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ABSTRACT 
 

Neurodegenerative disorders are affecting increasingly numbers of 

humans, especially in our ever increasingly aged population. Here, I describe 

three projects whereby I attempt to better understand the degree to which 

endolysosomes contribute to pathological features associated with two 

neurodegenerative disorders and to the regulation of intracellular calcium levels 

in cultured neurons.  

In previous studies conducted in a rabbit model of sporadic Alzheimer’s 

Disease (AD), we found that elevated circulating ApoB cholesterol per se 

contributed to the pathogenesis of sporadic AD by affecting endolysosomes. To 

extend further our in vivo findings and to determine underlying mechanisms, we 

tested the hypothesis that; ApoB containing cholesterol directly altered the 

structure and function of endolysosomes and contributed to the development of 

AD-like pathology in primary cultured neurons. To test our hypothesis, we used a 

variety of methods including ratio-metric measurement of endolysosome pH, 

real-time RT-PCR, immunoblotting, immunostaining, and enzyme activity assays. 

Treating neurons with ApoB containing LDL cholesterol increased endolysosome 

accumulation of cholesterol, enlarged endolysosomes and elevated 

endolysosome pH. In addition, ApoB containing LDL cholesterol increased 

endolysosome accumulation of beta amyloid converting enzyme 1, BACE-1, 



	   xi	  

enhanced BACE-1 activity and increased production of Aβ levels. Our findings 

suggest strongly that the altered structure and function of endolysosomes play a 

key role in ApoB containing LDL cholesterol induced pathological features of AD.  

HIV-1 transactivator protein Tat continues to be regarded as an important 

pathogenic factor for HIV associated neurocognitive disorders (HAND) because 

of its ability to directly excite neurons and increase Aβ. Based on the facts that 

endolysosomes not only play an important role in neuronal cell death and 

internalize HIV-1 Tat, but also contribute to amyloid genesis, we tested the 

hypothesis that; HIV-1 Tat directly altered the structure and function of 

endolysosomes and contributed to neurotoxicity and the development of AD-like 

pathology in primary cultured neurons. Following treatment of HIV-1 Tat into 

primary cultured rat hippocampal neurons, neuronal viability was determined 

using a triple staining method. Prior to noting statistically significant changes in 

HIV-1 Tat-induced neuronal cell death (48 hours), we observed as early as 24 

hours after HIV-1 Tat treatment, HIV-1 Tat internalization in endolysosomes, 

increased endolysosome sizes, raised endolysosome pH, decreased specific 

activities of endolysosome enzymes, disrupted endolysosome membrane 

integrity and inhibited autophagosomes formation. In addition, we found that 

following endolysosome dysfunction, HIV-1 Tat increased Aβ generation, 

increased endolysosome accumulation of AβPP, Aβ and BACE-1 and enhanced 

BACE-1 activity. Our findings suggest that disturbed endolysosome structure and 

function contributes to HIV-1 Tat-induced neurotoxicity and the development of 

AD-like pathology.  



	   xii	  

Endolysosomes are  ‘acidic’ calcium stores, however little is known about 

how calcium is released from these stores and how this release contributes to 

calcium signals both spatially and temporally. Using multiple assays such as 

calcium imaging, surface protein labeling, immunoprecipitation and RNA 

interference, we found in primary cultured hippocampal neurons that calcium 

released from acidic calcium stores triggered calcium influx. This novel 

phenomenon is similar to classical store-operated calcium entry (SOCE), which 

we termed ‘acidic store-operated calcium entry’ (aSOCE). Moreover, we found 

that the aSOCE was mediated by cell surface redistribution of N-type calcium 

channels and LAMP1, a regulator of lysosome exocytosis. Our results suggest 

that lysosome exocytotic insertion of N-type calcium channels might mediate this 

novel aSOCE in neurons. Such findings could provide a new insight into the 

spatiotemporal complexity of calcium signals and fundamental calcium-

dependent cellular responses. 
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                    CHAPTER I 

ENDOLYSOSOME STRUCTURE AND FEATURES 

1.1 Historical Review 

 
One day in 1882 when a Russian scientist Elie Metchnikoff was looking at 

cells of a starfish larva under his microscopy at home, he was suddenly struck by 

an idea that cells might possess defensive mechanisms against foreign intruders. 

Such a sparkling idea was confirmed in his later studies on interactions between 

Daphnia (a small planktonic crustacean) and fungus. In those studies, he 

demonstrated that in some cases phagocytes engulfed and destroyed attacking 

fungus, whereas in other cases phagocytes failed to handle the fungus, thus 

resulting in disseminated infection and death of the hosts. Such findings formed 

the basis of his phagocyte theory and prompted his next 25 years of 

experimentation on relationships between cells and microbes in the course of 

infection (James, 1971). His findings in phagocytes actually touched several 

important characteristics of lysosomes and included findings that phagocytes 

have a digestive tract (vacuolar system) to deal with extracellular materials 

(pinocytosis and phagocytosis), phagocytes have stomachs that do not uptake 

extracellular materials (autophagic vacuoles) and phagocytes maintain a lower 

pH that provides an environment favorable for lysosome enzymes to clear 

intruders. Due to Metchnikoff’s great contributions to the study of 
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lysosomes (which he named as cytases), he was considered to be the true 

discoverer of lysosomes by Belgian cytologist Christian de Duve who expanded 

greatly our knowledge about lysosomes in the mid-20th century (De Duve et al., 

1955).

In 1949, De Duve and his colleagues first successfully isolated lysosomes 

from rat liver by ultracentrifugation. However, they spent another six years to 

eventually observe the morphology of lysosomes using newly developed electron 

microscopes. This new technique resulted in De Duve naming this special group 

of acid hydrolases-labeled cytoplasmic particles as “lysosomes” (standing for lytic 

bodies) and in making a variety of seminal findings related to lysosomes (De 

Duve, 1966; De Duve et al., 1955). Subsequent studies demonstrated the 

ubiquitous presence of lysosomes in almost all kinds of animal (Weissmann, 

1964; Weissmann, 1965) and plant cells (De Duve, 1966; De Duve, 1970) except 

red blood cells (Allison, 1967). In 1969, lysosomes were discovered in neuronal 

cells of the central nervous system (Holtzman, 1969). Since then, scientists have 

continuously uncovered physiological and pathological roles of lysosomes in 

neurons.  

 

1.2 Lysosome Morphology 

 

Although there has been some modification in the definition of lysosomes 

over the intervening 50 years, its original description made by De Duve still holds 

today - lysosomes represent a group of heterogeneous acidic organelles that 
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contain a variety of hydrolytic enzymes surrounded by a single membrane. 

Lysosomes can secret their contents after fusion with the plasma membrane in 

some cell types (Andrews, 2005; Luzio et al., 2000; Saftig and Klumperman, 

2009; Stinchcombe and Griffiths, 1999). Beyond a traditional concept as end-

points of a garbage-disposal unit, lysosomes are now considered to be a central 

point in the regulation and quality control of cells.  

Morphologically, the sizes and shapes of lysosomes vary in different cells 

and tissues but they all appear as large vacuoles	   containing electron dense 

material (De Duve, 1970; de Duve, 1975). The sizes of lysosomes range 

between 0.1-1.2 µm in diameter (Elmlinger et al., 2003) and the sizes of neuronal 

lysosomes are normally less than 1 µm. Like lysosomes in other cells, neuronal 

lysosomes carry a high content of lysosome membrane proteins and active 

lysosome hydrolases, but do not contain mannose-6-phosphate (M6P) receptors 

(Kornfeld and Mellman, 1989). In addition, these acidic organelles in neurons are 

often located in the perinuclear region (Renate, 2005).  

 

1.3 Lysosome Enzymes 

 

After the initial identification of acid phosphatase as a lysosome enzyme, 

more than 80 acidic hydrolases have been found in lysosomes (Yamashima and 

Oikawa, 2009). Lysosome enzymes are synthesized in the rough endoplasmic 

reticulum, modified and packed in the Golgi apparatus, transported into late 

endosomes with the help of M6P receptors, and are eventually fused into 
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lysosomes (Desnick et al., 1976; Mukherjee et al., 1997). These lysosome 

enzymes are responsible for degradation of almost all major constituents (i.e. 

carbohydrate, lipid, protein, nucleic acid and mucopolysaccharidoses) 

(Weissmann, 1964) from the intracellular and extracellular milieu (de Duve, 1975) 

under a favorable acidic pH (de Duve, 1975; Deduve, 1964). As such, we 

evaluated lysosome function in our studies by examining the expression levels 

and activities of three acidic hydrolases; cathepsin D (aspartic protease), 

cathepsin B (cysteine protease) and acid phosphatase (phosphatase).  

 

1.4 Lysosome pH 

 

All lysosome enzymes are contained in structures surrounded by a single 

lysosome membrane and this single membrane keeps the enzymes inside to 

compartmentalize digestive functions of enzymes and to prevent their destructive 

effects by releasing them into the cytosol. Furthermore, lysosome membranes 

carry multiple regulatory machineries that maintain an optimum acidic 

environment (pH ≈ 4.5) inside lysosomes. These regulatory machineries include 

proton influx mechanisms (vacuole type H+-ATPase), proton efflux mechanisms 

(passive diffusion, proton-coupled antiporters/symporters) and ion conductance 

mechanisms (chloride channels, cation channels, Na+/K+ exchange) (Van Dyke, 

1996). The principle mechanism is the vacuole H+-ATPase (V-ATPase), a 

multimeric complex functioning as a proton pumping rotary nano-motor that 

regulates lysosome pH. V-ATPase has two components; the cytosol V1 sector is 
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a large ball-shaped head subunit that hydrolyzes ATP for energy supply, and the 

transmembrane V0 sector is a subunit that contains the proton channel 

responsible for proton translocation. Thus, ATP hydrolysis and the proton pump 

are coupled to rotary mechanisms (Marshansky and Futai, 2008). V-ATPase 

shares similarities with F-ATPase (ATP synthase) in subunit structure and 

rotational catalysis but they display distinctive features in distribution and 

mechanisms. F-ATPase is located exclusively on the mitochondrial inner 

membrane where it functions as an ATP synthase coupled with proton motive 

force (pmf) produced by the respiratory chain. By contrast, V-ATPase is a proton 

pump found in diverse endomembrane organelles and plasma membranes 

where V-ATPase functionally not only acidifies the lysosomes but also provides a 

potential energy source for driving a variety of organelle-specific coupled 

transporters. V-ATPase can be inhibited by the specific inhibitor bafilomycin A1 

(a fungal antibiotic) at nanomolar concentrations. It is suggested that bafilomycin 

binds to V0 complex in or around the proton channel, but the exact binding sites 

and inhibitory mechanisms of this inhibitor are not clear (Crider et al., 1994; 

Gluck, 1993; Zhang et al., 1994; Zhang et al., 1992).   

 

1.5 Lysosome Calcium 

 

Endolysosome compartments have been recognized as intracellular 

calcium stores that contain readily releasable pools of calcium and have 

distinctive machinery for sequestering and releasing calcium (Christensen et al., 
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2002; Churchill et al., 2002; Docampo and Moreno, 1999; Patel and Docampo, 

2010). Because of the low pH in their lumen, these endolysosome calcium stores 

are often referred to as “acidic calcium stores”. Acidic calcium stores have high 

concentrations of calcium ranging from 400 - 600 µM (Christensen et al., 2002).  

This high concentration of calcium is maintained by the pH gradient across these 

acidic organelles, where vacuolar H+-ATPase pumps H+ into the lumen and 

drives Ca2+ uptake by Ca2+/H+ exchanger (Moreno and Docampo, 2009; Patel 

and Docampo, 2010). Therefore, V-ATPase is responsible for sequestering 

calcium in acidic stores (Churchill et al., 2002; Haller et al., 1996; Shigaki et al., 

2006; Srinivas et al., 2002). On the other hand, there are two types of calcium 

channels expressed in endolysosomes; two pore channels (TPC) (Galione et al., 

2009) and possible TRPML channels (a subfamily member of TRP channel) 

(Puertollano and Kiselyov, 2009). Besides, endolysosomes have their own 

calcium buffering systems such as luminal proteins and polyanionic matrixes 

(Patel and Docampo, 2010), although the current information on endolysosome 

calcium buffering systems is relatively limited. Endolysosomes function as a 

group of distinctive calcium stores. For instance, endolysosome calcium release 

from TPC channels by nicotinic acid adenine dinucleotide phosphate (NAADP) is 

sensitive to either inhibition of organelle acidification (by bafilomyocin A1) or 

osmotic bursting of lysosome membrane (by GPN), but insensitive to ER calcium 

release (by thapsigargin) (Pandey et al., 2009). However, communications 

between acidic calcium stores and other calcium stores may exist (Calcraft et al., 

2009; Ruas et al., 2010). 
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CHAPTER II 

PHYSIOLOGICAL FUNCTIONS 

 

Back to the De Duve’s era, lysosomes were considered as catabolic 

organelles dealing with extracellular and intracellular materials, which 

correspondingly generated two major featured functions in lysosomes; 

heterophagy (endosome-lysosome) and autophagy (autophagy-lysosome) (De 

Duve, 1966). Later, exocytosis was introduced as another major function of 

lysosomes at least for some cell types (Allison and Davies, 1974). In the CNS, 

neuronal lysosomes participate in endocytosis and autophagy (Larsen and 

Sulzer, 2002; Parton and Dotti, 1993) and they conditionally undergo exocytosis 

as well (Arantes and Andrews, 2006).  

 

2.1. Endocytosis (Heterophagy) 

 

Heterophagy, initially proposed by De Duve, is now known as endocytosis, 

in which extracellular materials are internalized into membrane-confined 

vacuoles or microvesicles and destined to lysosomes for degradation. 

Endocytosis plays important roles in multiple cellular functions such as; 

internalization of nutrients, regulation of membrane receptor expression, and 

maintenance of cell polarity, as well as uptake of viruses, toxins and
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microorganisms into cells (Mukherjee et al., 1997). Apart from these functions, 

neuronal endocytosis displays some tissue-specific characteristics such as 

recycling of plasma membrane after neurotransmitter release and playing an 

essential role in early development stages (Parton and Dotti, 1993). Based on 

the modes of internalization, endocytosis can be further divided into several 

subgroups; phagocytosis (eating particular substances), pinocytosis (drinking 

soluble substances), clathrin-dependent receptor-mediated endocytosis, and 

clathrin-independent endocytosis (Mukherjee et al., 1997). Here, we are mainly 

focusing on clathrin-dependent endocytosis. 

The concept of receptor-mediated endocytosis was formulated in 1974 

from the biochemical observation of cellular uptake of cholesterol. Included in the 

uptake process is cholesterol binding to low-density lipoprotein (LDL) receptors, 

internalization, recycling and/or degradation (Goldstein et al., 1976; Goldstein 

and Brown, 1974). In LDL receptor-mediated endocytosis, receptors were 

recycled to plasma membrane while ligands were degraded in lysosomes. 

Depending on the different fate of the ligands/receptors, three other subtypes of 

receptor-mediated endocytosis exist; receptors and ligands are both recycled, 

receptors and ligands are both degraded in lysosomes, and receptors and 

ligands are both transcytosed (cross the cells) (Brown and Goldstein, 1982; 

Brown and Greene, 1991; Goldstein et al., 1985; Wileman et al., 1985).  

My research is focusing on receptor-mediated endocytosis of ApoB 

containing LDL-cholesterol and HIV-1 Tat peptide, both of which bind to LDLRs 

highly expressed on neurons. Once those ligands bind to those receptors, the 
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complexes undergo invagination from the plasma membrane to clathrin-coated 

vesicles (Wileman et al., 1985). Shortly after, vesicles lose their coat while 

complexes are transported to a group of large smooth-faced vesicles and tubular 

structures referred to as endosomes. Endosomes were first named by Helenius 

and colleagues (Helenius and Marsh, 1982) to describe an intermediate state of 

pre-lysosome vacuoles during endocytosis. In addition to internalized 

components, endosomes receive biosynthetic components. Subsequent studies 

divided endosomes into two distinct subcompartments; early and late endosomes 

(Schmid et al., 1988), because of the facts that theses two subpopulations 

demonstrate a great distinction although they are kinetically related. Early 

endosomes maintain a mildly acid interior (pH ≈ 6) and distribute throughout 

nerve terminals of neurons (Parton and Dotti, 1993; Parton et al., 1992). Early 

endosomes are further divided into two groups; sorting and recycling endosomes 

(Gruenberg and Maxfield, 1995). Once sorting endosomes terminate ligand-

receptor signaling by separating ligands from their receptors (Mellman, 1996; 

Mukherjee et al., 1997), recycling endosomes return receptors to the plasma 

membrane and ligands were transported to late endosomes. Late endosomes 

maintain an acidic environment (pH ≈ 5.5) and locate around the cell body of 

neurons (Parton et al., 1992). Late endosomes not only receive internalized 

material from early endosomes in the endocytic pathway, but also receive 

materials from other pathways e.g. trans-Golgi network (TGN) in the biosynthetic 

pathway and phagosomes in the phagocytic pathway (Stoorvogel et al., 1991). In 

turn, late endosomes are responsible for delivering components such as ligands 



	   10	  

and newly synthetic lysosome glycoproteins and enzymes to lysosomes. Late 

endosomes transport lysosome enzymes to lysosomes with the help of Cation-

Independent Mannose 6 Phosphate (CI-M6P) receptors, but these receptors 

don’t stay in lysosomes. Those ligands, once separated from receptors in sorting 

endosomes, are transferred to late endosomes and eventually reach their 

destination, lysosomes. Lysosomes are the last stop of the endocytic pathway, 

where internalized materials are degraded into simple compounds and 

transported out of lysosomes. Lysosomes maintain a more acidic state (pH ≈ 4.5) 

and predominantly distribute around the neuronal cell body (Parton et al., 1992). 

Therefore, endocytic events in neurons are confined to nerve terminals and 

synaptic vesicles in axons whereas they occur along the whole dendrites (Parton 

et al., 1992).    

In the present studies, I will evaluate endocytosis by using two 

endolysosome protein markers; EEA1 and LAMP1. EEA1 (early endosome 

antigen 1) is an early endosome marker (Simonsen et al., 1998). EEA1 has a 

strong binding ability for multiple proteins, which potentiates its role in 

intracellular membrane trafficking including endocytosis. For example, EEA1 is 

required for endocytic membrane fusion because it can bind to PI3K (lipid kinase) 

and Rab5 (GTPase), both of them are involved in regulation of membrane 

trafficking (Simonsen et al., 1998). In addition, the observation of EEA1 

interacting with syntaxin-6 might suggest its participation in the trans-Golgi 

network to early endosome trafficking (Simonsen et al., 1999). As a well-known 

Rab5 effector, although EEA1 demonstrates diverse locations in brain (Bartlett et 
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al., 2001), it has been implicated in neuronal synaptic vesicle function, axon 

transport & growth and synaptic transmission (Selak et al., 2004; Selak et al., 

2006); LAMP1 (lysosome associated membrane protein 1, or CD107a) is a late 

endosome and lysosome marker. It is expressed differentially in various cells 

(Huynh et al., 2007; Moreno, 2003; Sarafian et al., 2006) and are required for 

fusion of lysosomes with phagosomes (Binker et al., 2007; Huynh et al., 2007)   

 

2.2. Autophagy 

 
In addition to heterophagy, De Duve and his colleagues also proposed 

another essential feature of lysosomes, autophagy (Deter and De Duve, 1967). It 

is a conservative turnover process of intracellular components including 

degradation of long-lived stable proteins, and recycling of entire organelles 

especially mitochondria (Larsen and Sulzer, 2002; Marino and Lopez-Otin, 

2004). In contrast to heterophagy that responds to sampling the extracellular 

environment, autophagy manipulates the intracellular milieu and helps to 

maintain homeostasis (Marino and Lopez-Otin, 2004).  

Autophagy is currently categorized into at least three subgroups according 

to their distinctive targets: 1) Macroautophagy-bulk degradation of virtually all 

kinds of cytoplasmic components ranging from macromolecules to large 

organelles; 2) chaperone-mediated autophagy (CMA)-degradation of cytosolic 

protein with specific motif (KFERQ); and 3) microautophagy-degradation of small 

organelles and molecules (Klionsky and Ohsumi, 1999). The first two types of 
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mammalian autophagy have been implicated in CNS injury and diseases 

(Yamashima and Oikawa, 2009). Here, I will focus on macroautophagy. 

Based on various roles of macroautophagy, it can also be divided into two 

forms; induced and basal autophagy (Mizushima, 2005). The former displays 

cells’ responses to starvation and other multiple stimuli, thereby maintaining 

homeostasis and survival (Komatsu et al., 2005; Kuma et al., 2004; Shintani and 

Klionsky, 2004). The latter is responsible for turnover of cytoplasmic components 

in cells (Hara et al., 2006; Komatsu et al., 2006; Komatsu et al., 2007; Komatsu 

et al., 2005; Kuma et al., 2004). Despite both forms of autophagy being present 

in neurons (Yamashima and Oikawa, 2009), induced autophagy is reportedly 

less important in neurons as compared to other tissues (Zhao et al., 2008) while 

basal autophagy is more preferable in neurons because neurons need more 

economic mechanisms to maintain intracellular quality control as post-mitotic 

cells (Marino et al., 2011). 

Macroautophagy consists of several sequential steps including 

sequestration (induction of autophagy and autophagosome formation), 

transportation to lysosomes (autolysosome formation), and degradation and 

utilization of products (Mizushima, 2007). In the process of sequestration, the 

exact mechanisms of induction of autophagy (autophagosomal membrane 

originates) remain unknown. In contrast, the mechanisms of autophagosome 

formation have been described (Marino and Lopez-Otin, 2004). During 

autophagosome formation, cytoplasmic constituents or organelles are wrapped 

with a double membrane to form autophagosomes. This process can be further 
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divided into three routes based on their relevant autophagy-related gene 

encoded proteins (ATG); two ubiquitin-like (UBL) conjugation systems (ATG12-

ATG5 and ATG8), and one ATG9 related membrane complex. In the first UBL 

system, ATG12 forms conjugates with ATG5 with the assistance of ATG7 and 

ATG10. Then the ATG12-ATG5 conjugate interacts further with ATG16. The 

ATG12-ATG5-ATG16 conjugates are required for the elongation of the isolation 

membrane. However, they are not responsible for generation of the precursor 

structure, because they eventually separate from autophagosomal membranes 

before autophagosome completion, and they are absent in mature 

autophagosomes. In the second UBL system, ATG8 is transferred to ATG3 after 

being processed by ATG4 and ATG7. Then it completes its conjugation with PE 

(phosphatidylethanolamine) The process of ATG8-PE conjugation may also 

depend on the ATG12-ATG5 complex from the first UBL pathway. ATG8 could 

be recycled with the help of ATG4 once autophagosomes completion. Among 

those three mammalian orthologues of yeast ATG8, only MAP-LC3 (microtubule-

associated protein light chain 3) is found in autophagosomes and its precursor 

(small membrane structure). The evidence that LC3 colocalizes with ATG12-

ATG5 may suggest a possible connection between two UBL systems. LC3, a 

marker of autophagosomes, has three forms: (1) ProLC3 represents the full-

length molecule; (2) LC3-I is the proteolytic form; and (3) LC3II is the membrane 

bound form (Marino and Lopez-Otin, 2004). In addition, LC3 also serves as a 

receptor of multifunctional protein, P62 (Bjorkoy et al., 2005). P62’s ability to bind 

LC3 and ubiquitin might provide an opportunity to couple autophagy with 
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ubiquitin proteasome systems (UPS) while regulating protein aggregation and 

degradation (Komatsu et al., 2007). P62 is metabolized in lysosomes through 

autophagy and accumulated in autophagy-null cells (Komatsu et al., 2007; Nakai 

et al., 2007; Wang et al., 2006). In the present study, we mainly focused on three 

protein markers of autophagy formation: LC3, Atg5 and P62. 

 

2.3. Exocytosis 

 

Normally, exocytosis is a durable process, during which a cell releases its 

vesicular contents (signaling molecules, toxin, waste product) into the 

extracellular milieu and inserts vesicle membrane proteins/lipids into the cell 

plasma membrane (Morgan, 1995). There exist two types of exocytosis: 1) 

Constitutive exocytosis that is present in all cells and functions to incorporate 

membrane proteins as well as regulate cell sizes; and 2) regulated exocytosis 

that is restricted in certain cells (classic examples includes exocrine cells, 

endocrine cells and neurons) and requires an appropriate signal (e.g. a specific 

sorting signal on the vesicles, a clathrin coat, as well as an increase in 

intracellular calcium). In neurons, regulated exocytosis mainly deals with 

neurotransmission (Morgan, 1995) which is performed by secretory granules 

(small synaptic vesicles and large dense-core vesicles) (De Camilli and Jahn, 

1990; Partoens, 2002). The process of exocytosis can be divided into five steps 

including trafficking, tethering, docking, priming and fusion. Exocytosis occurs by 
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consented mechanisms and most likely uses the same basic protein components 

(Burgoyne and Morgan, 2003). 

Obviously, secretory granules have a reputation for exocytosis, but they 

are not the only players in the whole exocytosis game. Actually, there exist other 

forms of exocytosis in cells, for example, lysosome exocytosis. Even though De 

Duve had already described the ability of lysosomes to discharge their contents 

into the extracellular space from intact cells under pathological stimuli (De Duve, 

1970; de Duve, 1975), he failed to claim exocytosis as a feature of lysosomes. It 

was Allison and his coworkers who proposed this secretion behavior in 

lysosomes as exocytosis (Allison and Davies, 1974). Subsequent studies 

confined the role of lysosomes as a type of secretory organelle in limited types of 

cells including neurons. These lysosomes were referred to as secretory 

lysosomes (Blott and Griffiths, 2002), as opposed to conventional lysosomes. 

The discovery of secretory lysosomes greatly modified the original concept of 

lysosomes. Instead of serving as digestive end points of endocytosis and 

autophagy, at least in certain cell types, lysosomes are now appreciated to be 

central quality control points integrating endocytosis, autophagy and exocytosis.  

Secretory lysosomes probably evolved from conventional lysosomes because of 

a enhanced secretion need (Blott and Griffiths, 2002), but secretory lysosomes 

are more complex. Secretory lysosomes demonstrate diversity in their structure, 

contents and organization; for instance, dense cores structures are present in 

platelet, multilaminar structures are present in MHC class II compartments, and 

unique structures are present in melanosomes. Secretory lysosomes contain and 
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release a cell-specific set of secreted components resisting degradation by 

lysosome enzymes (e.g. apoptotic granzymes in CTLs, melanin in melanocytes). 

Secretory lysosomes have unique sorting mechanisms for some proteins (e.g. 

Fas ligand and gp75) (Blott and Griffiths, 2002). Secretory lysosomes have 

higher levels of secretion than conventional lysosomes, because of less 

strictness in organized cytoskeleton, vesicular transport, and docking (Andrews, 

2000).   

The study of secretory lysosomes reveals an additional and largely 

overlooked property of lysosomes (regulated exocytosis and secretion). 

Secretory lysosomes are only observed in limited cell types including 

hematopoietic cells, melanocytes, renal tubular cells, acrosomes and neurons 

(Andrews, 2000; Blott and Griffiths, 2002). Recent studies have shown that 

conventional lysosomes can fuse with the plasma membrane for membrane 

repair in response to increased intracellular levels of calcium (Andrews, 2000; 

Reddy et al., 2001). One possible explanation about secretory behavior of 

conventional lysosomes is that conventional lysosomes can transform into 

regulated secretory organelles. Several published reports seem to support this 

concept (Arantes and Andrews, 2006; Martinez et al., 2000). Conventional 

lysosomes share common regulatory machinery with secretory lysosomes, e.g. 

the exocytotic process of these two lysosomes could be regulated by intracellular 

calcium level and SNARE complexes. Collectively, these observations suggest 

that the secretory behavior of lysosomes occurs beyond the previous limitation in 

cell types and deserves further discussion in a broad dimension. 
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LAMP1, a lysosome marker mentioned above, has been used as an 

indicator of lysosome exocytosis for years. Using this indicator, lysosome 

exocytosis was first found in human epithelia; calcium influx triggered lysosome 

exocytosis by increasing the surface expression of LAMP1 (Ayala et al., 2001). 

Then, LAMP1 was detected at the cell surface following elevated secretion of 

cytotoxic granules in natural killer (NK) cells (Penack et al., 2005). Later, 

redistribution of LAMP1 was found in sympathetic neurons, indicating lysosome 

exocytosis in neurons (Arantes and Andrews, 2006). Although the exact 

underlying mechanisms of lysosome exocytosis remain unclear, some 

mechanisms have been described including calcium elicited lysosome exocytosis 

in sympathetic neurons that may use a calcium sensor synaptotagmin VII 

through interactions with a t-SNARE molecule, VAMP7 (Arantes and Andrews, 

2006). Because it is known that exocytosis of neuronal secretory granules is 

mediated by calcium and SNARE complex (Galli et al., 1995; Morgan, 1995), the 

above observations on lysosome exocytosis might suggest a correlation in 

underlying mechanisms between lysosome exocytosis and secretory granules 

exocytosis and that they may maintain widespread expression and conservation 

of a core exocytotic machinery (t-SNARE and v-SNARE). Nevertheless, they 

may display variations in their regulatory mechanisms related to the specialized 

functions of particular cell types.  
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Figure 1. Three Functions of Lysosomes. Lysosomes are a group of central, 
acidic organelles responsible for degradation through lysosome hydrolases. The 
basic functions of lysosomes include receptor-mediated endocytosis, 
macroautophagy and lysosome exocytosis. 
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CHAPTER III 

PATHOLOGICAL FUNCTIONS: LYSOSOMES AND NEURODEGENERATIVE 
DISORDERS 

 

Lysosomes play an important role in maintaining homeostasis such as 

cellular degradation. On the contrary, lysosome dysfunction leads to multiple 

disorders. The association of neurodegeneration with lysosome storage diseases 

provides the first clue that lysosome dysfunction contributes to 

neurodegenerative diseases (De Vries et al., 1958). Now, lysosome dysfunction 

appears to be responsible for a number of neurodegenerative disorders such as 

sheep scrapie, Lewy body disease (LBD) and Parkinson’s disease, amyotrophic 

lateral sclerosis (ALS), Huntington’s disease, Niemann-Pick Type C (NPC) 

disease, HIV-1 associated neurocognitive disorders and Alzheimer’s disease 

(Bahr and Bendiske, 2002; Gelman et al., 2005; Mayer et al., 1996; Nixon, 2004). 

In our current dissertation studies, one major aim was to define the role of 

lysosomes in neurodegeneration, aging and neuronal death. In this Chapter, we 

want to introduce the development of lysosome study in neurodegeneration, 

aging and neuronal death. 
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3.1. Lysosomes, Neurodegeneration and Aging 

 

The presence of acid phosphatase in plaques and dystrophic neurites of 

AD brains provide the first clue that lysosomes might be involved in the 

pathogenesis of AD (Suzuki and Terry, 1967; Terry et al., 1964). However, the 

importance of lysosomes in AD pathogenesis was overlooked until the mid-1980s 

when it was discovered that the plaques consist of amyloid-β peptide (Aβ), a set 

of peptides generated from proteolytic cleavage of amyloid-β protein precursor 

(AβPP). Observations of increased intraneuronal accumulation of lysosome 

enzymes and increased immunoreactivity and activities of endolysosome 

enzymes in amyloid plaques in AD brain formed the basis of the notion that 

lysosome dysfunction promotes amyloidogenic processing of AβPP and 

contributes to the pathogenesis of AD (Bernstein et al., 1996; Cataldo et al., 

1995; Cataldo et al., 1991; Cataldo et al., 1990; Li, 1997; Nakamura et al., 1991). 

Over the next decade, extensive studies further demonstrated an important role 

of lysosome dysfunction in the pathogenesis of AD (Nixon and Cataldo, 2006).  

AβPP belongs to a family of conserved type I membrane proteins, 

containing APP-like proteins (APLP1 and APLP2). The exact functions of AβPP 

are still not clear, but it has been implicated in cell signaling, cell adhesion and 

trafficking (Hoareau et al., 2008; Reinhard et al., 2005; Zheng and Koo, 2006). 

AβPP is synthesized in rough ER, modified in the trans-Golgi network (TGN), and 

then inserted in the plasma membrane. AβPP is processed by cells in two ways; 

one is the non-amyloidogenic pathway that does not result in amyloid beta 
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production and is thought not to be related to Alzheimer’s disease. In this 

pathway, AβPP is first cleaved on the plasma membrane by an aspartyl 

protease, α-secretase (Buxbaum et al., 1998; Lopez-Perez et al., 2001) and thus 

results in the production of a soluble N-terminal fragment (sAPPα) that is 

released from cells and a C-terminal fragment (CTF) that is associated with the 

plasma membrane. The alternative pathway is the amyloidogenic pathway that 

results in amyloid beta production and this is thought to be related to Alzheimer’s 

disease. In this pathway, AβPP is endocytosed into endosomes and lysosomes, 

where a β-site-APP cleaving enzyme (BACE, β-secretase), favored by 

endosome low pH environment (Capell et al., 2000; Vassar et al., 1999; Walter et 

al., 2001) mediates the cleavage of AβPP at a more distal site along 

luminal/extracellular domain resulting in the release of a soluble fragment 

(sAPPβ) and a membrane-associated 99-residue CTF (βCTF) containing Aβ 

peptide. Further intra-membrane cleavage of βCTF with a γ-secretase enzyme 

complex yields amyloid beta, the majority of which are a 40-mer peptide (Aβ40) 

and to a lesser extent a 42-mer peptide (Aβ42). It is known that γ-secretase 

consists of presenilin (PS), nicastrin, APH1 and PEN2 (Edbauer et al., 2003; Go 

et al., 2004; St George-Hyslop, 2000), and is located in plasma membrane and 

early endosomes (Runz et al., 2002), late endosomes and autophagic vesicles 

(Yu et al., 2005; Yu et al., 2004) and lysosomes (Cupers et al., 2001; Pasternak 

et al., 2003; Pasternak et al., 2004).  
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Indeed, extensive studies have indicated that the endolysosome pathway 

is tightly involved in the process of the amyloidogenesis. First, AβPP is 

internalized by receptor-mediated endocytosis or pinocytosis, and is sorted into 

endosomes for several destinations; recycling back to the plasma membrane, 

delivering into TGN for packing, trafficking, and targeting late endosomes for 

lysosome degradation (van der Goot and Gruenberg, 2006). Second, βCTF is 

produced in early endosomes (Grbovic et al., 2003; Mathews et al., 2002), where 

BACE (Huse et al., 2000; Vassar et al., 1999) and PS-1 (Lah and Levey, 2000) 

are located. Third, intracellular levels of soluble Aβ are increased in 

endolysosome compartments, which precedes extracellularly deposited Aβ 

(Cataldo et al., 2004; Takahashi et al., 2004) and this correlated with cognitive 

deficits in AD models, even in the absence of amyloid plaques (Koistinaho et al., 

2001; LaFerla et al., 2007). Fourth, some lysosome enzymes such as cathepsin 

B and cathepsin D may contain β- and γ-secretase activity that results in either 

Aβ generation (Chevallier et al., 1997; Dreyer et al., 1994; Hook et al., 2007; 

Ladror et al., 1994; Mackay et al., 1997) or conversely, Aβ degradation (Mueller-

Steiner et al., 2006). 

In Chapter IV, we will introduce endolysosome involvement in LDL 

cholesterol-induced Alzheimer’s disease-like pathology in primary cultured 

neurons. 
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3.2. Lysosomes and Neuronal Cell Death 

 

Understanding the role of lysosomes in neuronal cell death has 

progressed relatively slowly compared to the rapidly emerging and developing 

area of apoptosis and involvement of caspases in cell live and death in the last 

century. It did not receive enough attention until the early 1990s when Clarke 

described his findings that a form of cell death (autophagic cell death), distinct 

from apoptosis, was associated with endocytosis/autophagy during brain 

development, which promoted the study of lysosomes in neuronal cell death 

(Clarke, 1990). Several reasons delayed the progress of studying involvement of 

lysosomes in neuronal cell death. First of all, because the metabolism and 

structure of neurons varies among different species and different developmental 

stages of the same species, some criteria used to evaluate the contribution of 

lysosomes to neuronal cell death could not be applied into different neuronal 

systems. Second, technical limitations also played a role. Because light 

microscopy failed to discriminate individual components of lysosomes and 

electron microscopy failed to record dynamics of lysosome biogenesis and 

trafficking in the pathological process, some lysosome-disrupted events relevant 

to cell death (lysosomal membrane stability or permeability) were difficult to 

monitor (Nixon and Cataldo, 1993).  

Despite these limitations, researchers began to realize the importance of 

lysosomes in neuronal cell death because of the multiple observations of 

abnormalities of autophagy in many human CNS-related disorders (Kegel et al., 
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2000; Rubinsztein, 2006; Winslow and Rubinsztein, 2008). In addition, 

successfully building up CNS-specific autophagy-deficient animal models allow 

scientists to better understand the protective role of autophagy in neuronal 

tissues (Marino et al., 2011). Therefore, over the last 15 years, people’s 

understanding to the implication of lysosomes in neuronal cell death has reached 

an unprecedented level.  

As pre-stops of lysosomes, endosomes are responsible for integrating 

growth factor signaling molecules (Bronfman et al., 2007). Altered endosome 

function appears to result in neuronal cell death in some inherited 

neurodegenerative diseases (Gervais et al., 2002; Kholodenko, 2002; Peters et 

al., 2003; Trushina et al., 2004). Furthermore, some proteins that regulate 

endocytosis as well as cell survival can couple endosome dysfunction to cell 

death cascades. For instance, ALIX/AIP (ALG-2 interacting protein X) that 

controls endocytosis through its binding partners can regulate apoptosis through 

the calcium binding protein ALG2 (Missotten et al., 1999; Vito et al., 1996; Vito et 

al., 1999) or type 1A PI3K pathway (Chen et al., 2000; Gout et al., 2000). 

Autophagy plays the neuronal cell death game. Based on distinctive 

morphological characteristics, three types of cell death have been recognized 

since 1973 (Schweichel and Merker, 1973); Type 1 cell death has features of 

apoptosis (Kerr et al., 1972), type 3 cell death has features of necrosis 

(Syntichaki and Tavernarakis, 2002), and type 2 cell death is termed autophagic 

cell death (Marino and Lopez-Otin, 2004) which is characterized by accumulation 

of cytoplasmic autophagic vacuoles accompanied by dilation of mitochondria and 
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enlargement of ER and Golgi apparatus in dying cells. Autophagic cell death 

found in CNS and other tissues/cultured cells (Uchiyama et al., 2008) could occur 

in the absence or the presence of necrosis or apoptosis (Borsello et al., 2003; 

Broker et al., 2005; Edinger and Thompson, 2004; Marino and Lopez-Otin, 2004; 

Stefanis, 2005).  

Although autophagic cell death represents a type of cell death, it is still too 

simple to say that autophagy mediates cell survival or death. Actually, autophagy 

can regulate both cell survival and death under different settings (Baehrecke, 

2005; Cuervo, 2004; Shintani and Klionsky, 2004). Thus, mild stressors stimulate 

autophagy to protect against demise while severe stressors induce cell death. In 

the former situations, autophagy either accelerates breakdown of intracellular 

substrates to provide energy supply when those essential growth factors and 

nutrients are scarce, or removes dysfunctional mitochondria and other organelles 

to prevent apoptosis (Brunk and Terman, 2002; Larsen and Sulzer, 2002; 

Trushina et al., 2004). In the latter events, either impaired autophagy (failure to 

clear accumulation of damaged organelles/aberrant proteins) or autophagic cell 

death (dramatic breakdown of essential components) may interfere with pro-

survival mechanisms (Kourtis and Tavernarakis, 2009).  

Lysosomes are required for the turnover of mitochondria (mitophagy) 

(Brunk and Terman, 2002). Mitophagy obviously shares many common steps 

with macroautophagy (Batlevi and La Spada, 2011). Previous reports suggested 

that damaged mitochondria can not undergo turnover in lysosome system 

(Terman et al., 2006). It could be postulated that both dysfunctional organelles 
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may limit the effectiveness of mitochondrial turnover by lysosomes (those 

accumulated in autophagy-lysosome system or those maintained in cytosol), 

which may exaggerate mitochondria and autophagy damage. Eventually 

damaged mitochondrial would replace normal ones to occupy limited cell volume 

and lysosome overload would further lose their digestive ability to mitochondria 

and other substrates, resulting in neuron damage and/or death.  

Lysosomes are directly involved in neuronal cell death. Although lysosome 

responses are absent in some neuronal cell death cases, lysosome rupture and 

hydrolase leakage are inevitable consequences at the end-stage of cell death 

(Nixon and Cataldo, 1993). Lysosome compensatory mechanisms attempt to 

mitigate against the breakdown of non-important components to utilize them for 

repair instead of causing cell death. Recent studies indicate that Ca2+-induced 

calpain activation and ROS production concomitantly lead to lysosome 

membrane rupture (permeabilizaiton) and neuronal cell death (Yamashima and 

Oikawa, 2009). Indeed, even partial rupture of lysosomes contributes to 

apoptosis by triggering mitochondrial membrane potential loss or caspase 

activation (Guicciardi et al., 2004), whereas intense lysosome rupture contributes 

to necrosis by inducing leakage of cathepsins (Tardy et al., 2006). 

To define further the possible roles of endosomes and lysosomes 

(endolysosomes) in neuronal cell death and neuronal damage, in Chapter V, we 

will introduce the involvement of endolysosomes in HIV-1 Tat induced neuronal 

damage.
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CHAPTER IV 

INVOLVEMENT OF ENDOLYSOSOMES IN LDL CHOLESTEROL-INDUCED 
ALZHEIMER’S DISEASE-LIKE PATHOLOGY IN PRIMAEY CULTURED 

NEURONS 
 

4.1. Introduction 

 

Alzheimer’s disease (AD) is the most persistent and devastating 

dementing disorder of old age and has associated with it massive health care 

costs. AD is characterized clinically by progressive disturbances in memory, 

judgment, reasoning and olfaction, and pathologically by loss of synaptic 

integrity, amyloid plaques composed of amyloid beta protein (Aβ), and neuronal 

tangles composed of hyperphosphorylated tau protein (Blennow et al., 2006; 

Hardy, 2009; Seabrook et al., 2007). Although a small percentage of AD cases 

are familial and genetically-based, the vast majority (>90%) of AD cases are 

sporadic with an unknown etiology. So far, no effective treatments are available 

for both types of AD. Despite the strong linkage of ApoE4 gene and altered 

cholesterol homeostasis to the pathogenesis of sporadic AD, the underlying 

mechanisms are not fully understood. 

It is known that people bearing the ApoE4 allele, the strongest genetic risk 

factor for sporadic AD (Corder et al., 1993; Wisdom et al., 2011), have increased 

levels of plasma cholesterol (Corder et al., 1993; Marzolo and Bu, 2009), 

whereas people bearing the ApoE2 allele, a protective factor against sporadic AD 
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(Corder et al., 1996; Corder et al., 1994; Schachter et al., 1994), have lower 

levels of plasma cholesterol (Scuteri et al., 2001; Wisdom et al., 2011). 

Moreover, elevated levels of plasma cholesterol, as an independent factor, 

increases the risk of developing sporadic AD (Solomon et al., 2009). Therefore, it 

is very likely that peripherally-derived ApoB-cholesterol, rather than brain in situ 

synthesized ApoE-cholesterol, contributes to the pathogenesis of sporadic AD. 

Consistent with this notion are findings that ApoB, the essential apolipoprotein 

transporting circulating cholesterol in peripheral tissue, is not present in normal 

brain (Pitas et al., 1987) but present in AD brain and co-distributed with amyloid 

plaques and neuronal tangles (Namba et al., 1992; Takechi et al., 2009). 

However, little is known about how circulating cholesterol contributes to the 

pathogenesis of sporadic AD. 

The first obstacle that restricts the entrance of circulating cholesterol is the 

blood-brain barrier (BBB). As a consequence, brain cholesterol is almost 

completely dependent on in situ synthesis by glial cells, predominately astrocytes 

(Nieweg et al., 2009). Astrocyte-derived ApoE-cholesterol is internalized by 

neurons through receptor-mediated endocytosis with the assistance of low-

density lipoprotein (LDL) receptor, LDL receptor-related protein-1 (LRP1), and 

apoER2. Once inside the neuron, ApoE-cholesterol is transported to 

endolysosomes where cholesterol esters are hydrolyzed to free cholesterol, 

which is then transported out of the endolysosome system via a mechanism 

involving Niemann-Pick type C proteins and delivered to the plasma membrane 

and other organelles (Vance et al., 2006). However, when the BBB is leaky, as 
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occurs in sporadic AD (Kalaria, 1999; Ujiie et al., 2003; Zipser et al., 2007), 

circulating ApoB-cholesterol could enter brain parenchyma, where ApoB-

cholesterol could be internalized and enter neuronal endolysosomes via the 

same receptor-mediated mechanisms for endocytosis as that of ApoE-

cholesterol. Thus, increased brain levels of ApoB-cholesterol may result in 

enhanced cholesterol endocytosis and increased accumulation of cholesterol in 

endolysosomes of neurons thereby affecting neuronal endolysosome structure 

and function, one of the earliest pathological features of AD (Nixon, 2005; 

Yuyama and Yanagisawa, 2009), and contributing to the pathogenesis of 

sporadic AD.   

Consistent with this notion are our recent findings in a well-developed 

cholesterol fed rabbit model of sporadic AD that exhibits pathological hallmarks 

of AD including disrupted synaptic integrity, elevated levels of Aβ, and tau-

pathology. First, we demonstrated that the BBB was leaky in the rabbit model of 

sporadic AD, as evidenced by leakage of Evan’s blue dye, extravasation of IgG 

and fibrinogen, and decreased expression of tight junction proteins (Chen et al., 

2008a). Second, we observed increased brain levels of ApoB-cholesterol, which 

were abnormally accumulated in neuronal endolysosomes (Chen et al., 2010), 

suggesting that circulating ApoB-cholesterol entered brain parenchyma via the 

leaky BBB and was internalized by neurons. Third, we demonstrated that the 

structure and function of neuronal endolysosomes was disturbed in the same 

rabbit model of sporadic AD (Chen et al., 2010). Fourth, the observed disturbed 

structure and function of endolysosomes was linked directly to pathological 
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features of AD, including disrupted synaptic integrity, amyloidosis, and tau-

pathology (Chen et al., 2010). Thus, our findings in a sporadic AD animal model 

suggest strongly that cholesterol coming from the systemic circulation could alter 

neuronal endolysosome function and contribute to the pathogenesis of sporadic 

AD.  

To further determine the underlying mechanisms whereby elevated levels 

of circulating cholesterol contributes to the pathogenesis of sporadic AD, the 

present studies tested the hypothesis that; ApoB-containing LDL cholesterol 

disturbed neuronal endolysosome structure and function and contributed to the 

development of AD-like pathology in primary cultured neurons.  

The essential findings of the present studies include observations that 

treatment of neurons with ApoB-LDL cholesterol increased cholesterol 

accumulation in neurons, enlarged endolysosomes, and elevated endolysosome 

pH. More importantly, we found that the altered structure and function of 

endolysosome was directly involved in elevated Aβ production, increased 

phosphorylation of tau, and disrupted synaptic integrity as evidenced by 

decreasing levels of the presynaptic protein synaptophysin. Such findings 

support our hypothesis and suggest strongly that elevated circulating cholesterol 

could contribute directly to the pathogenesis of sporadic AD by disturbing the 

structure and function of endolysosomes. 
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4.2. Methods 

 

4.2.1. Cultured of primary cortical neurons: Primary cortical neurons were 

cultured from embryonic day 18 rats. Briefly, pregnant Sprague Dawley rats were 

killed by asphyxiation with CO2 and the fetuses were removed, decapitated, and 

meninges-free hippocampi were isolated, trypsinized, and plated onto poly-D-

lysine-coated glass-bottom 35-mm tissue culture dishes. Neurons were grown in 

Neurobasal™ medium with L-glutamine, penicillin/streptomycin/neomycin and 

B27 supplement, and were maintained at 37°C and 5% CO2 for 7-10 days, at 

which time they were taken for experimentation. Typically, the purity of the 

neuronal cultures was greater than 95% as determined by morphology and 

immunostaining for neurons with NeuN or MAP-2 antibodies and for astrocytes 

with GFAP antibodies. Neurons treated with ApoB containing LDL cholesterol 

(Kalein Biomedical) at the concentration of 50 µg/ml for 3 days were subjected to 

experimental assays with untreated neurons serving as controls. The final 

concentration of ApoB containing LDL cholesterol used here was derived from a 

series of concentration-dependent and time-dependent studies (data not shown).  

4.2.2. Cholesterol staining: Free cholesterol was stained with filipin 

(Sigma). Briefly, neurons were fixed with 10% formalin and incubated with PBS 

containing 1.5 mg/ml of glycine to quench the formalin. Fixed neurons were 

incubated with filipin working solution for 2 hours at 4°C in dark. The filipin stock 

solution was prepared by dissolving 5 mg filipin in 1 ml DMSO, and a 100 µg/ml 

working solution prepared by dissolving the stock solution 1:50 in PBS (pH = 
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7.2). Neurons were then examined by Zeiss fluorescence microscopy. To further 

determine the specificity of LDL cholesterol and its intracellular localization, we 

co-stained for LysoTracker dye (DND-99 from Invitrogen) and Dil-labeled LDL 

(Kalein Biomedical) in living neurons. Briefly, neurons were loaded with Dil-

labeled LDL (10 µg/ml) for 3 days, washed with PBS, and incubated with 

LysoTracker (50 nM, Invitrogen) for 30 min at 37°C. Neurons were then 

examined under an Olympus Fluoview 300 Confocal Laser Scanning 

Microscope. 

4.2.3. Measurement of endolysosome pH: according to the previous study 

(Liu et al., 2008), Endolysosome pH measured using a ratio-metric lysosome pH 

indicator dye (LysoSensor Yellow/Blue DND-160 from Invitrogen); a dual 

excitation dye that permits pH measurements in acidic organelles independently 

of dye concentration. Briefly, neurons were loaded with 2 µM LysoSensor for 5 

minutes at 37°C. Light emitted at 520 nm in response to excitation at 340 nm and 

380 nm was measured for 20 msec every 30 seconds using a filter-based 

imaging system (Zeiss). The ratios of light excited at 340/380 nm and emitted at 

520 nm were converted to pH using a calibration curve established using 10 µM 

of the H+/Na+ ionophore monensin, and 20 µM of the H+/K+ ionophore nigericin 

dissolved in 20 mM 2-(N-morpholino) ethane sulfonic acid (MES), 110 mM KCl, 

and 20 mM NaCl adjusted to pH 3.0 to 7.0 with HCl/NaOH. 

4.2.4. Immunostaining: Neurons were fixed with cold methanol (-20°C) for 

10 min, washed with PBS, blocked with 5% goat serum, and incubated overnight 

at 4oC with primary antibodies targeting early endosome antigen-1 (EEA1, 1:500, 
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rabbit polyclonal, Santa Cruz), lysosome associated membrane protein-1 

(LAMP1, 1:500, rabbit polyclonal, Sigma), Aβ (4G8, 1:500, mouse monocolonal, 

Signet), BACE-1 (1: 500, mouse monoclonal, Milipore), phosphorylated tau (AT8, 

1:500, mouse monoclonal, Pierce) or synaptophysin (1:1000, mouse monoclonal, 

Sigma). After washing with PBS, neurons were incubated with corresponding 

fluorescence-conjugated secondary antibodies including Alexa 488-conjugated 

goat anti-mouse antibodies (Invitrogen), and Alexa 546-conjugated goat anti-

rabbit antibodies (Invitrogen). Neurons were examined using an Olympus 

confocal microscope. Controls for specificity included staining neurons with 

primary antibodies without fluorescence-conjugated secondary antibodies 

(background controls), and staining neurons with only secondary antibodies – 

these controls eliminated auto-fluorescence in each channel and bleed-through 

(crossover) between channels.  

4.2.5. Immunoblotting: Neurons were lysed with RIPA buffer (Pierce) plus 

10 mM NaF, 1 mM Na3VO4 and Protease Inhibitor Cocktail (Sigma). After 

centrifugation (14,000 X g for 10 min at 4°C), supernatants were collected, and 

protein concentrations were determined with a DC protein assay (Bio-Rad). 

Proteins (10 µg) were separated by SDS-PAGE (12% gel), and following transfer 

to polyvinylidene difluoride membranes (Millipore) were incubated overnight at 

4°C with antibodies against early endosome antigen-1 (EEA1, 1:1000, rabbit 

polyclonal, Santa Cruz), lysosome associated membrane protein-1 (LAMP1, 

1:1000, rabbit polyclonal, Sigma), acid phosphatase (1:1000,mouse monoclonal, 

Abcam), cathepsin B (1:500，mouse monoclonal, Sigma), cathepsin D (1:1000, 
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mouse monocolonal, Sigma), BACE-1 (1:1000, mouse monoclonal, Milipore), 

phosphorylated tau (AT8, 1:1000, mouse monoclonal, Peirece) or synaptophysin 

(1:1000, mouse monoclonal, Sigma). GAPDH (1: 10000, mouse monoclonal, 

Abcam) was used as a gel loading control. The blots were developed with 

enhanced chemiluminescence, and bands were visualized and analyzed by 

LabWorks 4.5 software on a UVP Bioimaging System (Upland). Quantification of 

results was performed by densitometry and the results were analyzed as total 

integrated densitometric volume values (arbitrary units). 

4.2.6. Quantification of Aβ levels by ELISA: Aβ levels were quantified 

using human/rat Aβ1-40 and Aβ1-42 ELISA kits as per the manufacturer’s protocol 

(Wako). Briefly, media from cultured neurons was collected, diluted 1:4 with 

standard diluent buffer, and quantified by a calorimetric sandwich ELISA method. 

Each sample was measured in duplicate. Protein concentrations from neurons in 

each dish were determined by a DC protein assay (Bio-Rad). Aβ levels were 

normalized to total protein content in each sample.  

4.2.7. Measurement of endolysosome enzyme activity: Enzyme activities 

of acid phosphatase were determined using an Acid Phosphatase Assay kit 

(Sigma), a luminescence-based assay that uses 4-nitrophenyl phosphate as 

substrate (Chen et al., 2010). Enzyme activities of cathepsin D and cathepsin B 

were determined using a cathepsin D activity assay kit and a cathepsin B activity 

assay kit, respectively (BioVision), fluorescence-based assays that used the 

preferred cathepsin D and cathepsin B substrate sequence labeled with MCA 

(Chen et al., 2010). Activities of each endolysosome enzyme were expressed as 
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optical density per 10 µg of protein. Specific activities of each enzyme were 

expressed as a ratio of enzyme activity to protein levels as determined by 

immunoblotting. 

4.2.8. Measurement of BACE-1 enzyme activity: Activity assays of BACE-

1 were determined with a BACE-1 activity kit (Calbiochem) according to the 

provided protocol. BACE-1 activity was measured using synthetic peptide 

substrates containing the BACE-1 cleavage site (MCA-Glu-Val-Lys-Met-Asp-Ala-

Glu-Phe-(Lys-DNP)-OH) at a 50 mM concentration in reaction buffer (50 mM 

acetic acid pH 4.1, 100 mM NaCl).  Briefly, equal amount of proteins (10 µg) 

were used from each sample lysate. The fluorescence was measured using a 

fluorescence microplate reader with an excitation wavelength set at 320 nm and 

an emission wavelength set at 383 nm. As a control for specificity, BACE-1 

activity was tested in the absence and the presence of the BACE-1 inhibitor, H-

Lys-Thr-Glu-Glu-Ile-Ser-Glu-Val-Asn-Stat-Val-Ala-Glu-Phe-OH, (Calbiochem).  

4.2.9. Quantitative RT-PCR measurement of BACE-1 mRNA: Total RNA 

from treated primary cultured neurons was extracted with TRIzol-Reagent 

(Invitrogen) and levels were determined spectrophotometrically. Reverse 

transcription reactions were carried out using a SuperScript® III First-Strand 

Synthesis supermix (Invitrogen). The primers for BACE-1 and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) were as follows: f: 5′-

TACACCCAGGGCAAGTGG-3′ and r: 5′-GCCTGTGGATGACTGTGA-3′ for 

BACE-1; and f: 5′-TGCACCACCAACTGCTTAG-3′ and r: 5′-

GGATGCAGGGATGATGTTC-3′ for GAPDH. Samples were run with our iCycler 
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IQTM Multicolor Real-Time PCR Detection System (Bio-Rad) that monitors 

fluorescence as a direct indication of PCR product (Chen et al., 2008b). All 

samples were run in triplicate and the averaged values were used for the relative 

quantification of gene expression. BACE-1 mRNA expression levels were 

calculated as the ratio of their expression compared with that of GAPDH. 

4.2.10. Statistical analysis: All data were expressed as means ± SEM. 

Statistical significance was determined by two-tailed Student t-test. p < 0.05 was 

considered to be statistically significant. 

 

4.3. Results 

 

Neuronal cholesterol is dependent mainly on uptake of brain in situ 

synthesized ApoE cholesterol via receptor-mediated endocytosis with the 

assistance of LDLR, LRP and apoER2, all of which are also receptors for ApoB. 

Here, we examined the extent to which neurons accumulated ApoB-containing 

LDL cholesterol. By staining free cholesterol with filipin, we found that LDL 

cholesterol (50 µg/ml) treatment for 3 days markedly altered the distribution of 

free cholesterol in primary cultured neurons; cholesterol was distributed along the 

cell membrane in control neurons, whereas cholesterol was accumulated inside 

the neurons that were treated with LDL cholesterol (Figure 2A). To further 

determine the intracellular distribution of LDL cholesterol, we treated neurons 

with fluorescence-labeled LDL cholesterol (Dil-LDL). We found that Dil-LDL was 

co-distributed with endolysosomes as identified with LysoTracker (Figure 2B). 
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Our findings suggest that elevated levels of ApoB containing LDL cholesterol 

enhance neuronal cholesterol endocytosis and increase accumulation of 

cholesterol in endolysosomes.  

 

 

Figure 2. LDL Cholesterol Increased Intraneuronal Accumulation of Cholesterol. 
(A) LDL cholesterol (50 µg/ml) treatment for 3 days altered free cholesterol (filipin 
staining) distribution. Whereas cholesterol was mainly present at the cell surface 
of control neurons, cholesterol was accumulated in the cytosol of LDL cholesterol 
treated neurons. Bar =10 µm. (B) Dil-labeled LDL (red) co-distributed with 
endolysosomes (green, LysoTracker). Bar =10 µm. 
 

Because ApoB containing LDL cholesterol is not normally present in brain 

and not utilized by neurons, increased endolysosome accumulation of ApoB 

containing LDL cholesterol could affect the structure and function of neuronal 

endolysosomes. Accordingly, we next determined the extent to which LDL 

cholesterol treatment affected the morphology of endolysosomes in primary 
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cultured neurons.  First, we identified endolysosomes with LysoTracker in living 

neurons, and we found that the sizes of the endolysosomes were markedly 

enlarged in LDL cholesterol treated neurons (Figure 3A). Second, we identified 

immunohistochemically endosomes with early endosome antigen-1 (EEA1) 

antibody and lysosomes with lysosome associated membrane protein 1 (LAMP1) 

antibody in fixed neurons. We found that LDL cholesterol treatment markedly 

altered the structure of both endosomes and lysosomes; the sizes of endosomes 

and lysosomes were relatively small, homogeneous, and evenly distributed in 

control neurons, whereas the sizes of the endosomes and of lysosomes were 

markedly enlarged and clumped together in neurons treated with LDL cholesterol 

for 3 days (Figure 3B). Furthermore, we demonstrated that LDL cholesterol 

treatment significantly increased the protein levels of EEA1 and LAMP1 (Figure 

3C). Our findings suggest that ApoB containing LDL cholesterol directly altered 

the structure of neuronal endolysosomes.  
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Figure 3. LDL Cholesterol Altered the Structure of Endolysosomes. (A) LDL 
treatment (50 µg/ml) for 3 days increased the size of endolysosomes 
(LysoTracker) in living primary cultured cortical neurons. Bar = 10 µm. (B) LDL 
cholesterol treatment for 3 days markedly altered the structure of both 
endosomes (EEA1) and lysosomes (LAMP1); the sizes of endosomes and 
lysosomes were relatively small, homogeneous, and evenly distributed in control 
neurons, whereas the sizes of endosomes and lysosomes were markedly 
enlarged and clumped together in neurons treated with LDL cholesterol. (C) LDL 
cholesterol (50 µg/ml) treatment increased significantly protein levels of EEA1 
and LAMP1. GAPDH was used as a loading control (n=4; p < 0.001). 
 

Next, we determined the extent to which ApoB containing LDL cholesterol 

affected the function of endolysosomes. Because pH is of central importance to 

physiological functions of endolysosomes, we first determined the extent to which 

LDL cholesterol affected endolysosome pH. Here we measured endolysosome 

pH using a LysoSensor dye that permits ratiometric assessment of pH changes in 
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acidic organelles independently of dye concentration. We found that LDL 

cholesterol (50 µg/ml) treatment for 3 days increased significantly endolysosome 

pH in primary cultured rat cortical neurons (Figure 4A). Because pH is critical for 

physiological functions of endolysosome enzymes, we then determined protein 

expression levels and specific activities of endolysosome enzymes as a 

measurement of endolysosome function. We found that LDL cholesterol 

treatment for 3 days significantly increased protein levels of three endolysosome 

enzymes; acid phosphatase, cathepsin B, and cathepsin D (Figure 4B). 

However, the specific activities of three endolysosome enzymes were decreased 

(Figure 4C,D,E). Thus, our findings suggest that ApoB containing LDL 

cholesterol disturbs the function of neuronal endolysosomes.  

 

Figure 4. LDL Cholesterol Disturbed the Function of Endolysosomes. (A) 
Endolysosome pH was measured ratio-metrically with a LysoSensor dye. LDL 
cholesterol treatment (50 µg/ml) increased significantly neuronal endolysosome 
pH. (n=8; p < 0.01). (B) LDL cholesterol treatment (50 µg/ml) increased protein 
levels of acid phosphatase, cathepsin B, and cathepsin D.  GAPDH was used as 
a loading control. (C, D, E) LDL cholesterol treatment (50 µg/ml) decreased 
specific enzyme activity of acid phosphatase, cathepsin B, and cathepsin D when 
compared with controls (n=6; p < 0.05; p < 0.01; p < 0.001). 
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Disturbed structure and function of endolysosomes has been recognized 

as one of the earliest pathological features of sporadic AD, and our previous 

findings in cholesterol-fed rabbit model of sporadic AD demonstrated that altered 

structure and function of endolysosomes was linked directly to the development 

of pathological hallmarks of AD including elevated Aβ production, tau pathology, 

and disrupted synaptic integrity. Although our in vivo studies indicate that 

elevated levels of circulating cholesterol can alter the structure and function of 

neuronal endolysosomes and contribute to the pathogenesis of sporadic AD, it is 

still not clear whether elevated circulating cholesterol exerts its detrimental 

effects on neurons directly or through a yet unidentified indirect mechanism 

(Chen et al., 2010). Accordingly, here we determined the extent to which ApoB 

containing LDL cholesterol directly affected the development of pathological 

features of AD in primary cultured neurons. 

A hallmark of AD is increased levels of Aβ in brain and intraneuronal 

deposition of Aβ precedes extracellular deposition of Aβ (Gyure et al., 2001; 

Ohyagi, 2008). Accordingly, we determined the extent to which ApoB-containing 

LDL cholesterol affected Aβ production. Using ELISA methods, we determined 

Aβ levels. We found that LDL cholesterol treatment significantly increased levels 

of both Aβ1-40 and Aβ1-42 in primary cultured neurons (Figure 5A). Furthermore, 

we demonstrated that LDL cholesterol treatment increased the accumulation of 

both Aβ (Figure 5B, two panels in the left) and its precursor protein AβPP in 

neuronal endolysosomes (Figure 5B, two panels in the right). Our observations 

are consistent with our previous in vivo findings that elevated circulating 
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cholesterol promoted amyloidogenic processing of AβPP and increased Aβ 

production (Chen et al., 2010), however, the underlying mechanisms are not fully 

understood.  It is known that Aβ is produced mainly in the endolysosome system 

by sequential cleavage of its precursor protein AβPP by β-secretase and γ-

secretase. Importantly, beta-site APP-cleaving enzyme 1 (BACE-1), the rate-

limiting enzyme in Aβ production, is present in endolysosomes and its activity is 

pH dependent. We showed previously that LDL cholesterol treatment altered the 

structure of endolysosomes and elevated endolysosome pH. Thus, it is very 

likely that LDL cholesterol increases Aβ production by affecting BACE-1. 

Accordingly, we determined the extent to which LDL cholesterol treatment 

affected levels of expression, enzyme activity, and intracellular distribution of 

BACE-1 in primary cultured neurons.  We found that LDL cholesterol treatment 

did not affect mRNA levels and total protein levels of BACE-1 (Figure 6A, B). 

However, LDL cholesterol treatment increased markedly the accumulation of 

BACE-1 in endolysosomes (Figure 6C).  Moreover, LDL cholesterol treatment 

enhanced significantly enzyme activity of BACE-1 (Figure 6D). Thus, our findings 

suggest that ApoB-containing LDL cholesterol increases Aβ production by 

elevating endolysosome pH and enhancing enzyme activity of BACE-1. 
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Figure 5. LDL Cholesterol Increased Amyloid Beta Production. (A) LDL 
cholesterol treatment (50 µg/ml) for 3 days increased significantly levels of Aβ1-40 
and Aβ1-42, when compared with control groups (n=8; p < 0.01; p < 0.001). (B) 
(left panel) LDL cholesterol treatment for 3 days increased the co-distribution of 
Aβ (4G8) with endosomes (EEA1) and lysosomes (LAMP1); (right panel) LDL 
cholesterol treatment for 3 days increased the co-distribution of APP with 
endosomes (EEA1) and lysosomes (LAMP1). Bar =10 µm. 
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Figure 6. LDL Cholesterol Increased Beta Amyloid Cleavage Enzyme 1 Activity. 
(A) LDL cholesterol treatment did not change protein levels of BACE-1 (n=6). (B) 
LDL cholesterol treatment did not change significantly mRNA levels of BACE-1 
(n=8). (C) LDL cholesterol treatment (50 µg/ml) increased significantly BACE-1 
specific enzyme activity (n=8; p < 0.05). (D) LDL cholesterol treatment increased 
the co-distribution of BACE-1 with endosomes (EEA1) and lysosomes (LAMP1). 
Bar =10 µm. 
 

Neurofibrillary tangles composed of phosphorylated tau are another 

pathological feature of AD, and here we determined the extent to which ApoB 

containing LDL cholesterol directly affected the development of tau-pathology. 
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LDL cholesterol treatment increased signficantly (p<0.001) protein levels of 

phosphorylated tau in primary cultured neurons (Figure 7A). Furthermore, 

phosphorylated tau was accumulated by endolysosomes (Figure 7B).  Such 

observations are consistent with reports of others that tau is degraded in 

lysosomes (Hamano et al., 2008; Oyama et al., 1998; Wang et al., 2009b) and 

that endolysosome dysfunction induces tau-pathology (Bi and Liao, 2007; Distl et 

al., 2003; Liao et al., 2007). Thus, our findings suggest that ApoB-containing LDL 

cholesterol induces tau-pathology possibly by altering endolysosome function. 
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Figure 7. LDL Cholesterol Altered the Expression and Distribution of 
Phosphorylated Tau. (A) LDL cholesterol treatment (50 µg/ml) increased 
significantly protein levels of phosphorylated-tau (AT8) (n=6, p < 0.001). (B) LDL 
cholesterol treatment (50 µg/ml) increased the co-distribution of phosphorylated 
tau (AT8) with endosomes (EEA1) and lysosomes (LAMP1). Bar =10 µm.  
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Another pathological feature of AD is disruption of synaptic integrity. 

Accordingly, we determined the extent to which ApoB containing LDL cholesterol 

affected synaptic integrity, as indicated by protein levels and distribution of 

presynaptic protein synaptophysin. We found that LDL cholesterol treatment 

decreased significantly (p < 0.01) protein levels of synaptophysin in primary 

cultured neurons (Figure 8A). Furthermore, we demonstrated that LDL 

cholesterol treatment markedly increased the accumulation of synaptophysin in 

endolysosomes (Figure 8B). Our observations are consistent with those findings 

from others that lysosome dysfunction is linked to synaptic pathology in AD brain 

(Bahr and Bendiske, 2002; Callahan et al., 1999), and that inhibiting lysosomal 

function with chloroquine, a lysosomotropic agent that blocks acidification, results 

in synaptic dysfunction and  synaptic loss in hippocampal slices (Bendiske and 

Bahr, 2003; Bendiske et al., 2002; Kanju et al., 2007). Thus, our findings suggest 

that ApoB-containing LDL cholesterol disrupts synaptic integrity by altering 

endolysosome function.  
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Figure 8. LDL Cholesterol Altered the Expression and Distribution of 
Synaptophysin. (A) LDL cholesterol treatment (50 µg/ml) decreased protein 
levels of synaptophysin. (n=6; p < 0.01). (B) LDL cholesterol treatment (50 µg/ml) 
increased the co-distribution of synaptophysin with endosomes (EEA1) and 
lysosomes (LAMP1). Bar =10 µm. 
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4.4.Discussion 

 

Several lines of evidence suggest strongly that elevated levels of 

circulating cholesterol, as an extrinsic factor, contributes to the pathogenesis of 

sporadic AD (Chen et al., 2010; Crisby et al., 2004; Reiss et al., 2004; Sparks, 

2008; Sparks et al., 2000). Epidemiologically, elevated plasma levels of 

cholesterol during mid-life increases the risk of developing AD later in life 

(Solomon et al., 2009). Genetically, people carrying the ApoE4 allele, the major 

genetic risk factor of sporadic AD (Corder et al., 1993; Wisdom et al., 2011), 

have elevated levels of plasma cholesterol (Corder et al., 1993; Marzolo and Bu, 

2009), whereas people carrying the ApoE2 allele, a protective factor against AD 

(Corder et al., 1996; Corder et al., 1994; Schachter et al., 1994), have decreased 

levels of plasma cholesterol (Dallongeville et al., 1992). Experimentally, diets 

enriched in cholesterol induced pathological features of AD in mice, rats and 

rabbits (Chen et al., 2010; Ghribi et al., 2006; Granholm et al., 2008; Sparks et 

al., 1994; Thirumangalakudi et al., 2008). Despite such a strong linkage between 

elevated circulating cholesterol and the pathogenesis of sporadic AD, the 

underlying mechanisms are still not clear.   

Our previous studies demonstrated, in a rabbit model of sporadic AD, that 

cholesterol-enriched diet disrupted the BBB integrity, increased ApoB 

accumulated in neuronal endolysosomes and disturbed the structure and 

function of endolysosomes, which was linked to the development of pathological 

features of AD including disrupted synaptic integrity, increased Aβ levels, and tau 
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pathology (Chen et al., 2010). ApoB is the main apolipoprotein of LDL and VLDL 

that transports cholesterol to peripheral tissues. Because ApoB is not present in 

normal brain (Pitas et al., 1987) but is present in AD brain (Namba et al., 1992; 

Takechi et al., 2009), our findings suggest that elevated circulating cholesterol 

per se contributes to the pathogenesis of sporadic AD. To extend further our in 

vivo findings and determine the underlying mechanisms whereby elevated levels 

of circulating cholesterol contribute to the development of AD-like pathology, here 

we determined the extent to which and mechanisms by which ApoB containing 

LDL cholesterol contributed to the development of AD-like pathology in primary 

cultured hippocampal neurons. Consistent with our in vivo observations, we have 

now demonstrated that ApoB containing LDL cholesterol treatment increased 

endolysosome accumulation of cholesterol, induced enlargement of 

endolysosomes and elevated endolysosome pH, enhanced production of Aβ, 

increased levels of phosphorylated tau, and decreased levels of the presynatpic 

protein synaptophysin. Thus, our findings from both in vivo and in vitro studies 

suggest strongly that altered structure and function of endolysosomes underlies 

elevated levels of circulating cholesterol-induced development of AD-like 

pathology.   

One of the major sources of neuronal cholesterol is uptake of cholesterol 

containing lipoproteins through receptor-mediated endocytosis, a process where 

lipoproteins bound to its receptors are internalized, transported to 

endolysosomes, hydrolyzed to free cholesterol, and from where free cholesterol 

is transported to various intracellular compartments via a mechanism involving 
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the Niemann-Pick type C (NPC) proteins (Maxfield and Tabas, 2005; Sleat et al., 

2004; Vance et al., 2006). Under normal conditions, circulating ApoB containing 

cholesterol is largely excluded from the brain due to the intact BBB, and secreted 

ApoE cholesterol from glial cells, predominately astrocytes, supplies the needed 

cholesterol for neurons.  However, under pathological conditions when the BBB 

is leaky, as occurs in sporadic AD, circulating ApoB cholesterol can enter brain 

parenchyma and can be transported to neuronal endolysosomes via the same 

receptor-mediated endocytosis mechanisms as that of ApoE cholesterol. 

Consistent with this notion are our previous in vivo findings in a cholesterol-fed 

rabbit model of sporadic AD that the BBB is leaky and ApoB cholesterol is 

accumulated in neuronal endolysosomes, and our current in vitro findings that 

ApoB containing LDL cholesterol treatment increases neuronal internalization of 

LDL cholesterol. 	  

Because ApoB containing LDL cholesterol is not normally present in brain 

and not utilized by neurons, internalized ApoB containing LDL cholesterol could 

disrupt the structure and function of neuronal endolysosomes. Indeed, we 

demonstrated that LDL cholesterol treatment increased intraneuronal 

accumulation of LDL cholesterol and enlarged markedly neuronal 

endolysosomes. Our observation is consistent with that of others that increased 

intraneuronal loading of cholesterol increased the sizes of endosomes (Cossec 

et al., 2010).  However, it is not known exactly how ApoB containing LDL 

cholesterol induces enlargement of endolysosomes. It could be that increased 

levels of LDL cholesterol enhances receptor-mediated endocytosis of cholesterol, 
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which exceeds the ability of neurons to export cholesterol out of endolysosomes, 

or alternatively, internalized ApoB containing LDL cholesterol specifically 

suppresses the ability of endolysosomes to export cholesterol. Under both 

circumstances, there probably exists a traffic jam in intraneuronal transportation 

of cholesterol, which could alter the structure of endolysosomes. Consistent with 

this notion are findings that lysosome accumulation of cholesterol in Niemann-

Pick type C diseased brain is associated with an altered structure of lysosomes 

(Bi and Liao, 2007; Distl et al., 2003; Liao et al., 2007). It is also known that 

endolysosomes are very complicated structures composed of different sub-

groups of vesicles including early endosomes, late endosomes, recycling 

endosome, lysosomes, and autophagosomes, all of which are involved in 

intracellular transportation of cholesterol. Thus, another possibility is that ApoB 

containing LDL cholesterol could be transported into different sub-groups of 

endolysosomes than that of ApoE cholesterol thus disturbing the normal 

intraneuronal cholesterol transportation. Further research addressing such 

possibilities is warranted.    

In addition to an altered structure of endolysosomes, we demonstrated 

that ApoB containing LDL cholesterol treatment disturbed the function of 

endolysosomes, as evidenced by elevated endolysosome pH. Since pH is of 

central importance to physiological functions of endolysosomes, elevated 

endolysosome pH could affect dramatically endolysosome function. Indeed, we 

demonstrated that LDL cholesterol treatment decreased enzyme activities of 

three different endolysosome enzymes including acid phosphatase, cathepsin B, 



	   53	  

and cathepsin D, all of which are pH-sensitive enzymes with an optimal pH value 

around 4. Although, it is not known how increased LDL cholesterol affects 

endolysosome pH, it is possible that increased endolysosome accumulation of 

LDL cholesterol suppresses the activity of vacuolar H+-ATPase, which maintains 

the low pH of endolysosome by pumping H+ into endolysosomes (Cox et al., 

2007).  

Neurons are long-lived post mitotic cells that possess an elaborate 

endolysosome system for quality control. It is known that altered morphological 

and functional features of endolysosomes are one of the earliest pathological 

features of AD (Boland et al., 2008; Tate and Mathews, 2006). It was also shown 

that endosome enlargement was apparent in brains of AD patients and non-

demented patients with early signs of AD, in Down’s syndrome individuals, and in 

patients bearing the ApoE4 allele (Arriagada et al., 2007; Cataldo et al., 2004). 

The hypothesis that endosome enlargement is an early pathogenic event in AD is 

supported by findings that endosome enlargement largely preceded extracellular 

deposition of Aβ in brain (Cataldo et al., 2000). Abnormalities of lysosomes have 

been noted also in AD; lysosomal components are present in amyloid plaques 

(Boland et al., 2008; Cataldo et al., 1990), increased numbers of neuronal 

lysosomes have been observed, there is increased expression and synthesis of 

all classes of lysosomal hydroxylase enzymes (Nixon, 2007), and residual bodies 

accumulate as an indicator of lysosome dysfunction (Cataldo et al., 1994). 

Clearly, a disturbed structure and function of endolysosomes appears to play an 

important and early role in the pathogenesis of sporadic AD. Given our 
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observations, both in vivo (Chen et al., 2010) and in vitro, that elevated levels of 

ApoB containing LDL cholesterol disturbed the structure and function of neuronal 

endolysosomes, it is very likely that elevated levels of cholesterol contributes to 

the pathogenesis of sporadic AD by disturbing neuronal endolysosomes. 

Recent studies suggest strongly that pathological changes in 

endolysosomes contribute to Aβ production, a pathological hallmark of AD, as 

evidenced by the following findings; AβPP and its cleavage products are present 

in clathrin-coated vesicles that are part of the endocytic pathway (Ferreira et al., 

1993; Harris and Milton, 2010). Aβ production is decreased in cultured cells that 

were stably transfected with an AβPP construct where the C-terminal endocytic 

targeting signal was removed (Perez et al., 1999; Soriano et al., 1999); Aβ 

production is decreased in cells transfected with dominant negative dynamin, 

which prevents endocytosis (Chyung and Selkoe, 2003); BACE-1, a key enzyme 

for amyloidogenesis, is localized in endosomes and its activity is optimal at a pH 

of about 5.0 (Rajendran et al., 2008; Shimizu et al., 2008; Vassar et al., 1999); 

and Aβ is accumulated in endolysosomes of neurons from AD brain (Cataldo et 

al., 2004). Consistent with this notion, we demonstrated that ApoB containing 

LDL cholesterol treatment elevated endolysosome pH, disturbed the function of 

endolysosomes, and increased Aβ production. Importantly, we demonstrated that 

LDL cholesterol treatment increased the accumulation of BACE-1 in 

endolysosomes and increased significantly BACE-1 enzyme activity. Because 

the activity of BACE-1, the rate limiting enzyme in the production of Aβ, is pH-

dependent with an optimal pH around 5 (Rajendran et al., 2008; Shimizu et al., 
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2008; Vassar et al., 1999), the observed elevation of endolysosome pH could be 

responsible for enhanced BACE-1 enzyme activity and increased Aβ production. 

In addition, BACE-1 is degraded in lysosomes under more acidic conditions (pH 

< 4) (Koh et al., 2005). Thus, the observed elevation of endolysosome pH could 

lead to decreased degradation of BACE-1 and to increased accumulation of 

BACE-1 in endolysosomes, which also resulted in increased Aβ production. On 

the other hand, Aβ can be degraded in lysosomes by endolysosome enzymes 

such as cathepsin D, whose activity is also pH dependent and with an optimal pH 

around 4 (Hamazaki, 1996; Higaki et al., 1996; Ladror et al., 1994; Saftig et al., 

1996). Collectively, observation of elevated endolyosome pH and decreased 

cathepsin D activity could contribute to increased levels of Aβ. In addition, 

although not examined in the present studies, γ-secretase, consisting of 

presenilin, nicastrin, Aph-1, and Pen-2, is also present in endolysosomes 

(Frykman et al., 2010; Pasternak et al., 2003; Refolo et al., 1995; Vetrivel et al., 

2004), its activity is also sensitive to pH (Pasternak et al., 2003; Pasternak et al., 

2004) and it can be degraded in lysosomes (He et al., 2007). Therefore, ApoB 

containing LDL cholesterol induced elevation of endolysosome pH could also 

increase the production of Aβ by affecting the activity and protein levels of γ-

secretase. Thus, our results suggest that LDL cholesterol induced elevation of 

endolysosome pH plays a key role in over-production of Aβ. Our results also 

suggest that LDL cholesterol disrupts the function of endolysosomes and 

subsequently affects Aβ production (Jin et al., 2004).  
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In addition to Aβ production, endolysosomes have been implicated in the 

development of tau-pathology, another pathological hallmark of AD. Although the 

underlying mechanisms are not yet clear, it has been shown that tau is degraded 

by cathepsin D in the autophagy-lysosome system (Hamano et al., 2008; 

Kenessey et al., 1997; Oyama et al., 1998; Wang et al., 2009b), and that 

cholesterol storage in lysosomes induces lysosome dysfunction and tau-

pathology in Niemann-Pick type C diseased brain (Bi and Liao, 2007; Bu et al., 

2002; Distl et al., 2003; Liao et al., 2007; Sawamura et al., 2001; Vance, 2006). 

Consistent with this notion and our previous in vivo findings (Chen et al., 2010), 

here we demonstrated that ApoB containing LDL cholesterol disturbed the 

structure and function of endolysosomes, decreased enzyme activity of cathepsin 

D, and increased endolysosome accumulation of phosphorylated tau. Thus, it is 

possible that the observed LDL cholesterol induced elevation of endolysosome 

pH decreases the degradation of phosphorylated tau and contributes to the 

development of tau pathology in AD. 

Besides Aβ and tau-pathology, endolysosomes are also involved in the 

development of disrupted synaptic integrity, another pathological hallmark of AD 

that correlates best with dementia (Selkoe, 2002; Terry et al., 1991). 

Endolysosomes are responsible for recycling synaptic proteins (Blumstein et al., 

2001; Kuromi and Kidokoro, 1998; Murthy and Stevens, 1998), lysosome 

dysfunction is linked to synaptic pathology in AD brain (Bahr and Bendiske, 2002; 

Callahan et al., 1999), and that inhibiting lysosome function with chloroquine, a 

lysosomotropic agent that blocks acidification, results in synaptic dysfunction and  
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synaptic loss in hippocampal slices (Bendiske and Bahr, 2003; Bendiske et al., 

2002; Kanju et al., 2007). Consistent with this notion and our previous in vivo 

findings (Chen et al., 2010), we have now demonstrated that ApoB containing 

LDL cholesterol disturbed the structure and function of endolysosomes, 

increased the endolysosome accumulation of presynaptic protein synaptophysin, 

and decreased total protein levels of synaptophysin. Thus, our results suggest 

that altered endolysosome structure and function contributes to LDL cholesterol 

induced development of disrupted synaptic integrity in AD. 

In summary, we demonstrated, in primary cultured neurons, that ApoB 

containing LDL cholesterol treatment increased endolysosome accumulation of 

cholesterol, induced enlargement and the elevated pH of endolysosomes, 

enhanced production of Aβ, increased levels of phosphorylated tau, and 

decreased levels of the presynaptic protein synaptophysin. Such findings 

suggest strongly that altered structure and function of endolysosomes plays an 

important role in the pathogenesis of sporadic AD, and that increased levels of 

circulating ApoB containing cholesterol directly contribute to the pathogenesis of 

sporadic AD, which occurs mechanistically because of alteration in the structure 

and function of endolysosomes. 
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Figure 9. Model Summarizing Involvement of Endolysosomes in LDL 
Cholesterol-Induced Alzheimer’s Disease-Like Pathology in Primary Cultured 
Neurons. Treating neurons with ApoB containing LDL cholesterol increases 
endolysosomal accumulation of cholesterol, enlarges endolysosomes and 
elevates endolysosome pH. In addition, ApoB containing LDL cholesterol 
increases endolysosome accumulation of beta amyloid converting enzyme 1, 
BACE-1, enhances BACE-1 activity and increases production of Aβ levels. 
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CHAPTER V 

INVOLVEMENT OF ENDOLYSOSOMES IN HIV-1 Tat-INDUCED TOXICITY 
AND AMYLOID BETA GENERATION IN PRIMARY CULTURED NEURONS 

 

5.1. Introduction 

 

Greater than 40 million people worldwide are infected with the human 

immunodeficiency virus-1 (HIV-1) and combined antiretroviral therapeutic drugs 

have effectively increased the life span of people living with HIV-1 infection. 

Increased as well is the prevalence of HIV associated neurocognitive disorders 

(HAND) with recent epidemiological studies indicating that the prevalence of 

HAND in the USA is greater than 50% of HIV-1 infected people (Ellis et al., 2010; 

Heaton et al., 2010). Clinically, HAND represents a set of conditions ranging from 

subtle neuropsychological impairments to profoundly disabling HIV-associated 

dementia. Although the underlying mechanisms for HAND pathogenesis are not 

fully understood, soluble factors including HIV-1 viral products and pro-

inflammatory mediators released from infected glia and monocytes have been 

implicated (Ances and Ellis, 2007; Ghafouri et al., 2006; King et al., 2006; 

Wallace, 2006). Among the viral products, HIV-1 transactivator of transcription 

protein (Tat) has been shown to be neuroexcitatory, neurotoxic, and it continues

 to be implicated as a causative agent in HAND (Agrawal et al., 2012; Buscemi et 

al., 2007; Haughey et al., 1999; King et al., 2006; Nath et al., 2000; Perez et al., 
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2001; Sabatier et al., 1991; Weeks et al., 1995). Interestingly, emerging 

evidences have revealed that there is a significant incidence of AD-like 

pathology, such as increased amyloid beta (Aβ) deposition, in aged HIV patients 

(Achim et al., 2009; Clifford et al., 2009; Esiri et al., 1998; Gelman and 

Schuenke, 2004; Green et al., 2005; Nebuloni et al., 2001; Pulliam, 2009; Xu and 

Ikezu, 2009). Recently, HIV-1 transactivator of transcription (Tat) has been 

shown to increase neuronal Aβ generation (Aksenov et al., 2010; Giunta et al., 

2009; Rempel and Pulliam, 2005). Thus, Tat, a HIV-1 viral protein that continues 

to be implicated as a causative agent in HAND (Agrawal et al., 2012; Buscemi et 

al., 2007; Haughey et al., 1999; King et al., 2006; Nath et al., 2000; Perez et al., 

2001; Sabatier et al., 1991; Weeks et al., 1995) also contributes to the 

development of AD-like pathology in HIV-1 infected individuals, but the 

underlying mechanisms are not fully understood. 

HIV-1 Tat is a nonstructural transcriptional regulator essential for the 

replication of HIV-1. The first exon of HIV-1 Tat encodes for the first 72 amino 

acids and the second exon encodes for another 14 to 32 amino acids. Tat1–72 is 

sufficient for transactivation, which requires the arginine rich domain of Tat 

between amino acid residues 49 and 57. Nanomolar concentrations of HIV-1 Tat 

have been reported in sera of HIV-1 infected patients, but these levels are almost 

certainly underestimated given how avidly HIV-1 Tat binds to proteins and cells 

(Westendorp et al., 1995; Xiao et al., 2000). HIV-1 Tat can be transported across 

the blood-brain barrier from the systemic circulation (Banks et al., 2005; Kim et 

al., 2003), can be secreted by infected macrophages and microglia, and has 
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been detected in brains of patients with HIV-1 associated dementia (Ellis et al., 

2000; Nath, 2002; Westendorp et al., 1995).  

HIV-1 Tat enters neurons via receptor-mediated endocytosis involving 

CD26 (Gutheil et al., 1994), CXCR4 (Xiao et al., 2000), heparin sulfate 

proteoglycans (Tyagi et al., 2001), and low-density lipoprotein receptor-related 

proteins (Deshmane et al., 2011; King et al., 2006; Liu et al., 2000; Vendeville et 

al., 2004). This very rapid and early event results in the accumulation of HIV-1 

Tat in endolysosomes with its subsequent release into the cytoplasm and uptake 

into the nucleus (Caron et al., 2004; Liu et al., 2000; Vives et al., 1997) most 

likely through mechanisms involving the high H+ gradient maintained by vacuolar 

H+-ATPase (Vendeville et al., 2004). The endolysosome system is very dynamic, 

and lysosomes and other acidic subcellular compartments are involved in 

endocytosis and autophagy (Jeyakumar et al., 2005; Nixon and Cataldo, 2006). 

Endosomes and lysosomes process proteins and other materials that are 

endocytosed, while autophagy and autophagosomes predominantly process 

cytosolic proteins. Because neurons are highly polarized long-lived post-mitotic 

cells, they possess an elaborate endolysosome system that is critical for the 

maintenance of neuronal function (Nixon and Cataldo, 1995; Nixon and Cataldo, 

2006). 

Increasingly, endolysosome dysfunction has been implicated in neuronal 

damage and in the pathogenesis of a variety of neurological disorders including 

AD, PD and HAND (Gelman et al., 2005; Spector and Zhou, 2008; Zhou and 

Spector, 2008). For example, as one of the earliest pathological features of AD, 
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endolysosome dysfunction precedes extracellular deposition of Aβ in brain 

(Cataldo et al., 2000) has been implicated in the pathogenesis of AD (Boland et 

al., 2008; Cataldo et al., 2004; Tate and Mathews, 2006), especially the 

generation of Aβ. Several lines of evidence indicate that Aβ is mainly generated 

in the endocytic pathway, when AβPP is internalized to endolysosomes (Chyung 

and Selkoe, 2003; Ferreira et al., 1993; Perez et al., 1999; Soriano et al., 1999) 

where BACE-1, the rate-limiting enzyme for Aβ generation is located (Rajendran 

et al., 2008; Shimizu et al., 2008; Vassar et al., 1999).   

Here we tested the hypothesis that; HIV-1 Tat induces neuronal damage 

and contributes to Aβ generation by affecting the structure and function of 

endolysosomes.  

We observed that prior to HIV-1 Tat induced neuronal cell death, this HIV 

protein enlarged endolysosomes, elevated endolysosome pH, decreased specific 

activities of endolysosome enzymes, disrupted endolysosome membrane 

integrity, and inhibited autophagy. These findings suggest that disturbed 

structure and function of endolysosomes play an early and important role in HIV-

1 Tat-induced neuronal damage. 

Additionally, we found that HIV-1 Tat-induced increases in Aβ generation, 

increased endolysosome accumulation of AβPP and Aβ and increased 

endolysosome accumulation of BACE-1 and enhanced BACE-1 activities. Such 

findings suggest that HIV-1 Tat increases neuronal Aβ generation and 

contributes to the development of AD-like pathology in HIV-1 infected individuals 

by disturbing endolysosome structure and function. 
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5.2 Methods 

 

5.2.1. Hippocampal neuron primary cultures: Primary cultures of 

hippocampal neurons were prepared from embryonic day 18 Sprague-Dawley 

rats as described previously (Buscemi et al., 2007). Pregnant dams (embryonic 

day 18) were sacrificed by asphyxiation with CO2. The fetuses were removed, 

decapitated, and meninges-free hippocampi were isolated, trypsinized, and 

plated onto 35-mm poly-D-lysine-coated glass-bottom tissue culture dishes. 

Neurons were grown in Neurobasal™ medium with L-glutamine, 

antibiotic/antimycotic and B27 supplement, and were maintained at 37°C and 5% 

CO2 for 10-14 days at which time they were used for experimentation. Typically, 

the purity of the neuronal cultures was greater than 95% as determined by 

neuronal immunostaining with mouse anti-NeuN or goat anti-MAP2 antibodies 

(Millipore), and for astrocytes with a mouse anti-GFAP antibody (Sigma). 

Neurons were treated either with HIV-1 Tat1-72 (100 nM), mutant Tat (TatΔ31–61, 

100 nM), or phosphate-buffered saline (PBS) as vehicle.   

5.2.2. Neuronal cell viability assay: Neuronal cell viability was determined 

using a triple staining method as described previously (Buscemi et al., 2007). 

Neurons were stained with Hoechst 33342 (10 µg/ml), ethidium homodimer-1 (4 

µM), and calcein (1 µg/ml). Hoechst 33342, which labels DNA, was used as a 

marker for identifying condensed nuclei characteristic of apoptotic cell death. 

Cells dead or dying as a result of loss of membrane integrity were unable to 

exclude ethidium homodimer dye. Cells were considered viable when cytoplasm 
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was stained with green fluorescence after the cleavage of the non-fluorescent 

calcein acetoxymethyl ester to calcein. Fields were chosen at random and at 

least five images from five separate fields of culture dishes for every 

experimental condition were taken with our Axiovert 200M fluorescence 

microscope (Zeiss) and filter-based imaging system. The number of dead or 

dying neurons (ethidium-labeled red nuclei and blue-condensed nuclei without 

green cytoplasmic staining) and total neuron numbers were counted manually. 

More than 900 neurons were counted per experimental condition. Neuronal 

viability was reported as a percentage of total neurons. 

5.2.3. Measurement of endolysosome pH: Details were described in 

Chapter 4.2.3. 

5.2.4. Live cell imaging: The morphology of endolysosomes in living 

neurons was determined using a LysoTracker dye. After treatments, neurons 

were loaded with LysoTracker Red DND-99 (50 nM, Invitrogen) and calcein AM 

(1 µg/ml, Invitrogen) for 30 min at 37°C. Fields were chosen at random and at 

least five images from every experimental condition were acquired by confocal 

microscopy (Olympus). For measurement of HIV-1 Tat endocytosis, neurons 

were incubated with FITC-Tat47-57 (100 nM, AnaSpec) for 1 day at 37°C followed 

by loading of LysoTracker Red DND-99 (50 nM) for an additional 30 min. Images 

were taken with an Axiovert 200M fluorescence microscope (Zeiss).  

5.2.5. Immunostaining: Details were described in Chapter 4.2.4. Here we 

used primary antibodies against early endosome antigen-1 (EEA1, 1:500, rabbit 

polyclonal, Santa Cruz), lysosome-associated membrane protein-1 (LAMP1, 
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1:500, rabbit polycolonal, Sigma), APP (1:500, mouse monoclonal, Milipore), Aβ 

(4G8, 1:500, mouse monocolonal, Signet) or BACE-1 (1: 500, mouse 

monoclonal, Milipore), and two secondary antibodies-Alexa 488-conjugated goat 

anti-mouse antibodies (Invitrogen) and Alexa 546-conjugated goat anti-rabbit 

antibodies (Invitrogen). 

5.2.6. Endolysosome membrane permeability: Endolysosome membrane 

permeability was determined by measuring the leakage of endolysosome 

fluorescent dye Lucifer Yellow CH (Invitrogen). Neurons were incubated with 

Lucifer Yellow (100 µg/ml) for 16 h followed by incubation with Tat at 37°C for 1 

and 2 days. Levels of dye inside of neurons were detected by confocal 

microscopy (Olympus). 

5.2.7. Immunoblotting: Details were described in Chapter 4.2.5. Western 

blots were conducted using the following primary antibodies; anti-EEA1 (1:1000, 

rabbit polyclonal, Santa Cruz), anti-LAMP1 (1:1000, rabbit polyclonal, Sigma), 

anti-acid phosphatase (1:1000, mouse monoclonal, Abcam), anti-cathepsin B 

(1:500, mouse monoclonal, Sigma), anti-cathepsin D (1:1000, mouse 

monoclonal, Sigma), anti-LC3b (1:1000, rabbit polyclonal, Abcam), anti-Atg5 

(1:2000, mouse monoclonal, Millipore), anti-P62 (1:1000, rabbit polyclonal, 

Sigma) antibodies or anti-BACE-1 (1:1000, mouse monoclonal, Milipore). Anti-β-

actin (1:10000, mouse monoclonal, Abcam) antibody was used for a gel loading 

control.  

5.2.8. Measurement of activities of endolysosome enzymes: Details were 

described in Chapter 4.2.7. 
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5.2.9.  Quantification of Aβ levels by ELISA: Details were described in 

Chapter 4.2.6. 

5.2.110. Measurement of BACE-1 enzyme activity: Details were described 

in Chapter 4.2.8. 

5.2.9. Statistical analysis: All data were expressed as means ± SEM. 

Statistical significance for multiple comparisons was determined by one-way 

ANOVA plus a Tukey post hoc test. p < 0.05 was considered to be statistically 

significant. 

 

5.3. Results 

 

In order to compare the effects of HIV-1 Tat on neuronal damage and the 

structure and function of endolysosomes, we needed to first determine the time 

course and extent to which HIV-1 Tat decreased neuronal viability. HIV-1 Tat1-72 

induced significant amounts of neuronal cell death starting from 48 hours of 

treatment (p < 0.05) with a maximum of 50% neuronal cell death (p < 0.001) after 

treatment for 96 hours. (Figure 10B). These results are consistent with previous 

studies that have shown similar neurotoxic effects of HIV-1 Tat (Aksenov et al., 

2003; Bonavia et al., 2001; Buscemi et al., 2007; Eugenin et al., 2007; Haughey 

et al., 1999; Kruman et al., 1998). No statistically significant increases in 

neuronal cell death were observed with either mutant TatΔ31–61, or PBS, 

consistent with previous reports that this deletion mutant of HIV-1 Tat is not 

overtly toxic to neurons (Buscemi et al., 2007). 
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Figure 10. HIV-1 Tat Decreased Neuronal Viability in A Time-Dependent Manner. 
(A) Neuronal viability was determined by a triple staining method with calcein AM 
(green, live cells), ethidium homodimer-1 (red, dead cells) and Hoechst 33342 
(blue, nuclei). Cells were considered viable when cytoplasm was stained with 
green fluorescence. Cells were considered dead or dying when cells were 
stained with red fluorescence or had condensed nuclei characteristic of 
apoptosis. (B) Significant amounts of neuronal cell death were observed after 2 
days of incubation with HIV-1 Tat (100 nM) and reached a maximal level of 50% 
cell death by the fourth day. No significant neuronal cell death was observed in 
neurons treated with either mutant Tat or PBS (* p < 0.05, and *** p < 0.001).  
 

In neurons and other cells, HIV-1 Tat uses receptor-mediated endocytotic 

mechanisms (King et al., 2006; Liu et al., 2000; Vendeville et al., 2004) to enter 

cells where HIV-1 Tat accumulates first in endolysosomes. Because the basic 

region of amino acids 49 to 57 of HIV-1 Tat is required for binding to membrane 

receptor proteins (Sabatier et al., 1991) and exerting its neurotoxic effects 

(Weeks et al., 1995), we used a fluorescence (FITC)-labeled Tat47-57 to determine 
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first the extent to which HIV-1 Tat was internalized into neuronal endolysosomes. 

After incubating neurons with the FITC-labeled HIV-1 Tat47-57 (FITC-Tat, green), 

we observed significant intracellular residence of FITC-Tat, which was 

compartmentalized in endolysosomes identified with LysoTracker dye (red, 

Figure 11).  

 

 

Figure 11. HIV-1 Tat was Internalized into Endolysosomes of Primary Cultured 
Neurons. Fluorescence (FITC) labeled Tat47-57 peptide (100 nM, green) co-
localized with endolysosomes (LysoTracker). Bar = 50 µm. 
 

Because alterations in the structure and function of endolysosomes have 

been implicated in the neuropathogenesis of a number of neurological disorders, 

we next determined the extent to which HIV-1 Tat affected endolysosome 

morphology. In living neurons, we identified endolysosomes with LysoTracker, 

and we found that treatment with HIV-1 Tat for 1 and 2 days increased 

significantly (both p < 0.05) the size of endolysosomes (Figure 12 A, B). 

Treatments with mutant Tat did not affect endolysosome morphology (data not 

shown). Using immunocytochemistry methods, we found that endosomes labeled 

with EEA1 antibody and lysosomes labeled with LAMP1 antibody were relatively 
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small and evenly distributed in neurons treated with PBS or mutant Tat, but were 

markedly enlarged and clumped together in HIV-1 Tat-treated neurons (Figure 11 

A, middle and bottom). To determine if the enlarged endolysosomes expressed 

higher levels of their marker proteins, immunoblots were performed and we found 

that treatment of neurons with HIV-1 Tat for 1 or 2 days increased significantly 

protein levels of EEA1 (p < 0.05 at 2 days) and LAMP1 (p < 0.01 at 1 day; p < 

0.05 at 2 days) (Figure 12 C, D)  

 

 

Figure 12. HIV-1 Tat Altered the Structure of Neuronal Endolysosomes. (A) Live 
cell imaging showed that HIV-1 Tat (100 nM) treatment increased the size of 
neuronal endolysosomes. LysoTracker (red) was used to identify endolysosomes 
and calcein AM (green) was used to stain live cells (bar = 10 µm, top panel). HIV-
1 Tat enlarged endosomes as identified with EEA1 staining (bar = 10 µm, middle 
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panel). HIV-1 Tat enlarged lysosomes as identified with LAMP1 staining (bar = 
10 µm, bottom panel). (B) Quantification of the top panel of Figure 3A showed 
that HIV-1 Tat (100 nM) treatment for 1 and 2 days increased significantly the 
size of neuronal endolysosomes. The sizes of endolysosomes were quantified 
with Image J software. p < 0.05. (C) HIV-1 Tat increased significantly protein 
levels of EEA1. p < 0.01. (D) HIV-1 Tat increased significantly the protein levels 
of LAMP1. p < 0.05; p < 0.01. 
 

The observations that HIV-1 Tat altered endolysosome morphology led us 

to determine next the extent to which HIV-1 Tat affected endolysosome function. 

Because pH is critical for endolysosome function, we determined the extent to 

which HIV-1 Tat affected endolysosome pH using lysoSensor dye that permits 

ratio-metric assessment of pH changes in acidic organelles. We found that HIV-1 

Tat, but not mutant Tat treatment, for 1 or 2 days elevated significantly (both p < 

0.001) endolysosome pH in cultured hippocampal neurons (Figure 13). Because 

endolysosome pH affected endolysosome enzyme activity, we next determined 

the protein levels and activity of endolysosome enzymes as evaluations of 

endolysosome function. Treatment of neurons with HIV-1 Tat for 1 or 2 days 

increased significantly protein levels of the endolysosome enzymes acid 

phosphatase (Figure 14A, p < 0.01 at 1 day and p < 0.05 at 2 days), cathepsin B 

(Figure 14C, p < 0.05), and cathepsin D (Figure 14E, p < 0.01 at 1 day and p < 

0.05 at 2 days). However, specific activity levels of acid phosphatase (Figure 

14B), cathepsin B (Figure 14D), and cathepsin D (Figure 14F) were decreased 

significantly (p < 0.001) in HIV-1 Tat treated cultures. 
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Figure 13. HIV-1 Tat Elevated Endolysosome pH in Primary Cultured Neurons. 
Endolysosome pH was measured ratio-metrically using LysoSensor dye. HIV-1 
Tat (100 nM) treatment for 1 and 2 days elevated significantly endolysosome pH.  
p < 0.001. 
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Figure 14. HIV-1 Tat Altered the Expression and Activity of Endolysosome 
Enzymes. (A. C. E) HIV-1 Tat (100 nM) increased protein levels of acid 
phosphatase (ACP), cathepsin B (Cat B), and cathepsin D (Cat D). 
Representative western blots and quantitative data from each of the enzymes 
were shown. Actin was used as a loading control. p < 0.05; p < 0.01. (B. D. F) 
HIV-1 Tat (100 nM) decreased significantly specific enzyme activity of acid 
phosphatase, cathepsin B, and cathepsin D. p < 0.01; p < 0.001. 
 

Endolysosome dysfunction has been implicated in initiating stress 

pathways that lead to cellular dysfunction and death (Guicciardi et al., 2004; 

Kroemer and Jaattela, 2005; Kurz et al., 2008; Roberg and Ollinger, 1998; Turk 

et al., 2002). Here, we determined the extent to which HIV-1 Tat affected 

endolysosome membrane integrity using Lucifer Yellow dye (Yang et al., 1998). 
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We found that while control neurons displayed a discrete punctuated pattern of 

perinuclear fluorescent staining (Figure 15, left), HIV-1 Tat-treated neurons 

displayed an increased endolysosome membrane leakage as evidenced by 

diffuse fluorescent staining (Figure 15, right) in the cytoplasm.    

 

  

Figure 15. HIV-1 Tat Disrupted Endolysosome Membrane Integrity. 
Endolysosome membrane integrity was evaluated by measuring the leakage of 
Lucifer Yellow dye. Control neurons displayed a discrete punctuated fluorescent 
staining pattern in perinuclear regions with no fluorescence in cytoplasm (left 
panel), whereas neurons treated with HIV-1 Tat for 1 day displayed 
endolysosome membrane leakage as indicated by diffusion of fluorescence into 
cytoplasm (right panel), bar =10 µm. 
 

Endolysosomes also function to control autophagy, a process important 

for normal physiological functions of neurons. Dysfunctions in autophagy have 

been implicated in the pathogenesis of a variety of neurodegenerative disorders 
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(Wong and Cuervo, 2010) including HAND (Alirezaei et al., 2008a; Alirezaei et 

al., 2008b; Spector and Zhou, 2008; Zhou et al., 2011; Zhou and Spector, 2008; 

Zhu et al., 2009). Based on findings that HIV-1 Tat disrupts autophagy in immune 

cells (Van Grol et al., 2010), we determined the extent to which HIV-1 Tat 

affected autophagy in primary cultured hippocampal neurons. Three markers for 

the formation of autophagosomes were used to evaluate the status of autophagy; 

microtubule-associated protein 1 light chain 3 (LC3) that regulates the initiation of 

autophagosomes, autophagy related gene-5 (Atg5) that regulates the elongation 

of autophagosomes, and P62 that inhibits the formation of autophagosomes. We 

found that HIV-1 Tat treatment decreased significantly protein levels of LC3 

(Figure 16A, p < 0.05 at 2 day treatment) and Atg5 (Figure 16B, p < 0.05 at 1day 

and p < 0.01 at 2 day treatment), but increased significantly protein levels of P62 

(Figure 16C, p < 0.05 at 1 and 2 day treatment).  

 

 

Figure 16. HIV-1 Tat Inhibited Macroautophagy. The formation of 
autophagosomes was estimated by measuring protein levels of LC3, Atg5, and 
p62.  (A) HIV-1 Tat (100 nM) decreased significantly protein levels of LC3. p < 
0.05.  (B) HIV-1 Tat (100 nM) reduced significantly protein levels of Atg5. p < 
0.05; p < 0.01.  (C) HIV-1 Tat (100 nM) increased significantly protein levels of 
P62. Representative western blots and quantitative data from each of proteins 
were shown and actin was used as a loading control. p < 0.05. 
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Recently, increased amyloid beta (Aβ) deposition has been observed in 

aged HIV-1 infected individuals. Although the underlying mechanisms remains 

unclear, HIV-1 Tat, especially Tat1-86, has been shown to increase neuronal Aβ 

generation (Aksenov et al., 2010; Giunta et al., 2009; Rempel and Pulliam, 

2005). Here, we determined the extent to which a shorter form of Tat, Tat1-72, 

affects Aβ generation in primary cultured neurons. Using an ELISA method, we 

demonstrated that HIV-1 Tat1-72 treatment at the concentration of 100 nM for 2 

days increased significantly levels of both Aβ1-40 and Aβ1-42 (Figure 17 A,B), but 

treatment with HIV-1 Tat1-72 for 1 day did not increase neuronal Aβ generation 

(Figure 17A,B). 

 

Figure 17. HIV-1 Tat Increased Neuronal Amyloid Beta Generation. (A) HIV-1 
Tat1-72 treatment (100 nM) for 2 days increased significantly levels of Aβ1-40, 
when compared with control groups (n=5; p < 0.001). (B) HIV-1 Tat1-72 treatment 
(100 nM) for 2 days increased significantly levels of Aβ1-42, when compared with 
control groups (n=5; p < 0.001).  
 

Aβ is the result of proteolytic processing of its precursor protein AβPP by 

β-secretase and γ-secretase, and it is known that Aβ is produced mainly in the 

endolysosome system. Importantly, it is shown that there is increased 
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intraneuronal Aβ production, especially in endolysosomes, in HIV-1 infected 

individuals (Achim et al., 2009). Thus, we determined the extent to which HIV-1 

Tat affected endolysosome accumulation of AβPP and Aβ in primary cultured 

neurons with double fluorescent staining. We found that there was some 

accumulation of AβPP (Figure 18A) and Aβ as identified with 4G8 antibodies 

(Figure 18C) in neuronal endosomes as identified with EEA1 antibodies, and 

there was no accumulation of either AβPP (Figure 18B) or Aβ (Figure 18D) in 

neuronal lysosomes as identified with LAMP-1 antibodies. However, HIV-1 Tat1-72 

(100 nM) treatment for 2 day increased dramatically endosome and lysosome 

accumulation of both AβPP and Aβ (Figure 18).  

 

Figure 18. HIV-1 Tat Increased Endolysosome Accumulation of AβPP and 
Amyloid Beta. (A) Although there was some extent co-localization of AβPP with 
endosomes (EEA1) in control neurons, HIV-1 Tat1-72 treatment (100 nM) for 2 
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days increased markedly the co-colocalization of AβPP with endosomes (EEA1). 
Bar = 10 µm. (B) There was little co-localization of AβPP with lysosomes 
(LAMP1) in control neurons, but HIV-1 Tat1-72 treatment (100 nM) for 2 days 
increased markedly the co-colocalization of AβPP with lysosomes (LAMP1). Bar 
= 10 µm.  (C) Although there was some extent co-localization of Aβ (4G8) with 
endosomes (EEA1) in control neurons, HIV-1 Tat1-72 treatment (100 nM) for 2 
days increased markedly the co-colocalization of AβPP with endosomes (EEA1). 
Bar = 10 µm.  (D) There was little co-localization of Aβ (4G8) with lysosomes 
(LAMP1) in control neurons, but HIV-1 Tat1-72 treatment (100 nM) for 2 days 
increased markedly the co-colocalization of AβPP with lysosomes (LAMP1). Bar 
= 10 µm.  
 

It is known that the rate-limiting enzyme in Aβ production, beta-site APP-

cleaving enzyme 1 (BACE-1), is present in endolysosomes and its activity is pH 

dependent (Rajendran et al., 2008; Shimizu et al., 2008; Vassar et al., 1999). 

Given our observations that HIV-1 Tat altered the structure of endolysosomes 

and elevates endolysosome pH, it is likely that HIV-1 Tat increases Aβ 

production by affecting BACE-1. Accordingly, we determined the extent to which 

HIV-1 Tat treatment affected levels of expression, enzyme activity, and 

intracellular distribution of BACE-1 in primary cultured neurons. We found that 

HIV-1 Tat treatment increased protein levels of BACE-1 (Figure 19A), and 

enhanced significantly enzyme activity of BACE-1 (Figure 19B). When analyzing 

the intracellular distribution of BACE-1, we found that there were some levels of 

accumulation of BACE-1 in endosomes as identified with EEA1 antibodies, but 

no accumulation BACE-1 in lysosomes as identified with LAMP1 antibody in 

control neurons. However, HIV-1 Tat treatment for 2 days increased markedly 

accumulation of BACE-1 in both endosomes (Figure 19C) and lysosomes (Figure 

19D). 
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Figure 19. HIV-1 Tat Increased Endolysosome Accumulation of Beta Amyloid 
Cleavage Enzyme 1 and Enhanced Beta Amyloid Cleavage Enzyme 1 Activity. 
(A) HIV-1 Tat1-72 treatment (100 nM) for 2 days increased significantly protein 
levels of BACE-1. (n=6, p<0.05).  (B) HIV-1 Tat1-72 treatment (100 nM) for 2 days 
increased significantly specific activity of BACE-1. (n=8; p<0.001). (C) There was 
some extent co-localization of BACE-1 with endosomes (EEA1) in control 
neurons, and HIV-1 Tat1-72 treatment (100 nM) for 2 days increased markedly the 
co-colocalization of BACE-1 with endosomes (EEA1). Bar = 10 µm. (D) There 
was little co-localization of BACE-1 with lysosomes (LAMP1) in control neurons, 
but HIV-1 Tat1-72 treatment (100 nM) for 2 days increased markedly the co-
colocalization of BACE-1 with lysosomes (LAMP1). Bar = 10 µm. 
 

5.4. Discussion 

 

Combined highly active antiretroviral therapeutic drugs have increased 

dramatically the length of time people are now living with AIDS. However, this 

increased life span is accompanied by increased prevalence of HAND that 

ranges up to 50% of people with HIV-1 infection (Ellis et al., 2010; Heaton et al., 
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2010). The underlying mechanisms for HAND pathogenesis are not fully 

understood but one mechanism that appears to be important yet relatively 

understudied is the involvement of endolysosomes. Disturbed endolysosomes 

have been noted in brains of HIV-1 infected individuals (Gelman et al., 2005; 

Spector and Zhou, 2008; Zhou and Spector, 2008), but the mechanisms for 

these pathological observations are not known. Because neurons are long-lived 

post-mitotic cells with extreme polarity they possess an elaborate endolysosome 

system containing hydrolases that degrade macromolecules, high concentrations 

of readily releasable calcium (Christensen et al., 2002; Moreno and Docampo, 

2009; Patel and Docampo, 2010), and high concentrations of potentially redox-

active iron (Brun and Brunk, 1970; Kidane et al., 2006). When dysfunctional, 

endolysosomes can contribute to altered calcium homeostasis (Korkotian et al., 

1999; Lloyd-Evans et al., 2008; Pelled et al., 2005) and increased oxidative 

stress (Pivtoraiko et al., 2009). Disruptions in endolysosome functions perturb 

numerous cellular functions and can ultimately result in the initiation of cell death 

pathways (Kroemer and Jaattela, 2005; Kurz et al., 2008). Therefore, it is 

potentially significant in terms of furthering our understanding of the 

pathogenesis of HAND that we found that HIV-1 Tat enlarged endolysosomes, 

elevated endolysosome pH, decreased specific activities of endolysosome 

enzymes, disrupted endolysosome membrane integrity, and inhibited autophagy; 

all of which occurred prior to significant increases in HIV-1 Tat-induced neuronal 

cell death. Thus, the altered structure and function of endolysosomes could 

underlie, at least in part, the pathogenesis of HAND. 
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HIV-1 Tat protein continues to be implicated in the pathogenesis of HAND, 

in part, because there is significant neuronal dysfunction even though neurons 

are not infected by HIV-1 virus (Merino et al., 2011; Nuovo et al., 1994). HIV-Tat 

has been shown to activate NMDA receptors (Eugenin et al., 2003; Haughey et 

al., 2001; Nath et al., 2000), alter calcium homeostasis (Bonavia et al., 2001; 

Haughey et al., 1999; Kruman et al., 1998), and increase oxidative stress 

(Aksenov et al., 2001; Kruman et al., 1998; Perry et al., 2005). HIV-1 Tat is 

actively secreted by infected glial cells and following binding to neuronal cell 

surface receptors it enters the endolysosome systems following receptor-

mediated endocytosis (Liu et al., 2000; Mann and Frankel, 1991). Although we 

did not determine the extent to which previously identified receptors mediate the 

endocytosis of HIV-1 Tat in neurons including CD26 (Gutheil et al., 1994), 

CXCR4 (Xiao et al., 2000), heparin sulfate proteoglycans (Tyagi et al., 2001), 

and the low density lipoprotein receptor-related protein (Deshmane et al., 2011; 

Liu et al., 2000) we did observe the presence of HIV-1 Tat in neuronal 

endolysosomes. 

Because HIV-1 Tat can accumulate in neuronal endolysosomes, the 

observed changes in the morphology and function of endolysosomes could result 

from directly disruptive effects of the HIV-1 Tat protein. Central to the observed 

changes might be the ability of HIV-1 Tat to elevate endolysosome pH. Although 

the underlying mechanisms are unknown, the arginine rich domain of HIV-1 Tat 

between amino acid residues 49 and 57 could be responsible for HIV-1 Tat 

induced elevation of endolysosome pH because a series of other arginine rich 
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peptides including penetratin, an amino acid domain from the Antennapedia 

protein (sequence 43-58) of Drosophila, a flock house virus coat peptide 

(sequence 35-49), and oligoarginines (R9) all have the ability to elevate 

endolysosome pH (unpublished observations). It has been shown that most of 

these arginine rich peptides have the ability to escape endolysosomes using the 

high proton gradient (Drin et al., 2003; Fischer et al., 2004; Henriques et al., 

2006; Magzoub et al., 2005; Potocky et al., 2003) and here we postulate that an 

unidentified proton-dependent peptide transporter might be present on 

endolysosome membranes. Such a peptide transporter could transport arginine 

rich peptides such as HIV-1 Tat using the arginine rich domain as a signal, and 

during the transporting process protons leak out and endolysosome pH is 

elevated.  Low pH is important for the degradation of internalized materials, the 

trafficking and fusion of endolysosomes, and the formation of autophagosomes 

(Marshansky and Futai, 2008; Ravikumar et al., 2010; Williamson et al., 2010). 

Therefore, the elevation of endolysosome pH that we observed could result in 

alterations in the digestive capability of endolysosomes as evidenced by 

decreased specific activity of three different endolysosome enzymes, increased 

accumulation of internalized material thus altering the structure and size of 

endolysosomes, and inhibition of autophagy thereby exaggerating neuronal injury 

and degeneration (Wong and Cuervo, 2010). There exists three types of 

autophagy in cells; macroautophagy, microautophagy and chaperon-mediated 

autophagy. As the best-studied type of autophagy, macroautophagy includes 

three stages including autophagosome membrane origination, autophagosome 
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formation, and autolysosome formation. Accordingly, we focused our studies of 

the effects of HIV-1 Tat on macroautophagy using three markers; LC3 that 

mediates the initiation of (Winslow and Rubinsztein, 2008), Atg5 that drives the 

elongation of (Mizushima, 2007), and p62 that inhibits the formation of 

autophagosomes (Bjorkoy et al., 2005; Ichimura and Komatsu, 2010; Pankiv et 

al., 2007). Thus, future experiments are needed to address the extent to which 

HIV-1 Tat affects other stages of macroautophagy as well as other subtypes of 

autophagy.   

It is still unclear how HIV-1 Tat elevates endolysosome pH. One possibility 

is that HIV-1 Tat increases pH by directly disrupting the membrane integrity of 

endolysosomes and this hypothesis is consistent with our present observations 

of increased leakage of Lucifer Yellow dye into cytosol. Consistent with these 

findings are previous reports that low pH induces the exposure of a very 

conserved tryptophan residue and allows the insertion of HIV-1 Tat into 

endolysosome membranes (Yezid et al., 2009). Furthermore, disrupted 

endolysosome membrane integrity per se could lead to neuronal dysfunction and 

ultimately cell death because increased endolysosome membrane permeability 

occurs in several models of apoptosis (Guicciardi et al., 2004; Kroemer and 

Jaattela, 2005; Kurz et al., 2008; Roberg and Ollinger, 1998; Turk et al., 2002) 

and is an early event in the apoptotic cascade that precedes destabilization of 

mitochondria and caspase activation (Kroemer and Jaattela, 2005; Kurz et al., 

2008).  
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Increased life span of HIV-1 infected individuals is accompanied by 

increased prevalence of HAND (Ellis et al., 2010; Heaton et al., 2010) and 

increased incidence of AD-like pathology, such as increased neuronal Aβ 

deposition (Achim et al., 2009). Recent studies indicate that one of the viral 

proteins, HIV-1 Tat, which has continued to be implicated in the pathogenesis of 

HAND (Merino et al., 2011; Nath et al., 1996; Nuovo et al., 1994), also 

contributes to increased neuronal Aβ generation (Aksenov et al., 2010; Giunta et 

al., 2009; Rempel and Pulliam, 2005). However, the underlying mechanisms 

remain unclear. The principle finding of the present study is that HIV-1 Tat-

induced incretion in neuronal Aβ generation is accompanied by altered 

endolysosome structure and function, increased endolysosome accumulation of 

AβPP, Aβ and BACE-1, and enhanced BACE-1 activity. Our findings suggest 

that HIV-1 Tat-induced endolysosome dysfunction underlies the development of 

AD-like pathology in HIV-1 infected individuals. 

It is well known that ones of the earliest pathological features of AD are 

altered morphological and functional features of endolysosomes (Boland et al., 

2008; Tate and Mathews, 2006), as evidenced by the findings that endosome 

enlargement was apparent in brains of AD patients and non-demented patients 

with early signs of AD, in Down’s syndrome individuals, and in patients bearing 

the ApoE4 allele (Arriagada et al., 2007; Cataldo et al., 2004), and that 

endosome enlargement largely precedes extracellular deposition of Aβ in brain 

(Cataldo et al., 2000). Recent studies also suggest strongly that pathological 

changes in endolysosomes contribute to Aβ production, a pathological hallmark 
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of AD, as evidenced by the following findings; AβPP and its cleavage products 

are present in clathrin-coated vesicles that are part of the endocytic pathway 

(Ferreira et al., 1993; Harris and Milton, 2010). Aβ production is decreased in 

cultured cells that were stably transfected with an AβPP construct where the C-

terminal endocytic targeting signal was removed (Perez et al., 1999; Soriano et 

al., 1999); Aβ production is decreased in cells transfected with dominant negative 

dynamin, which prevents endocytosis (Chyung and Selkoe, 2003); BACE-1, a 

key enzyme for amyloidogenesis, is localized in endosomes and its activity is pH 

dependent (Rajendran et al., 2008; Shimizu et al., 2008; Vassar et al., 1999); Aβ 

is accumulated in endolysosomes of neurons from AD brain (Cataldo et al., 

2004).  

Disturbed endolysosomes have been noted in brain of HIV-1 infected 

individuals (Gelman et al., 2005; Spector and Zhou, 2008; Zhou and Spector, 

2008), and a recent finding that increased Aβ accumulation in neuronal 

endolysosomes in HIV-1 infected individuals (Achim et al., 2009) suggest that 

endolysosome dysfunction contributes to increased Aβ generation in HIV-1 

infected patients. Consistent with this notion, we demonstrated that HIV-1 Tat 

disturbed endolysosome structure and function, promoted neuronal Aβ 

production, and increased endolysosome accumulation of both AβPP and Aβ. 

Although detailed molecular underlying mechanisms were not explicitly explored, 

we propose that HIV-1 Tat increased neuronal Aβ generation in two-ways. First, 

HIV-1 Tat promotes AβPP internalization. As mentioned earlier, HIV-1 Tat enters 

neuron endolysosomes via receptor-mediated endocytosis with the assistance of 
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LRP-1 (Deshmane et al., 2011; Liu et al., 2000) and it is known that LRP-1 

interacts directly with AβPP (Klug et al., 2011; Waldron et al., 2008; Waldron et 

al., 2006). Thus, the binding of HIV-1 Tat with LRP-1 and subsequent receptor-

mediated endocytosis promotes AβPP internalization. Our observation that HIV-1 

Tat increases endolysosome accumulation of AβPP seems to support this 

premise. Second, BACE-1, the rate limiting enzyme in the production of Aβ, is 

present in endosomes and its activity is pH-dependent with an optimal pH around 

5 (Rajendran et al., 2008; Shimizu et al., 2008; Vassar et al., 1999), the observed 

elevation of endolysosome pH could be responsible for enhanced BACE-1 

enzyme activity and increased Aβ production. In addition, BACE-1 is degraded in 

lysosomes under more acidic conditions (pH < 4) (Koh et al., 2005). Thus, the 

observed elevation of endolysosome pH could lead to decreased degradation of 

BACE-1 and increased accumulation of BACE-1 in endolysosomes, which also 

results in increased Aβ production. In addition, our observations that HIV-1 Tat-

induced endolysosome dysfunction occurs prior to increased Aβ production 

suggest that HIV-1 Tat disrupts endolysosome function and subsequently affects 

Aβ production (Jin et al., 2004). Collectively, elevated endolyosome pH could 

contribute to HIV-1 Tat-induced increases in neuronal Aβ generation. 

In summary, our finding that HIV-1 Tat disturbed the structure and function 

of endolysosomes in primary cultured neurons prior to any significant increase in 

HIV-1 Tat-induced neurotoxicity suggests that the effects of HIV-1 Tat on 

endolysosomes may cause considerable neuronal dysfunction. Furthermore, we 

demonstrated that HIV-1 Tat enhanced production of Aβ, increased 
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endolysosome accumulation of AβPP, Aβ and BACE-1, and enhanced BACE-1 

activity in primary cultured hippocampal neurons. Such findings suggest strongly 

that altered structure and function of endolysosomes plays an important role in 

HIV-1 Tat-induced neuronal Aβ generation and contribute directly to the 

development of AD-like pathology in HIV-1 infected individuals. 

Further elucidation of the involvement of endolysosomes in HAND might 

lead to the design of novel therapeutic agents capable of blocking HIV-1 Tat 

endocytosis and improving endolysosome function. 

 

 

Figure 20. Model Summarizing Involvement of Endolysosomes in HIV-1 Tat-
Induced Toxicity and Amyloid Beta Generation in Primary Cultured Neurons. 
Prior to statistically significant changes in HIV-1 Tat-induced neuronal cell death 
(48 hours), as early as 24 hours after HIV-1 Tat treatment, HIV-1 Tat 
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accumulates in endolysosomes, increases endolysosome sizes, raises 
endolysosome pH, decreases specific activities of endolysosome enzymes, 
disruptes endolysosome membrane integrity and inhibits the formation of 
autophagosomes. In addition, following endolysosome dysfunction, HIV-1 Tat 
elevates Aβ generation, increases endolysosome accumulation of AβPP, Aβ and 
BACE-1 and enhances BACE-1 activity. 
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CHAPTER VI 

ACIDIC STORE-OPERATED CALCIUM ENTRY IN PRIMARY CULTURED 
NEURONS 

 

6.1. Introduction 

 

Calcium is a highly versatile intracellular signaling molecule that plays a 

pivotal role in regulating the physiology and biochemistry of cells (Berridge, 1998; 

Berridge et al., 2000). In the central nervous system, calcium is essential for 

neurotransmitter release, neuronal excitability, synaptic plasticity and neuronal 

viability (Berridge, 1998; Berridge et al., 2003). Calcium signals are tightly 

regulated temporally and spatially through a coordinated interplay between 

calcium release from the intracellular stores and calcium influx across the plasma 

membrane. One such coordinated interplay is store-operated calcium entry 

(SOCE), in which depleting calcium in endoplasmic reticulum (ER) activates 

store-operated channels and triggers calcium entry from extracellular space. The 

machinery of SOCE remained unidentified for many years until the disclosure of 

two pivotal molecular components of SOCE following recent RNAi screening 

studies. STIM (stromal interacting molecule) functions as calcium sensor in the 

ER (Liou et al., 2005; Roos et al., 2005), and Orai proteins comprise the CRAC 

channel pore forming subunit (Prakriya et al., 2006; Vig et al., 2006; Zhang et al., 

2006b). Depletion of ER calcium results in STIM oligomerization and
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translocation to ER junctions close to the plasma membrane, and this STIM 

translocation induces Orai channels and/or TRP channels to cluster in the 

adjacent plasma membrane and allow calcium entry (Cahalan, 2009; Deng et al., 

2009; Putney, 2009; Wang et al., 2009a). 

Over the last 15 years, endolysosome compartments have been 

recognized as intracellular calcium stores that contain readily releasable pools of 

calcium. Because of the low pH in their lumen, these endolysosome calcium 

stores are often referred to as “acidic calcium stores”. Acidic calcium stores have 

a high concentration of calcium ranging from 400 - 600 µM (Christensen et al., 

2002). This high concentration of calcium is maintained by the pH gradient 

across these acidic organelles, where vacuolar H+-ATPase pumps H+ into the 

lumen and drives Ca2+ uptake by Ca2+/H+ exchanger (Moreno and Docampo, 

2009; Patel and Docampo, 2010). Like other intracellular calcium stores, calcium 

within acidic calcium stores is readily releasable. Nicotinic acid adenine 

dinucleotide phosphate (NAADP) is able to mobilize calcium release specifically 

from acidic calcium stores in a variety of cell types including neurons (Brailoiu et 

al., 2009b; Churchill et al., 2002; Pandey et al., 2009; Pitt et al., 2010; Thai et al., 

2009; Tugba Durlu-Kandilci et al., 2010; Zhang et al., 2006a). Subsequent 

studies demonstrated that two pore channels (TPCs) and possible members of 

the TRP channel family like TRPM2 mediate NAADP-evoked calcium release 

from acidic calcium stores (Brailoiu et al., 2009a; Brailoiu et al., 2009b; Calcraft 

et al., 2009; Lange et al., 2009; Ruas et al., 2010; Schieder et al., 2010; Zhang et 

al., 2009; Zhu et al., 2010; Zong et al., 2009). In addition to NAADP, elevation of 
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endolysosome pH with a selective vacuolar H+-ATPase inhibitor bafilomycin or 

alkaline lysosomotrophic agents like NH4Cl can also induce calcium release from 

acidic calcium stores (Camacho et al., 2008; Christensen et al., 2002; Machado 

et al., 2009), and TRPM2 channels might be responsible for calcium release from 

acidic stores induced by elevation of endolysosome pH (Starkus et al., 2010).  

Because NAADP has been shown to elevate luminal pH of acidic calcium stores 

(Morgan and Galione, 2007a; Morgan and Galione, 2007b), it is possible that 

NAADP could also induce calcium release from acidic calcium stores, in part, by 

elevating endolysosome pH. 

Calcium released from acidic calcium stores appears to be relatively small 

and highly localized. However, given the dynamic properties of these acidic 

calcium stores, the released calcium from acidic stores could result in complex 

communications with other intracellular calcium stores and plasma membranes. 

Currently, three models of acidic calcium store-induced calcium signaling 

mechanisms have been implicated. First, acidic calcium stores have the ability to 

communicate with ER calcium stores. In many types of cells, localized calcium 

release from acidic stores can trigger larger calcium release from ER (Calcraft et 

al., 2009; Cancela et al., 1999; Macgregor et al., 2007). Calcium released from 

acidic stores might enhance calcium loading of ER (Macgregor et al., 2007) 

and/or trigger calcium-induced calcium release from ER (Calcraft et al., 2009; 

Ruas et al., 2010). Second, locally released calcium from a subgroup of acidic 

calcium stores could communicate with other acidic calcium stores. Regulation of 

local cytoplasmic calcium and luminal calcium and/or pH of endolysosome 
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compartments can affect vesicular fusion of late endosomes and lysosomes 

(Galione et al., 2009; Ruas et al., 2010). Third, acidic calcium stores have the 

ability to communicate with plasma membrane calcium channels. In many types 

of cells including neurons, calcium released from acidic calcium stores 

depolarizes plasma membrane, evokes calcium-dependent currents, and 

stimulates calcium influx across the plasma membrane (Beck et al., 2006; 

Brailoiu et al., 2009b; Galione, 2011; Moccia et al., 2006a; Moccia et al., 2003; 

Moccia et al., 2006b; Naylor et al., 2009; Santella et al., 2000). To date, little is 

known about how acidic calcium stores communicate with plasma membrane 

calcium channels, and understanding such underlying mechanisms is the main 

objective of this aspect of our research work. 

We demonstrated, in primary cultured neurons, that calcium released from 

acidic calcium stores induced by either selective inhibition of vacuolar H+-ATPase 

with bafilomycin or selective disruption of endolysosome membranes with GPN 

triggered calcium influx across the plasma membrane; a phenomenon we termed 

‘acidic store-operated calcium entry (aSOCE)’. Further studies indicated that 

lysosome exocytotic insertion of N-type calcium channels into the plasma 

membrane was responsible for aSOCE. 

 

6.2. Methods 

 

6.2.1. Primary neuronal culture: Details were described in Chapter 5.2.1. 
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 6.2.2. Intracellular calcium concentration measurement: Intracellular Ca2+ 

was determined using the Ca2+-specific fluorescent probe fura-2/AM (Invitrogen) 

as described previously (Haughey et al., 1999). Neurons were incubated with 2 

µM fura-2/AM for 40 min at 37°C, washed with different calcium buffers (as listed 

below) to remove extracellular fura-2, and incubated at 37°C for another 10 min 

to allow complete de-esterfication of fura-2. Neurons were excited at 340 and 

380 nm, and emission was recorded at 510 nm with our filter-based calcium 

imaging system (Zeiss, Germany). Images were acquired every 2 s and at this 

acquisition rate we were able to measure baseline as well as peak increases in 

levels of free intracellular calcium. The ratio of F340/F380 was used as a 

measurement of intracellular calcium levels. Locke’s buffer contained 154 mM 

NaCl, 3.6 mM NaHCO3, 5.6 mM KCl, 2.3 mM CaCl2, 1 mM MgCl2, 5 mM HEPES 

and 10 mM D-glucose, pH=7.4. Calcium free buffer contained 145 mM NaCl, 5 

mM KCl, 1 mM MgCl2, 10 mM glucose, 0.2 mM EGTA and 10 mM HEPES, 

pH=7.4. Nominally calcium-free buffer contained 154 mM NaCl, 3.6 mM 

NaHCO3, 5.6 mM KCl, 1 mM MgCl2, 5 mM HEPES and 10 mM D-glucose, 

pH=7.4.  

6.2.3. Surface immunostaining: Treated neurons as required were 

incubated with primary antibodies (30 min, 4 °C) including anti-Cav2.2 (N-type 

VOCC) (1:100, rabbit polyclonal, Millipore) or anti-LAMP1 (1:100, rabbit 

polyclonal, Sigma) primary antibodies, washed with PBS twice, fixed with 

paraformaldehyde (4%, 5 min), and incubated for 40 minutes with fluorescently 

labeled Alexa 546-conjugated goat anti-rabbit secondary antibody (Invitrogen) at 
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room temperature in the absence of ambient light. Images were taken under a 

confocal microscopy (Olympus). 

6.2.4. Biotinylation of neuronal surface proteins: Biotinylation of neuronal 

surface proteins was conducted using methods described before (Cayouette et 

al., 2004) with slight modification. Briefly, primary cultured neurons grown in 60-

mm dishes were washed with nominal calcium buffer 3 times and treated with 

bafilomycin (100 nM), GPN (2 pM) or thapsigargin (2 µM) for 10 min with DMSO 

treatment serving as the control. Following the treatments, CaCl2 at a final 

concentration of 1 mM was added. 10 min later, neurons were incubated with 

Sulfo-NHS-SS-Biotin (0.5 mg/ml, 4°C, 30 min, Pierce) and washed with a 

quenching buffer (20 mM Tris and 120 mM NaCl, pH=7.4) for 3 times to remove 

un-reacted biotin. After washing with ice-cold PBS twice, neurons were lysed with 

200 µl RIPA buffer containing proteinase inhibitor cocktail (Sigma) followed by 

sonication. After centrifugation (100,000×g for 2 min), supernatants were 

collected, and protein concentrations were determined with a DC protein assay 

(BioRad). Equal amounts of protein were transferred to new sets of tubes, and 

100 µl streptavidin-agarose beads (Pierce) were added and incubated for 16 

hours at 4°C. The biotin-streptavidin-agarose complexes were washed with RIPA 

buffer 5 times and collected by centrifugation (14,000×g, 30 sec, 4°C). The 

biotin-streptavidin-agarose complexes were suspended in 1x Laemmli buffer 

(containing 50 mM DTT and 5% beta-mecapthoethonal) and heated at 95°C for 5 

min before being taken for analysis with immunoblotting. 
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6.2.5. Immunoprecipitation: Neurons were lysed with 200 µl of ice-cold 

RIPA buffer containing proteinase inhibitors (Sigma). After centrifugation (14,000 

× g for 10 min at 4°C), supernatants were collected, and protein concentrations 

were determined with a DC protein assay (Bio-Rad). After pre-clearing with 

protein A/G, protein samples (400 µg) were incubated (4°C overnight) with 5 µl of 

antibodies against target proteins including anti-Cav2.2 (N-type VOCC, mouse 

monoclonal, Santa Cruz) or anti-LAMP1 (rabbit polyclonal, Sigma) with irrelevant 

antibodies serving as controls. The immune complexes were incubated (4°C, 4 

hours) with 100 µl of protein A/G (Santa Cruz) while being rotated on a belly 

dancer platform. The immunoprecipitated complexes were washed with RIPA 

buffer 4 times, collected by centrifugation at 14,000 × g for 30 sec at 4°C, 

resuspended in 120 µl 1x Laemmli buffer containing 50 mM DTT and 5% beta-

ME, and heated at 95°C for 10 min before being analyzed with immunoblotting.  

6.2.6. siRNA Transfection: Targeted proteins were knocked down with 

specific siRNAs at a final concentration of 60 nM (invitrogen); negative control 

siRNAs (Invitrogen) were used as controls. Before siRNA transfection, fresh 

neuronal culture media was added to 60 mm dishes 10 days after plating. The 

transfection cocktail containing 300 µl of transfection buffer (SignaGen), 12 µl of 

siRNA stock (15 µM) for each target protein, and 9 µl of GenMuteTM reagent was 

added drop wise to each dish. After incubation in a CO2 incubator for 5 hours, the 

transfection media was replaced with fresh neurobasal media and cells were 

incubated for 48 hours before further experiments. Knockdown efficiency for 

each targeted protein was measured by immunobloting.   
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6.2.7. Immunoblotting: Details were described in Chapter 5.2.5. Equal 

amounts of proteins (10 µg) or equal volumes of samples (15 µl, for biotinylated 

or immunoprecipitated protein sample) were separated by sodium dodecyl 

sulfatepolyacrylamide gel electrophoresis (SDS-PAGE). The primary antibodies 

used were anti-Cav2.2 (1: 200, rabbit polyclonal, Millipore), anti-Cav2.2 (1:500, 

mouse monoclonal, Santa Cruz), anti-LAMP1 (1:1000, rabbit polyclonal, Sigma), 

anti-Na+/K+ ATPase (1:1000, mouse monoclonal, Millipore), and anti-β-actin 

(1:10000, mouse monoclonal, Abcam). Secondary antibodies used were HRP-

conjugated goat anti-rabbit IgG (1:2,000) and HRP-conjugated goat anti-mouse 

IgG (1:2000).  

6.2.8. Statistics: Details were described in Chapter 5.2.9. 

 

6.3. Results 

 

Endolysosomes are acidic calcium stores that contain high concentrations 

of readily releasable calcium. These stores can be induced to release calcium by 

inhibition of vacuolar H+-ATPase with bafilomycin (BAF) or selective disruption of 

endolysosome membranes with Gly-Phe-β-naphtylamide (GPN) (Lopez et al., 

2005; Ramos et al.; Singaravelu and Deitmer, 2006). However, it is only recently 

appreciated that acidic calcium stores contribute to neuronal calcium signaling 

(Dickinson et al., 2010; Haas et al., 2009; Pandey et al., 2009). Here, we 

determined the extent to which BAF and GPN induced the release of calcium 

from endolysosomes in primary cultured neurons. First, we determined the 
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involvement of the ER calcium stores in BAF- and GPN- induced calcium 

release. Under calcium free conditions (zero calcium plus 10 mM EGTA), 

thapsigargin, a selective SERCA inhibitor that depletes ER calcium stores, 

induced a rise in intracellular calcium (Figure 21). After calcium levels returned 

towards baseline levels, both BAF (Figure 21A) and GPN (Figure 21B) were still 

able to induce a transient rise in intracellular calcium levels. Additionally, we 

determined the involvement of mitochondria in BAF- and GPN- induced calcium 

release. We found that after depleting calcium in mitochondria with a 

mitochondria calcium pump inhibitor CCCP, BAF and GPN were still able to 

induce a rise in intracellular calcium levels (data not shown). These observations 

indicate that BAF and GPN induced calcium release is independent of calcium 

stores in ER and mitochondria. 

 

Figure 21. Endolysosomes Contributed to Homeostatic Control of Intracellular 
Calcium Levels. (A) Under calcium free conditions (zero calcium plus 10 mM 
EGTA), bafilomycin (BAF, 100 nM) released calcium from endolysosome (Lys) 
compartments after depleting the ER calcium store with a selective SERCA 
inhibitor thapsigargin (Tg 2 µM). (B) Under calcium free conditions (zero calcium 
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plus 10 mM EGTA), GPN (2 pM) released calcium from endolysosome (Lys) 
compartments after depleting the ER calcium store with thapsigargin (Tg, 2 µM). 
 
 

Previously, NAADP that could induce calcium released from acidic stores 

was also found to activate cell surface calcium channels to stimulate calcium 

influx in neurons as well as other types of cells (Beck et al., 2006; Brailoiu et al., 

2009b; Galione, 2011; Moccia et al., 2006a; Moccia et al., 2003; Moccia et al., 

2006b; Naylor et al., 2009; Santella et al., 2000). Here, we examined the extent 

to which BAF and GPN induced calcium influx. Under calcium free conditions, 

both BAF and GPN induced a small transient rise in levels of intracellular calcium 

(Figure 22, grey lines). However, in the presence of extracellular calcium, both 

BAF and GPN dramatically increased levels of free intracellular calcium (Figure 

22, black lines). These observations indicate that BAF and GPN not only release 

calcium from acidic stores, but also trigger calcium influx across the plasma 

membrane. 

 

Figure 22. BAF and GPN Affected Influx of Extracellular Calcium. (A) Under 
calcium free conditions (zero calcium plus 10 mM EGTA), 100 nM bafilomycin 
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(BAF) induced a small and transient rise in levels of intracellular calcium (grey 
line). By contrast, in the presence of extracellular calcium, BAF markedly 
increased levels of intracellular calcium (black line). (B) Under calcium free 
conditions (zero calcium plus 10 mM EGTA), 2 pM GPN induced a small and 
transient rise in intracellular calcium (grey line). By contrast, in the presence of 
extracellular calcium, GPN markedly increased levels of intracellular calcium 
(black line). 
 

It is well known that depleting ER calcium stores with a selective SERCA 

inhibitor thapsigargin (Tg) triggers larger amounts of calcium influx across 

plasma membrane, a phenomenon termed store-operated calcium entry (SOCE). 

First we confirmed the functional presence of SOCE in our primary cultured 

neurons (Figure 23A). Next, using similar calcium-imaging techniques, we 

determined the extent to which BAF and GPN affected extracellular calcium 

influx. Under nominally calcium free conditions, BAF induced a small transient 

rise in levels of intracellular calcium. When calcium was re-added to the media, a 

much larger rise in levels of intracellular calcium was observed (Figure 23B), 

which indicated calcium influx across the plasma membrane. Moreover, a very 

similar profile of calcium entry was observed when endolysosome membranes 

were selectively disrupted with GPN (Figure 23C). Thus, both BAF and GPN 

induced a profile of calcium entry similar to Tg-induced store-operated calcium 

entry. Accordingly, we have termed this novel calcium influx mechanism as 

“acidic store-operated calcium entry (aSOCE)”. 
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Figure 23. Similar to Store-Operated Calcium Entry, Endolysosome Calcium  
Release Led to Increased Influx of Extracellular Calcium. (A) Under nominally 
calcium free conditions (no calcium and no EGTA), emptying ER calcium stores 
with 2 µM thapsigargin (Tg) induced a small and transient rise of intracellular 
calcium, which was followed by a large calcium influx as calcium was re-added to 
the medium. (B) Under nominally calcium free conditions (no calcium and no 
EGTA), calcium release from endolysosomes with a selective vacuolar H+-
ATPase inhibitor, BAF, induced a small and transient rise in levels of intracellular 
calcium, which was followed by a large calcium influx as calcium was re-added to 
the medium. (C) Under nominally calcium free conditions (no calcium and no 
EGTA), calcium released from endolysosomes with a lysosomotropic agent, 
GPN, induced a small and transient rise in levels of intracellular calcium, which 
was followed by a large calcium influx as calcium was re-added to the medium. 
 

To determine further the involvement of cell surface calcium channels in 

aSOCE, we pharmacologically blocked different calcium channels. We found that 

BAF-induced calcium entry was not blocked by the classic store-operated 

calcium entry inhibitors SKF-96365 or 2-APB, the L-type calcium channel 

inhibitor nimodipine, or the P/Q-type calcium channel inhibitor ω-agatoxin (Figure 

24A). However, a selective N-type calcium channel blocker ω-conotoxin 

attenuated significantly BAF-induced calcium entry (Figure 24A). Similar results 

were obtained with GPN-induced calcium entry; only the N-type calcium channel 

blocker ω-conotoxin attenuated significantly GPN-induced calcium entry (Figure 

24B). In contrast, blocking N-type calcium channels did not affect thapsigargin-
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induced calcium entry, which was attenuated by the classic store-operated 

calcium entry inhibitors including SKF-96365 and 2-APB (Figure 24C). Thus, our 

pharmacological data indicates that N-type calcium channels are involved in this 

novel acidic store-operated calcium entry. To confirm our pharmacological 

findings, we knocked down the expression of N-type calcium channels with a 

specific siRNA (Figure 24D) and found that when expression levels of N-type 

calcium channels were reduced, BAF- and GPN-induced calcium entry was 

significantly attenuated. However, Tg-induced calcium entry was not affected 

(Figure 24E). Together, our findings indicate that N-type calcium channels are 

responsible for acidic store-operated calcium entry in primary cultured neurons. 

 

Figure 24. N-Type Calcium Channels Mediated BAF- and GPN- Induced Calcium 
Influx. Neurons were pretreated with L-type calcium channel blockers 
(nimodipine 10 µM or verapamil 10 µM), P/Q-type calcium channel blocker (ω-
agatoxin 10 µM), N-type calcium channel blocker (ω-conotoxin 10 µM) or SOC 
blockers (2-APB 100 µM or SKF 50 µM) and then incubated with Fura-2/AM (2 
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µM, 37°C, 20 min), rinsed with nominal calcium buffer. Free intracellular calcium 
levels were measured under a filter based calcium-imaging system (Axiovert 200 
miciroscopy, Zeiss). After pretreatment, neurons were further treated with BAF, 
GPN or Tg and then CaCl2 (1 mM) was re-introduced. Free cytosolic calcium 
concentrations were measured as a ratio of 340/380. (A.B) Only the N-type 
calcium channel blocker, ω-conotoxin significantly attenuated BAF- or GPN-
induced calcium entry (n=15).  (C) In contrast, SOC channel blockers significantly 
attenuated Tg-induced calcium entry (SOCE) (n=18). p < 0.001.  (D) siRNA of 
NTCC (60 nM) significantly downregulated the expression of NTCC. p < 0.05.  
(E) siRNA of NTCC significantly reduced BAF- or GPN- but not Tg-induced 
calcium influx. p < 0.001. 
 

To determine further the mechanisms whereby BAF- and GPN- induced 

the entry of extracellular calcium via N-type calcium channels we conducted 

immunostaining studies for N-type calcium channels and LAMP1. Using a 

surface immunostaining method, we demonstrated that both BAF and GPN, but 

not thapsigargin, increased surface expression of N-type calcium channels and 

LAMP1 in primary cultured neurons (Figure 25A). Meanwhile, using a 

biotinylation of surface proteins assay, we demonstrated that both BAF and GPN 

increased the surface expression of N-type calcium channels and LAMP1 (Figure 

25B). Furthermore, using immunoprecipitation methods, we demonstrated that N-

type calcium channels physically interacted with LAMP1, and that BAF and GPN 

increased the interaction of N-type calcium channels with LAMP1 (Figure 26). It 

is known that LAMP1, a specific marker protein for lysosomes, is critical for 

lysosome exocytosis (Arantes and Andrews, 2006). Our observations that BAF 

and GPN increased the neuronal surface expression of LAMP1 indicated that 

calcium released from endolysosomes induced lysosome exocytosis. Given the 

physical interaction between N-type calcium channels and LAMP1, such a BAF- 

and GPN- induced lysosome exocytotic process results in exocytotic insertion of 
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N-type calcium channel into the plasma membrane, which underlies the novel 

aSOCE. Such a notion is consistent with several recent findings that lysosome 

exocytosis is able to insert calcium channels into plasma membrane 

(Gerasimenko et al., 2001; Schmidt et al., 2009; Smith et al., 2000; Tuck and 

Cavalli, 2010; Vogel, 2009).  To further confirm this notion, we knocked down the 

expression of LAMP1 with a specific siRNA (Figure 27A), and we found that 

siRNA knockdown of LAMP1 significantly attenuated BAF and GPN, but not 

thapsigargin, induced calcium entry (Figure 27B). 
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Figure 25. BAF and GPN Increased the Cell Surface Expression Levels of N-
Type Calcium Channels. In Addition, BAF and GPN Redistributed LAMP1 Into 
the Plasma Membranes. (A) Surface staining showed that 100 nM BAF or 2 pM 
GPN increased the surface expression of N-type calcium channels (NTCC) and 
relocated the lysosome marker (LAMP1) onto the plasma membrane. (B) 100 nM 
BAF or 2 pM GPN did not affect expression levels of NTCC and LAMP1 in whole 
cell lysates (lane 2 and 3 of lysates sample, left panel of blots data). However, 



	   104	  

BAF or GPN increased expression levels of N-type calcium channels (NTCC) 
and LAMP1 on the plasma membrane (p < 0.05), but 2 µM thapsigargin failed to 
affect the surface expression of both proteins (lane 2 and 3 of biotinylated 
samples, right panel of blots data). β-actin, a cytoskeletal marker, was used as a 
loading control for the whole cell lysates (lane1, left panel). Na+/K+ ATPase, a cell 
membrane marker, was used as a positive control of plasma membrane (lane1, 
right panel). Immunoblots of Na+/K+ ATPase and β-actin were obtained by 
reprobing the same immunoblotting membrane as that for NTCC and LAMP1 
with corresponding antibodies. Similar results were obtained from at least four 
repeated experiments. Quantification of immunbloting data of NTCC and LAMP1 
was obtained from biotinylated samples. 
 
 
 

 

Figure 26. LAMP1 Interacted Physically with N-Type Calcium Channels When 
Neurons were Treated with BAF or GPN but not Tg. (A) With BAF or GPN 
treatment, LAMP1 pulled down N-type calcium channel protein (NTCC) (top); 
Immunobloting data of NTCC from immunoprecipitation samples were quantified 
using a Gel-doc system (bottom). p < 0.05. (B) With BAF or GPN treatment, 
NTCC pulled down LAMP1 (top); Immunbloting data of LAMP1 from 
immunoprecipitation data were quantified using a Gel-doc system (bottom). p < 
0.05. 
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Figure 27. Involvement of LAMP1 in BAF- and GPN- Induced Calcium Influx. (A) 
siRNA of LAMP1 significantly reduced protein expression levels of LAMP1. p < 
0.05. (B) siRNA of LAMP1 significantly decreased BAF- or GPN- ,but not Tg- 
induced calcium influx. p < 0.01. 
 
 

6.4. Discussion 

 

Calcium is an indispensable second messenger responsible for integrating 

cell signaling in neurons. Free levels of intracellular calcium can translate 

extracellular stimuli into intracellular signaling events such as regulation of gene 

expression and neurotransmitter release from presynaptic axon terminals 

(Gleichmann and Mattson, 2011). Integration of the neuronal information is 

maintained by neuronal calcium homeostasis, which is precisely regulated by 

intracellular calcium stores and the plasma membrane (Verkhratsky and 
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Petersen, 1998). Among those long known intracellular calcium stores capable of 

shaping calcium signals, endolysosomes are less well characterized and their 

roles in calcium homeostasis are much less appreciated. However, current 

studies have suggested strongly that endolysosomes match several essential 

criteria for being considered significant calcium stores: endolysosomes contain 

higher concentrations of calcium (400-600 µM), endolysosomes mediate calcium 

uptake by proton gradients maintained by V-ATPase and/or H+/Ca2+ exchangers 

on their membranes; and endolysosomes regulate calcium release via two-pore 

channels (TPC) and possible TRPM channel (Lloyd-Evans et al., 2010). In our 

current study, we found that altering endolysosome pH with the inhibitor of V-

ATPase by BAF or lysis of endolysosome membrane by GPN induced transient 

increases in levels of intracellular calcium even after depleting calcium from ER 

and mitochondrial stores. These findings suggest that BAF or GPN can 

specifically induce neuronal endolysosome calcium release to cause transient 

calcium increases in [Ca2+]i. In contrast to the above pharmacological modulation 

of endolysosome calcium release, one intracellular second messenger, NAADP, 

has been found to discharge endolysosome calcium via TPC. Therefore, 

detection of the effect of NAADP on endolysosome calcium will be an attractive 

direction in the future. 

ER is so far the best-characterized intracellular calcium store. ER 

integrates its ability to accumulate and store calcium with extracellular calcium 

influx via a mechanism referred to as store operated calcium entry (SOCE) 

whereby emptying ER calcium stores leads to enhanced influx of extracellular 
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calcium. SOCE was first described in non-excitable cells and later in excitable 

cells including neurons, and it has been implicated into multiple physiological and 

pathological functions of neurons (Hoke et al., 2009; Selvaraj et al., 2009; Wu et 

al., 2004; Yao et al., 2009). Using calcium imaging techniques, we confirmed the 

presence of Tg-initiated SOCE in our cultured neurons. However, when we 

replaced Tg with BAF or GPN, we observed that calcium released from 

endolysosomes also promoted extracellular calcium influx in cultured neurons. 

Because this SOCE-like phenomenon occurred in endolysosomes, a group of 

acidic stores, we termed it as acidic store operated calcium entry (aSOCE). 

Several relevant questions might be answered to extend the current work. First, 

in contrast to SOCE that has been identified as a ubiquitous phenomenon in 

multiple cell types, this novel aSOCE has so far only been described in neurons 

and therefore it will be important to test its functional presence in other cell types. 

Second, it will be important to determine the role of aSOCE in various 

physiological and pathological states. Third, it will be important to determine the 

extent to which aSOCE is regulated by depleting calcium from acidic stores.  

The possible mechanisms underlying aSOCE are unclear at present. 

However, it is certainly possible that aSOCE shares similar modes of integrating 

calcium signal with SOCE. Currently, two major areas are focused on with 

SOCE; identifying the involved channels on the plasma membrane and the 

mechanisms that couple ER depletion to SOC channels’ opening. The cell 

surface channels identified belong mainly to the TRP family (Parekh and Putney, 

2005). However, the mechanisms by which the stores communicate with the 
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plasma membrane channels are more complicated. So far, several hypotheses 

have been proposed (Parekh and Putney, 2005). Reduction in ER calcium 

concentration generates a diffusible message that can open SOC in the plasma 

membrane. Components of ER physically contact with plasma membrane, and 

ER may move closely to the plasma membrane using actin as a binder. A ER 

sensor, STIM1, may interact with the calcium channel protein ORAI1 on the 

plasma membrane (Klejman et al., 2009). Store-operated channels do not 

appear to be present in the plasma membrane under basal conditions, but may 

insert into the plasma membrane following store depletion. Store operated 

channels may be in an inactivated state under basal conditions, while store 

depletion removes the inhibition by upregulating SERCA pump activity.  

Here, uncovering the mechanisms underlying aSOCE may start with 

answering the below questions. First, what kind of calcium channels might be 

involved in this acidic SOCE? Second, how is endolysosome calcium release 

connected with corresponding calcium influx? For the first question, we screened 

different voltage- and store- operated calcium channel blockers and our data 

demonstrated that N-type voltage operated calcium channels (VOCC) were 

involved in acidic store operated calcium entry. Meanwhile, our studies on gene 

knockdown of relevant calcium channels supported this result. Besides, we also 

observed that TRP channels mediated store operated calcium entry by using two 

blockers of TRP channels, which was consistent with previous findings in SOCE 

(Bennett et al., 1995; Berridge, 1995). These results suggested that aSOCE and 

SOCE both initiate calcium entry by discharging calcium from organelles, but 
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they might have distinctive mechanisms. Thus, endolysosome signaled calcium 

influx occurs through N-type calcium channels, whereas ER induced calcium 

entry happens via TRP channels. 

Several things need to be addressed in any future studies. Because N-

type calcium channels are mainly expressed in postsynaptic terminals and are 

functionally involved neurotransmitter release (Miller, 1990; Murakoshi and 

Tanabe, 1997), by driving more vesicles to be fused into plasma membrane the 

involvement of N-type VOCC in aSOCE might give us insights into the role of 

aSOCE in potential neuronal functions such as regulation of neurotransmitter 

release. Therefore, further studies are warranted to evaluate the role of aSOCE 

in neurotransmission and other possible neuronal functions. Furthermore, it is 

possible that either increased expression of voltage operated calcium channels 

or elevated activation of N-type VOCC could contribute to the increased calcium 

current. We have described the possibility of the increased expression of N-type 

VOCC on plasma membrane contributing to calcium influx, but we can not 

neglect the fact that altered activation of N-type VOCC could affect aSOCE as 

well. Therefore, further investigation is needed to determine the activation state 

of N-type VOCC in aSOCE. Moreover, there is a possibility that other regulatory 

mechanisms are involved in aSOCE in addition to voltage-operated calcium 

channels such as plasma membrane Na+-Ca2+ exchanger (NCX) (Parekh and 

Putney, 2005). It is known that NCX1, one of three isoforms (NCX1, NCX2 and 

NCX3), is present in neurons (Sakaue et al., 2000). Further investigations are 
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needed to examine whether other possible mechanisms are also participating in 

aSOCE.  

We were next concerned with how acidic store calcium release was 

coupled to calcium influx through opening relevant channels on the plasma 

membrane. Previous evidence indicated that calcium triggers the exocytosis of 

lysosomes onto plasma membranes (Jaiswal et al., 2002; Li et al., 2008) and that 

N-type calcium channels undergo endocytosis, degradation in endolysosomes, 

and reinsertion into plasma membrane (Jarvis and Zamponi, 2007). Our 

combined findings in aSOCE demonstrated that a lysosome membrane protein, 

LAMP1 was redistributed onto plasma membrane, there was a physical link 

between LAMP1 and N-type VOCC, and that knockdown of LAMP1 reduced 

calcium influx. Together, these results support the hypothesis that endolysosome 

calcium release could change lysosome behavior (exocytosis) resulting in 

lysosome exocytosis of N-type calcium channels on the plasma membrane. 

Increased levels of [Ca2+]i drives exocytosis of secretory granules in many cell 

types including neurons (Easom, 2000; Morgan, 1995; von Gersdorff and 

Matthews, 1994) and that secretory granules have intracellular N-type calcium 

channel pools that can transport this VOCC to plasma membrane within minutes 

(Passafaro et al., 1996). Our biochemical observation that there was an 

increased expression of N-type calcium channels in plasma membranes during 

aSOCE might support this hypothesis that calcium release from endolysosomes 

triggered movement of secretory granules containing N-type calcium channels 

onto the plasma membrane.  
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Taken together, current observation on endolysosome calcium behavior is 

very similar to SOCE that calcium release from endolysosomes by increasing 

endolysosome pH or lysis of endolysosome membrane can induce extracellular 

calcium entry (aSOCE). However, the involved calcium channels of this acidic 

store operated calcium influx are distinctive from SOCE that aSOCE is mediated 

by N-type voltage-operated calcium channels. In addition, the possible 

mechanism coupling of endolysosome calcium release to N-type calcium channel 

is that endolysosome calcium discharge driving exocytosis of lysosomes and/or 

secretory vesicles to bring more N-type calcium channels to the plasma 

membrane, thus resulting in tremendous calcium influx.  

Scientists are increasingly realizing that endolysosome calcium plays key 

roles in physiology and pathology. Physiologically, endolysosome calcium 

participates in formation of endosome-lysosome hybrids and reformation of 

lysosomes in addition to their involvement in membrane repair for wound healing 

by driving exocytosis of endolysosomes. Pathologically, disturbed endolysosome 

calcium has been associated with several lysosome storage diseases (LSD) 

which are characterized by mutation in endolysosome membrane proteins, e.g 

Niemann-Pick type C1 disease, mucolipidosis type IV and Chediak-Higashi 

syndrome (Lloyd-Evans et al., 2010). However, our current knowledge of these 

acidic calcium stores is still limited compared to other calcium stores.  
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Figure 28. Model Summarizing Acidic Store-Operated Calcium Entry in Primary 
Cultured Neurons. Similar to classical store-operated calcium entry (SOCE), 
calcium releases from acidic calcium stores triggers calcium influx, which we 
term ‘acidic store-operated calcium entry’ (aSOCE). Here, the aSOCE is 
mediated by lysosome exocytotic insertion of N-type calcium channels in 
neurons. 
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