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ABSTRACT 

 The proximal tubule of the kidney is particularly susceptible to toxicant-induced 

damage and cell cultures of human proximal tubule cells are widely utilized to study the 

role of epithelial-mesenchymal transition (EMT) in renal disease.  Cadmium is a toxic 

metal ion that is known to produce renal tubular necrosis and accumulate in the proximal 

tubule. This metal binds to a family of cysteine rich metal binding proteins known as 

metallothioneins (MT) that are found in abundance in the kidney. Previous studies from 

our laboratory have shown that the third isoform of metallothionein (MT-3) is expressed 

in the epithelial cells of the human kidney, including those of the proximal tubule.  An 

immortalized proximal tubule cell line does not express MT-3 and does not demonstrate 

vectorial active transport. Transfection of the MT-3 gene into the HK-2 cells restores 

vectorial active transport as evidenced by dome formation. This suggests that MT-3 is 

involved in mesenchymal to epithelial transition (MET), the reverse of EMT, and 

promotes and epithelial phenotype. The goals of the present study were to examine the 

role of growth media composition on classic EMT responses, quantitatively evaluate the 

expression levels of E- and N-cadherin, define the functional epitope of MT-3 that 

mediates MET in HK-2 cells, and identify proteins that interact with MT-3 to promote 

epithelial features in the proximal tubule.  It was shown that both E- and N-cadherin 

mRNA and protein are expressed in the human renal proximal tubule.  Based on the 

pattern of cadherin expression, vectorial active transport, and transepithelial resistance, it 

seems that the HK-2 cell line has already undergone many of the early features associated 



xiii 

 

 

with EMT.  Our data indicates the unique, six amino acid C-terminal sequence of MT-3 

is required to induce MET in HK-2 cells. A combination of co-immunoprecipitation and 

western blotting indicate that MT-3 interacts with myosin-IIa, β-actin, enolase-1, 

tropomyosin-3, and aldolase-a in vitro. Together, the data suggests the HK-2 cell line can 

be an effective model to study later stages in the conversion of the renal epithelial cell to 

a mesenchymal cell and when transfected with MT-3 it may be an effective model to 

study the process of MET.  MT-3 protein-protein interactions provide insight into the 

potential mechanism by which MT-3 promotes cytoskeletal organization in non-diseased 

epithelial proximal tubule cells and offers the opportunity to investigate these interactions 

under pathological conditions. 
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CHAPTER I 

INTRODUCTION 

Significance 

 The incidence of chronic kidney disease (CKD) is steadily rising and has reached 

epidemic proportions in the western and industrialized world.  Chronic kidney disease is 

associated with albuminuria, decreased creatinine clearance, altered glomerular 

morphology, and tubular degeneration (Eddy & Neilson, 2006).  Epidemiological 

evidence and animal models have demonstrated chronic cadmium exposure as a 

significant contributory factor for developing  CKD  (Gobe & Crane, 2010; Klaassen, 

Liu, & Diwan, 2009; Walter C Prozialeck & Edwards, 2012; Thévenod, 2003) 

Clinicopathological studies have shown tubulo-interstitial fibrosis to be the hallmark of 

CKD progression (Bohle, Müller, Wehrmann, Mackensen-Haen, & Xiao, 1996; Eddy & 

Neilson, 2006; Fine, Ong, & Norman, 1993; Zeisberg & Neilson, 2010). This suggests 

that halting the progression of CKD could be achieved by stopping the progression of or 

even by inducing remission of fibrosis.  Renal fibrosis is defined as the scarring of the 

tubulo-interstitial space after kidney damage of any type.  It appears to be initiated at 

random in small areas that are preceded by interstitial inflammation, then expands to 

become diffuse if drivers of fibrosis persist (Prunotto et al., 2012). Accumulation and 

proliferation of activated fibroblasts (myofibroblasts) in these small areas are linked to 

the risk of progression of fibrosis (Hinz et al., 2007).  The exact source
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of renal myofibroblasts remains to be definitely defined.   Several hypotheses exist in the 

literature including: migration of circulating fibrocytes to the site of the lesion, 

differentiation of local fibroblasts or pericytes, direct transformation of resident 

endothelial cells by endothelial-mesenchymal transition (endoMT), or transformation of 

resident epithelial cells through epithelial mesenchymal transition (EMT).  Studies in 

experimental models have shown that it is the pericytes that respond to chronic injury and 

profibrotic signals through proliferation and differentiation into myofibroblasts (S.-L. 

Lin, Kisseleva, Brenner, & Duffield, 2008; Picard, Baum, Vogetseder, Kaissling, & Le 

Hir, 2008).  Fate tracing of pericytes has shown a direct contribution of these cells to 

renal fibrosis (Humphreys & Lin, 2010).  These studies, taken together, suggest a limited 

contribution for a direct conversion of renal epithelial cells, through the process of EMT, 

to produce the proliferative pool of fibroblast and myofibroblast cells seen during chronic 

kidney injury.  

 An indirect role for EMT in the progression of CKD can be proposed through 

alteration of the tubulo-interstitial microenvironment which can promote fibroblast 

proliferation and myofibroblast activation (Prunotto et al., 2012).  This microenvironment 

would be produced by an alteration in epithelial to mesenchymal cellular cross talk 

produced by renal epithelial cells undergoing EMT upon renal injury.  A role for an 

alteration in the microenvironment by renal cells undergoing EMT is consistent with 

early observations which showed that regions of active renal interstitial fibrosis exhibited 

a predominant peritubular as opposed to a perivascular distribution (Alpers & Hudkins, 

1994; Fine, Norman, & Ong, 1995).  In addition, some clinical features of CKD can be 

explained by a hypothesis that tubular epithelial cells can relay fibrogenic signals to 
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contiguous fibroblasts in diseased kidneys (Coca, Yusuf, & Shlipak, 2009; 

Venkatachalam & Griffin, 2010).  However, a role for EMT of renal epithelial cells 

producing a pro-fibrotic microenvironment remains a hypothesis supported by general 

observations, but not one supported by mechanism. 

Hypothesis and Rationale 

 This study tests the hypothesis that epithelial-mesenchymal transition occurs in 

epithelial cells of proximal tubule origin and that cells cultured in the presence of serum 

acquire a mesenchymal phenotype.    Further, we hypothesize that the hexapeptide insert 

in the C-terminal domain of MT-3 is required for vectorial active ion transport by 

interacting with proteins involved in cytoskeletal organization. 

  One means to study the possible role of EMT in renal epithelial cells and its 

relationship to a microenvironment promoting fibrosis is the use of human renal epithelial 

cell cultures to model the mechanistic processes underlying the EMT.  An examination of 

the literature suggests that the HK-2 cell line is the most common human renal epithelial 

cell line used to model human renal EMT and related renal disorders.   The HK-2 cell line 

was isolated by immortalizing and cloning a cell line from a primary culture of proximal 

tubule epithelial cells transduced with a construct containing the HPV16 E6/E7 genes 

(Ryan, Johnson, & Kirk, 1994).  The HK-2 cell line proliferates in a serum-free growth 

medium comprised of keratinocyte serum free medium (KSFM) supplemented with 

epidermal growth factor and bovine pituitary extract.  The HK-2 cell line is available 

from the American Type Culture Collection (ATCC) with instructions for growth in a 

KSFM medium supplemented with epidermal growth factor and bovine pituitary extract.  

The HK-2 cells were shown to have an epithelial morphology and to retain many markers 
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of proximal tubule cells such as alkaline phosphatase, gamma glutamyltranspeptidase, 

leucine aminopeptidase, acid phosphatase, cytokeratin, α3β1 integrin and fibronectin.  

Functional markers of proximal tubule differentiation also retained were: cAMP 

responsiveness to parathyroid hormone, but not antidiuretic hormone; Na
+
 dependent, 

phlorizin sensitive glucose transport; and, the ability to accumulate glycogen.     

 The present study is designed to address several concerning studies that use the 

HK-2 cell line as a model for renal EMT.  First, do conditions used for the growth of the 

HK-2 cell line influence the results of studies examining the mechanism/s underlying 

renal EMT?  This question arises since the growth media conditions recommended in the 

original publication, and those suggested by the ATCC, have not been employed in many 

investigations.  A cursory review of the literature discloses that many studies that employ 

this cell line to address human renal EMT grow the HK-2 cells in various growth 

formulations containing fetal calf serum (Bai, Zeng, Zhou, & Liao, 2012; Berzal, Alique, 

& Ruiz-Ortega, 2012; W. Ding, Yang, Zhang, & Gu, 2012; Eneling, Brion, Pinto, & 

Pinho, 2012; Guillén‐Gómez, 2012; Q. Li, Liu, Lv, & Ma, 2011; Y. Li et al., 2010; H. 

Lin, Wang, Wu, & Dong, 2011; Masola, Gambaro, & Tibaldi, 2012; Veerasamy & 

Nguyen, 2009) as opposed to those using the recommended growth medium (Dudas, 

Argentieri, & Farrell, 2009; Dudas & Sague, 2011; Grabias & Konstantopoulos, 2012; 

Sarközi, Flucher, & Haller, 2012; Yuan, Chen, Zhang, & Huang, 2012).  One could 

speculate that growth media containing serum would in itself promote EMT and provide 

a more profibrotic growth environment than growth medium formulations without serum.  

To examine this question, the present study determines the expression of two common 

markers of EMT, E-cadherin and N-cadherin, as a function of the growth media 
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composition used for the growth of the HK-2 cells.  In addition, previous studies from 

this laboratory demonstrated that the HK-2 cell line grown on serum-free growth medium 

had lost the ability for vectorial active transport as noted by a lack of dome formation and 

transepithelial resistance (Bathula, Garrett, & Zhou, 2008; Kim, Garrett, Sens, Somji, & 

Sens, 2002).  The present study is also designed to determine if the loss of vectorial 

active transport was influenced by the presence or absence of serum in the growth 

medium of the HK-2 cells.     

 A second question explored in the present study, to what degree did the 

immortalization process used to isolate the HK-2 cell line advance the process of EMT 

compared to the parental cell line?  This question is important since it is possible that the 

HK-2 cells may have already undergone a significant degree of the EMT.  Evidence for 

this concept comes mainly from studies by this laboratory which developed the serum-

free culture conditions for the growth of mortal cultures of human proximal tubule (HPT) 

cells that retain many of the differentiated features of the renal proximal tubule (Detrisac, 

Sens, Garvin, Spicer, & Sens, 1984; D. A. Sens et al., 1999; Todd, McMartin, & Sens, 

1996).  Similar cultures are now currently available from a number of commercial 

suppliers along with kits to support serum-free cell growth (some proprietary).  In two 

related studies, this laboratory compared several properties of the HPT and HK-2 cells 

when grown on identical serum-free growth media (Bathula et al., 2008; Kim et al., 

2002).  It was shown that when compared to the HPT cell line, the HK-2 cells had lost the 

capacity for vectorial active transport as noted by the inability to form doming structures 

(Kim et al., 2002).  In agreement with the absence of domes, the HK-2 cells, when 

compared to the HPT cells, were also shown to not generate transepithelial resistance and 
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to lack the presence of tight junctions (Kim et al., 2002).  A corresponding analysis of E- 

and N-cadherin expression between the cell lines demonstrated a decrease in E-cadherin 

and an increase in N-cadherin when the HK-2 cells were compared to the HPT cells 

(Bathula et al., 2008).  The determination of the E- and N-cadherin protein levels were 

qualitative in this past study and a goal of the present study is to quantify the differences 

in E- and N-cadherin expression between the cell lines and to determine if additional 

differences exist in cell-to-cell junctional communication.  The goal is to confirm that 

early features of EMT, such as the loss of cell-to-cell junctional integrity and a shift 

between E- and N-cadherin have already taken place in the HK-2 model system. The 

above studies (Bathula et al., 2008; Kim et al., 2002) also demonstrated that the HK-2 

cell line could undergo a reversal of the EMT process (MET) and regain vectorial 

epithelial transport, undergo a switch in E-, N, and K-cadherin expression, and regain 

junctional integrity upon stable transfection with the gene encoding the 3
rd

 isoform of the 

metallothionein protein (MT-3).  MT-3 is a multifunctional protein, playing roles in zinc 

and copper homeostasis, prevention of oxidative damage, protection against heavy metal 

toxicity, ion transport and it may also potentially maintain epithelial cell polarity, a 

property postulated to be attributed to the interaction of MT-3 with proteins involved in 

cytoskeletal organization. An additional goal of the present study, therefore,  is to define 

the functional domain of MT-3 eliciting increased MET in HK-2 cells, and confirm 

putative MT-3 interacting proteins. 

Epithelial Cell Adhesion and Polarity 

 Polarized epithelial cells are composed of distinct apical, lateral, and basal plasma 

membrane domains.  Cells of transporting epithelia, including proximal tubule epithelial 
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cells, form specialized junctional complexes that connect lateral domains of adjacent cells 

and attach the basolateral domain to the ECM, forming epithelial sheets that line organs.   

These complexes are necessary for both the restriction of permeability and the normal 

transport of molecules across the cell monolayer, while additionally contributing to the 

maintenance of proper cell polarity.  The lateral complexes include the zona occludens, 

normally referred to as tight or occluding junctions, the adherens junctions, desmosomes, 

and gap junctions.  Hemidesmosomes are the junctional complex that link the basolateral 

membrane to the ECM.  Specific cell adhesion and junction associated proteins comprise 

these complexes and include the cadherins, catenins, integrins, connexins, among others.  

These proteins are associated with actin filaments and cytoskeletal structural elements of 

individual cells within the epithelial sheet. 

 The tight junctions function to seal the cytoplasm of adjacent cells from one 

another, and are primarily comprised of the occluden and claudin family of proteins.  

These lateral junctions are nearest to the apical surface of epithelial cells, and integrity of 

these complexes promotes tight association of adjacent cells while also functioning as a 

barrier against solutes entering the extracellular space between cells and interacting with 

the lateral domains of adjacent cells. 

 The adherens junctions are responsible for lateral intercellular anchorage and are 

mediated by the calcium dependent cell adhesion protein E-cadherin.  E-cadherin is a 

single pass transmembrane protein that is the main structural component of this junctional 

complex.  The intracellular domain is composed of a complex of proteins required for 

linking E-cadherin to the actin cytoskeleton, and is made up of alpha-catenin, beta-

catenin, and alpha actinin.  The extracellular domain of E-cadherin is responsible for the 
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adhesive properties of E-cadherin, containing calcium binding sites in addition to the 

adhesion domain.  Calcium binding to this domain increases the rigidity of the molecule 

that correctly orients the adhesive region to participate in homotypic interaction with 

neighboring E-cadherin molecules, ultimately serving to connect the actin cytoskeletons 

of adjacent cells.   

 Gap junctions allow for intercellular communication between epithelial cells and 

are also located at the lateral domain of the plasma membrane of epithelial cells. They are 

formed by the connexins, a family of channel forming proteins that directly connect the 

cytoplasms of neighboring cells.  These channels allow inorganic ions, glucose, amino 

acids, nucleotides, and intracellular mediators to pass through mediating communication 

between not only adjacent cells, but throughout the epithelial sheet. 

 The basolateral domain is oriented away from the lumen of the tubule and 

functions to take up metabolic waste into the epithelial cell for transport to the luminal 

filtrate, where it can ultimately be excreted in the urine.  These specialized basolateral 

membranes are also responsible for transporting ions and substrates, including glucose, 

from the lumen back to the interstitial fluid.   The apical membrane localizes the polarity 

complexes, Par and Crumbs.  The apical membrane is composed of a dense covering of 

microvilli (also called the brush border) which serve to increase the surface area of this 

membrane which in turn aids in absorption capabilities from the luminal filtrate into the 

proximal tubule. 

Epithelial-Mesenchymal Transition 

  EMT is a process where epithelial cells lose cell-cell adhesion, apical basolateral  
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cell polarity, and gain migratory capabilities ultimately becoming mesenchymal cells.  

This process is essential for development and wound healing, and dysregulation of EMT 

can be pathogenic resulting in organ fibrosis or the initiation of metastasis in cancer 

progression.  Mesenchymal-epithelial transition (MET), the reverse process of EMT, also 

occurs during development. 

 There are three types of EMT that occur during development, wound healing (or 

fibrosis), and cancer metastasis.  Developmental EMT (Type I) occurs during 

gastrulation, neural crest cell migration, and organ development.  EMT occurs in order to 

generate mesenchymal cells to form secondary epithelia through MET. Wound healing 

(Type II) EMT serves to generate fibroblasts following tissue injury.  Unfortunately, 

failure to regain homeostasis by MET of fibroblasts or to attenuate inflammatory 

mediators leads to organ fibrosis.  This is particularly problematic for the kidney, liver, 

lungs, and intestines as they are more susceptible to fibrotic injury than other tissues. 

Cancer metastasis (Type III) is the EMT process in which neoplastic cells gain migratory 

capabilities and are able to leave the primary epithelial tumor site by degrading the 

extracellular matrix, invading through the basement membrane, intravasating the 

endothelium to circulate.  These cells will extravasate the blood vessel at a favorable site 

and undergo MET to form a secondary tumor in a different organ. 

 The steps in the progression of EMT are well characterized.  Disassembly of 

lateral intercellular junctions is one of the earliest steps in EMT, followed by the 

dissociation of proteins critical for lateral actin anchorage and epithelial cell polarity.  

Changes in gene expression result in the transcriptional induction of pro-mesenchymal 

genes and the down-regulation of pro-epithelial gene expression.  Finally, actin 
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reorganization results in the formation of stress fibers attaching the ECM, MMP mediated 

ECM degradation, and the acquisition of migratory capabilities. 

 Dissociation of tight junctions, the lateral junctions in closest proximity to the 

apical surface that seal cells from one another, is one of the earliest steps in EMT.  This 

results in the redistribution of molecules critical for cytoskeletal organization and disrupts 

the cell polarity complex.  

 Next the adherens junctions (and desmosomes), intercellular anchoring junctions, 

are disassembled.  E-cadherin is the main structural/scaffolding component of the 

adherens junction. Disruption of these specialized cell-cell complexes leads to 

redistribution of these mediators in the cell and no longer anchors adjacent cells to one 

another.  Following the loss of junctional complexes and the down-regulation of E-

cadherin, sequestered β-catenin, a key EMT mediator is freed.  Under normal 

physiological circumstances β-catenin is phosphorylated by GSK3β, targeting it for 

ubiquitination and proteasomal degradation.  During EMT, β-catenin escapes 

phosphorylation, accumulates in the cytosol, ultimately enabling the molecule to 

translocate the nucleus.  Importantly, this translocation event is the convergence of 

several known EMT inducers and may be the most critical step for the induction of full 

EMT. 

 This nuclear translocation event results in β-catenin binding to the TCF/LEF 

complex, and the promotion of a mesenchymal phenotype. There is a shift in 

transcription of epithelial markers to mesenchymal markers, controlled by Snail 1/2, Zeb 

1/2, Twist-1 and multiple bHLH family of transcription factors.  These function to 

repress E-cadherin and promote N-cadherin expression.  Additionally, vimentin, α- 
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smooth muscle actin, and matrix metalloproteinases (MMPs) are increased. The actin 

cytoskeleton is disrupted contributing to the loss apical-basolateral polarity and gain of 

front-back polarity.  This reorganization promotes migratory capabilities of cells, further 

increased MMP production and activation-mediated degradation of the matrix facilitates 

migration.  Transforming growth factor-beta is a potent EMT inducer that acts by binding 

to heteromeric TGFβ receptor type I/II complexes at the plasma membrane, initiating a 

signaling cascade involving SMAD 2/3  phosphorylation, colocalization of the phospho-

SMAD 2/3 complex with SMAD 4, and nuclear translocation of the complex (Y. Liu, 

2009).   Nuclear translocation of the complex activates the expression of several target 

genes that promote a mesenchymal phenotype.   

 General markers of EMT are well defined; however none appear to be unique to 

the specific type of EMT. Clinical studies have demonstrated the upregulation of 

mesenchymal markers in tubular epithelial cells in several progressive kidney disorders, 

including vimentin, α-smooth muscle actin and FSP1. 

Cadmium is Nephrotoxic 

 Cadmium is a toxic metal ion and is considered an environmental pollutant and 

has no known physiological function in humans.  Cadmium is ranked eighth in the Top 

20 Hazardous Substances Priority List (ATSDR, 2012) and is classified as a human 

carcinogen (IARC, 1993).  Cadmium is a naturally occurring element, and is found in the 

Earth’s crust in mineral rich deposits.  Naturally occurring events including: soil erosion, 

rock abrasion, and volcanic eruptions release cadmium into the environment (ATSDR 

2012).  Additionally, cadmium dust is released during forest fires.  
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 Human exposure to cadmium occurs mainly through the gastrointestinal and 

respiratory systems.  Crops grown in contaminated soil are the largest contributors to 

gastrointestinal exposure, and smoking leads to the highest respiratory exposure to 

cadmium.  Plants that contain the largest concentrations of cadmium include lettuce, 

spinach, potatoes, peanuts soybeans, and sunflower seeds (ATSDR 2012).  Additional 

dietary sources of cadmium exposure include shellfish and the livers or kidneys of 

animals that have ingested cadmium (ATSDR 2012, Satarug 2004).  Individuals are also 

occupationally exposed in industrial settings such as zinc and iron refineries, welding of 

cadmium coated steel, formulation of cadmium pigments, and production nickel-

cadmium batteries or cadmium (NTP, 2011). 

 Cadmium was first identified in 1817 by Stomeyer as a byproduct of zinc 

refining.  It was not appreciated to have detrimental health consequences until the late 

1950’s when an outbreak of Itai-Itai disease occurred in the region of the Jinzu River 

basin, a cadmium-polluted region, in Japan.  Zinc mining in this region released 

significant quantities of cadmium into the Jinzu River, killing nearly all the fish.  This 

river was the irrigation source for nearby rice paddies, and the main source of drinking 

water.  In 1968 Itai-Itai was officially recognized to be caused by cadmium exposure 

when epidemiological evidence demonstrated that cadmium was the only source that 

could explain the restricted development of the disease in this area of Japan.  The toxicity 

is exerted on the kidneys where tubular and glomerular injury results in renal 

dysfunction; gout also occurs as a side effect of kidney dysfunction. Additionally, the 

bones are damaged due to osteomalacia and osteoporosis. 
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 Cadmium is toxic to several tissues, and the pathological consequences of 

cadmium are dependent upon the dose and duration of exposure (ATSDR 2012, Liu 

2007a,b).  Acute cadmium poising primarily targets the liver, with cadmium 

hepatotoxicity as the major cause of lethality from an acute exposure (Goering 1983, 

Klassen 1999).The main target organ of chronic exposure to cadmium is the kidney.  

Cadmium impairs tubular and glomerular function, and accumulates in the proximal 

tubule.  Cadmium is a cumulative toxin  with a recommended daily limit of  intake in 

humans of  0.3 ug/kg (Choudry 2001).  When levels of cadmium accumulation have 

reached 150-200 μg cadmium/g tissue in the proximal tubule, dysfunction begins to 

occur.  Deficiencies in glomerular filtration rate (GFR),  and impaired reabsorption of 

various solutes including low molecular weight proteins, glucose, amino acids, phosphate 

and sodium characterized by proteinuria, glucosuria aminoaciduria, phosphaturia and 

hyperosmolar polyuria are reliable indications of proximal tubule damage The long 

biological half-life of cadmium, ranging from 15-30 years (ATSDR 2012), is most likely 

due to the fact that cadmium is non-biodegradable and relatively redox inert.  Information 

on the biotransformation of cadmium is limited, with literature support for cadmium 

conjugation to sulfhydryl groups of proteins including MT and glutathione.  Most of the 

cadmium that is absorbed will ultimately be stored in the kidney, and to a lesser extent in 

the liver for several years with only a small percentage eliminated through excretion in 

the urine and bile respectively.   

 While the toxic effects of cadmium are well characterized, the molecular 

mechanisms of toxicity remain to be fully characterized.  Several investigations designed 

to elucidate its cytoxic effects have revealed cadmium to alter a variety of cellular 
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functions including alteration in the activity of several enzymes, interference with 

essential metal ion activities, induction of oxidative stress and apoptosis, inhibition of 

mitochondrial ATP production, and alterations in gene expression.  

 As cadmium is a nonessential ion, there are no known ion transporters specific for 

cadmium.  Multivalent cations have relatively small atomic radii, so toxic metal ions such 

as cadmium appear to gain entry through molecular mimicry of calcium, zinc, iron and 

magnesium. Cadmium uses molecular mimicry not only to gain entry to the cell, but also 

to exit the lysosome to return to the cytosol and to enter the mitochondria (Bridges & 

Zalups, 2005).   Cadmium is absorbed from the gastrointestinal tract after ingestion by 

binding to the divalent metal ion transporter-1 (DMT1 or SLC11A2) in the duodenum.  

As the name suggests, this transporter carries several other metal ions including iron and 

zinc (Mn > Cd > Fe > Pb > Zn). Individuals deficient in essential metals such as iron are 

susceptible to increased cadmium transport into cells due to increased expression of 

divalent metal ion transporter 1 (Vesey, 2010). Once in the plasma, cadmium binds to 

albumin and is transported into the liver.  Within the liver, cadmium induces 

metallothioneins, to which it binds with high affinity (Sabolić, Breljak, Skarica, & Herak-

Kramberger, 2010).  Cadmium binding to glutathione allows for excretion through the 

bile, while cadmium-metallothionein complexes are transported back into the plasma 

following necrosis or natural turnover of hepatic cells.  Free filtration of these complexes 

in the glomerulus allows for the subsequent reabsorption of the cadmium-metallothionein 

complex from the lumen of the proximal tubule at the apical face of the epithelium  

(Tang, Sadovic, & Shaikh, 1998).  This occurs by endocytosis mediated by the megalin 

receptor. Once in the proximal tubule, stable cadmium –metallothionein complexes are 
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degraded by the lysosome (Vesey, 2010).  Due to the acidic environment of the 

lysosome, cadmium is displaced from metallothionein, and gains entry back into the 

cytosol to exert detrimental effects or be sequestered by metallothioneins.  Additionally, 

divalent metal ion transporter 1 is also present on proximal tubule cells, and may be the 

transporter responsible for free cadmium export from endosomes and lysosomes that 

have internalized cadmium-metallothionein complexes.  Cadmium is also capable of 

entering  the mitochondria where it targets complex III of the electron transport chain 

impairing ATP generation, lowering the energy status and capabilities of the cell (Gobe 

& Crane, 2010).  The proximal tubule is mitochondria rich in order to maintain the high 

ATP required for transport.  This results in lower capabilities to “rescue” useful 

substances from the lumen of the proximal tubule. If cadmium concentrations remain 

high, the mitochondrial disruption generates increasing levels of reactive oxygen species 

(ROS) with release of cytochrome c, inducing the caspase cascade and subsequent 

apoptosis.  In addition to divalent metal ion transporter 1 and megalin, ZIP8 (SLC39A8), 

and ZIP14 (SLC39A14) have been identified as transporters capable of allowing 

cadmium entry into the cell.   

 Cadmium has also been demonstrated to disrupt adherens junctions in the 

proximal tubule  (W C Prozialeck, 2000; W. Prozialeck, Lamar, & Appelt, 2004; Walter 

C Prozialeck, Lamar, & Lynch, 2003) by selectively disrupting E-cadherin-dependent 

intercellular junctions by interfering with calcium binding.  Cadmium also disrupts tight 

junctions by altering the distribution of claudins 2 and 5 (Walter C Prozialeck et al., 

2003). 
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Metallothioneins 

 The metallothioneins (MT) are a family of cysteine-rich metal binding antioxidant 

proteins consisting of four functional protein isoforms, MT-1, MT-2, MT-3, and MT-4.  

These proteins range from 61 to 68 amino acids with highly conserved primary and 

secondary structure.  The investigation and discovery of metallothioneins was initially 

closely associated with the search for tissues containing cadmium by Valee and 

Margoshes (Vallee, 1979).  The first study to report the presence of cadmium in the 

human kidney was initially published by Maliuga in 1941, however this report was not 

available to western scientists until the mid-1950s.  This finding led to the identification 

of cadmium in the kidneys of other mammalian species, and the initial identification of a 

protein containing cadmium, as well as substantial levels of zinc and iron, fractionated 

and purified from the kidney cortex of a horse.  Chromatographic separation revealed the 

presence of the two isoforms, MT-1 and MT-2 (19), with a low molecular weight of 6-7 

kDa, high sulfur and metal content.  Further protein sequencing revealed that of the 61 

amino acids composing the single polypeptide chain, 20 residues were cysteines with 

distinct clustering into Cys-X-Cys, Cys-Cys, and Cys-X-X-Cys (Piscator, 1964).  

Subsequent toxicological studies involving cadmium administration to small animal 

models identified increased amounts of MT in the liver.  This led to the initial hypothesis 

that biosynthesis of MT is induced by cadmium for metal detoxification (Piscator, 1964). 

Later studies found dietary administration of copper and zinc also capable of MT 

induction in the liver and kidneys of small animal models (Nordberg & Kojima, 1979).  

Several studies by Valee and others determined the kidney to be the primary site of 
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cadmium accumulation and toxicity in chronic exposure models, typically in a complex 

with metallothionein. 

 Due to the observation that cadmium-metallothionein complexes accumulate in 

the proximal tubule and exert toxicity in chronic exposure models, it was a long held 

paradigm that metallothionein was detrimental in the context of cadmium exposed animal 

models.  This paradigm shifted when mice administered cadmium-metallothionein 

complexes displayed less toxicity than those administered cadmium alone.  Further, 

metallothionein null mice (incapable of producing metallothionein) chronically exposed 

to cadmium display enhanced sensitivity to cadmium induced nephropathy (J. Liu, Liu, 

Habeebu, & Klaassen, 1998).  It is now generally accepted that metallothioneins are 

protective against cadmium toxicity. 

 Metallothioneins readily bind metal cations, and under normal physiological 

conditions bind preferentially to copper and zinc.  There are two distinct metal binding 

domains in each isoform, the β-domain near the  N-terminal region, and the α-domain 

near the C-terminal region (Vašák & Meloni, 2011).  Typically the β-domain binds three-

divalent cations, while the α-domain binds four-divalent cations, forming two distinct 

metal thiolate clusters. Metal bound MTs are more stable than apo-MT (metal free) and 

are less susceptible to lysosomal degradation.  In fact, molecular mechanic-molecular 

dynamic calculations of apo-MT indicate no structural stability and is predicted to form a 

random coil conformation (Rigby Duncan & Stillman, 2006). Using a combination of 

circular dichroism and NMR to evaluate the  metal composition of metallothionein, 

determined that the preferential state contains  seven divalent metal ions  per one 

metallothionein molecule (Meloni, Polanski, Braun, & Vasák, 2009), with metal status 
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ranges from 5-10 divalent metal ions per molecule of metallothionein (Sutherland & 

Stillman, 2011). 

 MT-1and MT-2 are ubiquitously expressed at high levels. These isoforms are 

readily inducible in response to perturbations in cellular homeostasis and are particularly 

responsive to metal induction in animal models following dietary administration of 

cadmium copper or zinc.  The promoter regions of these genes contain metal response 

elements (MRE) that induce gene expression when cellular levels of essential or toxic 

metals are increased.  These isoforms are also responsive to hypoxia, oxidative stress, 

steroids, and hormones. MT-3 and MT-4 exhibit more restricted tissue specific 

expression, with the highest distributions classically recognized to localized to the CNS 

and stratified epithelium respectively.   

Metallothionein isoform 3 

 For more than a decade this laboratory has rigorously investigated tissue 

distribution of MT-3 and the role this isoform may play in cellular homeostasis and 

disease(S H Garrett, Somji, Todd, & Sens, 1998; Scott H Garrett et al., 2002; S Somji, 

Garrett, Sens, & Sens, 2006; Seema Somji et al., 2011; Todd et al., 1996).  MT-3 was 

first identified by Uchida and colleagues in 1991 in cortical neurons and to a lesser extent 

in a distinct population of astrocytes in the gray matter.  MT-3 inhibited survival and 

neurite formation of cortical neurons in vitro, and was found to be down regulated in 

astrocytes from brains affected by Alzheimer’s Disease (Uchida, Takio, Titani, Ihara, & 

Tomonaga, 1991).  MT-3 exhibits tissue-specific expression differentiating this isoform 

from the ubiquitously expressed MT-1 and -2. The distribution of MT-3 is not restricted 

to central nervous system as the classical view suggests; components of normal skin and 
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kidney express MT-3 (Scott H. Garrett, Sens, Todd, Somji, & Sens, 1999; Slusser et al., 

2014).  Additionally, MT-3 is expressed in several types of cancer including breast, 

bladder, prostate, and skin (Satarug, Garrett, Sens, & Sens, 2010; M. A. Sens et al., 2000; 

Zhou et al., 2006).   

 The first unique function, growth inhibitory activity, can be attributed to the β-

domain of MT-3, with one study attributing this activity to the proline insert (Sewell, 

Jensen, & Erickson, 1995) and another to E23 (Z. Ding, Teng, Cai, & Wang, 2006).  MT-

3 also influences the mechanism of cell death a stressed cell undergoes (apoptosis or 

necrosis) and that the β-domain influences this activity (Seema Somji, Garrett, Sens, 

Gurel, & Sens, 2004; Seema Somji, Garrett, Sens, & Sens, 2006).  MT-3 can also 

participate in thiol-disulfide exchange reactions with other cysteine-containing proteins 

when the β-domain is bound to four-copper ions leaving two cysteine residues free to 

participate in thiol/disulfide exchange (Ghazi, Martin, & Armitage, 2010; Meloni, Faller, 

& Vasák, 2007). 

 The deviations in the primary sequence of MT-3 from the other isoforms are 

thought to be responsible for unique functions of MT-3. There is an additional threonine 

in the N-terminal domain, an alanine to proline substitution in the β-domain, and a six 

amino acid insert in the C-terminal domain.  This proline induces a kink in the structure 

of MT-3 and the six amino acid insert consists of acidic amino acids.  These differences 

manifest structurally and influence the interactions of MT-3 with other proteins.  

Metallothionein-3 Protein-Protein Interactions 

 The existing literature describing protein interactions with MT-3 have been 

limited to investigations within the CNS (Durand, Meloni, Talmard, Vašák, & Faller, 
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2010; Meloni & Vašák, 2009).  This is not entirely surprising due to the classical view 

that tissue distribution of MT-3 is restricted to neurons and astrocytes.  However, in 1999 

Garret and Sens demonstrated that MT-3 is expressed in several epithelial components of 

the nephron using immunohistochemistry. The highest levels of MT-3 were observed in 

several components of the renal cortex; moderate staining was observed in components of 

the glomerulus, including parietal epithelial cells of Bowman’s capsule and visceral 

epithelial cells of the glomerular tuft, moderate staining was observed in epithelial cells 

of the proximal tubule, and strong cytoplasmic staining in the distal tubule.  MT-3 

staining was more variable in components of the medulla; staining was weak to moderate 

in the medullary collecting ducts and absent in the ascending and descending loops of 

Henle, and transitional epithelium of the renal pelvis (Scott H. Garrett et al., 1999) 

 The context for studying proteins interacting with MT-3 in the CNS arises from 

the observation by Uchida in the late 1980s that extracts from Alzheimer’s Disease 

affected brains enhanced the survival of cerebral cortical neurons when compared to 

normal brain extracts (Uchida 1988). Subsequent comparative analysis of the diseased 

brain extracts to normal brain extracts attributed this feature to a protein they termed 

growth inhibitory factor (GIF); it was hypothesized that GIF was involved in the 

formation of senile plaques and enhanced sprouting (Uchida 1989). However, follow-up 

studies indicated a correlation to reduced GIF activity and the presence of neurofibrillary 

tangles, not senile plagues (Uchida 1991).  Additionally, GIF was identified to be a 

metallothionein, the third isoform identified.   Since this initial characterization, several 

laboratories studying AD have sought to characterize the mechanism by which MT-3 

contributes to the pathogenesis of AD by investigating protein-protein interactions and 
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MT-3-mediated metal swap events.  Several protein-protein interactions have been 

identified (Table 1). 

 The fact that protein interactions with MT-3 are studied in the context of AD 

where the pathological state is characterized by neurofibrillary tangles (Tau tangles) and 

senile plagues (Aβ plagues) may provide some insight for studying interacting proteins 

with MT-3 in the context of CKD.  When viewed in simplistic terms, tangles and plagues 

are an accumulation of dysregulated protein aggregates that contribute to the pathology of 

AD; the accumulation of dysregulated protein aggregates is a pathological hallmark of 

fibrosis observed in CKD. 

Table I-1. MT-3 interacting proteins 

Interacting 

Protein 

Generalized 

Function 

Reference Tissue 

Transthyretin Thyroxine Transport Martinho et.al 2010 CNS 

Rab3A GTPase Exocytosis Kang, Chen, Ren, & Ru, 2001 CNS 

Hsp90 Secretion/Stress Lahti et al. 2005 CNS 

Hsp70 Secretion/Stress Lahti et al. 2005 CNS 

Drp2 Neuronal growth Lahti et al. 2005 CNS 

Creatine Kinase  Glycolysis Lahti et al. 2005 CNS 

B-actin Structure/Scaffolding Lahti et al. 2005 CNS 

Exo84 Exocytosis Ghazi, Martin, & Armitage, 2011 CNS 

14-3-3 Protein signaling Ghazi, Martin, & Armitage, 2011 CNS 

Enolase-1 Glycolysis Ghazi, Martin, & Armitage, 2011 CNS 

Aldolase 1 and 3 Glycolysis Ghazi, Martin, & Armitage, 2011 CNS 

Pyruvate Kinase Glycolysis Ghazi, Martin, & Armitage, 2011 CNS 

Malate 

Dehydrogenase 

Glycolysis Ghazi, Martin, & Armitage, 2011 CNS 

Tubulin α3 Scaffolding Ghazi, Martin, & Armitage, 2011 CNS 

Gelsolin Structure/Filament Bathula, 2010 Kidney 

Myosin-9 Cytoskeleton Bathula, 2010 Kidney 

B-actin Structure/Scaffolding Bathula, 2010 Kidney 

Tropomyosin 3 Cytoskeleton Bathula, 2010 Kidney 
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CHAPTER II 

METHODS 

Immunohistochemistry 

 Tissue sections for the immunohistochemical analysis of E- and N-cadherin 

expression in human kidney were obtained from archival paraffin blocks of previously 

completed patient diagnostic procedures.  These archival specimens contained no patient 

identifiers and use was approved by the University of North Dakota Internal Review 

Board.  Three cases from renal cell carcinomas were utilized in the present analysis and 

areas of normal kidney were selected for use by a diagnostic pathologist.  These archival 

specimens were routinely fixed in 10% neutral-buffered formalin for 16-18 h and were 

transferred to 70% ethanol and subsequently dehydrated in 100% ethanol.  The 

dehydrated tissues were cleared in xylene, infiltrated, and embedded in paraffin. Serial 

sections of formalin fixed and paraffin embedded tissues were cut at 5 μm, deparaffinized 

in xylene and rehydrated in graded ethanol and water.  Prior to immunostaining, antigen 

retrieval was performed by immersing the sections in Dako Target Retrieval Solution 

(Code S1699) and heated in a steamer for 20 minutes.  The sections were allowed to cool 

at room temperature for 30 minutes and immersed in TBST (Tris-buffered saline with 

0.1% Tween 20) for 10 minutes.  The E and N-cadherin were detected by incubating the 

sections with anti-E cadherin (Santa Cruz; 1:100) and anti-N cadherin (Zymed; 1:100) for 

30 minutes at room temperature.  The identities of the tubular elements chosen for 
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subsequent microdissection were identified by the differential immunostaining sections 

for aquaporin-1 and calbindin (Bedford, Leader, & Walker, 2003; Kirk, Campbell, & 

Bass, 2010; Kiuchi-Saishin & Gotoh, 2002).  Aquaporin-1 and calbindin were detected 

by incubating sections with anti-aquaporin (Ab9566, Abcam, Cambridge, MA, 1:400) 

and anti-calbindin (McAb 300, Swant, Switzerland, 1-800) for 30 minutes at room 

temperature.  The sections were then incubated with Dako Envision+ Dual Link System 

(Code K4061) for 30 minutes at room temperature.  Liquid diaminobenzidine (DAB) was 

used for visualization. After counterstaining with hematoxylin, the slides were rinsed in 

distilled water, dehydrated in graded ethanol, cleared in xylene, and coverslipped. 

Laser-Capture Microdissection 

 

 The parafin-embedded specimens were also used to determine the expression of 

E- and N-cadherin mRNA in proximal tubule cells of human kidney.  Five μm thick 

sections were cut and mounted onto sterile plain glass slides. The slides were heated at 

60°C for 25 min followed by incubation in xylene solution for 5 min and transferred into 

fresh xylene solution for an additional 5 min to deparaffinize the sections.  The slides 

were then washed with 100% ethanol for 30 sec followed by sequential incubation for 30 

sec in 100% ethanol, 95% ethanol, and 70% ethanol. The slides were then washed for 30 

sec with distilled water and stained with hematoxylin for 30 sec.  The slides were washed 

with distilled water followed by sequential washes with 70% ethanol and 95% ethanol for 

60 sec each.  The sections were incubated in eosin solution for 30 sec, washed with 95% 

ethanol for 60 sec, and then with 100% ethanol for 60 sec. The slides were incubated in 

xylene for 5 min to ensure the dehydration of the sections and excess solution was 

drained by touching the corner of the slide to a particle-free paper tissue. The slides were 
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air-dried for 2 min to ensure the evaporation of xylene and were then used for laser 

capture microdissection.  The PixCell II™ LCM system (Arcturus Engineering Inc., 

Mountain View, CA) was used and proximal tubules were identified by the diagnostic 

pathologist for microdissection.  The microdissected samples were collected on the 

thermoplastic film of CapSure™ HS LCM caps (Arcturus Bioscience, Mountain View, 

CA).  Total RNA was isolated following the protocol of RNAqueous
®
 –Micro Kit (Life 

Technologies, Carlsbad CA).  The thermoplastic film containing the captured proximal 

tubule cells was incubated with 100 μl of lysis solution for 30 min at 42°C.  Then 3 μl of 

LCM additive was added to the lysate.  The lysate was briefly centrifuged followed by 

the addition of 1.25 volume of 100% ethanol. The lysate was passed through a pre-wetted 

microfilter cartridge by centrifugation at 10,000 x g for 1 min. The filter was washed with 

180 μl of wash solution and the flow- through was discarded followed by two additional 

washes with 180 μl of wash solution.  The flow-through was discarded and the filter was 

centrifuged for 1 min to remove the residual fluid. The filter was transferred into a new 

sterile tube and incubated for 5 min with 10 μl of elution solution preheated to 95°C.  The 

RNA was eluted by centrifugation at 13,000 x g for 1 min and used in real-time reverse 

transcription polymerase chain reaction (RT-PCR). 

 The measurement of N-cadherin and E-cadherin was assessed using real time RT-

PCR and commercially available primers (Qiagen Company, Valencia, CA.  Real time 

PCR was performed utilizing the SYBR Green kit (Bio-Rad Laboratories) with 2 µl of 

cDNA, 0.2 µM primers in a total volume of 20 µl in an iCycler iQ Real-Time Detection 

System (Bio-Rad Laboratories).  Amplification was monitored by SYBR Green 

fluorescence.  Cycling parameters consisted of denaturation at 95
º
C for 15 seconds, 
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annealing at 55
º
C for 30 seconds and extension at 72

 º
C for 30 seconds which gave 

optimal amplification efficiency of each cadherin isoform.  The interpolated numbers of 

transcripts from three triplicates were divided by the number of 18S rRNA transcripts and 

averaged for the final reported value (± SE). 

Cell Culture 

 Stock cultures of human proximal tubule cells (HPT) were grown using serum-

free condition and collagen coated culture flasks as described previously (Detrisac et al., 

1984;Kim et al., 2002). The growth formulation consisted of a 1:1 mixture of Dulbecco's 

modified Eagles' medium (DME) and Ham's F-12 growth medium supplemented with 

selenium (5 ng/ml), insulin (5 μg/ml), transferrin (5 μg/ml), hydrocortisone (36 ng/ml), 

triiodothyronine (4 pg/ml) and epidermal growth factor (10 ng/ml).  The cells were fed 

fresh growth medium every 3 days and were subcultured 1:2 at confluence (normally 3-6 

days post subculture) using trypsin-EDTA (0.05% - 0.02%).  HK-2 cells were obtained 

from the American Type Culture Collection, expanded following recommended culture 

conditions, and aliquots stored under liquid nitrogen.  For studies directly comparing 

properties with HPT cells, the HK-2 cells were cultured under identical growth 

conditions using the serum-free growth media and subculture conditions described above 

for the HPT cells. This growth condition was also used for the microarray determinations 

between HK-2 cells stably transfected with the MT-3 coding sequences and the blank 

vector control.  To determine the effects of serum-free verses serum-contain growth 

medium on the morphology and expression patterns of the HK-2 cells, the HK-2 cells 

were grown to confluence on the serum-free medium as suggested by the original 

publication by Ryan and coworkers (Ryan et al., 1994). At confluence, the serum-free 
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growth media of the HK-2 cells was replaced by the new media formulations and 24 h 

later the cells were subcultured using the new media formulations.  The cells were 

allowed to grow under these new conditions for a minimum of 2 passages before use in 

experimental protocols. 

Transepithelial Resistance 

 Measurement of transepithelial resistance was performed.  HK-2 or HPT cells 

were seeded at a 2:1 ratio in triplicate onto 24-mm-diameter cellulose ester membrane 

inserts (Corning) placed in six-well trays. Beginning on the third day postseeding, 

transepithelial resistance (TER) was measured every other day with the EVOM Epithelial 

Voltohmmeter (World Precision Instruments, Sarasota, FL) with a STX2 electrode set 

according to the manufactures instructions.  The resistance of the bare filter containing 

medium was subtracted from that obtained from filters containing cell monolayers and 

multiplied by the surface area (available for growth) of the insert to obtain unit area 

resistance. Two sets of four readings were taken at two different locations on each filter.  

The development of the monolayer in parallel 12-well trays was monitored for dome 

formation.  The experiment was repeated twice in triplicate and the final result reported 

as the mean ± SE. 

RNA isolation and RT-qPCR 

 Total RNA was purified from cultures of HPT cells, human renal cortical tissue or 

HK-2 cells utilizing TRI Reagent (Molecular Research Center, Cincinnati OH).  Gene 

expression was assessed with real time RT-PCR utilizing gene specific primers.  Total 

RNA (100 ng) was subjected to cDNA synthesis using the iScript cDNA synthesis kit 

(Bio-Rad) in a total volume of 20 μl. Real-time PCR was performed utilizing SYBR 
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Green (Bio-Rad) technology with 2 μl of cDNA, 0.2 μM primers in a total volume of 20 

μl in an CFX real-time detection system (Bio-Rad). Cycling parameters included a 5 

minute hot start followed by 40 cycles of denaturation at 94 ºC (15 s), annealing at 55 ºC-

62 °C (30 s), and extension at 72 ºC (30 s). Amplification was monitored by SYBR Green 

fluorescence and analyzed by interpolation from a standard curve consisting of serial 

dilutions of known quantities of template.  Melt curve analysis confirmed the amplicon 

was the dominant double stranded species and denatured at the appropriate temperature.  

Protein isolation 

 For EMT studies, HK-2 or HPT cells were lysed in RIPA buffer containing 

protease inhibitors, PMSF, and sodium orthovandate (Santa Cruz).  The monolayer was 

washed twice with cold phosphate-buffered saline (PBS), scraped in a small volume of 

cold PBS on ice, rinsed, and pelleted at 4 °C.  Pelleted cells were resuspended in an 

additional volume of PBS and split in to 2-cold microfuge tubes (for parallel RNA 

analysis), and pelleted.  Pellets were either stored at -80 °C  or resuspended in cold 

complete RIPA at a 1:2 w/v ratio (for every 5 mg of cell pellet, 10 uL lysis buffer) and 

incubated on ice with orbital shaking for 30 minutes.  The extracts were then sonicated, 

placed on ice, and centrifuged at 10,000g for 10 minutes at 4°C.  Supernatants were 

transferred to fresh, cold microfuge tubes and either stored at -80 °C or quantified by 

BCA assay (Thermo-Scientific). 

 For analysis of protein-protein interactions, HK-2 or HK-2(MT-3-V5) were lysed 

in a more gentle lysis buffer in the attempt to limit dissociation of protein complexes. 

Cell monolayers were rinsed on ice with cold PBS twice prior to the addition of 100 uL 

of cold IP lysis buffer (25 mM Tris-HCl, 150 mM NaCl, 1% NP-40, 5% glycerol,  pH 
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7.4) containing EDTA-free protease inhibitors (Sigma) directly to the monolayer.  Plates 

were incubated on ice for 30 minutes with orbital shaking, and extracts were transferred 

to cold microfuge tubes and centrifuged at 10,000g for 10 minutes to pellet debris.  

Lysates were transferred to fresh, cold microfuge tubes and quantified by BCA assay.  

Lysates were used immediately, or stored at -80 °C. 

Western Blotting 

 For western blotting, protein lysates were prepared in equivalent volumes to 

contain 20 μg of total protein and mixed with Laemmli Buffer (Bio-Rad) containing 

either TCEP or β-mercaptoethanol, and boiled for 5 minutes at 95 °C to reduce and 

linearize protein.  After cooling, samples were loaded onto 4-20% gradient gels (Bio-

Rad), and separated by SDS-PAGE. Proteins were transferred to 0.2 μm PVDF 

membranes using the Trans-blot Turbo transfer apparatus (Bio-Rad).  Following transfer, 

the membranes were blocked with 5% non-fat milk or bovine serum albumin (BSA) 

dissolved in 10 mM Tris-buffered saline, 0.1% Tween-20 (TBS-T) for 90 minutes at 

room temperature.  The membranes were incubated with primary antibodies against 

(human) proteins of interest at dilutions indicated in Table II-1 overnight (16 h) at 4 °C 

with orbital shaking. Membranes were washed with TBS-T, and incubated with 

horseradish peroxidase conjugated secondary antibodies against the species the primary 

antibodies were raised in for 1 h at room temperature with orbital shaking.  Anti-rabbit 

and anti-mouse antibodies were diluted 1:3000 (Cell Signaling), and the anti-goat 

antibody was diluted 1:1000. Proteins of interest were visualized by chemiluminescent 

HRP detection (Bio-Rad). Primary and secondary antibodies were diluted in the same 

buffer used for blocking. 
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Table II-1.  Primary antibodies used for western blotting. 

Antibody Dilution Source & 

Clonality 

Storage 

 (ᵒC) 

Company Catalog  

# 

Mw 

(kDa) 

β-actin (BSA) 

1:1000 

Mouse 

monoclonal 

-20 Abcam Ab8226 42 

Gelsolin 1:500-

1:1000 

Mouse 

monoclonal 

-20 Abcam Ab11081 86 

Tropomyosin 

III 

1:1000 Mouse 

monoclonal 

4 Santa-Cruz Sc12059 29-32 

Myosin IIa 1:500 Goat 

 polyclonal 

4 Abcam Ab55456 215 

α-enolase 1:3000 Rabbit 

polyclonal 

-20 Abcam Ab56795 47-51 

α-aldolase 1:500 Goat  

polyclonal 

4 Santa-Cruz Sc12059 40 

V5 1:5000 Mouse 

monoclonal 

4 Invitrogen Ab9116 10-12  

E-cadherin 1:500 Rabbit 

polyclonal 

4 Santa-Cruz Sc 120 

N-cadherin 1:1000 Mouse 

monoclonal 

-20 Life 

Technologies 

333900 100 

Connexin 32 1:1000 Rabbit 

polyclonal 

-20 Life 

Technologies 

 32 
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ELISA  

 A sandwich ELISA method was used to quantify the expression of E- and N-

cadherin by the cultured cell lines. Both ELISA materials were obtained from Abnova (E-

cadherin (#KA0433) and N-cadherin (Abnova, #KA1135).  Plates were pre-coated with 

capture antibodies against either human E-or N-cadherin.  Following initial titration to 

determine the appropriate net amount of protein to load per well, a range of 1-25 ug of 

total protein (100 μL/well) was used for analysis.  The plate was covered and incubated at 

37 °C for 90 minutes (E-cadherin) or 2 hours (N-cadherin).  The plate contents were 

discarded and incubated with 100 μL of biotinylated polyclonal antibody against either E-

or N-cadherin diluted (1:100) in antibody dilution buffer for 1 hour at 37 °C.  The 

contents of the plate were discarded and each well was washed three times with 10 mM 

TBS.  The plate was incubated with pre-warmed avidin-biotin-peroxidase complex 

(ABC) prepared 1:100 with ABC-dilution buffer at 37 °C for 30 minutes.   The contents 

were discarded and the plate was washed 5 times.  The plate was then incubated with 90 

μL of pre-warmed 3, 3′, 5, 5′ tetramethylbenzidine (TMB) substrate solution for 15 

minutes at 37°C.  Finally, the reaction was quenched by the addition of acidic TMB stop 

solution halting the colorimetric development.  The plate was then analyzed by reading 

the absorbance of each well on a Biotek plate reader at 450 nm.  The data was analyzed 

via MasterPlex software using 5 parameter logistics to determine the amount of E- or N-

cadherin present in each well. 

Statistical Analysis 

 All experiments were performed in triplicate and the results are expressed as the 

standard error of the mean.  Statistical analyses were performed using GraphPad Prism® 
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software using separate variance t-tests, ANOVA with Tukey post-hoc testing.  Unless 

otherwise stated, the level of significance was 0.05. 

Stable Transfections 

 The HK-2 cells were transfected with wild type MT-3, MT-3 where the unique N-

terminal region was altered, and MT-3 where the unique C-terminal sequence was 

removed from MT-3 (Fig 1).  The HK-2 cells were also transfected with MT-1E, MT-1E 

where the unique C-terminal sequence of MT-3 was added to the corresponding region of 

MT-1E, and MT-1E in which the sequence of the N-terminal domain was changed to the 

MT-3 sequence consensus (Fig 1).  The Gateway
TM

 cloning system (Invitrogen, Carlsbad, 

CA) was used for the production MT-3 site-directed mutants.  The MT-3 and MT-E 

coding sequences were cloned into the pENTR vector and site-directed mutagenesis was 

performed by GeneScript (Piscataway, NJ).  The EAEAAE sequence was deleted from 

the C-terminal domain of MT-3 and this same sequence was inserted in the analogous 

position of MT-1E, producing the MT-3ΔCT and 1E-CT constructs respectively.  The N-

terminal sequence of MT-1E (MDPNCSCA) was converted to an MT-3-like sequence 

(MDPNTCPCP) for the 1E-NT construct.  For the mutagenesis of this N-terminal 

sequence, the last two prolines in the above sequence were converted to threonine for the 

MT-3-NT mutant.  The threonine insert and prolines 7 and 9 of MT-3 were found to be 

necessary and sufficient to confer growth inhibitory activity and the substitution of the 

prolines to threonine is sufficient to eliminate this activity (Romero-Isart, Jensen, & 

Zerbe, 2002).  Each metallothionein sequence within the pENTER vector was moved to 

the pcDNA6.2/V5-DEST destination vector using the Gateway™ LR recombination 
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reaction. The stop codon was removed from each construct allowing for the translation of 

the V5 tag on the C-terminus for alternative protein detection.  

 The HK-2 cells were transfected with the E-cadherin coding sequence using the 

E-cadherin ORF cloned in pENTR™ 221 vector and was obtained from Invitrogen 

(Invitrogen, Carlsbad, CA). The E-cadherin gene was transferred into pcDNA™6.2/V5-

DEST vector by LR recombination reaction (Invitrogen, Carlsbad,CA).  The DNA 

constructs were linearized with BspH I and E-CDH ORF was linearized with Bcg I (New 

England BioLabs, Ipswich, MA) before transfection. The HK-2 cells were transfected 

using the Effectene™ transfection reagent (Qiagen, Valencia, CA) following the 

manufacturer’s protocol at a ratio of 1:10 plasmid to Effectene ratio, and the lipid 

complexes were added to the cells at 2 μg of DNA per 9.6 cm2
 well of a 6-well culture 

plate.  For antibiotic selection, transfected cells were seeded 1:10 and clones were 

selected in 3 μg/ml blasticidin and clones were isolated with cloning rings and propagated 

in culture medium containing 3 μg/ml blasticidin. 

Transient Transfections 

 HK-2 cells were transiently transfected with 2 μg supercoiled V5-tagged MT-3 

DNA construct (described above)  using electroporation (Lonza).  Subconfluent cell 

cultures in the log phase of growth were trypsinized from T-75 flasks, pelleted, and 

resuspended in 100 uL of room temperature Nucleofector Solution V (Lonza).  Diluted 

DNA was added and mixed gently before transferring the reaction to the supplied cuvette.  

Electroporation program V was ran, and the entire contents of the cuvette were 

transferred to 1-well of a 6-well plate containing 2 mL of 20/12.  Cells were allowed 6 

hours to take up the construct and to attach to the tissue culture treated matrix before the 
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addition of 20/12 supplemented with 30 μM zinc.  Cells were harvested 24 hours 

following transfection. 

Co-mmunoprecipitation 

 For co-immunoprecipitation of immune complexes, 1000 μg  of HK-2 or HK-2 (MT-3-

V5)  lysate was first pre-cleared by incubation with 50 μL of Protein A/G magnetic beads 

(Thermo-Scientific) and rabbit IgG (to eliminate most of the non-specific protein interactions) for 

30 minutes at 4°C with gentle end-over-end mixing (10 RPM).  The beads were pelleted with a 

magnet, and the lysates were transferred to a fresh, cold microfuge tube.  Next, 20 μg of the anti-

V5 antibody (rabbit monoclonal, Abcam #Ab9116) was added to the tube and the total volume 

was adjusted to 500 μL.  The samples were incubated overnight at 4°C with gentle end-over-end 

mixing (10 RPM) to allow immune complex formation.  The following day, 50 μL of Protein A/G 

magnetic beads were prepared by first adding 175 uL of IP lysis buffer (described above), 

mixing, and removal.  An additional 1 mL of IP lysis buffer was added, mixed and removed. 

Immediately following the final bead wash, the immune complexes were transferred to the tubes 

containing the prepared beads, and incubated at room temperature with gentle end-over-end 

mixing for 75 minutes to allow the beads to capture the immune complexes.  The beads were 

collected, and the supernatant was removed.  The beads were washed 3 times with 500 μL of 25 

mM Tris-HCl, 150 mM NaCl, 0.05% Tween-20 (pH 7.4), followed by a final wash with 18Ω 

H2O.  Bound proteins were eluted from the antibody bound beads through incubation with 

Laemmli Buffer containing no reducing agent, with mixing at room temperature for 10 minutes. 

Heat causes Protein A/G to come off the magnetic beads, and reducing agent dissociate the heavy 

and light chains of the antibody.  Controls included were: beads + V5 antibody+ IP lysis buffer 

(no lysate control); HK-2 (MT-3-V5 lysate) + beads (no antibody control); HK-2 lysate + V5 

antibody + beads (no bait control) and were processed in an analogous manner simultaneously. 
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CHAPTER III 

RESULTS 

Expression of E- and N-Cadherin in Human Kidney Proximal Tubules 

 To confirm the expression of E-cadherin in the proximal tubule, serial sections 

were prepared from three independent specimens of human kidney in order to compare 

routine H&E histology with expression of E- and N-cadherin.  In proximal tubules, 

staining for E-cadherin was moderate in intensity for all three specimens with staining 

concentrated on the luminal or apical borders of the cells (Figure  III-1 A, B; D, E; G, H).  

In distal tubules, staining for E-cadherin was usually stronger than that observed for 

proximal tubules and staining was present around the entire epithelial cell (Fig III-1 A, C; 

D, F; G, I).  In proximal tubules, staining for N-cadherin was also moderate in intensity 

and often localized to the basolateral side of the tubules (Figure  III-1 A, C; D, F; G, I).  

Distal tubules were negative for the expression of N-cadherin (Figure  III-1 A, C; D, F; 

G, I).  The glomeruli were negative for the expression of N-cadherin and negative to very 

weakly positive for the expression of E-cadherin.  

  Microdissection was utilized to determine the expression of E- and N-cadherin 

mRNA in proximal tubules isolated from tissue sections obtained from the three archival 

specimens of human kidney.  Serial sections were stained for calbindin and aquaporin to 

identify that proximal tubules were selectively chosen for microdissection (Figure III-

2A,B
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Figure III-1. Immunohistochemical staining of E- and N-Cadherin in human 

kidney.A-C: The majority of the tubules in the image are proximal tubules (A, arrow 

heads). These tubules are moderately positive for E-cadherin with stronger staining on 

the luminal border (B, arrow heads). Proximal tubules are also moderately positive for N-

cadherin (C, arrowheads).  A few of distal tubules are strongly positive for E-cadherin (B, 

arrows), but negative for N-cadherin (C, arrows). On the upper right corner is a part of 

glomerulus (A, +), which shows very weak staining of E-cadherin and no staining of N-

cadherin (B, C, +). 200X D-F:  In the center of the image is a glomerulus (D, +), which is 

very weakly positive for E-cadherin (E, +) but negative for N-cadherin (F, +). Almost all 

of the tubules around the glomerulus are proximal tubules, which are moderately to 

strongly positive for E-cadherin, especially on the luminal or apical border (E, 

arrowhead), but only weakly positive for N-cadherin (F, arrowhead). The arrows indicate 

the 2 or 3 distal tubules, which are strongly positive for E-cadherin (E, arrows), but 

negative for N-cadherin (F, arrows). 200X G-I:  At higher magnification, it can be 

clearly seen that the E-cadherin is present around the whole epithelial cells of distal 

tubules (H, arrows) with stronger staining in the cell borders (H, arrows); while in 

proximal tubules, E-cadherin is mainly located in the luminal borders (H, arrowheads).  

For N-cadherin, it is only present in proximal tubules, and its signal is mainly located in 

the basolateral sides of the tubules (I, arrowheads). Distal tubules are totally negative for 

N-cadherin (I, arrows). A small part of glomerulus can be seen in upper right corner (G-I 

+). X400 
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Figure III-2.  Expression of E- and N-cadherin in microdissected proximal tubules.   
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A and B: Identification of proximal tubules by immunohistochemical staining in matched 

area of normal kidney for calbindin (A)(distal) and aquaporin-1 (B) (proximal).  C and D: 

Verification of E-cadherin (C), N-cadherin (D) expression.  The proximal tubules 

(marked by *) are moderately to strongly positive for E-cadherin (mainly in the luminal 

side), moderately positive for N-cadherin (mainly in basolateral side), negative for 

calbindin, and diffusely strongly positive for aquaporin-1.  In contrast, the distal tubules 

(pointed by arrows) show diffuse, strong staining of E-cadherin and calbindin, but no 

staining or faint staining of N-cadherin and aquaporin-1. The glomeruli (indicated by #) 

are weakly stained by E-cadherin and aquaporin-1, but negative for N-cadherin and 

calbindin.  Original magnification: X200.  Only one example of the serial sections is 

presented, and all three specimens gave identical results.  E: Expression of E- and N-

cadherin mRNA in microdissected proximal tubules.  RNA was purified from laser-

capture microdissected proximal tubules identified in sections of formalin-fix, paraffin-

embedded tissue obtained from human renal cortex.  Levels of RNA for E- and N-

cadherin were determined quantitatively using real-time PCR and normalized to the 

levels of 18S rRNA also assessed with real-time PCR.  The levels of each cadherin 

isoform were determined in triplicate and expressed as the number of detected cadherin 

transcripts per million transcripts of rRNA.  The results are expressed as the mean of 

triplicate determinations (±SE). Identification of proximal tubules by 

immunohistochemical staining in matched area of normal kidney for calbindin (A) 

(distal) and aquaporin-1 (B) (proximal).  C and D: Verification of E-cadherin (C), N-

cadherin (D) expression. The proximal tubules (marked by *) are moderately to strongly 

positive for E-cadherin (mainly in the luminal side), moderately positive for N-cadherin 

(mainly in basolateral side), negative for calbindin, and diffusely strongly positive for 

aquaporin-1.  In contrast, the distal tubules (pointed by arrows) show diffuse, strong 

staining of E-cadherin and calbindin, but no staining or faint staining of N-cadherin and 

aquaporin-1. The glomeruli (indicated by #) are weakly stained by E-cadherin and 

aquaporin-1, but negative for N-cadherin and calbindin.  Original magnification: X200.  

Only one example of the serial sections is presented, and all three specimens gave 

identical results.  E: Expression of E- and N-cadherin mRNA in microdissected proximal 

tubules.  RNA was purified from laser-capture microdissected proximal tubules identified 

in sections of formalin-fix, paraffin-embedded tissue obtained from human renal cortex.  

Levels of RNA for E- and N-cadherin were determined quantitatively using real-time 

PCR and normalized to the levels of 18S rRNA also assessed with real-time PCR.  The 

levels of each cadherin isoform were determined in triplicate and expressed as the 

number of detected cadherin transcripts per million transcripts of rRNA.  The results are 

expressed as the mean of triplicate determinations (± SE).xpression of E- and N-cadherin 

mRNA in microdissected proximal tubules.
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Immunohistochemisstry for E-and N-cadherin verified the proximal and distal tubule 

distribution seen in Figure III-1 (Figure III-2C, D). The results of this determination 

showed that mRNA for both E- and N-cadherin was expressed in proximal tubule 

isolated from all three independent specimens (Figure III-2E).  The levels of expression 

of E-cadherin varied between 2 and 7 transcripts and that of N-cadherin between 0.5 and 

3 transcripts. 

Expression of E- and N-Cadherin in HK-2 Cells as a Function of Growth Medium 

Composition 

 

 In this analysis, the expression of E- and N-cadherin was determined on the HK-2 

cell line when grown of three different growth media formulations.  The first formulation 

was that developed by Ryan and coworkers (Ryan et al., 1994), and suggested for use by 

the ATCC, that is composed of keratinocyte serum free media supplemented with 0.05 

mg/ml BPE and 5.0 ng/ml EGF (designated KSFM).  The second formulation tested was 

that used by Detrisac and coworkers (Detrisac et al., 1984) for the growth of human 

proximal tubule (HPT) cells and is composed of a a 1:1 mixture of DME and F-12 

containing selenium (5 ng/ml), insulin (5 μg/ml), transferrin (5 μg/ml), hydrocortisone 

(36 ng/ml), triiodothyronine (4 pg/ml) and epidermal growth factor (10 ng/ml) 

(designated 20/12EGF).   The third formulation was chosen to be representative of one of 

the various growth mediums used that contained fetal calf serum (Q. Li et al., 2011) and 

was a 1:1 mixture of DME and Ham's F-12 growth medium containing 10% fetal calf 

serum (designated 20/12FCS). In addition, it was also determined if adding 0.05 mg/ml 

of BPE to the 20/12EGF formulation and if raising the calcium concentration of the 

KSFM to that of 20/12 had any effect on the expression of E- and N-cadherin.
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The results of this determination showed that the expression of E-cadherin mRNA was 

very low in the HK-2 cells regardless of the growth media formulation, being on the 

order of 1 mRNA transcript per cell (Figure III-3A).  The corresponding matching 

western blots showed only very faint bands corresponding to the expression of the E-

cadherin protein (Figure III-3A).  In contrast, the expression of N-cadherin mRNA was 

much higher in the HK-2 cells when compared to that of E-cadherin, with most 

conditions exhibiting hundreds of fold greater level of expression regardless of growth 

formulation (Figure III-3B).  The N-cadherin protein was also prominent on western blots 

(Figure III-3B).  Similar to that found for E-cadherin, the growth media composition had 

little effect on N-cadherin expression.  Overall, the analysis demonstrated that the HK-2 

cells have a low expression of E- compared to N-cadherin and that growth media 

composition has only a marginal influence on the levels of mRNA or protein expression. 

Comparison of E- and N-Cadherin Expression in HK-2 and HPT Cell Cultures 

 The expression of E- and N-cadherin was compared between the HK-2 and HPT 

cells at the level of mRNA and protein expression.  Since the results of western analysis 

can be influenced by the development time used to produce the blot, an ELISA-based 

method was employed to quantify the amount of E- and N-cadherin that was present in 

both the HK-2 and HPT cells.  Three independent isolates of HPT cells were used in the 

experiments and these were grown on 20/12EGF.  The HK-2 cells were grown on KSFM, 

20/12FCS, and 20/12EGF.  The results of this analysis confirmed that the HPT cells 

produced E-cadherin mRNA in substantially higher amounts than the HK-2 cells 

regardless of growth media composition (Figure III-4A). The levels of E-cadherin mRNA 

in HPT cells was over 50 fold higher than levels in HK-2 cells.
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Figure III-3. Influence of growth medium on E- and N-cadherin expression HK-2 

cells. A) E-cadherin mRNA expression in HK-2 cells grown in various growth media.  

Expression was assessed with real-time RT-PCR and expressed as the number of 

transcripts per million transcripts of β-actin.  Western analysis of E-cadherin is shown 

below the graph.  See Materials and Methods for media formulations.  B) N-cadherin 

mRNA expression in HK-2 cells grown in various growth media.  Messenger RNA 

expression was assessed by real-time PCR.  Western analysis of N-cadherin is shown 

below the graph. 

 

This difference in mRNA expression did translate to the amount of E-cadherin protein, 

with ELISA analysis showing a similar large (>50 fold) increase in E-cadherin protein in 

the HPT cells compared to the HK-2 cell line (Figure III-4B). An identical analysis of N-

cadherin expression confirmed that N-cadherin mRNA expression was higher in the HK-

2 cell line compared to the HPT cells (Figure III-5A).  An analysis of N-cadherin protein 

expression also demonstrated that this difference did translate to the differences in the N-

cadherin protein (Figure III-5B).  
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Figure III-4. Comparison of E-cadherin expression in HPT and HK-2 cell cultures. 
A) Expression of E-cadherin mRNA in three independent HPT isolates (human proximal 

tubule cells) compared to that in HK-2 cells growth in three different media formulation.  

HPT cells were grown in the 20/12EGF formulation.  B) Levels of E-cadherin protein 

measured quantitatively using an ELISA. C) Western analysis of E-cadherin in the 

identical cultures as in A and B. Significant differences between HK-2 and each HPT 

isolate are designated ***p < 0.0001, of ** p< 0.001 as determined by one-way ANOVA 

with Tukey’s post-hoc test. 

 

However, the magnitude of the difference between N-cadherin protein expression 

between the HPT and HK-2 cell lines was much less (4 to 10 fold) than that found for the 

E-cadherin protein (Figure III-4B versus III-5B).  Overall, the results demonstrate that the 

level of E-cadherin mRNA and protein is significantly higher in HPT cells compared to 

HK-2 cells and that the expression pattern is reversed for the expression of N-cadherin 

between the cell lines. To validate that HK-2 cells grown on filters did not alter their E-
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cadherin levels, protein extracts were taken from the cells on the filter inserts and 

subjected to western analysis for both E- and N-cadherin protein expression.  The results 

of this experiment show that the expression level of these cadherins was not altered from 

culturing in the filter-insert environment (III-6).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure III-5. Comparison of N-cadherin expression in HPT and HK-2 cell cultures. 

A)  Expression of N-cadherin mRNA in three independent HPT isolates (human proximal 

tubule cells) compared to that in HK-2 cells growth in three different media formulation.  

HPT cells were grown in the 20/12EGF formulation.  B) Levels of N-cadherin protein 

measured quantitatively using an ELISA.  C) Western analysis of N-cadherin in the 

identical cultures as in A and B. 
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Figure III-6.  The pattern of E-and N-cadherin expression is unaltered when cells are 

grown on transwell inserts. Growing cells on trawnswell inserts allows both the apical 

and basolateral membranes of proximal tubule cells to have access to the growth medium, 

a situation that is a better model of proximal tubule transport in vivo that tissue culture 

treated plastic substrates.   E- and N-cadherin expression remains very similar in both 

growth conditions. 
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Alterations in Tight Monolayer Development 

 The transepithelial resistance of the HK-2 and HPT cell monolayers was also 

determined to confirm that the growth media composition had no effect on the tight 

junctions between the cells.  It was shown that the HK-2 developed no transepithelial 

resistance (TER), whereas, the HPT cell line developed a TER consistent with a “leaky”  

epithelium (Figure III-7).   

 

 

 

 
 

 

 

 

Figure III-7.  Transepithelial  resistance comparison of HPT and HK-2 cell cultures. 
Cells were grown on filter supports and the electrical resistance across the monolayer was 

measured.  Resistance is expressed as Ohms-cm2. Three independent HPT isolates 

(human proximal tubule cells) are compared to that in HK-2 cells growth in three 

different media formulation.  HPT cells were grown in the 20/12EGF formulation. 

Significant differences between HK-2 and each HPT isolate are designated *p < 0.0001 

as determined by one-way ANOVA with Tukey’s post-hoc test.
 

As a further validation for an alteration in cell-to-cell junctions, the HK-2(MT-3), 

HK-2(blank vector) and HPT cells were assessed for the expression of connexin 32.  The 

results of this determination showed that HK-2(BV) had marginal expression of connexin 

32 mRNA and protein, while the HK-2(MT-3) and HPT cells each showed significant 

expression of both connexin 32 mRNA and protein (Figure III-8).   These finds further 
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validate the findings of altered cell-to-cell junctional responsibilities between the HK-2 

and the HPT cell line and extend those observations to communication between adjacent 

cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III-8. Connexin 32 expression in HK-2, HPT, and HK-2 cells expressing MT-

3. Messenger RNA of connexin 32 was assessed with real-time PCR and expressed as a 

fold increase of the HK-2 cells stably transfected with the blank vector.  The change in 

connexin 32 expression was normalized to the change in β-actin expression.  Western 

analysis of connexin 32 is shown below the graph. 
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Association of the Unique C-Terminal Domain of MT-3 With MT-3 Induced 

MET in HK-2 Cells 

 

The goal of this experiment was to determine the functional domain of the MT-3 

protein required for the MT-3 protein to re-establish vectorial active transport, produce an 

enhanced epithelial morphology, elicit a shift in the expression of E- and N-cadherin, and 

to increase the expression of connexin 32.  Four constructs were used to transfect the HK-

2 cells to determine their effect (III-9) on vectorial active transport as judged by the 

appearance of domes and the generation of a transepithelial resistance.  The first 

construct was MT-3 where the N-terminal sequence was been mutated, the second was 

MT-3 where the C-terminal sequence was mutated, the third was the MT-1E isoform 

where the unique C-terminal sequence of MT-3 was inserted into the sequence, and the 

fourth was the MT-1E isoform where the unique N-terminal sequence of MT-3 was 

inserted into the sequence.  The HK-2 cell line carrying the blank vector or transfected 

with the MT-1E isoform served as controls. The results of this determination 

demonstrated that the C-terminal sequence of MT-3 is required for the establishment of 

vectorial active transport when MT-3 is transfected and expressed in the HK-2 cell line.  

First, the mutation of the N-terminal sequence of MT-3 had no effect on the ability of 

HK-2 cells to form domes or generate a transepithelial resistance (Figure III-10 A,B; 

Table III-1).   
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Figure III-9. Mutated metallothionein constructs.  A) Amino acid sequence of human 

MT-3 compared with human MT-1E.  Shown in red are the MT-3 specific sequences that 

are not exhibited in any mammalian MT 1/2 isoform.  The N-terminal TCPCP sequence 

of MT-3 has been shown to confer the unique biological activity of neuronal growth 

inhibitory activity [38].  These two sequences were independently deleted from MT-3 

and inserted into the MT-1E isoform to test for the conference of vectorial active 

transport.  B) Schematic diagram of the various metallothionein constructs with: MT-3 

denoting the wild-type sequence; MT-3-ΔNT, the two essential prolines were converted 
to threonines; MT-3ΔCT, the EAAEAE C-terminal sequence was deleted from MT-3; 

MT-1E, wild-type 1E isoform of metallothionein; 1E-NT, the N-terminal sequence of 

MT-3 was inserted into the corresponding position of MT-1E; 1E-CT, the MT-3 C-

terminal sequence EAAEAE was inserted into the corresponding position of MT-1E.  
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Figure III-10: Effect of the altered domains of MT-3 on the formation of domes in 

stably transfected HK-2 cells.  To assess the domain of MT-3 that is responsible for the 

ability to confer dome formation, site-directed mutants of MT-3 were produced and the 

two unique domains of MT-3 were inserted into the non-doming MT isoform, MT-1E, as 

shown in Figure 1.  Each expression construct was stably transfected into HK-2 cells, and 

expressing clones were assessed for the ability to form domes.  A) wild-type MT-3 

showing dome formation when stably transfected, B) MT-3-ΔNT where the prolines in 
the N-terminal domain that confers growth inhibitory activity were converted to 

threonines, show that the ability to form domes was not compromised, C) MT-3ΔCT 
where the C-terminal EAAEAE sequence unique to the third isoform of metallothionein 

was deleted, shows the lack of dome formation, D) MT-1E, wild-type human 

metallothionein 1E, commonly expressed at high levels in many cell types exhibits no 

domes when stably transfected, E) 1E-NT, the N-terminal unique sequence of MT-3 was 

inserted into the corresponding position of MT-3 shows no conference of dome 

formation, and F) 1E-CT, the EAAEAE sequence of MT-3 was inserted in the 

corresponding position of MT-1E and when stably transfected into HK-2 cells confers 

dome formation. 

  



49 

 

. 

  



50 

 

In contrast, mutation of the C-terminal sequence of MT-3 abolished both dome formation 

and the transepithelial resistance of the monolayer (Figure III-10 A,C; Table III-1).  The 

MT-1E isoform of MT does not contain either of the unique C-terminal or N-terminal 

sequences of MT-3 and transfection of HK-2 cells with MT-1E do not form domes in 

culture or develop a transepithelial resistance (Figure III-10D). The insertion of the N-

terminal sequence of MT-3 into the MT-1E gene and subsequent transfection into the 

HK-2 cells does not result in dome formation or the development of transepithelial-

electrical resistance (Figure III-10E, Table III-1).   

In contrast, the insertion of the C- terminal sequence of MT-3 into the MT-1E 

gene and subsequent transfection into the HK-2 cells results in both dome formation and 

the generation of a transepithelial resistance (Figure III-10F; Table III-1).   

The expression of E- and N-cadherin in HK-2 cells transfected with each MT-3 

mutant construct was assessed (Figure III-11).   Those constructs that produced domes in 

culture expressed high levels of E-cadherin.  Constructs containing only the N-terminal 

domain of MT-3 were also able to highly express E-cadherin, despite the lack of the 

ability to form domes.  The repression of N-cadherin, however, required the presence of 

the C-terminal domain (Figure III-11).  The expression of connexin 32 required the 

presence of both domains with each domain being able to support intermediate levels of 

connexin 32 (Figure III-12).  
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Figure III-11. Effect of the altered domains of MT-3 on the expression of E-and N-

cadherin in stably transfected HK-2 cells. Messenger RNA of E-cadherin (A) and N-

cadherin (B) were assessed with real-time PCR and expressed as fold change in 

expression versus HK-2 cells transfected with the blank vector. The change in E- or N-

cadherin expression was normalized to the change in β-actin expression. Significant 

differences from HK-2 (BV) are designated as ** p < 0.001,*** p < 0.0001. Western 

analysis of E-cadherin (C) and N-cadherin (D) was conducted in identical cultures as in A 

and B. β-actin was used as a loading control and for densitometric normalization. 

Densitometry is shown below the corresponding blot. 
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Figure III-12.  Effect of the altered domains of MT-3 on the expression of connexin 

32 in stably transfected HK-3 cells. A) Messenger RNA of connexin 32 assessed with 

real-time PCR and expressed as fold change in expression versus HK-2 cells transfected 

with the blank vector. The change in connexin 32 expression was normalized to the 

change in β-actin expression. Significant differences from HK-2 (BV) are designated as 

*** p < 0.0001. B) Western analysis of connexin 32 was conducted in identical cultures 

as in (A). β-actin was used as a loading control and for densitometric normalization. 

Densitometry is shown beside the corresponding blot. 

 

Effect of Forced E-cadherin Expression on HK-2 Vectorial Active Transport, 

N-Cadherin Expression, and Cell Morphology 

 

It was previously shown that the stable transfection of HK-2 cells with MT-3 

resulted in the re-establishment of vectorial active transport with a corresponding 

induction of E-cadherin and repression of N-cadherin gene expression [30].  In this study 

E-cadherin was transfected into the HK-2 cells to determine if the expression of E-

cadherin, in the absence of MT-3 expression, could restore vectorial active transport.  It 

was also determined if E-cadherin expression would alter cell morphology or the 

expression of N-cadherin in the HK-2 cells.  Five independent clones were selected and 
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characterized for their expression of E-cadherin mRNA and protein.  Two clones (5 and 

15) displayed an elevated expression of E-cadherin, two displayed a very modest 

elevation (3 and 14) and one (9) displayed no detectable alteration in expression of E-

cadherin mRNA and protein (Figure III-13A,C).  An analysis of N-cadherin mRNA 

expression showed that N-cadherin expression was highly repressed in the two isolates of 

HK-2 cells that expressed an elevated level of E-cadherin expression (Figure III-13A,B).  

N-cadherin mRNA was modestly repressed in the two isolates of HK-2 cells that 

expressed very modest elevation of E-cadherin expression (Figure III-13A,B).  There was 

no alteration in the level of N-cadherin mRNA from that found in HK-2 cells for the 

transfected HK-2 cell clone (#9) that failed to increase their level of E-cadherin (Figure 

III-13A,B).  The correlation between the expression of E-cadherin mRNA and the 

repression of N-cadherin mRNA was not as pronounced for the corresponding proteins 

(Figure III-13C).  In agreement with the mRNA expression data, it was shown that 

whenever E-cadherin protein was expressed, there was no expression of the N-cadherin 

protein. The results also demonstrated that transfection of the HK-2 cells with E-cadherin 

did not result in the re-establishment of vectorial active transport as evaluated by both 

dome formation and the development of a transepithelial resistance across the monolayer.  

None of the 5 independent clones showed any evidence of dome formation by the cell 

monolayers or developed a transepithelial resistance above a blank filter control (data not 

shown).  The morphology of the cells was also not altered by transfection of E-cadherin 

into the HK-2 cell lines as noted by a similar morphology between wild type HK-2 cells 

and clone 5 which had the highest level of E-cadherin protein expression (Figure III-

13D,E).    This result also correlates with constructs containing the N-terminal but 
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lacking the C-terminal domain being able to support E-cadherin expression but not 

sufficient enough to establish vectorial active transport (Figure III-11, Table III-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III-13.  The effect of forced overexpression of E-cadherin on the expression 

of N-cadherin and on dome formation in HK-2 cells.  E-cadherin was stably 

transfected into the HK-2 human proximal tubule cell line and individual clones were 

isolated and assessed for E-cadherin and N-cadherin expression and the formation of 

domes.   A) Expression of E-cadherin mRNA in five individual clones, HK-2 cells and 

the MT-3 stably transfected HK-2 line, HK-2 (MT-3) assessed quantitatively with real-

time PCR and normalized to the levels of transcripts of glyceraldehyde phosphate 

dehydrogenase;  B) Expression of N-cadherin mRNA; C) Expression of E- and N-

cadherin protein in each isolated clone, D) and E) Morphology of the highest expressing 

E-cadherin clone (E) in comparison to the parental HK-2 cells (D) showing the absence 

of dome formation. 
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Zn7MT-3 mediated pulldowns in HK-2 lysates 

 In order to identify potential protein interactions of MT-3 within the human 

proximal tubule, Zn7MT-3 was covalently crosslinked to amine-reactive agarose beads 

and incubated with lysates isolated from HK-2 cells (Figure III-14).  Previous studies 

indicated β-actin, myosin IIa, gelsolin, and tropomyosin 3 as putative binding partners 

(Bathula, 2010).  Literature review indicated enolase-1 and aldolase-A as MT-3 

interacting proteins in cultured astrocytes (Armitage, 2010), and these potential 

interactions were also evaluated.  Eluates were subjected to SDS-PAGE followed by 

western blotting, probing for potential MT-3 interacting proteins.  The results of this 

determination showed Zn7MT-3 able to pulldown β-actin, tropomyosin-3, α-enolase, and 

aldolase-a from HK-2 lysates (Figure III-15). 

V5-mediated immunoprecipitations in MT-3 expressing HK-2 lysates 

To further support the protein-protein interactions observed through pulldowns, we 

generated mutant cell lines either stably or transiently expressing MT-3 with a protein tag 

(V5).  The MT-3 antibody is generated against the C-terminal insert not present in the 

other isoforms.  We have hypothesized the C-terminal domain of MT-3 to be the region 

of protein-protein interactions, as this feature distinguishes MT-3 from MT-1,-2, and -4.  

This becomes problematic for co-immuoprecipitation if this domain is blocked by the 

interactions in which we are attempting to determine. For these reasons, the stop codon of 

MT-3 was removed in order to allow translation of a V5 tag to aid in 

immunoprecipitation , western blotting, and immunofluorescence.  V5 is a relatively 

small tag in comparison to most other commercially available protein tags, adding an 

additional 4 kDa.  Prior to performing immunoprecipitation, lysates were tested for the 
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Figure III-14. Schematic representation of the methodology used to pulldown MT-3 

interacting proteins.  Eluted fractions were subjected to silverstaining to confirm the 

presence of proteins of the correct molecular weight and western blotting to confirm the 

identity of these previously identified proteins. 
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Figure III-15.  MT-3 interacts with β-actin, Tropomyosin 3, enolase-1, and aldolase 

A. MT-3 can pulldown proteins isolated from cultured human proximal tubule cells, 

suggesting potential protein interactions between MT-3 and B-actin (A), Tropomyosin-3  

(B), alpha-enolase (C), and aldolase-a (D) in the human proximal tubule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III-16. Zinc supplementation 6 hours post transient transfection of V5-

tagged MT-3 into HK-2 cells increases MT-3 protein expression. V5 tagged-MT-3 

migrates at the appropriate molecular weight, and zinc supplementations following 

transfection yields more available V5 tagged-MT-3 available for co-

immunoprecipitation.
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presence of MT-3 –V5 by western blotting (Figure III-16) .  We also confirmed the lack 

of V5 signal in MT-3 null lysates. Interestingly, cells supplemented with 30 uM zinc in 

the growth medium six hours-post transient transfection contained more MT-3 protein 

than those supplemented with the normal growth medium (Figure III-17).  MT-3 is not 

inducible by zinc, so this observation probably correlates to the increased stability of 

fully zinc-bound MT-3 than apo-MT-3 or less metallated forms of MT-3, resulting in less 

turnover of this protein.  The eluates were subjected to SDS-PAGE followed by 

silverstaining to test for the presence of proteins in the eluted fractions, and that proteins 

were present in the eluate that migrated at the approximate molecular weight of those 

proteins previously identified in 2010 (Figure III-17).   

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure III-17. MT-3 interacts with several proteins in cultured proximal tubule 

cells.  Representative image of a silverstained gel following SDS-PAGE of eluates from a 

pulldown experiment.  Arrows indicate proteins present at the molecular weight of 

putative interacting proteins identified by Bathula in 2010. 
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Co-immunoprecipitation of V5-MT-3 complexes and subsequent western blotting 

confirmed β-actin, myosin IIa, enolase-1, and possibly aldolase-a (Figure III-18) as 

potential MT-3 interacting proteins in the proximal tubule. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III-18. Co-immunoprecipitation of MT-3 protein complexes in HK-2 cells 

transfected with V5 tagged-MT-3.  V5-tagged MT-3 immunoprecipitates with myosin 

IIa, β-actin, and enolase-1.  Lane 1 and 2 are the lysate inputs used for co-

immunoprecipitations, Lane 3 is the eluate from the control reaction that contained all the 

reaction components (e.g. Protein A/G magnetic beads, V5 antibody, IP lysis buffer) 

excluding cellular lysate; Lane 4 is the control reaction that contained all reaction 

components excluding the V5 antibody; Lane 5 is the no prey control, containing all 

reaction components as lane 6 but incubated with non-transfected HK-2 lysate.  Equal 

volumes were loaded into each lane. 
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CHAPTER IV 

DISCUSSION 

HK-2 Cells have Features Associated with the Initial Stages of EMT 

 EMT is a developmental process where reorganization of the actin cytoskeleton, a 

loss of apical-basolateral polarity, and loss of cell-to-cell contact, results in conversion of 

an epithelial cell to a mesenchymal cell.  The repression of the epithelial marker, E-

cadherin, and upregulation of the mesenchymal marker, N-cadherin, are gene expression 

changes typically observed during EMT (Wu, Tsai, Wu, Teng, & Wu, 2012).  As detailed 

in the introduction, the HK-2 cell line has seen frequent use as a model to study the 

process of EMT in the human kidney.  This laboratory previously reported that the HK-2 

cell line had a very low expression of E-cadherin compared to N-cadherin, an absence of 

tight junction mediated paracellular barrier function, and a failure to maintain vectorial 

active transport (Bathula et al., 2008; Kim et al., 2002).  These would be features that 

suggest that the HK-2 cell line may have undergone an appreciable level of EMT during 

the isolation of the cell line.  However, these studies used one of a variety of growth 

media employed  for growth of the HK-2 cell line and therefore may not have been 

representative of other reports in the literature that use this cell line.  Thus, the first goal 

of the present study was to confirm the levels of expression of the E- and N-cadherin, 

tight junctional integrity, and vectorial active transport in the HK-2 cell line as a function 

of growth media composition.. The results of this study 

confirmed that the HK-2 cells expressed a very low amount of E-cadherin mRNA and 
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protein and that this expression was largely independent of the composition of the growth 

media.  Similarly, the expression of N-cadherin was very high compared to that of E- 

cadherin.  The HK-2 cell monolayer exhibited no transepithelial resistance on any of the 

growth media tested, confirming a lack of tight junctional integrity.  It was also 

demonstrated that the HK-2 cell line did not form “domes”, a feature of vectorial active 

transport, on any of the tested growth mediums.  The formation of domes is a hallmark of 

cultured renal epithelial cells that retain the in situ property of vectorial active transport 

(D. A. Sens et al., 1999).  These out-of-focus areas of the cell monolayer, seen upon light 

microscopic examination, represent raised areas where fluid has become trapped 

underneath the monolayer owing to active transport of ions and water across the cell 

monolayer in an apical to basolateral direction.  These results show that the HK-2 cell 

line, regardless of the conditions used for growth, have a low expression of E- compared 

to N-cadherin, an absence of tight junctions, and do not form “domes”.  

 There is agreement in the literature that the renal proximal tubule does express N-

cadherin in line with a developmental derivation from mesenchyme (Jung, Dean, Jiang, 

& Gaylor, 2004; Nürnberger & Feldkamp, 2010; W. Prozialeck et al., 2004; Shimazui & 

Kojima, 2006).  However, the literature is somewhat less clear regarding the expression 

of E-cadherin.  In the developing kidney, it has been shown that the early progenitors of 

the proximal tubules express cadherin 6 and not E-cadherin (Cho, Patterson, & 

Brookhiser, 1998).  Then, as the proximal tubules mature, cadherin-6 (also called K-

cadherin) is down-regulated and E-cadherin is then detected in the mature proximal 

tubules of the adult kidney (Cho et al., 1998).  In this regard, cadherin-6 can be looked 

upon as a marker for the fetal proximal tubule.  Despite this convincing study, there is
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some discrepancy in the literature regarding the expression of E-cadherin in the proximal 

tubule, with some reports indicating no expression (Docherty & Calvo, 2009; Esteban, 

Tran, & Harten, 2006; Nouwen & Dauwe, 1993; Nürnberger & Feldkamp, 2010; 

Shimazui & Kojima, 2006), others low expression well below that of N-cadherin (Huby, 

Rastaldi, & Caron, 2009; Langner, Ratschek, & Rehak, 2004; Mori, Lee, & Rapoport, 

2005; W. Prozialeck et al., 2004; Walter C Prozialeck et al., 2003), and some with 

expression without indication of level (Alami, Williams, & Yeger, 2003; Piepenhagen & 

Nelson, 1998).  Due to this discrepancy in E-cadherin expression, the present study 

examined the expression of E- and N-cadherin in the human kidney proximal tubule.  It 

was shown using immunohistochemistry on three independent specimens of human 

kidney that the proximal tubules had expression of both E- and N-cadherin protein.  The 

study was also extended to the level of mRNA expression by microdissection of proximal 

tubules from 3 independent specimens and determining the expression of E- and N-

cadherin by real time PCR.  It was found that there was expression of both E- and N-

cadherin mRNA in the proximal tubules.  The proximal tubules chosen for 

microdissection were those in close proximity to glomeruli, greatly minimizing any 

chance for contamination with other types of tubular elements.  A plausible reason for the 

discrepancy in the literature regarding the expression of E-cadherin in the proximal 

tubule is that most studies relied on immunohistochemistry, both peroxidase and 

fluorescent based, in attempts to detect and compare the intensity of staining between 

antibodies for E- and N-cadherin.  While it is possible to compare the intensity of staining 

within each antibody across the differing elements of the kidney, it is not possible to 

compare the intensity of staining generated between the E- and N-cadherin antibodies and 
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draw conclusions regarding levels of expression.  Each antibody will have its own 

characteristics of antigen binding and staining can also vary further between antibodies as 

a function of tissue fixation, antigen retrieval techniques, and incubation conditions to 

name but a few variables.  It is extremely difficult, if not impossible, to compare the level 

of expression of E-cadherin to N-cadherin using immunohistochemical analysis.  Thus, 

the present study shows that both E- and N-cadherin mRNA and protein are expressed in 

the human renal proximal tubule. 

 The present results suggest that the HK-2 cell line has already undergone an 

appreciable degree of EMT.  This is based on several observations.  First, the HK-2 cell 

line does not form “domes” in cell culture.  This is in contrast to primary cultures of 

human renal epithelial cells, isolated and cultured by several different laboratories that 

have been shown to form “domes”(KEMPSON, 1986; Wilson & Dillingham, 1985), [56], 

(Detrisac et al., 1984).  In fact, the primary culture used in the isolation of the HK-2 cell 

line was stated to form “domes” prior to being used in the transfection and 

immortalization procedure (Ryan et al., 1994).  Dome formation in epithelial cell cultures 

is acceptable presumptive evidence of the following processes that are required for its 

expression: functional plasma membrane polarization, formation of occluding junctions 

(tight junctions), and vectorial transepithelial active ion transport [57].  Studies from this 

laboratory demonstrated that the HK-2 cell line does not generate a transepithelial 

electrical resistance or possess tight junctional sealing strands, both indicative of a loss of 

tight junctions between adjacent cells (Kim et al., 2002).  Second, the present study 

confirms that the HK-2 cell line has undergone an E-cadherin to N-cadherin shift when 

compared to the HPT cells.  The present study quantified the difference in E-cadherin and 
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N-cadherin between the HPT and HK-2 cells.  This showed high levels of E-cadherin in 

the HPT cells and very low levels in the HK-2 cell line.  The reverse was shown for N-

cadherin expression, but the magnitude of the difference was not as large.  In addition, 

when compared to the HPT cells, the HK-2 cell line has increased expression of 

cadherin-6 (K-cadherin), a marker associated with the proximal tubule of the developing 

kidney (Bathula et al., 2008; Cho et al., 1998).  This finding suggests a more 

mesenchymal differentiation of the HK-2 cells based on the known development of the 

proximal tubule (Cho et al., 1998).  Third, the human proximal tubule is known to 

possess gap junctions between adjacent cells.  The present study demonstrated that the 

HPT cells expressed connexin 32; whereas, the HK-2 cell line had a very reduced 

expression of this connexin.  Thus, the present results suggest that the HK-2 cells already 

displays those features of a cell having undergone appreciable EMT.   

 The results should not be interpreted to indicate that the HK-2 cell line is an 

unacceptable model for the study of the overall process of EMT.  Too often EMT is 

looked upon as an all-or-none process rather than a graded series of events.  The HPT cell 

line and all other primary mortal cultures of cells retaining proximal tubule character 

have lost their brush border.  This could be looked upon as a very early feature of EMT 

that occurs upon placing the cells into culture.  Similarly, the HK-2 cell line could be 

looked upon as a model for a proximal tubule cell that has lost early features associated 

with EMT such as cell-to-cell contact, a loss of apical to basolateral separation and 

cadherin switching.  However, the HK-2 cells retain many other differentiated features of 

the proximal tubule.  As detailed in the introduction, these include: proteins such as 

alkaline phosphatase, gamma glutamyltranspeptidase, leucine aminopeptidase, acid 
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phosphatase, cytokeratin, α3β1 integrin and fibronectin; and functional markers such as, 

the cAMP responsiveness to parathyroid hormone but not antidiuretic hormone, Na
+
-

dependent, phlorizin-sensitive glucose transport, and the ability to accumulate glycogen.  

As such, the HK-2 cell line could be looked upon as a model system where EMT has 

progressed with regard to a loss of cell junctions and the E- to N-cadherin switch, but 

with the retainment of many features of proximal tubule differentiation.  The HK-2 cell 

line may be very valuable in elucidating pro-fibrotic factors and in defining the changes 

necessary for the HK-2 cells to gain further mesenchymal differentiation.        

 There is also convincing evidence that the differences between the HPT and HK-2 

cell line is not an anomaly of the isolation protocol used to develop the HK-2 cell line.  

The HK-2 cell line is derived from a single clone of cells following transfection with the 

HPV E6/E7 genes as designated in the ATCC product sheet and the original publication 

(Ryan et al., 1994) .  Thus, a simple explanation for the finding that HK-2 cells have no 

tight junctions and have undergone an E- to N-cadherin switch is that the HK-2 cell line 

was derived from an aberrant single cell that possessed these properties in the original 

primary culture used for isolation of the cell line.  Under this scenario, the originating cell 

would not have been representative of the cells within the primary culture that were able 

to form domes. However, if the above were the case, the HK-2 cell would not be 

expected to be able to undergo MET and regain the original characteristics of the cells of 

the primary culture that are able to form domes.   

HK-2 Cells Undergo MET Mediated by MT-3 

 Studies from this laboratory have shown that the HK-2 cells can undergo MET 

and regain the features expected of primary cultures of human proximal tubule cells 
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(Bathula et al., 2008; Kim et al., 2002).  This was accomplished by the stable transfection 

of the MT-3 gene into the HK-2 cell line.  The HK-2 cells transfected with the MT-3 

gene regained the ability to form domes in culture, displayed increased transepithelial 

resistance, and a switch from N-cadherin to E-cadherin expression.  The present studies 

also demonstrated that the MT-3 transfected cells regained the expression of the gap 

junction protein connexin 32, similar to that found in primary cultures.  These studies 

show that the HK-2 cell line can undergo MET and convert back to those phenotypic and 

genotypic properties of the original primary culture.  In addition, the ability of the MT-3 

gene to induce MET in HK-2 cells provides a model for the study of MET in the 

proximal tubule and also might uncover mechanistic approaches to halt the pro-fibrotic 

microenvironment of the kidney if it indeed wholly or partially develops from EMT of 

tubular epithelium.  There appears to be many more models for the study of renal EMT 

than that of MET in the adult kidney. 

 The finding that MT-3 elicited MET-like changes in HK-2 cells was not based on 

a mechanistic hypothesis regarding EMT or MET.  Rather, the laboratory was studying 

the possible role of the MT-3 gene in cadmium-induced renal toxicity.  There is no other 

existing literature to suggest a role of MT-3 in renal EMT or MET.  There is also no 

literature on how MT-3 might interact with the HPV E6 and E7 genes to promote MET in 

HK-2 cells.  However, MT-3 has two unique sequences that help define the epitope of its 

participation in EMT and MET.  The MT-3 isoform is unique among the MT gene family 

and these differences from other family members have been highlighted in past reports 

from this laboratory (Bathula et al., 2008; Kim et al., 2002; Seema Somji et al., 2004).  

Of importance in the present study is that MT-3 possesses 7 additional amino acids that 
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are not present in any other member of the MT gene family, a 6 amino acid C-terminal 

sequence and a Thr in the N-terminal region (Palmiter, 1992; Tsuji, Kobayashi, & 

Uchida, 1992; Uchida et al., 1991).  The current study shows that a unique C-terminal 

amino acid insert of MT-3 was required to re-establish vectorial active transport and the 

shift in E- and N-cadherin expression for the HK-2 cells.  This would be the first study to 

define a functional significance to this unique sequence of the MT-3 protein.  The only 

other study was one designed to define how the C-terminal insert in MT-3 would alter 

metal binding characteristics compared to other members of the MT gene family (Zheng, 

Yang, Yu, & Cai, 2003).  This study demonstrated that the C-terminal hexapeptide insert 

would lower the stability of the MT-3 α-domain metal-thiolate cluster; an alteration that 

would render the metal binding site more accessible for metal exchange with potential 

protein partners.  Overall, the present study demonstrates the essential nature of the C-

terminal sequence by both deletion of the sequence from the MT-3 gene and by insertion 

of the sequence into the MT-1E isoform, which resulted in the loss of dome formation 

and the establishment of dome formation in transfected HK-2 cells, respectively.  

MT-3 Interacts with Proteins that Promote an Epithelial Phenotype 

 The regulation of cytoskeletal organization is an important feature for polarized 

epithelial cells; apical-basolateral polarity is vital for vectorial active ion transport, 

intercellular communication, tissue organization, and general cellular homeostasis.  Cells 

that lose lateral cell-cell contacts display impaired cell polarity.  Further, formation of 

lamellipodia protrusions is crucial step in the acquisition of migration.  Under normal 

physiological conditions, homeostasis is promoted by the maintenance of cytoskeletal 

organization and essential structural components that promote cell shape while also 
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facilitating cell-cell and cell-extracellular matrix anchorages. 

 Myosin-IIA is a member of the type II non-muscle myosin family of proteins and 

is coded for by the MYH9 gene.  This isoform is a conventional heavy chain containing 

an IQ domain and a myosin-head like domain that is intricately involved in regulation of 

the actin cytoskeleton, affecting cytokinesis, cell motility, and maintenance of cell shape.  

Defects in the MYH9 gene have been associated with several types of CKD including 

sickle cell disease nephropathy, chronic glomerulonephritis, focal segmental 

glomerulonephritis, diabetic and non-diabetic nephropathies (Ashley-Koch et al., 2011; 

Cooke et al., 2012; Kao et al., 2008; Kopp et al., 2008; Singh, Nainani, Arora, & Venuto, 

2009). During the initiation of cell migration, cells extend their plasma membranes in the 

form of lamellipodia that requires cytoskeletal reorganization.  During this process 

monomeric G-actin polymerizes into F-actin filaments and is reorganized and 

depolymerized.  Non-muscle myosin II associates with F-actin, and is known to generate 

contractile forces and tension.  There are three-Type II non-muscle myosin members,  

myosin IIA, IIB, and IIC, coded for by MYH9,  MYH10, and MYH14 respectively.  

Myosin IIA appears to have an opposite function to myosin IIB, acting to confer 

contractile and retrograde force at the cell margin while IIB confers protrusive force at 

the cell margin (Betapudi, 2010).  Myosin IIa may play a role in the prevention of cell 

migration, promoting the maintenance of epithelial cell shape though cytoskeletal 

organization,  

 Tropomyosin alpha-3 chain, coded for by TPM3, binds to actin filaments in both 

muscle and non-muscle cells.  In non-muscle cells tropomyosin-3 stabilizes cytoskeletal 

actin filaments and regulate the access of the other actin binding proteins.  Tropomyosin-
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3 is protective against actin filament depolymerization. Additionally, this protein has 

been found at the brush border of epithelial cells of the intestine and kidney, and is not 

found in association with the leading edge migratory lamellipodia, but rather at the base 

or rear portion.  Tropomyosin prevents myosin IIB access to the actin filament, which 

antagonizes the pro-migratory action of myosin IIB.  Working together, tropomyosin-3 

and myosin IIA aid in the maintenance of the actin cytoskeleton promoting  epithelial cell 

polarity, a feature we propose MT-3 to contribute to in human proximal tubule cells. 

 Enolase-1, coded for by the ENO1 gene, is a metal activated enzyme that 

catalyzes the dehydration of 2-phosphoglycerate to phosphoenolpyruvate in glycolysis.  

There are three isoforms of enolase including non-neuronal enolase (enolase-1 or α-

enolase); neuron-specific enolase (enolase-2 or γ-enolase); and muscle-specific enolase 

(enolase-3 or β-enolase).  These proteins occur as dimers, with the two monomer subunits 

orient in an antiparallel manner.  The dimerization process is dependent on two 

magnesium  ions, and these divalent cations play a critical role in catalysis  (Díaz-Ramos, 

2012).  These enzymes also bind strongly to zinc ions, however enzyme activity is 

decreased when bound to these divalent cations (Ghazi et al., 2010).  Enolase-1 occurs 

only as a homodimer (αα), is localized predominantly to the cytoplasm, but can also 

translocate to the apical plasma membrane and act as a plasminogen receptor.  

Overexpression of enolase has been associated with a plethora of diseases ranging from 

AD, cancer, as well as autoimmune diseases rheumatoid arthritis and primary 

nephropathies from lupus nephritis.(Bruschi et al., 2014).  Enolase-1 has also been 

demonstrated to bind to F-actin microtubules (Walsh, Keith, & Knull, 1989).   Further,  

α-enolase  knockdown in tumor derived cell lines increased their sensitivity to 
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microtubule targeted drugs (Georges, Bonneau, & Prinos, 2011).  With respect to MT-3 

interactions with enolase-1, it is possible that MT-3 is acting as a zinc donor to facilitate 

homodimer formation , metal exchange to reduce the enzyme activity, or participating 

thiol-disulfide exchange (Meloni et al., 2007). 

 Aldolase A, coded for by ALDOA gene, is an enzyme that catalyzes the 

conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate and 

dihydroxyacetone phosphate in glycolysis (and the reverse reaction during 

gluconeogenesis).   Aldolase-A has been demonstrated to directly interact with both F-

actin and enolase-1 (Walsh et al., 1989).  Aldolase-A plays a role in actin cytoskeleton 

organization, regulating actin remodeling though interactions with ADP-ribosylation 

factor, Arf6 and guanine nucleotide exchange factor, ARNO  (D’Souza-Schorey & 

Chavrier, 2006). Probably acting as a scaffolding protein, aldolase-a plays a role in the 

coordination of membrane trafficking, and cytoskeleton dynamics at the cell periphery 

(Merkulova et al., 2011). Alternatively, these protein interactions have a demonstrated 

role in the regulation of the endosomal/lysosomal protein degradation pathway 

(Casanova, 2007) so it is possible that the purpose of this interaction is to shuttle MT-3 to 

the lysosome for degradation.   
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APPENDIX  

METALLOTHIONEIN ISOFORM 3 EXPRESSION IN HUMAN SKIN, 

RELATED CANCERS AND HUMAN SKIN DERIVED CELL CULTURES 

Abstract 

 Human skin is a well known target site of inorganic arsenic with effects ranging 

from hyperkeratosis to dermal malignancies. The current study characterizes the 

expression of a protein known to bind inorganic, As
3+

, metallothionein 3 (MT-3). 

Expression of this protein was assessed immunohistochemically with a specific MT-3 

antibody on human formalin-fixed, paraffin-embedded biopsy specimens in normal skin, 

squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and melanoma. Assessment 

in normal skin using nine normal specimens showed moderate to intense MT-3 staining 

in epidermal karatinocytes with staining extending into the basal cells and moderate to 

intense staining in melanocytes of nevi. MT-3 immunoexpression was shown to be 

moderate to intense in 12 of 13 of SCC, low to moderate in 8 of 10 BCC, and moderate to 

intense in 12 melanoma samples. MT-3 expression in cell culture models (normal human 

epidermal keratinocytes, normal human melanocytes, and HaCaT cells) showed only 

trace expression of MT-3, while exposures to the histone deacytalase inhibitor, MS-275, 

partially restored expression levels. These results indicate that the epidermis of human 

skin and resulting malignancies express high level of MT-3 and potentially impact on the 

known association of arsenic exposure and the development of skin disorders and related 

cancers. 

Introduction 

 Inorganic arsenic is a potent human carcinogen, and skin is known to be one of 

the most susceptible human organs affected by chronic environmental exposure to this 
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metalloid (Bolt, 2012). Chronic arsenic exposure causes a dry skin phenotype 

characterized by melanosis, hyperplasia and hyperkeratosis (Komissarova and Rossman, 

2010). The most common arsenic-induced skin cancers include Bowen's disease (BD, 

SCC in situ), squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) ( Yeh et 

al., 1968). There is less evidence for a potential contribution of arsenic exposure to the 

development of melanoma. However, there is emerging evidence for such an association, 

especially for melanomas that might arise from co-exposure to ultraviolet radiation 

( Cooper et al., 2014, Pearce et al., 2012 and Dennis et al., 2010). Cell culture models 

have seen frequent use to investigate the mechanisms involved in arsenic-induced 

toxicity and cancer development due to the lack of valid animal models. These studies 

have led to several theories to explain the carcinogenic effects of arsenic exposure and 

include the generation of reactive oxygen species (ROS), oxidative DNA damage, 

genomic instability, aneuploidy, gene amplification, inhibition of DNA repair, and 

epigenetic dysregulation ( Ren et al., 2011, Straif et al., 2009 and Lee et al., 2012).  This 

laboratory is interested in how the metallothionein (MT) gene family might participate in 

the above processes that are associated with arsenic-induced carcinogenesis. A role for 

this family of proteins might be expected since all MT family members can bind and 

sequester 6 atoms of As
+3

 and can also serve as an antioxidant (Vasak and Meloni, 

2011, Irvine et al., 2013 and Garla et al., 2013). In humans, there are four MT isoforms, 

designated MT-1 through MT-4. The MT-1 and MT-2 isoforms have been the subject of 

extensive study over the last 50 years and the subject of numerous reviews (see Vasak 

and Meloni, 2011). The MT-1 and MT-2 isoforms are inducible in almost all tissues by a 

variety of stress conditions and compounds including glucocorticoids, cytokines, ROS, 

http://www.sciencedirect.com/science/article/pii/S037842741401371X#bib0025
http://www.sciencedirect.com/science/article/pii/S037842741401371X#bib0090
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and metal ions. In contrast, the identification of the MT-3 and MT-4 isoforms is relatively 

recent (1990s) and both isoforms are largely unresponsive to the above inducers and their 

expression believed to be confined to far fewer tissue types. The four MT isoforms share 

a high degree of sequence homology and a specific antibody cannot be produced that can 

separately identify the MT-1, 2 and 4 isoforms. The MT-3 isoform is unique in that it 

possesses 7 additional amino acids that are not present in any other member of the MT 

gene family, a 6 amino acid C-terminal sequence and a Thr in the N-terminal region 

(Palmiter et al., 1992, Tsuji et al., 1992 and Uchida et al., 1991). An MT-3 specific 

antibody can be generated against the C-terminal sequence (Garrett et al., 1999). 

Functionally, MT-3 has also been shown to possess several activities not shared by the 

other MT isoforms. These include a neuronal cell growth inhibitory activity (Uchida et 

al., 1991), the participation in the regulation of EMT in human proximal tubule cells 

(Kim et al., 2002 and Kim et al., 2002), and the ability to influence the choice between 

apoptotic and necrotic cell death in proximal tubule cells exposed to cadmium (Somji et 

al., 2004). This non-duplication of function occurs despite a 63–69% homology in amino 

acid sequence among MT-3 and the other human MT isoforms (Sewell et al., 1995). 

These unique features of MT-3, along with its ability to bind and sequester As
+3

, 

motivated the present study designed to examine the expression of MT-3 in human skin 

and related skin cancers. A related question was to determine if human cell culture 

models used to study As
+3

 effects on skin faithfully recapitulate the in situ expression of 

MT-3. 
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Materials and Methods 

Specimens of human skin 

 Specimens of normal human skin and associated cancers were obtained from 

archival paraffin blocks 10 years post diagnosis and scheduled for disposal as medical 

waste. These archival specimens contained no patient identifiers and are in the exempt 

category for human research. Tissues within these paraffin blocks were routinely fixed in 

10% neutral buffered formalin for 16–18 h. The tissues were transferred to 70% ethanol 

and dehydrated in 100% ethanol. Dehydrated tissues were cleared in xylene, infiltrated, 

and embedded in paraffin. Tissue sections were cut at 3–5 μm for use in routine 

histology and immunohistochemical protocols. 

Immunostaining for MT-3 in human skin and associated cancers 

 Serial sections were cut at 3–5 μm for use in immunohistochemical protocols. 

Staining was performed by a Leica Bond–Max automatic immunostainer. Major reagents 

for this procedure were contained in the Bond Polymer Refine Detection kit (Leica, 

DS9800). Paraffin sections were processed in the machine from deparaffinization to 

counterstaining by hematoxyline according to the manufacturer’s recommended 

program settings with the following modifications. Briefly, the major steps in the 

protocol include deparaffinization, antigen retrieval for 20 min in Bond Epitope Retrieval 

Solution 1 (Leica, Catalog No AR9961), peroxide block for 5 min, incubation with rabbit 

anti-MT-3 antibody (1:200) for 25 min at room temperature, incubation with Post 

Primary for 10 min (source of the anti-rabbit IgG antibody), incubation with Polymer 

(source of the anti-rabbit Poly-HRP antibody) for 10 min, visualization with DAB 

(diaminobenzidine substrate for color development) for 10 min, counterstaining with 
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hematoxylin for 5 min. Slides were rinsed in distilled water, dehydrated in graded 

ethanol, cleared in xylene, and coverslipped.The presence and degree of MT-3 

immunoreactivity in the specimens was judged by two pathologists. The scale used was 0 

to +3 with 0 indicating no staining, +1 staining of mild intensity, +2 staining of moderate 

intensity, and +3 staining of strong intensity. 

Cell culture 

 The HaCaT cell line was obtained from Cell Line Services (Eppelheim, 

Germany). HaCaT were initially isolated from normal skin of a 62 year old Caucasian 

male donor and spontaneously immortalized through p53 mutation; they are 

nontumorigenic in vivo ( Boukamp et al., 1988). The cells were maintained in Dulbecco

’s Modified Eagles Medium (DMEM) supplemented with 4.5 g/L glucose, 2 mM L-

glutamine, 10% v/v fetal bovine serum (FBS), 0.25 μg/mL fungizone, 100 U/mL 

penicillin and 100 μg/mL streptomycin. HaCaT cells were given fresh medium every 

72 h and subcultured at a ratio of 1:5. Normal human epidermal keratinocyte (NHEK) 

primary cells were obtained from Lonza (Walkersville, MD). NHEK were isolated from a 

68 year old Caucasian male donor. The cells were maintained in KBM-Gold (Lonza, 

Walkersville, MD) supplemented with KGM-Gold™–BulletKit™ (Lonza, # 00192060). 

NHEK were seeded at a density of 3500 cells/cm
2
 and given fresh media the day after 

seeding and then every 48 h until reaching 70–80% confluency. The human epidermal 

melanocyte primary cells isolated from a light pigmented donor were obtained from 

Gibco (HEMa-LP) (Carlsbad, CA), and are referred to as normal human melanocytes 

(NHM). NHM cells were maintained in Medium 254 supplemented with PMA-free 

Human Melanocyte Growth Supplement-2 (HMGS-2, Gibco, # S-016–5) 0.25 μg/mL 

http://www.sciencedirect.com/science/article/pii/S037842741401371X#bib0035
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fungizone, 100 U/mL penicillin and 100 μg/mL streptomycin. The cells were seeded at a 

density of 5000 cells/cm
2
 and given fresh media the day after seeding and then every 48 h 

until reaching 80% confluency. 

Treatment of cultured cells with 5-Aza-2-deoxycytidine and histone deacetylase 

inhibitor MS-275 

 HaCaT, NHEK and Primary Melanocytes were seeded at a 1:10 ratio and the next 

day they were treated with 1 or 3 μM 5-Aza-2′-deoxycytidine (5-AZC) (Sigma–

Aldrich, St. Louis, MO) or 1, 3 or 10 μM MS-275 (ALEXIS Biochemicals, Lausen, 

Switzerland). The cells were allowed to grow to confluency and then harvested for RNA 

isolation. 

RNA Isolation and RT–PCR analysis 

 Total RNA was isolated from the cells according to the protocol supplied with 

TRI REAGENT (Molecular Research Center, Inc. Cincinnati, OH) as described 

previously by this laboratory (Somji et al., 2006). Real time RT–PCR was used to 

measure the expression level of MT-3 mRNA utilizing a previously described MT-3 

isoform-specific primer (Somji et al., 2006). For analysis, 1 μg was subjected to 

complementary DNA (cDNA) synthesis using the iScript cDNA synthesis kit (Bio-Rad 

Laboratories, Hercules, CA) in a total volume of 20 μl. Real-time PCR was performed 

utilizing the SYBR Green kit (Bio-Rad Laboratories) with 2 μl of cDNA, 0.2 μM 

primers in a total volume of 20 μl in an iCycler iQ real-time detection system (Bio-Rad 

Laboratories). Amplification was monitored by SYBR Green fluorescence and compared 

to that of a standard curve of the MT-3 isoform gene cloned into pcDNA3.1/hygro (+) 

and linearized with Fsp I. Cycling parameters consisted of denaturation at 95 °C for 

http://www.sciencedirect.com/science/article/pii/S037842741401371X#bib0185
http://www.sciencedirect.com/science/article/pii/S037842741401371X#bib0185
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30 s and annealing at 65 °C for 45 s which gave optimal amplification efficiency of 

each standard. The level of MT-3 expression was normalized to that of β-actin assessed 

by the same assay with the primer sequences being sense, 

CGACAACGGCTCCGGCATGT, and antisense, TGCCGTGCTCGATGGGGTACT, 

with the cycling parameters of annealing/extension at 62 °C for 45 s and denaturation at 

95 °C for 15 s. 

Results 

MT-3 expression in human skin and related cancers 

 The expression of MT-3 was determined in normal human skin, in situ squamous 

cell carcinoma, squamous cell carcinoma, basal cell carcinoma, nevus, dysplastic 

nevus, in situ melanoma, superficial spreading melanoma, and deeply invasive melanoma 

(Table V-1). Nine independent specimens of human skin were evaluated for the 

expression of MT-3. All nine specimens displayed immunoreactivity for MT-3 in the 

epidermis. For each specimen, the immunoreactivity for MT-3 was uniform throughout 

the epidermis and included staining of the basal keratinocytes (Fig V-1A). Six of the 

specimens exhibited moderate to strong staining for MT-3 while the other 3 displayed 

mild to strong intensity of staining (Table V-1). All squamous cell carcinomas (SCC) 

exhibited staining for MT-3 ( Table 1), five strongly ( Fig 1C), six moderately ( Fig V-

1E), and one mild to moderate, whereas many of the basal cell carcinomas (BCC) 

exhibited low staining ( Table 1) with two being totally devoid of MT-3 expression ( Fig 

2F), three weakly, and the rest (five samples) were either mild or mild to moderate ( Fig 

1D) in MT-3 staining. The staining of MT-3 was determined on 9 specimens of nevus.  
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Immunostaining of MT-3 in Normal Skin, SCC
a
, BCC

b
, Nevi, and Melanoma 

Sample # Diagnosis Intensityc Percentaged Commentse 

T06-02611 normal skin 2-3+   

T06-04747 normal skin 2+   

T06-08104 normal skin 2-3+   

T06-12296 normal skin 2-3+   

T06-13822 normal skin 2-3+   

T06-15093 normal skin 1-2+   

T06-15738 normal skin 2-3+   

T06-16832 normal skin 1-2+   

T06-17515 normal skin 1-2+   

T06-05920-2 SCC 3+ 90 normal skin 2+ 

T06-08560-1 SCC 2-3+ 80 normal skin 2+ 

T06-10237-1 SCC 1+ 60 normal skin 1-2+ 

T06-17492-3 SCC 2+ 80 normal skin 2+ 

T06-18288 SCC 2-3+ 90 no normal skin 

T06-19042-2 SCC 2+ 80 no normal skin 

T07-02859-3 SCC 2-3+ 70 normal skin 2+ 

T07-04441-1 SCC 2+ 60 normal skin 2-3+ 

T07-05223-3 SCC 2+ 80 normal skin 1+ 

T07-07073-2 SCC 1-2+ 30 no normal skin 

T08-11243 SCC 2+ 60 normal skin 2+ 

T09-09643-1 SCC 2-3+ 80 normal skin 2+ 

T06-13947-1 SCC, in situ 2+ 80 no normal skin 

T06-00002 BCC 0-1+ 30 normal skin 1-2+ 

T06-03724-2 BCC 1+ 60 no skin 

T06-06686-8 BCC 0-1+  80 normal skin 1-2+ 

T06-06889 BCC 1-2+ 80 normal skin 2+ 

T06-07160-2 BCC 0-1+ 40 normal skin 2+ 

T06-08133-2 BCC NEG 0 normal skin 1-2+ 

T06-09327-1 BCC 1+ 60 normal skin 1-2+ 

T06-10671-1 BCC 1+ 40 normal skin 1-2+ 

T07-00753-2 BCC NEG 0 no normal skin 

T07-07197-3 BCC 1-2+ 60 normal skin 1-2+ 

T06-05434 nevus 2-3+ 80  

T06-13829 nevus 2-3+ 80  

T06-15352 nevus 2-3+ 80  

T06-16045 nevus 2-3+ 80  

T06-16174 nevus 2-3+ 80  

T06-16832 nevus 2-3+ 80  

T06-16983 nevus 2+ 80  

T06-18076 nevus 2+ 80  

T06-18753 nevus 2-3+ 80  

T06-17364 dysplastic nevus 2-3+ 80  

T06-02621 in situ melanoma 2-3+ 80  

T06-09160 in situ melanoma 2-3+ 80  

T06-11933 in situ melanoma 2-3+ 80  

T06-08497 superficial spreading melanoma 2-3+ 80  

T06-11336 superficial spreading melanoma 2-3+ 80  

T06-11854 superficial spreading melanoma 2-3+ 80  

T06-17070 superficial spreading melanoma 2-3+ 80  

T06-02282 deeply invasive melanoma 2-3+ 80  

T06-03697 deeply invasive melanoma 2-3+ 80  

T06-05435 deeply invasive melanoma 2-3+ 80  

T06-07039 deeply invasive melanoma 2-3+ 80  

T06-16580 deeply invasive melanoma 2+ 80  

The sample number indicates the case the tissue source is associated with.  MT-3 

reactivity was assessed in normal skin, basal cell carcinoma (BCC), squamous cell 

carcinoma, melanoma, and nevi (moles) 

  

Table V. 
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Figure V-1. Immunostaining of MT-3 in Skin Pigment Lesions. A: normal skin shows 

mild to moderate staining of MT in epidermis (#). In some cases the staining of MT-3 in 

epidermis can be moderate to strong (not shown); B: normal kidney as positive control; 

C: squamous cell carcinoma (SCC) (T06–5920) with strong staining of MT-3 (3 + ); D: 

normal skin from the same slide in “C”, showing moderate positivity of MT-3 (2 + ); E: 

SCC (T07–4411) with mild staining of MT-3 (2 + ); F: normal skin from the same slide 

as shown in “E”, showing moderate staining of MT-3 (2 + ); G: SCC (T06–10237) with 

mild staining of MT-3 (1 + ); H: basal cell carcinoma (BCC) (T06–00002) with focal, 

very weak staining of MT-3 (0–1 + ); I: Normal skin from the same slide as shown in 

“H”, showing mild to moderate staining of MT-3 (1–2 + ); J: BCC (T06–7889) with 

mild-moderate staining of MT-3 (1–2 + ). All images taken at 200X magnification.  
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Staining for MT-3 was found for all 9 specimens, exhibited moderate to strong intensity, 

and was present in over 80% of the cells comprising the nevus (Table 1, Fig 2A). 

Staining of MT-3 was also performed on 1 case of dysplastic nevus and 3 cases of in 

situ melanoma. The staining was similar to that found in the nevus with all specimens 

displaying moderate to strong staining in over 80% of the cells ( Table 1, Fig 2B). 

Staining of MT-3 was also performed on 4 cases of superficial spreading melanoma and 5 

cases of deeply invasive melanoma. Again, the staining was similar to that found for in 

situ melanoma with moderate to strong staining of MT-3 in over 80% of the melanoma 

cells (Table V-1, Fig V-2C, D, E). 

MT-3 expression in primary normal human keratinocytes (NHEK) and immortalized 

human HaCaT keratinocytes 

 Proliferating and confluent cultures of NHEK and HaCaT cells were assessed for 

their expression of MT-3 mRNA and protein. Real time PCR demonstrated that both 

resting and dividing NHEK and HaCaT cells had only background levels of MT-3 

mRNA expression (Fig V-3A, B). Both sets of cells were also shown to express only 

background levels of MT-3 protein (data not shown). Both the NHEK and HaCaT cells 

were treated with MS-275, a histone deacetylase inhibitor, and 5-aza-2-deoxycytidine, a 

DNA methylation inhibitor, to determine if MT-3 expression might be silenced by a 

mechanism involving histone modification or DNA methylation. The results 

demonstrated that treatment with MS-275 was effective in restoring MT-3 mRNA 

expression in both the NHEK and HaCaT cells (Fig V-3A,B).  
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Figure V-2. Immunostaining of MT-3 in Nevi and Melanoma Cells. A: in this 

intradermal nevus, the neval cells, which located in the dermis, show moderate to strong 

expression of MT-3 (*). The epidermis at the top of the image is moderately positive for 

MT-3 (#); B: in this case of in situ melanoma, two nests of melanoma cells in the 

epidermis are moderately to strongly positive for MT-3 (*). The epidermis is moderately 

positive for MT-3 (#); C: in this superficial spreading melanoma, some melanoma nests, 

located in the superficial dermis, show strong staining of MT-3. The overlying epidermis 

is mildly positive for MT-3 (#); D: in this deeply invasive melanoma, the tumor cells are 

strongly positive for MT-3 (*). In the top-left corner is a small section of epidermis (#), 

which is mildly positive for MT-3 (#); E: another case of deeply invasive melanoma. In 

the center of this image is a hair follicle (+) with two keratin pearls (arrows) in it. The 

hair follicle shows moderate staining of MT-3. Around the follicle are nests of invasive 

melanoma cell (*), which show strong staining of MT-3. F: BCC (T06–8133) with 

negative staining of MT-3. 
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While MS-275 treatment was effective in both cell lines, MS-275 increased MT-3 mRNA 

levels in NHEK cells 10 to 20 fold greater than those of the HaCaT cell line. Treatment 

of the NHEK and HaCaT cells with 5-aza-2′-deoxycytidine, resulted in a small, but 

statistically insignificant increase in MT-3 mRNA expression for both cell types (Fig V-

3A, B). 

MT-3 expression in normal human melanocytes (NHM) 

 Normal human melanocytes (from a light pigmented donor) were assessed in 

proliferating and confluent cultures for expression of MT-3 mRNA and protein. Both cell 

cultures showed only background levels of mRNA as demonstrated with real-time PCR 

(Fig V-3C) and only background levels of protein (data not shown). 

 In order to test for epigenetic regulation, cultures were treated with the histone 

deacetylase inhibitor, MS-275 and the DNA methylation inhibitor, 5-aza-20-

doxycytidine. The results demonstrated that treatment with MS-275 was effective in 

restoring MT-3 mRNA expression in the NHM cells (Fig V-3C). Treatment of the 

HEMa-LP with 5-Aza-20-deoxycytidine, resulted in only a slight but statistically 

significant increase in MT-3 mRNA expression (Fig V-3C). 
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Figure V-3.  Expression of MT-3 in primary normal human keratinocytes (NHEK),  

Immortalized Human Keratinocytes (HaCaT), and normal human melanocytes 

(HEMa-LP). NHEK (A) HaCaT (B) and HEMa-LP (C) cells were exposed to 1, 3, or 10 

μM of the histone deacetylase inhibitor MS-275 for up to 72 h, or to 1 or 3 μM 5-

azacytidine for 24 h. The post-confluent control was held at confluency for at least 72 h. 

Messenger RNA levels for MT-3 were assessed using real-time PCR and gene specific 

primers on RNA isolated from cells in culture. Expression levels are expressed as 

transcripts per 1000,000 transcripts of β-actin which was also assessed using real-time 

PCR. Significant differences from control groups are designated as **p < 0.005, ***p < 

0.0005 as determined by student’s unpaired t-test. 

  

C: 
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Discussion 

 The present study establishes that MT-3 is expressed in human skin. The 

immunoreactivity for MT-3 was present in all viable keratinocytes comprising the 

epidermis. The finding that MT-3 was present in the epidermal keratinocytes has a 

potential impact on the known association of arsenic exposure and the development of 

skin disorders and related cancers. All members of the MT gene family (MT-1, -2, -3 and 

-4) are known to bind heavy metals, including As
+3

 (Vasak and Meloni, 2011, Irvine et 

al., 2013 and Garla et al., 2013). Previous studies employing a monoclonal antibody 

against the E-9 epitope of the MT-1, -2, and -4 isoforms demonstrated that these 3 

isoforms are poorly expressed in human skin and with expression restricted to the basal 

keratinocytes (Van den Oord and Delay, 1994, Karasawa et al., 1991 and Zamirska et al., 

2012). The high sequence homology of these 3 isoforms prevents the generation of 

specific antibodies to the individual isoforms. In contrast, the present study shows that a 

large majority of keratinocytes in the epidermis of normal human skin are moderately to 

strongly immunoreativity for MT-3. These findings were consistent for 9 independent 

samples of human skin. The antibody used for the localization of MT-3 is specific since it 

was generated against the unique C-terminal amino acid sequence that is present only in 

this MT isoform (Garrett et al., 1999). The fact that human keratinocytes contain 

substantial levels of MT-3, and that MT-3 can bind As
+3

, suggests a possible role for MT-

3 in the selective accumulation and sequestering of As
+3

 in skin. One hypothesis to 

explain why skin is highly responsive to arsenic exposure and cancer development is that 

skin localizes and store As
+3

 due its high keratin content and the corresponding favorable 

interaction with sulfhydryl groups (Kitchen, 2001 and Lindgren et al., 1982). The current 
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finding suggests that MT-3 might play an additive, or possibly larger, role in the ability 

of skin to sequester and store As
+3

 in individuals chronically exposed to this metalloid. 

Evidence to support the concept that MT expression in a normal target tissue can elicit 

chronic effects can be found in the nephropathy associated with chronic exposure to 

cadmium. The MT-1 and MT-2 isoforms are predominantly expressed in the proximal 

tubules of the human kidney, and this expression is initiated during the early development 

of the kidney (Mididoddi et al., 1996). The MT-3 isoform is also expressed in the 

proximal tubules and other tubular elements of the human kidney (Garrett et al., 1999). 

The cortex of the human kidney has been shown to accumulate cadmium, as a function of 

age, in humans without occupational exposure (Satarug et al., 2002 and Satarug et al., 

2010). Accumulation is assumed to occur through cadmium's interaction with MT and 

accumulation has been shown to reach a plateau at approximately 50 years of age. 

Despite the MT's being looked upon as having a protective role against heavy metal 

toxicity in general, and the proximal tubule in particular (Liu et al., 1995, Liu et al., 

1998, Liu et al., 2000 and Masters et al., 1994), the fact remains that the kidney and the 

proximal tubule is the cell type critically affected by chronic exposure to cadmium 

(Andrews, 2000, Bernard et al., 1976, Bosco et al., 1986 and Gonich et al., 1980). It has 

been shown in human population studies that even low exposure to cadmium alters renal 

tubule function (Akesson et al., 2005). Thus, there is evidence in the kidney that pre-

existing expression of MT in the renal tubules both protects the kidney from cadmium 

exposure, but this expression might also render the organ susceptible to the chronic 

effects of the metal. There is little evidence, either for or against, that would support a 

similar role for MT-3 expression in human skin as regards the chronic effects of exposure 
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to arsenic.  The present study demonstrates that MT-3 is prominently expressed in the 

majority of cells comprising the nevus, dysplastic nevus, in situ melanoma, superficial 

melanoma, and deeply invasive melanoma. Although the sample set was relatively small, 

there was no indication that expression was variable within or between disease 

categories. A consequence of this pattern of constant MT-3 expression is that the 

melanocytes, in all stages of progression, are able to continue to bind and accumulate 

As
+3

 in an environment where exposure to As
+3

 is at elevated levels. Unfortunately, there 

is very little information in the literature on conditions or mechanisms in vivo that would 

influence the release of As
+3

 from MT-3 inside a cell or tissue. One could speculate that 

if ultraviolet radiation influenced the release of As
+3

 from MT-3, it might impact on 

emerging research which suggests a linkage between the development of melanoma and 

co-exposure to As
+3

 and ultraviolet radiation ( Cooper et al., 2014). The expression of 

MT-1 and -2 has been examined in patients with melanoma. It was shown that a gain of 

expression of MT-1 and -2 is an adverse prognostic and survival factor for patients with 

this cancer ( Weinlich et al., 2003 and Weinlich et al., 2006). In contrast to MT-3, MT-1 

and -2 is not expressed in the nevus and is gained later during the development of the 

cancer.  The present study also shows that MT-3 is expressed in the normal human 

epidermal keratinocytes that would give rise to these cancers. The examination of these 

cancers show that all SCC exhibit robust expression of MT-3, and that the majority of 

BCC express MT-3 although a significant proportion express mild levels and some BCC 

failed to immunostain for this protein.  The results of the present study also show that cell 

cultures of NHEK, HaCaT immortalized human keratinocytes, and normal human 

melanocytes do not express MT-3 as would be unexpected from their in situ patterns of 
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MT-3 expression. This observation shows that these cell lines are lacking a protein that 

can both bind and sequester As
+3

 as well as serving as an antioxidant. The MT-3 protein 

has also been shown to have growth inhibitory activity outside the neural system ( Gurel 

et al., 2003), be involved in necrotic and apoptotic cell death ( Somji et al., 

2004 and Somji et al., 2006) and in the epithelial to mesenchymal transition ( Kim et al., 

2002 and Bathula et al., 2014). Exactly how this might impact on studies using these cell 

lines to elucidate the mechanism/s of As
+3

 toxicity and carcinogenicity is unknown, but 

may need to be considered in the interpretation of past and future studies. The loss of 

MT-3 expression in cell cultures derived from tissues where MT-3 is expressed may be a 

result of the cell culture environment. This is suggested by studies on MT-3 expression in 

bladder cancer and breast cancer cell lines. This laboratory has shown that the epithelial 

cells of the human bladder and breast do not express MT-3, but that the majority of 

patient specimens of breast and bladder cancers do express MT-3 ( Sens et al., 2000, Sens 

et al., 2001, Zhou et al., 2006 and Somji et al., 2010). In studies examining MT-3 

expression in As
+3

 and Cd
+2

transformed bladder cancer cell lines and in MCF-7, T-47D, 

Hs 578 t, MDA-MB-231 breast cancer cell lines it was demonstrated that none of the cell 

lines expressed MT-3 ( Zhou et al., 2006). However, when these cell lines were 

transplanted into immune compromised mice, all the resulting tumors showed prominent 

expression of MT-3. It has also been shown that the expression of MT-3 mRNA could be 

induced under cell culture conditions in the MT-3 non-expressing cell lines following 

treatment with MS-273, a histone deacetylase inhibitor ( Somji et al., 2010 and Somji et 

al., 2011). These results suggest that MT-3 is silenced under cell culture conditions by a 

mechanism involving histone acetylation.  Previous to the submission of this manuscript, 
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no studies of MT-3 expression in human skin or derived cancers existed in the literature; 

however, recently a study was published during the review process that documents the 

expression of MT-3 in human skin, both in normal as well as BCC and SCC (Pula et al., 

2014). The findings of this study are in overall agreement with the above findings with 

the exception that they have found higher levels of MT-3 in SSC whereas the current 

study did not. Nevus, melanoma and cultured cell models were not assessed in this study. 
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