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ABSTRACT 

Congenital heart diseases (CHDs) are among the most common type of 

developmental anomaly affecting 8 in 1000 live births.  Approximately 30% of CHDs 

involve cardiac outflow tract (OFT) malformation which leads to significant morbidity and 

mortality in both children and adults.  Development of OFT is regulated by a complex 

genetic network including Sonic-Hedgehog signaling pathway, TGF-β and BMP signaling 

pathway.  Mutation of a transcription factor, Gata4, has been known to cause OFT defects 

including double outlet right ventricle (DORV) in both human and mice for decades.  

Several transcription targets of Gata4 have been identified such as Mef2c, Ccnd2 and Cdk4, 

however none has been shown to be functionally involved in OFT development.  Thus, the 

important role of Gata4 during OFT development remains unclear. 

Here we analyzed the requirement of Gata4 in several cell progenitors which 

contribute to the development of OFT and found that knocking down Gata4 in myocardium, 

second heart field and cardiac neural crest cells was able to maintain normal OFT 

development.  However, Gata4 haploinsufficiency in Hedgehog (Hh) receiving cells 

caused a high penetrance of DORV in embryos at embryonic stage 14.5.  Elongation as 

well as rotation defect were also observed in these mutant embryos compared to wildtype.  

Through TUNEL apoptosis assay, we found that there was no significant increase in cell 

apoptosis within the outflow tract region in these mutant embryos compared to wildtype.  

However, BrdU proliferation assay showed a significant decrease of cell proliferation in 
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the conal portion of outflow tract in these mutant embryos.  By performing real-time PCR, 

luciferase assay and ChIP-qPCR, we found Gata4 directly binds to Hh signaling effector 

Gli1 and regulates its expression.  Also, by further blocking Hh signaling pathway in Gata4 

mutant embryos or reducing such blockage, we found the occurrence and severity of OFT 

defect increased or decreased respectively.  Together these results suggest that Gata4 

interacts with Hedgehog signaling pathway in regulating outflow tract development. 
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CHAPTER I 

INTRODUCTION 

1.1 Introduction to Congenital heart defects 

Congenital heart defects (CHDs), also known as congenital heart anomalies or 

congenital heart diseases, are defects of the heart structure or major blood vessels that are 

present at birth.  In patient with CHD, the normal blood flow through heart and the rest of 

the body is changed.  As a consequence, the patients will experience many kinds of 

symptoms and complications vary from mild effects including rapid breathing, cyanosis, 

fatigue to life-threatening effects such as pulmonary hypertension, infective endocarditis, 

and congestive heart failure. 

The worldwide birth prevalence of CHD has increased substantially, from 0.6 per 

1,000 live births in 1930 to 9.1 per 1,000 live births after 1995, possibly due to 

advancement in diagnostic and screening methods such as pulse oximetry screening and 

echocardiography (van der Linde et al., 2011).  The most commonly reported incidence of 

CHD in the United States is between 4 to 10 per 1,000, clustering around 8 per 1,000 live 

births (Shuler, Black, & Jerrell, 2013), which translate into a minimum of 40,000 infants 

who are expected to be affected by CHD each year.  Around 25% of these live births require 

invasive treatment in their first year of life (Mozaffarian et al., 2016).  Not only does CHD 

affect a large population, it also causes a heavy economic burden.  In 2004, the total 

hospital stays for congenital birth defects were 139,000, of which cardiac and circulatory 
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congenital anomalies accounted for 33.5%, resulting in 1.3 billion hospital costs (Russo & 

Elixhauser, 2007). 

Depending on the size and location that is affected, there are at least 18 distinct 

types of CHD varying in severity and ranging from a simple hole in the septum such as 

atrial septal defect (ASD), patent ductus arteriosus (PDA) to combination of simple defects 

such as tetralogy of Fallot (TOF), Eisenmengenr’s syndrome and Holt-Oram syndrome.  

Among them there are three major types of CHD: atrial septal defect (ASD), ventricular 

septal defect (VSD) and Outflow tract (OFT) defect, accounting for approximately one 

third of total CHD prevalence respectively (Mozaffarian et al., 2016). 

1.2 Three major types of CHD and the epidemiology 

Atrial septal defect (ASD), as indicated by its name, is a congenital heart defect 

within the interatrial septum.  In heart with ASD, the interatrial septum is defective or 

absent, which allows the oxygen rich blood to flow directly from left atrium and mix with 

deoxygenated blood in right atrium, leading to a drop in oxygen level in arterial blood that 

supplies the rest of the body.  Depending on the structures involved, ASD can also be 

divided into many types, including but not limited to ostium primum and secundum atrial 

septal defect, sinus venosus defect and common atrium, resulting in symptoms ranging 

from asymptomatic to palpitation and fatigue.  The overall incidence of ASD is estimated 

to be about 1.3 per 1,000 live births (Reller, Strickland, Riehle-Colarusso, Mahle, & Correa, 

2008).  Most of ASDs are sporadic with no identifiable cause.  However, some ASDs are 

associated with exposure to alcohol and smoking (Alverson, Strickland, Gilboa, & Correa, 

2011; Burd et al., 2007), some have been associated with abnormalities in genes, such as 
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mutations in transcription factors NKX2-5, GATA4 and TBX5 (Baban et al., 2014; Ellesoe 

et al., 2015; Morine et al., 2015; Sarkozy et al., 2005; Xiang et al., 2014). 

Ventricular septal defect (VSD) is the most common type of CHD with a hole in 

the ventricular septum which separates the ventricle, allowing the heart to pump extra 

blood leaked from left ventricle to the lung.  Since many types of VSD can be 

asymptomatic at birth and close with age, the precise prevalence of ventricular septal defect 

varies between studies, depending on the diagnosis techniques and population studied.  

Commonly the incidence of VSD is estimated to be 2.8 per 1000 live births (Hoffman, 

Kaplan, & Liberthson, 2004).  Like atrial septal defect, VSD have also been associated 

with some environmental factors such as maternal infection, phenylketonuria and diabetes 

(Abu-Sulaiman & Subaih, 2004; Rouse et al., 2000).  There are also some genetic factors 

responsible for VSD, including chromosome 18 trisomy (Hyett, Moscoso, & Nicolaides, 

1995), chromosome 22q11 deletion (McElhinney et al., 2003), and single gene mutation 

such as TBX5, NKX2-5, HAND2, GATA4 and GATA6 (Garg et al., 2003; Huang et al., 2013; 

C. X. Liu et al., 2009; Sun et al., 2016; Zheng et al., 2012). 

Within the scope of CHD, defects of the cardiac outflow tract (OFT), a transient 

structure of the developing heart that connects the embryonic ventricles and the aortic sac 

and that will eventually divide into aorta and pulmonary trunk, are estimated to cause 

approximately 30% of the CHDs.  This include 13.5% valvular pulmonic stenosis, 5.4 % 

valvular aortic stenosis, 6.1% tetralogy of Fallot (TOF), 2.6% transportation of great artery 

(TGA), 0.9% double-outlet right ventricle (DORV) and 0.7% persistent truncus arteriosus 

(PTA) (Mozaffarian et al., 2016). 
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DORV describes a phenotype in which both the pulmonary trunk and aorta is 

connected to the right ventricle, instead of the aorta being connected to left ventricle in a 

normal heart.  Most cases of DORV are accompanied by VSD, which can be explained by 

the need to allow blood to pass from the left ventricle to the aorta and pulmonary artery, 

allowing the oxygenated blood to mix with deoxygenated blood.  However, the majority 

of blood entering the aorta comes from the right ventricle, which contains deoxygenated 

blood, so the oxygen level in the blood entering into aorta is reduced.  Overriding aorta 

(OA) is an anomaly similar to DORV in a certain extent, with the main difference being 

that the aorta is positioned directly over a ventricular septal defect instead of over the left 

ventricle.  Therefore, blood carried to the rest of the body through the aorta is a mixture of 

oxygenated and deoxygenated blood that comes from both the left and right ventricles.  

PTA, also known as common truncus, is considered more severe compared to DORV and 

OA because of the unfavorable prognosis and difficulty in surgical repair.  With truncus 

arteriosus, there is only one single large artery that supplies the pulmonary and systemic 

circulation instead of a separate aorta and pulmonary artery. 

Not only can OFT defect be found in isolated disease as described above, it can 

also be found as part of human syndromes such as DiGeorge syndrome and Alagille 

syndrome (Jain, Rentschler, & Epstein, 2010). Unlike ASD and VSD, most of OFT defect 

requires invasive treatment early in infancy to prevent serious complications such as 

advanced heart failure and severe pulmonary hypertension, and many other complex forms 

of OFT defect remain to be surgical challenges. 
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1.3 Development of outflow tract and etiology of OFT defect 

1.3.1 Cell lineages that contribute to OFT development 

Formation of outflow tract is a complicated process that requires the contribution 

of multiple cell lineages.  Initially, cells from the primary heart field (PHF) converge and 

fuse at the midline of the embryo to form the primitive heart tube which will undergo 

elongation, looping and septation (Figure 1A,B).  Starting from mouse embryonic day 8 

(E8), additional cardiomyocytes are progressively added into the arterial pole of the heart 

from a cell population in pharyngeal mesoderm called second heart field (SHF) (Figure 

1C,D) (Buckingham, Meilhac, & Zaffran, 2005; Cai et al., 2003; Kelly & Buckingham, 

2002; van den Berg et al., 2009).  At this stage, the OFT is an unseparated myocardial 

cylinder lined with endocardial cells.  During the rightward looping of the primitive heart 

tube starting from E9, cardiac neural crest cells (CNCCs), another cell population from the 

dorsal neural tube, migrates through the pharyngeal arches into the distal (also known as 

truncal) portion of OFT until approximately E11 (Figure 1F, G) (Hutson & Kirby, 2003).  

As CNCCs enter the OFT, the endocardial jelly concentrates itself and the endocardial cells 

undergo endothelial to mesenchymal transition (EMT) to form pairs of OFT cushions 

between the myocardial and endothelial layers in a spiral conformation throughout the 

entire OFT (Figure 1G) (Anderson, Spicer, Brown, & Mohun, 2014; Sugishita, Watanabe, 

& Fisher, 2004).  The cushions then undergo solidification, meanwhile cells from SHF 

have also begun to invade the distal OFT (Buckingham & Relaix, 2007; Franco et al., 2006; 

Ward, Stadt, Hutson, & Kirby, 2005).  After OFT gains a substantial increase in length, the 

OFT undergoes remodeling, during which the OFT septa converge and separate the OFT 

into the ascending aorta and pulmonary trunk. The OFT septum further joins 
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atrioventricular and ventricular septa to align aorta with the left ventricle and pulmonary 

trunk with the right ventricle in a counterclockwise direction.  At E14.5, well-defined 

chambers are fully separated and correctly aligned to the pulmonary trunk and aorta (Figure 

1H). 

1.3.2 Signaling pathways that contribute to OFT development 

Proper development of OFT requires multiple signaling pathways including 

fibroblast growth factor (FGF), bone morphogenetic protein (BMP), Wnt, retinoic acid 

(RA) and Hedgehog (Hh) signaling pathway that are known to play important roles in a 

wide range of morphogenetic processes and biological functions.  Perturbation of any of 

these pathways results in a spectrum of conotruncal congenital heart defects. 

1.3.2.1 Wnt signaling pathway 

Wnt signaling has been implicated in OFT development in many aspects.  Firstly, 

knocking out Wnt/ β-catenin signaling specifically in cardiac mesoderm  using series of 

Cre lines including Isl1-cre, MesP1-cre and Mef2c-cre lines causes right ventricular and 

OFT hypoplasia, while over-activation of β-catenin by LiCl treatment or gain-of-function 

mutation results in SHF hyperplasia and a greater number of SHF-derived cells in the OFT, 

suggesting an important role of Wnt signaling in controlling proliferation and 

differentiation of SHF that contributes to OFT (Cohen et al., 2007; Kwon et al., 2007; Lin 

et al., 2007).  Secondly, Wnt signaling has also been reported to participate in induction, 

migration and specification of NCC development.  Knocking out Wnt signaling member 

Dvl2 down-regulates the expression of CNCC markers Pitx2 and Plexin A2, and causes 

various types of OFT defect such as PTA and DORV (Hamblet et al., 2002).  Furthermore, 

knocking down Wnt1 receptor Lrp6 results in a reduction of CNCCs in both the neural tube 
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and pharyngeal arches, as well as high incidences of DORV and VSD in the embryos (Song, 

Li, Wang, & Zhou, 2010).  Thirdly, the EMT process during OFT development is also 

induced by Wnt signaling.  As evidenced by Hurlstone and Liebner, overexpression of 

Dkk1, an inhibitor of Wnt signaling pathway, and Apc, a component of β-catenin 

destruction complex, result in hypoplastic endocardial cushion of the OFT (Hurlstone et 

al., 2003; Liebner et al., 2004). 

1.3.2.2 FGF signaling pathway 

FGF signaling affects the contribution of cell progenitors for OFT development.  

Conditional ablation of Fgf8, Fgfr1 and Fgfr2 in the SHF using Cre-loxP technique results 

in failure of OFT alignment and decreased cell proliferation within the SHF, implicating a 

role of FGF signaling during SHF proliferation and OFT development (Ilagan et al., 2006; 

E. J. Park et al., 2006; Eon Joo Park et al., 2008).  FGF signaling has also been reported to 

play important roles in both the EMT process of OFT development and the contribution of 

CNCC to OFT.  Ablation of FGF signaling adaptor Frs2α not only results in expansion of 

SHF cells into the OFT, but also leads to reduced cellularity in OFT cushions and defective 

CNCCs migration (J. Zhang et al., 2008).  Deletion of Ext1, a gene encoding heparin sulfate 

biosynthesis enzyme necessary for cardiac morphogenesis, is reported to impair 

contribution of the SHF and CNCCs to OFT via down-regulation of FGF signaling.  

Moreover, exposure of both the OFT explants and pharyngeal explants to Fgf8 rescues the 

defects induced by Ext1 deletion (R. Zhang et al., 2015). 
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Figure 1.  Development of outflow tract 

(A) Two heart forming regions.  (B) At E8, cells from the FHF converge at the midline of 
the embryo to form a heart tube.  (C, D) Cells from the SHF are added to the arterial pole 
of the development heart.  (E) Contribution of SHF cells results in elongation of OFT and 
looping of the heart.  (F) Cells from CNC migrate into the distal OFT starting from around 
E9.  (G) Endocardial cells receive signals from multiple sources and undergo EMT, 
resulting in the separation of OFT.  (H) At E14.5, a heart with well-defined chambers is 
formed.  FHF, first heart field; SHF, second heart field; PA, pharyngeal arches; CNC, 
cardiac neural crest; RV, right ventricle; LV, left ventricle; RA, right atrium; LA, left 

atrium; OFT, outflow tract; AVC, atrioventricular canal.  (adapted from (Fung & Aikawa, 
2013; Gessert & Kühl, 2010; Zaffran, Robrini, & Bertrand, 2014))   
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1.3.2.3 BMP signaling pathway 

BMP signaling has been shown to be required by SHF and CNCC for OFT 

formation.  Knocking out BMP type II receptor (Bmpr2) causes absence of conotruncus 

septation and PTA, suggesting the involvement of BMP signaling in OFT seperation (Délot, 

Bahamonde, Zhao, & Lyons, 2003).  BMP signaling is required in SHF for OFT formation, 

as evidenced by the abnormal OFT morphology and SHF specification found in mutant 

embryos with overexpression or conditional loss of Bmp4, Bmp7 and Bmpr1 (Bmp type1 

receptor) (W. Liu et al., 2004; L. Yang et al., 2006).  Further investigation of the 

requirement of BMP signaling in SHF shows that BMP signaling regulates the EMT 

process of the OFT via Vegfa (Bai et al., 2013).  BMP signaling has also been reported to 

be required by CNCCs for OFT formation, as specific ablation of Bmpr1 in neural crest 

causes shortened OFT with defective septation.  Moreover, BMP signaling can also interact 

with other signaling pathways including FGF signaling, which is supported by the finding 

that FGF signaling in the OFT myocardium enhances differentiation of NCCs in OFT 

cushion through up-regulation of Bmp4 (J. Zhang et al., 2010). BMP signaling pathway 

also interacts with Hedgehog signaling, which is evidenced by the finding that SAG 

(Hedgehog signaling agonist)-induced proliferation of SHF explants is inhibited by Bmp2 

(L. A. Dyer et al., 2010). 

1.3.2.4 Retinoic acid signaling pathway 

Retinoic acid (RA) is a vitamin A-derived metabolite and acts as a ligand for 

nuclear RA receptors (RARs).  Upon binding to ligand RA, RAR alters its conformation 

and changes the binding affinity of RAR/RXR heterodimer to the retinoic acid response 

elements (RAREs) on DNA, thus regulating the transcription activity of nearby genes.  RA 
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signaling has been reported to participate in OFT development two decades ago through 

gene knockout study, in which the knockout embryos shows abnormal ventricular 

trabeculation and defective OFT septation (Kastner et al., 1994; Mendelsohn et al., 1994).  

Further study by Li group identifies an essential role of RA signaling in regulating SHF 

differentiation and patterning TGFβ expression (P. Li, Pashmforoush, & Sucov, 2010).  

This interaction between RA and TGFβ signaling is recently confirmed by specifically 

knocking down TGFβ ligand gene Tgfb2 in endocardium cells of RAR knockout embryos, 

which rescued the OFT septation defect in RAR mutants by 50% and demonstrated that 

CAT in RAR knockout mutants results from dysregulated TGFβ signaling in endocardium 

(M. C. Ma et al., 2016).  RA signaling is also found to regulate the orientation and 

positioning of CNCCs as well as the coordination between CNCCs and endocardium in 

OFT septation (El Robrini et al., 2016). 

1.3.2.5 Hedgehog signaling pathway  

Hedgehog signaling pathway is a major regulator of embryonic development and 

plays critical roles in maintaining homeostasis of adult tissues.  The name of the pathway 

originates from an intercellular signaling molecule called Hedgehog (Hh) which can cause 

a stubby and spiked phenotype in Hh mutant Drosophila larvae.  Hh is involved in 

establishing the differences between the anterior and posterior parts of Drosophila body 

segments.  In both vertebrate and invertebrates, Hh first binds to the Patched (PTCH) 

receptor, then PTCH activates SMO, a downstream protein of the pathway.  SMO then 

further activate zinc-finger transcription factors GLI.  Activated GLI then accumulates in 

the nucleus and regulates the transcription of specific target genes (Jacob & Lum, 2007; 

Varjosalo & Taipale, 2007).   
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Hedgehog (Hh) null mouse embryos shows defects in development of conotruncal 

and pharyngeal arch, and also a defect resembling tetralogy of Fallot (Smoak et al., 2005).  

Further analysis of the requirement in CNCC by crossing Wnt1-cre line with Smo flox line 

reveals that all mutant embryos displayed OFT defect, ranging from hypoplastic pulmonary 

artery to single OFT.  Fate mapping of the CNCCs within the OFT shows a reduction in 

CNCCs within OFT, suggesting that Hh is required by CNCCs to survive and populate into 

OFT cushions (Goddeeris, Schwartz, Klingensmith, & Meyers, 2007).  By specifically 

knocking out Hh signaling in SHF, the same group also found that Hh signaling is required 

in SHF for OFT septation and elongation (Goddeeris et al., 2007).  Further study by Dyer 

LA found that Hh is required for SHF cell proliferation and that this Hh-induced 

proliferation may be regulated by BMP signaling (Laura A Dyer & Kirby, 2009; L. A. Dyer 

et al., 2010).  Not only does Hh signaling regulates OFT development through CNCCs and 

SHF, it also acts via Hh-receiving cells, as showed in Hoffman’s finding that Hh-receiving 

cells marked by Gli1-cre expression is found to migrate between E9.5 and E11.5 from SHF 

into the atrial septum and pulmonary artery (Andrew D Hoffmann, Peterson, Friedland-

Little, Anderson, & Moskowitz, 2009).  Several transcription factors have been identified 

to interact with Hh signaling in heart development.  For example, Isl1 null mice has 

downregulated Shh in foregut endoderm and exhibits defects in aortic arch artery and 

outflow tract, suggesting an interaction between Isl1 and Hh signaling pathway for 

cardiogenesis (Lin, Bu, Cai, Zhang, & Evans, 2006).  Besides, constitutive activation of 

Hh signaling using SmoM2 line recuses the ASD in Tbx5 SHF haploinsufficiency mice, 

suggesting Tbx5 acts upstream or in parallel to Hh signaling in atrial septation (L. Xie et 

al., 2012).  Also, analysis of atrioventricular septal defect (AVSD) caused by compound 
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haploinsufficiency for Foxf1and Foxf2 identifies a Foxf1a cis-regulatory element that is 

bound by Gli1 and Tbx5, suggesting that Foxf genes act downstream of Tbx5 and Hh 

signaling for atrial septation (A. D. Hoffmann et al., 2014). 

1.4 Transcription factors 

With the morphogenesis of OFT being such a complex process, mutations of 

numerous genes including Nkx2.5, Notch1, T-box family and Gata family have been 

identified to be responsible for inherited and sporadic OFT defects.  Mutations in the 

homeobox protein Nkx2.5, which plays a critical role in regulating tissue-specific gene 

expression for determining the temporospatial patterns of development, have been 

implicated as a cause of tetralogy of Fallot (Goldmuntz, 2001).  Loss or mutation of T-box 

transcription factors including Tbx1 and Tbx3, have also been reported to be responsible 

for DORV, PTA and TOF (Liao et al., 2004; Karim Mesbah, Harrelson, Théveniau-Ruissy, 

Papaioannou, & Kelly, 2008). 

1.4.1 T-box family and its relation to OFT defect 

Tbx1, a member of the T-box family, is a transcription factor identified by analysis 

of the chromosome 22q11.2 deletion induced DiGeorge syndrome (Jerome & Papaioannou, 

2001; Lindsay et al., 2001; Yagi et al., 2003).  By specifically knocking out Tbx1 using 

multiple Cre mouse lines, Xu et al. found that Tbx1 is required in the pharyngeal endoderm 

for OFT septation and in SHF for OFT alignment (Xu et al., 2004).  It is also found that 

Tbx1 is required in the mesoderm for regulating the Fgf8 in SHF, suggesting a relationship 

between Tbx1 and FGF signaling in cardiac OFT development (Z. Zhang, Huynh, & 

Baldini, 2006).  Tbx2 is another member of the T-box family which has been implicated in 

development of both the atrioventricular canal and septation of outflow tract (Harrelson et 
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al., 2004).  It is found that the expression pattern of Tbx2 is complementary to that of 

chamber myocardium-specific genes including Nppa, Cx40 and Cx43, suggesting a role of 

Tbx2 in differentiating the formation of OFT and cardiac chambers (Christoffels et al., 

2004).  T-box family members also interact with each other in governing pharyngeal and 

OFT development, as showed by Mesbah that knocking out one T-box family member 

expression causes expression pattern changes of other T-box family member and loss of 

two of three genes (Tbx1/ Tbx2/ Tbx3) results in severe pharyngeal hypoplasia and heart 

tube extension defects (K. Mesbah et al., 2012). 

1.4.2 Transcription factor Gata4 and its relation to OFT defect  

Gata4 is a zinc finger transcription factor that recognizes the GATA motif and 

regulating gene transcription essential for embryogenesis.  Many known mutations of 

GATA4 such as K319E, T280M, G21V and G296S have been associated with atrial septal 

defects (ASD) or ventricular septal defects (VSD) in both human and mouse studies (Y. 

Chen et al., 2010; Garg et al., 2003; Hirayama-Yamada et al., 2005; Rajagopal et al., 2007; 

Xiang et al., 2014).  Other GATA4 mutations such as A9P, L51V and E216D or Gata4 

haploinsufficiency were found to associate with OFT defects such as TOF and DORV 

(Nemer et al., 2006; Y. Q. Yang et al., 2013). 

Lots of efforts have been placed on elucidating the role of Gata4 in heart 

development.  Pu et al. found that cardiac morphogenesis including OFT development is 

dependent on the dosage of Gata4 (Pu, Ishiwata, Juraszek, Ma, & Izumo, 2004).  Gata4 is 

known to work in combination with other essential cardiac transcription factors such as 

Nkx2.5 and Tbx5 to regulate proper cardiac development (Garg et al., 2003; Riazi et al., 

2009; Sepulveda, Vlahopoulos, Iyer, Belaguli, & Schwartz, 2002).  Gata4 also interacts 
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with other Gata family members including Gata5 and Gata6 in regulating OFT 

development.  Mice with compound haploinsufficiency for Gata4 and Gata5 exhibited 

OFT defect with increased incidence and severity (Laforest & Nemer, 2011).  By 

specifically knocking out Gata4 in SHF using Mef2c-cre and Nkx2.5-cre line, Rojas found 

that Gata4 is required in the derivatives of the SHF for cardiomyocyte proliferation.  

Further analysis of the heart mRNA reveals that Gata4 regulates a sets of cell cycle genes 

including Cyclin D2 and Cdk4, both in vivo and in vitro (Rojas et al., 2008).  By using a 

Tie2-cre transgenic mouse line, Rivera-Feliciano et al. identified Gata4 as a positive 

regulator of EMT of the atrioventricular cushion (AVC) by acting upstream of Erbb3-Erk 

pathway, both of which are essential factors for EMT (Rivera-Feliciano et al., 2006).  Gata4 

has also been reported to interact with Hh signaling.  By eliminating Gata4 in the midgut 

endoderm using Shh-cre line, Kohlnhofer found that Gata4 is required in Hh expressing 

cells for intestinal epithelial cell proliferation (Kohlnhofer, Thompson, Walker, & Battle, 

2016).  Daoud found that BMP-mediated induction of Gata factors blocks the induction of 

Hh dependent gene expression in presomitic mesoderm, suggesting that Gata factors act as 

repressors of Hh signaling (Daoud et al., 2014).  The inhibition effect is supported by the 

finding of Xuan that knocking out Gata4 and Gata6 upregulates Hh signaling in mutant 

pancreata (Xuan & Sussel, 2016). 

Recently, our lab found Gata4 haploinsufficiency in posterior part of SHF (pSHF) 

caused abnormal atrial septation, suggesting the requirement of Gata4 by SHF for heart 

morphogenesis (paper in publishing).  Specifically, Gata4 is found to regulate the 

expression of cell cycle genes in SHF and interact with transcription factor Tbx5 in AV 

septation.  Moreover, the finding that mice with compound haploinsufficiency of Gata4 
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and Smo in SHF shows severe AVSDs compared to control suggested Gata4 interacts with 

Hh signaling in AV septation. 

1.5 Gap in knowledge and contribution of this study 

Despite ample studies of Gata4 in heart development, its role in OFT development 

is rarely studied and remains unclear.  Specifically, although it is already known that 

improper deployment of SHF (Goddeeris et al., 2007), loss or reduction of the CNC 

(Hutson & Kirby, 2003), defects in the OFT endocardial cell (Y. Zhang et al., 2009) all 

contribute to OFT defects, whether Gata4 is required in these processes remains unknown. 

Whether Gata4 interacts with BMP, FGF and especially Hh signaling pathways or acts on 

its own for OFT development is also a question to be answered.  

In the present study, we first analyzed the requirement of Gata4 in the cell 

progenitors that contribute to OFT development by crossing several cell type-specific Cre 

mouse lines with Gata4 flox mouse line.  We found that ablation of one allele of Gata4 in 

myocardium, anterior second heart field and cardiac neural crest cells did not induce OFT 

defects in mutant embryos.  Ablation of one allele of Gata4 in Hh-receiving cells, however, 

induced a high occurrence of DORV in mutant embryos at embryonic stage 14.5 (E14.5) 

as well as elongation and rotation defects in mutant embryos at E10.5 and E11.5.  TUNEL 

apoptosis assay showed no difference in cell apoptosis between Gata4 mutants and 

wildtype.  BrdU proliferation assay showed a significant decrease of cell proliferation in 

conal OFT in mutants compared with that of wildtype.  We then performed a real-time 

PCR to compare the expression of Hh signaling molecules Gli and Smo in SHF, and we 

found that the transcription level of Gli1 and Smo was significantly decreased in mutants.  

By further performing luciferase assay and ChIP-qPCR, we showed that Gata4 can directly 
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bind to promoter regions of Gli.  Last, by blocking or over activating Hh signaling pathway 

from Gata4 mutant embryos, we found the incidence and severity of OFT defect was 

increased or decreased respectively.  Thus, these results suggest that Gata4 interacts with 

Hedgehog signaling pathway in regulating OFT development. 

1.6 Principle of major techniques used 

1.6.1 Cre-loxP system 

Cre-loxP recombination is a site specific recombinase technique able to mediate 

deletion, insertion, translocation and inversion at specific locations on DNA.  Cre 

recombinase is a 38 kDa protein originally found in bacteriophage P1 that can recognize 

and bind to specific DNA sequences called loxP and result in homologous recombination.  

For the past decade, the Cre-loxP system has been widely used to overcome embryonic and 

early postnatal lethality in germline knockout studies (Le & Sauer, 2001; Nagy & Mar, 

2001).  By crossing mice which has a gene flanked by two loxP sites (resulting in an allele 

named GeneBflox or GeneBfl) and mice (GeneACre) which carries Cre that is controlled by 

a tissue specific promoter, targeted gene knockdown and knockout can be achieved (Figure 

2A,B).  If the Cre recombinase is modified, by fusing the Cre to a mutated hormone-binding 

domains of estrogen receptor (Ert2) which can be activated by tamoxifen, the 

recombination can be regulated both spatially and temporally (Figure 2C).   

Another application of the Cre-loxP system is cell fate mapping.  By crossing mice 

(R26Rflox or R26Rfl) which has a loxP flanked STOP sequence followed by β-galactosidase 

(lacZ) gene with mice which expresses Cre under a tissue specific promoter, tissues with 

Cre expression will express lacZ, which encodes β-galactosidase.  Upon addition of the 

substrate 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal), β-galactosidase will 
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cleave X-gal and result in a dark blue precipitate, marking the Cre-expressing cell 

population (Figure 2D). 

1.6.2 Luciferase Assay and ChIP Assay 

Luciferase assay is a technique widely used to study the promoter activity in vitro 

by measuring luminescence from interaction of luciferase expressed under the promoter of 

interest and a substrate.  In order to study transcriptional regulation, an expression vector 

that expresses transcription factor of interest and a reporter vector that contains the putative 

regulatory region upstream of the reporter gene are constructed.  By transfecting cells with 

both the expression vector and reporter vector, luciferase enzyme will be produced only if 

the regulatory region is activated. 

Chromatin immunoprecipitation (ChIP) is a method used to investigate the 

transcriptional regulation through transcription factor-DNA binding interactions in vivo.  

After DNA and the transcription factor protein are crosslinked to each other, antibody that 

specifically targets the protein of interest is used to pull down the DNA-protein complex.  

DNA fragments bound by transcription factor is then purified and recovered.  By 

comparing to negative control loci, enrichment of transcription factor binding at regions of 

interest can be determined by quantitative PCR (qPCR).  
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Figure 2.  Cre-loxP techniques 

(A) Cre recombinase recognizes loxP sites and delete the gene of interest through 
homologous recombination.  (B) Transgenic mice (GeneACre) carries Cre under cell/tissue 
specific promoter are mated to mice (GeneBflox) with a gene flanked by loxP sites, resulting 
in cell/tissue specific deletion of the gene in the offspring.  (C) Cre-loxP can be modified 
to enable temporal regulation.  Cre is fused with mutated hormone-binding domains of 
estrogen receptor (Ert2) which can be activated by tamoxifen.  Cre mediated excision will 
only occur when tamoxifen is administrated (lower right).   (D) Mice (GeneACre) which 
has cell specific Cre expression are crossed with mice (R26Rfl) that has stop sequence 

flanked by loxP sites and followed by a β-galactosidase (lacZ) gene, resulting in cell 
specific expression of β-galactosidase which can be used for mapping the cell fate
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CHAPTER II 

METHOD 

2.1 Mouse Strains 

All mice were maintained in a mixed B6/129/SvEv background.  The Gata4fl/fl 

Gli1CreERT2/+, Mef2cAHF-Cre/+, Tie2Cre/+, Smofl/fl and SmoM2fl/fl mouse lines were obtained 

from Dr. Ivan Moskowitz lab (University of Chicago, Chicago).    EIIaCre/+ and Wnt1cre/+ 

mouse line was purchased from the Jackson Laboratory.  TntCre/+ mouse line was from Dr. 

Yiping Chen lab (Tulane University, New Orleans).  Generation of the Gata4fl/fl, Smofl/fl, 

SmoM2fl/fl, EiiaCre/+, Gli1CreERT2/+, Mef2cAHF-Cre/+, Tie2Cre/+, TntCre/+, Wnt1CreERT2/+ mouse 

lines have been reported previously (Ahn & Joyner, 2004; Jeong, Mao, Tenzen, Kottmann, 

& McMahon, 2004; Jiao et al., 2003; Kisanuki et al., 2001; Lakso et al., 1996; Long, Zhang, 

Karp, Yang, & McMahon, 2001; Pu et al., 2004; Verzi, McCulley, De Val, Dodou, & Black, 

2005; Zervas, Millet, Ahn, & Joyner, 2004).  For genotyping, yolk sacs or tail biopsies 

were first isolated and treated with 50 mM NaOH for 30 min to extract DNA, PCR and gel 

electrophoresis were then performed to determine the genotypes of the mice and embryos.   

Mouse experiments were completed according to a protocol reviewed and approved 

by the Institutional Animal Care and Use Committee of the University of North Dakota, in 

compliance with the USA Public Health Service Policy on Humane Care and Use of 

Laboratory Animals. 
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2.2 Mouse Treatment 

Superovulation technique (Luo et al., 2011) was used to obtain a greater number of 

eggs than normal in female mice.  Female mice of 5-8 weeks old are injected 

intraperitoneally (IP) with 5 IU pregnant mare serum (PMS, Sigma) between 1:00 PM and 

4:00 PM on day 1 to stimulate the development of the ovarian follicle.  On day 3, forty-

two to fifty hours after the PMS injection, the mice received an IP injection of 5 IU human 

chorionic gonadotropin (HCG, EMD Millipore) to promote the maintenance of the corpus 

luteum during the beginning of pregnancy.  Female mice were then placed into appropriate 

male cage immediately following HCG injection.  Female with vaginal plugs on day 4 was 

considered to be pregnant, and the embryos were considered as at embryonic stage 0.5 

(E0.5).  Tamoxifen-induced activation of CreERT2 was accomplished by oral gavage with 

two doses of 75mg/kg (Zhou et al., 2015) tamoxifen (TMX, Sigma) dissolved in corn oil 

on day10 and day11 (E7.5 and E8.5). 

2.3 Histology Study 

Embryos at E13.5 or E14.5 were first collected and fixed in 10% buffered formalin 

phosphate overnight at 4 °C.  Dehydration by a graded ethanol series from water through 

50%-70%-80%-90%-95%-100% ethanol, clearing by two changes of 100% xylene and 

infiltration by three changes of paraffin wax were then performed to process the embryos 

for embedding.  For embryos at E13.5 and E14.5, embryos were cut across the body 

between the heart and liver, and the upper part was placed on embedding cassette with the 

transection facing against the cassette to ensure proper transverse orientation.  Tissue 

blocks were then sectioned transversely and serially at 5 µm, and stained by hematoxylin 

and eosin (HE) staining.  Incidences of defects in both mutants and control embryos were 
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recorded and compared with Fisher’s exact test.  Embryos at E10.5 and E11.5, with an 

R26R allele from a parent of the transgenic line which carries a floxed LacZ gene that 

encodes β-galactosidase, were first harvested and stained by lacZ staining, which uses 5-

bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal, RPI) as substrate to develop 

color in β-galactosidase-expressing cells.  Embryos were then fixed in 4% 

paraformaldehyde overnight at 4 °C, processed, embedded, sectioned and counterstained 

with 50% Eosin.  Looping and elongation defects were then examined in each embryo.  For 

embryos at E10.5 and E11.5, the limbs were removed first, then embryos were placed on 

embedding cassette with the left side facing against the cassette to ensure proper sagittal 

orientation. 

In order to compare the elongation of OFT, three embryos from both wildtype and 

mutant were first selected randomly.  Then section with the longest OFT length from each 

embryo was selected and measured using ImageJ.  Results from both genotypes were 

compared using Student's t-test. 

For BrdU proliferation assay, two doses of 100 mg/kg (Zhou et al., 2015) of 

bromodeoxyuridine (BrdU, RPI) were first given to female mice by IP injection 3 h and 6 

h before sacrifice.  Embryos were collected at E10.5, processed normally without lacZ 

staining and sectioned at 5 µm.  Cell proliferation was then analyzed on sections with a 

BrdU kit (EMD Millipore).  Briefly, paraffin embedded tissues were then deparaffinized 

in xylene followed by a graded ethanol series.  After deparaffinization, the slides were 

immersed in 3% hydrogen peroxide to suppress endogenous peroxidase activity.  0.2% 

trypsin solution was applied to the slides to retrieve the antigen.  Slides were then incubated 

with detector antibody at room temperature for 60 min, followed by 10 min incubation in 
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streptavidin-horseradish peroxidase conjugate at room temperature.  3,3 ′ -

Diaminobenzidine (DAB) was applied on each slide for 5-10 min to stain the BrdU labelled 

cell.  Slides were finally counterstained by hematoxylin.  TUNEL apoptosis assay was 

performed with a peroxidase in-situ apoptosis detection kit (EMD Millipore).  Briefly, 

slides were first treated with 20 µg/ml proteinase K to retrieve the antigen.  After quenching 

with 3% hydrogen peroxide for 5 min, slides were then incubated with terminal 

deoxynucleotidyl transferase (TdT) for 1 h at 37 °C.  TdT recognizes the 3’-OH ends of 

DNA and catalyzes the addition of digoxigenin-conjugated nucleotide to the ends.  Anti-

digoxigenin conjugate was then applied to each slide and incubated for 30 min to label the 

apoptotic cells that have significant numbers of DNA 3’-OH ends.  DAB staining was then 

performed to stain the apoptotic cells followed by hematoxylin counterstaining. 

For both BrdU assay and TUNEL assay, three embryos from both mutant and 

wildtype were selected for staining.  Percent of labeled apoptotic or proliferative cells 

(brown) were counted in truncal OFT or conal OFT on 2-3 sections of each embryo from 

both control and mutant group.  Measuring and counting work was done by well-trained 

students blinded to the study design.  Results were analyzed and compared using Student's 

t-test. 

2.4 RNA Extraction, RNA-Seq and qRT-PCR 

E9.5 embryos were micro-dissected as previously described (L. Xie et al., 2012).  

Briefly, thoracic region of the embryo was obtained by isolating the part between the upper 

and lower limb buds. The neural tube was then removed by cutting through the foregut, 

then the anterior SHF (aSHF) and posterior SHF (pSHF) was separated by cutting between 
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the outflow and inflow tracts.  The heart, aSHF and pSHF were collected in RNAlater 

(Sigma) and stored at -80 °C until RNA extraction.  Total RNA was then extracted from 

each tissue type using RNeasy Mini Kit (Qiagen) per instructions.   

For RNA-Seq, an aliquot of the extracted RNA from each sample was sent to 

University of Chicago for Next Generation Sequencing on Illumina HiSeq 2500 system.  

Heatmap of genes with the significant variations across the samples and sample grouping 

using hierarchical clustering were first done to determine the quality and consistency of 

sample collection.  Cuffdiff and gene set enrichment analysis (GSEA) was then used for 

differentially expressed genes (DEG) analysis and gene set analysis (GSA). 

For qRT-PCR, an aliquot of the extracted RNA was first reverse transcribed into 

cDNA using ReadyScript cDNA synthesis Kit (Sigma).  Quantitative real-time PCR was 

then performed with All-in-One qPCR mix (GeneCopoeia) on iQ5 thermal cycler (Bio-

Rad).  Results were analyzed by delta-delta Ct method with Gapdh as normalization control 

(Livak & Schmittgen, 2001).  Primers tested are listed in Table 1. 

2.5 Luciferase Assay and Site-directed Mutagenesis 

Gata4 expression vector was obtained from Dr. Ivan Moskowitz lab (University of 

Chicago, Chicago).  Regulatory regions of Gli1 were amplified and cloned into pGL3 Basic 

vector (Promega) to make firefly reporter vectors.  pRL-TK Renilla reporter vector 

(Promega) was used as internal control to remove experimental variability caused by 

transfection efficiency and cell lysis efficiency.  Reporter vector and pRL-TK vector were 

co-transfected into 2×104 HEK293T cells, with or without Gata4 expression vector at a 

ratio of 50:1 or 50:50:1, using FuGene HD transfection Reagent (Promega).  Cells were 
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then cultured for 24 h, lysed and assayed using Dual-Luciferase Reporter Assay System 

(Promega) according to manufacturer’s instructions.  Briefly, the growth media was first 

removed and cells were washed using PBS.  Then 20 µl passive lysis buffer was applied to 

each well for 15 min on orbital shaker to lyse the cells.  Lysate was then transferred to new 

96 well culture plate for luciferase assay.  For each well, 100 µl Luciferase Assay Reagent 

II was first added to measure the firefly luciferase activity using multi-detection microplate 

plate reader (BioTek).  100 µl Stop&Glo was then added to stop the firefly activity and 

stimulate the Renilla activity.  Results were represented as firefly/Renilla ratio.  

Mutant reporter vectors were generated by deleting Gata4 binding sites on the 

reporter vector using QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent 

Technologies).  Briefly, mutant vectors were first synthesized by PCR using primers for 

mutagenesis and the original reporter vector as template.  After treating with Dpn I enzyme 

to digest the original vector, the remaining mutant vector was then used for transformation 

following a stand transformation protocol.  Primers used for mutagenesis are listed in 

Table1.  Detailed information for genomic regions of Gli1 and mutation points are listed 

in Table 3. 

2.6 ChIP-qPCR 

E9.5 embryos were micro-dissected in PBS containing Protease Inhibitor Cocktail 

(Roche) on ice to isolate the heart region.  Approximately 20 tissues were pooled for each 

sample.  Tissues were treated with 1% formaldehyde for 15 min at room temperature to 

cross-link DNA and protein, and terminated with 0.2 mol/L glycine.  Then tissues were 

washed twice with PBS and dissociated in Collagenase, Type II (Gibco) solution by 

shaking at 37 °C for 1~2 h at 100 rpm.  Sonication was performed using Covaris S220 
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sonicator to generate fragments with an average size of 600 bp.  After reserving an aliquot 

as Input control, samples were incubated with Gata4 antibody (Santa Cruz, sc-1237) 

overnight at 4 °C for immunoprecipitation.  Samples were then incubated with Dynabead 

Protein G (Life Technologies), washed and reverse cross-linked.   

qPCR was then performed using DNA recovered by phenol-chloroform extraction 

to compare the enrichment of Gata4 at different loci.  qRT-PCR data of the regulatory 

region were expressed as fold enrichment relative to negative control region.  Primers used 

to amplify the interested genomic regions (see Table 3) are listed in Table 1. 

  



26 

Table 1. Primers information 

RT-PCR primers 

Gata4 CAACCCTGGAAGACACCCC CTTAATGAGGGGCCGGTTGA 

Gapdh GACCTCATGGCCTACATGGC GTTGGGATAGGGCCTCTCTTG 

Shh CAATCTGCAACGGAAGCGAG TCCCCAAGGGATGCATGGTC 

Ptch1 GACAGCTGGGAGGAAATGCT ACAAGGGCCACATCAAGAGG 

Smo CAGCAAGAT CAACGAGACCA GCTGAAGGTGATGAGCACAA 

Gli1 GCCTTGAAAACCTCAAGACG ATGGCTTCTCATTGGAGTGG 

Gli3 GCAACCTCACTCTGCAACAA ACCCTGCTGCTCTGACTCAT 

Foxf1a GCTCAACGAGTGCTTCATCA CGGATCGATGGTCCAGTAGT 

Gas1 ATGTTCGGCCCTCTTCTGTG CTTGAAAGACCCCCACCGTT 

Primers for Luciferase Assay 

Gli1-Fr 
(HindIII/Smal) 

AGTCAAGCTTTGAACATGGCGTCTCAGG GTCACCCGGGTTCTCTTCTGGC
CCTACC 

Primers for Site-directed Mutagenesis 

Gli1-Fr-M1 GGAACGAAACAGAGAATGACAGTTTCAGGC GCCTGAAACTGTCATTCTCTGTT
TCGTTCC 

Gli1-Fr-M2 CCTCGTTTCAGTCCACTGGTAGGGCCAG CTGGCCCTACCAGTGGACTGAA
ACGAGG 

Primers for ChIP-qPCR 

Gli1-Fr1 TGGCGTCTCAGGGAAGGATG CTGAGATGAGGGTTAGAGGC 

Gli1-Fr2 GTGATGGTGGAACACACGG TTCTCTTCTGGCCCTACC 

Neg-ctrl GAGGGATACTTAGGCGGC GTTGCAGCAAGGCCTTTAGC 
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CHAPTER III 

RESULTS 

3.1 Gata4 is involved in OFT development 

Mutations of Gata4 have been shown to cause a wide spectrum of congenital heart 

abnormalities in human including ASD, VSD, DORV and TGA (J. Chen et al., 2016; 

Mohan et al., 2014; Nemer et al., 2006; W. Zhang et al., 2008).  Previous studies have 

demonstrated that Gata4 is required for multiple aspects of embryonic cardiac 

morphogenesis in mice such as heart tube formation and cardiomyocyte proliferation (Kuo 

et al., 1997; Pu et al., 2004).  To confirm Gata4 is required for OFT development, we 

analyzed mouse haploinsufficient for Gata4 in the germ line by crossing Gata4fl/fl mouse 

line, which has loxP sites flanking the second exon of Gata4, with the EIIaCre/+ mouse line 

which is widely used to delete loxP-flanked genes in germ line (Krag & Vissing, 2015; 

Lakso et al., 1996; Paschos et al., 2012; Qu et al., 2006).  Whereas Gata4fl/+ (n=13) 

embryos had normal atrial septum and outflow tract alignment, 39% of Gata4fl/+,EIIaCre/+ 

embryos showed ASD (7/18, Figure 3D vs. 3A) and 61% of mutant embryos showed 

DORV (11/18, p=0.0004, Figure 3E,3F vs. 3B,3C; Table 2).  These results confirmed that 

Gata4 is involved in OFT development. 

3.2 Gata4 knockdown in myocardium, second heart field cells and cardiac neural 
crest cells does not affect OFT development 
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Table 2. Incidence of OFT defects in embryos 

Genotype 
OFT 

defect 
Total P value (χ2 test) 

Gata4fl/+,EiiaCre/+ 11 18 vs. Gata4fl/+ (0/13) p=0.0004 
Gata4fl/+,TntCre/+ 0 12 vs. Gata4fl/+ (0/12) p=1.0000 
Gata4fl/+,Mef2cAHF-Cre/+ 0 22 vs. Gata4fl/+ (0/24) p=1.0000 
Gata4fl/+,Wnt1CreERT2/+ 0 24 vs. Gata4fl/+ (0/27) p=1.0000 
Gata4fl/+,Gli1CreERT2/+ 11 18 vs. Gata4fl/+ (0/15) p=0.0002 

Gata4fl/+ ,Smofl/+,Gli1CreERT2/+ 5* 9 
vs. Gata4fl/+,Gli1CreERT2/+ (2/6) 

vs. Smofl/+,Gli1CreERT2/+ (0/7) 
p=0.6084 
p=0.0337 

Gata4fl/+ ,SmoM2fl/+,Gli1CreERT2/+ 0 9 
vs. Gata4fl/+,Gli1CreERT2/+ (3/6) 

vs. SmoM2fl/+,Gli1CreERT2/+ (2/7) 

p=0.0440 
p=0.1750 
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Figure 3.  Gata4 is required for OFT development 

Histology of Gata4fl/+ and Gata4fl/+,EIIaCre/+ mouse embryos at E13.5.  (A) Normal 
septation between left atrium (LA) and right atrium (RA).  (B and C) Normal structure of 
OFT, with left ventricle and right ventricle being connected to aorta and pulmonary trunk 
respectively.  (D) Gata4fl/+,EIIaCre/+ embryos had ASD,  as shown by the hole in atrial 
septum.  (E and F) Gata4fl/+,EIIaCre/+ embryos also had DORV, as both the aorta and 
pulmonary trunk was connected to right ventricle.  RV, right ventricle; LV, left ventricle; 
RA, right atrium; LA, left atrium; Ao, aorta; Pt, pulmonary trunk; 
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Considering the multiple cell progenitors that contribute to the formation of OFT 

as described in the Introduction, we then wanted to know in which cell lineage Gata4 is 

required for OFT development.  To achieve our goal, we knocked down Gata4 in 

myocardium, second heart field cells and cardiac neural crest cells individually by breeding 

Gata4fl/fl mice with TntCre/+, Mef2cAHF-Cre/+ and Wnt1CreERT2/+ mice, respectively.  TntCre/+ 

mouse has Cre expression under the control of rat cardiac TroponinT (cTnT) promoter and 

has been shown to induce Cre recombinase activity in the cardiomyocyte lineage at early 

stage (Jiao et al., 2003).  It is widely used as a marker for cardiomyocytes (J. W. Chen et 

al., 2006; D. Li et al., 2016; Sah, Bates-Withers, Jin, & Clapham, 2010; von Gise & Pu, 

2012; L. Xie et al., 2012).  Mef2cAHF-Cre/+ mouse has Cre expression under the control of 

Mef2c anterior heart field enhancer and has been shown to be expressed only in the anterior 

SHF and its descendants (Verzi et al., 2005).  Wnt1CreERT2/+ mouse expresses Cre under the 

control of wingless-related MMTV integration site 1 (Wnt1) promoter and enhancer.  It is 

widely used in studying the development of neural crest and its derivatives including OFT 

(Etheridge et al., 2008; Goddeeris et al., 2007; Olaopa et al., 2011; Paul, Harvey, Wegner, 

& Sock, 2014; Plein et al., 2015). 

As shown in Figure 4, normal OFT alignment was observed in the followingGata4 

mutant embryos (Gata4fl/+,TntCre/+ 12/12; Gata4fl/+,Mef2cAHF-Cre/+  22/22; 

Gata4fl/+,Wnt1CreERT2/+  24/24; Figure4B-D, 4F-H vs. 4A,E; Table 2) at E14.5,  although 

ASD was noted in Gata4fl/+,Mef2cAHF-Cre/+ embryos which may indicates that Gata4 is 

required in SHF for atrial septation (data not shown).  These results suggested that Gata4 

knockdown in myocardium, anterior SHF cells and cardiac neural crest cells individually 

does not affect normal OFT development.  
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Figure 4.  Gata4 knockdown in myocardium, SHF cells and CNCCs retains normal OFT 
development 

Histology of mouse embryos heart at E14.5.  All Gata4 mutant embryos showed normal 
OFT alignment compared to wildtype (B and F, C and G, D and H vs. A and E) 
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3.3 Gata4 haploinsufficiency in Hh-receiving cells impairs normal OFT development 

Previous studies have shown that Hedgehog signaling is directly required by both 

the SHF and CNCC fields for OFT morphogenesis (Goddeeris et al., 2007; Smoak et al., 

2005).  Therefore, we wondered if Gata4 interacts with Hedgehog signaling for OFT 

development.  We tested this hypothesis by specifically ablating one copy of Gata4 in Hh-

receiving cells with the help of the Gli1CreERT2/+ mouse line, which expresses Cre under the 

promoter of an Hh signaling effector, Gli1.  CreERT2 was activated by tamoxifen (TMX) 

administration at E7.5 and E8.5 in Gata4Gli1Cre-ERT2/+ embryos, a regimen previously used 

to implicate SHF Hh signaling in AV septation.  ASD was observed in 73.3% (11/15) of 

TMX treated Gata4fl/+,Gli1CreERT2/+ embryos, but not in control Gata4fl/+ embryos (0/15) 

or Gli1CreERT2/+ embryos (0/15) at E14.5.  DORV was also observed in 61% (11/18, 

p=0.0002; Figure 5E,F) of Gata4fl/+,Gli1CreERT2/+ embryos at E14.5, but not in control 

Gata4fl/+ embryos (0/15, Table 2; Figure 5B,C). 

It is well known that OFT elongation is required for correct cardiac looping and 

proper alignment of the OFT (Karim Mesbah et al., 2008; Ramsbottom et al., 2014; Roux, 

Laforest, Capecchi, Bertrand, & Zaffran, 2015).  Thus, we tested if the OFT length is 

affected in Gata4fl/+,Gli1CreERT2/+ embryos.  We measured the OFT length in both mutant 

and wildtype embryos at E10.5 and found that the OFT length of Gata4fl/+,Gli1CreERT2/+ 

embryo was significantly shorter than that of wildtype (0.8759±0.0150 vs. 1.0000±0.0420, 

p=0.0320, Figure 6B,D vs. 6A,C).  Moreover, serially sagittal sections of the embryonic 

hearts showed that cardiac looping in Gata4fl/+,Gli1CreERT2/+ embryos was abnormal 

compared to wildtype, as indicated by the relative orientation of the OFT and AVC (Figure 
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6F vs. 6E, 6H vs 6G).  Together these results suggested that Gata4 is required in Hh-

receiving cells for OFT development. 

3.4 Gata4 haploinsufficiency in Hh-receiving cells affects cell proliferation within 
conal OFT cushion 

Besides the abnormal cardiac looping, we also noticed there seemed to be less 

cushion cells within the conal OFT cushion in Gata4fl/+,Gli1CreERT2/+  embryos at E11.5 

(Figure 6H vs. 6G).  It was possible that the reduced cushion cell number was due to an 

increase of cell apoptosis or a decrease of cell proliferation, two commonly reported events 

involved in OFT development (Laforest & Nemer, 2011; Leung et al., 2016; H. Y. Ma, Xu, 

Eng, Gross, & Kioussi, 2013; Plein et al., 2015).  To analyze cell apoptosis of the OFT, 

TUNEL apoptosis assay was performed on serially sagittal sections of E10.5 embryonic 

hearts.  We observed very few apoptotic cells within the OFT, with no significant changes 

in the amount of apoptotic cells in OFT of Gata4fl/+,Gli1CreERT2/+ embryos compared to 

control embryos. 

We then wondered if defects in proliferation was involved.  Cell proliferation was 

evaluated by BrdU incorporation assay at E10.5.  Consistent with the observations in E11.5 

embryos (Figure 6), the proliferation rate of the truncal OFT cushion showed no difference 

between Gata4fl/+,Gli1CreERT2/+ embryos and control embryos (Figure 7B vs. 7A; Figure 

7C). Cell proliferation of the conal OFT cushion in Gata4fl/+,Gli1CreERT2/+  embryos, 

however, was significantly reduced compared with controls (Figure 7E vs. 7D; Figure 7F).  

These results implied that Gata4 is required in Hh-receiving cells for regulating cell 

proliferation within the conal OFT cushion. 
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Figure 5.  Gata4 haploinsufficiency in Hh-receiving cells affects OFT development 

Histology of both wildtype and Gata4fl/+,Gli1CreERT2/+ embryos heart at E14.5.  (A-C) 
Normal atrial septation and OFT alignment in wildtype embryos.  (D-F) Atrial septal defect 
(ASD) and double outlet right ventricle (DORV) was observed in Gata4fl/+,Gli1CreERT2/+ 
embryos. 
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Figure 6.  Gata4 haploinsufficiency in Hh-receiving cells affects OFT lengthening, cardiac 
looping and cell proliferation of conal OFT 

(A-D) Histology of wildtype and Gata4fl/+,Gli1CreERT2/+ embryos heart at E10.5.  
Gata4fl/+,Gli1CreERT2/+ embryos showed a relatively shorter OFT length compared to that of 

wildtype, as indicated by the black line (C vs. D).  Abnormal OFT orientation was observed 
in Gata4fl/+,Gli1CreERT2/+ embryos with atrioventricular canal as reference (E vs. F, G vs. 
H).  Mutant embryos also seemed to have less cells within the conal OFT cushion compared 
to that of control (J vs. K), and there was no apprent difference within truncal OFT cushion 
and AV cushion.  (I) Statistical analysis of embryos of each genotype showed a significant 
decrease in OFT length in mutant embryos.  Results were presented as mean±SD;  n=4, 
P<0.05.  Magnification in panels A and B is 50X; Magnification in C-D, E-H and J-M is 
100X.  OFT, outflow tract;  AVC, atrioventricular cushion;  A, atrium;  V, ventricle. 
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Figure 7.  Gata4 haploinsufficiency in Hh-receiving cells affects cell proliferation of conal 
OFT 

(A-B, D-E) Histological analysis of cell proliferation within truncal OFT and conal OFT 

respectively in both wildtype and Gata4fl/+,Gli1CreERT2/+ embryos.  Proliferating cells were 
labelled in brown, other cells were labelled in blue.  (C and F) Statistical analysis of percent 
of proliferating cells within truncal OFT and conal OFT respectively.  Results were 
presented as mean±SD;  n=3, P<0.05.  A siginificant decrease of the ratio of proliferating 
cells was observed in conal OFT cushion compared to that of control (D vs. E; F). 
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3.5 Gata4 dose-dependent transcription profiles identified Hh signaling pathway as 
regulator of OFT development 

To identify the potential Gata4 dependent molecular networks required for OFT 

development, we compared the SHF transcriptomes of Gata4fl/+ and Gata4fl/fl,Gli1CreERT2/+ 

embryos at E9.5.  As shown in the heatmap (Figure 8A), the biological replicates of the 

same genotype were clustered together, showing good consistency in sample collection. 

And Gata4fl/+ and Gata4fl/fl,Gli1CreERT2/+ samples were clustered into different groups, 

suggesting that they have distinct transcription profiles.  Alteration of 12 signaling 

pathways including Hh signaling pathway were identified by gene set enrichment analysis 

(GSEA) with p value less than 0.05 as cutoff (Figure 8B).  The involvement of Hh signaling 

was further tested and confirmed by real-time PCR analysis of several Hh signaling genes, 

including Gli1, transcription activator, Gli3, both transcription activator and repressor, Smo, 

a component of Hh pathway, Foxf1a, a target of Hh signaling and Shh, the sonic hedgehog 

ligand.  As shown in Figure 8C, mRNA expression of Shh, Gli1 and Foxf1a were 

significantly changed in SHF of Gata4fl/+,Gli1CreERT2/+ embryos compared to control.  

These results suggest that the Hh-signaling integrity is dependent on the dose of Gata4 in 

the SHF. 

3.6 Gata4 directly regulates expression of Hh signaling effector Gli1 

We wondered if the regulation of Gli1 by Gata4 was direct or indirect.  To answer 

this question, we amplified a 0.8 kb fragment of Gli1 (Gli1-Fr, Figure 9A) containing 

conserved Gata4 binding motifs, (A|T)GATA(A|G). The amplified region is in close 

proximity to Gata4 binding sites reported in ChIP-sequencing data of the developing 

murine heart (He et al., 2014). We then tested cis-regulatory function of this region by 
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luciferase assay.  Gata4 significantly transactivated this region in HEK293T cells, as 

indicated by luciferase reporter expression (Figure 9B and Table 3).  We further mutated 

the Gata4 binding sites in the fragment and found that the mutant constructs (Gli1-Fr-M1 

and Gli1-Fr-M2) failed to activate luciferase expression.  To confirm our finding, ChIP-

qPCR was performed using microdissected SHF tissues of wildtype mouse embryos at 

E9.5.  Two Gli1 genomic regions (Gli1-Fr1, Gli1-Fr2) containing Gata4 binding motifs as 

well as a negative control genomic region (Gli1-Neg-ctrl) contains no Gata4 binding motif 

were tested for Gata4 binding activity.  ChIP-qPCR demonstrated significant Gata4-

dependent enrichment for those two Gli1 fragments containing Gata4 binding motif, but 

not for the control fragments (Figure 9C and Table 3).  Together these results showed that 

Gata4 directly binds to regulatory genomic regions of Hh signaling effector Gli1.  

3.7 Further blocking Hh signaling pathway leads to higher occurrence and more 
severe form of OFT defect 

Both Gli1 and Smo are required for Hh signal transduction, therefore we 

hypothesized further disrupting Hh signaling can validate our results that Gata4 interacts 

with Hh signaling in regulating OFT development.  We tested our hypothesis by ablating 

both a copy of Gata4 and a copy of Smo in Gli1-expressing cells by crossing the 

Gata4fl/+,Smofl/+ mouse line with Gli1CreERT2/+ mouse line.  Surprisingly, not only did we 

observe DORV in Gata4fl/+,Smofl/+,Gli1CreERT2/+ embryos (2/9; Figure 10H,K), but we also 

observed OA (1/9; Figure 10I,L) as well as PTA (2/9; Figure 10J,M).  Although the total 

incidences of OFT defect between Gata4fl/+,Gli1CreERT2/+ embryos and 

Gata4fl/+,Smofl/+,Gli1CreERT2/+ embryos were not significantly different from each other (2/6 

vs. 5/9, p=0.6084, Table 2),  considering that PTA is a more severe form of OFT defect, 

we confirmed that Gata4 interacts with Hh signaling in regulating OFT development. 



39 

 

 

Figure 8.  Gata4-dependent transcript profile identified Hh signaling pathway in OFT 
development 

(A) Heatmap of 1213 genes with the largest variations in E9.5 SHF of 
Gata4fl/fl,Gli1CreERT2/+ vs. Gata4fl/+ embryos.  (B) 12 pathways identified by GSEA with 
p<0.05 as cutoff.  (C) Transcription level changes of Hh-signaling pathway genes in E9.5 
SHF of mutant embryos compared to wildtype. 
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Figure 9.  Gata4 directly regulates expression of Hh signaling effector Gli1 

(A) Schematic figure showing positions of amplified Gli1 genomic regions for ChIP-qPCR 

and luciferase assay.  Black blocks indicate Gata4 binding from published data (He 2014).  
Red blocks are regions tested by ChIP-qPCR (Fr1, Fr12 and Neg-ctrl) and luciferase assay 
analysis (Fr).  (B) Gata4 stimulated firefly luciferase expression in wildtype Gli1-Fr, but 
not in mutated Gli1-Fr-M1 and Gli1-Fr-M2 fragments.  Results are presented as 
mean±SEM; *P<0.05.  (C) Gli1 fragments containing Gata4 binding motifs were enriched 
compared to negative control genomic region.  ** P<0.01, * P<0.05. 

 



 

Table 3. Genomic regions assessed in luciferase reporter assay and ChIP-qPCR 

 
*All genomic coordinates are shown in mouse genome build mm9. 
 

 

 

GENE 
NAME 

LUCIFERASE ASSAY CHIP 

Genomic 
fragment 

Locus 
Luciferase 

results 
Gata4 binding sites in 
subcloned fragments 

Genomic 
fragment 

Locus 
ChIP 

results 

 
 
 

Gli1 

Gli1-Fr chr10:126775570-126776129 
1.26±0.58 
p=0.0478 

chr10:126775655-126775660 
chr10:126776103-126776108 

Gli1-Fr1 chr10:126775576-126775736 
0.44±0.12 
p=0.0039 

Gli-Fr-M1 chr10:126775570-126776129 
0.13±0.77 
p=0.4711 

chr10:126776103-126776108 Gli1-Fr2 chr10:126775984-126776129 
0.09±0.01 
p=0.0163 

Gli1-Fr-M2 chr10:126775570-126776129 
-0.13±0.67 
p=0.4270 

chr10:126775655-126775660 Neg ctrl chr10:126771190-126771322 0.01±0.01 

4
1
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Figure 10.  Further blocking Hh signaling leads to increased severity of OFT defect 

Histology of embryos at E14.5 generated from crossing Gata4fl/+ mice with 
Smofl/+,Gli1CreERT2/+ mice.  Normal OFT structure was observed in both wildtype and 
Smofl/+,Gli1CreERT2/+ embryos (A and D, C and F).  DORV was observed in 
Gata4fl/+,Gli1CreERT2/+ embryos (B and E).  Three types of OFT of different severity were 
observed in Gata4fl/+,Smofl/+,Gli1CreERT2/+ embryos, including DORV (H and K), OA (I and 
L) and PTA (J and M) 
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3.8 OFT defect in embryos haploinsufficient for Gata4 in Hh receiving cells is 

rescued by overactivation of Hh signaling 

SmoM2 is a mutated form of Smoothened which contains a point mutation W529L 

and renders it constitutively active (J. Xie et al., 1998).  When SmoM2 flox mouse line is 

crossed with a Cre line, Cre recombinase is expressed and cut off the stop sequence that 

inhibits the expression of SmoM2, resulting in enhanced Hh signaling in Cre expressing 

cells (Jeong et al., 2004).  By crossing the Gata4fl/+,SmoM2fl/+ mouse line with Gli1CreERT2/+ 

mouse line, we were able to study the relation between Gata4 and Hh signaling when Hh 

signaling is enhanced.  As shown in Figure 11, DORV was observed in 

Gata4fl/+,Gli1CreERT2/+ embryos (Figure 11B,F) as expected. Surprisingly, DORV was also 

observed in SmoM2fl/+,Gli1CreERT2/+ embryos (Figure 11C,G), suggesting the proper dosage 

of Hh-signaling is required for OFT alignment. However, we did not observe any type of 

OFT defects in Gata4fl/+,SmoM2fl/+,Gli1CreERT2/+ embryos, which was significantly 

different than that of Gata4fl/+,Gli1CreERT2/+ embryos (0/9 vs. 3/6, p=0.044, Table 2; Figure 

11D,H vs. 11B,F).  These results further confirmed the crosstalk between Gata4 and Hh 

signaling. 

.



 

 

Figure 11.  Enhanced Hh signaling rescues OFT defects 

Histology of embryos at E14.5 from crossing Gata4fl/+ mice with SmoM2fl/+,Gli1CreERT2/+ mice.  (A and E, C and G) Normal OFT 
morphology was observed in all wildtype and most SmoM2fl/+,Gli1CreERT2/+ embryos (Table 2).  DORV was observed in 
Gata4fl/+,Gli1CreERT2/+ embryos (B,F).  All Gata4fl/+,SmoM2fl/+,Gli1CreERT2/+ showed normal OFT morphology (D,H). 

 

4
4

3
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CHAPTER IV 

DISCUSSION 

OFT development is a complicated process that requires intricate spatiotemporal 

orchestration of several different cell progenitor populations both from the heart itself and 

from multiple extra-cardiac regions.  Gata4 is a key cardiac transcription factor and has 

been associated with OFT defects for decades.  However, rarely has it been studied the cell 

lineages in which Gata4 is required for OFT development and the pathways in which Gata4 

plays a role.  In the present study, we demonstrate that Gata4 is required in the Hh-

receiving cells for OFT lengthening and cardiac looping.  Moreover, our work 

demonstrated that Gata4 interacts with Hh signaling pathway in regulating OFT 

development. 

Previous study showed that Gata4 is a dosage-sensitive regulator of cardiac 

morphogenesis (Laforest & Nemer, 2011; Maitra et al., 2009; Pu et al., 2004). Specifically, 

a 70% reduction of the normal expression level of Gata4 caused common atrioventricular 

canal (CAVC), DORV, myocardial hypoplasia and embryonic lethality in mice (Pu et al., 

2004).  In our study, germline deletion of one copy of Gata4 caused 39% ASD and 61% 

DORV in mutant embryos (Table 2), confirming the involvement of Gata4 in guiding OFT 

development.  Our data showed that mice with Gata4 knockdown in myocardium, SHF 

cells and CNCCs exhibited normal OFT alignment at E14.5 (Figure 4), suggesting ablating 

one copy of Gata4 in these cell lineages does not affect OFT development
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However, we cannot rule out the possibility that Gata4 is still required in those cell lineages. 

It is possible that OFT development is not sensitive to one copy deletion of Gata4 in these 

cells lineage.  For example, conditional knockdown of Tbx5 in SHF which contains a cell 

population necessary for atrial septum development did not cause ASD, however Tbx5 

knockout in the same region resulted in ASD with a 100% penetrance (L. Xie et al., 2012).  

Therefore, in order to find out whether Gata4 is required in SHF for OFT development, 

the next step is to investigate into the effect of Gata4 KO in SHF on OFT development.  It 

is possible the same situation applies to the results of Gata4 knockdown in CNCCs, despite 

that our data is consistent with Rivera Feliciano’s finding (Rivera-Feliciano et al., 2006).  

Further experiments detecting the transcription level of Gata4 is necessary in order to test 

this possibility.   

Hh-receiving cells marked by Gli1Cre expression is known to migrate from SHF 

into atrial septum and pulmonary trunk between E9.5 and E11.5 (Andrew D Hoffmann et 

al., 2009).  Informatively, our data shows Gata4 haploinsufficiency in Hh-receiving cells 

between E8 to E10.5 not only caused high incidence of ASD and DORV (Table 2), but 

also lead to a hypoplastic conal OFT cushion which was caused by decreased cell 

proliferation (Figure 6 and 7), as well as a significant OFT lengthening defect (Figure 6). 

These data suggested to us that OFT development is very sensitive to reduced level of 

Gata4 in Hh-receiving cells during E8 to E10.5. 

However, considering that Hh-receiving cells do not mark the conal portion of the 

OFT cushion by the GIFM (Andrew D Hoffmann et al., 2009), and that Shh is required for 

SHF cells and CNCCs to survive and populate into OFT ((Laura A Dyer & Kirby, 2009; 

Goddeeris et al., 2007)), it is possible that the OFT defects observed in 
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Gata4fl/+,Gli1CreERT2/+ embryos is caused by abnormal cell apoptosis, proliferation, 

differentiation or migration of the SHF and CNC cells.  Future study is needed to find out: 

1. are cell survival and proliferation in the SHF and CNC changed?  2. are migration and 

differentiation of the SHF and CNC cells affected in Gata4fl/+,Gli1CreERT2/+ embryos? 

It is interesting that a hypoplastic conal OFT was observed in Gata4fl/+,Gli1CreERT2/+ 

embryos, which is possible due to less mesenchymal cells via EMT in the 

Gata4fl/+,Gli1CreERT2/+ embryos. Therefore, future study remains to answer: 1. Does EMT 

defect present in conal OFT?  2. Is the initial signaling for EMT affected in the 

endocardium or myocardium?  3. Is the defect in EMT caused by Gata4 knocking down in 

the Hh-receiving cells? 

The mechanism whereby transcription factor haploinsufficiency causes 

developmental phenotypes remains largely unanswered.  Our RNA-Seq data and GSEA 

result shows that the SHF transcriptomes of the wildtype and Gata4fl/+,Gli1CreERT2/+ mutant 

were distinct from each other and did identify Hh signaling as one of the pathways that 

contribute to the distinction.  Our qPCR data confirmed the involvement of Hh signaling 

pathway, suggesting that Gatat4 regulates the development of OFT through activation of 

Hh signaling.  In our study, Gata4 upregulates Hh pathway activity through activation of 

one of its components, Gli1. Consistent with previous report that Gata factor bind to Gli1 

by both protein-DNA interaction and protein-protein interaction (Daoud et al., 2014), our 

data from luciferase assay and ChIP-qPCR further demonstrated that Gata4 directly binds 

to two Gata4-responsive cis-regulatory elements of Gli1 (Figure 9), providing clear 

evidence for the interaction between Gata4 and Hh signaling.  Remarkably, SHF-specific 
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constitutive Hh signaling rescued DORV/OA in Gata4 mutant embryos, indicating Gata4 

functionally plays upstream of Hh-signaling for OFT development.   

In summary, we found Gata4 is required in Hh receiving cells for OFT 

development.  Further analysis of the requirement leads us to propose a novel mechanistic 

model in which Gata4 interacts with Hh signaling in regulating OFT development.  

Together these observations suggest a model in which deficiency of discrete pathways of 

Gata4 downstream targets are required for abnormal OFT alignment and CHD causation.  
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APPENDIX 

List of abbreviations 

ASD     atrial septal defect 

AVC     atrioventricular cushion 

AVSD     atrioventricular septal defect 

BMP     bone morphogenetic protein 

BrdU     bromodeoxyuridine 

CHD     congenital heart disease 

ChIP     chromatin immunoprecipitation 

CNCC     cardiac neural crest cell 

DAB     3,3′-Diaminobenzidine 

DORV     double outlet right ventricle 

EMT     endothelial to mesenchymal transition 

FGF     fibroblast growth factor 

GSEA     Gene set enrichment analysis 

HCG     human chorionic gonadotropin  

Hh     hedgehog 

lacZ     β-galactosidase 

OA     overriding aorta 

OFT     outflow tract 

PDA     paten ductus arteriosus 

PHF     primary heart field 

PMS     pregnant mare serum  

PTA     persistent truncus arteriosus
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RARE     retinoic acid response element 

SAM     significance analysis of microarray 

SHF     second heart field 

TdT     terminal deoxynucleotidyl transferase 

TGA     transportation of great artery 

TMX     tamoxifen 

TOF     tetralogy of Fallot 

VSD     ventricular septal defect 

X-gal     5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 
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