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ABSTRACT 

Slips are considered one of the most common causes of major accidental injuries. The 

objective of this thesis is two-fold. The first objective is to determine the role of the subtalar joint 

during a slipping perturbation. The second is to determine if certain footwear characteristics, that 

may restrict the normal function of the subtalar joint (i.e., insole stiffness and heel counter 

stiffness), will change the response to unexpected heel contact slipping perturbations. 

Forty-two participants (30 females, 12 males) were recruited from a university aged 

population (21.19 years ± 2.7 years). Trials were performed over a 10 m walkway with 

rectangular sheets of sandpaper placed at each foot contact. Ten participants performed walking 

trials barefoot while the other 32 participants were randomly assigned to one of four footwear 

conditions (n=8) (condition 1: flexible insole, soft heel counter; condition 2: flexible insole, stiff 

heel counter; condition 3: rigid insole, soft heel counter; condition 4: rigid insole, stiff heel 

counter). Electromyography (EMG) signals were collected from eight lower limb muscles 

(tibialis anterior, peroneus longus, medial gastrocnemius, rectus femoris and medial hamstring). 

Kinematic data was collected using a 20 marker set-up. Marker triads were placed on the tibia, 

calcaneous and mid-foot to determine subtalar joint motion. Kinetic data was collected using 

forces plates embedded in the walkway. Unexpected slips were presented after a predetermined 

number of normal walking trials. Wax paper adhered to the underside of a sandpaper sheet was 

exchanged on the second force plate to cause an unexpected heel contact slip perturbation. 

Overall, 20 participants experienced a slip. Within the barefoot condition, 80% of the 

participants experienced an unexpected slip perturbation. The prevalence of slips was not as 

great within all of the footwear conditions (25% - 50%). During slip trials the average onset of 

eversion occurred slightly later than in normal walking trials, but was not statistically significant. 
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The tibialis anterior elicited a burst of activity during the middle phase of stance that is typically 

not seen during normal walking. The average onset of tibialis anterior activity was earlier with 

the similar durations and relatively higher magnitudes than normal walking. During slip trials, 

the peroneus longus did not have significantly different onsets or durations and the magnitudes 

were slightly higher compared to normal walking trials. During slip trials, the medial 

gastrocnemius onset was not found to be significantly different when compared to normal 

walking trails, but the magnitudes were significantly lower. 

A higher rate of vertical loading was the only significant finding that would have 

indicated an increased risk of slipping within the barefoot condition; while lower stance 

durations, gait velocities, heel velocities, and smaller shank and foot-floor angles indicated an 

increased risk of slipping within the shod conditions. These finding would suggest that 

individuals who were in the shod conditions would have been at a higher risk of slipping than the 

barefoot condition, which should have resulted in higher incidences and severities; when in fact, 

the severity and incidences of slips was much lower. Therefore, the footwear, along with 

decreasing loading rate, must offer a level of stability to the foot and ankle during heel contact 

that controls foot motion. In particular, decreasing the rate of pronation or eversion at the time 

the slip was detected, which would likely decrease the severity of the slip; evident due to 

diminished recovery times.The peroneus longus does contribute to controlling subtalar motion 

alongside the tibialis anterior and finally, footwear characteristics that restrict normal subtalar 

joint motion seen in barefoot individuals will help decrease the risk of slipping and decrease the 

severity, improving chances for recovery. 
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GLOSSARY OF TERMS 

Abduction (AB): Movement of a segment of limb towards the midline of the body (Hamill and 
Knutzen, 1995). 

Adduction (AD): Movement of a segment of limb away from the midline of the body (Hamill 
and Knutzen, 1995). 

Ankle Joint Complex (AJC): A term referring to the ankle/talocrural joint comprised of an 
articulation between the tibia and fibula (tibiofibular joint), and the tibia and the talus (tibiotalar 
joint/subtalar joint). Primary function is shock absorption (Hamill and Knutzen, 1995). 

Antero-posterior (AP): Refers to movement along the y-axis in the transverse plane; anterior 
representing towards the front of the body, posterior towards the back of the body (Hamill and 
Knutzen, 1995). 

Available Coefficient of Friction (ACOF): The amount of friction a given surface will provide, 
^available = (Fmedioiaterai2+Fanteroposterior2)1/2/Fvertical (Siegmund et al., 2006) . 

Anterior Superior Iliac Spine (ASIS): A landmark of the pelvis located on the most anterior, 
superior aspect of the iliac crest, "hip bone" (Moore and Dalley, 2006). 

Base of Support (BOS): The amount of surface in contact with the environment that provides 
stability to an individual. During locomotion it is defined as the area under the feet bordered by 
the anterior, posterior, medial and lateral aspects of the foot/feet in contact (Perry et al., 2001). 

Biceps Femoris (BF): A muscle which is proximally attached to the lateral ischial tuberosity and 
distally attaches to the posterior lateral condyle of the tibia and the head of the fibula. The biceps 
femoris is primarily responsible for extension at the hip and flexion and lateral rotation at the 
knee (Hamill and Knutzen, 1995; Hall, 2003). 

Body Weight (BW): Refers to an individual's mass (kg) being acted on by gravity (m/s ) 
expressed in Newtons (N) (Hall, 2003). 

Bureau of Labour Statistics (BLS): A unit of the United States Department of labour that 
collects and processes statistical data on the labour force (www.bls.gov). 

Center of Mass (COM): Refers to the balancing point of the body where an individual's mass is 
evenly distributed, sum of the torques is equal to zero (Hamill and Knutzen, 1995). 

Center of Pressure (COP): Represents a single point of application where all of the ground 
reaction forces are being applied back onto the foot. Pressure is equal and opposite to the force 
being applied to the ground and is measured by a force plate. COP is calculated using horizontal 
and vertical forces divided by their moments (Perry et al., 2007). 
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Coefficient of Friction (COF): A ratio of shear to normal forces (Fanteroposterior/Fvertical) defining 
the friction properties of the foot-floor interface (Marigold and Patla, 2002). 

Dorsiflexion (DF): An anatomical term defining flexion at the ankle where by the relative angle 
between the foot and leg decreases (Hamill and Knutzen, 1995). 

Electromyography (EMG): Measures the amount of electrical activity within the muscle to 
define the amount of muscle activation, timing and magnitudes. (Hamill and Knutzen, 1995). 

Eversion (EV): An anatomical term defining movement of the foot occurring at the intertarsal 
and metatarsal articulations. The lateral aspect of the foot lifts and the sole of the foot faces away 
from the midline of the body. The sole of the foot is rotated outward (Hamill and Knutzen, 1995; 
Hall, 2003). 

Foot Flat Response (FF): A term used to describe the trailing limb response during an 
unexpected slip perturbation. Characterized by the placement of the entire sole of the shoe 
slightly behind the leading foot (Moyer et al., 2009) 

Gluteus Maximus (GMAX): A muscle which is proximally attached at the posterior illium, iliac 
crest, sacrum, and coccyx and distally attaches to the gluteal tuberosity of the femur and iliotibial 
band. The gluteus maximus is primarily responsible for external and lateral rotation of the thigh 
(Hamill and Knutzen, 1995; Hall, 2003). 

Ground Reaction Force (GRF): Reactive forces provided by the ground that are equal in 
magnitude and opposite in direction to forces applied to the ground by an individual (Newtons 
III law). Measured using a force plate in the antero-posterior, medio-lateral and vertical 
components and reported in Newtons (N) (Hall, 2003). 

Heel Contact (HC): The stage of gait when the lead limbs heel contacts the ground; signified 
when vertical ground reaction forces exceed a threshold of 12 Newtons (N). 

Inversion (IV): An anatomical term defining movement of the foot occurring at the intertarsal 
and metatarsal articulations. The medial aspect of the foot lifts and the sole of the foot faces 
towards the midline of the body. The sole of the foot is rotated inward (Hamill and Knutzen, 
1995; Hall, 2003). 

Kinematics: The description of a body's motion without referring to the forces that caused the 
motion (i.e., displacement, velocity and acceleration) (Hamill and Knutzen, 1995). 

Kinetics: The description of a body's motion with respect to the forces that caused the motion 
(i.e., gravity, ground reaction forces etc.) (Hamill and Knutzen, 1995). 

Medial Gastrocnemius (MG): A muscle which is proximally attached at the posterior medial 
and lateral femoral condyles and distally attaches to the tuberosity of the calcaneous through the 
Achilles tendon. The medial gastrocnemius is primarily responsible for flexion at the knee and is 
a major plantar flexor at the ankle (Hamill and Knutzen, 1995; Hall, 2003). 
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Mid-Flight Response (MID): A term used to describe the trailing limb response during an 
unexpected slip perturbation. Characterized by the forefoot contacting the ground more rapidly 
and posteriorly that the FF response (Moyer et al., 2009) 

Minimum Response (MIN): A term used to describe the trailing limb response during an 
unexpected slip perturbation. Occurred with less severe slips where the trailing limbs trajectory 
was similar to that of normal gait (Moyer et al., 2009) 

Newton (N): A unit of force derived for Newton's second law Force (N) = Mass (Kg) • 
Acceleration (m/s2) (Hamill and Knutzen, 1995). 

Normal Force (NF): Synonymise with vertical ground reaction force. Is a measure of the 
vertical component of the ground reaction force measured in Newtons (N). 

Normal Walking Trials: Represents dry trials were the participant is novel to the slip 
perturbation (see also pre-slip). 

Peroneus Longus (PL): A muscle which is proximally attached to the head and upper two-thirds 
of the lateral fibula and distally attaches to the lateral surface of the first cuniform and first 
metatarsal. The peroneus longus is primarily responsible for plantar flexion and is a major 
everter of the ankle (Hamill and Knutzen, 1995; Hall, 2003). 

Plantarflexion (PF): An anatomical term defining flexion at the ankle where by the relative 
angle between the foot and leg increases (Hamill and Knutzen, 1995). 

Pre-slip (PreS): Represents dry trials were the participant is novel to the slip perturbation. 

Post-slip (PS): Represents dry trials after the participant has experienced a slip perturbation. 

Rectus Femoris (RF): A muscle which is proximally attached to the anterior inferior iliac spine 
(ASIS) and distally attaches to the patella via the patellar tendon. The rectus femoris is primarily 
responsible for flexion at the hip and extension at the knee (Hamill and Knutzen, 1995; Hall, 
2003). 

Required Coefficient of Friction (RCOF): Threshold of the shoe-floor interface to minimize 
the risk of a slip (Redfern et al., 2001). 

Slip Trials (S): Represents the trials were the slip mat was introduced to cause a perturbation. 

Soleus (SOL): A muscle which is proximally attached to the posterior proximal fibula and 
proximal two-thirds of the posterior tibia and distally attaches to the tuberosity of the calcaneous 
through the Achilles tendon. The soleous is primarily responsible for plantar flexion at the ankle 
(Hamill and Knutzen, 1995; Hall, 2003). 

Standard Deviation (STDev): Refers to the average of the deviation of scores about the mean; 
calculated by taking the square root of the variance (Howell, 2004). 
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Tibialis Anterior (TA): A muscle which is proximally attached to the upper two-thirds of the 
lateral tibia and distally attaches to the medial surface of the first cuneiform and first metatarsal. 
The tibialis anterior is primarily responsible for dorsiflexion and inversion at the ankle (Hamill 
and Knutzen, 1995; Hall, 2003). 

Toe Down Response (TD): A term used to describe the trailing limb response during an 
unexpected slip perturbation. Iinvolves just the tip of the forefoot contacting the ground more 
anteriorly that the MID response (Moyer et al., 2009) 

Toe-off (TO): The stage of gait where the toe of the trail limb lifts of the ground; signified when 
vertical ground reaction forces drop below a threshold of 12 Newtons (N). 

Utilized Coefficient of Friction: synonymous with available coefficient of friction. 
H = (Fmediolateral +Fanteroposterior ) "/Fvertical ( H e i d e n e t a l . , 2 0 0 6 ) . 

Vastus Lateralis (VAS): A muscle which is proximally attached to the greater trochanter and 
lateral linea aspera and distally attaches to the patella via the patellar tendon. The vastus lateralis 
is primarily responsible for extension at the knee (Hamill and Knutzen, 1995; Hall, 2003). 

Workplace Safety and Insurance Board (WSIB): Works to provide and promote workplace 
health and safety information, training and compensation (www.wsib.on.ca). 
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Chapter 1: Introduction/Literature Review 

1.1 Overview 

Falls are considered one of leading causes of unintentional work-related injuries requiring 

medical treatment (Cham and Redfern, 2001, Redfern et al., 2001). In 2008, falls accounted for 

20.1% (15,706) of all injuries reported to the Workplace Safety Insurance Board (WSIB). Of 

these, 72 % were same-level falls. Slips have been identified as the most common cause of a 

same level fall reported in the workplace (WSIB, 2010). 

A slip has been defined as, "the loss of a stable interaction between the foot or footwear and 

the ground surface" (Hamill and Knutzen, 1995). This is most commonly caused by improper 

footwear characteristics (i.e., tread, midsole, heel height, etc.), flooring type (concrete, tile, ice 

etc.) and/or due to contaminants from spills (i.e., oil, water, food, etc.). Slips have been identified 

as one of the most common causes of unintentional work-related injuries (Cham and Redfern, 

2001) and it is therefore important to investigate. Further, the incidence of slips and falls has not 

significantly decreased over the past decade (WSIB, 2010). This may be attributed to the truly 

unexpected nature of slips. 

Previous research has examined the biomechanics of a slip perturbation in great detail. Cham 

and Redfern, (2001) have reported that a slip occurs due to a reduction in available friction 

resulting in a decrease in the production of shear and normal ground reaction forces; lower 

coefficient of friction. They found that there was greater heel displacement and velocities shortly 

after heel contact compared to normal walking trials. A parallel study identified that successful 

active balance recovery attempts will occur between 25-45% of stance or else a fall is imminent. 

During this recovery attempt, there appeared to be a passive ankle moment coupled with an 

increase knee flexion and hip extension moment. This response works to stabilize the ankle joint 
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and recover normal ankle joint trajectories, bringing the base of support (BOS) back under the 

centre of mass (COM) (Redfern et al , 2001). Previous research has indentified many crucial 

aspects of what a natural response to a slip perturbation is, but has not been able to identify 

strategies to successfully decrease the risk of unexpected slips and falls. Furthermore, when 

looking at responses to heel contact slipping perturbations studies have simplified the 

measurement of the movement within the ankle complex to two dimensions about the ankle axis; 

reporting that the ankle plantarflexes in response to an anterior translation in the sagittal plane 

(Cham and Redfern, 2001; Hughes et al., 1995). 

The foot and ankle are the first link to our environment during normal locomotion. It is here 

that a slip will first be detected by our somatosensory/kinesthetic systems (i.e., cutaneous 

receptors, golgi tendon organs, muscle spindles and joint receptors) due to changes in pressure 

under the foot and/or joint trajectories at the ankle. As we age, deficits in cutaneous sensation 

under the foot (Zehr and Stein, 1999; Perry, Santos and Patla, 2001; Perry, 2006), reaction time 

(Mcllroy and Maki, 1996; Thelen et al., 1997; Maki, Edmondstone and Mcllroy, 2000; Tseng, 

Stanhope and Morton, 2009) and muscle force production in the lower limbs (Thelen et al., 1996; 

Barry, Rick and Garson, 2005, Rose and Gamble, 2006) may make these individuals at a higher 

risk of experiencing a hazardous slip. Therefore, investigation of normal subtalar joint motion 

during a slip recovery for young individuals free of neurological or biomechanical deficits will 

give insight into its function. If in fact the subtalar joint motion is found to be associated with 

ability to recover from a slip then we can explore further the implications of methods of subtalar 

modulation (i.e., footwear or orthotics) in an attempt to improve the chances for recovery and 

minimize risk of falls due to same-level unexpected slips. 
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The following sections within this chapter will provide a more in depth analysis of the 

current literature as it pertains to slips and falls in the workplace (1.2), the environmental 

interaction of the shoe/foot-floor interface (1.3), an outline of the biomechanics of normal gait 

(1.4) in comparison to the biomechanics of a slip (1.5), an introduction to the subtalar joint 

function (1.6) and an outline of the interaction of different footwear characteristics on balance 

control (1.7). The final sections will present the rational for this research (1.8) and the research 

objectives, questions and hypotheses (1.9). 

1.2 Slips and Falls in the Workplace 

Falls that occur in the workplace are considered one of the leading causes of 

unintentional work-related injuries requiring medical treatment (Lehane and Stubbs, 2001; Cham 

and Redfern, 2001) and are a major issue in many developed countries (Holbein-Jenny et al., 

2007). A fall may be defined as an unintentional change of position to a lower level due to the 

inability to recover ones balance; the centre of mass (COM) travels too far outside of the base of 

support (BOS) causing an unstable system (Hamill and Knutzen, 1995; You at al. 2001). The 

number of same-level falls reported have risen from 65% to 72% of all fall incidences that result 

in an injury within the past decade (WSIB, 2010) (Figure 1.1a). The USA Bureau of Labour 

Statistics (BLS) reported that falls accounted for 16.8% of all non-fatal injuries resulting in lost 

workdays and attributed to 12% of job-related deaths in 1998 (Cham and Redfern, 2001). For 

2000, the Workplace Safety Insurance Board (WSIB) reported 20 fatalities as a result of falls in 

the workplace (WSIB, 2010). Based on the subtotal of fall incidences it may appear that these 

statistics have been declining, but in actual fact, the overall incidence of injuries reported to the 

WSIB have declined and the incidence of same-level falls have slightly increased (Figure 1.1b). 

Therefore, there is still a serious concern as falls due to slips and trips still accounted for 13% of 
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all non-fatal work-related injuries involving lost time reported by the BLS for 2006 (Verma et 

al., 2008). Falls in any workplace pose a serious health risk that needs to be addressed. 
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Figure 1.1: a) Incidence of injury due to falls on same-level, jumps to lower level and other, b) Trend of total number 
of incidences reported compared to the % of fall incidences (WSIB, 2010). 
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The single most common cause of a same-level fall is a slip (approximately 64% of all 

cases) (Cham and Redfern, 2001). Slips are commonly defined as "the loss of a stable interaction 

between the foot or footwear and the ground surface," usually attributed to footwear 

characteristics (i.e., tread material, tread hardness, tread design, etc.), flooring type (i.e., 

concrete, tile, ice, etc.) or contaminates from spills (i.e., oil, water, food, etc.) (Hamill and 

Knutzen, 1995). Slips are considered one of the most common causes of major accidental 

injuries; accounting for 43% of same level-fall fatalities in the workplace from 1992-1998 

(Cham and Redfern, 2001). It is estimated that 3.6 million working days are lost each year due 

to slips and trips (Lehane and Stubbs, 2001); that consists of more than a quarter of workers who 

sustained same-level fall-related injuries missing 30 days or more (Cham and Redfern, 2001; 

WSIB, 2010). It is apparent that same-level falls are causing serious injuries, leading to missed 

days, costing upwards of $4.4 billion dollars a year in direct and indirect expenses (Lehane and 

Stubbs, 2001; Maynard, 2002). Non-spinal fractures have been one of the most common injuries 

reported. Same-level falls attribute to 80% of work-related fractures of the hip, wrist and ankle in 

women alone (Verma et al., 2008; You at al., 2001). Slips are a major hazard in any workplace 

as they cause severe injuries resulting in lost time and billions of dollars in claims. 

The WSIB states that, "far too many workplace injuries are caused by slips, trips or falls 

and all of them are preventable" (WSIB, 2010). If this is the case, then why are slips and falls 

still one of the most common workplace safety issues costing billions? It may be that the 

mechanisms of slips and falls may not be clearly understood yet. Age may also be playing an 

important role in this issue that has not been extensively examined. It is essential to examine the 

previous literature to gain a better understanding of these complex issues and determine where 
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more research is necessary. By better understanding the mechanisms of slips and falls, severe 

injuries and fatalities could be avoided, especially in the workplace. 

1.3 Environmental Interaction: The Footwear and Floor Interface 

It has been estimated that 51% (32% males, 19% females) of same-level falls in the 

workplace were initiated by slips that occurred due to floor contaminates (Beschorner et al., 

2007). Contaminants, mainly liquid in nature, have a major effect on the footwear-floor interface 

increasing the potential for slips and falls. It is this environmental interaction of the footwear-

floor interface that has been the focus of most of the primary research in this area. Previous 

literature has identified many environmental factors that will influence the potential of a slip: the 

type of floor, contamination and the interaction between the footwear and the floor, called the 

coefficient of friction (COF) (Li and Chen, 2004). 

The COF is simply the ratio of shear ground reaction force, measured in the antero­

posterior direction, to force normal to the interface or vertical ground reaction force. It is used to 

describe the relationship between the footwear and contact surface (Beschorner et al., 2007). A 

slip has the potential to occur when the difference between the available coefficient of friction 

(ACOF) and the peak required coefficient of friction (RCOF) is less than zero (ACOF-RCOF= 

COFdiff < 0) (Li and Chen, 2004; Hanson, Redfern and Mazumdar, 1999). The COF between 

footwear and a contact surface is usually measured using a sophisticated device called a 

'slipmeter'. These devices work by applying a normal force (NF) at a certain angle and speed 

with the entire shoe outer sole in contact with the surface to determine the opposing shear force. 

A floor contaminate will decrease the COF by minimizing the amount of shear force that can be 

produced or available friction to oppose the forward translation of the heel upon contact during 
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gait. As weight transfer begins to that foot, the NF increases, further reducing the COF. A slip is 

most likely to occur when NF are between 35-90% of body weight on the lead foot (Beschorner 

et al., 2007). The COF is a key factor in determining the risk of slips and falls especially in 

workplaces prone to high traffic and floor contaminants. 

To prevent the occurrence of slips and falls in the workplace primary research has 

focused on the interaction of different footwear materials on surfaces along with different 

contamination types to try and maintain higher ACOF values. Thus, higher ACOF values will in 

turn decrease the potential for slipping, minimizing the risk of injury (Beschorner et al., 2007; Li 

and Chen, 2004; Hanson et al., 1999; Tsai and Powers, 2008). With respect to footwear 

characteristics much focus has been on the sole material, hardness and tread pattern. Tsai and 

Powers (2008) examined sole hardness and concluded that compared to hard soles, softer sole 

material will offer greater available friction on dry floors. It also has been reported that dry 

smooth polished floors offer sufficient COF values with most footwear soling types, with the 

exception of hard tipped high-heel shoes. However, if there is any possibility of a contaminant, 

polished smooth floors become very hazardous. Alternatively, a surface with a higher 

"microscopic roughness" will allow for higher COF in the events of water or oily contaminants 

(Manning and Jones, 2001). 

Smooth soles tend to give a higher COF on dry smooth floors than a treaded sole, but a 

treaded sole will allow for a high COF if a contaminant was introduced by channeling the 

contaminant (Li and Chen, 2004). A higher COF will also be seen with an increase in 

microscopic soling roughness (Manning and Jones, 2001). Li and Chen (2004) determined that a 

tread groove pattern of 1.2 cm was most effective for providing proper channeling of water and 

water-detergent contaminants, but tread groove width and depth are ineffective on oily floor 
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contaminants according to Fong et al., (2008). To address oil contaminants, Manning and Jones 

(2001) confirmed that the most slip resistant safety footwear soling material is a 

microcellularpolyurethane, known as AP6603 which has its highest degree of slip resistance 

following abrasion to obtain maximum roughness. This material has higher COF on oily surfaces 

as it is oil resistant. Higher COF are also maintained on water contaminated floors compared to 

other materials. Most rubbers are not oil resistant and although work well on wet surfaces may 

not be adequate for all work environments (Manning and Jones, 2001). 

From this research basic recommendations can be made to determine which surfaces and 

soling are most slip resistant in the event of certain floor contaminates, but there is no guarantee 

that these precautions will reduce the incidence of same-level falls. The workplace safety 

literature demonstrates that even with these recommendations same-level slips and falls are still a 

serious concern (Lehane and Stubbs, 2001; Cham and Redfern, 2001; Holbein-Jenny et al., 2007; 

Hamill and Knutzen, 1995; WSIB, 2010; Verma et al., 2008; Maynard, 2002). It is evident that 

the primary research of the footwear-floor interface is underestimating the individual variability 

of many biomechanical factors; such as normal forces, footwear contact angle, heel velocity, 

stride length and loading rates to name a few. Beschorner et al., (2007) and others have reported 

that a single COF value from slip-meter testing may be insufficient to describe the slipping 

propensity of a certain footwear-floor interface as each individual has a unique gait pattern (Li 

and Chen, 2004; Hanson et al., 1999; Tsai and Powers, 2008). It is clear that there are just too 

many variables to account for when trying to prevent slips focusing on the COF. Therefore, it is 

necessary to take an alternative approach by determining the biomechanical aspects of a slip. A 

better understanding of the biomechanics may give insight into how changes to other footwear 
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characteristics (i.e., midsoles, insoles and heel counters) will prevent or minimize the risk of falls 

from same-level slips. 

1.4 The Biomechanics of Normal Gait 

Most of the primary research has focused on environmental factors of slips and the 

footwear-floor interface. This information has been beneficial in making safety 

recommendations for footwear standards, but has not helped drastically decrease the number of 

same-level falls from slips in the workplace due to the number of factors involved (WSIB, 2010; 

Maynard, 2002). There are many biomechanical aspects of gait that may play a role as to 

whether an individual will slip and/or fall when a perturbation is introduced, how quickly they 

may detect/respond to a slip and what strategies they employ to regain their balance. All of 

which are variable across individuals and may degrade with age, making it difficult to predict the 

occurrence of an unexpected slip (Cham and Redfern, 2001; Redfern et al., 2001). Several 

studies have investigated many biomechanical aspects involving kinematics (i.e., joint angles, 

accelerations and velocities), kinetics (i.e., ground reaction forces, joint moments and muscle 

force) and the centre of mass base of support (COM-BOS) relationship. The most simplistic 

method to summarize previous literature is through a segmented model (Figure 1.2). This model 

is comprised of four segments: the first is called "normal gait," representing normal undisturbed 

gait patterns before an unexpected slip. The second segment is "slip perturbation" outlined from 

the heel contact of the leading leg until a slip has occurred. The third segment is "slip detection 

and response" describing the changes to gait as a result of the slipping perturbation along with 

the primary and secondary responses in attempt to regain balance. The last segment (4th) is "slip 

outcome"; either balance is recovered or a fall occurs. Each segment will be discussed in turn. 
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Unexpected Slips Segmental Model 
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Figure 1.2: Segmental model of an unexpected slipping perturbation, outlining previous research findings 
(Cham and Redfern, 2001; Redfern et al., 2001). 

1.4.1 Normal Gait Parameters 

To determine disturbances in gait it is crucial to understand what the normal patterns or 

characteristics of gait are: In the model, the normal gait segment refers to the individual's 

undisturbed normal walking pattern before a slip has occurred. These patterns are described 

through stride length, cadence, COM-BOS relationship, normal ground reaction forces, joint 

angles, velocities and accelerations, joint moments and muscle activity. The normal gait segment 

does not only serve as a comparison against slipping trials in order to understand what occurred 
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during the slip, but may also give insight into which characteristics make an individual more 

susceptible to slipping hazards; thereby developing strategies to prevent slips and falls. 

Gait Velocity and Stride Length 

During normal gait, gait velocity and stride length may be variable within an individual. 

It has been reported that the average self-chosen gait velocity is between 0.97-1.51 m/s (Redfern 

et al., 2001). Both gait velocity and stride length will influence an individual's slipping potential. 

A higher gait velocity will increase stride length and heel velocities. Therefore, greater shear 

forces are created at heel contact with increased stride length, affecting the COF (ratio of shear to 

normal force). Conversely, decreased gait velocities and stride lengths have been suggested as 

strategies to decrease the severity of slips and the risk of falls (Fong et al., 2008; Redfern et al., 

2001). 

Centre of Mass (COM) - Base of Support (BOS) Relationship 

~ BOS • COM — COM 

Figure 1.3: a) depicts the COM and BOS of quiet, double support stance, b) illustrates 
how the COM moves within the BOS during gait. 

The COM-BOS relationship defines an individual's dynamic balance control. 

Manipulation of the COM within the BOS allows for everything from upright quiet stance to 

locomotion (Figure 1.3a) (Hamill and Knutzen, 1995). During normal gait the COM is in a 

constant state of motion alternating between a double and single BOS (Figure 1.3b). Gait is 
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unstable, as the COM moves very close to the boundaries of a changing BOS. Therefore, 

dynamic balance during gait is very susceptible to small perturbations such as a heel contact slip. 

Normal Ground Reaction Forces (GRF) 

In general, the walking vertical GRF normally takes on a bimodal shape with maximum 

values ranging from 1-1.2 times body weight (BW). After heel contact, the whole body begins to 

lower until the support leg takes the full weight of the body and accelerates the mass upward 

again. This is represented by the first peak when the force rises above BW. The dip is a function 

of a slight knee flexion that occurs at mid-stance, while the shank is rotating over the foot, to 

continue the COM on a linear path. The forces are lower than that of the individuals BW as the 

COM drops slightly towards the floor, working with gravity. The last peak is above BW again, 

as the body actively exerts a force on the ground to allow for push-off (Figure 1.4) (Hamill and 

Knutzen, 1995; Redfern et al., 2001). 

The GRF in the anteroposterior direction (shear force) also exhibits a characteristic 

shape. Maximum and minimum values usually range from ±0.15 times BW. When the heel 

contacts the force plate with a positive velocity in the forward direction, friction creates a 

'braking' or shear force, exerting a force back onto the heel to stop its motion. This is usually 

demonstrated as a negative component for the GRF (Hamill and Knutzen, 1995; Redfern et al., 

2001) which peaks roughly 90-150 ms after heel contact; approximately 19% of stance (Redfern 

et al., 2001). Once the foot has stopped and weight acceptance occurs, the tibia rotates over the 

foot and force becomes positive as muscles actively propel the foot to toe-off (Figure 1.4) 

(Hamill and Knutzen, 1995; Redfern et al., 2001). The shear forces are highest just after heel 

contact and just before toe-off. This is concurrently when the RCOF, discussed earlier, are higher 

to decelerate the heel and conversely propel the foot forward at toe-off. As a result, an individual 
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is most susceptible to a slip during these periods when shear forces do not meet the demands of 

peak RCOF. Again, heel contact is more critical as slips occurring at this time are more likely to 

result in falls (Hanson et al., 1999). 

Vertical Force 
Fore-Aft Force 

40 60 
Stance Phase % 

Stance Phase % 

Medial-Lateral Force 

Stance Phase % 

Figure 1.4: Normal GRF during gait for the (A) vertical, (B) antero-posterior and (C) medio-lateral 
directions (Modified from Fig. 7, Kitaoka et al.,2006). 

Lastly, the mediolateral GRF is not as consistent as the other two components. These 

forces are comparatively small; range from ± 0.01 times BW. Foot placement, forefoot adduction 

and abduction at the ankle will affect how these forces are interpreted. These forces are also 

considered 'braking' or shear forces as the foot pushes on the ground to ether supinate (a 

combination of plantarflexion, inversion and adduction) or pronate (a combination of 

dorsiflexion, eversion and abduction) the foot through the gait cycle. After heel contact, the foot 

is slightly supinated; therefore, creating a positive mediolateral component. Shortly after heel 

contact the foot begins to pronate to absorb shock, this may change the mediolateral component 

to a negative magnitude through midstance. Nearing toe-off the foot begins to supinate again to 
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create a rigid body to propel off of exhibiting a positive mediolateral component (Figure 1.4) 

(Hamill and Knutzen, 1995; Hanson et al., 1999; Redfern et al., 2001; Kitaoka et al., 2006). 

Mediolateral ground reaction forces have not been established as significantly effecting heel 

strike slips. 

Ground reaction forces describe how an individual interacts with their environment 

during gait. Characteristics of normal gait (i.e., loading rates, foot-floor angle at heel contact, and 

stride length) will affect the normal and shear ground reaction forces in ways that may increase 

or decrease the likelihood or severity of a slip (Redfern et al, 2001; Cham and Redfern, 2001, 

2002). 

Normal Joint Angles 

During normal gait the upper and lower thigh experience mainly flexion or extension, 

observed in the sagittal plane, about the hip and knee joint respectively. The torso usually 

exhibits very little change in orientation during normal gait (Figure 1.5) (Hamill and Knutzen, 

1995; Redfern et al., 2001). The foot when viewed from the sagittal plane will also exhibit 

flexion and extension about the ankle axis (joint between the talus and tibia) of the ankle joint 

complex (AJC) known as doriflexion and/or plantarflexion, but the movement about the AJC is 

more complicated. The other axis in the AJC is the subtalar joint which is the articulation 

between the talus and calcaneous. Movement about the subtalar axis corresponds to supination 

and pronation of the foot; requiring three-dimensional evaluation. This location of this axis is 

very difficult to determine as between the calcaneous and talus is hidden within the ankle (Nigg, 

1999). Therefore, movement about the ankle has been classified as dorsiflexion/plantarflexion in 

the sagittal plane, inversion/eversion in the frontal plane and adduction/abduction in the coronal 

plane, which does not relate directly to anatomical joint axes and is a two-dimensional 
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interpretation. Supination is a combination of plantarflexion, inversion of the forefoot and 

adduction at the hind-foot where pronation is a combination of dorsiflexion, eversion and 

abduction of the forefoot (Hamill and Knutzen, 1995; Redfern et al., 2001; Nigg, 1999). 

I Early S a n c a I Single-leg Stance | Pre-swing] I 

I Beginning Stance I Mia Stance I Late Stance I 

0 10 ZO 30 40 50 60 

Figure 1.5: Illustration of normal movement of the lower limb segments during the different 
phases of gait (Zajac et al., 2003). 

During normal undisturbed gait, the hip is in a slightly flexed position at heel contact as 

the upper leg is in front of the torso, approximately 165° (or 15°of flexion). During most of the 

stance phase the hip is in extension as the torso begins to move over the leg (i.e., forward 

rotation of the thigh), reaching a maximum angle of approximately 193° (or 13° of extension). At 

the end of stance phase, as the individual is preparing for swing phase, the hip begins to flex to 

swing the leg after toe-off (TO) (i.e., rearward rotation of the thigh) (Figure 1.6a) (Hamill and 

Knutzen, 1995; Redfern et al., 2001). The knee is almost in full extension upon heel contact 

(HC) (172.54°). Flexion of the knee rapidly increases as the shank rotates forward until about 

30% stance (160.85°) (Cham and Redfern, 2001). Entering into single support, as the COM 

moves over the single leg BOS, the knee slightly extends until the last phase of stance (80%). 

Knee flexion begins again as the COM has moved over the support leg to prepare for toe-off and 

heel contact of the swing leg (Figure 1.6b) (Cham and Redfern, 2001; Redfern et al., 2001). 
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Figure 1.6: Profiles of the hip (a.) and knee (b.) angles (°) during normal undisturbed gait (Modified 
from Fig. 4, Redfern et al., 2001). 

In the sagittal plane the ankle is in a neutral to slightly dorsiflexed position at heel 

contact. Once the heel contacts the ground, the ankle passively plantarflexes until foot flat is 

reached, approximately 10% stance (Hamill and Knutzen, 1995; Redfern et al., 2001; Kitaoka et 

al., 2006). Through midstance passive dorsiflexion occurs about the ankle joint as the shank 

rotates over the foot to a maximum of 6.5° in late stance (Kitaoka et al., 2006). Nearing the end 

of stance (80%) active plantarflexion begins as the heel comes off the floor to allow for toe-off 

(Figure 1.7a) (Hamill and Knutzen, 1995; Redfern et al., 2001; Kitaoka et al , 2006). In the 

coronal plane, the ankle exhibits inversion and eversion about the ankle joint, averaging 10.8° of 

motion. Along with dorsiflexion, at heel contact the ankle is slightly inverted, everting to absorb 

shock throughout midstance (20-80%) to a maximum of 4.4°in late stance (Hamill and Knutzen, 

1995). Nearing the end of stance phase the ankle begins to invert again to allow for a rigid foot 

structure for toe-off (Figure 1.7b). Transverse motion is expressed as internal or external rotation 

(adduction/abduction) about the ankle, averaging 4.8° of motion. At heel contact the foot is 

slightly abducted or externally rotated, internally rotating through midstance. The foot slightly 
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abducts again at approximately 80%, then adducts until toe-off (Figure 1.7c) (Kitaoka et al , 

2006). 

Calcaneal-Tbial Coronal Motion 

Stance Phase % 
Stance Phase % 

Calcaneal-Tibial Transverse Motion 

Stance Phase % 

Figure 1.7: Motion about the ankle joint (tibia and calcaneous) in the a) sagittal, b) coronal and c) 
tranverse planes. HC at 0%, TO at 100% stance (Modified from Fig. 5, Kitaoka et al., 2006). 

Velocities and Accelerations 

With respect to velocities, during normal gait, the heel may be travelling between 0.14 

m/s and 0.68 m/s during the 60 ms before heel contact (Strandberg, 1983). The heel has been 

shown to decelerate (-24.86 m/s) until heel contact and then slides very briefly (< 0.1 m/s, < 1.0 

cm) (Redfern et al., 2001). When the heel makes contact (0% stance), the heel impact velocity is 

positive (forward motion, 0-8%) and may even be slightly negative (rearward motion, 9-11%) 

before coming to a complete stop (Figure 1.8). At heel contact normal ankle angular velocities 

average roughly 223.87s ± 98.4 (Cham and Redfern, 2001). Heel velocities at heel contact are an 

important predictor of slips. Higher heel velocities and slower heel decelerations may increase 

risk of falls when a slip occurs (Redfern et al., 2001, Cham and Redfern, 2001, 2002). 
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Figure 1.8: Heel velocity before heel contact until the heel reaches foot flat and comes to a stop 
around 15% stance. HC at 0% stance. (Modified from Fig. 3, Redfern et al., 2001). 

Muscle Activity and Joint Moments 

Intricate coordination and timing of muscles/muscle groups make it possible to achieve 

movement such as gait. Electromyography (EMG) is used to determine muscle activation timing, 

duration and magnitude, while inverse dynamics allows for the calculation of joint moments or 

torques. Together with joint kinematics they create a better understanding of how movements is 

being produced; which muscle groups are active and whether they are working concentrically, 

eccentrically or isometrically. 

At heel contact (0% stance) the tibialis anterior (TA) switches from actively dorsiflexing 

the foot at the ankle to working eccentrically (Figure 1.9 d) to oppose plantarflexion (Figure 1.9 

ci) (Redfern et al., 2001) creating a dorsiflexor moment (Figure 1.9 cii) (Cham and Redfern, 

2001; Zajac et al., 2003). The gluteus maximus (GMAX) is working concentrically along with 

the hamstrings (HAM) to create an extensor moment at the hip (Figure 1.9 aii) while 

simultaneously creating a flexor moment at the knee (Figure 1.9 bii) (Cham and Redfern, 2001; 

Zajac et al., 2003); initiating hip extension and knee flexion after heel contact (Figure 1.9 ai, bi) 

(Redfern et al., 2001). The vasti group (VAS) mainly works to allow for forward progression of 

i ' ' ' ' i i 
0 5 10 15 

Time (%) [0% = heel contact, 100% » to*off] 
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the trunk as well as contributing slowing the forward progression of the lower leg; decelerating 

knee flexion to help maintain and upright position (Figure 1.9 b). The rectus femoris (RF) of the 

quadriceps, although active during early stance, is not as important as the VAS and works 

antagonistically to support hip and knee extension (Figure 1.9 a, b) (Redfern et al , 2001; Zajac et 

al., 2003). 
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Figure 1.9: Illustrating a.) hip, b.) knee, and c.) ankle kinematics (i) along with their respective joint moments (ii). 
Muscle activation is shown in d.) which is given over a whole gait cycle (0-100) refer to % stance above graph 
(Modified from Fig. 1, Cham and Redfern, 2001; Modified from Fig. 1 and Fig. 2, Zajac et al., 2003). 
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During single stance (-25-85% stance), the gastrocnemius (GAS) and soleous (SOL) are 

active (Figure 1.9 d) generating a strong plantarflexor moment peaking at maximum ankle 

dorsiflexion, approximately 80% stance (Figure 1.9 ci) (Cham and Redfern, 2001; Hamill and 

Knutzen, 1995; Redfern et al., 2001; Zajac et al., 2003). The SOL primarily contributes to the 

forward progression of the trunk, while the GAS works to initiate the swing phase as they both 

accelerate the foot into plantarflexion by creating upward "intersegmental forces" in both the 

ankle and knee (Figure 1.9 ci) (Cham and Redfern, 2001; Redfern et al., 2001; Zajac et al., 

2003). Just before maximum knee and hip extension is achieved (-80-90% stance) (Figure 1.9 

ai,bi), the RF lengthens to accelerate the knee and hip into extension (Figure 1.9 bii) before toe-

off (Redfern et al., 2001; Zajac et al., 2003). As toe-off begins to occur (90-100% stance) and 

body weight begins to transfer to the contralateral leg, the forward progression of the trunk and 

flexion at hip by the RF allow for the swing phase to occur. The TA is activated at the end of 

stance to once again (Figure 1.9 d) to dorsiflex the foot at the ankle (Figure 1.9 ci) allowing for 

clearance of the ground during the swing phase (Cham and Redfern, 2001; Hamill and Knutzen, 

1995; Redfern et al., 2001; Zajac et al., 2003). 

1.5 The Biomechanics of a Slip 

1.5.1 Slip Perturbation 

Understanding the biomechanics of normal undisturbed gait has been beneficial in the 

study of slipping. By having a clear understanding of what is expected during normal gait one 

can then begin to analyze and compare what happens during a slip to isolate the potential causes. 

In many slipping situations, the primary reason for the slip is due to a reduction in ground 

reaction forces available; most importantly shear force. As a function of inappropriate footwear 



or when the contact surface's available friction decreases due to changes in surface 

characteristics, most commonly a spill or contaminate, the shear to normal force ratio (COF) 

decreases (Redfern et al., 2001). 

Slipping perturbations that are more likely to result in a fall or severe slip are reportedly 

occurring at heel strike (Kojima et al., 2008). The severity of the perturbation increases as the 

'achievable coefficient of friction' decreases (Hanson et al., 1999) (Figure 1.10). Studies have 

demonstrated that level-surface slips generally occur 100 ± 150 ms after heel contact. The ACOF 

during slip-recovery trials is approximately 0.11 (± 0.04) compared to slip-fall trials averaging 

0.04 (± 0.02); with ACOF as low as 0.02. The ACOF for grip (or non-slip) trials is 

approximately 0.17, but mini-slips have been found to occur with ACOF as high as 0.15 

(Redfern etal., 2001). 

There are also several characteristics of normal gait that affect the COF-GRF relationship 

and are associated with an increased risk of slipping or falling. Individuals with faster loading 

rates are at an increased risk of slipping due to a faster transfer of weight to the support limb. 

This will also be evident with earlier normal force and shear force peak timing. Secondly, 

individuals who have relatively long stride lengths or larger foot-floor angles at heel contact will 

increase the amount of shear force present during walking. This will affect the shear to normal 

force ratio increasing the RCOF to prevent a slip (Redfern et al., 2001). A relationship between 

higher heel velocities, lower heel decelerations and slower foot angular velocities at heel contact 

and an increase risk of slipping has also been identified (Cham and Redfern, 2001, 2002; 

Redfern et al., 2001). It is important to understand that all of these factors interact with each 

other and therefore, it is not just one individual factor that can predict the severity or likelihood 

of a fall occurring. 
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Figure 1.10: Illustrates the reduction in shear/breaking force as slip severity 
increases (Hanson et al., 1999; Redfern et al., 2001). Heel contact (HC) and toe-off 
(TO). 

1.5.2 Slip Detection and Response 

With a reduction in normal and shear forces, a slip perturbation changes 

normal gait characteristics shortly after heel contact (50 ±100 ms) (Cham and Redfern, 

2001). Again, normal gait characteristics have been utilized to identify these changes to 

determine the natural detection and response customary in active balance recovery attempts. 

Once these changes in gait occur, they must be detected quickly to generate effective corrective 

responses. Initial responses are controlled either by 'supraspinal loops' or 'polysynaptic spinal 
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reflex'. This is evident due to short onset muscle latency, occurring approximately 65 ± 110 ms 

after heel strike (Tang et al., 1998). 

The initial response works primarily to bring the BOS back under the COM. The 

secondary response is a 'compensatory reaction' to assist in the continuation of gait when a fall 

has been avoided (Redfern et al., 2001; Tang et al., 1998). The compensatory reaction is not 

limited to the leading limb and studies have investigated strategies of the trailing limb and upper 

body (Kojima et al., 2008; Moyer et al., 2009; Marigold et al., 2003). How one responds to a slip 

will depend on how quickly it can be detected and the severity due to low ACOF. The detection 

and response to a slip is described by changes in ground reaction forces, angles, velocities and 

accelerations, muscle activity and joint moments in both the leading and trailing limbs. 

Leading Limb 

Ground Reaction Forces (GRF): As mentioned previously during a slip, the ratio of shear 

(anteroposterior forces) to normal (vertical forces) GRF decreases with increased severity. The 

reduction in shear force is due to the footwear-floor interface (i.e., inappropriate footwear, 

flooring and/or contaminant). Ultimately the decrease in shear or breaking force results in a 

forward translation of the heel, altering the normal ankle trajectory and pressure under the stance 

foot. Even small changes in the biomechanics of gait will cause initial corrective response to 

support the continuation of normal gait (Redfern et al., 2001). 

Angles, Velocities and Accelerations 

With a decrease in shear force opposing the heel at heel contact, there is an increase in 

linear heel velocity at impact (Figure 1.11 a) (Redfern et al., 2001). After heel contact there are 

higher ankle angular velocities as the foot accelerates forward into plantarflexion (Figure 1.11 b) 

(Cham and Redfern, 2001). This subsequently causes extension of the hip and knee. When the 
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translation of the foot is detected, there is an attempt to regain natural ankle trajectory by slowing 

down the heel to bring the BOS back under the COM (initial response). This is accommodated 

by greater knee flexion and hip extension, sometimes causing the heel to slide in the rearward 

direction (Figure 1.11 a.) (Cham and Redfern, 2001; Redfern et al., 2001). Studies have shown 

that slips are most likely to result in a fall when peak heel velocities are greater than 0.5 m/s or if 

the slip distance exceeds 0.1 m (Redfern et al., 2001). If detected quickly the velocity of the heel 

can be controlled and slowed enough to regain normal joint trajectories to avoid a fall. 

Time <%) [0% n heel contact, 1 oo % « toe off] x- (motion) coordln 

Figure 1.9: a) Illustrates the linear impact heel velocity and translational heel 
velocity during a slip, b) Illustrates an increase in plantarflexion, knee flexion and 
hip extension after heel contact in slip-recovery and slip-fall trials (Modified from 
Fig. 4 and 5, Cham and Redfern, 2001). 

Muscle Activity and Joint Moments 

When a slip occurs, irregular plantarflexion at the ankle and extension at both the hip and 

knee result. In order to avoid a fall, primary muscles of the lower limb and thigh must work in 

sequence to generate the quick reactive response described above (Chambers and Cham, 2007). 

Tang et al., (1998) demonstrated that there is earlier activation of the anterior leg muscles as well 

as both anterior and posterior thigh muscles during a slipping perturbation compared to normal 

gait. This is illustrated by relatively shorter latency (90-140 ms), high magnitudes (4-9 times 

muscles activity during normal gait) and relatively long durations (70-200 ms). Furthermore, this 
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response maintains a distal to proximal activation sequence (i.e., tibialis anterior - rectus femoris 

- abdominals) relative to the severity of the slip (Tang et al., 1998). 

Within slip perturbation literature, movement about the ankle has been classified as 

dorsiflexion/plantarflexion in the sagittal plane. This two-dimensional interpretation does not 

relate motion at the ankle directly to an anatomical joint axis. Studies have reported that a slip 

causes an increase in plantarflexion at the ankle just after heel contact (Kojima et al., 2008). 

Upon detection of the heel translation, the initial response is for the tibialis anterior to contract, 

creating a dorsiflexion moment to counteract the plantarflexion (Kojima et al., 2008; Chambers 

and Cham, 2007; Tang et al., 1998). A maximum dorsiflexion angle (approximately 5.6°) is 

reached earlier than in normal gait (Kojima et al., 2008). At this time the gastrocnemius is 

suppressed (Figure 1.12 a) (Chambers and Cham, 2007; Tang et al., 1998). During hazardous 

slips, the achievement of foot flat was delayed due to greater TA activation. Redfern et al., 

(2001) reported that foot flat was reached in all non-fall slip trials indicating its importance to 

carry on with normal gait. It is also important to mention that during hazardous slips there is a 

null or passive ankle moment which may indicate co-contraction of the ankle muscles, never 

allowing for the achievement of foot flat and resulting in a fall (Chambers and Cham, 2007). 

The forward translation of the ankle due to a heel contact slip causes involuntary knee 

extension and hip flexion moving the COM more anterior to the BOS. During the initial response 

the biceps femoris, first contracts concentrically then eccentrically, and the rectus femoris 

eccentrically activate (Tang et al., 1998) to generate a flexor moment at the knee and an extensor 

moment at the hip. This opposes the initial movements caused by the slip and allows for 

increased knee flexion to bring the foot back towards the body in attempt to restore normal joint 

trajectories (Figure 1.12 b, c). The secondary response is associated with activation of the medial 
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gastrocnemius to create a plantar flexion moment at the ankle (Figure 1.10 a). An extensor 

moment is generated at the knee along with an extensor moment at the hip to prevent the knee 

from buckling in attempt to continue with normal gait (Figure 1.10 b, c). Inefficient extensor 

knee moments later in stance have been associated with falls more commonly seen in elderly 

individuals (Chambers and Cham, 2007). 
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Figure 1.10: Illustrates the joint angle, muscle activation and joint moments for the a) ankle, b) 
knee and c) hip during normal gait compared to slip-recovery and slip-fall trials (Modified from 
Fig. 2, Cham and Redfern, 2001; Modified from Fig. 4, Tang et al., 1998). 

Trailing Limb 

The focus of early slipping research has been on the reactive strategies of the leading 

limb. More recent studies have identified the importance of the trailing limb in active balance 

recovery. Compensatory stepping is used mainly to widen the BOS as the trailing limb deviates 

from its normal gait trajectories. This strategy is used during a forward slip, especially after toe-



off of the trailing limb has occurred. The trailing foot is placed on the ground somewhere behind 

the leading limb (Kojima et al., 2006; Marigold et al., 2003). The extent to which this strategy is 

utilized depends on the timing of the slip, slip severity and age. Several studies have 

demonstrated that the trailing limb responses have shown evidence of inter- and intralimb 

coordination (Kojima et al., 2006; Marigold et al., 2003; Moyer et al., 2009). 

Moyer et al., (2009) categorized the trailing limb responses into four categories relating 

to an increase in slip severity. A 'minimum' (MIN) response occurred with less severe slips 

where the trailing limbs trajectory was similar to that of normal gait. The 'foot-flat' (FF) 

response was characterized by the placement of the entire sole of the shoe slightly behind the 

leading foot. A 'mid-flight' (MID) response was characterized by the forefoot contacting the 

ground more rapidly and posteriorly that the FF response. Lastly, the 'toe-down' (TD) response 

involved just the tip of the forefoot contacting the ground more anteriorly than the MID response 

(Figure 1.11). 

Trailing leg strategy dunng slip Trailing teg strategy during slip Trailing leg strategy during slip 

Figure 1.11: Identifies the differences in foot flight duration, distance and foot angle between compensatory 
stepping responses (Modified from Fig. 1, Moyer et al., 2009). 

Muscle Activity and Joint Moments 

Corrective moments of the trailing limb consisted of flexor and extensor moment 

occurring simultaneously at the knee and hip respectively at approximately 30% into stance. 
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These moments occurred in all categories except MIN as the trajectory of the trailing limb is 

least disturbed (Figure 1.12) (Moyer et al., 2009). These findings are further attenuated, as early 

activation of the TA, RF and BF have been reported in the trailing limbs response. The activation 

of the TA while the MG is suppressed allows for dorsiflexion of the trail limb ankle to reduce the 

risk of tripping. The RF contracts to extend the knee controlled antagonistically by the BF while 

the hip extends (Marigold et al., 2003). Inter-limb coordination demonstrates that the trailing 

limb plays an important role in overall active balance recovery and should be incorporated in 

strategies to decrease the risk of falls (Marigold et al., 2003; Tang et al., 1998; Moyer et al., 

2009). 
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Figure 1.12: Illustrates the moments and angles of the hip, knee and ankle for the unperturbed 
trailing limb in slip trials ( Modified from Fig. 2, Moyer et al., 2009). 

1.5.3 Slip Outcome 

The final segment in the model refers to the outcome of an unexpected slipping 

perturbation; whether an individual were able to regain their balance or succumb to a potentially 
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hazardous fall. The outcome of an unexpected slip is dependent on several key factors. The 

characteristics of the individual (i.e., age, reflexes, health, muscle/bone strength, etc.) are major 

determining factors. Younger individuals may have better reactive abilities as they are generally 

in good health; have quicker reflexes, stronger muscles and bones allowing for more effective 

and efficient reactive balance recovery responses (Perry et al., 2007; Son et al., 2009). 

Furthermore, the risk of severe injury in younger individuals due to a hazardous slip is far less 

than in an older population (Verma et al., 2008; You et al., 2001; Perry et al., 2007; Son et al., 

2009; Menant et al., 2009). 

Another key variable that is characteristic of the slip is the function of environmental 

factors such as the type of contaminant or footwear-floor interface. Most of the primary research 

has focus on the footwear-floor interface and its contribution to slipping (Li and Chen, 2004; 

Hanson et al., 1999; Tsai and Powers, 2008; Manning and Jones, 2001). These studies have 

helped in the development of less slippery floors and soles, but the risk of slipping on a 

contaminant is still too great. Considering that these innovations have not been able to drastically 

reduce the number of same level falls in the workplace from slips demonstrates that other factors 

potentially override the footwear-floor interface when a contaminant is introduced. The risk of a 

fall is imminent in any situation where the slip distance exceeds approximately 0.1 m. If the slip 

is not detected quickly enough and the ACOF is too low, a slip will be quicker and farther; 

allowing the heel velocity to exceed 0.5 m/s which also increases the risk of a fall (Redfern et al., 

2001). 

Strides have been made in attempt to address the risk of hazardous falls in the workplace. 

Even with slip resistant floors and appropriate footwear the risk of a fall and severe injury is still 

too great. It may in fact be other footwear characteristics that effect normal foot motion during 

29 



the response to the slip that are increasing the risk of a fall when an individual slips (Lehane and 

Stubbs, 2001; WSIB, 2010; Verma et al., 2008; Maynard, 2002). 

As a function of previous research, it is clear that it is difficult to decrease the risk of an 

unexpected slip due to contaminants. Further investigation is needed to understand how the body 

detects and responses to unexpected slips. A three dimensional analysis of the tri-planar motion 

of the subtalar joint and its role in the detection and response to a slip has never been examined. 

Determining the function of the subtalar joint during an unexpected slip may be important in the 

prevention of falls. By gaining a better understanding of the subtalar joints role in the response to 

a slip, footwear characteristics that may ultimately modify its function could affect the response 

to slips. 

1.6 Definition and Function of the Subtalar Joint 

1.6.1 Definition of the Subtalar-joint 

The ankle joint complex consists of two major axes: the ankle and subtalar axes (Figure 

1.15 b) (Nigg and Herzog, 1999). The ankle or talocrural joint is formed by articulations between 

the tibia and fibula (tibiofibular joint), and the tibia and talus (tibiotalar joint) creating a uniaxial 

hinge joint. This joint runs medio-laterally through the malleoli, oblique to the tibia, allowing for 

approximately 50° of plantarflexion and 20° of dorsiflexion (Figure 1.15 e). Normal gait 

averages 20° of dorsiflexion and 20-25° of plantarflexion (Hamill and Knutzen, 1995). Ankle 

motion reported in most slipping research has limited the ankle complex to motion in two-

dimensions about this axis. This study will expand previous research by investigating motion 

about the subtalar joint axis in three-dimensions. 
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Figure 1.15: a) illustrates the bones that form the joints of the ankle complex, b) identifies the two axes of the ankle 
complex, d) illustrates the oblique nature of the subtalar joint axis, d) and e) illustrate the moevemetn associated 
with the ankle complex and subtler joint (Nigg and Herzogg, 1999; Modified from Fig. 6-33, 6-36 and 6-37, Hamill 
and Knutzen, 1995). 

The subtalar joint or talocrural joint is formed between the talus and calcaneous (Figure 

1.15 a), the largest weight bearing bones of the foot. The convex surface of the talus sits into the 

concave surface of the calcaneous forming the hind foot, articulating at the anterior, posterior 

and medial sites. The subtalar joint axis runs obliquely from the 'posterior lateral plantar surface' 

to the 'anterior dorsal medial surface' (Figure 1.15 b), allowing for tri-axial motion. The axis is 

slanted approximately 16° antero- medially from the longitudinal axis and inclined 42° antero-

superiorly up from the horizontal axis in the sagittal plane (Figure 1.15c). Motion occurring 
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about this axis is defined as pronation (a combination of dorsiflexion (DF), abduction (AB) and 

calcaneal eversion (EV)) and supination (a combination of plantarfiexion (PF), adduction (AD) 

and calcaneal inversion (IV)) (Figure 1.15 d) (Nigg and Herzogg, 1999; Hamill and Knutzen, 

1995). The motion of the subtalar joint has been difficult to measure due to its oblique axis and 

that the talus is hidden internally in the ankle. As a result, motion at the ankle is typically defined 

unrelated to an anatomical joint: plantar-dorsiflexion about medio-lateral, ab-adduction about a 

superior-inferior and in-eversion about an anterior-posterior axis (Figure 1.15 e) (Nigg and 

Herzogg, 1999). 

7.6.2 Function of the Subtalar-joint 

The primary function of the subtalar joint is to absorb internal and external rotation of the 

femur and tibia during stance by opposing the movement with pronation and supination 

respectively. Shock absorption is the second major function of this weight bearing joint, 

achieved through pronation upon heel contact. This allows unlocking at the knee joint as the tibia 

internally rotates faster than the femur. During normal gait, the foot is in a slight supine position 

(approximately 3°) before heel contact. As the heel contacts the ground the subtalar joint 

immediately begins to pronate; the foot is plantarflexed to reach foot flat and the talus rotates 

medially on the calcaneous. Maximal pronation is normally reached around 35-45% stance phase 

at a range of 3-10°. Once foot flat has been achieved, the tibia begins to externally rotate as the 

shank moves of the foot. This results in supination at the subtalar joint (3-10° until heel-off) 

creating a more rigid body for toe-off (Figure 1.16) (Hamill and Knutzen, 1995, Arndt et al., 

2004). 

The subtalar joint may play a key role in the reaction to a slip perturbation. Therefore, an 

investigation of normal subtalar joint motion during a slip perturbation in barefoot individuals in 
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needed. Furthermore, footwear characteristics may change the way the subtalar joint functions 

during gait (i.e., limiting supination or pronation, changing foot-floor angles or effecting foot 

angular velocities upon heel contact) which would change its normal function during a slip 

recovery. Further investigation into how different footwear characteristics affect normal subtalar 

joint motion is also important. 
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Figure 1.16: Illustrates the movement about the about the subtalar joint axes. Supination is a 
combination of inversion, platarflexion and abduction while pronation is the contrary (Modified from 
Fig. 5, Ardnt et al., 2004). 

1.7 The Interaction of the Footwear Characteristics on Balance Control 

It is generally accepted that footwear with treaded soles will afford more traction on most 

surfaces compared to flat soled footwear (Li and Chen, 2004; Tsai and Powers, 2008). 

Furthermore, different flooring types and soling material have an effect on the COF (Li 

and Chen, 2004; Manning and Jones, 2001), but statistics have shown that tread alone will not 

significantly decrease the risk of hazardous slips when there is a risk of contaminants such as oil, 

water or ice (WSIB, 2010; Maynard, 2002; Hanson et al., 1999; Manning and Jones, 2001). 

Investigation of the role of the subtalar joint axis in active balance recovery may be the key in 

beginning to understand how other footwear characteristics may contribute to the high incidence 

of falls in the workplace. This study will examine new territory by directing attention to the 
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interaction of the foot and the footwear characteristics (i.e., insole stiffness and heel counter 

stiffness) during a slip where previous research had focused more on the interaction of the 

footwear characteristics (i.e., sole material, stiffness and type) and the environment (Figure 

1.17). 

Identifying footwear 
characteristics that effect the 
function of the subtalar joint 
during a slip to decrease the 

risk of falls 

Examined the role of sole 
treading/material and the 
interaction with different 

contact surface to decrease 
the risk/severity of slipping. 

Identifying the role of tri-
planar motion about the 
subtalar joint axis during 

a slip 
Contact Surface 

Figure 1.13: A model outlining the progression of research with respect to previous studies. 

Many footwear characteristics have been investigated in relation to balance and stability 

during gait, but very little research has explored footwear characteristics and the effect on slip 

recovery. Dai et al (2006) examined insole friction and the effect of socks on biomechanical 

responses during gait. Socks with higher friction against the foot tend to decrease the shear force 

between the foot and the footwear causing slippage within the footwear. The foot has the most 

potential to slip within the footwear from foot-flat until mid-stance and then again at toe-off. The 
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heel slipping within the footwear my exaggerate the response to minor slips and diminish the 

ability to respond effectively to more hazardous slips. 

Midsole stiffness has been found to play an important role in balance. Softer soles are 

associated with a reduction in mechanical support to manipulate the COM, requiring larger 

mechanical responses to balance perturbations compared to barefoot or harder sole conditions. 

Furthermore, sensory information needed to provide an effective response may be dampened by 

the softer material (Perry et al., 2007). A softer midsole material may dampen the ability to 

detect the initiation of a slip as well as decrease the ability of the subtalar joint to respond 

appropriately. 

Sensory information provided by cutaneous feedback from the plantar-surface of the foot 

has been found to play an important role in balance and corrective strategies. Textured insoles 

have been found to create significant changes in the activity of both the ankle flexors and 

extensors, influencing ankle kinematics as well as knee joint moments. Decreased activity in the 

soleus and tibialis anterior were reported as causing increased plantarflexion at heel contact. Heel 

contact was associated with a period when the plantar surface is most sensitive to stimuli and 

may hinder the ability to respond effectively to a slip (Nurse et al., 2005). 

On the contrary, Perry et al., (2008) investigated SoleSensor™ inserts and found that they 

improve balance and stability during normal gait in an older population. Insoles consisting of a 

raised ridge around the edge of the insole stimulated the cutaneous mechanoreceptors near the 

periphery of the plantar-surface, areas associated with a loss of balance. These results were 

further attenuated as stability continued to improve with continued usage of the insoles. During 

an unexpected slipping perturbation SoleSensor insoles may improve the ability of an individual 
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to detect and appropriately respond to an unexpected slip by improving the ability for an 

individual to detect the imbalance when there is a cutaneous deficit. 

Another footwear characteristic that may be important to investigate is heel counter 

height and stiffness. Menant et al., (2009) determined that higher collars in footwear provide 

more stability on both wet and irregular surfaces. However, this may have been attributed to the 

restriction of subtalar joint motion rather than as a function of increased mechanical and sensory 

input around the ankle. High, stiff heel counters may also alter normal gait patterns; decreasing 

stride length. Decreased stride length has been found to be associated with a decreased risk of 

slipping (Fong et al., 2008), but during even a minor slip, may decrease the ability of the subtalar 

joint to respond effectively to regain balance. 

In most workplaces, safety footwear is mandatory and must be approved by the Canadian 

Standards Association (CSA). This safety rating will guarantee the footwear can withstand 

certain amounts of compression and puncture forces. Safety boots and protective footwear have 

sturdy reinforced soles and higher stiff heel counters for support and protection. Safety boot 

footwear characteristics that may contribute most to improper subtalar joint function are antero­

posterior stiffness and heel collar stiffness. There has been little to no published research at the 

present time on the effect that anterior-posterior stiffness has on stability and balance. 

1.8 Rationale for this Study 

Slips in the workplace have lead to high incidences of same-level falls causing serious 

injuries and even death (WSIB, 2010). Primary research in this area has focused more on the 

environmental interaction of the floor and soling characteristics of the footwear in order to 

prevent the occurrence and severity of slips (Li and Chen, 2004; Manning and Jones, 2001). 

Statistics demonstrate that this approach has not been very effective in reducing the number of 
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hazardous slips due to their unpredictability (WSIB, 2010; Maynard, 2002). As the incidence of 

unexpected slips is still great, research focusing more on the role of the subtalar joint in detecting 

and responding to a slip within different footwear conditions may be very beneficial. First, an 

investigation into the motion of the subtalar joint in barefoot individuals is needed to model the 

normal response during a slip recovery. This work will supplement the previous "tribological" 

approaches to the prevention of falls, but instead of trying to prevent unexpected slips, increasing 

the chance for recovery. Second, an investigation of how different footwear characteristics affect 

gait variables (and theoretically the subtalar joint motion) during a slip perturbation may lead to 

recommendations of how to minimize the severity and increase the chances of recovery. 

It is generally accepted that pronation (a combination of dorsiflexion, eversion, 

abduction) and supination (a combination of plantarflexion, inversion, adduction) generated at 

the subtalar joint, play an important role during the normal gait cycle (Hamill and Knutzen, 

1995; Nigg and Herzogg, 1999). However, the tri-planar motion about the subtalar axis has yet 

to be investigated in responding to a slipping perturbation. Gait characteristics associated with 

the ankle (e.g. angular velocity at heel contact) are known to effect slip severity and recovery 

attempts (Redfern et al., 2001, Cham and Redfern, 2001, 2002). Previous research looking at 

responses to heel contact slipping perturbations have simplified movement within the ankle 

complex to two dimensions about the ankle axis; reporting the ankle passively plantarflexes in 

response to an anterior translation in the sagittal plane (Cham and Redfern, 2001; Hughes et al., 

1995). This along with the presence of tibialis anterior activity during the slip (Chambers and 

Cham, 2007) may indicate a role for foot pronation/supination during the reaction. Therefore, 

further analysis of foot motion should be preformed and evaluated in tandem with muscle 
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activation patterns to understand the potential importance of the interaction between the muscle 

activity and the motion of foot pronation/supination during a successful slip recovery. 

The foot is the first link to our environment during normal upright locomotion. It is here 

that a slip will first be detected by our somatosensory/kinesthetic systems (cutaneous receptors, 

golgi tendon organs, muscle spindles and joint receptors) due to changes in pressure under the 

foot and/or joint trajectories at the ankle. As we age, deficits in cutaneous sensation under the 

foot (Zehr and Stein, 1999; Perry, Santos and Patla, 2001; Perry, 2006), reaction time (Mcllroy 

and Maki, 1996; Thelen et al., 1997; Maki, Edmondstone and Mcllroy, 2000; Tseng, Stanhope 

and Morton, 2009) and muscle force production in the lower limbs (Thelen et al., 1996; Barry, 

Rick and Garson, 2005) may make these individuals at higher risk of experiencing a hazardous 

slip. Therefore, investigation of normal subtalar joint motion during a slip recovery for young 

individuals free of neurological or musculoskeletal disorders will give insight into its function 

and how it degrades as we age. From this, one can then hypothesize ways to try and increase 

chances for recovery and minimize risk of falls due to same-level unexpected slips. 

Footwear plays a very important role in how we interact with our environment during 

ambulation. Certain footwear characteristics have been found to increase frictional properties 

when they interact with different surfaces (Li and Chen, 2004; Manning and Jones, 2001), but 

this has not been successful in reducing the incidence of hazardous slips. The effect of different 

footwear characteristics on slip severity and recovery can be evaluated by comparing how 

different footwear characteristics affect gait parameters during normal gait and slip perturbations. 

This will allow recommendations of what footwear characteristics will increase the likelihood of 

recovery. 
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1.9 Research Objectives and Hypotheses 

The objective of this investigation is two-fold. First, to determine the role of the subtalar 

joint during a slipping perturbation, by examining the three-dimensional motion around the joints 

axis and the associated muscle activity in young barefoot individuals free of any neurological or 

musculoskeletal disorders. This insight may reveal an important function of the subtalar joint in 

slip recovery. Second, to determine the effect of different footwear characteristics (stiff medio-

lateral insoles, stiff heel counters) on normal subtalar joint motion and recovery from unexpected 

heel contact slip perturbations (including muscle activity) in young individuals free of any 

neurological or musculoskeletal disorders. 

The main hypotheses of this thesis are: 

1. In response to a heel contact slip perturbation; there will be early onsets and greater 

magnitudes in the lead lower limb EMG activity. More specifically earlier onsets 

(compared to normal walking trials) will occur in the tibialis anterior and peroneus 

longus of the perturbed limb. There will also be inhibition of the gastrocnemius activity 

in the perturbed limb. This hypothesis will be examined by analyzing lower limb muscle 

activity during slip trials in barefoot individuals, timing and magnitudes, compared to 

normal gait trials collected prior to any slipping. 

2. Associated with this muscle activity, there will be a delay in foot pronation (eversion) 

resulting in the subtalar joint maintaining a supinated (inverted) position. This hypothesis 

will be examined by analyzing the onset of subtalar joint motion (inversion/eversion) 

during slip trials in barefoot individuals compared to normal gait trials collected prior to 

any slipping. 
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3. There will be an increase in slip severity and inability to recover quickly due to restrictive 

footwear characteristics. This will be determined by frequency of slip incidences and slip 

severity within each footwear condition. Condition 4, which is a combination of a stiff 

heel counter and a stiff medio-lateral insoles will affect normal gait characteristics the 

most (barefoot as control) and is hypothesized to increase angular velocities at heel 

contact, increase shear and normal forces, increase rates of loading and decrease the 

degree of subtalar joint motion resulting in greater slip severities and frequencies. This 

hypothesis will be examined by comparing kinetic and kinematic variables and EMG 

timing and magnitudes between all conditions during normal walking trials as well as the 

frequency and severity of slips across conditions. 
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Chapter 2: Methodology 

2.1 Participants 

Forty-two healthy, young adult volunteers were recruited from a university population to 

participate in this study. Their ages ranged from 18 to 30 years (mean 21.2 years, S.D. ± 2.7 

years), weight ranged from 51.2 to 89.8 kg (mean 67.4 kg, S.D. ± 8.9 kg) and height ranged from 

1.57 to 1.93 m (mean 1.71 m, S.D. ±0.1 m). Participant demographic and anthropometric data is 

presented in Table 2.1. Written informed consent, approved by the Wilfrid Laurier University 

Research Ethics Board, was obtained prior to participation. Prior to the experimental procedure 

each participant answered an exclusion questionnaire (Appendix A). Exclusion criteria included 

any clinically significant history of neurological, orthopedic, cardiovascular or pulmonary 

abnormality as well as any other difficulties impeding normal gait. 

Table 2.1: 

Mean (STDev) of demographic information overall and within each condition. Statistical comparison alpha <05. 

Study (N=42) 

Males 

Females 

Average Age (yrs) 

Average Height (mj 

Average Weight (kg) 

Foot Length (m) 

Footwear Conditions 

Totals 

12 

30 

21.13 (2.7 j 

1.71 (0.1} 

67.43 (8.87} 
0.29 (0.02} 

0(n=10) l(n=8) 2(n=8) S(n=S) 4(n=8) 

2 1 3 2 4 

8 7 5 6 4 

22.00 (2.31} 21.63 |3.5S} 20.5 (1.07} 20.63 (1.51} 22 (3.39} 

1.68 (0.03) 1.72 (0.06} 1.76 (0.12} 1.68 (0.11} 1.71 (0.03} 

71.08 (10.71} 64.34 (5.56} 72.07 (9.79} 64.26 (8.64) 69.06 (9.85} 

0.25 (0.02} 0.29 (0.01} 0.29 (0.01) 0.28 (0.02} 0.29 (0.02} 

p-value* 

0.6461 

0.4S15 

0.2738 

*< 0.001 

Condition 0: barefoot; Condition I: soft heel counter, flexible insole; Condition II: stiff heel counter, flexible insole; Condition 
III: soft heel counter, rigid insole; Condition IV: stiff heel counter, rigid insole. *Foot length was found to be significantly 
different between the barefoot condition (0) and shoe conditions (1-4) as foot length measurements included the shoe. 

Data collection was performed in two stages. The first ten participants were assigned to a 

barefoot condition (condition 0). While the remaining 32 participants were randomly assigned to 

one of four footwear conditions (n=8): condition 1, condition 2, condition 3 or condition 4 
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(Figure 2.1; Appendix B). The conditions consisted of one of two heel counter stiffness (soft and 

stiff) crossed with two insole harnesses (flexible and rigid) to create the four conditions: 

Condition 1: Flexible insole and soft heel counter 
Condition 2: Flexible insole and stiff heel counter 
Condition 3: Rigid insole and soft heel counter 
Condition 4: rigid insole and stiff heel counter 

Condition 2 
Figure 2.1: Demonstrates the different footwear characteristics and combinations used 
within each footwear condition. 

Condition 4 most closely mimicked the rigidity of a work boot which was hypothesized to have 

the greatest effect on the subtalar joint function during a slip. 

2.2 Data Acquisition 

The equipment set up is outlined in the following block diagram (Figure 2.2). The Opto 

Trak motion analysis system (Northern Digital Inc., Waterloo, ON, Canada), electromyography 
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(EMG) (Bortec Biomedical, Calgary, AB, Canada) and the force plates (Advanced Mechanical 

TI, Watertown, MA, USA) collections were all controlled through the main collection computer. 

Both the EMG and force plate signals were passed through amplifiers and sampled (lOOOHz) via 

an analog to digital (A/D) conversion board before reaching the computer. The lab consists of a 

10 meter walkway, with three embedded force plates and two Optotrak camera banks (Figure 

2.3). 

OptoTrak 

Computer Cameras 

A/D Board 

AMP EMG 

AMP FP 

Figure 2.2: Outlines the system configuration for data collection in the lab. EMG: 
electromyography, FP: force plates. 
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Figure 2.3: Demonstrates the laboratory set-up: 10m walkway, force plates, OptoTrak 
cameras, sandpaper mats and global coordinate system. 
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2.2.1 Kinetic Data 

Ground reaction forces consist of forces acting along antero-posterior, medio-lateral and 

vertical axes and were recorded by three embedded forces plates (Model: OR-6-2000) within a 

10m walkway, along with the moments around each axis. The three force plates are securely 

mounted within the floor and allowed for the detection of certain events during gait; such as heel 

contact, peak forces and toe-off. The centre of pressure was also calculated from this data. The 

force plates are 0.285m apart and staggered, allowing for normal foot contact during gait. The 

force plate signals were collected using BioSoft collection software (Biodaq v2.0, 1997, 

Watertown, Ma., USA) at 1000Hz sample rate. 

2.2.2 Kinematic Data 

A two-camera OptoTrak Motion Analysis System (OptoTrak 3020) were used to collect 

kinematic data (i.e., COM, joint angles, heel displacement and velocity). Data was sampled at 

100Hz using Northern Digital Toolbench software (Northern Digital Inc., Waterloo, ON, 

Canada). A 20 infrared emitting diod (Ireds) marker set up was used for this experiment (Figure 

2.4). Ired markers are numbered and strobe an infrared light that was detected by the Optotrak 

camera. The cameras use triangulation to determine the markers' location in three dimensions 

and track its motion during the trial. Twelve Ireds were placed bilaterally on the third 

metatarsals, ankles, knees, hips, and acromions as well as the xyphoid process and forehead to 

track the motion of the whole body represented as the centre of mass (COM) (Perry et al., 2007). 

Tracking markers were placed on the tibia to track tibial motion as well as on the mid-foot and 

hind-foot to define subtalar joint motion (inversion/eversion) in three-dimensions. The 

calcaneous (hind-foot) consisted of markers mounted on a plastic dome to create a rigid body. 
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During the footwear conditions, Ired markers were placed in the same locations as in the barefoot 

condition, but on top of the canvas shoe. 
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Figure 2.4: a) the 12 marker set up to examine the COM/BOS relationship, b) illustrates the three 
tracking markers located on the tibia, c) illustrates the three markers on the calcaneous and two 
tracking markers on the forefoot to define the subtalar joint axes. 

2.2.3 Electromyography 

Muscle activity was collected using surface electromyographical (EMG) electrodes and 

leads; a Bortec AMT-8 that accepted 8-channels for recording EMG signals were collected at 

1000Hz, using AMTI's BioSoft collection software. The collection systems were synchronized 

by a pulse sent from the Optotrak control unit to the A/D unit where the onset of this pulse 

triggered the collection of the force plates and EMG data. EMG data was recorded for eight 

lower limb muscles to determine timing, duration and magnitude of normal gait and the slipping 

responses. The rectus femoris (RF), bicep femoris (BF), and medial gastrocnemius (MG) were 

recorded for both the leading and trailing leg. The tibialis anterior (TA) and peroneus longus 

(PL) were only recorded on the leading leg (Figure 2.5). 

Surface EMG electrodes were placed over slightly abraded skin; cleansed with NuPrep 

gel to remove excess skin and oils. Electrode placement was positioned away from the motor end 

point and highly tendinous areas so that they were directly located over the muscle belly and 
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oriented in the direction of the muscle fibres (Mesin et al., 2009). Reference of electrode 

placement was verified by muscle palpation and as indicated by Delagi et al., (1975). The inter-

electrode distance was kept consistent at 1cm apart to minimize interference and artifacts. The 

preamplifiers were adhered to the skin with transpore tape to prevent excessive movement and 

noise (Moyer et al., 2009; Marigold et al., 2003; Zajac et al., 2003). 

Figure 2.5: Illustrates the EMG electrode placement on the anterior-posterior a) thigh and b) 
lower shank muscles. 

2.3 Experimental Protocol 

Upon entering the lab participants signed and dated an informed consent letter. 

Anthropometric data was collected including: height, weight, waist, knee and ankle diameters. 

Semmes-Westein monofilaments were used to take cutaneous sensation measurements from the 

bottom of both feet (middle of the heel pad, 5th and 1st metatarsal pad, hallux, medial and lateral 

arches, and at any callus location) to ensure that participants did not have sensation deficits. 

Participants were asked to remove their shoes and socks. Each foot was propped up one at a time 

to allow access to the plantar surface of the foot. Participants were then asked to close their eyes 

and respond with a verbal "yes" whenever they felt pressure on their sole. Each application of 

the filament was reduced to half its length so as to give a constant pressure (range 0.1-11 g). 

Filaments were presented in randomized locations from low to high until one was detected 
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consistently over all of the areas. A level of sensation was then assigned to the individual based 

on this threshold. Any deformation of the great toe (hallux valgus) was also noted as this is 

known to change normal pressure distributions under the foot during gait (See Appendix B) 

(Perry et al., 2001). Foot tracings were also taken of both feet for future reference of foot 

dimensions and toe characteristics. 

Participants within the footwear conditions were then put into the appropriate sized 

canvas shoes outfitted for the condition they were randomly assigned to before EMG and Ired 

markers were adhered. The eight muscles of the lower limb were cleansed and landmarked for 

EMG electrode placement. Locations were then tested by using passive resistance to their 

primary joint motion with the aid of an oscilloscope. Gains were then adjusted on the Bortec unit 

until each muscle exhibited ± 1 volt during activation. Ired markers were then adhered using 

sticky discs and transpore tape. Participants were then asked to stand on the second and third 

force plate; their right foot and ankle were adjusted to align with the anterior-posterior axis of the 

global coordinate system. Each marker was then checked for congruency and the markers on the 

feet were measured to identify their specific locations. The participant was then instructed to 

stand erect; focus on an X on the wall, while a quiet standing calibration trial was recorded for 

five seconds. 

Trials consist of walking along a 10 meter walkway over the force plates while focusing 

on an X located at eye-level on the perpendicular wall. Participants performed practice trials to 

determine their starting position, which allowed for consistent force plate contact and a normal 

gait velocity (0.97-1.51 m/s; Redfern et al., 2001); this was maintained for each trial. Sandpaper 

sheets were velcroed at equal distances two steps before, on and two steps after the force plates 

to allow for deception as to the location of the slip mat (Figure 2.6). The slipping apparatus 
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consisted of wax paper adhered to the underside of a sandpaper sheet that was swapped in on the 

second force plate in an attempt to induce an unexpected slip. The frictional properties of the slip 

mat are similar to that of ice, averaging a COF value around 0.1 ± 0.01 reported by both Heiden 

et al., and Siegmund et al., in 2006. Between each trial the participants were asked to face the 

back wall while the sandpaper sheets on the force plates are swapped or refastened. Similar 

noises were made to ensure anonymity as to the location of the slip mat. 

Barefoot subject OptoTRAK 
Camera 2 

force plate 1 

:<m wm 

force plate 3 

Slip Induced' 
force plate 2 

Sandpaper 
mats 

OptoTRAK 
Camera 1 

/ 

Figure 2.6: Illustrates the laboratory set-up: the 10 meter walkway with imbedded force 
plates, sandpaper mats, and camera placement. 

Two research assistants walked alongside the participant in case of a complete loss of 

balance. One assistant was also responsible for holding the connector cables while the participant 

walked to prevent the participant from tripping. The assistants were blinded to the trial 

conditions and faced the back wall with the participant during the adjustments. Participants were 

allowed to practice walking so that they made contact with the force plates and maintained a 

consistent gait speed. Before the trial collection began, participants were reminded that they may 

experience a slip during the collection, but to try and walk as they did during their practice trials 
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(i.e., same speed and stride length). Participants were reminded to increase or decrease their gait 

speed based on their foot contact with the force plates (i.e., short heel contact with the force 

plates, asked to increase gait speed; toes off the front of the force plates, asked to decrease gait 

speed). 

In the barefoot collection, the 'trial protocol' consisted of one quiet stance trial, ten 

normal "control" walking trials, followed by two consecutive slip perturbations on the second 

force plate in attempt to elicit two slip recovery responses. The first slip attempt was considered 

as a "true unexpected slip response". After the two consecutive slip trials, fourteen non-slip 

walking trials were completed to investigate if a normal state of walking was maintained. This 

was followed by a third and final slip perturbation that was attempted on second force plate for a 

total of 29 trials (See Appendix B). The slips were always induced on the second force plate with 

a right heel contact in order to collect subtalar joint motion with the two camera set-up. 

In footwear conditions, the trial protocol consisted of a total of 44 trials; ten walking 

trials for each footwear condition with the addition of one quiet stance at the beginning of each 

set. The first three sets of trials consisted of the footwear conditions the participant were not 

assigned to, and were presented in a random order. The last set often trials was the condition the 

participant was randomly assigned to. During trial six and seven of their assigned footwear 

condition (last set often trials); the participant experienced two consecutive slip perturbations 

followed by the final three non-slip trials for that set (See Appendix B). The randomization of 

the trial protocol for this collection was done firstly by controlled randomization to ensure the 

conditions were presented equally among the participants (3-4-3 distribution). The controlled 

randomization was then randomized using Microsoft Excel and a random number generator to 

randomize assignment to participants. After all of the trials were completed, participants filled 
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out an exit questionnaire to gather information pertaining to slip and fall experiences (See 

Appendix C). Results of this questionnaire were not addressed in this paper. 

2.4 Data Analysis 

2.4.1 Kinetic and Kinematic Variables 

From the kinematic and kinetic data, various measurements were calculated (i.e., stride 

length, stance duration, ground reaction forces, joint angles, heel displacement and velocity). 

These variables are outlined in detail in Appendix D. Ground reaction forces (GRF) were used to 

calculate peak forces and loading rates in the anterior-posterior (AP) and vertical axis, and were 

normalized to body weight. The vertical GRF were used to determine heel contact and toe-off 

(threshold of 3% bodyweight) that was used to define commencement and termination of stance; 

stance duration (SD). Joint angles in the sagittal plane (flexion/extension) were calculated for the 

hip, knee and ankle. Joint angles were normalized to neutral angles collected during quiet stance 

trials. The foot and ankle markers were used to calculate step width and step length (Perry, 

2007). Step width and length were normalized to height. 

Slip severity was classified using the heel displacement (m) and the peak heel velocity 

(peak sliding velocity) determined using the most posterior heel marker located on the 

calcaneous of the leading foot. The displacement was calculated by taking the placement of the 

heel marker, along the anterior-posterior axis, upon heel contact to the position of the heel 

marker when forward movement stopped (0 m/s). 

2.4.2 Subtalar Joint Motion 

The calculation of the subtalar joint motion was performed using the KinMat program (a 

collection of Matlab toolboxes written by Christoph Reinschmidt and Ton van den Bogert, 1997) 
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that calculates the intersegmental motion (cardan angles) (Joint Coordinate System; Grood and 

Suntay, 1983) between two segments. During an initial standing trial the approximate location of 

the two segments positioned in their anatomical neutral position (tibia, the "lower leg" segment 

and the foot segment) was used to represent the joint's zero position. Then by tracking the 

position of these markers during the movement, the relative movements of the foot segment with 

respect to the tibia segment were calculated. An 'xyz' cardan rotational sequence was chosen for 

this process ('xyz': first rotation about x fixed in first segment, y floating axis, and last rotation 

about z fixed in the second segment) (Woltring, 1994). This resulted in the three rotations of the 

foot relative to the lower leg: plantar/dorsiflexion, inversion/eversion and abduction/adduction. 

For this investigation, the subtalar joint motion will be focused around foot inversion/eversion as 

this is the major contributor to supination/pronation and most functionally valuable. As the foot 

everts/inverts during stance the bones in the foot are relaxed for shock absorption, or rigid to 

allow for force transference (i.e., toe-off) (Hamill and Knutzen, 1995; Redfern et al., 2001; 

Kitaoka et al., 2006). Unfortunately, subtalar joint motion was only able to be calculated within 

the barefoot condition due to large marker errors. 

2.4.3 Electromyography 

Electromyography (EMG) signals were full wave rectified and filtered using a Bandpass 2nd 

order butterworth with a frequency cutoff of 10 and 100 Hz, and then normalized to the stance 

time (0% heel contact, 100% toe-off). Onsets and durations were determined by using a 

threshold of 5% above activity recorded during a quiet period. Activation that was above this 

threshold for a minimum of 50ms was considered "on". The muscle was considered "off when 

activation fell below the 5% threshold for 50ms or more. Onset and duration timing was 

normalize to % stance of the right (perturbed) limb. 
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The magnitude of activity was determined from onset to cessation of the integrated EMG 

(Chambers and Cham, 2007) and normalized to the average magnitudes during normal walking 

trials. Activation patterns were characterized into a three burst pattern over the stance phase. 

EMG activation (onsets) occurring just prior to or just after heel contact (-30 to 10% stance) was 

classified as "preparatory" activity. Activation occurring during the middle third of stance (20 to 

50% stance) was classified as "stabilizing" activity and any activation occurring in the later third 

of stance (60 to 100% stance) was classified as "transitional" activity (Figure 2.7). Characteristic 

activation patterns of a given lower limb muscle included activation (onset) either in the 

preparatory phase and/or the transition phase or only during the stability phase. 

EMG Activation Phases During Stance 
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Figure 2.7: Demonstrates the division of EMG activation patterns into three 
distinct phases: Preparatory Phase include onsets occurring from -40 to 10% 
stance, the Stability Phase from 20 to 50% stance and the transition phase from 
60 to 100% stance. 

2.4.3 The Slip Perturbation 

"Normal walking trials" were considered trials recorded prior to any slip perturbation as 

they would most resemble normal gait patterns. These trials were used in the analysis across 
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conditions. Post-slip unperturbed trials were not used in this investigation as they may exhibit 

strategies (i.e., gentler heel strike, short strike length, small foot-floor contact angles, slower heel 

velocities) that alter normal gait patterns in order to prevent future slipping (Marigold and Patla, 

2002; Heiden et al., 2006; Fong, Hong and Li, 2009; Cham and Redfern, 2002; Bhatt and Pai, 

2009). The first slip perturbation is potentially the most unexpected and will produce the most 

realistic slip and slip response. For the purpose of this thesis, the results will focus on reporting 

variables associated with the first slip perturbation trial to ensure a slip and recovery that is most 

representative of a 'real life' scenario. 

During slip trials participants varied as to the severity of their perturbation and 

consequently were grouped into four classifications. A '0 ' was assigned to participants who did 

not have greater forward heel movement than during normal walking trials (<0.025m, <1.0m/s). 

In these participants there were no significant changes in normal gait parameters as they did not 

experience a significant change in heel trajectory. These participants were termed "non-slippers" 

and their "slip" trials were not included in the analysis. A class ' 1' slip is defined as a mini-slip. 

These participants experienced a small slip perturbation (0.025-0.049m, 1.0-1.4m/s) resulting in 

minor changes in gait parameters as a result of the perturbation. Participants with heel 

displacements between 0.05-0.10m (1.5-2.0m/s) were termed midi-slips, a class '2 ' slip. These 

participants experienced a medium slip perturbation with major changes to gait parameters. A 

class ' 3 ' slip was considered a max-slip perturbation (>0.10m, >2.0m/s). These participants 

experienced large slips with extreme changes in gait parameters (Table 3.1). 
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Table 2.2 

An outline of the slip classification of the first unexpected slip perturbation assigned to all participants. 

Slip Classification 

Level Description Heel Displacement (m) 

1 

2 

3 

Non-Slip: Participants who did not have forward heel movement 

significantly larger than during normal walking trials. 

Mini-Slip: Participants experienced a smalt slip perturbation with 

forward heel displacement slightly larger than during walking trials. 

Midi-Slip: Participants experienced a medium slip pertumbation eith 

forward heel displacement larger than mini-slip trials. 

Max-Slip: Participants experienced a large slip perturbation with 

forward heel displacements exceeding midi-slip trials. 

< 0.025 

O.Q25-0.G45 

0.05-0.10 

> 0.10 

2.5 Statistical Analysis 

The results were analyzed using the SAS computerized statistical package. Normal 

walking trial variables were evaluated using a between-subject, one-factor ANOVA (variables 

across all conditions 0-4 during normal gait trials) with a priori significance level of p < 0.05. 

Important measures that were examined include: stance duration, step length, heel displacement, 

heel velocity, ground reaction forces, rate of loading, breaking impulse, the hip, knee and ankle 

joint angles, and the ankle angular velocity (See Appendix D). Variables were then evaluated 

using a within-subject, one-way repeated measures ANOVA (three normal walking trials prior to 

any slip perturbation vs. the first unexpected slip trial within each condition) with a priori 

significance level of p < 0.05. Outliers were investigated and removed if values were due to 

errors in collection (i.e., participant missed the force plate, error in calculation during 

processing). During the analysis comparing normal gait to the slip perturbation, only slip trials 

classified as 1- 3 were used in the comparison; class 1 or 'non-slippers' were removed as the 

perturbation was not successful. 
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Chapter 3: Results 

3.1 Comparison of Normal Walking Trials across Conditions 

3.1.1 Kinetic Data 

Ground Reaction Forces 

During normal walking trials, the average peak vertical ground reaction forces (NorniF 

Peak) were 12.41N/kg ± 0.09. Peak normal forces did not significantly differ between footwear 

conditions during normal walking trials (Condition 0: 12.56N/kg ±0.81, Condition 1: 12.36N/kg 

± 0.88, Condition 2: 12.35N/kg ± 0.95, Condition 3: 12.44N/kg ± 0.95, Condition 4: 12.34N/kg 

± 0.84; p = 0.7024) (Table 3.1, Figure 3.3). 

The average rate of vertical loading ranged from 103.52 - 133.39N/s.kg (111.74N/s.kg ± 

12.4). The rate of loading was found to be significantly higher in barefoot individuals (condition 

0) compared to shod individuals (condition 1-4) during normal walking trials (Condition 0: 

133.39N/s.kg± 34.18, Condition 1: 107.65N/s.kg±21.1, Condition 2: 103.52N/s.kg± 20.69, 

Condition 3: 110.14N/s.kg± 22.13, Condition 4: 104.01N/s.kg± 19.75; p = 0.0009). A Tukey's 

post hoc analysis also determined that conditions 1 and 3 had significantly higher loading rates 

than condition 2 and 4 (Table 3.1, Figure 3.3). 

The average peak shear ground reaction force (ShearF Peak) was 2.41N/kg ± 0.04. Peak 

shear forces did not significantly differ between footwear conditions during normal walking 

trials (Condition 0: 2.36N/kg ± 0.52, Condition 1: 2.40N/kg ± 0.46, Condition 2: 2.44N/kg ± 

0.40, Condition 3: 2.46N/kg ± 0.48, Condition 4: 2.38N/kg ± 0.35; p = 0.5091) (Table 3.1, 

Figure 3.3). 
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Table 3.1 

Repeated measures, within-1 factor ANOVA, comparison of normal walking trials across footwear conditions. 

Footwear Condition 

it of Observations 

Kinetic Data 

NormF Peak (N/kg) 

ROL (N/s.kg) 

UR (N/s.kg) 

U (N/s.kg) 

ShearF Peak (N/kg) 

Bl (N/s.kg) 

PI (N/s.kg) 

Kinematic Data 

Stance Duration (s) 

Step Length 

Step Width 

Gait Speed (m/s) 

Heel Disp(m) 

Heel VelHC (m/s) 

Heel Vel Peak (m/s) 

Shank AngHC(°) 

FFloorAngHC(°) 

NAnkleAngHC(°) 

Ankle AngVelHC(%) 

KneeAngHCC) 

HipAngHC(°) 

0 

26 

Mean 

12.56 

133.39. 

129.47 

5.37 

2.36 

3.17 

-3.18 

0.55 

0.38 

0.07 

1.62 

0.018 

0.31 

0.91 

-16.44 

17.72 

4.45 

277.24 

171.21 

-25.52 

STDev 

0.81 

34.18 

23.14 

1.05 

0.52 

0,45 

0.45 

0.05 

0.03 

0.02 

0.14 

0.004 

0.29 

0.21 

2.40 

6.95 

4.58 

95.44 

2.76 

5.21 

1 

87 

Mean 

12.36 

107.65 

100.05 

7.19 

2.40 

3.58 

-3.23 

0.61 

0.39 

0.08 

1.78 

0.020 

0.72 

0.90 

-21.21 

27.79 

-1.46 

46.00 

172.03 

-28.39 

STDev 

0.88 

21.10 

13.13 

0.87 

0.46 

0.57 

0.44 

0.05 

0.02 

0.02 

0.85 

0.004 

0.32 

0.22 

2,73 

6.85 

4.32 

55.08 

4.40 

2.96 

2 

88 

Mean 

12.35 

103.52 

98.77 

7.16 

2.44 

3.51 

-3,36 

0.62 

0.40 

0.07 

1.68 

0.019 

0.76 

0.88 

-21,85 

25.86 

-1.36 

51.44 

171.82 

-27.90 

STDev 

0.95 

20,69 

12.81 

0.87 

0.40 

0.49 

0.38 

0.04 

0.04 

0.02 

0.13 

0.004 

0.32 

0.22 

2.63 

9.16 

4.25 

61.38 

4.40 

3.09 

3 

88 

Mean 

12.44 

110.14 

101.17 

7.02 

2.46 

3.49 

-3.19 

0.61 

0.39 

0.07 

1.69 

0.020 

0.70 

0.83 

-21,83 

28.56 

-1.35 

62.84 

172.24 

-28.13 

STDev 

0.95 

22.13 

12.94 

0.97 

0.48 

0.54 

0.52 

0.04 

0.03 

0.02 

0.13 

0.004 

0.35 

0.26 

2.40 

6.55 

4.14 

63.13 

4.10 

2.86 

4 

87 

Mean 

12.34 

104.01 

99.26 

7.03 

2,38 

3.37 

-3.19 

0.62 

0.39 

0.07 

1.67 

0.019 

0.81 

0.89 

-21.83 

26.78 

-1.16 

60.54 

171.75 

-27.95 

STDev 

0.84 

19.75 

13.39 

0.87 

0.35 

0.46 

0.41 

0.04 

0.02 

0.02 

0.11 

0.004 

0.39 

0.32 

2.40 

8.70 

3.90 

56.52 

4.11 

2.82 

P-value Sig. 

0.7024 

0.0009 * 

0.1666 

0.01 * 

0.5091 

0.0873 

0.04 * 

0.0181 * 

0.3968 

0,7621 

0,0771 

0.262 

0.0326 * 

0.02241 * 

0.0168 * 

0.196 

0.7247 

0.1654 

0.6823 

0.547 

Tukey's 

0-((3,l)-(4,2)) 

0-(l , 2,3,4), 3-1 

2-(0,l,3,4) 

0-(lJ2,3J4) 

HUM), 4-3 
1-3 

0-(U,3,4) 

( 

(%) Values were normalized to % stance of the right (slipping) limb. Kinetic data was normalized by BWand kinematic data was normalized by height or neutral angle. 
Positive ankle and hip angles ft) represent extension, negative angles (.) represent flexion relative to neutral. 
'ANOVA performed with a ranked transform to achieve normalcy. 
*Significance p< 0.05. 



3.1.2 Kinematic Data 

Gait Characteristics 

. The average stance duration during all normal walking trials was 0.60s ± 0.03. The 

barefoot condition (condition '0') had significantly shorter stance durations during normal 

walking when compared to all other footwear conditions (conditions '1-4') (Condition 0: 0.55s ± 

0.05, Condition 1: 0.61s ± 0.05, Condition 2: 0.62s ± 0.04, Condition 3: 0.61s ± 0.04, Condition 

4: 0.62s ± 0.04; p = 0.018) (Table 3.1). 

Step length and step width were normalize to each individual's height. The average step 

length during all normal walking trials was 0.39m ± 0.01. Step length did not differ significantly 

during normal walking across all footwear conditions (Condition 0: 0.38 ± 0.03, Condition 1: 

0.39 ± 0.02, Condition 2: 0.4 ± 0.04, Condition 3: 0.39 ± 0.03, Condition 4: 0.39 ± 0.02; p = 

0.397) (Table 3.4). The average step width across all footwear conditions was 0.07m ± 0.02. 

There was no significant difference in step width during normal walking trials found between the 

footwear conditions (Condition 0: 0.07 ± 0.02, Condition 1: 0.08 ± 0.02, Condition 2: 0.07 ± 

0.02, Condition 3: 0.07 ± 0.02, Condition 4: 0.07 ± 0.02; p = 0.762) (Table 3.1). 

Overall, the average gait velocity was 1.69m/s ± 0.06 during normal walking trials. Gait 

velocities were not found to be significantly different across footwear conditions during normal 

walking trials, but participants who were in the barefoot condition had slightly slower gait 

velocities (Condition 0: 1.62m/s ± 0.14, Condition 1: 1.78m/s ± 0.85, Condition 2: 1.68m/s ± 

0.13, Condition 3: 1.69m/s ± 0.13, Condition 4: 1.67m/s ± 0.11; p = 0.077) (Table 3.1). 

The average forward heel motion (heel displacement) during normal walking across all 

conditions was 0.019m ± 0.004 (p = 0.26) and was not found to be significant. Heel velocities at 

heel contact were found to be significantly lower in barefoot individuals compared to the shod 
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conditions within normal walking trials (Condition 0: 0.31 m/s ± 0.29, Condition 1: 0.72 m/s ± 

0.32, Condition 2: 0.76 m/s ± 0.32, Condition 3: 0.70 m/s ± 0.35, Condition 4: 0.81 m/s ± 0.39; p 

= 0.0326). A Tukey's post Hoc also distinguished that condition 4 had significantly higher heel 

velocities than condition 3.Overall the average peak heel velocity was 0.88 m/s ± 0.03 before 

coming to a stop (0 m/s). Condition 1 was found to have significantly higher peak heel velocities 

than condition 3 (Condition 0: 0.91m/s ± 0.21, Condition 1: 0.9m/s ± 0.22, Condition 2: 0.88m/s 

± 0.22, Condition 3: 0.83m/s ± 0.26, Condition 4: 0.89m/s ± 0.32, p = 0.0224) (Table 3.1, Figure 

3.3). 

During normal walking trials participants had an average heel velocity at heel contact of 

0.66m/s ± 0.20. Heel velocity at heel contact were found to be significantly slower in the 

barefoot condition (condition 0) (Condition 0: 0.31m/s ± 0.29) compared to the footwear 

conditions (conditions 1-4) (Condition 1: 0.72m/s ± 0.32, Condition 2: 0.76m/s ± 0.32, Condition 

3: 0.70m/s ± 0.35, Condition 4: 0.81m/s ± 0.39; p = 0.0326). A Tukey's post hoc analysis 

demonstrated further that condition 4 heel velocities at heel contact were significantly faster than 

condition 3 (Table 3.1, Figure 3.3). 

Joint Angles 

During normal walking trials, the average shank angle (relative to vertical) at heel contact 

was -20.63° ± 2.36. Barefooted individuals (condition 0) were found to have significantly 

smaller shank angles than those in the footwear conditions (conditions 1-4) during normal 

walking trials (Condition 0: -16.44° ± 2.40, Condition 1: -21.21° ± 2.73, Condition 2: -21.85° ± 

2.63, Condition 3: -21.83° ± 2.40, Condition 4: -21.83° ± 2.40; p = 0.0168) (Table 3.1). 

The average foot-floor angle at heel contact was 25.34° ±4.38. There were no significant 

differences in foot-floor angles at heel contact during normal walking trials, but barefoot 
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individuals had smaller contact angles than individuals wearing footwear (Condition 0: 17.72° ± 

6.95, Condition 1: 27.79° ± 6.85, Condition 2: 25.86° ± 9.16, Condition 3: 28.56° ± 6.55, 

Condition 4: 26.78° ± 8.70; p = 0.196) (Table 3.1). 

Neutral Joint Angles Joint Angles HC Joint Angles 30% Joint Angles 50% 

34 0* OS 1 12 14 3 4 06 OS 1 12 14 3 4 06 OB 1 12 14 34 3g Q S 1 3 i j$ 

Pwrtton (m) Position (m) Position (tn) Position |mj 

Figure 3.1: Illustrates neutral joint angles and joint angles during normal walking trails of the hip, knee and ankle 
(HC, 30% and 50% stance). 

The ankle angle averaged 0.176° ± 2.59 of dorsiflexion (negative ankle angle) during 

normal walking trials. There were no significant differences found between conditions 

(Condition 0: 4.45° ± 4.58, Condition 1: -1.46° ± 4.32, Condition 2: -1.36° ± 4.25, Condition 3: 

-1.35° ± 4.14, Condition 4: -1.16° ± 3.90; p = 0.7247) (Table 3.1, Figure 3.1). 

During normal walking trails, the average knee angle at heel contact was 171.81° ± 0.39 

(near full extension). The knee angle at heel contact was relatively consistent across conditions 

and did not vary significantly (Condition 0: 171.21° ± 2.76, Condition 1: 172.03° ± 4.40, 

Condition 2: 171.82° ± 4.40, Condition 3: 172.24° ±4.10, Condition 4: 171.75° ±4.11; p = 

0.6823) (Table 3.1, Figure 3.1). 

During normal walking trails, the average hip angle at heel contact was -27.58° ± 0.39 

(approximately 30° of flexion). The hip angle at heel contact did not vary significantly across 

conditions, but barefoot individuals had less hip flexion at heel contact than shod individuals 
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(Condition 0: -25.52° ± 5.21, Condition 1: -28.39° ± 2.96, Condition 2: -27.90° ± 3.09, 

Condition 3: -28.13° ± 2.86, Condition 4: -27.95° ± 2.82; p = 0.547) (Table 3.1, Figure 3.1). 

3.1.3 Electromyography 

The eight lower limb muscles exhibited a characteristic three burst pattern during normal 

unperturbed walking, activity either occurring in both the first and last third of stance or just in 

the middle third of stance (Whittle, 1996; Rose and Gamble, 2006). This activation was very 

similar across all footwear conditions (Figure 3.2). 

Tibialis Anterior 

The right tibialis anterior (RTA) was characteristically active in the preparatory phase 

(first third of stance) and the transition phase (last third of stance). The average onset of activity 

was -13.18% ± 0.91 and 94.6% ± 1.07 of stance with an average duration of 0.14-0.16s (25.52% 

± 2.4 of stance time) and 0.12- 015s (23.54% ±3.19) respectively. During normal walking trials 

the onset of activation, duration and magnitude of activity was not significantly different in the 

preparatory phase across all footwear conditions (Condition 0: onset -11.88% ± 3.85, Condition 

1: onset -14.22% ± 5.39, Condition 2: onset -13.41% ± 4.63, Condition 3: onset -13.42% ± 4.89, 

Condition 4: onset -14.00% ± 5.12, p = 0.6431; Condition 0: duration 21.37% ± 3.51, Condition 

1: duration 27.34 % ± 7.20, Condition 2: duration 25.74% ± 6.19, Condition 3: duration 26.25% 

± 5.37, Condition 4: duration 26.90% ± 6.02, p = 0.4169; Condition 0: magnitude 86,80% ± 

20.03, Condition 1: magnitude 103.69% ± 26.50, Condition 2: magnitude 104.68% ± 31.36, 

Condition 3: magnitude 107.73% ± 33.36, Condition 4: magnitude 110.12% ± 36.62, p = 0. 

0.532) (Table 3.1, Figure 3.2; Appendix F). 
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Figure 3.2: Illustrates the EMG timing of the eight lower limb muscles over the stance of the perturbed 
limb; a comparison of normal walking trials and slip recovery trials across all five shoe conditions. 61 



During the transition phase, the RTA's durations and magnitudes were not found to be 

significantly different across footwear conditions (Condition 0: duration 29.09%) ± 9.63, 

Condition 1: duration 21.19% ± 9.81, Condition 2: duration 21.16% ± 9.48, Condition 3: 

duration 22.60% ± 10.85, Condition 4: duration 23.04% ± 9.65, p = 0.7913; Condition 0: 

magnitude 95.98% ± 24.82, Condition 1: magnitude 104.28% ± 46.96, Condition 2: magnitude 

105.85% ± 36.28, Condition 3: magnitude 104.94% ± 47.22, Condition 4: magnitude 108.69% ± 

43.69, p = 0.9798), while EMG onsets were significantly different (Condition 0: onset 96.17%) ± 

3.97, Condition 1: onset 95.13% ± 6.61, Condition 2: onset 93.61% ± 7.19, Condition 3: 94.44% 

± 6.48, Condition 4: 93.67% ± 6.69, p - 0.0411). A Tukey's post hock analysis demonstrated 

that condition 0 had significantly later onset timing than condition 2, 3 and 4 during the 

transition phase. Condition 1 also was found to have significantly later onset timing than 

condition 2 and 4 (Table 3.1, Figure 3.2; Appendix F). 

Medial Gastrocnemius 

The right medial gastrocnemius (RMG) was characteristically active in the stability 

phase (middle third of stance). The average onset of activity was 42.72%) ±1.19 of stance with 

an average duration of 0.18-0.2 Is (34.22%) ± 1.6 of stance time). During normal walking trials 

the onset of activation not significantly different across footwear conditions (Condition 0: 

43.12% ± 10.25, Condition 1: 42.88% ± 12.26, Condition 2: 41.01% ± 12.26, Condition 3: 

44.29% ± 10.90 , Condition 4: 42.48% ± 12.39, p = 0.0626). The duration of the EMG burst was 

found to be significant; condition 2 had significantly larger durations than condition 3 (Condition 

0: 33.94% ± 9.52 , Condition 1: 34.45% ± 13.30, Condition 2: 36.77% ± 13.19, Condition 3: 

32.47% ± 10.92 , Condition 4: 34.48% ± 12.65, p = 0.0088). The magnitude of RMG activity 

was also found to be significant; condition 2 had significantly higher magnitudes than condition 
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3 and 4 (Condition 0: 102.76% ± 17.31, Condition 1: 100.26% ± 25.99, Condition 2: 107.74% ± 

24.21, Condition 3: 96.13% ± 25.34, Condition 4: 99.06% ± 21.41, p = 0.022) (Table 3.1, Figure 

3.2; Appendix F). 

Peroneus Longus 

The right peroneus longus (RPL) was also characteristically active in the stability phase 

(middle third of stance). The average onset of activity during a slip was 42.13% ± 2.66 of stance 

with an average duration of 0.21-0.23s (38.27% ± 1.07 of stance time). During normal walking 

trials the onset of activation, duration and magnitude of activity was not significantly different 

across all footwear conditions (Condition 0: onset 37.42% ±11.87, Condition 1: onset 43.42% ± 

12.90, Condition 2: onset 43.82% ± 12.77, Condition 3: onset 42.91% ± 12.44, Condition 4: 

onset 43.08% ± 11.46, p = 0.9386; Condition 0: duration 40.03% ± 14.09, Condition 1: duration 

37.83% ± 13.56, Condition 2: duration 37.32% ± 13.40, Condition 3: duration 37.68% ± 12.12, 

Condition 4: duration 38.52% ± 12.04, p = 0.8707; Condition 0: magnitude 92.47% ± 25.24, 

Condition 1: magnitude 100.14% ± 46.86, Condition 2: magnitude 95.54% ± 31.98, Condition 3: 

magnitude 93.15% ± 37.72, Condition 4: magnitude 95.75% ± 36.70, p = 0.8124) (Table 3.1, 

Figure 3.2; Appendix F). 

3.2 Comparison of Normal Walking Trials to Slip Trials within Conditions 

3.2.1 Slip Severity and Frequency 

Overall, 20 participants experienced a slip (class 1-3). Within the barefoot condition, 

80%> of the participants experienced an unexpected slip perturbation of class 1-3. The prevalence 

of slips was not as great within the footwear conditions (Conditionl: 37.5%, Condition 2: 37.5%, 
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Condition 3: 50% and Condition 4: 25% respectively). Barefoot individuals experienced a larger 

percentage of severe slips (midi and max) than shod conditions (75% vs. 30%). Within the 

footwear conditions, (condition 1 as control) condition 2 had similar risk of slipping to the 

control (37.5% of participants), condition 3 showed an increased the risk of slipping (50% of 

participants) and condition 4 showed a decreased risk of slipping (25% of participants) (Table 

3.2). 

Table 3.2 

Demonstrates the severity of the slip perturbation trials across shoe conditions and the total % of 
incidences within each class of slip severity. 

o Levels 

fj 0 

1 1 
re 
u 2 
a 
*7i ^ 

% of Slips 

Footwear Conditions 

0 1 2 3 4 

2 5 5 4 6 

2 2 2 2 1 

3 0 0 1 1 

3 1 1 1 0 

80.0% 37.5% 37.5% 50.0% 25.0% 

%©f Total Incid. 

52.4% 

21.4% 

11.9% 

14.3% 

3.2.2 Kinetic Data 

Ground Reaction Forces 

Peak normal ground reaction forces were not found to be significantly different when 

comparing normal walking trials to slip trials within each footwear condition (Condition 0: 

normal 12.56N/kg ± 0.81, slip 13.08N/kg ± 3.49, p = 0.513; Condition 1: normal 12.22N/kg ± 

0.51, slip 12.05N/kg ± 1.03, p = 0.983; Condition 2: normal 12.5N/kg ± 0.73, slip 12.45N/kg ± 

0.32, p = 0.9497; Condition 3: normal 12.07N/kg ± 0.71, slip 11.91N/kg ± 0.59, p = 0.4521; 

Condition 4: normal 12.92N/kg ±1.13, slip 13.39N/kg ± 0.92, p = 0.7103) (Table 3.3- 3.7, 

Figure 3.3). 
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Table 3.3 

Repeated measures, within-1 factor ANOVA; a comparison of normal to slip trials within 
footwear condition 0 (barefoot). 

Condition 0 

#o f Observations 

Kinetic Data 

Norm F Peak (N/kg) 

ROL (N/s/kg) 

UR (N/s/kg) 

LI (N/s/kg) 

ShearF Peak (N/kg) 

Bl (N/s/kg) 

PI (N/s/kg) 

Kinematic Data 

Stance Duration (s) 

Step Length 

Step Width 

Gait Speed (m/s) 

Heel Disp (m) 

Heel VelHC (m/s) 

Heel Vel Peak (m/s) 

Shank AngHC(°) 

FFloorAngHC(°) 

FFloorAngVelHC(%) 

Ankle AngHC(°) 

A n k l e A n g 3 0 % O 

AnkleAng50%(°) 

Ankle AngVelHC (%) 

kneeAngHC(°) 

Knee Ang30% (°) 

Knee Ang50% (°) 

HipAngHC(°) 

H i p A n g 3 0 % O 

HipAng50%(°) 

Normal 

26 

Mean 

12.56 

133.39 

129.47 

5.37 

2.36 

3.17 

-3.18 

0.55 

0.38 

0.07 

1.62 

0.018 

0.31 

0.91 

-16.44 

16.97 

-396.96 

4.45 

-2.00 

-5.19 

277.24 

171.21 

159.00 

168.01 

-25.48 

-16.80 

-3.51 

STDev 

0.81 

34.18 

23.14 

1.05 

0,52 

0.45 

0.45 

0.05 

0.03 

0.02 

0.14 

0.004 

0.29 

0.21 

2.40 

7.43 

162.94 

4.58 

3.71 

4.06 

95.44 

2.76 

4.55 

3,35 

5.32 

3.29 

3.09 

Slip 

8 

Mean 

13.08 

120.21 

130.47 

5.48 

3.12 

4.02 

-3.28 

0.51 

0.38 

0.08 

1.61 

0.107 

0.36 

1.97 

-17.02 

17.83 

-333.55 

3.51 

5.43 

-0.99 

281.97 

172.80 

163.34 

163.58 

-28.67 

-20.82 

-14.48 

STDev 

3.49 

23.10 

16.52 

1.30 

2.37 

1.52 

0.54 

0.13 

0.04 

0.02 

0.13 

0.085 

0.37 

1.33 

2.12 

7.68 

249.26 

4.78 

6.76 

8.35 

135.07 

3.33 

5.27 

7.15 

2.26 

3.39 

9.01 

P-value Significants 

0.513 

0.6907 

0.4349 

0.604' 

0.3052 

0.194 

0.1413' 

0.4808 

0.2924 

0.6917 

0.5907 

0.0011' * 

0.8314 

0.1154 

0.9525 

0.6789' 

0.4629' 

0.7708 

0.0462' * 

0.3378 

0.8454 

0.4181 

0.5222' 

0.0535' 

0.0781 

0.0678' 

0.0994 

(%) Values were normalized to % stance of the right (slipping) limb Positive ankle and hip angles M represent extension, 
negative angles (.) represent flexion relative to neutral 
'ANOVA performed with a ranked transform to achieve normalcy 
*Significance p< 0 05 
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Table 3.4 

Repeated measures, within-1 factor ANOVA; a comparison of normal to slip trials within 
footwear condition 1. 

Condition 1 

#o f Observations 

Kinetic Data 

NormF Peak (N/kg) 

ROL(N/s/kg) 

UR (N/s/kg) 

LI (N/s/kg) 

ShearF Peak (N/kg) 

Bl (N/s/kg) 

PI (N/s/kg) 

Kinematic Data 

Stance Duration (s) 

Step Length 

Step Width 

Gait Speed (m/s) 

Heel Disp (m) 

Heel VelHC (m/s) 

Heel Vel Peak (m/s) 

Shank AngHC(°) 

FFIoorAngHC(°) 

FFloorAngVelHC(°/s) 

Ankle AngHC(°) 

AnkleAng30%(°) 

AnkleAng50%(°) 

Ankle AngVelHC(Ys) 

k n e e A n g H C O 

Knee Ang30% (') 

Knee Ang50% (°) 

HipAngHC(°) 

HipAng30%(°) 

HipAng50%(°) 

Normal 

21 

Mean STDev 

12,22 

105.21 

96.36 

7.28 

2.48 

3.73 

-3.30 

0.61 

0.39 

0.07 

1.66 

0.019 

0.58 

0.83 

-21.35 

29.66 

-320.34 

-2.23 

-0.37 

-4.10 

46.73 

173.04 

160.68 

169.69 

-27.66 

-16.67 

-3.53 

0.51 

11.16 

7.61 

0.82 

0.34 

0.46 

0.39 

0.03 

0.02 

0.02 

0.06 

0.003 

0.25 

0.13 

1.62 

2.31 

31.10 

4.50 

4.44 

4.44 

47.18 

4.14 

5.47 

4.49 

2.43 

3.42 

2.41 

Slip 

3 

Mean 

12.05 

100.21 

94.97 

6.98 

2.41 

5.04 

-3.50 

0.64 

0.40 

0.08 

1.65 

0.068 

0.56 

1.20 

-22.07 

29.86 

-355.29 

-0.73 

4.86 

-2.52 

71.98 

174.41 

167.13 

166.52 

-26.35 

-15.69 

-7.45 

STDev 

1.03 

10.29 

9.47 

1.02 

0.21 

2.26 

0.26 

0.05 

0.01 

0.01 

0.02 

0.071 

0.38 

0.78 

2.65 

1.39 

52.15 

0.62 

4.18 

3.46 

39.15 

2.91 

4.54 

8.73 

2.85 

5.38 

6.40 

P-value 

0.9803 

0.8833 

0.8577' 

0.9399 

0.9567 

0,1488' 

0.102' 

0.3863 

0.4878 

0.5921 

0.8491 

0,013' 

0.8177 

0.4749 

0.736 

0.4186 

0.4958 

0.518' 

0.3441 

0.7162' 

0.4889' 

0.1344 

0.256 

0.4265 

0.4995 

0.5415 

0.3354 

Significants 

* 

(%) Values were normalized to % stance of the right (slipping) limb Positive ankle and hip angles (+; represent 
extension, negative angles o represent flexion relative to neutral 
'ANOVA performed with a ranked transform to achieve normalcy 

*Significance p< 0 05 
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Table 3.5 

Repeated measures, within-l factor ANOVA; a comparison of normal to slip trials within 
footwear condition 2. 

Condition 2 

#o f Observations 

Kinetic Data 

NormF Peak (N/kg) 

ROL(N/s/kg) 

UR (N/s/kg) 

LI (N/s/kg) 

ShearF Peak (N/kg) 

Bl (N/s/kg) 

PI (N/s/kg) 

Kinematic Data 

Stance Duration (s) 

Step Length 

Step Width 

Gait Speed (m/s) 

Heel Disp(m) 

Heel VelHC (m/s) 

Heel Vel Peak (m/s) 

Shank AngHC(°) 

FF loorAngHCO 

FFloorAngVelHC(%) 

Ankle AngHC(°) 

AnkleAng3Q%(°) 

AnkleAng50%(°) 

Ankle AngVe lHC(%) 

kneeAngHC(°) 

Knee Ang30% (°) 

Knee Ang50% (°) 

HipAngHC(°) 

HipAng30%(°) 

HipAng50%(°) 

Normal 

20 

Mean STDev 

12.50 

108.25 

101.70 

7.39 

2.61 

3.39 

-3.36 

0.61 

0.39 

0.08 

1.73 

0,022 

1.01 

1.06 

-21.13 

24.79 

-314.39 

-2.09 

-0.10 

-4.07 

30.87 

171.73 

160.95 

168.55 

-29.02 

-20.02 

-6.90 

-
0.73 

14.46 

12.96 

1.01 

0.35 

0.48 

0.44 

0,05 

0.03 

0.01 

0.12 

0.004 

0.33 

0.27 

5.55 

10.77 

70.14 

4,10 

3.47 

2.39 

38,36 

6,05 

4,65 

3,70 

3,13 

3.53 

4,92 

Slip 

3 

Mean 

12.45 

103.29 

107.90 

7.27 

2.22 

3.95 

-3.63 

0.57 

0.40 

0.07 

1.81 

0.098 

1.38 

1.56 

-23.85 

18.44 

-259.41 

1,92 

2.70 

-3.56 

30.95 

174.87 

161.78 

165.12 

-29.26 

-21.46 

-7.54 

STDev 

0.32 

18.36 

18.46 

0.63 

0.12 

1.56 

0.47 

0.07 

0.04 

0.01 

0.12 

0.102 

0.80 

0.77 

1.00 

12.38 

169.25 

1.66 

4.82 

0.80 

50.31 

1.20 

1,94 

9.76 

0.99 

4.64 

5.42 

P-value 

0.9497 

0,9043 

0,6054 

0.9724 

0.4821 

0.4424' 

0.1324 

0.1459 

0,1654 

0,9516 

0,3569 

0.478 

0.424 

0.4375 

0.9324 

0.6806 

0.4329 

0.6941 

0.4403' 

0.9202' 

0.7569 

0.4268' 

0.5132' 

0,5135 

0,4462 

0.2431' 

0.5659 

Significants 

(%) Values were normalized to % stance of the right (slipping) limb Positive ankle and hip angles M represent 
extension, negative angles (/representflexion relative to neutral 
'ANOVA performed with a ranked transform to achieve normalcy 

*Significance p< 0 05 
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Table 3.6 

Repeated measures, within-l factor ANOVA; a comparison of normal to slip trials within 
footwear condition 3. 
Condition3 

#o f Observations 

Kinetic Data 

NormF Peak (N/kg) 

ROL(IM/s/kg) 

UR (N/s/kg) 

LI (N/s/kg) 

ShearF Peak (N/kg) 

Bl (N/s/kg) 

PI (N/s/kg) 

Kinematic Data 

Stance Duration (s) 

Step Length 

Step Width 

Gait Speed (m/s) 

Heel Disp (m) 

Heel VelHC (m/s) 

Heel Vel Peak (m/s) 

Shank AngHC(°) 

FFIoorAngHC(°) 

FF loorAngVelHC(%) 

Ankle AngHC(°) 

AnkleAng30%(°) 

AnkleAng50%(°) 

Ankle AngVe lHC(%) 

k n e e A n g H C O 
Knee Ang30% (°) 

Knee Ang50% (°) 

HipAngHC(°) 

HipAng30%(°) 

HipAng50%(°) 

Normal 

22 

Mean STDev 

12.07 

96.37 

98.99 

6.86 

2.34 

3.60 

-3.35 

0.63 

0.40 

0.07 

1.66 

0.017 

0.63 

0.73 

-21.43 

29.37 

-301.83 

-2.09 

-1.46 

-5.35 

55.27 

172.29 

158.84 

166.53 

-28.24 

-18.43 

-6.49 

0.71 

15.64 

17.34 

1.00 

0.50 

0.66 

0.66 

0.05 

0.04 

0.02 

0.16 

0.000 

0.28 

0.23 

2.96 

4.62 

75.56 

3.56 

3.17 

3,27 

37.70 

3,73 

4.50 

4.40 

3,27 

2,41 

3,15 

Slip 

4 

Mean 

11.91 

103.30 

99.71 

6.33 

2.47 

4.22 

-3.34 

0.57 

0.40 

0.07 

1.71 

0.066 

0.77 

1.37 

-21.08 

31.73 

-347.07 

-5.14 

-1.10 

-8.17 

42.52 

171,20 

155.61 

157.33 

-29.92 

-22.50 

-11.75 

STDev 

0.59 

24.63 

19.88 

0.58 

0.23 

1.11 

0.57 

0.12 

0.05 

0.02 

0.24 

0.043 

0.27 

0.47 

3.67 

5.55 

40.09 

3.41 

5.57 

3.29 

54.76 

3.18 

4.49 

3.16 

2.21 

2.17 

4.19 

P-value 

0.4521 

0.3625 

0.2236 

0,9556 

0,5143 

0.2832' 

0,4816 

0.7101 

0.3416 

0.8388 

0.3281 

0.0278' 

0.7925 

0.1161' 

0.63 

0.108 

0.8224' 

0.3274 

0.0916 

0.2189' 

0.6676' 

0.2725 

0.4223 

0.1509 

0.683 

0.0807' 

0.2164 

Significants 

* 

(%) Values were normalized to % stance of the right (slipping) limb Positive ankle and hip angles ^ represent 
extension, negative angles (.) represent flexion relative to neutral 
'ANOVA performed with a ranked transform to achieve normalcy 

*Significance p< 0 05 



Table 3.7 

Repeated measures, within-1 factor ANOVA; a comparison of normal to slip trials within 
footwear condition 4. 

Condition 4 

it of Observations 

Kinetic Data 

NormF Peak (N/kg) 

ROL(l\l/s/kg) 

UP, (N/s/kg) 

LI (N/s/kg) 

ShearF Peak (N/kg) 

Bl (N/s/kg) 

PI (N/s/kg) 

Kinematic Data 

Stance Duration (s) 

Step Length 

Step Width 

Gait Speed (m/s) 

Heel Disp(m) 

Heel VelHC (m/s) 

Heel Vel Peak (m/s) 

Shank AngHC(°) 

FFloorAngHC(°) 

FFloorAngVelHC(°/s) 

Ankle AngHC(°) 

AnkleAng30%(°) 
AnkleAng50%(°) 

Ankle AngVelHC(°/s) 

kneeAngHC(°) 

Knee Ang30% (°) 

Knee Ang50% (°) 

HipAngHC(°) 

HipAng30%(°) 

HipAng50%(°) 

Normal 

19 

Mean STDev 

12.92 

118.77 

104.56 

6.72 

2.52 

3.28 

-3.02 

0.61 

0.38 

0,09 

1.70 

0.017 

0.88 

0.95 

-21.13 

23.46 

-310.75 

0.76 

1.30 

-2.33 

83.38 

169.87 

157.31 

165.82 

-28.33 

-17.36 

-4.32 

1.13 

23.14 

10.83 

0.88 

0.38 

0.40 

0.44 

0.04 

0.02 

0.02 

0.11 

0.003 

0.47 

0.37 

2.09 

11.10 

99.05 

2.53 

2,68 

3.12 

59.46 

5.20 

9.34 

7.90 

1.99 

2.69 

1.38 

Slip 

2 

Mean 

13.39 

122.89 

105.82 

6.28 

2.78 

3.87 

-3.50 

0.62 

0.37 

0.10 

1.73 

0.061 

0.98 

1.12 

-20.46 

5.88 

-87.04 

-0.73 

4.77 

-0.11 

75.76 

169.69 

156.95 

163.16 

-29.62 

-22.34 

-7.94 

STDev 

0.92 

15.32 

4.65 

0.34 

0.12 

0.24 

-

0.02 

0.01 

0.01 

0.03 

0.018 

0.13 

0.07 

3.47 

0.12 

-
2.52 

3.37 

3.44 

67.60 

5.15 

19.36 

15.52 

1.75 

1.65 

0.53 

P-value Significants 

0.7103 

0.3428 

0.6879 

0.1881' 

0,6209 

0.1943 

-

0.4482 

0.5152 

0.9131 

0.7578 

0.186 

0.6745 

0.6288 

0.6888 

0.5' 

-
0.3666 

0.213 

0.2962 

0.2814 

0.413 

0.3194 

0.8437 

0.7004 

0.1257' 

0.1542 

(%) Values were normalized to % stance of the right (slipping) limb Positive ankle and hip angles ,-+; represent 
extension, negative angles () represent flexion relative to neutral 
'ANOVA performed with a ranked transform to achieve normalcy 

*Significance p< 0 OS 
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Figure 3.3: Representative graphs of vertical (Normal) and shear ground reaction forces (N/kg) during 
normal walking trials (top graphs, several normal trials from three individuals) compared to the three 
classes of an unexpected slip perturbation (single representative graph from one individual); % stance of 
the right limb. 
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There were no significant differences found when comparing vertical loading rates 

within footwear conditions between normal walking trials and slip trials.(Condition 0: normal 

133.39N/s.kg± 34.18, slip 120.21N/s.kg± 23.1, p = 0.6907; Condition 1: normal 105.21N/s.kg± 

11.16, slip 100.21N/s.kg± 10.29, p = 0.8833; Condition 2: normal 108.25N/s.kg± 14.46, slip 

103.29N/s.kg ± 18.36, p = 0.9043, Condition 3: normal 96.37N/s.kg ± 15.64, slip 103.30N/s.kg ± 

24.63, p = 0.3625; Condition 4: normal 118.77N/s.kg± 23.14, slip 122.89N/s.kg± 15.32, p = 

0.3428) (Table 3.3- 3.7). 

Peak shear ground reaction forces were not found to be significant when comparing 

normal walking trials to slip trials within each footwear condition.(Condition 0: normal 2.36N/kg 

± 0.52, slip 3.12N/kg ± 2.37, p = 0.3052; Condition 1: normal 2.48N/kg ± 0.34, slip 2.41N/kg ± 

0.21, p = 0.9567; Condition 2: normal 2.61N/kg ± 0.35, slip 2.22N/kg ± 0.12, p = 0.4821; 

Condition 3: normal 2.34N/kg ± 0.5, slip 2.47N/kg ± 0.23, p = 0.5143; Condition 4: normal 

2.52N/kg ± 0.38, slip 2.78N/kg ± 0.12, p = 0.6209) (Table 3.3 - 3.7, Figure 3.3). 

3.2.3 Kinematic Data 

Gait Characteristics 

During slip trials, stance durations were not significantly different than during normal 

walking trials when compared within each footwear condition (Condition 0: normal 0.55s ± 0.05, 

slip 0.51s ± 0.13, p = 0.481; Conditionl: normal 0.61s ± 0.03, slip 0.64s ± 0.05, p = 0.386; 

Condition 2: normal 0.61s ± 0.05, slip 0.57s ± 0.07, p = 0.1459; Condition 3: normal 0.63s ± 

0.05, slip 0.57, ± 0.12, p = 0.7101; Condition 4: normal 0.61s ± 0.04, slip 0.62s ± 0.02, p = 

0.4482) (Table 3.3-3.7). 
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Step length remained consistent during slip trials compared to normal walking trials as 

no significant differences were found (Condition 0: normal 0.38 ± 0.03, slip 0.38 ± 0.04, p = 

0.292; Condition 1: normal 0.39 ± 0.02, slip 0.40 ± 0.01, p = 0.488; Condition 2: normal 0.39 ± 

0.03, slip 0.40 ± 0.04, p = 0.1654; Condition 3: normal 0.40 ± 0.04, slip 0.40 ± 0.05, p = 0.3416; 

Condition 4: 0.38 ± 0.02, 0.37 ± 0.01, p = 0.5152) (Table 3.5 - 3.9). Similar to step length, step 

width, also remained consistent during slip trials as no significant differences were identified 

(Condition 0: normal 0.07 ± 0.02, slip 0.08 ± 0.02, p = 0.692; Condition 1: normal 0.07 ± 0.02, 

slip 0.08 ± 0.01, p = 0.592; Condition 2: normal 0.08 ± 0.01, slip 0.07 ± 0.01, p = 0.9515; 

Condition 3: normal 0.07 ± 0.02, slip 0.07 ± 0.02, p = 0.8388; Condition 4: 0.09 ± 0.02, 0.10 ± 

0.012, p = 0.9131) (Table 3.3 - 3.7). 

When comparing normal walking trials to slips trials within footwear conditions, no 

significant differences were found for gait velocity (Condition 0: normal 1.62m/s ±0.14, slip 

1.61m/s ± 0.13, p = 0.591; Condition 1: normal 1.66m/s ± 0.06, slip 1.65m/s ± 0.02, p = 0.849; 

Condition 2: normal 1.73m/s ± 0.12, slip 1.81m/s ± 0.12, p = 0.3569; Condition 3: normal 

1.66m/s± 0.16, slip 1.71m/s± 0.24, p = 0.3281; Condition 4: 1.70m/± 0.11, 1.73m/s± 0.03, 

p = 0.7578) (Table 3.3-3.7). 

Slip trials exhibited significantly greater forward heel displacements in conditions 0, 1, 

and 3 compared to normal walking trials (Condition 0: normal 0.02m ± 0.0, slip 0.1 lm ± 0.09, p 

= 0.0011; Condition 1: normal 0.02m ± 0.0, slip 0.07m ± 0.07, p = 0.013; Condition 2: normal 

0.02m ± 0.0, slip 0.08m ± 0.10, p = 0.3918; Condition 3: normal 0.02m ± 0.0, slip 0.07m ± 0.04, 

p = 0.0439; Condition 4: normal 0.02m ± 0.0, slip 0.06m ± 0.02, p = 0.1858). Peak heel 

velocities were greater during slip trials, but were not found to be significant compared to normal 

walking trails (Condition 0: normal 0.91m/s ± 0.21, slip 1.97m/s ± 1.33, p = 0.1154; Condition 1: 
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normal 0.83m/s ±0.13, slip 1.20m/s ± 0.78, p = 0.4749; Condition 2: normal 1.06m/s ± 0.27, slip 

1.56m/s ± 0.77, p - 0.4375; Condition 3: normal 0.73m/s ± 0.23, slip 1.37m/s ± 0.47, p = 0.1161; 

Condition 4: normal 0.95m/s ± 0.37, slip 1.12m/s ± 0.07, p = 0.6288) compared to normal 

walking trials (Table 3.3 -3.7, Figure 3.4). 

Heel velocities measured at heel contact were not significantly different during the slip 

perturbation trials compared to normal walking trials within each condition (Condition 0: normal 

0.31m/s ± 0.29, slip 0.36m/s ± 0.37, p = 0.8314; Condition 1: normal 0.58m/s ± 0.25, slip 

0.56m/s ± 0.38, p = 0.8177; Condition 2: normal l.Olm/s ± 0.33, slip 1.38m/s ± 0.80, p = 0.424; 

Condition 3: normal 0.63m/s ± 0.28, slip 0.77m/s ± 0.27, p = 0.7925; Condition 4: normal 

0.88m/s ± 0.47, slip 0.98m/s ± 0.13, p = 0.6745) (Table 3.3-3.7, Figure 3.4). 

Joint Angles 

When comparing slip trials to normal walking trials within each condition, no significant 

differences were found in the shank angle at heel contact (Condition 0: normal -16.44° ± 2.40, 

slip -17.02° ± 2.12, p = 0.9525; Condition 1: normal -21.35° ± 1.62, slip -22.07° ± 2.65, p = 

0.736; Condition 2: normal -21.13° ± 5.55, slip -23.85° ± 1.00, p = 0.9324; Condition 3: normal -

21.43° ± 2.96, slip -21.08° ± 3.67, p = 0.63; Condition 4: normal -21.13° ± 2.09, slip -20.46° ± 

3.47, p = 0.6888) (Table 3.3 - 3.7). 

No significant differences were found in the foot-floor angle when comparing slip trials 

to normal walking trials within each condition (Condition 0: normal 16.67° ± 7.43, slip 17.83° ± 

7.68, p = 0.6789; Condition 1: normal 29.66° ± 2.31, slip 29.86° ± 1.39, p = 0.4186; Condition 2: 

normal 24.79° ± 10.77, slip 18.44° ± 12.38, p = 0.6806; Condition 3: normal 29.37° ± 4.62, slip 

31.73° ± 5.55, p = 0.108; Condition 4: normal 23.46° ± 11.10, slip 5.88° ± 0.12, p = 0.5) (Table 

3.3-3.7). 
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Figure 3.4: Representative graphs of heel displacement (m) and heel velocity (m/s) during normal walking 
trials (top graphs, several normal trials from three individuals) compared to the three classes of an 
unexpected slip perturbation (single representative graph from one individual); % stance of the right limb. 
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No significant differences were found in the ankle angle when comparing normal 

walking trails to slip trials within each footwear condition during stance (Condition 0: normal 

4.45° ± 4.58, slip 3.51° ± 4.78; p = 0.7708; Conditonl: normal -2.23° ± 4.50, slip -0.73° ± 0.62; 

p = 0.518; Condition 2: normal -2.09° ±4.10, slip 1.92° ± 1.66; p - 0.6941; Condition3: normal -

2.09° ±4.10, slip -5.14° ± 3.416; p = 0.3274; Condition 4: normal 0.76° ± 2.53, slip -0.073° ± 

2.52; p = 0.3666). Within all of the conditions except for condition 3, individuals averaged 

greater ankle plantarflexion at 30% stance during slip trials; significance was found in barefoot 

individuals (Condition 0: normal -2.0° ± 3.71, slip 5.43° ± 6.76, p = 0.0462; Condition 1: 

normal -0.37° ± 4.44, slip 4.86° ± 4.18, p = 0.3441; Condition 2: normal -0.10° ± 3.47, slip 2.70° 

± 4.82, p = 0.4403; Condition 3: normal -1.46° ± 3.17, slip -1.10° ± 3.57, p = 0.0916; Condition 

4: normal 1.30° ± 2.68, slip 4.77° ± 3.37, p = 0.213). At 50% stance during, no significant 

differences were identified (Condition 0: normal -5.19° ± 4.06, slip -0.99° ± 8.35, p = 0.3378; 

Condition 1: normal -4.10° ± 4.44, slip -2.52° ± 3.46, p = 0.7162; Condition 2: normal -4.07° ± 

2.39, slip -3.56° ± 0.80, p = 0.9202; Condition 3: normal -5.35° ± 3.27, slip -8.17° ± 3.29, p = 

0.2189; Condition 4: normal -2.33° ± 3.12, slip -0.11° ± 3.44, p = 0.2962) (Table 3.3 - 3.7, 

Figure 3.5). 

When comparing the knee angle in normal walking trials to slip trials, no significant 

differences were found during the stance phase. All of the conditions showed relatively similar 

knee angles at heel contact during both normal walking and slip trials (Condition 0: normal 

171.21° ± 2.76, slip 172.80° ± 3.33, p = 0.4181; Condition 1: normal 173.04° ± 4.14, slip 

174.41° ± 2.91, p = 0.1344; Condition 2: normal 171.73° ± 6.05, slip 174.87° ± 1.20, p = 0.4268; 

Condition 3: normal 172.29° ± 3.73, slip 171.20° ± 3.18, p = 0.2725; Condition 4: normal 

169.87° ± 5.20, slip 169.69° ± 5.15, p = 0.413) (Table 3.3 - 3.7, Figure 3.5). 
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Figure 3.5: Representative profiles of the ankle, knee and hip joints during normal walking trials (3 
normal trials) compared to slip trials (dashed line). The vertical line represents the joints neutral angle. 
Ankle: (+) plantarflexion, (-) dorsiflexion; Knee: flexion; Hip: (+) extension, (-) flexion. 
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At 30% stance, no significant differences were noted in the knee angle (Condition 0: 

normal 159.0° ± 4.55, slip 163.34° ± 5.27, p = 0.522; Condition 1: normal 160.68° ± 5.47, slip 

167.13° ± 4.54, p - 0.256; Condition 2: normal 160.95° ± 4.65, slip 161.78° ± 1.94, p = 0.5132; 

Condition 3: normal 158.84° ± 4.50, slip 155.61° ± 4.49, p = 0.4223; Condition 4: normal 

157.31° ±9.34, slip 156.95° ± 19.36, p = 0.3149). No significant differences were found within 

the knee angle at 50% stance; barefoot individuals averaged greater knee flexion during slip 

trials (Condition 0: normal 168.01° ± 3.35, slip 163.58° ± 7.15, p = 0.0535; Condition 1: normal 

169.69° ± 4.49, slip 166.52° ± 8.73, p = 0.4265; Condition 2: normal 168.55° ± 3.70, slip 

165.12° ± 9.76, p = 0.5135; Condition 3: normal 166.53° ± 4.40, slip 157.33° ± 3.16, p = 0.1509; 

Condition 4: normal 165.82° ± 7.90, slip 163.16° ± 15.52, p = 0.8437) (Table 3.3 - 3.7, Figure 

3.5). 

When comparing normal walking trials to slip trials, no significant differences were 

found during the stance phase within the hip angle. All of the conditions showed relatively 

similar hip angles for both the normal and slip trials at heel contact except for the barefoot 

condition; on average barefoot individuals showed greater hip flexion at HC during the slip trial 

(Condition 0: normal -25.48° ± 5.32, slip -28.67° ± 2.26, p = 0.0781; Condition 1: normal -

27.66° ± 2.43, slip -26.35° ± 2.85, p = 0.4995; Condition 2: normal -29.02° ± 3.13, slip -29.26° ± 

0.99, p = 0.4462; Condition 3: normal -28.24° ± 3.27, slip -29.27° ± 2.21, p = 0.683; Condition 

4: normal -28.33° ± 1.99, slip -29.62° ± 1.75, p = 0.7004). Although not significant, at 30% 

stance all of the conditions exhibited greater hip flexion during the slip trails except condition 2 

which remained relatively the same (Condition 0: normal -16.80° ± 3.29, slip -20.82° ± 3.39, 

p = 0.0678; Condition 1: normal -16.67° ± 3.42, slip -15.69° ± 5.38, p = 0.5415; Condition 2: 

normal -20.02° ± 3.53, slip -21.46° ± 4.64, p = 0.2431; Condition 3: normal -18.43° ± 2.41, slip 



-22.50° ± 2.17, p = 0.0807; Condition 4: normal -17.36° ± 2.69, slip -22.34° ± 1.65, p = 0.1257). 

Within all of the conditions participants also averaged greater hip flexion at 50% stance during 

slip trials, but again this was not found to be significant (Condition 0: normal -3.51° ± 3.09, slip 

-14.48° ± 9.01, p = 0.0994; Condition 1: normal -3.53° ±1.41, slip -7.45° ± 6.40, p = 0.3354; 

Condition 2: normal -6.90° ± 4.92, slip -7.54° ± 5.42, p = 0.56593; Condition 3: normal -6.49° ± 

3.15, slip -11.75° ± 4.19, p = 0.2164; Condition 4: normal -4.32° ± 1.38, slip -7.94° ± 0.53, p 

= 0.1542) (Table 3.3 - 3.7, Figure 3.5). 

Subtalar Joint Angle 

The subtalar joint angles were only able to be calculated for the barefoot condition 

(Condition 0). During normal walking trails the subtalar joint averaged 4.8° ± 6.2 of inversion at 

heel contact which was not found to be significantly different during slip trials (5.7° ± 5.0, 

p = 0.278). The average onset of eversion during normal walking trails occurred at 5.0% ± 1.0 of 

stance. During slip trials the average onset of eversion occurred slightly later, but again was not 

statistically significant (8.1% ± 1.0, p = 0.1014). During normal walking trails, the subtalar joint 

peaked at an average maximum eversion angle of-3.3° ± 4.6 at 22.0% ±1.0 of stance. During 

slip recoveries peak eversion was not found to be significantly different than normal walking 

trials, but did have slightly lower maximums (-1.8 ° ± 7.0, p = 0.2399) and occurred a little later 

in stance (24.0% ± 1.0, p = 0.2501) (Table 3.3 - 3.7, Figure 3.5). 
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Figure 3.6: Illustrates average subtalar joint motion (dashed line, dotted represents 1 Stdev) 
within the first 30% of stance of normal unperturbed walking trials compared to the average 
joint motion during slip recoveries, inversion (+), eversion (-)• 

Table 3.8 

A comparison of average subtalar joint motion during normal walking trials to 
slip recovery trials in barefoot individuals (condition 0). 

Condition 0 

# of Observations: 8 

SubAngHCf ) 

Sub OnsetEv {% stance) 

Sub EvPeak (•) 

Sub EvPeakT [% stance) 

Normal 

Mean 

4.8 

5.0 

-3.3 

22.0 

Std ev 

6.2 

1.0 

4.6 

1.0 

Slip 

Mean 

5.7 

S. l 

-1.8 

24.0 

Std ev 

5.0 

1.0 

7.0 

1.0 

p-value* 

0.27S 

0.1014 

0.2399 

0.2501' 

*No significant differences were found, p<0 05 
* *Subjecls 4 and 9 were omitted from the average calculations due to errors in rigid body calculations 
** *Inversion(+), /eversion(-) 

3.2.4 Electromyography 

During slip recovery trials, as a function of slip severity, muscles that did not 

characteristically activate in the middle part of stance (stability phase) showed activation. Those 

muscles that were characteristically active during the middle phase of stance elicited earlier 

onsets and in most cases higher magnitudes as a response to the slip perturbation (Table 3.9, 

Figure 3.2; refer to Appendix F for full data table). Within barefoot individuals (Condition 0) 
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increased activity of the left medial gastrocnemius (LMG), left rectus femoris (LRF) and left 

medial hamstring (LMH) were seen as a function of greater slip severities. As this activity was 

not seen in any of the other footwear conditions, this investigation will be focused on muscles 

directly affecting the ankle complex of the perturbed limb: the right tibialis anterior (RTA), the 

right medial gastrocnemius (RMG) and the right peroneus longus (RPL). 

Tibialis Anterior 

During slip trials, activation patterns within the preparatory phase were not significantly 

different than those seen in normal walking trials across all footwear conditions (Condition 0: 

onset, normal -11.88% ± 3.85, slip -12.99% ± 5.86, p = 0.6057; duration, normal 21.37% ±3.51, 

slip 24.74% ± 9.51, p = 0.5723; magnitude, normal 86.80 % ± 20.03, slip 92.09% ± 23.15, 

p = 0.8427; Condition 1: onset, normal -11.71% ± 4.24, slip -11.29% ± 1.48, p = 0.5382; 

duration, normal 24.27% ± 5.70 , slip 19.78% ± 3.54, p = 0.7016; magnitude, normal 100.74% ± 

29.31, slip 89.56% ± 10.85, p = 0.6613; Condition 2: onset, normal -13.89% ± 5.32, slip -16.34% 

± 1.53, p = 0.1104; duration, normal 27.05% ± 7.25, slip 27.90% ± 5.49, p = 0.6779; magnitude, 

normal 107.04% ± 28.79, slip 97.27% ± 13.25, p = 0.2275; Condition 3: onset, normal -13.71% 

± 3.86, slip -12.42% ± 0.82, p = 0.1405; duration, normal 26.86% ± 5.21, slip 22.93% ± 2.59, 

p = 0.062; magnitude, normal 124.64% ± 41.01, slip 105.73% ± 32.43, p = 0.7039; Condition 4: 

onset, normal -15.11% ± 5.57, slip -8.13% ± 0.42, p = 0.1727; duration, normal 26.28% ± 4.79, 

slip 18.84% ± 0.71, p = 0.1823; magnitude, normal 102.88% ± 23.83, slip 89.79% ± 23.00, p 

= 0.3496) (Table 3.9, Figure 3.2, 3.7; Appendix F). 
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Table 3.9 

Demonstrates EMG activation patterns of the right tibialis anterior (RTA), right medial gastrocnemius (RMG) and 
right peroneus longus (RPL) during normal walking trials compared to slip trials; repeated measures, within-1 factor 

ANOVA. 

KTA 

Onset (%) 

Duration (%) 

Magnitude (%) 

° RMG 

~ Onset (%) 

^ Duration (%) 

2 Magnitude (%) 

KPL 

Onset (%) 

Duration (%) 

Magnitude (%) 

KTA 

Onset (%) 

Duration (%) 

Magnitude (%) 

C RMG 

• | Onset (%) 

^ Duration (%) 

5 Magnitude (%) 

RPL 

Onset (%) 

Duration (%) 

Magnitude (%) 

RTA 

Onset (%) 

Duration (%) 

Magnitude (%) 

™ RMG 

~ Onset (%) 

1 Duration (%) 

5 Magnitude (%) 

RPL 

Onset (%) 

Duration (%) 

Magnitude (%) 

KTA 

Onset (%) 

Duration (%) 

Magnitude (%) 
cn 
c RMG 
~ Onset (%) 

^ Duration (%) 

o Magnitude (%) 
RPL 

Onset (%) 

Duration (%) 

Magnitude (%) 

Onset (%) 

Duration (%) 

Magnitude (%) 

c RMG 

; | Onset (%) 

^ Duration (%) 

S Magnitude (%) 

RPL 

Onset (%) 

Duration (%) 

Magnitude (%) 

Preparatory Phase 

Normal Slip 

Mean STDev Mean STDev P-value* 

•11.88 3.85 -12.99 5,86 0.6057 

21.37 3.51 24.74 9.51 0.5723 

86.80 20.03 92.09 23,15 0.8427 

-11.71 4.24 -11.29 1.48 0.5382 

24.27 5.70 19.78 3.54 0.7016 

100,74 29.31 89.56 10,85 0.6613 

-13.89 5.32 -16.34 1.53 0.1104 

27,05 7.25 27.90 5.49 0.6779 

107.04 28.79 97.27 13.25 0.2275 

-13.71 3.86 -12.42 0.82 0.1405 

26 86 5.21 22.93 2.59 0 062 

124.64 41.01 105.73 32,43 0.7039 

-15.11 5.57 -8.13 0 42 0.1727 

26.28 4.79 18.84 0.71 0.1823 

102 88 23.83 89.79 23 00 0.3496 

Stability Phase 

Normal Slip 

Mean STDev Mean STDev P-value* 

20.49 2.39 

19.82 5.38 

115.43 51.00 

43.12 10,25 38.36 17.33 0.1409 

33.94 9.52 38.01 19.17 0.7227 

102,76 17.31 83.75 49.97 0.0172* 

37.83 11.79 25.99 2.19 0.0778 

39.68 13.89 60.97 41.55 0.2584 

91.22 25.45 125.94 67.09 0.2164 

17.42 4.92 

18.72 4.09 

111.65 106.29 

43.54 14.10 42.98 18.88 0.0681 

32.69 13.72 31.05 23.07 0.7087 

99.26 23.04 102.69 22.88 0.8834 

49.70 5.71 31.93 20.47 0.6541 

30.40 3.57 35.27 6.97 0.6474 

82.23 22.24 170.16 156.45 0.494 

36.54 10.38 37.95 17.14 0.5117 

40.35 11.72 34.22 26.38 0.8749 

109.29 20.59 68.62 18.88 0.2409 

45.12 10.85 34.53 19.67 0.3427 

36.68 10.07 29.45 22.18 0.399 

95.74 37.96 63.83 59.00 0.1594 

22.08 6.40 

7.69 1.53 

37.10 8.35 

46.93 8.24 53.79 6.88 0,4478 

32.02 9.09 22.38 1 46 0.2841 

89.89 21.45 71.41 28.33 0.3406 

44.03 11.85 39.87 15.97 0.7865 

38.90 12.40 41.47 16.77 0.7185 

99.17 25.02 128.74 70.89 0.7944 

22.08 6.40 

7.69 1.53 

37.10 8.35 

48.76 8.27 51.29 2.04 0.3855 

25.69 7.31 23.01 4.26 0.4921 

90.42 19.69 82.10 23.64 0.8732 

44.05 11.99 53.68 0.99 0.2271 

35.36 13.21 22.53 0.39 0.2681 

97,51 32.59 47.91 2.08 0.0468* 

Transition Phase 

Normal Slip 

Mean STDev Mean STDev P-value* 

96.17 3,97 95.16 9.60 0.5949 

29.09 9.63 22 80 5.17 0.0388* 

95.98 24,82 106.62 44.33 0.2745 

67.18 20.37 

21.90 10.27 

72.45 27.15 

67.24 18.40 

27.67 5.81 

78.69 21.53 

92.23 10.09 90.72 6.11 0.7333 

25.58 9.16 17.09 6.40 0.5393 

99.31 27.60 100.12 64.30 0.994 

94.34 5.33 102.44 14.43 0.4269' 

16.51 8.48 20.24 1.59 0.6041' 

109.20 37.13 198.48 116.64 0.2683' 

95,62 3,42 92.19 2.83 0.3789 

23.71 10.28 18.85 9.79 0.7098 

122.72 71.94 213.23 184.36 0.428 

93.53 2.22 93.93 2.28 0.1839 

19.99 7.12 17.97 10.12 0.6392' 

91.39 25.93 85.26 10.43 0 0146* 

*Signiflcance, p<0.05. 8 1 



The RTA elicited a burst of activity during the middle phase {stability phase) of stance 

that is typically not seen during normal walking; all conditions except condition 2 (average 

onset: 20.52% ± 2.20; average duration: 13.48% ± 6.70; average magnitude: 75.32% ± 44.16). 

This activation had relatively similar onsets across conditions (Condition 0: 20.49% ± 2.39, 

Condition 1: 17.42% ± 4.92, Condition 3: 22.08% ± 6.40, Condition 4: 22.08% ± 6.40). 

Condition 0 and 1 had relatively larger durations and magnitudes compared to condition 3 and 4 

(Condition 0: duration 19.82% ± 4.38, magnitude 115.43% ± 51.00; Condition 1: duration 

18.72% ± 4.09, magnitude 111.65% ± 106.29; Condition 3: duration 7.69% ± 1.53, magnitude 

37.10% ± 8.35; Condition 4: duration 7.69% ± 1.53, magnitude 37.10% ± 8.35) (Table 3.9, 

Figure 3.2, 3.7; Appendix F). 

During the transition phase, the RTA onsets were not found to be significantly different 

between normal walking trials and slip trials (Condition 0: normal 96.17% ± 3.97, slip 95.16% ± 

9.60, p = 0.5949; Condition 1: normal 92.23% ± 10.09, slip 90.72% ± 6.11, p = 0.7333; 

Condition2: onset, normal 94.34% ± 5.33, slip 102.44% ± 14.43, p = 0.4269; Condition 3: onset, 

normal 95.62% ± 3.42, slip 92.19% ± 2.83, p = 0.3789; Condition 4: onset, normal 93.53% ± 

2.22, slip 93.93% ± 2.28, p = 0.1839) (Table 3.9, Figure 3.2, 3.7; Appendix F). 

The duration of RTA activity was only found to be significantly different within 

condition 0; slip trials had significantly shorter durations than normal walking trials (Condition 

0: normal 29.09% ± 9.63, slip 22.80% ± 5.17, p = 0.0388; Condition 1: normal 25.58% ± 9.16, 

slip 17.09% ± 6.40, p = 0.5393; Condition 2: normal 16.51% ± 8.48, slip 20.24% ± 1.59, p = 

0.6041, Condition 3: normal 23.71% ± 10.28, slip 18.85% ± 9.79, p = 0.7098; Condition 4: 

normal 19.99% ± 7.12, slip 17.97% ± 10.12, p = 0.6392) (Table 3.9, Figure 3.2, 3.7; 

Appendix F). 
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The magnitude of RTA activity was only found to be significantly different within 

condition 4; slips trials had significantly lower magnitudes than normal walking trials (Condition 

4: 91.39% ± 25.93, slip 85.26% ± 10.43, p = 0.0146). Condition 2 and 3 had higher magnitudes 

during slip trials (Condition 2: normal 109.20% ± 37.13, slip 198.48% ± 116.64, p = 0.2683; 

Condition 3: normal 122.72%) ± 71.94, slip 213.23%) ± 184.36, p = 0.428) while condition 0 and 

1 had relatively similar magnitudes during slip trials (Condition 0: normal 95.98% ± 24.82, slip 

106.62% ± 44.33, p = 0.2745; Condition 1: 99.31% ± 27.60, slip 100.12% ± 64.30, p = 0.994) 

(Table 3.9, Figure 3.2, 3.7; Appendix F). 
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Figure 3.7: Illustrates EMG timing of the right tibialis anterior (RTA) during normal walking trails compared 
to slip recovery trials across the five shoe conditions along with the respective magnitudes during the three 
phases of EMG stance timing: the preparatory phase (first third), stability phase (second third) and transition 
phase (last third). *Significance, p<0.05. 
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Medial Gastrocnemius 

During slip trials, the RMG's onset was not found to be statistically significant when 

compared to normal walking trails. The average onset of activity during a slip indicated earlier 

onsets (34.22% ± 7.32) and shorter durations (0.15-0.17s). Footwear condition 0 and 1 did show 

earlier activation during slip trials, but again it was not found to be significant (Condition 0: 

normal 43.12% ± 10.25, slip 38.36% ± 17.33, p = 0.1409; Condition 1: normal 43.54% ± 14.10, 

slip 42.98% ± 18.88, p = 0.0681; Condition 2: normal 36.54% ± 10.38, slip 37.95% ± 17.14, p = 

0.5117; Condition 3: normal 46.93% ± 8.24, slip 53.79% ± 6.88, p = 0.4478; Condition 4: 

normal 48.76% ± 8.27, slip 51.29% ± 2.04, p = 0.3855) (Table 3.9, Figure 3.2, 3.8; Appendix F). 

The duration of activity was also not significantly different during slips when compared 

to normal walking trials within each condition (Condition 0: normal 33.94%> ± 9.52, slip 38.01%) 

± 19.17, p = 0.7227; Condition 1: 32.69% ± 13.72, slip 31.05% ± 23.07, p = 0.7087; Condition 2: 

normal 40.35% ± 11.72, slip 34.22% ± 26.38, p = 0.8749; Condition 3: normal 32.02% ± 9.09, 

slip 22.38% ± 1.46, p = 0.2841; Condition 4: normal 25.69% ±7.31, slip 23.01% ± 4.26, p = 

0.4921) (Table 3.9, Figure 3.2, 3.8; Appendix F). 

Overall the average magnitude during slip trials was found to be lower than during 

normal walking trials (81.71% ± 13.43). The average magnitude of activity was only found to be 

significantly different within condition 0; slips trials had significantly lower magnitudes than 

normal walking trials (Condition 0: normal 102.76%) ±17.31, slip 83.75%) ± 49.97, p = 0.0172). 

Conditions 2, 3 and 4 also showed lower RJVIG activation during slip trials, but this was not 

found to be significant (Condition 2: normal 109.29% ± 20.59, slip 68.62% ± 18.88, p = 0.2409; 

Condition 3: normal 89.89% ± 21.45, slip 71.41% ± 28.33, p - 0.3406; Condition 4: 90.42% ± 

19.69, slip 82.10%) ± 23.64, p = 0.8732) while condition 1 showed relatively similar magnitudes 

84 



(Condition 1: 99.26% ± 23.04, slip 102.69% ± 22.88, p = 0.8834). During slip trials some 

barefoot individuals had RMG activity during the transition phase of stance (Condition 0: onset 

67.18% ± 20.37, duration 21.90% ±10.27, magnitude 72.45% ± 27.15) (Table 3.9, Figure 3.2, 

3.8; Appendix F). 
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Figure 3.8: Illustrates EMG timing of the right medial gastrocnemius (RMG) during normal walking trails 
compared to slip recovery trials across the five shoe conditions; along with the respective magnitudes during the 
three phases of EMG stance timing: the preparatory phase (first third), stability phase (second third) and 
transition phase (last third). *Significance, p<0.05. 

Peroneus Longus 

During slip trials, the RPL did not have significantly different onsets compared to normal 

walking trials. The average onsets of activity were earlier during the slip trials compared to the 

normal walking trials; especially within condition 0, but still not significant (Condition 0: normal 
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37.83% ± 11.79, slip 25.99% ± 2.19, p = 0.0778; Condition 1: normal 49.70% ± 5.71, slip 

31.93% ± 20.47, p = 0.6541; Condition 2: normal 45.12% ± 10.85, slip 34.53% ± 19.67, p = 

0.3427; Condition 3: normal 44.03% ± 11.85, slip 39.87% ± 15.97, p = 0.7865; Condition 4: 

normal 44.05% ± 11.99, slip 53.68% ± 0.99, p = 0.2271) (Table 3.9, Figure 3.2, 3.9; , 

Appendix F). 

The average duration of RPL activity was also not significantly different between slip 

trials and normal walking trials (Condition 0: normal 39.68%) ± 13.89, slip 60.97% ± 41.55, p = 

0.2584; Condition 1: normal 30.40% ± 3.57, slip 35.27% ± 6.97, p = 0.6474; Condition 2: 

normal 36.68% ± 10.07, slip 29.45% ± 22.18, p - 0.399; Condition 3: normal 38.90% ± 12.40, 

slip 41.47% ± 16.77, p = 0.7185; Condition 4: normal 35.36% ± 13.21, slip 22.53% ± 0.39, p = 

0.2681) (Table 3.9, Figure 3.2, 3.9; Appendix F). 

The magnitude of RPL activity was only found to be significantly different within 

condition 4; slips trials had significantly lower magnitudes than normal walking trials (Condition 

4: normal 97.51% ± 32.59, slip 47.91% ± 2.08, p = 0.0468). Although not significant, conditions 

0, 1 and 3 had greater magnitudes during slip trials (Condition 0: normal 91.22%) ± 25.45, slip 

125.94% ± 67.09, p = 0.2164; Condition 1: normal 82.23% ± 22.24, slip 170.16% ± 156.45, p = 

0.494; Condition 3: normal 99.17% ± 25.02, slip 128.74% ± 70.89, p = 0.7944) while condition 2 

had slightly lower magnitudes (Condition 2: normal 95.74% ± 37.96, slip 63.83% ± 59.00, p = 

0.1594) (Table 3.9, Figure 3.2, 3.9; Appendix F). 
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Figure 3.9: Illustrates EMG timing of the right medial gastrocnemius (RMG) during normal walking trails 
compared to slip recovery trials across the five shoe conditions; along with the respective magnitudes during the 
three phases of EMG stance timing: the preparatory phase (first third), stability phase (second third) and 
transition phase (last third). *Significance, p<0.05. 
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Chapter 4: Discussion 

4.1 The Effect of Normal Gait Characteristics on the Risk of Slipping 

4.1.1 Kinetics 

During normal walking trials peak normal forces (12.41N/kg ± 0.09) were very similar to 

those reported in previous literature; averaging approximately 1.2 times body weight (BW) 

(Hamill and Knutzen, 1995) (10.9N/kg ± 1.42, Cham and Redfern, 2001; Redfern et al., 2001). 

Peak normal forces were not found to be significantly different between footwear conditions and 

may not have contributed to an increased risk of slipping in barefoot individuals. Conversely, 

high loading rates have been found to be associated with an increased risk of slipping (Cham and 

Redfern, 2002). Within this study, the average loading rates (111.74N/s.kg ± 12.4) were slightly 

higher during normal walking trials than the averages reported in previous studies (74.1 lN/s.kg 

± 11.47, Marigold and Patla, 2002; 80.42N/s.kg ± Marigold et al., 2003; 82.7N/s.kg ± 15.4, 

Cham and Redfern, 2001), but due to the mechanism of the slip perturbation there was a higher 

incidence of 'non-slippers'; particularly in shod conditions. Furthermore, barefoot individuals 

averaged significantly higher loading rates (133.39N/s.kg ± 34.18) than their shod counter parts 

(106.33 N/s.kg ± 3.14). This is consistent with previous findings reported by Lafortune and 

Hennig (1992), as footwear tends to dissipate the transference of forces; evidence that barefoot 

individuals were at a high risk of experiencing a greater frequency and severity of slip during the 

perturbation trials. 

Shear forces are highest just after heel contact and just before toe-off. As a result, an 

individual is most susceptible to a slip during these periods when shear forces do not meet the 

demands of peak required coefficient of friction (RCOF). Individuals exhibiting higher than 
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normal shear force measures during normal walking trials may contribute to increasing their risk 

of slipping when the frictional properties are no longer made available by the contact surface 

(Hanson et al., 1999, Redfern et al., 2001). Peak shear forces (2.41N/kg ± 0.04) were slightly 

higher during normal walking trials than those previously reported in the literature (±0.15 times 

BW, Hamill and Knutzen, 1995; 1.77± 0.61 Redfern et al., 2001). This may have been due to the 

nature of the contact surface (low grit sandpaper) (Cham and Redfern, 2002); however, peak 

shear forces were not significantly different between conditions during normal gait trials and 

therefore, may not have been a contributor to the higher incidence of slips in barefoot 

individuals. Most participants within the footwear conditions who did not experience successful 

a heel contact slip, had a high incidence of a slips at push-off. 

4.1.2 Kinematics 

Stance durations (0.60s ± 0.03) were slightly lower than those reported by Heiden et. al., 

(2006) (0.66s ± 0.05). Barefoot individuals had significantly shorter stance durations during 

normal walking than within the shod conditions, but had greater incidence and severity of slips. 

This finding is contrary to that reported by Cham and Redfern (2002), that longer stance 

durations would increase the risk of slipping. 

High gait velocities have been attributed to increasing the risk of slip due to increased 

stride length and heel velocities at heel contact; subsequently increasing shear forces required to 

slow the heel down (Fong et al., 2008; Redfern et al., 2001). The average gait velocity of 

participants in this study (1.69m/s ± 0.06) was slightly higher than self selected gait velocities 

reported in other studies (0.97-1.51 m/s, Redfern et al., 2001) and therefore could have 

contributed to the higher shear forces discussed earlier. Due to the mechanism of the slip 
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perturbation, during the practice trials participants were asked to increase their gait velocity to 

allow for proper contact with the force plates. As a function of being in a lab setting, participants 

also tended to walk very stiff with short stride lengths and low velocities prior to practice. It was 

also important to obtain proper foot contact with the force plates to increase the likelihood of a 

successful slip perturbation. Increased gait velocities may have increased the risk and severity of 

the slips, but had a tendency to be higher in the shod conditions compared to barefoot individuals 

who had greater slip frequency and severity. Therefore, other factors may have attributed to an 

increased risk of slipping in barefoot individuals (i.e., high loading rates). 

Heel velocities at heel contact are an important predictor of slips as higher heel velocities 

and slower heel decelerations may increase risk of falls when a slip occurs (Redfern et al., 2001, 

Cham and Redfern, 2001, 2002). During normal walking trials the average heel velocities at heel 

contact (0.66m/s ± 0.20) were similar to that reported by Strandberg (1983) (0.14 m/s to 0.68 

m/s), but are much higher than more recent findings (0.19m/s ± 0.39, Cham and Redfern, 2002). 

In contrast, barefoot individuals averaged significantly lower heel velocities (0.31 m/s ± 0.29) 

during normal walking trails than those in footwear (0.75 m/s ± 0.05), but had higher incidences 

and severity of slips. Furthermore, heel displacement after heel contact was comparable across 

all conditions (0.019m ± 0.004). Therefore, heel displacement and heel velocities were not a 

major predictor of slips within this study. 

Lower limb joint angles had very characteristic profiles during stance and therefore may 

not have been contributing factors to an increased risk of slipping. The hip angle averaged 

approximately 28° of flexion at heel contact and reached a maximum of 10-20° of extension 

during stance. These values were similar to those reported by Redfern et al., (165° or 15°of 

flexion, max 193° or 13° of extension). Knee angles averaging 172° (near full extension) at heel 
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contact is quite similar to values reported by Cham and Redfern (2001) (172.52° ± 5.83). Ankle 

motion was also very typical during normal walking trials; neutral to slightly dorsiflexed at heel 

contact (0.176° ± 2.59) (Hamill and Knutzen, 1995; Kitaoka et al., 2006; 5.02° ± 3.80, Redfern et 

al., 2001), passively plantarflexing until foot flat is reached, approximately 10% stance and then 

actively plantarflexing until toe-off (Hamill and Knutzen, 1995; Redfern et al., 2001; Kitaoka et 

al., 2006). Ankle angular velocities in barefoot participants (277.247s) were similar to previous 

research (223.87s ± 98.4, Redfern et al., 2001). 

When anticipating a slippery surface, as a mechanism to decrease the risk of slipping, 

individuals tend to decrease their shank angle (relative to vertical) in order to decrease their foot-

floor contact angle (Cham and Redfern, 2002). Significantly lower shank angles were found 

within barefoot individuals (-16.44° ± 2.4) compared to those in footwear conditions (-21.68° ± 

0.31). Although not significantly different, this corresponded with lower foot-floor contact 

angles in barefoot participants. Again, this is conflicting with previous literature as barefoot 

individuals had a higher frequency and severity of slips. 

4.1.3 Electromyography 

Electromyography data also demonstrated typical activation patterns compared to 

previous research (Cham and Redfern, 2001; Redfern et al., 2001; Zajac et al., 2003; Rose and 

Gamble, 2006; Whittle, 1996). At heel contact (0% stance) the tibialis anterior was active; 

switching from actively dorsiflexing the foot at the ankle to working eccentrically to oppose 

plantarflexion (Redfern et al., 2001). Normal activation also occurred at the end of stance to once 

again dorsiflex the foot at the ankle allowing for clearance of the ground during the swing phase 

(Marigold and Patla, 2002; Zajac et al., 2003). The medial gastrocnemius was active during 

single stance (-25-85% stance) generating a strong plantarflexor moment peaking at maximum 
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ankle dorsiflexion, approximately 80% stance (Cham and Redfern, 2001; Redfern et al., 2001; 

Zajac et al., 2003; Rose and Gamble, 2006; Whittle, 1996). The Peroneus longus exhibited 

typical activation patterns (42.13% ± 2.66) (Rose and Gamble, 2006; Whittle, 1996). As EMG 

during normal walking trails did not have any major differences than those reported in previous 

research, it is evident that it was not a major contributor to increasing the risk of slipping in 

barefoot individuals. 

Overall, gait characteristics of normal walking trials (trials previous to any slip 

perturbations) were found to be relatively consistent with previous literature. A higher rate of 

loading was the only significant finding that would have increased the risk of slipping within the 

barefoot condition; while lower stance durations, gait velocities, heel velocities, and smaller 

shank and foot-floor angles, compared to shod conditions, would have decreased the risk of 

slipping based on previous literature. These finding would suggest that individuals who were in 

the shod conditions would have been at a higher risk of slipping than the barefoot condition, 

resulting in higher incidences and severities; when in fact, contrary to previous findings, the 

severity of slips was much lower in the shod conditions. Therefore, the footwear, along with 

decreasing loading rate, must offer a level of stability to the foot and ankle during heel contact 

that controls foot motion (Morio, et al., 2009). In particular, decreasing the rate of pronation or 

eversion at the time the slip was detected, which would likely decrease the severity of the slip; 

evident due to diminished recovery times. 

4.2 Muscle Activation: Responses to a Slip Perturbations in Barefoot 

In response to the slip perturbation, findings did support our first hypothesis that the TA 

and PL will activate earlier with higher magnitudes. This was especially evident in barefooted 

individuals who experienced higher severity and frequency of slips. Although not significant, the 



anterior muscles (tibialis anterior and peroneus longus) did activate earlier and with higher 

magnitudes than during normal walking trials; similar to that reported by Tang et al., (1998). The 

peroneus longus had yet to be investigated as its role during a slipping response. It appears that 

along with the tibialis anterior, the peroneus longus may activate earlier and with higher 

magnitudes compared to normal walking trials as an agonist to aid in plantarflexion of the ankle 

and as an antagonist to control inversion (Hamill and Knutzen, 1995). The gastrocnemius was 

also found to activate earlier in barefoot conditions, but with lower magnitudes than during 

normal walking trials. The suppression of gastrocnemius activity during slip recovery was 

reported in previous findings by Chambers and Cham (2007) to allow for maximum dorsiflexion 

at the ankle caused by tibialis anterior activation. The EMG response exhibited during the slip 

perturbation in barefooted individuals was very similar to that reported in previous literature 

(Tang et al., 1998; Chambers and Cham, 2007) and supports the first hypothesis. 

4.3 The Subtalar Joint Model during a Slip Perturbation 

The muscle activation patterns exhibited within barefooted individuals during slip recoveries 

resulted in subtalar joint motion that supported concepts proposed in the second hypothesis; 

delayed pronation during the slip trials. Average ankle and subtalar joint motion during normal 

walking trials were comparable to previous literature (Hamill and Knutzen, 1995; Redfern et al., 

2001; Kitaoka et al., 2006; Ardnt et al., 2004). Similar to previous findings, there was an increase 

in plantarflexion at the ankle (sagittal plane) just after heel contact (Kojima et al., 2008) during 

the slip perturbations. As mentioned previously, the tibialis anterior is the first to respond, 

creating a dorsiflexion moment to counteract the plantarflexion (Kojima et al , 2008; Chambers 

and Cham, 2007; Tang et al., 1998). The three dimensional subtalar joint motion demonstrated 

similar findings and supported the second hypothesis as there was a slight delay in eversion 
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during the response to the slip (within the first 30% of stance). Therefore, an additional function 

of the tibialis anterior and peroneus longus response during a slip perturbation is to delay 

eversion, not just counteract plantarflexion. The increased activation around the subtalar joint 

will work to maintain a more rigid foot structure for the transference of forces to aid in recovery. 

4.4 The Effect of Footwear Characteristics on Slip Recovery 

Overall, shod conditions experienced less incidence and severity of slip during slip 

perturbation trials; even though, based on normative gait values supported by previous literature, 

they would be presumed to be at a higher risk than barefooted individuals. It has been reported 

that footwear does offer shock absorption properties that may diminish the loading rate 

(Lafortune and Hennig, 1992); hence higher loading rates within the barefoot condition. 

However, higher gait and heel velocities, larger foot-floor and shank angles, longer stance 

durations coupled with similar shear and normal forces and comparable heel displacements 

during normal gait lead one to believe that shoes offer more stability to the foot and ankle that is 

not present during barefoot walking. This support may place the foot in a more optimal position 

for slip avoidance or quick recovery (i.e., delay normal pronation seen in barefoot individuals, 

which may place them at an increased risk of more hazardous slips). These findings contradicted 

the third hypothesis. The "restrictive" nature of the footwear actually decreased the risk of slips 

and slip severity compared to barefoot conditions, opposite of what was originally proposed. It 

may have in fact been a decrease in subtalar joint motion within the footwear conditions, as 

proposed, but it came as a benefit to decrease the incidence and severity of slips compared to 

barefoot individuals. Unfortunately, subtalar joint motion was not able to be calculated for shod 

conditions so further investigation is needed. 
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Due to a small sample size, there were no significant differences in slip severity or 

frequency within shod conditions. Having acknowledged this, slight trends did exist. Condition 2 

had very similar slip outcomes, frequency and severity of slips to the control (Condition 1). This 

demonstrated that footwear with a stiff heel counter alone was very comparable to the 

unsupportive canvas shoe. While stiff heel counters restrict rear-foot motion, alone it is just as 

beneficial as a stripped down canvas shoe in decreasing slip severity and incidence compared to 

barefoot counterparts. Condition 3 had slightly higher incidences and frequencies than the 

control condition. Therefore, a stiffer insole alone may increase the severity and frequency of 

slips. Overall, condition 4 had the lowest severity and frequency. This demonstrates that a 

combination of a stiff heel counter to control rear-foot motion and a stiff insole to assist in 

providing force transference or restrict subtalar motion may be more optimal in minimized the 

risk and severity of slips in footwear. 

There were also not many significant differences in kinetic, kinematic and EMG 

variables found between the different footwear conditions during normal walking trials. 

Condition 1 and 3 had significantly higher loading rates than condition 2 and 4. This 

demonstrates that a stiff insole alone may increase the risk and/or severity of slipping (Cham and 

Redfern, 2002). This was supported by a higher number of slips seen in condition 3. Condition 4 

was also found to have significantly higher heel velocities at heel contact than condition 3. This 

finding is similar to that found between barefoot conditions compared to shod conditions; 

although the heel velocities were higher, the frequency and severity of slips were lower. This 

further demonstrates that a stiff insole alone may increase your risk and/or severity of slipping. 

Condition 2 was found to have significantly longer durations and higher magnitudes in medial 
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gastrocnemius activity compared to condition 3. Although significant, the functional role of this 

muscle activity is unclear. 

During slip trials, condition 1 had early activation and higher magnitudes of tibialis 

anterior activity, similar to that seen in barefoot slips. The other conditions exhibited little or no 

activity (lower magnitude and relatively small duration). Condition 1 also had comparable 

finding in the peroneus longus activity; early activation and higher magnitudes. In condition 2, 

the peroneus longus activated earlier, but with lower magnitudes than normal gait. In condition 

3, the activations were not as early, but the magnitudes were relatively higher and in condition 4 

the activation was delayed and had significantly lower magnitudes than during normal gait. 

Condition 1, having the least amount of alterations, exhibited similar responses to the slip 

perturbation seen in barefoot individuals. Due to the stiff heel counters present in condition 2 and 

4, the peroneus longus exhibited lower magnitudes compared to condition 1 and 3 probably 

attributed to the reduction in rear-foot motion. Within condition 1, the medial gastrocnemius 

showed similar onsets of activation and magnitudes while in condition two there were similar 

onsets, but lower magnitudes. Within conditions 3 and 4, there was suppression of the medial 

gastrocnemius and lower magnitudes. 

In general, these findings further illustrate that different footwear characteristics do affect 

normal foot motion during a slip recovery. The bare canvas shoe most closely resembles the 

barefoot slip trials and the most restrictive shoe condition (condition 4) having the least amount 

of EMG activity and the lowest severity and frequency of slips. This demonstrates that the 

combination of a stiff heel counter and a stiff insole may control rear-foot motion and provide a 

rigid stable surface to minimize the risk and severity of slips. This may be due to the footwear 

placing the foot in a less risky position at heel contact and/or restricting foot motion (less 
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inversion and slower pronation at heel contact) compared to barefoot individuals. This would 

ultimately place these individual at a lower risk of a slip and decrease slip severity by allowing 

for a diminished response to manipulate the foot into a stable rigid body to all for a successful 

recovery. 



Chapter 5: Conclusions 

5.1 Limitations 

Sample size was a major limitation in this study. Although a sufficient number of 

participants was planned to be collected, due to the unpredictable nature of slips and the 

mechanism of the slip perturbation, it was difficult to collect the large number of slips and level 

of slip severity needed within each condition. This left the study with very little power to 

examine the differences within the footwear conditions. In spite of this, significant results were 

still found and must be interpreted with caution. This limitation also may have increased the risk 

of type I and II errors occurring during analysis. To account for this, the significance level was 

set at an appropriate value of 0.05 in order to minimize the risk of a type I error. 

Another potential limitation within this study was inherent due to the nature of slip data 

collection. Once participants experienced the slip perturbation, they adapt gait strategies to 

successfully overcome subsequent perturbations. This was seen in almost all participants as 

attempted perturbations post initial perturbation were unsuccessful. This confirms previous 

studies that experience prevails over knowledge of the perturbation (Marigold and Patla, 2002) 

and is evident within the next gait trial and prolongs more than fifteen trials. Due to this 

limitation, the study was designed such that each participant contributed one 'truly unexpected' 

slip perturbation. Therefore, the number of participants needed for data collection reflected this. 

Before collection began participants were informed that they may experience a slip 

perturbation. The knowledge that they may experience a slip perturbation could have been a 

limitation by affecting normal gait characteristics during baseline measures. This could have 

affected the number of participants actually experiencing slips due to strategies to avoid slipping. 

Participants were encouraged not to concentrate on the perturbation and were reminded to 
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maintain gait velocities similar to practice trials. Normal gait characteristics were found to be 

very similar to those reported in previous research. Furthermore, 80% of barefoot participants 

experienced unexpected slip perturbations. Therefore, the knowledge of the perturbation did not 

negatively affect our collection or findings and the low number of slips exhibited within the 

footwear conditions was truly a function of the change occurring due to the properties within the 

footwear and not strategies in gait. 

With any marker tracking system there may be errors introduced by markers placed 

directly on the skin. The markers on the skin may introduce error as they may move 

independently from the underlying skeletal structure. To try and minimize this, markers were 

placed on bony prominences where the markers would closely track true skeletal movement. 

Furthermore, more than three non-collinear markers were used to track the lower limb segments 

and a rigid body was used to track the calcaneous in an attempt to minimize error associated with 

marker movement. 

Unfortunately, the subtalar joint motion within footwear conditions was unable to be 

successfully calculated. This was due to large marker errors. Within the footwear conditions, the 

markers used to track the mid-foot and calcaneous were placed over top of the shoes. This did 

not represent true skeletal locations and therefore was not accurate at tracking the subtalar joint 

motion during gait. This was a major limitation as the effects of footwear characteristics on 

subtalar motion could only be hypothesized and inferred from the subtalar model determined 

within the barefoot condition and supported by previous research and findings. 

5.2 Future Directions 

As this study demonstrates, the subtalar joint plays an important role in slip incidence and 

severity. Further investigation in slip mechanisms is needed within both barefooted and shod 
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individuals to strengthen and confirm these findings. A collection of a greater number of 

barefoot individual will increase the number of slip trials and slip severities to help strengthen 

the subtalar model. Furthermore, within footwear conditions, examining rear-foot motion during 

slips may give more insight as to how different footwear characteristics affect subtalar joint 

motion. 

Secondly, further analysis of the medio-lateral ground reaction forces, the centre-of-

pressure base-of-support (COP-BOS) and centre-of-mass base-of-support (COM-BOS) 

relationships are needed. The medio-lateral ground reaction forces are quite variable between 

individuals (Hamill and Knutzen, 1995; Redfern et al., 2001). It may be this variability that 

makes an individual more prone to slipping or better at recovering. Furthermore, the COP-BOS 

will give insight into how the pressure changes under the foot during a slip and slip recovery. By 

examining these relationships corresponding to subtalar joint motion will also add strength to the 

model and further hypotheses can be derived towards beneficial characteristics of footwear. 

By examining the effect that an orthotic intervention may have on the role of the subtalar 

joint during slips may give insight into footwear designs that may decrease the risk and severity 

of slips and increase the chances of slip recovery. Orthotics may provide added support within 

footwear to limit the amount of pronation to decrease the severity and frequency of slips. 

Lastly, due to the nature of aging, older individuals are inherently at a greater risk of 

experiencing more severe and hazardous slips. A major contributor to this risk is the loss of 

cutaneous sensation on the sole of the foot. By freezing the feet (Perry et al., 2001) of young 

adults free of neurological or musculoskeletal disorders, the role of cutaneous sensation during 

slips can be evaluated. Investigation of the importance of cutaneous sensation in detection and 
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response to a slip may be important in helping reduce the number of hazardous slips in an aging 

population. 

5.3 Concluding Statements 

Barefoot individuals were found to be at a greater risk of slipping and have increased 

severities compared to other footwear conditions. This appeared to stem from the inability to 

control the slip early. Barefoot individuals had significantly higher loading rates which may have 

placed the foot in a more pronated position when the slip is detected. Footwear, although 

apparently having greater slip risk factors compared to the barefoot condition, showed a decrease 

in severity and incidence. Footwear, in general, may place the foot in a better position at heel 

contact (more inverted) and slow the pronation of the foot as a result of significantly slower 

loading rates. This would decrease the slip severity and make it easier to respond to, evident by 

faster recovery and lower EMG activity. 

In barefoot individuals the primary response to a slip perturbation, seen in the stability 

phase, was increased tibialis anterior and peroneus longus activity (early onsets and higher 

magnitudes) and suppression of gastrocnemius (lower magnitudes). This muscle activity works 

to counteract plantarflexion and reverse or prevent eversion in order to generate a more rigid 

stable foot structure. It is this objective that will allow for transference of forces to the ground to 

successfully recover from the slip. If this cannot be achieved quickly enough the individual will 

risk the chance of experiencing a fall. 

Finally, more restrictive footwear conditions (i.e., a combination of a stiff heel counter 

and stiff insole) may decrease the risk of slipping and allowed for more efficient responses (i.e., 

lower EMG activity) to perturbations resulting in lower severities. The stiff heel counter 

controlled eversion while, the stiff insole gave support for the transference of forces. Therefore, 
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findings supported our hypothesis that the subtalar joint does appear to play a very important role 

in the response to a slip perturbation. The peroneus longus does contribute to controlling subtalar 

motion alongside the tibialis anterior and finally, footwear characteristics that restrict normal 

subtalar joint motion seen in barefoot individuals will help decrease the risk of slipping and 

decrease the severity, improving chances for recovery. 
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Appendix A: Exclusion Questionnaire 

Screening Questionnaire 

Subject #: 

VOLUNTEER EXCLUSION CRITERIA Date: (MM/DD/YYYY): 

Name: 

Address: 

City, Province: • , Postal Code 

Tel #: ( )- Best time to call: 

Age: yrs. Height: cm Weight: kg 

Gender: M F 



Subject #:. 

Age: yrs. Height: cm Weight: kg 

Gender: 

vrs. 

: M _ 

i left-handed? 

Heigh 

F _ 

t: 

Yes 

• 

cm 

No 

D 

Weiqht: 

Both 

• 

Do you have any conditions that limit the use of your arms or legs? Yes / No 

If yes, how much does the condition interfere with your activities? 
little /or none moderate a great deal 

- • • • 

Describe: 

Do you have or have you ever had: Yes / No 

a) paralysis 

b) epilepsy 

c) cerebral palsy 

d) multiple sclerosis 

e) Parkinson's disease 

f) stroke 

g) any other neurological disorder 

h) diabetes 

i) vision problem other than corrective glasses 

j) cataract surgery 

k) a balance or coordination problem 

I) an inner ear disorder 

m) hearing problems 

n) constant ringing in your ears 

o) ear surgery 



Have you ever had any serious problems with your memory? Yes / No 
Do you have or ever had recurrent ear infections? Yes / No 
Subject #: 

Have you ever had frostbite in the lower extremities? Yes / No 

How much do the conditions that you indicated with a 'yes' below interfere with your activities? 

Do you have or have you ever had : Y / N 
a) problems with your heart or lungs 
b) high blood pressure 
c) blood circulation problems (generally) 

(specifically lower extremities) 
d) cancer 
e) arthritis 
f) rheumatism 
g) back problems 
h) a joint disorder 
i) a muscle disorder 
j) a bone disorder 
k) spina bifida 

Do you have or have you ever had these foot problems Y / N 
a) bunions (hallux valgus) 
b) hammer toes 
c) calluses 
d) ulcerations 
e) plantar fasciitis 
f) any other foot problems (diagnosed or not) 

little 
or none 

• 
• 
• 
• 
• 
• 
D 

• 
• 
• 
D 

• 

moderate 

D 

• 
• 
D 

• 
• 
• 
• 
• 
• 
• 
D 

a great 
deal 

D 

• 
D 

• 
• 
• 
• 
• 
D 
D 

• 
• 

interfere with your activities? 

little 
or none 

• 
• 
D 
D 
D 

moderate 

D 

a 
a 
• 
• 

a great 
deal 

• 
• 
D 
D 
D 

D 

• 

Have you ever severely injured or had surgery on your 
a) 
b) 
c) 
d) 
e) 

head 
neck 
back 
pelvis 
ankle, knee, or hip joints? 

• 
• 
D 

• 
D 

• 
• 
• 
• 
D 

D 

• 
D 
D 
D 

Have you ever broken any bones? D 

Which ones?: 



Have you had any recent (specify) 
a) illnesses 
b) injuries 
c) operations 

Do you have difficulties performing any daily activities? D D 

Which activities?: 

D 

• 
• 

• 
• 
• 

• 
D 

• 

Are you currently taking any medications (prescription or over-the-counter), or other drugs? 

Medication Ailment Frequency of use 



Appendix B: Experiment Protocols 

An Investigation Of The Role Of The Subtalar Joint And The Influence 
Of Footwear Characteristics On Foot Function And Dynamic Balance 

Control During Slip Perturbations 

Primary Investigators: Dr. Stephen D. Perry 
& Jessica Berrigan 

Subject Number: 

Ht: Wt: N Gender 

Dated: (mm/dd/yyyy): / / 

Optotrak: 

Sample rate: 100 Hz Trial Length: 5 sec 

Marker Strength: 70% 

RMS Registration (< 0.5) Alignment (<0.20) 

Force Plate: 

Sample rate: 1000 Hz Trial Length: 5 sec 

# of Trials: 200 

107 



Foot Sensitivity 

Hallux Valgus 
Circle deformity scenario: Right 

Left 
A B C D 
A B C D 

Calluses 

Arches 

Filament Size 1 
Filament Size 2 
Filament Size 3 
Filament Size 4 
Filament Size 5 
Filament Size 6 

Medial Arch Filament Size 
Lateral Arch Filament Size 

- r 

Right 

_. 

Location: 
Location: 
Location: 
Location: 
Location: 
Location: 

-

—- — 

-

Left 

_. — 

Foot Sensation 

_ 

Touch Thresholds 
Great Toe: 

1st MT Head: 
5th MT Head: 

"Heel:" 

— __, 

Right Left 

— . 

t ransverse 
arch 

IsfeMTH 

medial 
longitudinal 

arch 

Bih M T H 

lateral 
longjft idinal 

arch 

heel 

roof Contact Area 



Anthropometrics 

Hip Diameter: 

Knee Diameter: Left 

Ankle Diameter: Left 

Heel Diameter: Left 

cm 

Riqht 

Right 

Right 

cm 

cm 

cm 

Distance between Tibial tuberosity marker and center of patella: 

Left Right cm 

Distances in em's 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Right 

Right 

Right 

Right 

Right 

Right 

Right 

Right 

Left 

Left 

Left 

Left 

Left 

Left 

Left 

Left 

L 
, 2 

t 
/ ^ 
•4 • 

3 

* 4 

* 
5 

^ > 

* 

EMG Collection Information 

Ri 

1 

2 

3 

4 

5 

ght 
Muscle 

Tibialis Anterior 

Medial 
Gastrocnemius 
Rectus Femoris 

(Quad) 
Biceps Femoris 

(Ham) 
Peroneus Longus 

Gain 

500 

2000 

2000 

1000 

1000 

Left 

6 

7 

8 

Muscle 
Medial 

Gastrocnemius 
Rectus Femoris 

(Quad) 
Biceps Femoris 

(Ham) 

Gain 

2000 

2000 

1000 
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Barefoot Slip Trial Data Sheet 

Non-Slip 
Control 
Trials 

Slip Trials 

Non-Slip 
Trials 

Slip Trial 

Non-Slip 
Trials 

Trial # 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

29 

30 
31 
32 

Condition 

~ ~ ~ ~ ^ - ^ 

Plate 2 

Plate 2 

~ ~ ^ — - ^ _ _ 

^ - ^ ^ 

~ ~ ~ ^ ^ - ^ _ 

Plate 2 

Y/N Slip 

N 

Comments 

Quiet Stance 



Shoe Slip Trial Data Sheet 

Quiet Stance 

Shoe 
Condition: 

Quiet Stance 

Shoe 
Condition: 

Quiet Stance 

Shoe 
Condition: 

Quiet Stance 

Shoe 
Condition: 

Trial # 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

Slip Condition 

" • _ _ 

~ _____ 

— - _ _ _ _ 

— _____ 

_____ 

" —______ 

"~- —_____ 

' — — _ _ _ _ _ _ _ 

~ ~ — - — _ _ _ _ _ 

' _ _ _ _ _ _ 

~ ^ — — _ _ _ _ _ 

" _____ 

— — _ _ _ _ 

" — _____ 

• _ _ _ _ _ 

" "~———_____ 

— — _ _ _ _ _ 

' —-—______ 

" ' _____ 

-— ____ 

— _____ 

- " — • — _ _ _ _ _ _ _ 

" • — _ _ _ _ _ 

~ " — • — _ _ _ _ _ 

" —_____ 

" — _ _ _ _ 

' — - _ _ _ _ 

- — — _ _ _ _ _ 

" ~— ______ 

" • _ _ _ _ _ 

Plate 2 

Plate 2 

~ ______ 

' ^ -___ 

Y/N Slip 

N 

Comments 
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Shoe Condition Randomization Sheet 

Condition I: soft HC, flexible insole Condition III: soft HC, stiff insole 
Condition II: stiff HC, flexible insole Condition IV: stiff HC and stiff insole 
Participant # 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

Assigned Condition 

II 
III 
II 
IV 
III 
III 
1 

III 
II 
II 
IV 
III 
II 
III 
II 
1 

IV 
IV 
1 
II 
IV 
1 
1 

III 
1 

IV 
IV 
III 
II 
1 
1 

IV 
II 
1 

III 
IV 
II 
III 
1 

IV 

Condition 1 

1 
3 
3 
3 
2 
2 
4 
1 
3 
1 
1 
1 
2 
2 
2 
4 
2 
1 
4 
1 
1 
4 
4 
1 
4 
2 
3 
3 
1 
4 
4 
3 
2 
4 
3 
1 
2 
2 
4 
2 

Condition II 

4 
1 
4 
2 
3 
1 
1 
2 
4 
4 
3 
2 
4 
3 
4 
2 
1 
3 
2 
4 
3 
2 
3 
2 
3 
1 
2 
1 
4 
3 
2 
2 
4 
3 
1 
3 
4 
3 
1 
1 

Condition III 

3 
4 
2 
1 
4 
4 
2 
4 
2 
3 
2 
4 
1 
4 
1 
3 
3 
2 
3 
2 
2 
3 
1 
4 
1 
3 
1 
4 
3 
1 
3 
1 
1 
2 
4 
2 
1 
4 
3 
3 

Condition VI 

2 
2 
1 

4 , 
1 
3 
3 
3 
1 
2 
4 
3 
3 
1 
3 
1 
4 
4 
1 
3 
4 
1 
2 
3 
2 
4 
4 
2 
2 
2 
1 
4 
3 
1 
2 
4 
3 
1 
2 
4 
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Appendix C: Exit Questionnaire 

1. Do you regularly walk on slippery surfaces? 

• Work • Home D Other 

Yes 

• 

Subject #:. 

No 
D 

If yes, is a slip most likely to occur due to: 

Contaminant Slippery Floor Ice 
Work D D • 
Home n a n 
Other D 0 0 

2. Have you experienced a fal| due to a slip? 

D Work • Home D Other 

If yes, how frequently have you fallen in the past six 

D More than once a week 
D Once a week 
D Once a month 
0 Less than once a month 
D Other 

Improper Footwear 
a 
a 
n 

Yes 
a 

months? 

Other 
• 
a 
• 

No 
D 

3. Have you experienced any injuries from a fall due to a slip? 

D Work D Home 0 Other 

If yes, what type of injury? 

Work Home Other 
Bruises D D D_ 
Cuts/scrapes • D D_ 
Sprains D D D_ 
Fractures D D D_ 
Other • D D 

Briefly Explain 

Yes 
D 

No 

4. Do you feel your injuries/falls from a slip have had any 
psychological effects (i.e., hesitant on certain floors, cautious 
when wear certain footwear etc.)? 

Yes 

• 
No 

a 

If yes, please explain 

Subject #: 

113 



5. Can you think of any other situation(s) that you are regularly exposed Yes No 
to that would make you a cautious walker? D • 

If yes, please explain 

6. Do you feel that due to your experience with slippery surfaces that Yes No 
you are able to respond well to changes in surface slipperiness while D D 
walking? 

If yes, please explain 



Appendix D: Variable Definitions 

Kinetic Data 
Variable Unit Description Specific Measure 

Ground Reaction Forces (GRF's) 

Normal Forces 

\ ' vertical I 

Rate of Loading (ROL) 

Unloading Rate (ULR) 

Loading Impulse (LI) 

Shear Forces 

V ""anterioposterior/ 

Braking Impulse (Bl) 

Propulsion Impulse 

(PI) 

N/kg 

N/s/Kg 

N/s/kg 

N.s/kg 

N/kg 

N.s/kg 

N.s/kg 

Normal GRF curve expressed over % 
stance for both the perturbed and 
unperturbed limbs. Normalized to 
body weight (BW). 

The slope of the vertical ground 
reaction force curve of the perturbed 
limb during the double support phase 
(from heel contact of perturbed limb 
until toe off of contra lateral limb) 
when both feet are in contact with 
the force plates. Normalized to BW. 

The slope of the vertical ground 
reaction force curve of the 
unperturbed limb during the double 
support phase (from heel contact of 
perturbed limb until toe off of 
contralateral limb) when both feet 
are in contact with the force plates. 
Normalized to BW. 

Integration of the normal GRF curve 
(Fverticai) of t h e per turbed l imb f rom 

heel contact until the shear force 
^anteroposterior) CrOSSeS Zero. 

Normalized to BW. 

Shear GRF curve expressed over % 
stance for both the perturbed and 
unperturbed limbs. Normalized to 
BW. 
Integration of the Shear GRF curve 
(Fanter0poster,or) of t h e per turbed l imb 

from heel contact until it reaches 
zero. Normalized to BW. 

Integration of the Shear GRF curve 
(^anteroposterior) of the unper turbed l imb 

from zero until toe-off. Normalized to 
BW. 

NormPeak: Normalized peak in the first phase of the 
normal GRF curve (Fvertlca|) 

MM 
/ 

M^i 
\ 

y >^^ 

v \ 
V. 

\y 
ShearPeak: Normalized peak in the first phase of the 
shear GRF curve (Fanteroposterior). 

V M 
irV i\ 

V M 
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Kinematic Data 
Variable Unit Description Specific Measure 

Stride Length and Cadence 

Stance Duration (SD) s Time the foot spends in contact with 
the ground, calculated from heel 
contact until toe off. 

SD of perturbed and contra-lateral limb during left 
right contact with the force plates 

Normalized Step 
Length (NSL) 

m Maximum distance between the 
ankle marker of the left foot and the 
ankle marker on the right foot during 
double support normalized to height 
taken at time of lead HC. 

Gait Velocity m/s Walking speed calculated by dividing 
step length by step time. Also 
determined using COM velocity. 

Joint Angles/Velocities 

Shank Angle Deg. Profile of the absolute Shank-Floor 
angle of the perturbed limb. 
Calculated from a line connecting the 
knee marker to the ankle marker 
relative to vertical during stance (% 
stance). Neutral angle determined 
from quiet stance. 

Shank AngHC: Shank-Floor angle at HC. 
Shank Ang30%: Shank-Floor angle at 30% stance. 
Shank Ang50%: Shank-Floor angle at 50% stance. 

Foot-Floor Angle Deg. Profile of the absolute Foot-Floor 
angle of the perturbed limb. 
Calculated from a line connecting the 
heel marker and fifth metatarsal 
marker relative to the ground during 
stance (% stance) and normalized to 
the neutral angle. Neutral angle 
determined from quiet stance. 

FootF AngHC: Foot Floor Angle at HC. 
FootFAng30%: Foot-Floor angle at 30% stance. 
FootFAng50%: Foot-Floor angle at 50% stance. 

An*** <$» —— 
Tf<*> 

Foot Angular Velocity Deg./s Foot angular velocity profile of the 
perturbed limb derived from the 
Foot-Floor angle 

Foot AngVelHC: Foot angular velocity at HC. 
Foot AngVel30%: Foot angular velocity at 30% 
stance. 
Foot AngVel50%: Foot angular velocity at 50% 

stance. 
Heel Displacement m Displacement of heel during stance 

of the perturbed limb calculated 
using markers on the calcaneous 
from HC until zero velocity. 

Heel Velocity m/s Heel velocity profile of the perturbed 
limb derived using the heel markers 
positional data. 

HeelVelHC: Instantaneous velocity at HC. 
HeelVelPeak: Peak heel velocity measured shortly 
after HC 
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Ankle Angle 

Ankle Angular 
Velocity 

Knee Angle 

Hip Angle 

Subtalar Joint Motion 

Deg. 

Deg./s 

Deg. 

Deg. 

Deg. 

Ankle angle profile of the perturbed 
limb during stance (% stance) 
determined using relative angle 
defined by makers on the knee, ankle 
and 1s t metatarsal and normalized to 
the neutral angle. Neutral angle 
determined from quiet stance. 

Ankle angular velocity profile of the 
perturbed limb derived from the 
ankle angle. 
Knee angle profile of the perturbed 
limb during stance (% stance) 
determined using relative angle 
defined by makers on the hip knee 
and ankle. Neutral angle determined 
from quiet stance. 

Hip angle profile of the perturbed 
limb during stance (% stance) 
determined using a relative angle 
defined by makers on the shoulder 
hip and knee and normalized to the 
neutral angle. Neutral angle 
determined from quiet stance. 
Rotations about the subtalar joint 
axes calculated between two rigid 
bodies of the perturbed limbs foot 
over % stance. Calcaneous defined by 
three markers on the heel. Midfoot 
defined by three markers on the 
ventral aspect of the midfoot. 
Neutral angle determined from quiet 
stance. 

Ankle AngHC: Ankle angle at HC. 
Ankle Ang30%: Ankle angle at 30% stance. 
Ankle Ang50%: Ankle angle at 50% stance. 

Ankle AngVelHC: Foot angular velocity at HC. 

Knee AngHC: Knee angle at HC. 
Knee Ang30%: Knee angle at 30% stance. 
Knee Ang50%: Knee angle at 50% stance. 

Hip AngHC: Hip angle at HC. 
Hip Ang30%: Hip angle at 30% stance. 
Hip Ang50%: Hip angle at 50% stance. 

Sub AngleHC: Angle of the subtalar joint at HC. 
Sub OnsetEv: Time at which eversion begins to 
occur. 
Sub EvPeak: Maximum eversion angle during stance. 
Sub EvPeakT: Time of peak eversion. 

Electromyography Data 
Variable 
Timing 

Magnitude 

Unit 
s 

A/D 
Units 

Description 
Timing of muscle onset and cessation 
calculated using a threshold of 5% of 
quiet muscle activity. Timing 
normalized to the stance phase. 

Area under the curve from the onset 
to cessation of muscle activity. 
Magnitudes during slip trials were 
normalized to average magnitudes 
during normal walking for each 
muscle. 

Specific Measure 
Onset: Activation above the 5% threshold of quiet 
EMG, maintained for 50ms or more. 
Cessation: When activation fell below the 5% 
threshold of quiet EMG for 50ms or more. 
Duration: Time the muscle was active calculated 
from time of onset to time of cessation. 
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Appendix E: Subtalar Joint Motion 

SubtalarJoint Motion: Class 0 SubtalarJointMotion: Class 1 

ao 
41 10 

c 5 

o 
•^ o 
o 

-10 , 

.15 L 

a 10 * 
c 5 

o 
"•£ o 
o 

•10 

-15 -

-She 

10« 20% 

• • +1SD - - " No Slip -

% Stance 

SubtalarJoint Motion: Class 2 

10 

-15 

-S ip — . ->1SD 

% Stance 

SubtalarJoint Motion: Class 2 

10K 20SS 
—Sl ip — • • • I S D - - - N o S h p — • ISO 

% Stance 

SubtalarJoint Motion: Class 3 

25 

20 

% Stance 

SubtalarJointMotion: Class 3 

10% 
-Slip — * --»:SD 

20! . 

. - NoSIlp — • - ISO 

% Stance 

SubtalarJoint Motion: Class 2 

10% 205. 

-Slip — • "»1SD - « - • » NpS'ip — • ISO 

% Stance 

SubtalarJoint Motion: Class 3 

% Stance 

Figure E.1: Illustrates the subtalar joint motion during 
of slip severity. 

% Stance 

normal walking trails compared to different levels 
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Appendix F: EMG Result Tables 

Table F.l 

Demonstrates EMG activation patterns of the lower limb muscles during normal walking trials compared to slip trials; 
repeated measures, within-1 factor ANOVA. 

Condition 

# of Observations 

KTA 

Onset (%) 

Duration (%) 

Magnitude (%) 

KMG 

DDF 

Onset (%) 

•5 Duration (%) 

a. Magnitude (%) 

£* KMH 

U Onset (%) 

g_ Duration (%) 

2 Magnitude (%) 

RPL 

LMG 

LIIF 

Onset (%) 

Duration (%) 

Magnitude (%) 

LMH 

KTA 

KMG 

Onset (%) 

Duration (%) 

u Magnitude (%) 

J ! DBF 

°^ KMH 

= KPL 

2 Onset (%) 

" ' Duration (%) 

Magnitude (%) 

IMG 

LKF 

LMH 

KTA 

Onset (%) 

Duration (%) 

Magnitude (%) 

KMG 

KRr 

Onset (%) 

« Duration (%) 

x Magnitude (%) 
o. 
C »M» 
0 
S »Pt 
k 

•" WF 

Onset (%) 

Duration (%) 

Magnitude (%) 

IIWH 

Onset (%) 

Duration (%) 

Magnitude t%) 

0 1 2 3 4 

26 87 88 88 87 

Mean STDev Mean STDev Mean STDev Mean STDev Mean STDev 

-11.88 3.85 -14.22 5.39 -13.41 4.63 -13.42 4.89 -14.00 5.12 

21.37 3.51 27.34 7.20 25.74 6.19 26.25 5.37 26.90 6.02 

86.80 20.03 103.69 26.50 104.68 31,36 107.73 33.36 110,12 36.62 

-12.74 8.01 -8.55 7.07 -8.81 7.28 -8.15 5.88 -7.25 7.07 

38.54 16.03 32,63 9.89 33.36 9.18 31.46 8.78 31.30 9.34 

100.25 17.68 105.68 36.28 112.42 43.40 98.98 34.78 100.13 25.72 

-26.05 9.58 -26.77 7.83 -25.23 11.57 -25.91 9.47 -25.80 8.45 

33.63 12.63 33.40 11.26 31.98 9.07 32.39 8.16 31.97 9.73 

100.12 22.85 96.59 34.45 92.03 33.65 96.73 32.88 89.80 28.40 

-10.33 14.50 2.63 9.57 0.72 10.36 3.26 8.26 2.35 10,73 

20.50 7.63 15.15 5.72 16.67 6.13 16.52 5.71 16.41 5.07 

95.95 34,38 88.70 36.93 101.73 37.51 104.56 44.19 98.84 27.32 

43.12 10.25 42.88 12.26 41.01 12.26 44.29 10.90 42.48 12.39 

33.94 9.52 34.45 13.30 36.77 13.19 32.47 10.92 34.48 12.65 

102.76 17,31 100.26 25.99 107.74 24.21 96.13 25.34 99.06 21.41 

37.42 11.87 43.42 12.90 43.82 12.77 42.91 12.44 43.08 11.46 

40.03 14.03 37.83 13.56 37.32 13.40 37.68 12.12 38.52 12.04 

92,47 25.24 100.14 46.86 95.54 31,98 93.15 37.72 95.75 36.70 

96.17 3.97 95.13 6.61 93.61 7.19 94.44 6.48 93.67 6.69 

29,09 9.63 21.79 9.81 21.16 9.48 22.60 10.85 23.04 9.65 

95.98 24.82 104.28 46.96 105.85 36.28 104.94 47.22 108.69 43.69 

93.52 7.64 89.91 6.85 90.04 6.72 89.77 6.03 88.04 7.26 

22,11 11.06 18.01 6.65 17.80 7.99 16.89 6.67 18.07 6.92 

101,88 25,87 103.33 42.12 96.71 32.59 96.29 44.50 103.02 46.54 

71.74 5.42 72.21 6.60 72.70 7.05 73.20 6.06 71.97 5.02 

35.92 9.76 34.77 794 34.87 8.12 32.74 6.93 33.64 8.45 

98.55 14.37 102.96 31.28 101.91 25,88 95.02 20.75 97.32 20.54 

65.33 9.81 65.51 10.47 67.69 11.67 64.49 12.79 64.47 11.11 

38.13 10.94 35.63 9.23 36.28 10.15 37.05 13.85 38.52 12.79 

99.72 18.98 104.22 40.31 98.17 37.09 99.64 39.60 101.31 30.34 

P-value Sig. Tukey's 

0.6431 

0.4169 

0,532 

0.2199 

0.2682 

0.1624 

0.5029 

0.8024 

0.5471 

0.503 

0.8082 

0.0897 

0.0626 

0.0088 * 2-3 

0.022 * 2-(3,4) 

0.9386 

0.8707 

0.8124 

0.0411 * 0-(2,3,4);4-l 

0.7913 

0.9798 

0.2711 

0,5456 

0.6287 

0.3895 

0.1532 

0.2023 

0.211 

0.4129 

0.8114 1 

* Significance, p<0.05. 
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Figure F.l: Illustrates the activation patterns and magnitudes of the right tibialis anterior (RTA) during normal 
walking and slip perturbations across the three phases of stance. *Significance, p<0.05. 
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RMG Normal Trials vs Slip Trials: Condition 0 
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Figure F.2: Illustrates the activation patterns and magnitudes of the right medial gastrocnemius (RMG) during 
normal walking and slip perturbations across the three phases of stance. *Significance, p<0.05. 
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Figure F.3: Illustrates the activation patterns and magnitudes of the right peroneus longus (RPL) during normal 
walking and slip perturbations across the three phases of stance.*Significance, p<0.05. 

122 



Table F.2 

Demonstrates EMG activation patterns of the lower limb muscles during normal walking trials compared to slip trials within 
condition 0; repeated measures, within-1 factor ANOVA. 

Condition 0 

# o f Observations 

XTA 

Onset (%) 

Durat ion (%) 

Magnitude (%) 

KMG 

Onset (%) 

Duration (%) 

Magnitude (%) 

RDF 

Onset (%) 

Duration (%) 

Magnitude (%) 

RMH 

Onset (%) 

Duration (%) 

Magni tude (%) 

RPL 
Onset (%) 

Duration (%) 

Magnitude (%) 

IMG 

Onset (%) 

Duration (%) 

Magnitude (%) 

LBF 

Onset (%) 

Durati on (%) 

Magnitude (%) 

LMH 

Onset (%) 

Duration (%) 

Magnitude (%) 

Preparatory Phase 

Normal 

26 

Mean 

-11.88 

21.37 

86.80 

-
-
-

-12 74 

38.54 

100.25 

-26.05 

33.63 

100.12 

-
-

-
-
-

-16.00 

23.47 

52.31 

-
-
-

STDev 

3.85 

3.51 

20.03 

-
-
-

8.01 

16.03 

17.68 

9.58 

12.63 

22.85 

. 
-
-

-
-

17 27 

10.52 

23.12 

-
-
-

Slip 

8 

Mean 

-12.99 

24.74 

92.09 

-
-
-

-6.17 

23.42 

70.63 

-22.93 

22.49 

84.02 

-
-
-

-
-
-

-
-
-

-
-
-

STDev 

5.86 

9.51 

23.15 

-
-
-

9.99 

7.52 

27.39 

14.32 

11.84 

58.77 

. 
-
-

-
-
-

P-value* 

0.6057 

0.5723 

0.8427 

-
-
-

0.2161 

0.1172 

0.0304* 

0.6563 

0.2617 

0.5382 

-
-
-

-
-
-

-
-
-

-
-
-

Stability Phase 

Normal 

26 

Mean 

-
-

43.12 

33.94 

102.76 

-
-
-

37.83 

39.68 

91.22 

-
-
-

-
-
-

-
-
-

STDev 

10.25 

9.52 

17.31 

-
-
-

-
-
-

11.79 

13.89 

25.45 

-
-
-

-

-
-
-

Sh 

8 

Mean 

20.49 

19.82 

115.43 

38.36 

38.01 

83.75 

36.81 

22.93 

256.38 

31.30 

27.06 

202.22 

25.99 

60.97 

125.94 

62.36 

49.97 

87.73 

32.87 

46.34 

727.87 

36.56 

51.01 

671.43 

a 

STDev 

2.39 

5.38 

51.00 

17.33 

19.17 

49.97 

11 79 

6.66 

300.46 

10.59 

19.14 

169.51 

2.19 

41.55 

67,09 

31.75 

39.38 

41.06 

13.81 

50.12 

1150,77 

14.65 

10.32 

477.46 

3 -va lue* 

-
-

0.1409 

0.7227 

0.0172* 

-
-
-

-

0.0778 

0.2584 

0.2164 

-

-

-
-

Tran 

Normal 

26 

Mean 

96.17 

29.09 

95.98 

-
-
-

93.52 

22.11 

101.88 

-
-
-

-
-
-

-
-
-

71.74 

35.92 

98.55 

65.33 

38.13 

99.72 

STDev 

3.97 

9.63 

24.82 

-
-
-

7 64 

11.06 

25.87 

. 
-
-

-

5.42 

9.76 

14.37 

9.81 

10.94 

18.98 

sition Phas 

Slip 

8 

Mean 

95.16 

22.80 

106.62 

67.18 

21.90 

72.45 

79.20 

19.55 

190.67 

-
-

67.24 

27.67 

78.69 

-

67,40 

39,71 

128.04 

70.75 

39.52 

145,64 

e 

STDev 

9.60 

5.17 

44.33 

20.37 

10.27 

27.15 

26.17 

13.69 

116.80 

-
-
-

18.40 

5.81 

21.53 

-
-
-

21.03 

19.87 

41.13 

20.05 

22.38 

52.37 

P-value* 

0.5949 

0.0388* 

0 2745 

0.2316 

0.2087 

0.1287 

-

-

-
-
-

-
-
-

0.1106 

0.3615 

0.2438 

0 8722 

0.8229 

0.108 

* Significance, p<0 05 
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Table F.3 

Demonstrates EMG activation patterns of the lower limb muscles during normal walking trials compared to slip trials within 
condition 1; repeated measures, within-1 factor ANOVA. 

Condi t ion 1 

# of Observations 

RTA 

Onset (%) 

Duration (%} 

Magnitude (%) 

RMG 

Onset [%) 

Duration {%) 

Magni tude {%} 

RRF 

Onset(%} 

Duration (%) 

Magnitude {%} 

RMH 

Onset (%) 

Duration {%} 

Magni tude [%) 

RPL 
Onset (54) 

Duration {%) 

Magni tude (%) 

IMG 

Onset (%} 

Duration (%) 

Magni tude {%) 

LRF 

Onset (54) 

Duration (%} 

Magnitude {%) 

LMH 

Onset (%) 

Duration (94) 

Magnitude (%} 

Preparatory Phase 

Normal 

21 

Mean 

-11.71 

24,27 

100.74 

-
-
-

-7.58 

30.81 

104.20 

-28.83 

29.41 

87.49 

-
-
-

-
-
-

2.S9 

12.10 

74.86 

-
-
-

STDev 

4.24 

5.70 

29.31 

-
-
-

4.15 

5,06 

27.74 

4.63 

7.98 

18.40 

-
-
-

-
-
-

7.58 

3.26 

28.11 

-
-
-

Slip 

3 

Mean 

-11.29 

19.78 

89.56 

-
-
-

-0.18 

31.93 

193.71 

-13.93 

39.96 

348.15 

-
-
-

-
-
-

12.10 

13.25 

84.02 

-
-
-

STDev 

1.48 

3.54 

10.85 

-
-
-

23.21 

11.99 

150.51 

30.00 

6.34 

409.27 

. 
-
-

-
-
-

1.01 

3.51 

23.22 

-
-
-

P-value* 

0.5382 

0.7016 

0.6613 

-
-
-

0.6775 

0.8455 

0.4015 

0.4505 

0.0139* 

0.3758 

-
-
-

-
-
-

0.4279 

0.8991 

0.7924 

-
-
-

Stabil i ty Phase 

Normal Sl ip 

21 

Mean 

-
-
-

43.54 

32.69 

99.26 

-
-

-
-
-

49.70 

30.40 

82.23 

-
-
-

-
-
-

-
-
-

3 

STDev Mean STDev P 

17.42 

18.72 

111.65 

14.10 42.98 

13.72 31.05 

23.04 102.69 

-
-
-

-
-
-

5.71 31.93 

3.57 35.27 

22.24 170.16 

-
-
-

-
-
-

-
-
-

4.92 

4.09 

106.29 

18.88 

23.07 

22.88 

-
-
-

-
-
-

20.47 

6.97 

156.45 

-
-
-

-
-
-

-
-
-

-va lue* 

-
-
-

0.0681 

0.7087 

0.SS34 

-
-
-

-
-
-

0.6541 

0.6474 

0.494 

-
-
-

-
-
-

-
-
-

Transit ion Phase 

Normal 

21 

Mean 

92.23 

25.58 

99.31 

-
-
-

87.20 

14.48 

82.20 

-
-
-

-
-
-

-
-
-

72.88 

32.09 

97.04 

63.41 

35.35 

101.20 

STDev 

10.09 

9.16 

27.60 

-
-
-

7.94 

3.00 

28.10 

-
-
-

-
-
-

-
-
-

5.80 

7.89 

23.38 

9.93 

7.62 

39.74 

Slip 

3 

Mean STDev 

90.72 

17.09 

100.12 

-
-
-

89.77 

10.26 

69.83 

-
-
-

-
-
-

-
-
-

73.78 

37.07 

98.20 

62.86 

51.79 

324.19 

6.11 

6.40 

64.30 

-
-

6.49 

1.93 

67.54 

-

-

-
-

-
-
-

3.77 

8.74 

13.79 

6.83 

5.31 

323.82 

P-va!ue* 

0.7333 

0.5393 

0.994 

-
-
-

0.2594 

0.2687 

0.9519 

-
-
-

-
-
-

-
-
-

0.4975 

0.7737 

0.9707 

0.0334 

0.3056 

0.4636 

'Significance, p<0 05. 
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Table F.4 

Demonstrates EMG activation patterns of the lower limb muscles during normal walking trials compared to slip trials within 
condition 2; repeated measures, within-1 factor ANOVA. 

Condition 2 

# of Observations 

RTA 

Onset (%} 

Duration {%) 

Magnitude (%) 

RMG 

Onset (%) 

Duration (%) 

Magnitude {%) 

RRF 

Onset (%} 

Duration (%) 

Magnitude {%) 

RMH 

Onset {%} 

Duration {%) 

Magni tude (%) 

RPt 

Onset {%) 

Duration (%) 

Magnitude {%) 

LMQ 

Onset (%} 

Duration {%} 

Magnitude (%) 

IRF 

Onset (%) 

Duration {%) 

Magnitude {%} 

IMH 

Onset {%} 

Duration {%} 

Magnitude (%) 

Preparatory Phase 

Normal 

20 

Mean 

-13.89 

27.05 

107.04 

-
-

-9.68 

35.30 

113.46 

-24.27 

30.05 

70.85 

-
-

-
-
-

1.30 

14.98 

84.52 

-
-

STDev 

5.32 

7.25 

28.79 

-
-
-

8.19 

9.28 

48.92 

12.43 

8.44 

31.67 

-
-
-

-
-
-

7.93 

6.50 

41.74 

-
-
-

Slip 

3 

Mean STDev P-value* 

-16.34 1.53 0.1104 

27.90 5.49 0.6779 

97.27 13.25 0.2275 

. 

. 
-

-11.44 6.35 0.6269 

50.18 12.33 0.2636 

98.12 1.64 0.0247* 

-26.71 8.23 0.2591 

26.69 8.45 0.8087 

70.00 48.53 0.4971 

. 
-
-

-
-
-

. 

. 
-

-
. 
-

Stability Phase 

Normal 

20 

Mean 

-
-
-

36.54 

40.35 

109.29 

-
-
-

-
-
-

45.12 

36.68 

95.74 

-
-

-
-
-

-
-

STDev 

-
-
-

10.38 

11.72 

20.59 

-
-

-
-
-

10.85 

10.07 

37.96 

-
-
-

-
-
-

-
-
-

Slip 

3 

Mean STDev 

-
-
-

37.95 17.14 

34.22 26.38 

68.62 18.88 

-
-
-

-
-
-

34.53 19.67 

29.45 22.18 

63.83 59.00 

-
-
-

-
-
-

-
-
-

P-value* 

-
-
-

0.5117 

0.8749 

0.2409 

-
-
-

-
-
-

0.3427 

0.399 

0.1594 

-
-
-

-
-
-

-
-
-

Transition Phase 

Normal 

20 

Mean 

94.34 

16.51 

109.20 

-
-
-

86.78 

18.00 

83.63 

-
-
-

-
-
-

-
-

73.64 

33.75 

109.24 

75.32 

32.38 

80.41 

STDev 

5.33 

8.48 

37.13 

-
-
-

6.95 

8.90 

34.39 

-
-
-

-
-
-

-
-
-

7.93 

7.17 

19.83 

8.12 

6.14 

36.85 

Sh 

3 

Mean 

102.44 

20.24 

198.48 

-
-
-

87.56 

30.62 

170.26 

-
-
-

-
-

-
-

82.30 

29.07 

162.68 

82.74 

29.89 

119.39 

» 

STDev 

14.43 

1.59 

116.64 

-
-

0.34 

7.89 

29.35 

-
-
-

-
-
-

-
-

13.25 

17.74 

65.78 

13.99 

19.62 

26.55 

P-value* 

0.4269' 

0.6041' 

0.2683' 

-
-

0.5858 

0.5269 

0.066 

-
-
-

-
-
-

-
-
-

0.3662 

0.6643 

0.2319 

0.4184 

0.7913 

0.2272 

*'Significance, p<0.05 
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Table F.5 

Demonstrates EMG activation patterns of the lower limb muscles during normal walking trials compared to slip trials within 
condition 3; repeated measures, within-1 factor ANOVA. 

Condit ion 3 

J< of Observations 

RTA 

Onset (%) 

Duration (%) 

Magnitude (%} 

RMG 

Onset (54) 

Duration {%) 

Magni tude {%} 

fi«F 

Onset (%) 

Duration {%) 

Magni tude (%) 

RMH 

Onset (%) 

Durat ion (%) 

Magni tude (%) 

RPL 

Onset {%} 

Duration (%} 

Magni tude (%} 

LMC 

Onset (%} 

Duration (%j 

Magni tude (%) 

LRf 

Onset {%) 

Duration (%) 

Magni tude {%) 

LMH 

Onset {%) 

Duration {%} 

Magni tude (%} 

Preparatory Phase 

Normal 

22 

Mean 

-13.71 

26.86 

124.64 

-
-
-

-11.10 

36.59 

110.36 

-25.69 

31.32 

9S.03 

-
-
-

-
-
-

2.74 

16.74 

65.41 

-
-
-

STDev 

3.S6 

5.21 

41.01 

-
-
-

5.35 

6.14 

39.04 

6.97 

7.39 

18.01 

-
-
-

-
-
-

8.06 

7.03 

51.63 

-

-

Sli 

4 

Mean 

-12.42 

22.93 

105.73 

-
-
-

-7.73 

31.99 

90.24 

-13.16 

22.67 

73.52 

-
-
-

-
-
-

-
-
-

-
-
-

3 

STDev 

0.82 

2.59 

32.43 

-
-
-

6.22 

14.03 

18.74 

3.28 

12.90 

8.68 

-
-
-

-
-
-

-
-
-

-
-
-

P-value* 

0.1405 

0.062 

0.7039 

-
-
-

0.3904 

0.5801 

0.8494 

0.423 

0.0429* 

0.0488 

-
-
-

-
-
-

-
-
-

-
-
-

Stabi l i ty Phase 

Normal 

22 

Mean 

-
-
-

46.93 

32.02 

89.89 

-
-
-

-
-
-

44.03 

38.90 

99.17 

-
-
-

-
-
-

-
-
-

STDev 

-
-
-

8.24 

9.09 

21.45 

-
-
-

-
-
-

11.85 

12.40 

25.02 

-
-
-

-
-
-

-
-
-

Slip 

4 

Mean STDev 

22.08 

7.69 

37.10 

53.79 

22.38 

71.41 

-
-
-

-
-
-

39.87 

41.47 

123.74 

-
-
-

-
-
-

-
-
-

6.40 

1.53 

8.35 

6.S8 

1.46 

28.33 

-
-
-

-
-
-

15,97 

16.77 

70.89 

-
-
-

-
-
-

-
-
-

P-value* 

-
-
-

0.4478 

0.2841 

0.3406 

-

-

-
-
-

0.7865 

0.7185 

0.7944 

-
-
-

-
-
-

-
-

Transit ion Phase 

Normal 

22 

Mean 

95.62 

23.71 

122.72 

-
-
-

91.85 

13.97 

101.78 

-
-
-

-
-
-

-
-
-

71.95 

36.04 

99.59 

59.82 

41.89 

99.10 

STDev 

3.42 

10.28 

71.94 

-
-
-

4.37 

2.93 

41.01 

-
-
-

-
-
-

-
-
-

6.79 

7.46 

21.31 

11.61 

11.69 

38.48 

Slip 

4 

Mean STDev 

92.19 

18.85 

213.23 

-
-
-

98.56 

15.62 

165.82 

-
-
-

-
-
-

-
-
-

71.74 

40.47 

137.21 

76.98 

21.53 

67.13 

2.83 

9.79 

184.36 

-
-
-

7.48 

7.21 

60.70 

-
-
-

-
-
-

-
-
-

4.54 

17.32 

93.87 

12.65 

7.41 

5.74 

P-value* 

0.3789 

0.7098 

0.428 

-
-
-

0.2176 

0.6189 

0.3177 

-
-
-

-
-
-

-
-
-

0.7587 

0.7826 

0.6325 

0.043* 

0.0489* 

0.0136* 

* Significance, p<0.05. 
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Table F.6 

Demonstrates EMG activation patterns of the lower limb muscles during normal walking trials compared to slip trials within 
condition 4; repeated measures, within-1 factor ANOVA. 

Condition 4 

# of Observations 

RTA 

Onset {%} 

Duration (%} 

Magnitude {%) 

RMG 

Onset [%) 

Duration (%) 

Magnitude {%) 

RRF 

Onset (54) 

Duration (%) 

Magnitude (%) 

RMH 

Onset {%) 

Duration {%) 

Magnitude {%) 

BPL 

Onset {%} 

Duration {%} 

Magnitude (%} 

LMG 

Onset {%) 

Duration (%) 

Magnitude (%) 

LRF 

Onset (» ) 

Duration [%} 

Magnitude (%} 

LMH 

Onset (%} 

Duration {%} 

Magnitude {%) 

Preparatory Phase 

Normal 

19 

Mean 

-15.11 

26.28 

102.88 

-
-
-

-7.39 

28.60 

85.22 

-21.90 

30.13 

82.80 

-
-
-

-
-
-

-0.13 

19.66 

88.24 

-
-
-

STDev 

5.57 

4.79 

23.83 

-
-
-

7.30 

9.22 

21.40 

8.63 

10.95 

34.00 

-
-
-

-
-
-

11.16 

3.48 

58.87 

-
-
-

Slip 

2 

Mean STDev P-value* 

-8.13 

18.84 

89.79 

-
-
-

-9.89 

21.92 

65.81 

-19.95 

25.57 

70.76 

-
-
-

-
-
-

5.67 

13.85 

64.11 

-
-
-

0.42 

0.71 

23.00 

-
-
-

4.41 

19.25 

60.39 

4.37 

0.1727 

0.1823 

0.3496 

-
-
-

0.66S3 

0.4663 

0.8082 

0.9686 

9.51 0.0372* 

22.97 

-
-
-

-
-
-

2.03 

0.75 

54.59 

-
-
-

0.2904 

-
-
-

-
-
-

0.5' 

0.4296' 

0.5' 

-
-
-

Stability Phase 

Normal 

19 

Mean STDev 

-
-
-

48.76 8.27 

25.69 7.31 

90.42 19.69 

-
-
-

-
-
-

44.05 11.99 

35.36 13.21 

97.51 32.59 

-
-
-

-
-
-

-
-
-

Shp 

2 

Mean 

22.08 

7.69 

37.10 

51.29 

23.01 

82.10 

-
-
-

14.03 

15.35 

67.33 

53.68 

22.53 

47.91 

-
-
-

-
-
-

-
-
-

STDev P-value* 

6.40 

1.53 

8.35 

2.04 0.3855 

4.26 0.4921 

23.64 0.8732 

-
-
-

6.75 

5.11 

17.99 

0.99 0.2271 

0.39 0.2681 

2.08 0.0468* 

-
-
-

-
-
-

-
-
-

Transition Phase 

Normal 

19 

Mean 

93.53 

19.99 

91.39 

-
-
-

89.12 

20.05 

90.29 

-
-
-

-
-
-

-
-
-

71.27 

33.85 

91.67 

68.63 

35.67 

97.84 

STDev 

2.22 

7.12 

25.93 

-
-
-

2.27 

8.12 

35.89 

-
-
-

-
-
-

-
-
-

3.85 

6.18 

22.11 

9.59 

6.31 

28.56 

Slip 

2 

Mean STDev P-value* 

93.93 

17.97 

85.26 

-
-
-

85.75 

26.39 

84.18 

-
-
-

-
-
-

-
-
-

85.33 

21.62 

59.98 

87.32 

21.42 

54.46 

2.28 0.1839 

10.12 0.6392' 

10.43 0.0146* 

-
-
-

0.42 0.0629 

0.15 0.9887 

32.63 0.6994 

-
-
-

-
-
-

-
-
-

2.75 0.245 

0.89 0.4385 

11.46 0.0155'* 

2.64 0.0441* 

5.24 0.0591 

1.20 0.0808 

* Significance, p<0 05 
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