hickman-Davis et al., 2002). We also measured the superoxide production in 

AM cells of atg7 KO mice and found it showed increased oxidative stress versus those of 

WT mice 24 h post infection assessed by an NBT assay (Figure 13A). To verify the data, 

we used a more sensitive and quantitative Dihydrodichlorofluorescein diacetate (H2DCF) 

assay to further confirm the superoxide increase in atg7 KO AM cells following Kp 

infection (data not shown). Together, these data suggest that increased ROS may hamper 

cell survival by increasing apoptosis and may significantly damage the lung and other 

vital organs. We next evaluated MPO activity in the lung tissue of atg7 WT and KO mice 

to reflect neutrophil penetration, since MPO is a widely recognized influx for oxidation in 

physiological context. As expected, we noted increased MPO levels in the lung of atg7 

KO mice compared to those of WT mice (Figure 13B). Taken together, atg7 KO mice 

exhibit much greater lung injury than WT mice, indicating that loss of Atg7 results in 

inflammatory responses, which may aggravate tissue injury.  
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Figure 13. Increased oxidative injury in the lungs of atg7 KO mice after Kp 

infection. (A) Superoxide production of AM cells was significantly increased in atg7 KO 

mice compared to WT mice using an NBT assay (1 µg/ml). AM cells were seeded in 96 

well plates and infected with Kp at MOI of 10:1 for 1 h. The optical density for NBT was 

determined at 560 nm. (B) Increased MPO activity in atg7 KO mouse lungs compared to 

WT mice (n=3). Absorbance was read at 460 nm. 
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atg7 KO mice manifested altered inflammatory responses 

To reveal the inflammatory profile in our model, we determined some critical 

proinflammatory cytokines, an indicator of inflammatory responses, in BAL fluid and 

lungs at 24 h post infection. We found that BAL fluid of atg7 KO mice showed no 

significant change in inflammatory responses compared to those of WT mice (Figure 

14A-C). However, in atg7 KO mouse lungs, we found that the levels of TNF-α, IL-6, and 

IL-1β were significantly elevated compared to those of WT mice as assayed by ELISA (p 

< 0.01, Figure 14A-C). To validate these data, we measured the protein expression levels 

of these quantified cytokines by Western blot analysis, and found that expressions of 

TNF-α, IL-6, and IL-1β protein were also be up-regulated, especially TNF-α and IL-1β, 

with more than 10 fold increase (Data not shown). Collectively, these data demonstrated 

that atg7 KO mice manifested more intense proinflammatory responses following Kp 

infection than WT mice.  

atg7 KO mice exhibited activated NF-κB and p38 MAPK by Kp infection 

To investigate the underlying mechanism of the dysregulated inflammatory responses in 

atg7 KO mice, we analyzed the cell signaling proteins in the lung tissue by Western 

blotting assay (Figure 14D). We showed that Kp infection significantly increased the 

phosphorylation (ser536) of NF-κB p65 subunit. We then attempted to identify the 

upstream regulator of NF-κB and found that phospho-p38 MAPK was greatly increased 

in atg7 KO mice compared to WT mice (Figure 14D) after Kp infection. Hence, these 

results indicate that the activation of p38/NF-κB signaling in atg7 KO mice may be a 

contributing factor for the intensified inflammatory responses to Kp infection. 
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Figure 14. Kp induced intense inflammatory responses in atg7 KO mice. (A–C) The 

inflammatory cytokines in BAL fluid of atg7 KO mice was increased compared to those 

of WT mice as assessed by ELISA. Mice (n=6) were infected with 5×10
5
 CFU/mouse of 

Kp for 24 h. BAL fluid was collected, and cytokines were measured by ELISA. (D) 

Increased p-p38 and p-NF-κB of atg7 KO mice was observed compared to WT mice as 

assessed by Western blotting. Frozen lung tissue of atg7 KO mice and WT mice at 24 h 

post infection was lysed for protein assays. Data are representative of two experiments.  
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AM cells from atg7 KO mice manifested intensified inflammatory responses 

We further confirmed the role of Atg7 in bacterial killing and inflammatory responses in 

primary macrophages. Bacterial burden assay demonstrated that increased bacterial 

phagocytosis and decreased killing in AM cells of atg7 KO mice compared to those of 

WT mice (Figure 15A and B). Bacterial killing in primary AM was similar to MH-S 

cells, whereas Kp phagocytosis in AM cells was not (Figure 15A). These differences may 

be due to different characteristics of cell lines vs. primary cells and indeed our recent 

studies showed that knocking down of another autophagy protein (FIP-200) also reduced 

MH-S cell phagocytosis (Y. Li et al., 2014). To examine the effect of Atg7 on 

inflammation, we measured cytokine levels by ELISA assays and found that AM cells of 

atg7 KO mice had increased cytokine secretion (IL-6 and IL-1β) compared to that of WT 

mice (Figure 15C and D). Collectively, atg7 deficiency significantly altered macrophage 

host defense in mouse models, which may contribute to the worsened phenotype.  
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Figure 15. Host defense of AM cells from atg7 KO mice was impaired. 

(A) and (B), AM cells of atg7 KO mice showed increased bacterial phagocytosis and 

decreased killing after Kp infection, respectively, using CFU assay following polymyxin 

B treatment. (C) and (D), Increased inflammatory cytokines in AM cells of atg7 KO mice 

compared to those of WT mice after Kp infection as assessed by ELISA. Data represents 

three biological replicates.  
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SECTION 2: Atg7 inhibits ubiquitylation of p-ΙκΒα  to regulate the inflammatory 

responses  

Atg7 dissociates from p-ΙκΒα  after Kp infection in MH-S Cells 

To explore the regulatory role of Atg7 in the inflammatory responses during infection, we 

infected alveolar macrophage MH-S cells and murine lung epithelial MLE-12 cells with 

Kp at different time points (0, 1, 2, 5 h) and found that Atg7 expression and p-IκBα 

activity were increased in a time dependent manner (Figure 16). Meanwhile, the 

expression of IκBα total protein was not significantly increased except somewhat 

increase in MLE-12 cells at later time points (2, 5 h), indicating that IκBα protein 

expression is not regulated upon infection. Then, we probed the molecular interaction 

between these two proteins using confocal laser scanning fluorescence microscopy 

(CLSM) and found that Atg7 was co-localized with p-IκBα at resting, but this 

codistribution became less so after 1 hr of Kp infection (Figure 17A). We then identified 

the interaction between Atg7 and p-IκBα by immunoprecipitation assay (Figure 17B). 

Similar to fluorescence microscopic results, the binding between these two proteins was 

decreased after Kp infection, proportional to lengths of infection time (5 h) (Figure 17B). 

These data indicate that Kp infection causes disassociation of Atg7 from p-IκBα in a 

time dependent manner. 

 

 



 52 

 

Figure 16. Increased expressions of Atg7, p-IκBα  and TNF-α  post Kp infection in 

MH-S and MLE-12 cells. Cells were infected with Kp at different time points (0, 1, 2, 5 

h) and were collected to determine the protein expressions of Atg7, p-IκBα and TNF-α 

by Western blotting analysis. GAPDH was used as a loading control. Data were 

representative of three independent experiments. 
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Figure 17. Interaction of Atg7 and p-IκBα was decreased after Kp infection. A, Co-

localization of Atg7 and p-IκBα was observed under a fluorescence microscopy. MH-S 

cells were infected with Kp at MOI of 10:1 for 2 h. B, Interaction between p-IκBα and 

Atg7 as detected using Co-IP assay. IB: immunoblotting. IP: immunoprecipitation. MH-S 

cells were infected with Kp at MOI of 10:1 for 0, 2, and 5 h.  
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NF-κB pathway was altered by silencing Atg7 or IκBα  in MH-S Cells 

To unravel the role of Atg7 in NF-κB signaling, we found that down-regulating Atg7 by 

siRNA silencing strategy led to an increased level of p-IκBα after Kp infection (Figure 

18A). To elucidate the impact of IκBα in NF-κB signaling, we transfected IκBα siRNA 

to MH-S cells. After successful knockdown of IκBα, the phosphorylation of NF-κB 

subunit p65 (ser536) was increased upon Kp infection, suggesting that IκBα serves as the 

upstream signal in NF-κB pathway. In addition, we found that knocking down IκBα 

increased protein expression of TNF-α assessed by Western blotting analysis (Figure 

18B). These data indicated that IκBα was critical for regulating host inflammatory 

response to Kp infection via NF-κB signaling.  

 Moreover, the protein expressions of TNF-α was higher in Atg7 siRNA-transfected MH-

S cells compared to those in scrambled siRNA-transfected controls as detected by 

Western blotting (Figure 18A). Thus, Atg7 silencing may be attributable to a 

dysregulated proinflammatory response through the Atg7/IκBα/NF-κB axis.  
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Figure 18. NF-κB pathway was altered by silencing Atg7 or IκBα in MH-S Cells. A, 

p-IκBα level and TNF-α expression were determined by Western blotting. MH-S cells 

were transfected with Atg7 siRNA or control (scrambled) siRNA. After 24 h, cells were 

infected with Kp at MOI of 10:1 for 1 h. B, NF-κB and TNF-α expression was 

determined by Western blotting. MH-S cells were transfected with IκBα siRNA or 

control siRNA. After 24 h, cells were infected with Kp at MOI of 10:1 for 1 h. Data were 

representative of three independent biological experiments.  
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NF-κB is a master transcriptional factor for initiating inflammatory responses. Here, we  

isolated the nuclear fraction of cells at 1 or 5 h after Kp infection and found that NF-κB 

expression is significantly increased in Atg7 siRNA-silenced cells compared to controls 

after Kp infection (Figure 19A). We then carried out an electrophoretic mobility shift 

assay (EMSA) to study potential NF-kB activation, and noticed that an ostensible shift of 

NF-κB occurred in Atg7 siRNA cells after Kp challenge (Figure 19B). In addition, we 

showed that the NF-κB luciferase reporter activity was significantly increased in Atg7 

siRNA-transfected MH-S cells vs. control siRNA-transfected cells (Figure 19C). Further, 

we used an NF-κB inhibitor (SN50, 1.8 µM) to validate the activation and function of 

NF-κB and found that SN50 inhibited levels of IL-6 and TNF-α induced by Kp infection 

with Western blotting (Figure 19D). To further confirm the critical role of Atg7 in NF-κB 

activation, we used Atg7 siRNA-transfected MH-S cells to determine nuclear 

translocation. We found that Atg7 siRNA transfection markedly increased nuclear 

translocation of NF-κB vs. control siRNA (Figure 20). To validate this observation, NF-

κB inhibitor SN50 (1.8 µM) was used to pretreat the cells, which also abolished NF-κB 

translocation (Figure 20). Our findings demonstrate that NF-κB activity is modulated by 

Atg7.  
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Figure 19. NF-κB translocated into nuclei in Atg7-silenced cells. A, Nuclear NF-κB 

levels were increased in the Atg7 silencing cells. MH-S cells were transfected with Atg7 

siRNA or control (scrambled) siRNA. After 24 h, the cells were infected with Kp for 1 h 

and 5 h. Nuclear fractions were isolated from cells by a nuclear extraction kit 

(Thermofisher). B, EMSA was performed in MH-S cell nuclear extracts using the biotin-

labeled probe (Thermofisher), which contains only a single copy of the 21-bp element. C, 

Increased luciferase reporter activity of NF-κB in Atg7 siRNA-transfected MH-S cells. 

MH-S cells were transfected with Atg7 siRNA or control siRNA. After 24 h, cells were 

transfected with luciferase reporter NF-κB plasmid. After another 24 h transfection, cells 

were infected with Kp at MOI of 10:1 for 1 h. SN50 (1.8 µM) was used to pretreat cells 

for 0.5 h before infection. ***p<0.001 (One way ANOVA and Bonferroni's selected 

Multiple Comparison Test). D, TNF-α expression was decreased after inhibiting NF-κB 

with SN50 (1.8 µM). MH-S cells were infected with Kp at MOI of 10:1 for 1 h. Data 

were representative of three experiments.  
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Figure 20. Decreased nuclear translocation of NF-κB in Atg7 siRNA-transfected 

MH-S cells. Cells were transfected with Atg7 siRNA or control siRNA. After 24 h, cells 

were infected with Kp at MOI of 10:1 for 1 h. The localization of NF-κB was visualized 

by indirect immunofluorescence staining (arrows show the nuclear translocation). SN50 

(1.8 µM) was used to pretreat the cells for 0.5 h before infection. Data were 

representative of three experiments. p-p65 was shown in red, and DAPI was shown in 

blue. *p<0.05 (student t-test). 
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Ubiquitylation of p-IκBα  

Within the eukaryotic cell there are two main intracellular protein degradation pathways: 

the ubiquitin-proteasome system (UPS) and autophagy. To clearly establish the role of 

autophagy in inflammatory response, we set out to dissect whether UPS also contributes 

to the degradation of p-IκBα and observed that expression of Ub was not significantly 

influenced after Kp infection at different time points in either murine lung epithelial 

MLE-12 cells or macrophage MH-S cells (Figure 21A). However, association between p-

IκBα and Ub became significantly increased after Kp infection as detected using 

immunoprecipitation assay in MH-S cells (Figure 21B). In addition, co-localization (see 

arrows) of p-IκBα and Ub was revealed by fluorescence imaging assay (Figure 21C), 

suggesting a potential interaction between p-IκBα and Ub.  Together, these data suggest 

that after Kp infection, the interaction between p-IκBα and Ub became significantly 

increased.  
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Figure 21. p-IκBα  was ubiquitylated after Kp infection. A, Expression of Ub protein 

was not significantly changed after Kp infection at different time points in either MLE-12 

or MH-S cells. Cells were infected with Kp at 1, 2 or 5 h. B, Interaction between p-IκBα 

and Ub was significantly increased after Kp infection. MH-S cells were infected with Kp 

for 2 h and then were collected for Co-IP assay. C, Co-localization of Ub and p-IκBα was 

observed by fluorescence microscopy. MH-S cells were infected with Kp for 2 h. Data 

were representative of three experiments. 



 61 

Atg7 silencing increased the ubiquitylation of p-IκBα  

Since our results showed that p-IκBα could interact with either Atg7 or Ub, we sought to 

elucidate whether there exists competition between Atg7 and Ub during their interaction 

with p-IκBα. To approach this question, we knocked known Atg7 with specific siRNA 

and observed an increased interaction between p-IκBα and Ub in the MH-S cells upon 

Kp infection (Figure 22A). To further confirm the role of Ub in Kp-infected cells, we 

transfected Ub plasmid (Ub-HA) to overexpress Ub and found an increased expression of 

TNF-α (Figure 22B), however the change was not significant. Moreover, we also 

observed an significantly increased ubiquitylation of p-IκBα following Atg7 silencing in 

another Gram-negative bacterium Pseudomonas aeruginosa PAO1 strain or LPS derived 

from Kp treated MH-S cells (Figure 23). 
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Figure 22. Atg7 silencing increased the ubiquitylation of p-IκBα . A, Knocking 

dnown Atg7 with specific siRNA increased the interaction between p-IκBα and Ub 

compare to control siRNA silenced cells after Kp infection. MH-S cells were infected 

with Kp for indicated hours. B, Overexpression of Ub increased the expression of TNF-α. 

The Ub-HA plasmid was kindly provided by Dr. Ron Hay (University of Dundee). MH-S 

cells were transfected with Ub-HA. After 24 h, cells were infected with Kp for 2 h. Data 

are representative of three experiments. No significance (ns) (One way ANOVA and 

Bonferroni's selected Multiple Comparison Test). 
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Figure 23. Atg7 silencing increased the ubiquitylation of p-IκBα after Lps or PAO1 

infection. Knocking down Atg7 with specific siRNA transfection increased the 

interaction between p-IκBα and Ub after infection with LPS derived from Kp (left panel) 

or PAO1 (right panel). MH-S cells were infected with PAO1 for 1 h or LPS (100 ng/ml) 

for 3 h. Data were representative of three experiments with similar results. 
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To examine whether Atg7 plays a specific role in p-IκBα ubiquitylation, we knocked 

down two other autophagy related genes, Atg5 and Beclin-1. Importantly, knockdown of 

Atg5 and Beclin-1 by siRNA did not significantly alter the ubiquitylation of p-IκBα 

(Figure 24A), suggesting a major role of Atg7 in regulating the ubiquitylation of p-IκBα. 

However, 3-methyladenine (3-MA) pretreatment increased ubiquitylation of p-IκBα after 

Kp infection (Figure 24B).  
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Figure 24. Potential roles of other autophagy related proteins in the ubiquitylation 

of p-IκBα . A, Knocking-down Atg5 or beclin1 with specific siRNA did not significantly 

alter the interaction between p-IκBα and Ub after infection with Kp. MH-S cells were 

infected with Kp for 2 h. B, Autophagy contributed (albert not in a dramatic manner) to 

the ubiquitylation of p-IκBα. MH-S cells were pre-treated with rapamycin (10 nM) for 12 

h or 3-methyladenine (3-MA) (5 mM) for 3 h before Kp infection. After 2 h infection, 

cells were collected for Co-IP assay. Data were representative of three experiments. 
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Deubiquitylation of p-IκBα  

To further analyze the role of ubiquitylation at the molecular level, we employed siRNA 

of ubiquitin to confirm the role of Ub in Kp infection in MH-S cells. We found that after 

knock-down of ubiquitin, the ubiquitylation of p-IκBα (Figure 25A) was decreased as 

well as the expression of TNF-α cytokine (Figure 25B).  

In addition, we used a deubiquitinase (usp30) to confirm the role of Ub in Kp infection in 

vitro models. We found that usp30 expression was significantly decreased after Kp 

infection in MH-S cells, but not in MLE-12 cells (Figure 26A). We further transfected 

MH-S cells with usp30 siRNA and found that TNF-α expression was significantly 

decreased upon Kp infection (Figure 26B).  

We used the proteasome inhibitor (MG132) to confirm the downstream effects of UPS 

system. MG132 treatment alone could not alter the ubituitylation status of p-IκBα 

(Figure 27A). However, after knocking down Atg7, pre-treatment with MG132 increased 

the ubiquitylation of p-IκBα (Figure 27B).  

Collectively, these data suggest that knockdown of ubiquitin, the ubiquitylation of p-

IκBα was decreased as well as the expression of TNF-α cytokine.  
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Figure 25. Silencing Ub with siRNA inhibited inflammatory responses. A, Interaction 

between p-IκBα and Ub was significantly decreased after Kp infection after knocking 

down Ub. Cells were transfected with Ub siRNA. 24 h after transfection, MH-S cells 

were infected with Kp for 2 h and then were collected for Co-IP assay. B, Silencing Ub 

followed by Kp infection decreased the expressions of TNF-α. MH-S cells were 

transfected with Ub siRNA. After 24 h, the cells were infected with Kp for 2 h. Data were 

representative of three experiments. *p<0.05 (One way ANOVA and Bonferroni's 

selected Multiple Comparison Test).  
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Figure 26. Silencing deubiquitinase (usp30) with siRNA inhibited inflammatory 

responses. A, usp30 was significantly decreased after Kp infection in MH-S cells but not 

in MLE-12 cells. Cells were infected with Kp at indicated time points. Data were 

representative of two experiments. B, Silencing usp30 followed by Kp infection 

decreased the expressions of TNF-α. MH-S cells were transfected with usp30 siRNA. 

After 24 h, the cells were infected with Kp for 1 h. Data were representative of three 

experiments. *p<0.05 (One way ANOVA and Bonferroni's selected Multiple Comparison 

Test). 
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Figure 27. Inhibiting UPS by proteasome inhibitor (MG132) increased the 

ubiquitylation of p-IκBα in the Atg7 silencing cells. A, Pretreatment with MG132 did 

not influence the ubiquitylation status of p-IκBα. MH-S cells were pretreated with 

MG132 (40 µM) for 1 h, and followed by Kp infection for 2 h. Cells were collected to 

detect the ubiquitylation of p-IκBα by IP assay. B, MG132 increased ubiquitylation of p-

IκBα in the Atg7 silenced cells. MH-S cells were transfected with Atg7 siRNA. After 24 

h, cells were treated with or without MG132 (40 µM) for 1 h, and followed by Kp 

infection for 2 h. Cells were collected to detect the ubiquitylation of p-IκBα by Co-IP 

assay.  
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Ub silencing decreased the ubiquitylation of p-IκBα  and inflammatory responses in 

vitro and in vivo 

To confirm the critical role of ubiquitylation of p-IκBα in the inflammatory responses, 

we knocked down both Ub and Atg7 with specific siRNA in MH-S cells. We found that 

the increased ubiqutylation of p-IκBα following Kp infection was decreased in the dual 

knock-down Ub and Atg7 group compared to single gene knock down or control groups 

(Figure 28A). Furthermore, the expression of TNF-α was significantly decreased when 

knock down both Ub and Atg7 (Figure 28B).  To convincingly verify the regulatory role 

of Atg7 in p-IκBα in vivo, we infected WT or Atg7 KO mice with lentivirus-shUb 

particles. We used histology assay to evaluate lung injury. After Kp infection for 24 h, we 

observed decreased inflammatory cell infiltration in the lentivirus-shUb infected Atg7 

KO mice compared to control mice (Figure 29A). The secretion of TNF-α in the BAL 

fluid was significantly decreased in lentivirus-shUb-infected Atg7 KO mice in 

comparison to Atg7 KO mice (Figure 29B). We also isolated the primary AM cells from 

different groups of mice, and found that ubiquitylation of p-IκBα and expression of TNF-

α were significantly decreased in lentivirus-shUb-infected Atg7 KO mice while 

ubiquitylation of p-IκBα and expression of TNF-α were significantly increased in Atg7 

KO mice (Figure 30A). Similar results were also found in the lung tissue (Figure 30B). 
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Figure 28. Dual knockdown of Ub and Atg7 decreased the ubiquitylation of p-IκBα  

and inflammatory responses in MH-S cells. A, Interaction between p-IκBα and Ub is 

significantly decreased after Kp infection after knocking down both Ub and Atg7 

comparing to Atg7 siRNA silencing cells. Cells were transfected with Atg7 siRNA for 24 

h. 24 h after transfection, MH-S cells were transfected with Ub siRNA. After another 24 

h post transfection, the cells were infected by Kp for 2 h and then were collected for Co-

IP assay. B, Dual knocking down Ub and Atg7 followed by Kp infection decreased the 

expressions of TNF-α comparing to Atg7 siRNA group. After 24 h, the cells were 

infected with Kp for 2 h. Data were representative of three experiments. *p<0.05 (One 

way ANOVA and Bonferroni's selected Multiple Comparison Test).
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Figure 29. Lentivirus-shUb infected Atg7 KO mice exhibited decreased 

inflammatory responses after Kp infection. A, Decreased lung injury and inflammation 

as detected by histology evaluation. Mice were infected with lentivirus-shUb. After 3 

days, mice were infected 5×10
5
 CFU/mouse for 24 h. Mice were dissected, and lungs 

were embedded in formalin. Sections were analyzed by H&E staining. The data were 

representative of 6 mice/group. B, TNF-α in the BAL fluid was significantly decreased in 

lentivirus-shUb-infected Atg7 KO mice as detected by ELISA. *p<0.05 (One way 

ANOVA and Bonferroni's selected Multiple Comparison Test). 
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Figure 30. Lentivirus-shUb infected Atg7 KO mice exhibited decreased 

ubiquitylation of p-IκBα after Kp infection. A and B, Ubiquitylation of p-IκBα and 

the expression of TNF-α were significantly decreased in the lentivirus-shUb particles 

infected AM cells (A) and lung tissue (B) of atg7 KO mice compared to that of atg7 KO 

mice after Kp infection. After infection, AM cells or lung tissue were isolated and lysed 

in IP lysis buffer. Half of the lysate was used for Co-IP assay and the rest was used to 

determine the protein expression level of TNF-α and GAPDH. Data were representative 

of three experiments.  
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TLR4 plays a role in controlling autophagy pathway after Kp infection  

To probe the upstream signals of Atg7, we evaluated several innate immunity participants 

and identified that TLR4 was involved in the autophagy pathway during Kp infection 

(Data not shown). After knocking down TLR4 with specific siRNA, we found that Atg7 

expression and LC3 conversion from LC3-I to LC3-II were significantly decreased 

(Figure 31A, left panel). These results are further confirmed by employing TLR4 

neutralizing antibodies (Ab) (Figure 31A, right panel). To further evaluate the effect of 

TLR4 on autophagy, we co-transfected a tandem RFP-GFP-LC3 plasmid and TLR4 

siRNA into MH-S cells and found that TLR4 silencing significantly decreased the 

formation of LC3B puncta (Figure 31B), indicating that blocking TLR4 weakened 

autophagy induction after Kp infection.  
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Figure 31. TLR4 silencing in MH-S cells blocked Kp infection-induced autophagy.  

A, Decreased expressions of autophagy markers in MH-S cells were observed by TLR4 

siRNA silencing or neutralizing Ab blocking. MH-S cells were transfected with siRNA 

or pretreated with TLR4-Ab (1µg/ml) for 3 h, and followed by Kp infection. B, Tandem 

GFP-RFP-LC3 plasmids and TLR4 siRNA were simultaneously transfected into MH-S 

cells for 24 h. Then the cells were infected with Kp for 1 h (MOI=10:1). Puncta number 

in each cell (>10 as positive cells) was determined in 100 cells per group.  
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CFU counting demonstrated that down-regulated levels of TLR4 led to decreased 

bacterial phagocytosis and bactericidal activity (Figure 32A and B). To further confirm 

TLR4’s impact on Atg7, we used a HEKblue-TLR4 cell line, which stably over-

expressed TLR4 (InvivoGen, San Diego, CA). We found that Atg7 activation by Kp 

infection was partially blocked by TLR4 silencing or neutralizing antibody (Figure 32C). 

More importantly, we found that tlr4 KO mice also manifested decreased Atg7 

expression 24 h post Kp infection (Figure 32D). To summarize the findings of this study, 

we presented a simplified signaling pathway using atg7 KO mice and siRNA silenced 

cells (Figure 33).  In this model, atg7 deficiency induces the phosphorylation of IκB, thus 

release NF-κB in the cytoplasm after Kp infection. The translocation of NF-κB to the 

nucleus continuously induces cytokine production. 
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Figure 32. The bacterial clearance and Atg7 expression were decreased after 

blocking TLR4.  (A and B), Knocking down TLR4 with siRNA in MH-S cells 

decreased bacterial phagocytosis and clearance after Kp infection, respectively. C, Atg7 

expression was decreased after blocking TLR4. HEK-TLR4 cells were pretreated with 

E5564 (1 µM), or TLR4-Ab (1 µg/ml) for 3 h, and followed by Kp infection. D, tlr4 KO 

mice showed decreased autophagy pathway after Kp infection at 24 h. Data are 

representative of three experiments with similar results (Student t-test, *p<0.05). 
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Figure 33. Illustration of the signaling pathways involved in atg7 knock down cells 

after Kp infection. atg7 deficiency induces the phosphorylation of NF-κB in the 

cytoplasm during Kp infection. The translocation of NF-κB to the nucleus continuously 

induces cytokine production. 
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CHAPTER IV 

 

DISSCUSSION 

 

We demonstrated a typical phenotype of Kp infection in atg7 KO mice, including 

decreased survival, increased inflammatory response, and more severe lung injury 

compared to WT mice. Despite a variety of virulence factors that cause varying tissue 

abnormalities, we proposed that severely dysregulated cytokine responses and increased 

superoxide release by host cells are strongly associated with this serious pathophysiology. 

Previously, similar phenotypes (increased susceptibility, increased production of 

cytokines, and elevated bacterial burdens) have been observed in atg7 KO mice infected 

with other pathogens, such as fungi and viruses (Hwang et al., 2012; Lenz et al., 2011; 

Pei et al., 2011). The current study suggests that Atg7 may contribute to critical host 

immune defense against Kp infection.  

 

Atg7 plays a role in host responses to pathogens 

Atg7 has been demonstrated to impact host defense against various pathogens (Amer, 

Byrne, & Swanson, 2005; K. Jia et al., 2009; Tanida et al., 2009) and is widely expressed 

in alveolar epithelial and lung macrophage cells (Ryter & Choi, 2010). Previous studies 

have implicated the involvement of Atg7 in host responses to pathogen virulence factors 

(Amer et al., 2005; K. Jia et al., 2009; Tanida et al., 2009); however, the role of Atg7 in 

inflammatory responses has not been well elucidated. Our laboratory previously showed 
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that Atg7 could influence the phagocytosis activity of another Gram-negative bacterium 

P. aeruginosa in macrophage cells (Yuan et al., 2012). In the present study, using animal 

and cell culture models, we showed for the first time, that Atg7 is indispensable in host 

defense against Kp infection, and autophagy defects could lead to a worsened outcome in 

affected animals due to dysregulated inflammatory responses. Thus, our studies indicate 

that Atg7 may provide broad roles in immunity against Gram-negative bacterial infection.   

 

We found that a differential role of Atg7 in bacterial phagocytosis killing by 

macrophages, showing that increased bacterial phagocytosis and decreased killing in 

primary AM cells of atg7 KO mice compared to those of WT mice. Interestingly, 

phagocytosis of Kp by primary AM was contradictory to cell line data (Fig. 15A and Fig. 

10A). However, these results are in agreement with our recent studies in MH-S cells 

showing that knocking down of another critical autophagy protein FIP-200 also reduced 

phagocytosis (Y. Li et al., 2014). Similarly, a previous study showed that knocking down 

Atg7 in monocytes showed decreased phagocytosis activity after challenging with CSF-1 

(Jacquel et al., 2012). siRNA strategies may not completely and stably deplete the protein 

expression, whereas KO mice may exhibit complex phenotypes resulted from 

compensatory activities. Nevertheless, combination of these two models generates 

relatively unbiased data, thus closely modeling physiological relevance of our 

observations.   

 

Involvement of ROS in lung injury  



 81 

To probe the underlying mechanism, we determined the change in ROS that may be 

responsible for bacterial clearance by phagocytes. Previous studies have shown that Atg7 

in tetrandrine-induced autophagy is ROS dependent during human hepatocellular 

carcinogenesis (K. Gong et al., 2012). Our results also showed significantly increased 

ROS levels in AM cells of atg7 KO mice, which may impair mitochondrial membrane 

potential as compared to those in WT mice. These data suggested that Atg7 may act as a 

down-regulator in superoxide production and release, whereas an elevated oxidative 

stress in atg7 KO mice may be associated with lung injury and systemic bacterial 

infection. We also detected the superoxide production in MH-S cells as well as MLE-12 

cells after silencing Atg7 with siRNA, and the superoxide production was increased 

along with an increased bacterial burden under Atg7 knockdown conditions, which is 

consistent with the animal AM data (data not shown). Together, these observations 

demonstrate that autophagy machinery in bacterial clearance is markedly impaired in 

atg7-deficient mice in the case of Kp infection. However, Atg7’s role in human cells has 

not been described and warrants future investigations. Since we have relevant experience 

in human lung epithelial cells, we will further evaluate the relevant pathway in cell lines 

such as A549 (He et al., 2001) and primary human lung epithelial cells. 

  

Another major contributing factor to lung injury and mortality is a heightened 

inflammatory response. Significantly, lungs and BAL fluid of atg7 KO mice exhibited an 

increase in proinflammatory cytokines. We found that although IL-1β was also increased, 

the change of IL-6 was more significant, suggesting that an IL-6 dominant inflammatory 

response may be related to Atg7 function. Indeed, a previous study also revealed that IL-
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6 is involved in the Atg7 pathway (Pastore et al., 2013). Previously, similar results 

(increased pro-inflammatory cytokines) have also been observed in the intestine in atg7 

KO mice (Inoue et al., 2012). It has been increasingly recognized that lung epithelial cells 

can contribute to the production of cytokines (Amano et al., 2004; Thorley, Goldstraw, 

Young, & Tetley, 2005), which may be a topic of investigation in the future. 

Furthermore, phagocytes (e.g., macrophages and neutrophils) are traditionally regarded 

as the main players of inflammatory responses (Ozaki et al., 1989). Thus intensified 

superoxide or cytokines in both epithelia and phagocytes together led to exceedingly 

heightened inflammatory responses in atg7 KO mice, which warrants further 

investigation. 

 

Activation of NF-κB pathway increased inflammatory responses 

To illustrate the mechanism for the dysregulated inflammatory responses in atg7 KO 

mice, we assessed potential cell-signaling pathways in the lung tissue following infection. 

Interestingly, we observed marked activation of NF-κB that has been widely recognized 

as a major transcription factor for cytokine production in alveolar epithelial cells. We 

further explored the mechanism by which Atg7 regulates NF-κB signaling, thus 

impacting on cytokine secretion during Gram-negative bacterial infection. We revealed a 

new mechanism wherein Atg7 regulates inflammation via inhibition of ubiquitylation 

degradation systems with p-IκBα in both cells and mice after Kp infection. NF-κB 

activation may be triggered to augment inflammatory response after the normally 

suppressed p-IκBα to be disassociated from an Atg7-p-IκBα complex. Finally this 
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signaling is governed by TLR4 whose critical regulatory role is validated by using cell 

lines stably overexpressing TLR4 and knockout mice. 

 

Ubiquitylation and autophagy regulate degradation of IκBα  

Ubiquitylation and autophagy are two most important protein degradation systems in the 

eukaryotic cells involved in a variety of cellular processes. Both of them play essential 

roles in cellular protein homeostasis and control many cell functions, including cell 

growth, proliferation, apoptosis, and immune response (Knecht et al., 2009). They are 

usually considered independent of one another because of their differences in constituents 

and degradation mechanisms. However, there is also evidence that immune response may 

be associated with both degradation systems to impact different disease processes in 

various models (Errafiy et al., 2013; Korolchuk, Menzies, & Rubinsztein, 2010). 

Inhibition of proteasomal activities that are used to induce cell death has been previously 

shown to activate autophagy, indicating a coordinated and complementary relationship 

between these two protein-degradation systems (Wojcik, 2013; Zhang et al., 2014). On 

the other hand, in U87MG glioma cells, increasing autophagy may decrease the activity 

of the UPS (Errafiy et al., 2013). In our Kp infection model, we found that Atg7 

deficiency disrupted the balance between UPS and autophagy system, skewed the 

reaction towards the UPS system. We observed that p-IκBα ubiquitylation was increased 

in Atg7 silenced cells, suggesting that p-IκBα degradation was augmented. The 

degradation of p-IκBα allowed the release of NF-κB to initiate transcriptional activity of 

proinflammatory cytokines (e.g., TNF-α).  
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The degradation of IκBα kinase is a key regulatory mechanism in NF-κB activation and 

may be modulated either by an autophagy pathway (Sha, 1998) or by a ubiquitylation 

pathway (Alkalay et al., 1995). Autophagy’s inhibitory impact on inflammatory 

responses by influencing IκBα/NF-κB signaling has also been documented in other 

disease models. For instance, the liver of beclin1 mutant mice exhibits increased 

apoptosis and NF-κB activation due to the accumulation of p62 (Mathew et al., 2009). 

Defective Atg7 contributes to the pathogenesis of obesity via the activation of IKK 

pathway (Meng & Cai, 2011). Ub is necessary for the phosphorylation and degradation of 

IκBα both in vitro and in vivo (Z. J. Chen, Parent, & Maniatis, 1996). Here, we reveal a 

role of Ub in Atg7-modulated inflammation during bacterial infection, which explains the 

critical regulation of inflammatory responses by Atg7. At present, we cannot exclude 

another possibility i.e., regulation of IKK-IκBα complex. IκBα could be phosphorylated 

via activation of IKK and recognized by β–TrCP following p-IκBα ubiquitylation 

(Kanarek, London, Schueler-Furman, & Ben-Neriah, 2010). However, our data still 

suggest a critical role for Ub in Atg7-modulated inflammation with bacterial infection. 

 

Other possible signaling molecules 

p38 MAPK is one of the major signaling molecules, which plays a pivotal role in most 

types of cytokine production in various cells and different conditions (Adcock, Chung, 

Caramori, & Ito, 2006; Yoshizumi et al., 2010). In the Kp model, we also found that both 

p38 and NF-κB were significantly activated in atg7 KO mice following Kp infection. 

Atg7 has been shown to interact with NF-κB directly through molecular interactions and 
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Atg7 deficiency may impact NF-κB activity (Fujishima et al., 2011). To date, no studies 

have linked Atg7 with NF-κB pathway in response to any respiratory pathogen. To this 

end, we used Atg7 siRNA to determine nuclear translocation of NF-κB and found that 

Atg7 knockdown markedly increased nuclear translocation of NF-κB vs. controls (Figure 

20). Furthermore, NF-κB inhibitor SN50 (1.8 µM) also reduced NF-κB translocation 

(Figure 20). Our findings indicate that NF-κB activity may be modulated by Atg7, which 

may be relevant to the altered inflammatory response. The detailed mechanism is unclear 

and is worth further investigation.  

In our present study, we specifically focused on autophagy protein Atg7 and particularly 

addressed its potential role in Kp infection instead of discussing the effect of general loss 

of autophagy in Kp infection. However, this doesn’t exclude the contribution of other 

autophagy related genes to the Kp infection. It has been reported that mouse cells lacking 

Atg5 or Atg7 can still form autophagosomes/autolysosomes and perform autophagy-

mediated protein degradation after challenge with certain stressors (Nishida et al., 

2009).  We also found other autophagy related genes are involved in Kp infection 

(manuscript in preparation). 

 

There is initial evidence reporting the linkage between TLRs and autophagy (Xu et al., 

2007), and suggesting that TLRs might induce autophagosome formation in 

macrophages. TLR4, as one of TLRs family, is also reported to be associated with 

autophagy in bacterial infectious disease model. TLR4 has been shown to be 

coimmunoprecipitated with Beclin-1, TRIF, IRAK4, and MyD88 (Shi & Kehrl, 2008). In 

addition, previous reports have shown that TLR4 signaling can induce autophagy in 
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leukocytes that can positively influence microbial clearance and NF-κB signaling (Neal 

et al., 2013; Xu et al., 2007), and these studies led us to evaluate the role of TLR4 in 

autophagy after Kp infection. In probing upstream immune molecules of Atg7, we 

identified that TLR4, the receptor of Gram-negative bacterial LPS, is critically involved 

in Atg7 signaling. We also found that knocking down TLR4 led to an increased 

superoxide production after Kp infection (data not shown), which might be a link 

between TLR4 and the autophagy pathway. Our findings indicate that TLR4 is a potential 

sensor of autophagy in Kp infection. 

 

Conclusion and overall significance 

We present the first disease phenotype of Kp infection in atg7 KO mice, and our data 

identify an important role for Atg7 in innate immunity against Gram-negative bacterium 

Kp in KO mice. atg7 deficiency impaired the phagocytic ability in alveolar macrophages 

and other immune functions, resulting in sustained infiltration of PMN cells into the lung 

and an intense inflammatory response. Importantly, we identify a critical mechanism for 

Atg7-associated innate immunity against the Gram-negative Kp bacterium. atg7 

deficiency intensified a proinflammatory response via a ubiquitylation mechanism. 

Collectively, these observations provide new insight into the role of Atg7 in innate 

immunity against Kp, unraveling ubiquitylation of p-IκBα as a critical molecular process 

by which Atg7 negatively regulates inflammatory response to Kp. Since Kp is an 

extremely important human pathogen, imposing significant healthcare burdens and 

mortality, the mechanism indicated in the current work may have unprecedented bearing 

in our understanding of Kp invasion behaviors and host defense patterns. Further, Kp is 
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increasingly becoming resistant to conventional antibiotics, our options to combat the 

multi-drug resistant super-bug is exceedingly limited as stated by the Center of Disease 

Control and Prevention. In addition to a series of discoveries in molecular mechanisms,, 

my studies may also implicate novel targets for potential therapeutic interventions in Kp 

and potentially other Gram-negative bacteria. 
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