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ABSTRACT

Data fusion can be used to combine multiple data sources or modalities to facilitate

enhanced visualization, analysis, detection, estimation, or classification. Data fusion can be

applied at the raw-data, feature-based, and decision-based levels. Data fusion applications

of different sorts have been built up in areas such as statistics, computer vision and other

machine learning aspects. It has been employed in a variety of realistic scenarios such

as medical diagnosis, clinical decision support, and structural health monitoring. This

dissertation includes investigation and development of methods to perform data fusion for

cervical cancer intraepithelial neoplasia (CIN) and a clinical decision support system. The

general framework for these applications includes image processing followed by feature

development and classification of the detected region of interest (ROI). Image processing

methods such as k-means clustering based on color information, dilation, erosion and cen-

troid locating methods were used for ROI detection. The features extracted include texture,

color, nuclei-based and triangle features. Analysis and classification was performed using

feature- and decision-level data fusion techniques such as support vector machine, statistical

methods such as logistic regression, linear discriminant analysis and voting algorithms.
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SECTION

1. INTRODUCTION

Data fusion can be defined as methods by which data from multiple sources can be

combined to improve detection and decision accuracy. It has been of interest in areas such

as military, remote sensing, finance, medical-diagnosis, clinical decision support, structural

health monitoring and automated manufacturing. The fusion process strives to improve

the signal-to-noise ratio of the sensor measurements by combining sensor data measuring

similar physical phenomenon [17, 18, 19]. Besides improving the reliability of measured

data, fusion algorithms also strive to combine complementary information from sensors

and/or information sources measuring different physical phenomenon [20].

1.1. OVERVIEW OF DATA FUSION

Data fusion is a diverse collection of techniques which are used to "combinemultiple

sensormeasurements and/or information from related sources to improve accuracy and draw

more specific conclusions than would have been possible by using a single source" [20].

Data fusion is a multi-disciplinary research area that draws concepts from fields such as

statistics, signal processing, computer science and artificial intelligence. Types of data

fusion include low (raw-data) level-fusion, feature-level fusion and decision-level fusion.

Raw-data fusion employs methods such as statistical detection and estimation techniques.

Feature-level fusion is used to fuse descriptive features extracted from multiple sources

measuring similar or dissimilar physical phenomena. This is done by combining the

features into a single 1-D vector which could be used for discrimination purposes. Fusion

of preliminary decisions/assessments made using data from single or multiple sources is
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termed as decision-level data fusion [21, 22]. Data fusion techniques such as statistical

methods, computational intelligence and machine learning, have been used by previous

researchers for solving problems such as fault diagnosis, safety of complex systems, plant

monitoring and monitoring in biomedicine [23, 24].

1.2. PROBLEM DESCRIPTION

In this dissertation, data fusion methods for uterine cancer intraepitheliual neoplasia

(CIN) classification and a clinical decision support system are investigated. As for cervical

cancer diagnosis, one of the methods for early cervical cancer diagnosis includes Pap test

in which a colposcopy is used to visually inspect the cervix and microscopic interpretation

of histology slides is performed by a pathologist when biopsied cervix tissue is available.

Cervical intraepithelial neoplasia (CIN) is defined as the pre-malignant condition in which

the atypical cells are limited in the epithelium region only [25, 26]. It has been observed that

CIN shows progressively increasing atypical cells across the spectrum of the epithelium,

from top to bottom, resulting in different CIN grades (CIN1, CIN2, CIN3) [25, 26, 27, 28,

22, 29]. It has been explored for CIN diagnosis in other studies [30, 28], that an epithelium

with atypical cells could exhibit different CIN grades in different vertical segments of the

epithelium [26]. Therefore to improve the classification accuracy, it is becoming necessary

to analyze vertical segments of the epithelium and then fuse information from each of these

segments to obtain the CIN grade of the whole epithelium region.

Biomedical information exists in different forms: as text and illustrations in journal

articles and other documents, in "images" stored in databases. In the context of this work,

an "image" includes not only biomedical images, but also illustrations, charts, graphs, and

other visual material appearing in biomedical journals, and other relevant databases. Since

medical images for a given modality (e.g. MRI, Histology or X-Ray) are very similar in

nature, existing content-based image retrieval (CBIR) methods based only on the visual

features of the whole image, such as texture and shape, may not be sufficient for accurate
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retrieval of biomedical images [31]. In addition to using text (found in image captions

and within the article) and visual features, retrieval of characters within images found in

biomedical publications is an important task for obtaining complementary information for

CBIR and analysis. Therefore, enhanced CBIR and analysis requires fusion of the various

categories of information (image text, visual features and image captions).

1.3. SUMMARY OF CONTRIBUTIONS

This dissertation consists of three journal papers, as presented in the publication

list. The unique contributions can be summarized as follows:

1.3.1. Improved Localized Classification of Cervical Intraepithelial Neoplasia

(CIN) Diagnosis. The research presented for CIN diagnosis in this dissertation was devel-

oped and presented in [30]. Nuclei feature-based algorithm for analysis and classification of

cervical caner diagnosis were developed. Based on the bounding box and medial axis algo-

rithm in the previous research [32, 30], the whole epithelium region can be vertically divided

into segments each of which is classified into one of the four CIN target grades. And nuclei

features were developed using clustering methods with color information of pixels since the

dark cells are presented with lower pixel values in most of the cases. Meanwhile, nuclei

related features such as light area features are also developed with the similar algorithms by

looking for the pixel clusters with relatively higher pixel values. It was observed during our

experiments that the nuclei and nuclei-based features enhanced the original feature groups

and provided a better classification of the CIN grades of the vertical segmented epithelium

images. Based on the experimental results of vertical segments, a voting scheme is applied

to fuse the multiple CIN grades into one final classification results for the whole epithelium

region. And the fused classification performs better in exact classification, normal vs. CIN

as well as leave-one-out scoring schemes, than to perform the classification upon the whole

epithelium region with no fusion. The experiment showed the importance of data fusion at
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the decision level for enhanced classification. The CIN diagnosis accuracy obtained using

the vertical segments fusion method achieved 83%, which suggests the advantages of data

fusion for enhanced classification accuracy.

1.3.2. Fusion Paradigm Development Based on Inter/Intra-pathologist CIN

Labeling for Localized and Entire Image CIN Classification in Digitized Histology

Images. As part of the CIN assessment process, acellular and atypical cell concentration

features were computed from vertical segment partitions of the epithelium region to quantize

the relative distribution of nuclei. Feature data was extracted from 610 individual segments

from 61 images for epithelium classification into categories of Normal, CIN1, CIN2, and

CIN3 [30, 33]. Individual vertical segment CIN classification accuracy improvement is

obtained using the logistic regression classifier for an expanded data set of 118 histology

images. The effects on classification were analyzed using the same pathologist labels

for training and testing versus using one pathologist labels for training and the other for

testing. Based on a leave-one-out approach for classifier training and testing, exact grade

CIN accuracies of 81.29% and 88.98% were achieved for individual vertical segment and

epithelium whole- image classification, respectively.

1.3.3. Advanced Features Development to Find Image for Application to Clin-

ical Decision Support. Filtering through ever increasing sources of information to find

relevant information for clinical decisions is a challenging task for clinicians. With the

variety of items that can provide evidence to aid the decision-making process, illustration

image analysis and classification has been used to characterize and distinguish specific im-

age modalities; specifically, global, HSV histogram-based, and Gabor filter-based features

are compared to histogram-based features for modality classification on a set of 12,056 im-

ages from 2004-2006 biomedical publication issues of Radiology and RadioGraphics that

were manually annotated by modality (radiological, photo, etc.). Using a nearest-neighbor

classifier, average modality discrimination results were obtained as high as 99.98% using
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correlated features computed from Gabor filter spectral coefficients. These experimental

results indicate that image features, particularly correlation-based features, can provide

modality discrimination useful for clinical decision support applications.
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ABSTRACT

Cervical cancer, which has been affecting women worldwide as the second most common

cancer, can be cured if detected early and treatedwell. Routinely, expert pathologists visually

examine histology slides for cervix tissue abnormality assessment. In previous research,

we investigated an automated, localized, fusion-based approach for classifying squamous

epithelium into Normal, CIN1, CIN2, and CIN3 grades of cervical intraepithelial neoplasia

(CIN) based on image analysis of 61 digitized histology images. This paper introduces novel

acellular and atypical cell concentration features computed from vertical segment partitions
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of the epithelium region within digitized histology images to quantize the relative increase

in nuclei numbers as the CIN grade increases. Based on the CIN grade assessments from

two expert pathologists, image-based epithelium classification is investigated with voting

fusion of vertical segments using support vector machine and linear discriminant analysis

approaches. Leave-one-out is used for the training and testing for CIN classification,

achieving an exact grade labeling accuracy as high as 88.5%.

Keywords: Cervical cancer, cervical intraepithelial neoplasia (CIN), fusion-based clas-

sification, image processing, linear discriminant analysis (LDA), support vector machine

(SVM).

1. INTRODUCTION

IN 2008, there were 529,000 new cases of invasive cervical cancer reported world-

wide [30]. While the greatest impact of cervical cancer prevalence is in the developing

world, invasive cervical cancer continues to be diagnosed in the U.S. each year. Detection

of cervical cancer and its precursor lesion is accomplished through a Pap test, a colposcopy

to visually inspect the cervix, and microscopic interpretation of histology slides by a pathol-

ogist when biopsied cervix tissue is available.

Figure 1. CIN grade label examples highlighting the increase of immature atypical cells
from epithelium bottom to top with increasing CIN severity. (a) Normal. (b) CIN 1. (c)
CIN 2. (d) CIN 3.
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Microscopic evaluation of histology slides by a qualified pathologist has been used

as a standard of diagnosis [13]. As a part of the pathologist diagnostic process, cervical

intraepithelial neoplasia (CIN) is a premalignant condition for cervical cancer in which

the atypical cells are identified in the epithelium by the visual inspection of histology

slides [16]. As shown in Fig. 1, cervical biopsy diagnoses include Normal (that is,

no CIN lesion), and three grades of CIN: CIN1, CIN2, and CIN3 [16, 10, 29]. CIN1

corresponds to mild dysplasia (abnormal change), whereas CIN2 and CIN3 are used to

denote moderate dysplasia and severe dysplasia, respectively. Histologic criteria for CIN

include increasing immaturity and cytologic atypia in the epithelium. As CIN increases in

severity, the epithelium has been observed to show delayed maturation with an increase in

immature atypical cells from bottom to top of the epithelium [10, 29, 26, 12]. As shown

in Figure 1 atypical immature cells are seen mostly in the bottom third of the epithelium

for CIN 1 [see Figure 1(b)]. For CIN2, the atypical immature cells appear in the bottom

two thirds of the epithelium [see Figure 1(c)], and for CIN 3, atypical immature cells

lie in the full thickness of the epithelium [see Figure 1(d)]. When these atypical cells

extend beyond the epithelium, i.e., through the basement membrane and start to enter into

the surrounding tissues and organs, it may indicate invasive cancer [16]. In addition to

analyzing the progressively increasing quantity of atypical cells from bottom to top of the

epithelium, identification of the nuclei atypia is also significant [16]. Nuclei atypia is a

characteristic of nuclei enlargement, thereby resulting in different shapes and sizes of the

nuclei present within the epithelium region. Visual assessment of this nuclei atypia may

be difficult, due to the large number of nuclei present and the complex visual field, i.e.,

tissue heterogeneity. This may contribute to diagnostic grading repeatability problems

and inter and intrapathologist variation [26, 12, 22]. Computer-assisted methods (digital

pathology) have been explored for CIN diagnosis in other studies [5, 27, 8, 14], and

provided the foundation for the work reported in [5]. These methods examined texture

features [8], nuclei determination and Delaunay triangulation analysis [14], medial axis
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determination [29], and localized CIN grade assessment [29]. A more detailed review of

digital pathology techniques is presented in that paper [5]. Our research group previously

investigated a localized fusion-based approach to classify the epithelium region into the

different CIN grades, as determined by an expert pathologist [5]. We examined 66 features

including texture, intensity shading, Delaunay triangle (DT) features (such as area and edge

length), and weighted density distribution features, which yielded an exact CIN grade label

classification result of 70.5% [5]. The goal of this paper, performed in collaboration with the

National Library of Medicine, is to automatically classify 61 manually segmented cervical

histology images into four different grades of CIN and to compare results with CIN grade

determined by an expert pathologist. The research presented in this paper extends the study

in [5] to the development of new image analysis and classification techniques for individual

vertical segments to allow improved whole-image CIN grade determination. Specifically,

we present new image analysis techniques to determine epithelium orientation and image

analysis and to find and characterize acellular and nuclei regions within the epithelium. We

also present comparative CIN grading classification analysis versus two expert pathologists

CIN grading of the 61-image dataset. The order of the remaining sections of this paper

is as follows. Section II presents the methods used in this paper. Section III describes

the experiments performed. Section IV presents and analyzes the results obtained and a

discussion. Section V provides the study conclusions.

2. METHODS

The images analyzed included 61 full-color digitized histology images of hema-

toxylin and eosinophil preparations of tissue sections of normal cervical tissue and three

grades of cervical carcinoma in situ. An additional image, labeled as CIN1 by two experts

(RZ and SF), was used for image processing algorithm parameter determination. The same

experimental dataset was used in [5]. The entire classification process, as utilized in [5], of

the segmented epithelium images was performed using the following five-step approach:
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Step 1: Locate the medial axis of the segmented epithelium region.

Step 2: Divide the segmented image into ten vertical segments, orthogonal to the

medial axis.

Step 3: Extract features from each of the vertical segments.

Step 4: Classify each of these segments into one of the CIN grades.

Step 5: Fuse the CIN grades from each vertical segment to obtain the CIN grade of

the whole epithelium for image-based classification.

Figure 2. Example of incorrect medial axis determined using distance transform only (solid
line). The desired medial axis is manually drawn and is overlaid on the image (dashed line).
The left-hand, right-hand, and interior sections are labeled on the bounding box image to
highlight the limitations of the distance transform algorithm.

The following sections present each step in detail.

2.1. Medial Axis Detection and Segments Creation. Medial axis determination

used a distance-transform-based [20, 25] approach from [5]. The distance-transform-based

approach from [5] had difficulties in finding the left- and right-hand end-axis portions of the

epithelium axis in nearly rectangular and triangular regions. Figure. 2 shows an example of

an incorrect medial axis estimation using a distance-transform-based approach (solid line)

and the manually labeled desired medial axis (dashed line).

Accordingly, the algorithm from [5] used the bounding box of the epithelium to

obtain a center line through the bounding box and intersecting the center line with the

epithelium object. The resulting center line was divided into a left-hand segment (20%),
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a right-hand segment (20%), and the interior segment (60%). These divisions of the

epithelium can be observed in Figure. 2. The interior 60% portion of the distance-

transform-based medial axis was retained as a part of the final medial axis. The left and

right-hand cutoff points of the interior distance transform axis were determined as the

closest Euclidean distance points from the distance transform axis to the center line points

on the 20% left- and right-hand segments. As done in [5], the left- and right-hand cutoff

points are projected to the median bounding box points for the remaining left-hand 20%

and right-hand 20% portions of the axis. The projected left- and right-hand segments are

connected with the interior distance transform axis to yield the final medial axis.

Figure 3. Bounding box of epithelium with control points labeled.

The epithelium’s orientation was determined using a novel approach based on the

bounding box and the final medial axis. Using the bounding box, a comparison was

performed of the number of nuclei distributed over eight masks that are created from eight

control points (P1, P2, P3,..., P8 ) at the corners and the midpoints of the bounding box

edges (see Figure. 3).

The masks are used for computing the ratios of the number of detected nuclei to the

areas of the masks. The control points used for determining the masks are shown as P1 -

P8 in Figure. 3. For each control point combination, the number of nuclei is computed for

each mask using the algorithm presented in Section II. Let n represent the set of the number

of nuclei computed from masks 1 - 8, given as n = n1, n2, . . . , n8, as designated in Figure.

4(a)-(d). The eccentricity, defined as the ratio of the fitted ellipse foci distance to the major
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Figure 4. Bounding box partitioning with masks combinations shown based on control
points from Fig. 3 as a part of epithelium orientation determination algorithm. (a) Mask 1
and Mask 2. (b) Mask 3 and Mask 4. (c) Mask 7 and Mask 8. (d) Mask 5 and Mask 6.

axis length as given in [19], is computed for the entire epithelium image mask, given as

e, and for each mask image, denoted as ei . Then, the eccentricity weighted nuclei ratios

are calculated for each mask combination, given as v = v12, v34, v56, v78, v21, v43, v65, v87,

where

v12 =

(
n1

max(n)

) (
n1
n2

) (
e
e1

)

v34 =

(
n3

max(n)

) (
n3
n4

) (
e
e3

)
∗
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v56 =

(
n5

max(n)

) (
n5
n6

) (
e
e5

)

v78 =

(
n7

max(n)

) (
n7
n8

) (
e
e7

)
etc., andmax(n) denotes the maximum area of the eight partitionedmasks. The term

ni/max(n) is used as a scale factor for normalizing the size of the epithelium region. The

medial axis top/bottom orientation is determined as vi j = maxi j (v). The resulting medial

axis is partitioned into ten segments of approximately equal length, perpendicular line

slopes are estimated at the midpoints of each segment, and vertical lines are projected at the

end points of each segment to generate ten vertical segments for analysis. The partitioning

of the epithelium image into ten vertical segments was performed to facilitate localized

CIN classifications within the epithelium that can be fused to provide an image-based CIN

assessment, as done in [5]. Figure. 5 provides an example of the medial axis partitioning

and the ten vertical segments obtained.

Figure 5. Epithelium image example with vertical segment images (I1 ,I2, I3 ,..., I10)
determined from bounding boxes after dividing the medial axis into ten line segment
approximations after medial axis computation.
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2.2. Feature Extraction. Features are computed for each of the ten vertical seg-

ments of the whole image I1 ,I2 ,I3, . . . , I10. All the segments of one whole image are

feature extracted in a sequence, from left to right I1 to I10 (see Figure 5). In total, six dif-

ferent types of features were obtained in this study, including: 1) texture features (F1-F10)

[5]; 2) cellularity features (F11-F13); 3) nuclei features (F14, F15); 4) acellular (light area)

features (F16-F22); 5) combination features (F23, F24); and 6) advanced layer-by-layer

triangle features (F25- F27). To give a brief introduction of the extracted features, Table I

is presented showing the feature label and brief description in every row for each feature.

2.2.1. Texture and Cellular Features. The texture and color features were used

in our previous work and are described in [5]. The use of color in histopathological image

analysis is also described in [27] and [8]. For texture features, both first-order structural

measures derived directly from the image segment and second-order statistical methods

based on the gray-level cooccurrence matrix (GLCM) [29, 3], were employed. A gray-scale

luminance version of the image was created in order to compute the statistics of energy,

correlation, contrast, and uniformity of the segmented region; these statistics are then used

to generate features (F1-F10) shown in Table I. The texture features include contrast (F1),

energy (F2), correlation (F3), and uniformity (F4) of the segmented region, combined with

the same statistics (contrast, energy, and correlation) generated from the GLCM of the

segment (F5-F10, see Table 1).

The luminance images showed regions with three different intensities, marked as

light, medium, and dark areas within each single-segmented luminance image, as shown

in Figure 6 of normal cervical histology. The light areas correspond to acellular areas; the

medium areas correspond to cytoplasm; and the dark areas correspond to nuclei.

Cluster centers are found from the luminance image using K-means clustering [9]

for three different regions (K = 3) denoted as clustLight, clustMedium, and clustDark for

the light, medium, and dark cluster centers, respectively. Then, the ratios are calculated

based on (1)-(3) [5]
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Table 1. Feature description

Label Description

F1 Contrast of segment: Intensity contrast between a pixel and its neighbor
over the segment image.

F2 Energy of segment: Squared sum of pixel values in the segment image.
F3 Correlation of segment: How correlated a pixel is to neighbors over the

segment image.
F4 Segment homogeneity: Closeness of the distribution of pixels in the

segment image to the diagonal elements.
F5, F6 Contrast of GLCM: Local variation in GLCM in horizontal and vertical

directions.
F7, F8 Correlation of GLCM: Joint probability occurrence (periodicity) of el-

ements in the segment image in the horizontal and vertical directions.
F9, F10 Energy of GLCM: Sum of squared elements in the GLCM in horizontal

and vertical directions.
F11 Acellular ratio: Proportion of object regions within segment image

withlight pixels (acellular).
F12 Cytoplasm ratio: Proportion of object regions within segment image

withmedium pixels (cytoplasm).
F13 Nuclei ratio: Proportion of object regions within segment image with

dark pixels (nuclei).
F14 Average nucleus area: Ratio of total nuclei area over total number of

nuclei.
F15 Background to nuclei area ratio: Ratio of total background area to total

nuclei area.
F16 Intensity ratio: Ratio of average light area image intensity to background

intensity.
F17 Ratio R: Ratio of average light area red to background red.
F18 Ratio G: Ratio of average light area green to background green.
F19 Ratio B: Ratio of average light area blue to background blue.
F20 Luminance ratio: Ratio of average light area luminance to background

luminance.
F21 Ratio light area: Ratio of light area to total area.
F22 Light area to background area ratio: Ratio of total light area to back-

ground area.
F23 Ratio acellular number to nuclei number: Ratio of number of light

areasto number of nuclei.
F24 Ratio acellular area to nuclei area: Ratio of total light area to total nuclei

area.
F25 Triangles in top layer: Number of triangles in top layer.
F26 Triangles in mid layer: Number of triangles in middle layer.
F27 Triangles in bottom layer: Number of triangles in bottom layer.
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Figure 6. Sample shading representatives within epithelium image used for determining
cellular features.

Accellular ratio =
number of pixels in light cluster
Total pixels in epithelium region

(1)

Cytoplasm ratio =
number of pixels in medium cluster
Total pixels in epithelium region

(2)

Nuclei ratio =
number of pixels in dark cluster
Total pixels in epithelium region

(3)

where Acellular ratio (F11), Cytoplasm ratio (F12), and Nuclei ratio (F13) represent the

cellular features in Table I, and numLight, numMedium, and numDark represent the number

of pixels that were assigned to the clusters of light, medium, and dark, respectively. These

features correspond to intensity shading features developed in [5].

2.2.2. Nuclei Features. The dark shading color feature discussed above corre-

sponds to nuclei, which appear within epithelial cells in various shapes and sizes. Nuclei

tend to increase in both number and size as the CIN level increases. This linkage between
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the nuclei characteristics and CIN levels motivates our development of algorithms for nuclei

detection feature extraction. In this paper, the algorithms of nuclei detection and nuclei fea-

ture extraction are developed to obtain features to facilitate CIN classification. Specifically,

we carry out the following steps:

Figure 7. Example of image preprocessing. (a) Original luminance image I. (b) Sharpened
image Isharpen obtained after average filtering of I.

1. nuclei feature preprocessing: average filter, image sharpening, and histogram equal-

ization;

2. nuclei detection: clustering, hole filling, small-area elimination, etc;

3. nuclei feature extraction.

In preprocessing, vertical image segments are processed individually. After con-

verting the segment into a gray-scale image I, an averaging filter is applied as in (4), where

* denotes convolution

A =
1
16


1 2 1

2 4 2

1 2 1


∗ I (4)
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After the average-filtered image is obtained, an image sharpening method is used to

emphasis the dark shading part, which is expressed as (5), following the methods in [7]

ISharpen = kI − A (5)

Figure 8. Example of image processing steps to obtain nuclei cluster pixels from K-means
algorithm from histogram equalized image. (a) Histogram equalized image determined
from Figure. 7(b). (b) Mask image obtained from K-means algorithm with pixels closest
to nuclei cluster.

where Isharpen is the sharpened image, and k is an empirically determined constant of 2.25.

The average-filtered image A and the sharpened image Isharpen are shown in Figure. 8. In

the final preprocessing step, we apply histogram equalization using the MATLAB function

histeq to the sharpened image (Isharpen) (in particular, to enhance details of the nuclei

atypia).

The nuclei detection algorithm is described as follows using the equalized histogram

image as the input.
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Figure 9. Image examples of nuclei detection algorithm. (a) Image with preliminary
nuclei objects obtained from clustering [step 1-Figure 8(c)]. (b) Image closing to connect
nuclei objects (step 2). (c) Image with hole filling to produce nuclei objects (step 3). (d)
Image opening to separate nuclei objects (step 4). (e) Image with nonnuclei (small) objects
eliminated (step 5).

1. Step 1: Cluster the histogram-equalized image into clusters of background (darkest),

nuclei, and darker and lighter (lightest) epithelium regions using the K-means algo-

rithm (K = 4). Generate a mask image containing the pixels closest to the nuclei

cluster (second darkest).

2. Step 2: Use the MATLAB function imclose with a circular structuring element of

radius 4 to perform morphological closing on the nuclei mask image.
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3. Step 3: Fill the holes in the image from Step 2 with MATLAB’s im f ill function for

this process.

4. Step 4: Use the MATLAB’S imopen to perform morphological opening with a

circular structuring element of radius 4 on the image from Step 3.

5. Step 5: Eliminate small area noise objects (nonnuclei objects) within the epithelium

region of interest from the mask in Step 4, with the area opening operation using the

MATLAB function bwareaopen.

Figure 8 shows an example of a sharpened image before and after histogram equal-

ization, which is input to the nuclei detection algorithm, and the resulting mask image

with pixels closest to the nuclei cluster from the K-means algorithm in Step 1. The nuclei

detection algorithm steps 2-5 are illustrated in Fig. 9. The nuclei features are calculated

as follows: With the detected nuclei shown as white objects in the final binary images [see

Figure. 9(e)], the nuclei features are calculated as

Average nucleus area =
nuclei area total
number o f nuclei

(6)

Ratio o f background to nucleus area =
total non − nuclei area

total nuclei area
(7)

where Average nucleus area (F14) and Ratio of background to nuclei area (F15) rep-

resent ratios obtained from the final nuclei images as shown in Figure. 9(e). In (6)

and (7), NucleiArea represents the total area for all nuclei detected (all white pixels);

NucleiNumber indicates the total number of white regions [number of objects in Figure

9(e)]; AverageNucleusArea is the ratio of nuclei area to the nuclei number, which tends to

increase with higher CIN grade; NonNucleiArea area represents the total number of pixels

in the black nonnucleus region within the epithelium region [black pixels within epithelium
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Figure 10. Example L* image for
light area detection.

Figure 11. Adaptive histogram
equalized image of Fig. 10.

Figure 12. Thresholded image of
Fig. 11.

Figure 13. Example image of light
area clusters after K-means cluster-
ing.

in Fig 9(e)]. RatioBackgroundNucleusArea denotes the ratio of the nonnuclei area to

nuclei area.We expect larger values of AverageNucleusArea to correspond to increasing

CIN grade, and RatioBackgroundNucleusArea to decrease with increasing CIN grade.
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2.2.3. Acellular Features. Extracting the light area regions, described previously

as "light shading," is challenging due to the color and intensity variations in the epithelium

images. We evaluated each of the L*, a*, and b* planes of CIELAB color space for

characterizing the light areas, and determined empirically that L* provides the best visual

results. The following outlines the methods we used to segment the histology images.

Figure 14. Example morphological dilation and final light area mask. (a) Morphological
dilation and erosion process after K-means clustering. (b) Final light area mask, after
eliminating regions with areas smaller than 100 pixels.

1. Step 1: Convert the original image from RGB color space to L*a*b* color space,

then select the luminance component L* (see Fig. 10).

2. Step 2: Perform adaptive histogram equalization on the image from step 1 using

MATLAB’S adapthisteq. adapthisteq operates on small regions (tiles) [2] for

contrast enhancement so that that the histogram of the output region matches a

specified histogram and combines neighboring tiles using bilinear interpolation to

eliminate artificially induced boundaries (see Fig. 11).



23

3. Step 3: After the image has been contrast adjusted, the image is binarized by applying

an empirically determined threshold of 0.6. This step is intended to eliminate the

dark nuclei regions and to retain the lighter nuclei and epithelium along with the light

areas (see Fig. 12).

4. Step 4: Segment the light areas using the K-means algorithm based on [5], with K

equal to 4. The K-means algorithm input is the histogram-equalized image from Step

2 multiplied by the binary thresholded image from Step 3. A light area clustering

example is given in Fig. 13.

5. Step 5: Remove all objects having an area less than 100 pixels from the image, deter-

mined empirically, using the MATLAB function regionprops [2]. A morphological

closing is performed with a disk structure element of radius 2. An example result is

shown in Fig. 14.

Using the light area mask, the acellular features (from Table I) are computed and

are given as follows:

Intensity ratio =
Light Area Intensity

Background Intensity
(8)

Ratio R =
Light Area Red

Background Red
(9)

Ratio G =
Light Area Green

Background Green
(10)

Ratio B =
Light Area Blue

Background Blue
(11)

Luminance ratio =
Light Arealuminance

Backgroundluminance
(12)



24

Ratio acellular number to light number =
LightNumber

NucleiNumber
(13)

Ratio acellular area to light area =
Light Area

NucleiArea
(14)

where Segment Area gives the epitheliumareawithin the vertical segment; Light Area

denotes the area of all light area regions; LightNumber corresponds to the number

of light areas; BackgroundArea represents the total number of nonnuclei and nonlight

area pixels inside the epithelium within the vertical segment (i.e., background area);

Light AreaIntensity, Light AreaRed, Light AreaGreen, Light AreaBlue, and

Light AreaLuminance are the average intensity, red, green, blue, and luminance values,

respectively, of the light areas within the epithelium of the vertical segment;

BackgroundIntensity, BackgroundRed, BackgroundGreen, BackgroundBlue, and

BackgroundLuminance are the average intensity, red, green, blue, and luminance values,

respectively, of the nonnuclei and nonlight area pixels within the epithelium of the vertical

segment. 4) Combination features: After both the nuclei features and the acellular features

were extracted, two new features were calculated with the intent to capture the relative

increase in nuclei numbers as CIN grade increases. These features are the ratio of the

acellular number to the nuclei number (F23), and the ratio of the acellular area to the total

nuclei area (F24). The equations for calculating the combination features are presented as

follows:

Ratio acellular number to nuclei number =
Light Number

Nuclei Number
(15)

Ratio acellular area to nuclei area =
Light Area

Nuclei Area
(16)
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where LightNumber and NucleiNumber represent the total number of light area

and nuclei objects, respectively, as found in Sections II (see Fig. 6).

Figure 15. Example of nuclei detection comparison between the circular-Hough method
and the method presented in this paper. (a) Original vertical segment. (b) Example of
circular-Hough method; note the nuclei misses and false detections. (c) Nuclei detected
using the algorithm from Section II.

2.2.4. Triangle Features. In previous research, triangle features have been investi-

gated based on the circular-Hough Transform (CHT) [3] to detect nuclei for use as vertices

in DT formulation [24] to obtain the triangles [5, 27]. Features were computed which

included triangle area and edges length, and simple statistics (means, standard deviations)

of these quantities were also included as features. In applying the CHT to our experi-

mental dataset, we observed that for some images, this method sometimes fails to locate

noncircular irregularly-shaped nuclei; on the other hand, this method does (incorrectly)

detect some nonnuclei regions as nuclei, which leads to incorrect vertices being input to

the (DT) method, thus degrading the triangle features calculated in downstream processing.

To overcome the shortcomings of the CHT for nuclei detection, we use the centroids of
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the nuclei detected based on the method presented in Section II. An example comparison

between the previous circular-Hough method and the method in this paper is presented in

Figure. 15. Circles indicate the locations of detected nuclei.

Figure 16. Distribution of nuclei centroids as vertices for DTs in bottom layer (green), mid
layer (red), and top layer (blue).

In this paper, we use the DT method, but restrict the geometrical regions it can act

upon, as follows. Before forming the DTs with the vertices provided by the nuclei detection

results from Section II, the vertical segment being processed is subdivided into three vertical

layers as illustrated in Figure. 16. The aim is to associate the presence of increasing nuclei

throughout the epithelium with increasing CIN grades, namely: abnormality of the bottom

third of the epithelium roughly corresponds to CIN1; abnormality of the bottom two-thirds,

to CIN2; and abnormality of all three layers, to CIN3. We refer to these layers as bottom,

mid, and top. (See Figure 16, the green circles stand for the top layer vertices, red for mid

layer, and blue for bottom.)
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Figure 17. DTs in bottom layer (green lines), mid layer (red lines), and top layer (blue lines).

After locating the vertices for DT, the DT algorithm iteratively selects point triples to

become vertices of each new triangle created. Delaunay triangulation exhibits the property

that no point lies within the circles that are formed by joining the vertices of the triangles

[29]. As shown in Fig. 17, all the triangles in three layers formed using DT are unique

and do not contain any points within the triangles. The features are obtained according to

the triangles in three different layers, including the number of triangles in top layer (F25),

number of triangles in middle layer (F26), and number of triangles in bottom layer (F27).

3. EXPERIMENT PERFORMED

We carried out three sets of experiments, which are described in this section. The

experimental dataset consisted of 61 digitized histology images, which were CIN labeled

by two experts (RZ and SF) (RZ: 16 Normal, 13 CIN1, 14 CIN2, and 18 CIN3; SF: 14

Normal, 14 CIN1, 17 CIN2, and 16 CIN3).

3.1. Fusion-Based CIN Grade Classification of Vertical Segment Images. For

the first set of experiments, all the features extracted from the vertical segment images were

used as inputs to train the SVM/LDA classifier. The LIBSVM [4] implementation of the
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SVM [15] and LDA [6] classifiers were utilized in this study. The SVM implementation

uses a linear kernel and the four weights were the fractions of the images in each CIN class

to the entire image set (fraction of the image set that is Normal, fraction of the image set

that is CIN1, etc.).

Individual features were normalized by subtracting the mean training set feature

value and dividing by the standard deviation training set feature value. Due to the limited

size of the image set, a leave-one-image-out approach was investigated for classifier training

and testing. For this approach, the classifier is trained based on the individual vertical

segment feature vectors for all but the left-out epithelium image (used as the test image).

For classifier training, the expert truthed CIN grade for each image was assigned to the ten

vertical segments for that image. For the left-out test image, each vertical segment was

classified into one of the CIN grades using the SVM/LDA classifier.

Then, the CIN grades of the vertical segment images were fused to obtain the CIN

grade of the entire test epithelium image (see Figure. 5). The fusion of the CIN grades of

the vertical segment images was completed using a voting scheme. The CIN grade of the

test epithelium image was assigned to the most frequently occurring class assignment for

the ten vertical segments. In the case of a tie among the most frequently occurring class

assignments for the vertical segments, the test image is assigned to the higher CIN class. For

example, if there is a tie between CIN1 and CIN2, then the image is designated as CIN2. The

leave-one-image-out training/testing approach was performed separately for each expert’s

CIN labeling of the experimental dataset. For evaluation of epithelium classification, three

scoring schemes were implemented.

Scheme 1 (Exact Class Label): The first approach is exact classification meaning

that if the class label automatically assigned to the test image is the same as the expert

class label, then the image is considered to be correctly labeled. Otherwise, the image is

considered to be incorrectly labeled.
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Scheme 2 (Off-by-One Class Label): The second scoring approach is an Off-by-One

classification scheme, known as "windowed class label" in previous research [5]. If the

predicted CIN grade level for the epithelium image is only one grade off as compared to the

expert class label, the classification result is considered correct. For example, if the expert

class label CIN2 was classified as CIN1 or CIN 3, the result would be considered correct.

If expert class label CIN1 was classified as CIN3, the result would be considered incorrect.

Scheme 3 (Normal Versus CIN): For the third scoring scheme, the classification

result would be considered incorrect when a Normal grade was classified as any CIN grade

and vice versa.

3.1.1. Classification of theWhole Epithelium. For the second set of experiments,

features were extracted from the whole epithelium image following the steps shown in Fig.

18, which also gives the comparison between the whole epithelium image classification and

fusion-based classification over vertical segments (see Section III).

Figure 18. Fusion-based approach versus whole image approach.
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The whole-epithelium image classification in this section is done without generating

any of the individual vertical segment images (see Figure 19 as an example for nuclei feature

detection over the whole image). The experiment was investigated to compare the perfor-

mance of the fusion-based epithelium classification (see Section III) to the performance

obtained by classifying the epithelium image as a whole. Features extracted from the whole

image were used as inputs to the SVM/LDA classifier using the same leave-one-image out

approach. The same scoring schemes as presented in Section III were used to evaluate

the performance of the whole epithelium classification. Again, the leave-one-image-out

training/testing approach was performed separately for each expert’s CIN labeling of the

experimental dataset.

Figure 19. Example image of nuclei detection over whole image without creating vertical
segments; the top image is the original epithelium image; bottom is the nuclei mask of this
image.

3.1.2. Feature Evaluation and Selection. For feature evaluation and selection, a

SAS implementation of multinomial logistic regression (MLR) [23, 17, 11, 9] and a Weka

attribute information gain evaluator were employed. For SAS analysis, MLR is used for

modeling nominal outcome variables, where the log odds of the outcomes are modeled

as a linear combination of the predictor variables [23, 17, 11, 1]. The p-values obtained

from the MLR output are used as a criterion for selecting features with p-values less than

an appropriate alpha (α) value [23, 17, 11, 1]. For Weka analysis, the algorithm ranks the



31

Table 2. Confusion matrix results for fusion-based classification using all 27 features
(F1-F27) for SVM and LDA classifiers for both experts

Expert RZ: SVM/LDA
Normal (16) CIN1 (13) CIN2 (14) CIN3 (18)

Normal 14/14 0/0 0/0 0/0
CIN1 2/2 12/11 0/0 0/0
CIN2 0/0 1/1 12/14 3/3
CIN3 0/0 0/1 2/0 15/15

Expert SF: SVM/LDA
Normal (14) CIN1 (14) CIN2 (17) CIN3 (16)

Normal 10/10 2/3 0/0 0/0
CIN1 4/3 9/9 1/1 0/0
CIN2 0/0 3/1 16/16 1/1
CIN3 0/1 0/1 0/0 15/15

features by a parameter called "attributes information gain ratio (AIGR)," where the higher

the ratio, the more significant the feature will be for the classification results. For both

methods, the automatically generated labels of the vertical segmentations and the feature

data are given as input.

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. ExperimentalResults. Weobtained the vertical segment image classifications

(CIN grading) using the SVM/LDA classifier with a leave-one-image-out approach based

on all the 27 features generated. Then, the vertical segment classifications were fused

using a voting scheme to obtain the CIN grade of the epithelium image. We evaluated the

performance of these epithelium image classifications using the three approaches presented

in Section III. Table II shows the confusion matrices for the classification results obtained

using the fusion-based approach, for the SVM and LDA classifiers, respectively, for both

experts (RZ and SF).
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Table 3. Confusion matrix results for whole image classification using all 27 features
(F1-F27) for SVM and LDA classifiers for both experts

Expert RZ: SVM/LDA
Normal (16) CIN1 (13) CIN2 (14) CIN3 (18)

Normal 15/9 0/4 0/1 0/0
CIN1 1/5 8/5 3/2 3/1
CIN2 0/1 2/3 8/8 5/8
CIN3 0/1 3/1 3/3 10/9

Expert SF: SVM/LDA
Normal (14) CIN1 (14) CIN2 (17) CIN3 (16)

Normal 9/10 2/3 0/0 0/0
CIN1 5/3 6/8 2/3 1/1
CIN2 0/1 5/2 11/8 8/8
CIN3 0/0 1/1 4/6 7/7

In the following, we provide summary comments for these Table 2 results, and

compare them with the previous results published in [5], which used the RZ expert CIN

labeling of the image set. 1) For the Exact Class Label, we obtained an accuracy of

86.9%/82.0% (RZ/SF) using the SVM classifier and 88.5%/82.0% (RZ/SF) using the LDA

classifier, (previous [5]: 62.3% LDA). 2) For the Normal Versus CIN scoring scheme, SVM

classifier accuracy was 96.7%/90.2% (RZ/SF) and LDA classifier 96.7%/90.2% (RZ/SF)

(previous [5]: 88.5% LDA). 3) For the Off-by-One class scoring scheme, SVM had an

accuracy of 100%/100% (RZ/SF) and LDA, 98.4%/96.7% (RZ/SF) (previous [5]: 96.7%).

In the order to evaluate the performance of the fusion-based approach for epithelium

classification, we also carried out classification using the entire epithelium image. For the

whole image classification, we again used the SVM and LDA classifiers. Table 3 shows the

whole image classification results for both experts.

From Table 3, the Exact Class Label scoring scheme provided an accuracy of

67.2%/54.1% (RZ/SF) and 50.8%/54.1% (RZ/SF) using the SVM and LDA classifiers,

respectively. The Normal versus CIN scoring scheme yielded an accuracy of 98.4%/88.6%
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Table 4. Confusion matrix results for fusion-based classification using reduced features for
SVM and LDA classifiers for both experts

Expert RZ: SVM/LDA
Normal (16) CIN1 (13) CIN2 (14) CIN3 (18)

Normal 14/14 0/0 0/0 0/0
CIN1 2/2 10/12 0/0 0/0
CIN2 0/0 2/1 12/13 3/1
CIN3 0/0 1/0 2/1 15/17

Expert SF: SVM/LDA
Normal (14) CIN1 (14) CIN2 (17) CIN3 (16)

Normal 11/10 3/2 0/0 0/0
CIN1 3/3 9/11 1/1 0/0
CIN2 0/1 2/1 16/16 1/1
CIN3 0/0 0/0 0/0 15/15

(RZ/SF) and 80.3%/88.6% (RZ/SF) for the SVMand LDA classifiers, respectively. TheOff-

by-One scoring scheme obtained an accuracy of 90.2%/96.7% (RZ/SF) and 93.4%/95.1%

for the SVM and LDA classifiers, respectively. The corresponding accuracy figures from

the previous research [9] for the LDA classifier are given in the following. Exact Class

Label scoring: 39.3%; Normal versus CIN scoring: 78.7%; Off-by-One scoring (called

"windowed class" in [5]): 77.0%.

For feature evaluation and selection experiments, all 27 features extracted from the

individual vertical segments were used as inputs to the SAS MLR algorithm. We used α =

0.05 as the threshold to determine statistically significant features. The overall 27 features

with p-values are presented in Table 6 (see appendix). From Table 5, features with a p-value

smaller than 0.05 are considered statistically significant features.

In addition, all 27 features and the truth labels were used as input for the Weka

information gain evaluation algorithm [9]. The algorithm ranks the features by an AIGR

which ranges from 0 to 1. The larger the ratio is, themore likely that the feature is considered

by the algorithm. The 27 features and corresponding AIGR values are shown in Table 5 .
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Table 5. Features with corresponding p-values and AIGR

Feature p-value AIGR Feature p-value AIGR

F1 0.0013 0.226 F15 0.1101 0.505
F2 >0.05 0.21 F16 >0.05 0.2713
F3 0.0182 0.026 F17 >0.05 0.2897
F4 0.0425 0.204 F18 0.0201 0.2357
F5 0.0604 0.171 F19 >0.05 0.2717
F6 >0.05 0.0309 F20 >0.05 0.2990
F7 0.0051 0.2057 F21 0.0320 0.3608
F8 >0.05 0.079 F22 0.0646 0.3295
F9 0.0001 0.080 F23 >0.05 0.3975
F10 0.0001 0.034 F24 >0.05 0.4713
F11 >0.05 0.205 F25 >0.05 0.1001
F12 0.0001 0.169 F26 0.0001 0.1037
F13 0.0033 0.2287 F27 0.0001 0.2644
F14 0.0037 0.1800

Based on the statistically significant features shown in Table 6, we selected the

feature set consisting of features F1, F3, F4, F5, F7, F9, F10, F12, F13, F14, F15, F18,

F21-F24, F26, F27 as the input feature vectors for the fusion-based classification. Note

that all these features were selected based on the SASMLR test of statistical significance

except for F23 and F24, which were selected since they have relatively high information

gain ratio (AIGR) among the 27 features (the second place and third place in Table 5).

Our experiment compared classification accuracies using this reduced set of features to the

results using the entire 27 features set, and also compared to the classification accuracies

obtained in the previous research [5].

The reduced feature classifications were done for the fusion based method only to

remain consistent with the previous research [5]. The classification algorithms (SVM/LDA)

were applied to the reduced features, followed by fusing of the vertical segment classifica-

tions to obtain the CIN grade of the epithelium. The resulting classifications obtained in

this approach are shown as confusion matrices in Table 4 for both experts.
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Table 6. CIN discrimination rates for fusion-based classification using all features, whole
image classification, and reduced feature set fusion-based classification for both experts

Fusion-based Classification
SVM(RZ/SF) LDA(RZ/SF)

Exact Class Label 86.9%/82.0% 88.5%/82.0%
Normal versus CIN 96.7%/90.2% 96.7%/90.2%

Off-by-One 100%/100% 98.4%/96.7%

Whole image classification
SVM(RZ/SF) LDA(RZ/SF)

Exact Class Label 67.2%/54.1% 50.8%/54.1%
Normal versus CIN 98.4%/88.6% 80.3%/88.6%

Off-by-One 90.2%/96.7% 93.4%/95.1%

Reduced feature set
SVM(RZ/SF) LDA(RZ/SF)

Exact Class Label 83.6%/83.6% 88.5%/85.3%
Normal versus CIN 96.7%/90.2% 95.1%/90.2%

Off-by-One 98.4%/100% 100%/98.4%

FromTable 4, the following correct classification rates were obtained for the reduced

features using the SVM-based classifier: Exact Class Label classification of 83.6%/83.6%

(RZ/SF), Normal versus CIN classification of 96.7%/90.2% (RZ/SF), and Off-by-One clas-

sification of 98.4%/100% (RZ/SF). From Table 4, the correct classification rates using the

LDA classifier were obtained as: Exact Class Label classification of 88.5%/85.3% (RZ/SF),

Normal versus CIN classification of 95.1%/90.2% (RZ/SF), and Off-by-One classification

of 100%/98.4% (RZ/SF). The highest correct classification rates obtained in previous work

using the same experimental dataset and leave-one-out training/testing approach with the

LDA classifier are summarized as follows [5]: Exact Class label of 70.5%, Normal versus

CIN of 90.2%, and Off-by-One classification of 100%.
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4.2. Analysis of Results. In this section, we use the classification results from

Section IV, to compare 1) the performance among the scoring approaches, 2) the perfor-

mance between the SVM and LDA classifiers, and 3) the performance between the previous

research [5] and this study. Table V gives an overview of the correct recognition rates in

different classification schemes examined in this paper.

From Table 6, the fusion-based classification approach shows improvement (ex-

cept for same results for Normal versus CIN) compared to the whole image classification

approach, when all the feature vectors are used as input for the classifiers. For the fusion-

based versus whole image classification, the fusion based approach shows an improvement

of 19.7% (minimum improvement from the two experts from 67.2% to 86.9%) for SVM and

27.9% (minimum improvement from the two experts from 54.1% to 82.0%) for LDA using

the Exact Class Label scoring scheme. For the Normal versus CIN scoring scheme, an

accuracy improvement of 1.7% (minimum improvement from the two experts from 88.5%

to 90.2%) for the LDA classifier, although we note an accuracy decline of 1.7% (from

98.4% to 96.7%) was observed for the SVM classifier. For Off-by-One scoring scheme,

classification accuracy increases 3.3% (minimum of two experts from 96.7% to 100%) and

1.6% (minimum of two experts from 95.1% to 96.7%) for SVM and LDA, respectively.

With feature reduction added to fusion-based classification, the fusion-basedmethod

improves in half the comparisons. Specifically, the Exact Class Label accuracy for SVM

declines by 3.3% (minimum improvement from two experts of 86.9% to 83.6%) and LDA’s

accuracy yields zero improvement (minimum from two experts of 88.5% to 88.5%). For

Normal versus CIN, there is no improvement (0%) for SVM for both experts, and a 1.6%

loss (minimum from two experts of 96.7%-95.1%) in accuracy for LDA. For Off-by-One,

the SVM classifier has a 1.6% decline (minimum of experts from 100% to 98.4%), and LDA

has zero improvement (from 98.36% to 98.36%), and LDA has a gain of 1.6% (minimum

of experts from 98.4% to 100%).
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Figure 20. Misclassification example of a CIN2 image labeled as a CIN3.

Among all of classification results obtained by the two different classifiers, the high-

est come from the fusion-based classification. The highest Exact Class Label classification

accuracy by the two experts was 88.5%/85.3% (LDA, reduced feature set). In comparison,

SVM obtained 83.6%/83.6% by both experts for the reduced feature set. The accuracies for

Normal versus CIN and Off-by-One are relatively high for both experts (above 90% for both

SVM and LDA classifiers, and for both the full and the reduced feature sets). A summary

of the results from this study and from the previous research [5] is shown in Table 5 below.

Note that only the LDA classifier was reported in [5].

Figure 21. Misclassification example of a CIN3 image labeled as a CIN1.

In examining the classification results, the majority of the Exact Class Label clas-

sification errors are off-by-one CIN grade. This is supported with the high Off-by-One

classification rates for the different experiments performed. Figure. 20 shows an example
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Table 7. Summary of classification accuracies: previous research versus reduced feature
set results in this paper

Previous work Current Work(RZ/SF)
LDA SVM LDA

Fusion-based
classification

Exact Class Label 62.3% 86.9%/82.0% 88.5%/82.0%
Normal versus CIN 88.5% 96.7%/90.2% 96.7%/90.2%

Off-by-One 96.7% 100%/100% 98.4%/96.7%

Whole image
classification

Exact Class Label 39.3% 67.2%/54.1% 50.8%/54.1%
Normal versus CIN 78.7% 98.4%/88.5% 80.3%/88.5%

Off-by-One 77.0% 90.2%/96.7% 93.4%/95.1%

Reuduced feature
classification

Exact Class Label 70.5% 83.6%/83.6% 88.5%/85.3%
Normal versus CIN 90.2% 96.7%/90.2% 95.1%/90.2%

Off-by-One 100% 98.4%/100% 100%/98.4%

of an image with an expert label of CIN2 (RZ) that was labeled as a CIN3 by the LDA clas-

sifier. Inspecting Figure 20, nuclei bridge across the epithelium and are relatively uniform

in density in the lower left-hand portion of the epithelium (see arrow). The nuclei features

and the layer by layer DT features, particularly in the vertical segments containing the lower

left-hand portion of the epithelium, provide for a higher CIN grade. In other regions of the

epithelium, the nuclei density is not as uniform across the epithelium, which could provide

for a less severe CIN grade label for the epithelium. Figure 21 shows an example of an

image with an expert label of CIN3 (RZ) that was labeled as a CIN1 by the LDA classifier.

This image has texture, nuclei distribution, and color typical of a CIN3 grade. However,

the white gaps present along the epithelium were detected as acellular regions, leading to

the misclassification.

The overall algorithm was found to be robust in successful identification of nuclei.

Nuclei in the two lightest-stained slides and the two darkest-stained slides were counted.

An average of 89.2% of nuclei in all four slides was detected. The 89.2% nuclei detection

rate observed represents an advance over the results of Veta et al. [28], who found 85.5%
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to 87.5% of nuclei (not strictly comparable, as these results were for breast cancer). The

finding of a high percentage of nuclei in the lightest- and darkest-stained slides shows that

the algorithm is adaptable and robust with regard to varying staining.

The approach in this study expands the techniques of other researchers who often

process but a single cell component: the nucleus. We show in this paper that the transition

from benign to cancer affects the whole cell. We have shown that not only nuclei, but in

fact features of the entire cell, including inter cellular spaces, are changed due to the more

rapidly growing cells. Thus, one of the top four features by p-value is the proportion of

regions of cytoplasm in the image (F12).

We also sought to use layers to better represent theCIN transition stages. The number

of DTs in the middle layer was also one of the top four features by p-value, validating our

approach of analysis by layers. The last two features with the most significant p-values were

the energy of a GLCM (the sum of squared elements in GLCM in horizontal and vertical

directions). The energy in the GLCM appears to capture the growing biological disorder as

the CIN grade increases.

We emphasize that between the previous research [9] and our paper, 1) the training

and testing datasets are the same; 2) the classifier (LDA) is the same and we investigated

the SVM classifier; and 3) the scoring schemes, (Exact Class Label, Normal versus CIN,

and Off-by-One) are the same (in the previous research, Off-by-One was called "windowed

class"). There are two differences between the previous and current work. First, CIN

classification results are reported for two experts (RZ and SF) in this study to demonstrate

CIN classification improvement over previous work, even with variations in the expert CIN

truthing of the experimental dataset. Second, three acellular features (F18, F21, F22) and

two layer-by-layer triangle (F26, F27) nuclei features were found to be significant (from

Table 5), which are new in this paper, contribute to improved CIN discrimination capability

over previous work.
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For the fusion-based method applied to all the feature vectors, Table 5 shows that

Exact Class Label accuracy increases by 19.7% (from 62.3% to 82.0% for the lower of the

two expert results) for LDA. For the whole image method, LDA improved by 14.8% (from

39.3% to 54.1% for the lower of the two expert results). For fusion-based classification with

reduced feature vectors, accuracy increases by 14.8% (from 70.5% to 85.3% for the lower

of the two experts) for LDA. Since Exact Class Label is the most stringent of the scoring

schemes we used, we interpret these results as showing a substantial gain in classification

in classification accuracy when using the nuclei features and nuclei-related features.

The Off-by-One classification achieved excellent classification accuracy (100%)

with the SVM and LDA classifiers, which matches the results from the previous study

[5]. This classification metric gives more evidence of the similarity of neighboring classes

(Normal/CIN1 or CIN1/CIN2 or CIN2/CIN3) and the difficulties in discriminating between

them [21, 12, 22]. It is also consistent with the intra- and interpathologist variation in

labeling of these images. The two experts for this study differed in the CIN labeling of five

images (out of 61) (or 8.2%) in the experimental dataset, with the experts differing by only

1 CIN grade (higher or lower) in each of the five cases.

Overall, the 88.5%/85.3% accuracy by the two experts of Exact Class Label predic-

tion using the reduced features is 23.0% higher than published results for automated CIN

diagnosis (62.3%) as presented by Keenan et al. in [14], 17.3% higher than the accuracy

of the method used by Guillaud et al. (68%) in [8], and 14.8% higher than the accuracy

of the method by De [5], although we note that only in the comparison with De were the

same training and testing sets used. The classification results presented in this study for the

two experts only differed by greater than 8.2% in the Exact Class Label of the whole image.

Thus, the experimental results suggest that the involvement of nuclei and nuclei-related

features using vertical segment classification and fusion for obtaining the image-based CIN
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classification is an improvement over the existing methods for automated CIN diagnosis.

Even though our method outperformed published results, we note that there is potential for

further improvement.

5. SUMMARY AND FUTUREWORK

In this study, we developed new features for the automated CIN grade classification

of segmented epithelium regions. New features include nuclei ratio features, acellular

area features, combination features, and layer-by-layer triangle features. We carried out

epithelium image classification based on these ground truth sets: 1) two experts labeled 62

whole epithelium images as Normal, CIN1, CIN2, and CIN3, and 2) investigator labeling

of ten vertical segments within each epithelium image into the same four CIN grades. The

vertical segments were classified using an SVM or LDA classifier, based on the investigator-

labeled training data of the segments with a leave-one-out approach. We used a novel

fusion-based epithelium image classification method which incorporates a voting scheme

to fuse the vertical segment classifications into a classification of the whole epithelium

image. We evaluated the classification results with three scoring schemes, and compared

the classification differences by classifiers, by scoring schemes, and the classification results

of this paper as compared to our previous work [5].

We found that the classification accuracies yielded in this study with nuclei features

outperformed that of the previous work [5]. Using the LDA classifier upon the reduced set

of features, and based on an Off-by-One classification scoring scheme for epithelium region

classification, correct prediction rates as high as 100% were obtained. Normal versus CIN

classification rates were as high as 96.72%, whereas the rates for Exact Class Labels were

as high as 88.52% using a reduced set of features. Future research may include the use

of adaptive critic design methods for classification of CIN grade. Also, it is important to
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include more cervix histology images to obtain a comprehensive dataset for different CIN

grades. With the enhancement of the dataset, inter or intra pathologist variations can be

incorporated [21].

Gwilym Lodwick, among his many contributions to diagnostic radiology, con-

tributed to our basic knowledge of pattern recognition by both humans and computers. The

importance of diagnostic signs, which he also termed mini patterns, was stated: "Signs,

the smallest objects in the picture patterns of disease, are of vital importance to the diag-

nostic process in that they carry the intelligence content or message of the image" [18].

In this context, Professor.Lodwick also maintained that these signs are at the heart of the

human diagnostic process. The results of our study appear to indicate that the new layer by

layer and vertical segment nuclei features, in the domain of cervical cancer histopathology,

provide useful signs or mini patterns to facilitate improved diagnostic accuracy. With the

advent of advanced image processing techniques, these useful signs may now be employed

to increase the accuracy of computer diagnosis of cervical neoplasia, potentially enabling

earlier diagnosis for a cancer that continues to exact a significant toll on women worldwide.
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ABSTRACT

Background: In previous research, we introduced an automated, localized, fusion-

based approach for classifying uterine cervix squamous epithelium into Normal, CIN1,

CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN) based on digitized

histology image analysis. As part of the CIN assessment process, acellular and atypical cell

concentration features were computed from vertical segment partitions of the epithelium

region to quantize the relative distribution of nuclei. Methods: Feature data was extracted

from 610 individual segments from 61 images for epithelium classification into categories

of Normal, CIN1, CIN2, and CIN3. The classification results were compared against CIN

labels obtained from two pathologists who visually assessed abnormality in the digitized
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histology images. In this study, individual vertical segment CIN classification accuracy

improvement is reported using the logistic regression classifier for an expanded data set of

118 histology images. Results: We analyzed the effects on classification using the same

pathologist labels for training and testing versus using one pathologist’s labels for training

and the other for testing. Based on a leave-one-out approach for classifier training and

testing, exact grade CIN accuracies of 81.29% and 88.98% were achieved for individual

vertical segment and epitheliumwhole image classification, respectively. Conclusions: The

Logistic andRandomTree classifiers outperformed the benchmark SVMandLDAclassifiers

from previous research. The Logistic Regression classifier yielded an improvement of

10.17% in CIN Exact grade classification results based on CIN labels for training-testing

for the individual vertical segments and the whole image from the same single expert over

the baseline approach using the reduced features. Overall, the CIN classification rates

tended to be higher using the training-testing labels for the same expert than for training

labels from one expert and testing labels from the other expert. The Exact class fusion-

based CIN discrimination results obtained in this study are similar to the Exact class expert

agreement rate.

Keywords: Cervical cancer, cervical intraepithelial neoplasia, fusion-based classification,

image processing.

1. INTRODUCTION

There were 528,000 new invasive cervical cancer cases and an estimated 266,000

deaths reported worldwide in 2012[1]. Screening tests to detect cervical cancer and its

precursor lesions include Pap, colposcopy to visually inspect the cervix, and microscopic

interpretation of histology slides by a pathologist when biopsied cervix tissue is available.

Microscopic evaluation of histology slides by a qualified pathologist has been used as

a standard of diagnosis. The pathologist visually inspects the slide for the presence of

cervical intraepithelial neoplasia (CIN), a premalignant condition in the epithelium. Figure
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Figure 1. Cervical intraepithelial neoplasia grade label examples highlighting the increase
of immature atypical cells from epithelium bottom to top with increasing cervical intraep-
ithelial neoplasia severity. (a) Normal, (b) cervical intraepithelial neoplasia 1, (c) cervical
intraepithelial neoplasia 2, (d) cervical intraepithelial neoplasia 3 .

1 shows examples of the CIN grades normal, CIN1, CIN2, and CIN3. CIN1 corresponds

to mild dysplasia (abnormal change), whereas CIN2 and CIN3 are used to denote moderate

dysplasia and severe dysplasia, respectively. Histologic criteria for CIN include increasing

immaturity and cytologic atypia in the epithelium.

As CIN increases in severity, the epithelium has been observed to show delayed

maturation with an increase in immature atypical cells from bottom to the top of the

epithelium [1]. As shown in Figure 1, atypical immature cells are seen mostly in the

bottom third of the epithelium for CIN1 [Figure 1b]. For CIN2, the atypical immature

cells typically appear in the bottom two-thirds of the epithelium [Figure 1c], and for CIN3,

atypical immature cells typically are found in the full thickness of the epithelium [Figure 1d].

In addition to analyzing the progressively increasing quantity of atypical cells from bottom

to top of the epithelium, identification of nuclear atypia is also significant [1]. Nuclear

atypia are characterized by nuclei of abnormal shapes and sizes within the epithelium

region. Visual assessment of this nuclear atypia may be difficult, due to a large number

of nuclei present and tissue heterogeneity. This may contribute to diagnostic inter- and

intra-pathologist variation.
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Computer-assisted methods (digital pathology) have been explored for CIN diagno-

sis in other studies and provided the foundation for the work reported [2]. In depth literature

reviews for related studies have been presented [3, 2]. In addition, this paper builds off

techniques for semi-automated CIN assessment for epithelium regions in digitized pathol-

ogy images examining texture features, nuclei determination and Delaunay triangulation

analysis[4, 5], medial axis determination, and localized CIN grade assessment. This paper

extends the study [3, 2], for the development of image analysis and classification techniques

for individual vertical segments obtained from partitioning the epithelium along the medial

axis. A logistic regression classifier is explored for CIN classification for comparison with

support vector machine (SVM) and linear discriminant analysis (LDA) classifier approaches

for individual vertical segment classification. CIN grades from two pathologists for 118

digitized histology images are used as ground truth for CIN classification accuracy.

The order of the remaining sections of the article is as follows: Section II presents

the image analysis and classification approaches used in this research; Section III describes

the experiments performed; Section IV presents and analyzes the results obtained and a

discussion; Section V provides the study conclusions.

2. METHODS

Figure 2 presents an overview of the approach for analyzing the digitized pathology

epithelium images:

Step 1. Detect the medial axis of the segmented epithelium region

Step 2. Divide the segmented image into 10 vertical segments orthogonal to the

medial axis

Step 3. Extract features from each of the vertical segments

Step 4. Use the classification algorithms to classify each segment into one of the

CIN grades
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Figure 2. Digitized pathology epithelium image analysis procedures.

Step 5. Fuse the CIN grades from every ten vertical segments in one image to obtain

the CIN grade of the whole epithelium.

This approach was used in previous studies [3, 2]. The following sections present

each step in detail.

2.1. Pathologist GroundTruthDescription. For the image and CIN classification

techniques explored in this research, 118 full-color digitized histology images are used with

H and E stain preparations of tissue sections of normal cervical tissue and three grades of

cervical carcinoma in situ. This data set extends the 61 images used in previous studies

[3, 2]. In this study, expert pathologists (RZ, SF) provided CIN grades for the whole

epithelium image and for the 10 vertical segments into which each image was partitioned

[Figure 3 and Table 1].

Note that, the CIN grades from the expert pathologists for the individual vertical

segments within an image sometimes vary between the experts and that the CIN grades

for the individual vertical segments can be different from the whole image. The ground
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Figure 3. Epithelium image example with vertical segment images (I1, I2, I2,...,I10) deter-
mined from bounding boxes after dividing the medial axis into ten line segment approxi-
mations after medial axis computation.

truth is given as two groups of CIN grades for every segment out of our 118-image data

set. Each single label is specified as a class number to denote the dysplasia and severe

dysplasia. In this case, the pathologists gave "1" as Normal, "2" as CIN1, "3" as CIN2

and "4", as CIN3. A pathologist labeled a vertical segment "0" if the pathologist was not

able to make any CIN grade decision due to insufficient image information or detail (the

9th segment in image 2 [RZ] and the 9th and 10th segment in image 4 [SF] [Table 1]).

Since 118 digitized histology images are used in this study to create vertical segments for

feature extraction and classification, 1180 segments in total are labeled by both pathologists

to generate two groups of ground truth, respectively. Table 1 provides CIN labels from both

pathologists (RZ/SF) for the 10 vertical segments from 10 histology images as examples of

the experimental data set.

Table 1 shows that the two pathologists agree with each other on some of the

segments and disagree on others. For example, from image 8, RZ assigns every segment

as CIN3 (4), but SF only labels the 3rd, 4th, 6th, and the 9th as CIN3 (4) with the others

as CIN2 (3). Part of the rationale for this paper is to show that the classification results for
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Table 1. Ground truth cervical intraepithelial neoplasia grade labels for both experts

Image
name

Individual segment classifications (RZ/SF) Image
classification(RZ/SF)1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

1 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
2 4/4 3/4 3/3 4/3 3/3 4/3 3/4 3/4 0/4 4/3 3/3
3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
4 4/4 4/4 4/4 4/3 4/2 4/2 4/2 4/3 4/0 4/0 4/4
5 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/3 3/3 3/3 3/3
6 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1
7 4/3 4/3 4/3 4/3 4/3 4/3 4/3 4/3 4/4 4/4 4/4
8 4/3 4/3 4/4 4/4 4/3 4/4 4/3 4/3 4/4 4/3 4/4
9 3/2 3/3 3/4 3/3 3/3 3/4 3/3 3/4 3/3 3/4 3/3
10 3/1 3/1 3/2 3/1 2/2 2/1 2/2 2/2 3/3 3/2 3/3

the individual vertical segments and the whole image are within the variation of the expert

pathologist designations and that there is inter-pathologist variation within an image and

for the image-based classification[Table 1].

Three methods were used for assigning "truth labels" to the individual vertical seg-

ments, including the "0" labeled segments that the pathologists did not label, producing three

(slightly) different sets of ground truth labels for evaluating the classification algorithms

developed. The three methods examined to determine ground truth labels are:

1. Use the image label for every single segmentation regardless of the individual labels,

which are denoted as "Image Label"

2. Keep the pathologist labels for the non-"0" segments and replace the "0" segments

with the majority of individual labels by the pathologist within these 10 segments,

which are denoted as "Major Sub"

3. Keep the pathologist labels for the non-"0" segments and replace the "0" segments

with the whole image label by the pathologist, which are denoted as "Image Sub."
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2.2. Medial Axis Detection and Segments Creation. The method for computing

the medial axis, which is based on the distance transform, is presented in detail[2].The

resulting medial axis is partitioned into ten segments of approximately equal length, per-

pendicular line slopes are estimated at the mid-points of each segment, and vertical lines

are projected at the end points of each segment to generate ten vertical segments for anal-

ysis. The epithelium image is partitioned into ten vertical segments to facilitate localized

diagnostic classification on sub-regions within the epithelium.

2.3. Feature Extraction. Features are computed for each of the ten vertical seg-

ments of the whole image, I1, I2, I2,...,I10. All the segments of one whole image are

feature-extracted in a sequence, from left to right, I1- I10 [Figure 3]. These features were

developed in previous research[2]. A summary of those features is presented here. In total,

five different types of features were computed, including: (1) Texture features (F1-F10)[3],

(2) cellularity features (F11-F13), (3) nuclear features (F14, F15), (4) acellular (light area)

features (F16-F22), (4) combination features (F23, F24), and (5) advanced layer-by-layer

triangle features (F25-F27)[2].

2.3.1. Texture andColor Features. The texture and color featureswere used in our

previous work and are described[2]. The texture features include contrast (F1), energy (F2),

correlation (F3), and homogeneity (F4) of the segmented region, combined with the same

statistics (contrast, energy, and correlation) generated from the gray level co-occurrence

matrix (GLCM) of the segment (F5-F10). These features are generated using the statistics

of the GLCM matrix[2, 6, 7] to describe the contrast and the uniformity of the region.

2.3.2. Nuclear Features. The dark shading color feature discussed in the previous

research[2] corresponds to nuclei, which appear within epithelial cells in various shapes

and sizes. Nuclei tend to increase in both number and size as the CIN level increases[1].

This linkage between nuclear characteristics and CIN levels motivates our development of
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Figure 4. Image examples of nuclei detection algorithm. (a) Image with preliminary nuclei
objects obtained from clustering (Step 1). (b) Image closing to connect nuclei objects (Step
2). (c) Image with hole filling to produce nuclei objects (Step 3). (d) Image opening to
separate nuclei objects (Step 4). (e) Image with nonnuclei (small) objects eliminated (Step
5) .

algorithms for nuclei detection feature extraction. In this research, the algorithms of nuclei

detection and nuclear feature extraction are developed to obtain features to facilitate CIN

classification. Specifically, the following steps are performed [Figure 5]:

Step 1. Cluster the histogram-equalized image into clusters of background (darkest),

nuclei and lighter (lightest) epithelium regions using the K-means algorithm (K = 4).

Generate a mask image containing the pixels closest to the nuclei cluster (second darkest)

Step 2. Use the Matlab function imclose with a circular structuring element of

radius 4 to perform morphological closing on the nuclei mask image

Step 3. Fill the holes in the image from Step 2 with Matlab’s im f ill function for

this process

Step 4. Use the Matlab’s imopen to perform morphological opening with a circular

structuring element of radius 4 on the image from Step 3
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Figure 5. Misclassification example of a cervical intraepithelial neoplasia 2 image labeled
as a cervical intraepithelial neoplasia 3.

Step 5. Eliminate small area noise objects (nonnuclei objects) within the epithelium

region of interest from the mask in Step 4, with the area opening operation using the Matlab

function bwareaopen.

2.3.3. Acellular Features. Extracting the light area regions is challenging due to

the color and intensity variations in the epithelium images. Each of the L*, a*, and b*

planes of CIELAB color space were evaluated for characterizing the light areas. It was

empirically determined that L* provides the best visual results. The following outlines the

methods used to segment the histology images:

Step 1. Convert the original image from RGB color space to L* a* b* color space,

then select the luminance component L* [Figure 4a]
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Step 2. Perform adaptive histogram equalization on the image from Step 1 using

Matlab’s adapthisteq. Adapthisteq operates on small regions (tiles)[2] for contrast en-

hancement so that the histogram of the output region matches a specified histogram and

combines neighboring tiles using bilinear interpolation to eliminate artificially induced

boundaries [Figure 4b]

Step 3. After the image has been contrast-adjusted, the image is binarized by apply-

ing an empirically determined threshold of 0.6. This step is intended to eliminate the dark

nuclear regions and to retain the lighter nuclei and epithelium along with the light areas

[Figure 4c]

Step 4. Segment the light areas using the K-means algorithm based on [3, 8], with K

= 4. The K-means algorithm input is the histogram-equalized image from Step 2 multiplied

by the binary thresholded image from Step 3. A light area clustering example is given in

Figure 4d.

Step 5. Remove from the image all objects having an area <100 pixels, determined

empirically, using the Matlab function regionprops[9]. A morphological closing is per-

formed with a disk structure element of radius 2. An example result is shown in Figure

4e.

2.3.4. Combination Features. After both the nuclear features and the acellular

features were extracted, combination features were calculated with the intent to capture the

relative increase in nuclei numbers as CIN grade increases. One is the ratio of the acellular

number to the nuclei number (F23), and the other is the ratio of the acellular area to the

total nuclei area (F24).

2.3.5. Triangle Features. In this research, the Delaunay triangle method was used,

but restrict the geometrical regions it can act upon, as follows. Before forming the Delaunay

triangles,[4, 10] with the vertices provided by the nuclei detection results from nuclear

feature section, the vertical segment being processed is sub-divided into three vertical

layers, as illustrated in Figure 16 in [2]. The aim is to associate the presence of increasing
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Figure 6. Misclassification example of a cervical intraepithelial neoplasia 2 image labeled
as a cervical intraepithelial neoplasia 1.

nuclei throughout the epithelium with increasing CIN grades, namely: abnormality of the

bottom third of the epithelium roughly corresponds to CIN1; abnormality of the bottom

two-thirds, to CIN2; and abnormality of all three layers, to CIN3. These layers are referred

to as the bottom, mid, and top.

3. EXPERIMENT PERFORMED

Experiments were performed using the data set consisting of 118 digitized histology

images, which were CIN labeled by two experts (RZ and SF) (RZ: 38 normal, 26 CIN1, 26

CIN2, and 26 CIN3; SF: 40 normal, 25 CIN1, 24 CIN2, and 29 CIN3).

3.1. Fusion-based Cervical Intraepithelial Neoplasia Grade Classification of

Vertical Segment Images Labeling.

Labeling. The experimental data set consists of 118 digitized histology images with

vertical segments obtained using the medial axis detection and vertical segment partitioning

algorithms presented in Section II. An additional image from previous research [2] was used
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for image processing parameter determination. For this experimental data set, CIN grades

were obtained for the 10 vertical segments from each image from both pathologists (RZ/SF),

and the image analysis, feature extraction and classification approaches presented in Section

II were performed for each vertical segment image. Epithelium image truth labels from

both pathologists (SF and RZ) are used as training and testing labels, unlike our previous

study[2] where only one expert’s truth label was used in training and testing. As described

in Section IIA, the pathologists were unable to assign labels for some segments, for which

the Image Label, Major Sub, and Image Sub methods were used to generate "truth labels"

for these segments (Section II for definitions).

Classification. For CIN discrimination, all the features extracted from the vertical

segment images were used as inputs to SVM, LDA, logistic regression, and random forest

classifiers. The LIBSVM[11] implementation of the SVM and LDA classifiers were used,

as in our previous study.[4] The SVM implementation uses a linear kernel with four weights

as the fractions of the images in each CIN class (normal, CIN1, CIN2, and CIN3). Logistic

regression had a multinomial logistic regression (MLR) model for predicting probabilities

for each class [12]. Random forest [13, 14], used combinations of tree predictors such that

each tree depends on the values of a random vector sampled with the same distribution for

all trees in the forest [14, 15].

Individual features were normalized by subtracting the mean training set feature

value and dividing by the standard deviation training set feature value [2]. In this approach,

the classifier is trained based on the individual segment feature vectors for all but the left-

out epithelium image (test image), which was called "leave-one-out" approach [2]. Four

approaches were explored for using the CIN expert truth labels for the individual vertical

segments and the whole epithelium image for classifier algorithm training and testing,

including:

1. SF-SF CIN labels as training-testing labels

2. RZ-RZ CIN labels as training-testing labels
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3. RZ-SF CIN labels for training-testing sets

4. SF-RZ CIN labels for training-testing sets.

Using the different pathologist CIN label training and test combinations for vertical

segment classification, the influence on inter- and intra-pathologist CIN truth labels was

examined on individual vertical segment classification accuracy.

Then, the predicted CIN grades of the vertical segment images were fused to obtain

the CIN grade of the entire test epithelium image. The fusion of the CIN grades of the

vertical segment images was completed using a voting scheme [2]. The CIN grade of the test

image was assigned to the most frequently occurring class over the ten vertical segments. If

a tie was found among the most frequently appearing case of CIN grades, the test image was

assigned with the higher/highest one (i.e., the most severe diagnostic grade). For example, if

there was a tie between CIN2 and CIN3, then the image was assigned CIN3. As previously

explained in Section II, there were four different ways of conducting our experiments by

using different combinations of the labels from the two pathologists for training and testing.

This resulted in four different groups of classification results. The input images for each

group are the same 118 histological images.

Scoring schemes. Two scoring schemes were used for evaluating the results. Specif-

ically, the same schemes were utilized as [2] for compatibility with those results. The

schemes are summarized below: Scheme 1 (exact class label): The first approach is exact

classification, which means that a label was considered correct if and only if the class label

assigned to the test image by our algorithm was the same as the ground truth label. Scheme

2 (normal vs. CIN): For the second scoring scheme, the classification result was considered

correct if and only if when a ground truth Normal grade was classified Normal by our

algorithm and a ground truth CIN (1-3) grade was classified as CIN by our algorithm.

3.2. Feature Evaluation and Selection. In [2], a SAS implementation of MLR

[13, 16, 17, 18, 19] and a Weka attribute information gain evaluator were utilized for

feature selection. MLR was used for modeling nominal outcome variables, and the P values
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obtained from the MLR output were utilized as criteria for selecting features when the

P value is less than an appropriate alpha (α) value[16, 17, 18, 19]. For Weka analysis,

the features are ranked in an order by "attributes information gain ratio" where the higher

the ratio, the more significant the feature will be[2]. Both feature evaluation methods

are applied in this study to improve the classification outcomes as well as to keep the

classification results comparable to the study by Guo et al[2]. Feature selection was done

based on the whole image labels of RZ applied to the individual vertical segments.

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. Experimental Results. As explained in the previous section, the vertical seg-

ment image classifications (CIN grading) were obtained using SVM, LDA, logistic, and

random forest classifiers with a leave-one-image-out approach based on all the twenty-seven

features generated for each vertical segment. This yields classification labels for each of

the 10 vertical segments in an epithelium image. Then, the CIN classification for the whole

epithelium image is obtained by fusing the vertical segment labels using a voting scheme.

The performance of these epithelium image classifications was evaluated using the two

scoring schemes presented in Section III.

Table 2. Individual vertical segment exact class label classification results based on all 27
features using same expert labels for training-testing sets (RZ-RZ and SF-SF)

SVM
(RZ-RZ/SF-SF)

LDA
(RZ-RZ/SF-SF)

Logistic
(RZ-RZ/SF-SF)

Random tree
(RZ-RZ/SF-SF)

Imagelabel (%) 62.71/64.92 60.16/63.23 81.29/80.10 78.38/76.18
Image sub (%) 69.32/70.59 71.10/69.52 75.64/76.27 76.27/75.42
Major sub (%) 69.40/69.58 69.52/71.61 74.23/73.64 73.39/71.52

For the first set of experiments, individual vertical segment classification is exam-

ined. Each individual vertical segment is assigned a CIN grade label using the Image Label,

Major Sub, and Image Sub approaches from Section IIA for training and testing the SVM,

LDA, logistic regression, and random forest classifiers. For these experiments, individual



62

Table 3. Features with corresponding p-values and attribute information gain ratio

Feature p-value AIGR Feature p-value AIGR

F1 0.0024 0.223 F15 >0.05 0.691
F2 >0.05 0.25 F16 >0.05 0.2645
F3 0.0312 0.018 F17 >0.05 0.2669
F4 0.0433 0.230 F18 0.0168 0.3147
F5 >0.05 0.1819 F19 >0.05 0.2513
F6 >0.05 0.0331 F20 >0.05 0.4230
F7 0.0011 0.2057 F21 0.0263 0.3128
F8 >0.05 0.079 F22 >0.05 0.3295
F9 0.0007 0.080 F23 >0.05 0.3975
F10 0.0001 0.038 F24 >0.05 0.4852
F11 >0.05 0.223 F25 >0.05 0.1641
F12 0.0003 0.168 F26 0.0001 0.1557
F13 0.0125 0.2411 F27 0.0001 0.2994
F14 0.0301 0.1697

vertical segment and whole image CIN labels are from the same expert for classifier training

and testing, denoted as RZ-RZ and SF-SF for the two experts, respectively. Individual verti-

cal segment exact class classification results are given in Table 2. From Table 2, the highest

individual classification accuracy (81.29%/80.10% based on labels from RZ-RZ/SF-SF,

respectively) for exact classification was obtained using the Logistic classifier based on the

Image Label approach for assigning CIN class labels to the individual vertical segments

(all vertical segments within an image are assigned the image CIN label). Accuracies of

62.71%/64.92% (RZ-RZ/SF-SF) and 60.16%/63.23% (RZ-RZ/SF-SF) were obtained using

the SVM and LDA classifiers, respectively, based on the Image Label approach for individ-

ual vertical segment labeling, which were used in [2](Note that "RZ-RZ" means that RZ’s

labels were used for both training and testing in the referenced experiment; likewise for SF).

The second set of experiments examined the impact of feature selection on CIN

classification accuracy for the individual vertical segments. For feature evaluation and

selection experiments, all 27 features extracted from the individual vertical segments with

CIN truth labels from RZ were used as inputs to the SAS MLR algorithm as well as the
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feature selector in Weka. A value of α = 0.05 was used to determine statistical significance

for the input features for the SAS MLR. The Weka feature selector ranks the features by

an "attribute information gain ratio" (AIGR) which ranges from 0 to 1, with larger values

indicating greater significance for the feature. The overall twenty-seven features with P

values are presented in Table 3.

Based on the statistical significance of all the 27 features, the feature set selected

using α = 0.05 consisted of F1, F3, F4, F7, F9, F10, F12, F13, F14, F18, F21, F22, F23,

and F24. Note that all these features were selected based on the SAS MLR test of statistical

significance except for F22, F23, and F24, which were selected since they have a relatively

high information gain ratio (AIGR) among the 27 features [from 2nd place to 4th place in

Table 3][2]. We compared discrimination accuracies using this reduced set of features to

the results using the entire 27-feature set for fusion-based whole image classification based

on (Section III) for combining the individual vertical segment classifications. Individual

vertical segment classifications were generated using the SVM, LDA, Logistic Regression,

and Random Forest classifiers based on the Image Label, Major Sub, and Image Sub

approaches for obtaining individual vertical segment CIN labels for classifier training. For

these experiments, the training and testing CIN labels were from the same expert, denoted

as RZ-RZ and SF-SF, respectively. Exact class label and normal versus CIN classification

whole image results are reported for the different classifiers based on all 27 features in Table

4 and the reduced feature set in Table 5.

In Table 6, the best confusionmatrix result obtained using RZ-RZ labels for training-

testing for the reduced feature set is shown, with an exact class label classification of 88.98%

and normal versus CIN classification of 94.92%. Our highest previous results[4] for a 61

image dataset were 88.5% (exact classification accuracy) and 95.1% (normal vs. CIN) using

the LDA classifier and RZ-RZ training-testing labels. For comparison purposes, Table 7
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Table 4. Fusion-based whole image percentage correct cervical intraepithelial neoplasia
discrimination rates using all features using the same expert for training and testing sets

Classification
scheme

SVM
(RZ-RZ/
SF-SF)

LDA
(RZ-RZ/
SF-SF)

Logistic
(RZ-RZ/
SF-SF)

Random tree
(RZ-RZ/
SF-SF)

Image
Label

Exact 73.31/74.83 76.02/79.57 86.44/85.51 79.66/79.66
Normal vs. CIN 87.29/88.98 84.75/85.59 94.07/93.22 88.14/88.98

Image
sub

Exact 78.38/76.95 79.16/79.57 83.64/80.10 80.52/79.49
Normal vs. CIN 91.53/92.37 93.22/92.37 96.61/91.53 90.68/89.83

Major
sub

Exact 78.38/79.83 76.95/79.66 82.71/81.69 76.29/78.14
Normal vs. CIN 84.75/86.44 87.29/87.29 94.07/94.92 84.75/86.44

Table 5. Fusion-based whole Image percentage correct cervical intraepithelial neoplasia
discrimination rates using reduced features with the same expert for training and testing sets

Classification
scheme

SVM
(RZ-RZ/
SF-SF)

LDA
(RZ-RZ/
SF-SF)

Logistic
(RZ-RZ/
SF-SF)

Random tree
(RZ-RZ/
SF-SF)

Image
Label

Exact 75.42/76.27 75.42/74.58 88.98/84.75 80.51/80.51
Normal vs. CIN 82.20/83.05 81.36/82.20 94.92/92.37 90.68/92.37

Image
sub

Exact 75.42/73.73 72.88/72.03 83.05/82.20 79.66/81.36
Normal vs. CIN 84.75/88.14 77.12/78.81 91.53/90.68 87.29/89.83

Major
sub

Exact 73.73/72.88 76.27/71.19 81.36/83.90 80.51/80.51
Normal vs. CIN 85.59/83.90 83.05/81.36 91.53/92.37 87.29/88.14

presents the best confusion matrix result using RZ-RZ for training-testing for all 27 features

on the 118 image set, which gives an exact class label classification of 86.44% and normal

versus CIN classification of 94.92%.

4.2. Analysis of Results. In this section, we analyze the classification results from

Section IVA, in four different ways: (a) a performance comparison among the classifiers

(SVM, LDA, logistic, random forest) and (b) a performance comparison between previous

research[4] and this study, (c) the impact on performance using intra-and inter-pathologist

CIN truth labels for the classifier training and testing sets, and (d) a performance comparison
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Table 6. Best confusion matrix results for fusion-based whole image classification using
reduced feature set

Expert RZ-RZ: Logistic
Normal (40) CIN1 (25) CIN2 (24) CIN3 (29)

Normal 36 2 0 0
CIN1 2 22 3 0
CIN2 2 1 21 3
CIN3 0 0 0 26

Table 7. Best confusion matrix results for fusion-based whole image classification using all
27 features

Expert RZ-RZ: Logistic
Normal (40) CIN1 (25) CIN2 (24) CIN3 (29)

Normal 35 2 0 0
CIN1 2 22 2 1
CIN2 3 1 20 3
CIN3 0 0 2 25

between our classification results and the baseline results from the pathologists. The correct

recognition rates for all classifiers investigated are presented using training-testing labels

from RZ-SF/SF-RZ for all 27 features [Table 8] and the reduced feature set [Table 8].

FromTables 5 and 9, the logistic classifier exact class experiments for corresponding

truth labels (Image Label, Image Sub, Major Sub) when reduced features are employed as

the input feature vectors. The logistic classifier yielded amaximum improvement of 13.56%

(75.42% from SVM and LDA to 88.98% for RZ-RZ) when using the truth tables from a

single pathologist and a maximum improvement of 10.76% (71.95% from SVM to 82.71%

for RZ-SF) using inter-pathologist truth tables as training and testing labels. In addressing

with the unknown segments labeled as "0" by the pathologists, the labelingmethods of Image

Label and Major Sub had an impact on the overall classification results; the classification

accuracies are improved when using the same classifiers but different labeling methods than

the ones in previous research[2].
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Table 8. Fusion-based whole image normal versus cervical intraepithelial neoplasia and
exact cervical intraepithelial neoplasia discrimination rates using all 27 features (F1-F27)
with expert training-testing labels of RZ-SF and SF-RZ

Classification
scheme

SVM
(RZ-RZ/
SF-SF)

LDA
(RZ-RZ/
SF-SF)

Logistic
(RZ-RZ/
SF-SF)

Random tree
(RZ-RZ/
SF-SF)

Image
Label

Exact 72.88/71.95 72.88/72.88 81.36/78.81 72.88/71.19
Normal vs. CIN 86.44/83.9 84.75/83.9 94.92/91.52 83.9/83.05

Image
sub

Exact 75.42/72.88 75.42/71.19 78.81/77.29 75.42/76.19
Normal vs. CIN 87.29/84.75 88.14/88.14 83.9/83.05 86.44/83.9

Major
sub

Exact 72.88/71.19 72.88/72.88 77.29/76.95 72.88/73.73
Normal vs. CIN 83.05/84.75 81.36/82.20 82.2//84.75 81.36/82.2

Table 9. Fusion-based whole image normal versus cervical intraepithelial neoplasia and
exact cervical intraepithelial neoplasia discrimination rates using reduced features with
training-testing labels of RZ-SF and SF-RZ

Classification
scheme

SVM
(RZ-RZ/
SF-SF)

LDA
(RZ-RZ/
SF-SF)

Logistic
(RZ-RZ/
SF-SF)

Random tree
(RZ-RZ/
SF-SF)

Image
Label

Exact 71.95/72.45 72.88/75.42 82.71/78.39 75.42/75.42
Normal vs. CIN 83.05/84.75 83.9/87.29 90.68/88.14 82.2/84.75

Image
sub

Exact 75.42/74.58 74.58/73.73 76.95/77.29 75.42/76.19
Normal vs. CIN 86.44/85.59 88.14/88.14 87.29/88.98 83.9/85.59

Major
sub

Exact 72.88/71.19 72.88/72.88 77.29/76.95 72.88/73.73
Normal vs. CIN 84.75/85.59 83.9/85.59 81.36//87.29 80.51/82.20

From the classification results for individual segment classification presented in

Table 2 of Section IV, the logistic classifier gave an improvement of 10.19% (71.10% from

LDA to 81.29% for RZ-RZ) and 8.49% (71.61% from LDA to 80.10% for SF-SF). Among

all the results generated by the classifiers in this study, the highest individual segment

classification accuracy is obtained with the logistic classifier, with the correct recognition

rate of 81.29%. Compared with the accuracy obtained by the classifiers used in the previous

research [2] SVM/LDA, the highest accuracy for the individual segment classification is

71.61%. An improvement of 9.32% is obtained by using logistic classifier. For fusion-based
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whole image classification using the complete feature set (27 features), shown in Table 4

of Section IV, a decrease of 0.44% (88.5% LDA [2] to 86.44% logistic in this study) is

obtained as the exact class image classification accuracy. A decrease of 2.6% (from 96.7%

[2]LDA to 94.10% logistic in this study) is obtained as normal versus CIN correct rate.

For the epithelium classification results using the reduced feature set shown in Table 5, a

minimum improvement of 3.73% (from 85.25%[2] for LDA classifier to 88.98% in this

study) is found. It can be observed that some of the classification accuracies drop when

using one expert label as training and the other one as testing, compared with the results in

Tables 8 and 9. For the logistic classifier, the highest exact classification rate was 88.98%

[105/118 in Table 5] which was higher than 82.71% using one expert’s labels for training

(RZ) and the second expert’s labels (SF) for testing [Table 9].

In examining the performance of our classification results, we also use the pathol-

ogists’ truth labels of epithelium images to generate a baseline for exact classification

accuracy. As shown in Table 10, the confusion matrix is obtained by fusing the pathologist

truth labels of individual labels with the same fusion techniques of voting scheme which

has already been explained in Section II. Note that for the individual vertical segment labels

fusion; only the 61 images dataset is utilized to remain the study consistent with the previous

study [2]. Table 10 highlights the variation in CIN grading for the expert pathologists for a

61 image data set, which differs from the 118 digitized histology image set used in this study.

From Table 10, the experts RZ and SF had an exact class agreement in 78.7% (48/61) of

the epithelium images. The experts differed by one CIN grade on the remaining 13 images

(off-by-one). The exact class label fusion-based CIN discrimination results obtained in this

study are comparable to the 78.7% expert agreement rate. The exact class LDA classifier

result of 76.02% from Table 4 based on the training-testing CIN labels from RZ (denoted

in this study as RZ-RZ) is based on the benchmark approach from the study by Guo et al.

[2], where 88.5% is the exact class correct classification rate based on a 61 image data set

from the study by Guo et al [2]. It should be noted that the 118 digitized histology image



68

set used in this research is a different data set than the 61 images from [2]. Consequently,

the exact class discrimination rate of 76.02% provides the benchmark for comparing results

in this study. The logistic regression classifier for the 118 image set yielded exact class

discrimination results as high as 88.98%/85.51% (RZ-RZ/SF-SF) using the same expert

for training-testing CIN labels and the image CIN label for each individual vertical seg-

ment, a 12.96%/5.94% (RZ-RZ/SF-SF) improvement for single expert over the baseline

method[2]. The logistic regression method gave the highest vertical segment classification

rate of 81.29%/80.10% (RZ-RZ/SF-SF), which fueled the higher fusion-based image clas-

sification. Overall, the CIN classification rates tended to be higher using the training-testing

labels for the same expert than for training labels from one expert and testing labels from

the other expert. Based on the logistic classifier, the same expert exact label results were

88.98%/85.51% (RZ-RZ/SF-SF) compared to training labels from one expert and testing

labels from the other expert 82.71%/78.39% (RZ-SF/SF-RZ), an increase of 6.27%/7.12%,

respectively. This result can be used to highlight the impact of building larger data sets

where different experts are involved in truthing or diagnostically assessing parts of the data

set.

Table 10. Confusion matrix classification baseline obtained from pathologist ground truth
labels

Fusion-based classfication (RZ/SF)
Normal (16/14) CIN1 (13/14) CIN2 (14/17) CIN3 (18/16)

Normal 15/10 0/0 0 0
CIN1 1/4 13/13 2/3 0/0
CIN2 0/0 0/1 12/14 1/3
CIN3 0/0 0/0 0/0 17/13

For the logistic and random forest classifiers, which performed better in this study,

it appears that using the same CIN label for each vertical segment in training and testing the

different classifiers compared to using the local, individual expert determined CIN labels

for training and testing the different classifiers resulted in slightly higher overall exact label
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discrimination rates; there does not appear to be a corresponding trend in the exact label

classification rates for the SVM and LDA classifiers. Guo et al[2]. reported the image-

based exact label discrimination rates were much lower than the fusion-based voting of

the individual vertical segment exact label classifications. It appears that the local CIN

information from the individual vertical segments contributes to enhanced image-based

exact label discrimination. However, variations in the vertical segment CIN truthing for an

image do not appear to provide an improvement to an overall image CIN assessment.

The confusion matrix classification results presented in Table 9 show that by fusing

the pathologists’ labels without any prediction from classifiers, RZ’s labels give an exact

classification accuracy of 93.44% (57/61) and SF’s labels indicates an exact correct recogni-

tion rate of 81.97% (50/61). Moreover, from the exact classification accuracy, we obtained

in this study, the highest result of 88.98% falls in the range of this baseline provided from

those two pathologists.

Table 11 presents a summary of the highest CIN classification results determined

from this study for the different classifiers and training-testing expert truth label combi-

nations and the highest classification results obtained from the experiments performed[2].

From Table 11, the exact class label results for the 118 image set examined in this study

are comparable to the results reported for the 61 image set[2] based on all 27 features and

the reduced feature set. Individual vertical segment results were not reported[2]. How-

ever, applying the same LDA classifier[2] to individual vertical segment classification from

the 118 image set in this study showed an improvement of 16.87% (from LDA classifier

60.16%/63.23% (RZ-RZ/SF-SF)) to logistic regression 81.29%/80.10% from [Table 2]).

In addition, comparing the LDA approach from[2] for fusion-based image classifier for

the 118 image set yielded an improvement of 13.56%/10.17% with the logistic regres-

sion classifier (from LDA classifier 75.42%/74.58% [RZ-RZ/SF-SF] to logistic regression

88.98%/84.75% from [Table 5]) using the reduced feature set, and an improvement of

12.96/5.94% (from LDA classifier 76.02%/79.57% [RZ-RZ/SF-SF]) to logistic regression
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88.98%/85.51% from [Table 4]) using all 27 features. Since exact class label is the most

stringent of the scoring schemes we used, we interpret these results as showing a sub-

stantial gain in classification accuracy when using the logistic regression classifier for the

extended image dataset of 118 histological images over the approaches explored in previous

research[2].

Table 11. Summary of best classification accuracies: Current study versus previous research
versus current

LDA [2] (with
61 images):
RZ-RZ
/SF-SF

Current study:
RZ-RZ
/SF-SF

Current study:
RZ train
-SF test

Current study:
SF train
-RZ test

Fusion-based
classification
using
27 features (%)

Exact 88.5a/82.0a 86.44/85.51a 81.36a 78.81a

Normal vs. CIN 96.7a/90.2a 96.612b/94.92c 94.92a 91.52a

Individual
segment
classification (%)

Exact Not reported 81.29a/80.10a

Fusion-based
classification using
reduced features (%)

Exact 88.52a/85.3a 88.98a/84.75a 82.81a 81.36c

Individual vertical segment labeling approach: aImage label, bImage sub, cMajor sub. CIN:
Cervical intraepithelial neoplasia

In examining the classification results, the majority of the exact class label classifi-

cation errors are off-by-one CIN grade. Figure 5 shows an example of an image with expert

label of CIN2 (RZ) that was labeled as a CIN3 by the LDA classifier.
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From the basal membrane near the top of the epithelium in Figure 5 across the

epithelium (downward toward the bottom), the nuclei distribution is relatively uniform

in certain regions. The nuclear features, as well as the layer-by-layer Delaunay triangle

features, highlight the relatively uniform distribution of nuclei in the vertical segments

containing those regions, which correspond to a higher CIN grade. In other regions of the

epithelium, the nuclei density is not as uniform across the epithelium, which could provide

for a less severe CIN grade label for the epithelium. Figure 6 shows an example of an image

with pathologist label of CIN2 (RZ) that was labeled as a CIN1 by the logistic classifier.

This image has the texture and nuclei distribution which is more consistent with a CIN2

grade. However, the relative small nuclei area and lower color luminance in the epithelium

leads to a lower CIN grade misclassification.

The overall algorithm was found to be robust in successful identification of nuclei.

To evaluate nuclei detection, we manually counted nuclei in the two lightest-stained slides

and the two darkest-stained slides. An average of 89.2% of the total number of nuclei in all

four slides was detected. The 89.2% nuclei detection rate observed represents an advance

over the results of Veta et al.[20], who detected nuclei at rates of 85.5%-87.5% (not strictly

comparable, as these results were for breast cancer). The finding of a high percentage of

nuclei in the lightest-and darkest-stained slides suggests that the algorithm is adaptable and

robust with regard to varying staining.

The approach in this study expands the techniques of other studies that focus on the

nucleus. We show in this work that the transition from normal to CIN3 affects the whole

cell. We have shown that not only nuclei, but features of intercellular spaces are changed

due to the more rapidly growing cells. Thus, one of the top four features by P value is the

proportion of regions of cytoplasm in the image (F12).
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5. CONCLUSION

In this study, we extended a localized, fusion-based image analysis approach for

CIN classification to 118 digitized histology images. Twenty-seven features were explored,

including the layer-by-layer triangle features and the nuclei as well as acellular features, as

developed in previous research.[4] We conducted CIN discrimination experiments based

on CIN truthing of the 118 image set by two pathologists (RZ/SF), including: (1) SF’s CIN

labels as training labels and testing labels. (2) RZ’s CIN labels as training labels and testing

labels. (3) RZ’s CIN labels as training labels and SF’s labels as testing labels. (4) SF’s

CIN labels as training labels and RZ’s labels as testing labels. The vertical segments were

classified using logistic regression, SVM, or LDA classifier, based on one of the four ways

of labeled training data mentioned with a leave-one-out approach. We used a voting scheme

to fuse the vertical segment classifications into a classification of the whole epithelium

image. We evaluated the classification results with three scoring schemes, and compared

the classification differences by classifiers, by scoring schemes, and the classification re-

sults of this research as compared to our previous work[2]. Experimental results showed

that the logistic and random tree classifiers outperformed the benchmark SVM and LDA

classifiers[2]. The logistic regression classifier gave exact class discrimination results as

high as 88.98%/85.51% (RZ/SF) using the same expert for training-testing CIN labels and

the image CIN label for each individual vertical segment, which is a 13.56%/10.17% (RZ-

RZ/SF-SF) improvement for single expert over the baseline method[2] using the reduced

features. The CIN classification rates tended to be higher using the training-testing labels

for the same expert than for training labels from one expert and testing labels from the other

expert. The exact class label fusion-based CIN discrimination results obtained in this study

are comparable to the exact class expert agreement rate.
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ABSTRACT

Filtering through ever increasing sources of information to find relevant information

for clinical decisions is a challenging task for clinicians. In biomedical publications, there

are a variety of items that can provide evidence to aid the decision making process. One

example is illustration image analysis and classification, which has been used to characterize

and distinguish specific image modalities; this capability in turn has been used to assist in

the evidence gathering process. This paper examines clinical decision support applications

and extends previous research for illustration modality discrimination analysis.
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Specifically, global, HSV histogram-based, and Gabor filter-based features are com-

pared to histogram-based features for modality classification on a set of 12,056 images from

2004-2006 biomedical publication issues of Radiology and Radio Graphics that were man-

ually annotated by modality (radiological, photo, etc.). Using a nearest neighbor classifier,

average modality discrimination results were obtained as high as 99.98% using correlated

features computed from Gabor filter spectral coefficients. These experimental results in-

dicate that image features, particularly correlation-based features, can provide modality

discrimination useful for clinical decision support applications.

1. INTRODUCTION

Clinical decision support (CDS) computer applications can potentially give health-

care professionals, patients, and researchers useful knowledge to improve healthcare and

health related decisions. Considering the large and ever growing repositories of biomed-

ical data, there is a demand for systems and tools to aid in finding useful information in

biomedical publications, text databases, image databases, electronic health care records,

clinical notes, and other sources, including full text, to support clinical decisions. The role

of images in providing information for CDS is examined in this study, where an "image"

can refer to visual materials in electronic healthcare records, databases, and articles in

biomedical publications. Biomedical images include conventional images (MRI, CT, PET,

for example), as well as illustrations, charts, and graphs. By moving beyond conventional

text-based searching to combining both text and image features ("visual features") in search

queries, the overall research goal is to enhance information retrieval from these entities

for clinical decision support. The approach and the tools investigated take advantage of

advances in Information Retrieval (IR), Content-based Image Retrieval (CBIR), and Natural

Language Processing (NLP).
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This research has focused on improving information retrieval of visual content

from biomedical publications, in particular, by using features of the images themselves in

combination with cues from text associated with the images. This includes using text from

figure captions, image modality information from visual features and accompanying text

[1, 2, 3], and annotation markers, such as arrows [4], letters or symbols embedded in images

[2].

From the CDS perspective, knowing and differentiating image modality can impact

an image’s utility and improve the relevance of query results. Some previous document

retrieval work has used the UMLS [5] term and concept query expansion engine in combina-

tion with fields from search results such as MEDLINE citations (e.g., titles, abstracts and

MeSH terms) and image features. This combination of attributes has been used to develop

"visual keywords" with the goal of approximating image semantic labels [6, 7]. Automatic

illustration identification has been explored for illustrations in medical publications which

may assist a clinician in determining the usefulness of a particular publication for patient

monitoring and treatment [1, 8, 9, 10].

A number of image features and techniques potentially useful for CDS have been

applied in the field of Content-Based Image Retrieval (CBIR), including: 1) features of

color, shape, and texture, and distance measures to compute similarity between images

[9, 10, 11, 12, 13]; 2) Hough transform shape detection for region of interest determination

and segmentation (has been used for lung images) [10]; 3) color analysis of stains for region

of interest labeling (has been used for malaria cell images) [14]; 4) connecting the user and

the database through a search engine with a feedback neural network architecture [15]; 5)

query system modeling human interaction [16]; 6) Big Data use with query forms [17]; 7)

use of image "key points" to identify salient parts of an image [18]; 7) combining image and

text information for matrix similarity assessment [19]; 8) three-dimensional image analysis

[8]; 9) latent topic models for computing image similarity [20]; 10) statistical model-
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based image feature extraction using the wavelet domain and a Kullback divergence-based

similarity measure for CBIR [21]; and 11) localized texture characterizations for CBIR for

remote sensing applications [22].

There have also been numerous studies which explore the use of text information in

for CDS applications, including: 1) extreme learning machine (ELM) and online sequential

extreme learning machine (OSELM) with cuckoo search [23]; 2) cluster-based external

expansion modelling with feedback [24]; 3) processing patient health record databases

for matching, retrieval, and identification using templates for similarity assessments [25,

26, 27, 28, 29]; 4) graph theory and neural networks for literature mining [30]; 5) hash-

based similarity searching [31]]; 6) fusion of image descriptors and text for medical image

retrieval [32]; and 7) automatically supplementing references with images from articles for

evidence finding [33]; and 8) demonstrating that image and text can yield retrieval accuracy

appropriate for clinical evidence [33].

Recent publications related to the use of biomedical images in clinical decision

support include: 1) an overview by Agarwal [34] of the critical steps part of computer-

assisted detection (CAD) and computer-assisted diagnosis (CADx) systems: preprocessing,

segmentation, region of interest (ROI) analysis, and assessment of detected structures and

linear discriminant analysis (LDA) and support vector machine (SVM) approaches for these

types of classification applications; 2) the use of image capture with mobile phone camera

technology for cervical cancer screening in low resource parts of Africa [35]; and 3) an

approach for vertebral level localization in spine radiographs as decision support for target

localization in spine surgery [36].

This study builds off research related to biomedical image retrieval in the literature

or related to image classification expected to be useful as preprocessing in clinical decision

support systems, including: 1) automatic classification in a hierarchical taxonomy of figures

from the biomedical literature [37]; 2) creating a comprehensive "visual ontology" for

images in the biomedical literature [38]; 3) image modality classification, separation of
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compound figures, and image retrieval using the 2013 ImageCLEF image set [39] (see [40]

for an overview of the results of all ImageCLEF biomedical image retrieval tasks 2004-

2013); 4) biomedical image modality classification using image clustering with respect to

specified features, expert labeling of the (relatively few) clusters, and image classification

based on the cluster labels [41]; 5) modality classification of biomedical literature figures

comparing the effectiveness of SVM classification using hand- crafted features versus a

deep learning classifier [42]; 6) extracting endoscopic images from the biomedical literature

[43] and distinguishing true endoscopic images from confounding images; 7) classification

of radiological signs in abdominal CT images [44]; 8) classification of view (frontal or

lateral) in chest X-ray images [45]; 9) classification of Visible Human biomedical images

into body segment classes ( head and neck, thorax, abdomen, pelvis, and lower limb) by

image features [46]; 10) methods to exploit "pointers" (such as arrows) or labels (such as

letters or numbers) embedded within biomedical images, for image analysis and retrieval

[47]; 11) the use of text associated with biomedical images to enhance image modality

classification [48] and retrieval [49, 50]; and 12) modality- based classification over a set

of 742 images manually annotated by modality (such as radiological or photo) selected

from the 2004- 2005 issues of the British Journal of Oral and Maxillofacial Surgery using

global, histogram- based, texture image illustration features, and basis function luminance

histogram correlation features computed from the annotated images [1].

In this paper, a CDS application is presented that extends the image feature devel-

opment work from [1]. As modality classification indices, basis function features created

from the HSV histogram and Gabor filter to correlation features computed from the lumi-

nance histogram are compared. These quantities are applied to a set of medical publication

illustrations and modalities examined in previous research [33]. The remainder of the

paper is organized as follows: 1) description of the features and feature groups investi-

gated, 2) modality classification experiments performed, 3) results and discussion, and 4)

conclusions.
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2. METHODOLOGY

2.1. Data SetExamined. In this study, images in variousmodalitieswere examined

from the ImageCLEFMed 2010 dataset [51] from 2004-2006 issues of Radiology and

RadioGraphics biomedical publications; these images were previously investigated by

Demner-fushman et al. in [33] for feature development and classification. Table 1 provides

a description of the categories of truthed images in this dataset. From Table 1, there are

2470 positive id images for all of the categories and 9586 negative id images for all of

the categories. Positive id images represent truthed images in the designated categories.

Negative id images are images from other categories that are similar to the designated

categories for comparison. Figure 1 presents an image example from each of the category

numbers listed in Table 1.

Table 1. Features Advances to Automatically Find Images for Application to Clinical
Decision Support

Category Label No. Positive
Id Images

No. Negative
Id Images

Doppler ultrasound images 286 513
CT images with emphysema 68 860

knee x-ray images 112 786
mediastinal CT 291 571

abdominal CT images showing
liver blood vessels 299 721

chest CT images showing
micro nodules 59 697

x-ray images containing
one or more fractures 105 727

CT liver abscess 59 775
MRI or CT of colonoscopy 236 601
photographs of tumours 320 640
images of muscle cells 79 778

images containing a Budd-Chiari malformation 74 708
gastrointestinal neoplasm 273 607

pulmonary embolism all modalities 209 602
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2.2. Features and Feature Groups Investigated. In prior research [1], the method

of correlating basis functions with the luminance histogram for an image was found to be

effective for discriminating image modalities [4]. These basis function correlation features

have been explored in dermatology imaging research to provide gray level distribution

information for skin lesion discrimination [1]. In this study, the basis function correlation

features are extended to include the HSV histogram, both smoothed and unsmoothed, and

Gabor features, denoted as Groups 1, 2, and 3, respectively. The details for these feature

calculations are presented in the following sections.

2.3. Features andFeatureGroups Investigated. In prior research [1], themethod

of correlating basis functions with the luminance histogram for an image was found to be

effective for discriminating image modalities [4]. These basis function correlation features

have been explored in dermatology imaging research to provide gray level distribution

information for skin lesion discrimination [1]. In this study, the basis function correlation

features are extended to include the HSV histogram, both smoothed and unsmoothed, and

Gabor features, denoted as Groups 1, 2, and 3, respectively. The details for these feature

calculations are presented in the following sections.

2.3.1. HSV Histogram Correlation Features. Group 1 and Group 2 features are

computed fromunsmoothed, and smoothed, one- dimensionalHSVhistograms, respectively

[20]. These features are computed as follows. Each pixel in the image contributes to the

histogramweighted values of its hue ’H’ and intensity ’V’, based on its saturation ’S’. Hence,

the histogram has two components, the ’color components’ representing the contribution

of hue from each pixel, and the ’gray component’, representing the contribution of the

intensity value at each pixel. The histogram retains the smoothness between the adjacent

components and this allows us to perform a window based smoothing of the histogram.

"Saturation projection" is used to determine the weights for hue and for intensity. The

weight is dependent on saturation level s. The weight of hue component, wh(s) ws and the

weight of intensity of component wi(s) are computed using the equations [13]:
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

(l) (m) (n)

Figure 1. Image examples (positive id) from each of the category numbers listed in
Table 1. (a) Doppler ultrasound image (reproduced with permission [52]). (b) CT image
with emphysema (reproduced with permission [53]). (c) Knee x- ray image (reproduced
with permission [54]). (d) Mediastinal CT image (reproduced with permission [55]). (e)
Abdominal CT image showing liver blood vessels (reproduced with permission [56]). (f)
Chest CT image showing micro nodules (reproduced with permission [57]). (g) X-ray
image containing one or more fractures (reproduced with permission [58]). (h) CT liver
abscess (reproduced with permission [59]). (i) MRI or CT of colonoscopy (reproduced
with permission [60]). (j) Photograph of tumor (reproduced with permission [61]). (k)
Image of muscle cells (reproduced with permission [62]). (l) Image containing a Budd-
Chiari malformation (reproduced with permission [63]). (m) Gastrointestinal neoplasm
(reproduced with permission [64]). (n) Pulmonary embolism all modalities (reproduced
with permission [65]).
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Table 2. Algorithm for generating HSV histogram.

For each pixel in image:
Convert RGB values to HSV

Update histogram as follows:
Hist[Round(H.MULT_FCTR)] = Hist[Round(H.MULT_FCTR)]+wh(s)
Hist[Round(2πMULT_FCTR)+Round(V/DIV_FCTR)]
=Hist[Round(2πMULT_FCTR)+Round(Hist[Round(V/DIV_FCTR)] +wi(s)

wh(s) = sγ where γ ∈ [0, 1] (1)

wi(s) = 1 − wh(s) (2)

The number of bins in the histogram is determined. Since the histogram consists

of two components, the total number of bins is found by summing the number of color

component bins and the number of gray component bins. Let Nh, Ng be the number of bins

for the color and gray components, respectively, and let N be the total number of bins in the

histogram [13]. Then

Nh = Round(2πMULT_FCT R) + 1 (3)

Ng = Round(Imax/DIV_FCT R) + 1 (4)

N = Ng + Nh (5)

where: MULT_FCT R : is the multiplying factor that determines the quantization level for

the hues. Imax is the maximum intensity (generally 255). DIV_FCT R is a division factor

that determines the number of quantized gray levels. The algorithm for generating the

HSV histogram, denoted as Hist, is shown in Table 2 [13]:
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Traditional histograms do not provide perceptual gradation of colors, but the HSV

histogram retains this property. Thus, image-based features are explored based on the

smoothed and unsmoothed histograms. The smoothing operation for the HSV histogram is

given using the following equation [13]:

Histw( j) =
i= j−N∑

j+N

w(i − j)Hist(i) (6)

where:

j ∈ [0, Nh+Nh-1] and w(i-j) = 2−|i− j |

For the image HSV histogram, let HistU and HistS denote the unsmoothed and

smoothed histograms, respectively. The basis function correlation features with the un-

smoothed and smoothed HSV histograms are defined as follows. The basis function

weighted density distribution (WDD) functions are given in Figure 2 below.

Figure 2. The WDD functions used for computing correlation-based features with the HSV
unsmoothed and smoothed histograms and the Gabor filter coefficients (reproduced with
permission [1])

The basis function WDD correlation features for a given image for unsmoothed

HSV histogram are computed as:

HistU,k( j) =
i=1∑
N

HistU(i)Wk(i) for k = 1, 2, ..., 6 (7)

HistU,k( j) =
i=1∑
N

| HistU(i) − HistU(i − 1) | Wk(i) for k = 7, 8, ..., 12 (8)



87

where HistU(0) = 0

The basis functionWDD correlation features for the smoothed HSV histogram are similarly

defined.

For each image, fifteen features are computed for the unsmoothed (Group 1) and smoothed

(Group 2) HSV histograms. These features are: 1) the bin number which has the maxi-

mum count (mostFrequentComponent), 2) the average value of the color and of the gray

components in the image (avgVal), 3) the standard deviation of the color and of the gray

components in the image HSV histogram (stdVal), 4) 12 basis function features, denoted

as hHistU,1-hHistU,12 for the unsmoothed HSV histogram features and hHistS,1-hHistS,12 for

the smoothed HSV histogram features.

2.3.2. Group 3. The final set of features explored are based on Gabor filters. Gabor

filters have been applied in CBIR for purposes such as extracting text regions from document

images [66] and for texture analysis [12, 67] . The Gabor features are computed from an

image using the following procedure. First, the image is resized to a square of dimensions

min_dim x min_dim, where min_dim is the minimum of the row and column dimensions

for the image. For example, a 512x768 image is resized to a 512x512 image. Second, if

the image is color, it is normalized by applying a local luminance variance. Otherwise, the

existing grayscale image is used. Third, the Gabor filter algorithm is applied to the resized

image. The Gabor filter algorithm was used from [68] which is based on the algorithm

presented in [68]. This algorithm uses orientations determined empirically at each scale of

8, 8, 4. Third, the array of spectral coefficients determined from the Gabor filter, denoted

as Ispect , are correlated with the WDD basis functions to provide a profile of the spectral

content and, thereby, texture information contained within the image. TheWDD correlation

features for a given image are defined as:

fIspect,k =
i=1∑
192

Ispect(i)Wk(i) for k = 1, 2, ..., 6 (9)
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fIspect,k =
i=1∑
192
| Ispect(i) − Ispect(i − 1) | Wk(i) for k = 7, 8, ..., 12 (10)

where Ispect(0) = 0 and 192 spectral coefficients found from the Gabor filter.

3. EXPERIMENTS PERFORMED

A benchmark technique based on different image features from [1] was used in order

to evaluate these basis function-based feature groups (Group1-Group 3). These features are

summarized in section 3.1. Two modality classification experiments were performed based

on the positive and negative ID images within each of the 14 categories given in Table 1.

In the first experiment, twenty randomly generated training and test sets were used for a

nearest neighbor classifier (radial clustering algorithmwith zero distance parameter, making

it a nearest neighbor classifier) developed in [1]. Each training set consists of 90% of the

image data feature vectors for each category, and each corresponding test set contains the

remaining 10% of the image data feature vectors for each category. The image data feature

vectors includes the features computed from Groups 1-3 and the benchmark features (see

section 3.1) from [1]. In the second classification experiment, an image was classified into

one of the 14 categories using the dataset for the positive id images within each category.

Twenty randomly generated training and test sets were used. The training set consisted of

90% of the positive id images for each category, with the test set containing the remaining

10% of the positive id images for each category.

3.1. Benchmark Features. For image-based modality discrimination in [1], de-

veloped features were organized into three categories, as follows: 1) General Features, 2)

Basis Function Features, and 3) Texture Features. The General Features quantified color,

grayscale, histogram, and topology differences for grayscale and color figures. The General

Features include: 1-3) standard deviation of red, green and blue values within the image,

4) percentage of the pixels in the image in which the green value is less than the red value

and the green value is less than the blue value, 5) ratio of the pixels in the image with
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luminance value greater than or equal to 250, 6) ratio of the number of pixels with the most

frequently occurring luminance value to the area of the image, 7) square root of the area of

the image, 8) ratio of the sum of the absolute differences between the red and green values

and the red and blue values for each pixel in the image to the area of the image, 9) ratio

of the pixels in the image with luminance value less than or equal to 30, 10) square root

of the number of luminance histogram bins with counts greater than or equal to the scaled

area of the image, 11) square root of the number of luminance histogram bins with counts

greater than 0, 12) the square root of the number of luminance histogram bins with counts

greater than or equal the scaled area of the image, and 13) estimate of the image fractal

dimension. The Basis Function Features were the twelve WDD features computed from

the image luminance histogram. The Texture Features were texture measures based on the

Generalized Gray Level Spatial Dependence Models for Texture.

3.2. Nearest Neighbor Classifier. The nearest neighbor classifier was used as

follows for the two experiments. For the first experiment, the minimum Euclidean distance

for each test image was found for each positive and for each negative image in the training

set, for each classification category. The test image feature vector is labeled a positive image

for the category if the Euclidean distance to the minimum positive image is less than the

Euclidean distance to the minimum negative image. Otherwise, the test image is labeled a

negative image. These steps were applied to classifying each test image based on the feature

vectors determined for each of the 14 categories given in Table 1, over 20 training and test

sets. The average test results are reported over these 20 trials. For the second experiment,

the minimum Euclidean distance was computed from each test image to each positive image

in the training set, for all of the classification categories. The test image feature vector is

assigned to the category of the positive image with the minimum Euclidean distance. These

steps were applied to classifying each test image based on the feature vectors found from all

of the categories given in Table 1 over 20 training and test sets. The average and standard

deviation classification results were reported over these 20 trials.
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4. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments performed evaluated the modality discrimination capability of the

proposed image-based features computed by correlating the basis functions (see Figure 2)

with the unsmoothed HSV histogram (Group 1), smoothed HSV histogram (Group 2), and

theGabor filter spectral coefficient array (Group 3). Classification results using these feature

groups are compared to benchmark color, grayscale, histogram, and topology features

(General Features), basis function correlation features with the luminance histogram (Basis

Function Features) and the Generalized Gray Level Spatial Dependence Models for Texture

Features (Texture Features) from [1]. Modality classification experiments were performed

on the 2470 positive id and 9586 negative id images for all fourteen modality categories

shown in Table 1. Table 3 presents the test results using the nearest neighbor classifier for

feature Groups 1-3 and the General Features, Basis Function Features, and Texture Features

benchmarks from [1]. The test results for each of the 20 randomly generated training/test

sets are given with the mean and standard deviation for the respective feature groups. Table

4 presents the average positive and negative nearest neighbor test classification results

over 20 randomly generated training and test sets for all 14 categories (multi- class) for

feature Groups 1-3 and the General Features, Basis Function Features, and Texture Features

benchmarks from [1].

From Tables 3 and 4, there are several observations. First, from Table 3, all of the

feature groups provided the capability to effectively distinguish the positive labeled images

from the negative labeled images for each category. Second, from Table 3, the WDD- based

features in feature groups Groups 1-3 and Basis Function Features [1] yielded slightly

higher average classification rates than the other feature groups, which are based on global

image and texture features. In these feature groups WDD correlation-based features were

computed using the luminance image (Basis Function Features [1]), the HSV space (with

and without HSV histogram smoothing (Groups 1 and 2, respectively)), and with the Gabor

filter coefficients (Group 3). Group 1 features based on correlating the basis functions with



91

Table 3. Average test results using the nearest neighbor classifier for feature Groups 1-3
and benchmark features [3] for 20 training/test sets.

Category
General
Features

[1]

Basis
Function
Features

[1]

Texture
Features

[1]
Group1 Group2 Group3

Dopplerultrasound images 91.13 99.75 96.75 99.88 84.50 99.88

CT images with emphysema 98.01 99.19 99.78 99.30 92.58 100.00

knee x-ray images 96.72 99.28 99.67 99.33 90.94 100.00

mediastinal CT 97.67 98.20 98.78 99.88 86.34 100.00

abdominal CT images
showing liver blood vessels 90.83 99.95 99.12 99.51 86.62 100.00

chest CT images
showing micro nodules 97.37 99.87 99.54 99.87 92.24 100.00

x-ray images containing
one or more fractures 97.17 96.27 99.88 99.22 89.58 100.00

CT liver abscess 98.86 99.46 99.94 99.82 95.48 100.00

MRI or CT of colonoscopy 83.45 99.29 96.07 98.15 85.89 100.00

photographs of tumours 76.98 99.27 99.32 99.84 69.74 100.00

images of muscle cells 89.94 99.19 99.48 99.71 93.14 100.00

images containing a
Budd-Chiari malformation 96.47 99.81 99.04 99.94 94.81 99.94

gastrointestinal neoplasm 72.90 94.66 80.68 91.36 74.49 99.83

pulmonary embolism
all modalities 77.16 97.04 82.65 99.26 75.68 100.00

Average over all
modality categories 90.33 98.66 96.48 98.93 86.57 99.98
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Table 4. Multi-category test percentage correct results using nearest neighbor classifier for
feature Groups 1-3 and benchmark features [3] for 20 training/test sets are presented with
mean and standard deviation.

Training/
Test Set

General
Features

[1]

Basis
Function
Features

[1]

Texture
Features

[1]
Group1 Group2 Group3

1 75.71 93.93 88.26 94.74 90.69 98.79

2 77.33 95.14 91.50 95.14 93.12 98.79

3 83.00 94.74 91.50 94.74 92.31 99.19

4 77.33 91.09 87.45 92.31 91.90 98.79

5 74.49 93.12 87.45 94.33 90.28 97.57

6 76.52 91.90 89.88 92.31 91.09 97.98

7 76.11 94.33 89.88 93.52 93.52 99.19

8 70.04 91.90 89.07 93.12 88.26 98.38

9 76.52 95.14 90.69 93.93 91.90 98.38

10 70.04 89.47 87.04 91.50 89.07 98.79

11 77.73 95.14 89.47 91.50 90.69 97.57

12 77.33 93.93 92.31 89.88 92.31 99.60

13 74.49 90.69 90.69 93.52 90.69 99.19

14 70.85 89.07 87.85 95.55 92.31 99.60

15 75.71 92.71 89.88 94.33 92.31 98.79

16 75.30 91.50 89.07 95.55 94.33 98.38

17 74.49 91.50 89.47 96.36 91.09 99.60

18 73.68 93.12 89.07 93.93 89.07 98.79

19 76.52 90.28 89.88 96.76 92.71 98.38

20 78.14 91.90 89.07 93.52 91.09 100.00

Mean 75.57 92.53 89.47 93.83 91.44 98.79

Std 2.98 1.90 1.43 1.73 1.54 0.66
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unsmoothed HSV histogram (98.93%) outperformed the Group 2 features based on corre-

lating the basis functions with the smoothed HSV histogram (86.57%). Overall, the basis

function features based on correlating the WDD functions with the Gabor filter spectral

coefficients yielded the highest modality classification results, with an average of 99.98%

over the 14 different categories. This is a slight improvement of 1.32% over correlating the

WDD functions with the luminance histogram (Basis Function Features [1]). Third, from

Table 4, the WDD correlation-based features yielded the highest overall multi-category

discrimination results. The Group 3 features, computed based on correlating the spectral

coefficients from Gabor filtering with the WDD functions, produced the highest average

classification results of 98.79%. These results and the other relatively high classification

results based on the WDD correlation-based features, Basis Function Features [1] based on

the luminance histogram (92.53%) and Group 1 based on the unsmoothed HSV histogram

(93.83%) may indicate there is discrimination information in the distribution of gray levels

and HSV values as well as the spectral coefficients over the images from the different cate-

gories in this data set. In the published literature, the WDD correlation-based features have

been applied to extract symmetry and distribution information from histograms ofmalignant

melanoma labeled colors for skin lesion discrimination [1]. This research appears to show

another potential application for these basis function features in extracting distribution-

based information which is similar for images of the different database categories. The

nearest neighbor classifier results presented here highlight the similarity of images within

each category using image-to-image matching. Fourth, the experimental results show that

the General Features (global color and luminance features) from [1] and texture-based fea-

tures (Generalized Gray Level Spatial Dependence Models) from [1] provided the lowest

discrimination information for multi-category classification, with average test results of

75.57% and 89.47%, respectively. In the context of CDS applications, the image-based

features presented in this study, particularly the basis function features from Group 3 which
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correlate the array of Gabor filter spectral coefficients with the WDD functions can be

used to discern image modalities that are representative of different types of biomedical

information.

5. CONCLUSION

In this research, modality image classification was investigated using feature groups

generated from HSV histograms and Gabor filters, and showed that these feature provide

discrimination capability for positive/negative classification. For selected modality cat-

egories, the classification results show the potential for using image feature-based and

machine learning classification in clinical decision support. Overall, the correlated WDD

features with the spectral coefficients determined from the Gabor filtering achieved average

classification as high as 99.98% for the experimental data set. The modality classification

results of 98.93% obtained by correlating the WDD basis functions with the unsmoothed

HSV histogram outperforms the feature groups from previous research [1]. Future research

can be focused on principal feature analysis and finding the most significant features, and

in down-sizing the current feature groups.

As an initial step in characterizing the visual content for biomedical information

retrieval systems, positive results were achieved in image modality classification, and have

improved on previous research.
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SECTION

2. SUMMARY AND CONCLUSIONS

This dissertation proposes data fusion techniques for uterine cervical cancer in-

traepithelial neoplasia (CIN) classification, image information retrieval for clinical decision

support system . Data fusion was applied to these areas to extend the state-of-the-art

methods for:

1) cervical cancer diagnosis by fusion of diagnosis from vertical segments of the

epithelium to obtain an whole image-based diagnosis, and,

2) nuclei-based feature extraction and selection, ground truth study, and

3) multi-modal biomedical figure discrimination for application with content-based

image retrieval.

To summarize, the research performed showed that fusion of data at feature- and

decision-level is important for enhanced detection and classification. Feature-data fusion

using feature groups including nuclei and nuclei related feature were used to obtain a

better classification accuracy of histology image classification. Furthermore, the feature

selection and extraction, at the feature-level provided a enhancement for feature groups to

obtain a improved classification. Also, fusion with statistical methods were used for feature

selection. Decision-level fusion is accomplished utilizing voting algorithm to obtain the

final decision for whole epithelial image.

The research presented in this dissertation concludes that: 1) feature-level data

fusion techniques are useful for dimension reduction, which in a result, can increase the

prediction accuracy, 2) decision level data fusion techniques could be utilized for enhanced

classification. 3) A refined feature extraction procedure can contribute in improving the
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classification. Experimental results from this dissertation show that as compared to con-

ventional image processing techniques, data fusion techniques at feature and decision level

can provide more comprehensive image analysis and enhanced classification.
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