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ABSTRACT 

Hoblitzell, Andrew P. M.S., Purdue University, May, 2011.  Biomedical Literature 
Mining with Transitive Closure and Maximum Network Flow.  Major Professors:  
Snehasis Mukhopadhyay. 
 
 
 

The biological literature is a huge and constantly increasing source of 

information which the biologist may consult for information about their field, but 

the vast amount of data can sometimes become overwhelming. Medline, which 

makes a great amount of biological journal data available online, makes the 

development of automated text mining systems and hence “data-driven 

discovery” possible. This thesis examines current work in the field of text mining 

and biological literature, and then aims to mine documents pertaining to bone 

biology. The documents are retrieved from PubMed, and then direct associations 

between the terms are computers. Potentially novel transitive associations 

among biological objects are then discovered using the transitive closure 

algorithm and the maximum flow algorithm. The thesis discusses in detail the 

extraction of biological objects from the collected documents and the co-

occurrence based text mining algorithm, the transitive closure algorithm, and the 

maximum network flow which were then run to extract the potentially novel 

biological associations. Generated hypotheses (novel associations) were 

assigned with significance scores for further validation by a bone biologist expert. 

Extension of the work in to hypergraphs for enhanced meaning and accuracy is 

also examined in the thesis. 
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CHAPTER 1. INTRODUCTION 

Bone diseases affect tens of millions of people and include bone cysts, 

osteoarthritis, fibrous dysplasia, and osteoporosis among others. With 

osteoporosis, the density of bone mineral is reduced, the proteins of the bone are 

altered, and the microarchitecture of the bone is disrupted. (Holroyd et al., 2008) 

 

Osteoporosis affects an estimated 75 million people in Europe, USA and 

Japan, with 10 million people suffering from osteoporosis in the United States 

alone. Osteoporosis may significantly affect life expectancy and quality of life and 

is a component of the frailty syndrome. Teriparatide (parathyroid hormone, PTH), 

approved by the Food and Drug Administration (FDA) on 26 November 2002, is 

used in the treatment of some forms of osteoporosis and is the only FDA-

approved drug that replaces bone lost to osteoporosis. (Saag et al., 2007) 

 

The extraction and visualization of relationships between biological entities 

appearing in biological databases offers a chance to keep biologists up to date 

on the research and also possibly uncover new relationships among biological 

entities. 

 

1.1. Motivation for the Problem of Biological Text Mining 

Bioinformatics, the application of information technology and computer 

science to the field of molecular biology, has seen a great amount of 

development since the term was first coined in 1979. (Hogeweg et al., 1979) The 

field is varied and includes databases, algorithms, computational and statistical 
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techniques, and theory to solve formal and practical problems arising from the 

massive amounts of data.  

 

The field has been of particular interest for informaticists and biologists to 

develop automatic methods to extract embedded knowledge from literature data. 

This particular problem of relationship extraction has been studied by numerous 

researchers in the field. (Oyama et al., 2002; Marcotte et al., 2001; Ono et al., 

2001; Humphreys et al., 2000; Thomas et al., 2000) 

 

 

1.1.1. Text Mining Applications 

The biological literature is a huge and constantly increasing source of 

information which the biologist may consult for information about their field, but 

the vast amount of data can sometimes become overwhelming. It is thus 

important for science and new technologies to help discover new relationships 

and increase the efficiency of biological information workers. 

Medline, which makes a great amount of biological journal data available 

online, makes the development of automated text mining systems and hence 

“data-driven discovery” possible. A method known as text mining, which will draw 

on elements of natural language processing and artificial intelligence, allows for 

the extraction of knowledge contained in the literature, and holds promising 

developments. 

 

1.1.2. Artificial Intelligence 

Artificial intelligence, which was coined in the middle 1950s by John 

McCarthy, is typically defined as “the study and design of intelligent agents” 

where intelligent agents try to maximize their reward within a well defined 

environment. (Poole et al., 1998) Machine learning and unsupervised learning 

without class labels are very typical within many artificial intelligence research 
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problems. Artificial intelligence has found broader user in the field of computer 

science in a wide variety of problems, including graph searching. 

 

1.1.3. Natural Language Processing 

Natural language processing (NLP), which many times is used to translate 

information from computer databases into readable human language, also finds 

an application in converting samples of human language into more formal 

representations which many times include parse trees, first-order logic structures, 

or other data structures.  

 

Statistical natural-language processing uses stochastic, probabilistic and 

statistical methods to resolve difficulties. One such statistical method is Markov 

models, where it is assumed that there are purely random processes and that 

future states can be inferred from the current state. NLP has overlap with the 

computational linguistics, and is very closely related to the field of artificial 

intelligence within the subject of computer science. 

 

1.2. Statement of Goals of the Thesis 

The specific objectives of this thesis are: 

1) To design a scalable and fault-tolerant text mining system which 

inexpensively mines from publicly available biomedical literature 

2) To empirically evaluate the above TMS with regards to accuracy and 

meaning 

 

1.3. Contributions of the Thesis 

The main contributions of this thesis are: 

 (i) In terms of the computational methodologies, for the first time, a 

maximal network flow based algorithm is presented to determine, in a 

theoretically sound manner, a confidence score for the derived transitive 

associations. 
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 (ii) In terms of the application domain, a specific pathway in bone 

biology consisting of a number of important proteins is subjected to the 

text mining approach. 

 (iii) In terms of the experimental results, this paper reports for the first 

time (to the authors’ knowledge) that a significant higher agreement with 

an expert’s knowledge can be obtained with transitive mining than that 

with only direct associations. Further, both direct as well as the transitive 

associations were in much better agreement with the expert’s knowledge 

than a random association matrix. These results demonstrate the 

usefulness of such text mining methodologies in general, and the 

transitive mining methods in particular. 

 

1.4. Organization 

This thesis is organized into six chapters. An Introduction, along with the 

problem definition and motivation, overall approach and contributions is provided 

in this chapter. Chapter 2 discusses the background and the related work on this 

thesis. Chapter 3 describes the design and implementation details of the Text 

Mining System and discusses the design decision and optimizations that lead to 

making this system more efficient. Chapter 4 provides the results of the 

Experiments related to accuracy and performance of the text mining system.  

 

Chapter 5 provides the possible future extensions for the work in to 

hypergraphs. Finally, Chapter 6 concludes the research and identifies areas for 

potential future work. 
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CHAPTER 2. RELATED WORK 

Building a text mining system that can integrate vast amounts of data is a 

difficult problem. Using that data to make novel predictions for bone biologists, 

and then condensing this meaning in to succinct, understandable, and 

meaningful visualizations is an even more difficult problem which has been 

studied by many others academically. A summarization of ongoing related work 

in text mining and biological literature is presented in this section. 

 

2.1. Related Work 

There are many text mining and bioinformatics examples in the literature, 

with each approach having its own advantages and disadvantages. This section 

presents some examples of these other approaches. It lays out a starting point 

for some of the work used in this thesis. 

 

There are numerous varieties of bioinformatics tools available to extract 

knowledge through literature. One such tool is the Online Mendelian Inheritance 

in Man (OMIM) database and its associated morbid map MedMiner may be used 

to query Genecards using terms related to physiologic pathways. PubGene uses 

a similar design to allow the user to query genes using the HUGO approved gene 

symbols in the database. Other approaches for exploring the literature are 

explored in the following section. 

 

2.1.1. Complementary Literatures: A Stimulus to Scientific Discovery 

In their 1997 paper “Complementary Literatures: A Stimulus to Scientific 

Discovery”, Swanson et al. introduce informatics techniques to process the 
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output of Medline (Medline Plus) searches. Swanson et al. begin with a list of 

viruses that have weapons potential development and present findings meant to 

act as a guide to the virus literature to support further studies of defensive 

measures.  

 

The initial Medline searches presented identified two kinds of virus 

literatures, those concerning genetic aspects of virulence and those concerning 

the transmission of viral diseases. The paper's method downloaded the Medline 

records for the two virus literatures and extracted all virus terms common to both.  

 

The authors took the fact that the resulting virus list included an earlier 

independently published list of viruses as proof of the high degree of statistical 

significance of the test, thus supporting an inference that the new viruses on the 

list share certain important characteristics with viruses of known biological 

warfare interest. 

 

 

2.1.2. Automatic Term Identification and Classification in Biology Texts 

 In the 1999 paper “Automatic Term Identification and Classification in 

Biology Texts”, Collier et al. discuss the rapid growth of literature databases and 

the difficulty that they pose to academics wishing to efficiently access relevant 

data. Collier et al. examine information extraction methods for the identification 

and classification of terms which appear in biological abstracts from the online 

database MEDLINE.  

 

The paper makes use of a decision tree for classification and term 

candidate identification, and uses a variant of shallow parsing for identification. 

The paper conducted experiments against a corpus of 100 expert tagged 

abstracts. Collier et al.'s results indicate that while identifying term boundaries is 

non-trivial, a high success rate can eventually be obtained in term classification. 
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2.1.3. Predicting Emerging Technologies with the Aid of Text-Based Data Mining 

In the 2001 paper “Predicting Emerging Technologies with the Aid of Text-

Based Data Mining: A Micro Approach”, N. R. Smalheiser outlines how text 

mining can connect complementary pieces of information across domains of 

scientific literature. Smalheiser's paper again attempted to predict genetic 

engineering technologies that may impact on viral warfare in the future.  

 

The paper's analysis was carried out using a combination of conventional 

Medline searches. Smalheiser's findings strongly indicated genetic packaging 

technologies as plausible candidates for study that had not previously been 

examined. The method of the paper was to define two fields that are 

hypothesized to contain complementary information, to identify common factors 

that bridge the two disciplines, and to progressively shape the query once initial 

findings were obtained. Thus the process was somewhat manual and involved a 

great amount of feedback from domain experts. 

 

2.1.4. Literature Mining in Molecular Biology 

“Literature mining in molecular biology”, a 2002 paper by Bruijn and 

Martin, examines a variety of literature mining in Medline abstracts or full text 

articles. It divides the process in to text categorization, named entity tagging, fact 

extraction, and collection-wide analysis.  

 

Text categorization is defined to divide a collection of documents into 

disjoint subsets. The goal of the named entity tagging is to identify what entities 

or objects the article mentions. Fact extraction aims to grasp the interactions or 

relationships between those entities. Finally, collection wide analysis opens the 

door to knowledge discovery, where combined facts form the basis of a novel 

insight.  
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The paper finds that the scalability of algorithms becomes a more urgent 

issue as the size of the data grows, but that literature mining systems will move 

closer towards the human reader. 

 

2.1.5. Accomplishments and Challenges in Literature Data Mining for Biology 

“Accomplishments and challenges in literature data mining for biology”, a 

paper by Hirschman et al., reviewed recent results in literature data mining for 

biology through 2002. Hirschman et al. trace literature data mining from its 

recognition of protein interactions to its solutions to a range of problems such as 

improving homology search and identifying cellular location, and note that the 

field has progressed from simple term recognition to the actual extraction of 

much more complex interactions between degrees of entities.  

 

The paper examines successful work from the natural language 

processing perspective and notes that templates may now be used to increase 

sensitivity. The paper also examines progress in biomedical applications, 

specifically in organizing a challenge evaluation, the extraction of biological 

pathways, and automated database curation and ontology development.  

 

2.1.6. Hybrid approach to Protein Name Identification in Biomedical Texts 

In the 2005 paper “A hybrid approach to protein name identification in 

biomedical texts”, Mostafa et al. examined a hybrid approach to identifying 

protein names in biomedical texts.  

 

The paper's method uses heuristics for protein detection and uses a 

probabilistic model for completing protein names, while an expert protein name 

dictionary is complementarily consulted. Mostafa et al. automatically create a 

large-scale corpus annotated with protein names to train their probabilistic model.  
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The paper’s experiments yielded results that the automatically constructed 

corpus is equally useful in training as compared with manually annotated 

corpora. 

 

2.1.7. TransMiner 

Transminer is a system developed by Narayanasamy et al. in 2004 for 

finding transitive associations among various biological objects using text-mining 

from PubMed research articles. Transminer is based on the principles of co-

occurrence and transitivity for extracting novel associations. 

 

The extracted transitive associations are given a significance score which 

is calculated based on the well-known tf*idf method. This method of assigning 

significance score is most effective and was adopted in this research. The paper 

by Cheng et al. in 2009 applies such transitive text mining methods to find 

genetic associations between breast cancer and osteoporosis diseases. 

 

Similar work included the paper by Vaka and Mukhopadhyay on finding 

novel associations among biological objects and the paper by Jayadevaprakash 

et al. on generating association graphs of non-co-occurring text objects using 

text-mining.  Jayadevaprakash paper specifically discusses extracting transitive 

associations with and without using metadata. The paper used an automated 

vocabulary discovery algorithm for extracting various biological objects from the 

text and then performed mining using the generated objects. The paper used a 

tf*idf method to assign significance scores to the extracted transitive 

associations.  

 

Another paper by Mukhopadhyay et al. on generation of hypergraphs 

representing multi-way association among various biological objects presented 

two methods. The paper gave exhaustive and apriori methods and found same 

results with later method taking less computational time. Associations thus 



 10 

extracted are represented in a cognitive-rich hypergraph environment in order to 

better assist biological researchers. 

 

2.1.8. Summary 

All the above systems have other applications or drawbacks which this 

thesis tries to address. This thesis presents a new method which makes use of 

the maximum network flow method, which is not believed to have been applied to 

this problem before. 

 

2.2. New Work Presented 

This work attempts to add on to work which has already been done on text 

mining and biological literature in some of the following ways: 

(i) In terms of the computational methodologies, for the first time, a 

maximal network flow based algorithm is presented to determine, in a 

theoretically sound manner, a confidence score for the derived transitive 

associations. 

(ii) In terms of the application domain, a specific pathway in bone 

biology consisting of a number of important proteins is subjected to the 

text mining approach. 

(iii) In terms of the experimental results, this paper reports for the first 

time (to the authors’ knowledge) that a significant higher agreement with 

an expert’s knowledge can be obtained with transitive mining than that 

with only direct associations. Further, both direct as well as the transitive 

associations were in much better agreement with the expert’s knowledge 

than a random association matrix. These results demonstrate the 

usefulness of such text mining methodologies in general, and the 

transitive mining methods in particular. 

(iii) Further, there is the design of a generic architecture for a service-

oriented mining environment that will be scalable, fault tolerant, and 

extendible. The realization of this architecture is in a real world application 
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scenario by creating a system using data publicly available through the 

PubMed system. An empirical validation of the premise that an efficient 

TMS can be achieved by using existing data using new algorithmic 

approaches is validated. Finally, an establishment of a working TMS with 

transitive predictions for future biological study resulted. 
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CHAPTER 3. TRANSITIVE CLOSURE AND MAXIMUM NETWORK FLOW 

This chapter presents the design of the TMS (Text Mining System) 

employing a simple Java environment. It starts with the overall design and 

assumptions of the TMS in Section 3.1. The implementation of the TMS uses 

Java. Section 3.2 provides information about pair relationships and their 

relevance to the TMS. Section 3.3 explores how the transitive closure and 

maximum flow algorithms may successfully applied on the pair relationships to 

generate potentially meaningful results. Section 3.4 discusses some of the 

implementation details of the TMS system. 

 

3.1. Document Representation 

To extract entity relationships from the biological literature, this paper 

examines flat relationships, which simply state there exists a relationship 

between two biological entities.  

 

A Thesaurus-based text analysis approach is used to discover the 

existence of relationships. The approach relies on multiple Thesauri, 

representing domain knowledge which can be constructed using existing 

organizational sources. In this case, the information has been derived by 

consulting experts in the domain of interest, who are users of the system as well. 

 

The document representation step next converts the downloaded text 

documents into data structures which are able to be processed without the loss 

of any meaningful information. The process uses a thesaurus, an array T of 

atomic tokens (or terms) identified by a unique numeric identifier. The thesaurus 
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is useful for normalizing the terms versus the frequency of their occurrence and 

for replacing an uncontrolled vocabulary set with a controlled set. (Rothblatt et 

al., 1994)  

 

The tf*idf (the term frequency multiplied with inverse document frequency) 

algorithm (Rothblatt et al., 1994) is applied to achieve a refined discrimination at 

the term representation level.  The inverse document frequency (idf) component 

acts as a weighting factor by taking into account inter-document term distribution, 

over the complete collection given by: 

 Wik=Tik x log(N/nk) 

where  Tik represents the number of occurrences of term Tk in document i,  

Ik=log(N/nk) provides the inverse document frequency of term Tik in the base of 

documents, N is the number of documents  in the base of documents, and nk is 

the number of documents in the base that contains the given term Tk. To deal 

with the fact that the number of documents in the stream may be too small for the 

idf component to be meaningful, a table is maintained containing total 

frequencies of all terms in the base as a whole. The purpose of this step is to 

represent each document as a weight vector whose elements give a proportional 

frequency of occurrence of each term within the given document. 

 

3.2. Pair Relationships 

The goal is to discover entity pairs from the collection of retrieved text 

documents such that the entities in each pair are related to each other somehow. 

While two entities being related to each other depends on a somewhat subjective 

notion of “being related”, we have investigated entity-pair discovery from a 

collection of Medline abstracts using the Vector-Space tf*idf method and a 

thesaurus consisting of entity terms. 

 

Each document di is converted to an M dimensional vector where W 

where Wik denotes the weights of the kth gene term in the document and M 
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indicates the number of total terms in the thesaurus. Wik will increase with the 

term frequency (Tik) and decrease with the total number of documents in the 

collection (nk). 

 

After the vector representations of all of the documents have been 

computed, the associations between entities k and l are computed using the 

following equation: 

association[k][l]=∑(Wik*Wlk), k=1…m, l=1…m, i=1…N 

 

For any pair of entity terms co-occurring in even a single document, the 

association[k][l] will always be greater than zero. The relative values of 

association[k][l] will indicate the product of the importance of the kth and lth term in 

each document, summed over all documents. This computed association value is 

used as a measure of the degree of relationship between the kth and  lth entity 

terms.  A decision can be made about the existence of a strong relationship 

between entities using a user-defined threshold on the elements of the 

Association matrix. 

 

3.3. Application of Transitive Closure and Maximum Flow 

A very useful extrapolation of these results can be achieved through 

“transitive text mining”. 

 

The basic premise of transitive text mining is that if there are direct 

associations between objects A and B, as well as direct associations between 

objects B and C, then an association between A and C may be hypothesized 

even if the latter has not been explicitly seen in the literature. Such transitive 

associations may be efficiently determined by combing the transitive closure of 

the direct association matrix.  

 



 15 

Further, to determine a confidence measure for such transitive 

(indirect/implicit) associations, we propose for the first time in this paper, the 

application of a well-known graph theoretic problem and algorithm, i.e. the 

maximal flow algorithm. In this, the direct association strengths are viewed as 

capacities of the corresponding edges, and the confidence measures of all pairs 

of transitive associations are computed as the maximal flow between the direct 

pairs. 

 

This is based on what we term the “separation of evidence principle”, 

where evidence (i.e., a part of the capacities) once used along a transitive path 

may not be used again along another transitive path in defining the confidence 

measure of a transitive association. To our knowledge, this is the first application 

of the maximal flow algorithm in biomedical text mining. 

 

The transitive closure of a binary relation R on a set X is the smallest 

transitive relation on X that contains R. A relation R on a set S is transitive if, for 

all x,y,z in S, whenever x R y and y R z then x R z. A relationship which is 

already transitive will have the same relationship as its transitive closure, while a 

relationship which is not transitive will have a different relationship as its 

transitive closure. The union of two transitive relations will not necessarily be 

transitive,  so the transitive closure would have to be taken again to ensure 

transitivity. (Lidl and Pilz, 1998:337) 
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The Floyd-Warshall algorithm may be used to find the transitive closure: 

 

1 procedure FloydWarshall () 

2    for k := 1 to n 

3       for i := 1 to n 

4          for j := 1 to n 

5             cost[i][j] |= (cost[i][k] & cost[k][j]); 

 

 The algorithm is an example of dynamic programming, and was 

discovered by Robert Floyd in 1962 and by Bernard Roy in 1959 and again by 

Stephen Warshall in 1962. In Warshall's original formulation of the algorithm, the 

graph is unweighted and represented by a Boolean adjacency matrix. Floyd-

Warshall assumes that there are no negative cycles. (Warshall, 1962) 

 

The maximum flow problem, seen as a special case of the circulation 

problem, finds a maximum flow through a single-source, single-sink flow network: 
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 The problem is based on the premise that if every edge in a flow network 

has capacity, then there exists a maximal flow through the network. The problem 

may be solved using the Ford-Fulkerson algorithm. (Cormen et al., 2001) 

 

The Ford-Fulkerson algorithm, published in 1956, computes the maximum 

flow in a flow network. The algorithm works such that as long as there is a path 

from the source to the sink  with unused capacity on all edges in the path, flow is 

sent along any one of the paths. A path with such  available capacity is called an 

augmenting path. The algorithm runs until there a maximum flow is found: (Ford 

et al., 1956) 

 

1 procedure FordFulkerson () 

2    f(u,v)=0 for all edges (u,v)  

3    While there is a path p from s to t in Gf, such that cf(u,v) > 0 for all edges:  

4          Find cf(p) = min{cf(u,v)} 

5             For each edge (u,v) 

6                f(u,v)=f(u,v)+cf(p) 

7                f(v,u)=f(v,u)-cf(p) 

 

The Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson 

method. The algorithm was published by Yefim Dinic in 1970, and again 

independently by Jack Edmonds and Richard Karp in 1972. The algorithm 

defines the augmenting path of the Ford-Fulkerson algorithm such that the path 

found must be the shortest path which has available capacity. This is found by a 

breadth-first search, allowing edges to have unit length: (Edmonds et al., 1972) 

 

1  procedure EdmondsKarp () 

2  while true 

2     m, P := BreadthFirstSearch(C, E, s, t) 

3     if m = 0 
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4        break 

5     f := f + m 

7     v := t 

8     while v ≠ s 

9        u := P[v] 

10       F[u,v] := F[u,v] + m 

11       F[v,u] := F[v,u] - m 

12       v := u 

13 return (f, F) 

 

The Edmonds-Karp algorithm is applied for each transitive association 

(a,b), where a is viewed as the source and b is viewed as the sink. 
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CHAPTER 4. TEXT MINING FOR BONE BIOLOGY 

Chapter 3 provided the design and implementation details of the TMS. 

This chapter discusses all the Experiments that were carried out to validate the 

TMS and analyze its performance, scalability and other features. The following 

chapter presents the results of those experiments. 

 

4.1. Motivation 

Bone diseases such as osteoporosis, which is characterized by reduced 

bone mass and debilitating fractures and which affects millions of people in the 

United States, have limited and expensive treatments available to patients. Bone 

biologists may be overwhelmed by the amount of literature constantly being 

generated, thus the identification and extraction of existing and novel 

relationships among biological entities or terms appearing in the biological 

literature is an ongoing problem. The problem has become more and more 

pressing with the development of large online publicly-available databases of 

biological literature. 

 

Extraction and visualization of relationships between biological entities 

appearing in these databases offers the opportunity of keeping researchers up-

to-date in their research domain. This may be achieved through helping them 

visualize possible biological pathways and by generating likely new hypotheses 

concerning novel interactions through methods such as transitive closure 

network flow. 
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All generated predictions can be verified against already existing data, and 

possible new relationships can be verified against experiment. This paper 

presents a method for the extraction and visualization of potentially meaningful 

relationships.  

 

4.2. Metrics 

To test our search strategy we chose to explore potential novel 

relationships between NMP4/CIZ (nuclear matrix protein 4/cas interacting zinc 

finger protein; hereafter referred to as Nmp4 for clarity) and proteins that may 

interact with this signalling pathway. Briefly, Nmp4 is a nuclear matrix 

architectural transcription factor that represses genes that support the osteoblast 

phenotype (Childress et al., 2010). 

 

Clinically, Nmp4 has been linked to osteoporosis susceptibility (Jin et al., 

2009; Garcia-Giralt et al., 2005), indicating that changes in the function of this 

gene have real consequences in the human population. 

 

We chose the following proteins or terms to probe the existence of 

unrecognized biological relationships with Nmp4: beta-catenin, zyxin, p130Cas, 

PTH (parathyroid hormone), PTHR1 (parathyroid hormone/parathyroid hormone-

related peptide reactor 1), ECM (extracellular matrix), receptor for advanced 

glycation end products, HMGB1 (high mobility group box I protein), HMG-motif 

(high-mobility group-motif), architectural transcription factor, R-smad (receptor 

regulated Sma- and Mad-related protein), Smad4, CF (cystic fibrosis), actin, and 

alpha actinin. The rationale for these choices is explained elsewhere in detail 

(Childress et al., 2010). 
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A summary of the terms used is presented in the following legend: 
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4.3. Direct Association Results 

Using the terms given above and the document representation matrix laid 

out in the methodology section, the following direct association matrix was 

generated: 
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4.4. Transitive Closure and Maximum Network Flow Results 

The Floyd-Warshall algorithm was then run over the data to determine the 

transitive closure of the direct association matrix. After this step, the Ford-

Fulkerson algorithm was run with the Edmonds-Karp algorithm to determine the 

maximum network flow over the data.  
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4.5. Analysis of Results 

The Direct Association Matrix was normalized against the maximum score 

divided by 1000 to give scores ranging from 0 to 1000. A thresh holding value of 

152.1 was then obtained and used for examining and analyzing the data. 

 

The MNF matrix, seen in was normalized by dividing the maximum score 

by 1000 to give scores ranging from 0 to 1000. A thresh holding value of  7000.2 

was obtained from inspection of the scores. The values were then threshholded 

as follows: 

 

 [0, 7000.2): 0 (minimum association) 

 [7000.2, 53860.84]: 1 (significant association) 
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The normalized predicted scores were then able to be compared with the 

expert provided rankings which are shown below. 
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The tables were able to generate the following heat maps:  

 

Direct Association Heat Map 

 

MNF Heat Map 
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Expert Heat Map 

The results from were then compared against expert provided scores. The 

average error was then computed as follows: 

∑|Expert(l,k)-Predicted(l,k)|/Nr 

where Expert(l,k) is the expert provided score of a relationship between entities l 

and k, Predicted(l,k) is the predicted score of a given relationship between 

entities l and k, l is one entity, k is another entity, and Nr is the total number of 

relations. The resulting average error of the maximum network flow method was 

found to be 0.24, a significant improvement over the corresponding direct 

association error rate of 0.35 and a random average error rate of 0.58.  

 

It may be seen that the application of the maximum flow algorithm to this 

problem offers a significant improvement over direct associations or random 

rankings in matching the expert provided rankings. 
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CHAPTER 5. EXTENSION TO HYPERGRAPHS 

5.1. Introduction 

A hypergraph is a generalization of a GRAPH, where EDGES can connect 

any number of VERTICES. (Dauber, 1969) Formally, a hypergraph H is a pair H 

= (X, E) where X is a set of elements, called nodes or vertices, and E is a set of 

non-empty subsets of X called hyperedges. (Berg et al., 1972) 

 

Numerous problems have been studied on hypergraphs including 

transitive closure, transitive reduction, flow and cut problems, and minimum 

weight traversal problems. The “maximum hyperflow problem” is said to consist 

of finding a suitable hyperflow in hypergraph H which maximizes the amount of 

hyperflow entering the sink node. (Austiello et al., 2001) This problem has been 

likened to the capacitated minimum cost flow problem on directed hypergraphs. 

(Cambini et al., 2007) 

 

Directed hypergraphs are a powerful tool in modeling and solving several 

relevant problems in many application areas. (Gallo et al., 1999) Most algorithms 

which solve the maximum flow problem on hypergraphs first necessitate the 

transformation of these hypergraphs into directed graphs, while some algorithms 

solve the maximum flow problem directly on hypergraphs. (Pistorius et al., 2003) 

 

5.2. Motivation 

The relevance hypergraphs to the current research is extracting 

associations which would involve more than two objects or nodes in the network. 

Hyperedges would be of length three i.e., edges involving three vertices. In this 
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case, edges would refer to associations and vertices would refer to objects of 

interest. Ternary associations (associations that involve three objects) would then 

be extracted using this hypergraph based approach. 

 

The multi-way associations can be determined by co-occurrence based 

mining from textual literature. The association strength between three objects i, j, 

and k can be calculated by extending the previous association formula to the 

following: 





N

l

lll kWjWiWkjinAssociatio
1

][*][*][]][][[  

where We[i], Wl[j], and Wl[k] are the weights of objects i, j, and k in document l in 

the vector-space tf*idf numerical representation of the document, and N is the 

number of documents in the collection to be analyzed.  

 

Association strengths between more than three objects can be evaluated 

by taking the product of their tf*idf weights in the same document, summed over 

all documents. Such a method is called an exhaustive extraction method 

because it works over all possible values. 

 

The number of possible hyper-edges in the exhaustive extraction method 

grows quickly and in fact grows exponentially with the number of objects, since, 

the number of subsets of a set  A of cardinality n (i.e., the cardinality of the power 

set of A) is 2^n. This is in contrast to the binary graph, encoding binary 

relationship, where the number of possible associations is simply n^2.   

 

Because of the exponential growth, any exhaustive attempt to check for all 

hyper-edges would run into extremely high computational complexity, especially 

because in many cases the total number of objects would be large. Two possible 

ways to mitigate this are to limit the number of objects that can be related in 

hyper-edges or to take in to account the fact that by the very nature of co-
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occurrence based associations, is that all q-subsets of the corresponding m 

objects (1<q<m) must be related. Using these assumptions would be expected to 

result in great improvements in efficiency. 
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5.3. Case Study 1 

5.3.1. Diagram 

A hypergraph is a graph in which generalized edges (called hyperedges) 

may connect more than two nodes. The network maximum flow problem is to find 

a flow through a single-source and single-sink flow network that is maximum. The 

maximum flow problem can be seen as a special case of more complex network 

flow problems, such as the circulation problem.  

 

The goal in this case study is to find the maximum hyperflow through the 

illustrated network: 

 

 

 

 

 

 

 

 

 

 

 

Edge Capacity 

e1 1.0 

e2 2.0 

 

1 2 3 

4 

e2 

e1 
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5.3.2. Input 

Node 1 Node 2 Node 3 Input  

1 1 1 0.0  

1 1 2 0.0  

1 1 3 0.0  

1 1 4 0.0  

1 2 1 0.0  

1 2 2 0.0  

1 2 3 1.0  

1 2 4 0.0  

1 3 1 0.0  

1 3 2 1.0  

1 3 3 0.0  

1 3 4 0.0  

1 4 1 0.0  

1 4 2 0.0  

1 4 3 0.0  

1 4 4 0.0  

2 1 1 0.0  

2 1 2 0.0  

2 1 3 1.0  

2 1 4 0.0  

2 2 1 0.0  

2 2 2 0.0  

2 2 3 0.0  

2 2 4 0.0  

2 3 1 1.0  

2 3 2 0.0  

2 3 3 0.0  

2 3 4 0.0  

2 4 1 0.0  
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Node 1 Node 2 Node 3 Input (Continued) 

2 4 2 0.0  

2 4 3 0.0  

2 4 4 0.0  

3 1 1 0.0  

3 1 2 1.0  

3 1 3 0.0  

3 1 4 0.0  

3 2 1 1.0  

3 2 2 0.0  

3 2 3 0.0  

3 2 4 0.0  

3 3 1 0.0  

3 3 2 0.0  

3 3 3 0.0  

3 3 4 0.0  

3 4 1 0.0  

3 4 2 0.0  

3 4 3 0.0  

3 4 4 0.0  

4 1 1 0.0  

4 1 2 0.0  

4 1 3 0.0  

4 1 4 0.0  

4 2 1 0.0  

4 2 2 0.0  

4 2 3 0.0  

4 2 4 0.0  

4 3 1 0.0  

4 3 2 0.0  

4 3 3 0.0  
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Node 1 Node 2 Node 3 Input (Continued) 

4 3 4 0.0  

4 4 1 0.0  

4 4 2 0.0  

4 4 3 0.0  
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5.3.3. Output 

Source Sink Output 

1 1 0.0 

1 2 1.0 

1 3 1.0 

1 4 0.0 

2 1 1.0 

2 2 0.0 

2 3 0.0 

2 4 0.0 

3 1 1.0 

3 2 0.0 

3 3 0.0 

3 4 0.0 

4 1 0.0 

4 2 0.0 

4 3 0.0 

4 4 2.0 
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5.4. Case Study 2 

5.4.1. Diagram 

A hypergraph is a graph in which generalized edges (called hyperedges) 

may connect more than two nodes. The network maximum flow problem is to find 

a flow through a single-source and single-sink flow network that is maximum. The 

maximum flow problem can be seen as a special case of more complex network 

flow problems, such as the circulation problem.  

 

The goal in this case study is to find the maximum hyperflow through the 

illustrated network: 

 

 

 

 

 

 

 

 

Edge Capacity 

e1 0.5 

e2 2.0 

e3 4.0 

 

5.4.2. Input 

Node 1 Node 2 Node 3 Input  

1 1 1 0.0  

1 1 2 0.0  

1 1 3 0.0  

1 1 4 0.0  

1 2 1 0.0  

1 2 3 

4 

e2 

e1 

e3 
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Node 1 Node 2 Node 3 Input (Continued) 

1 2 2 0.0  

1 2 3 0.5  

1 2 4 2.0  

1 3 1 0.0  

1 3 2 0.5  

1 3 3 0.0  

1 3 4 0.0  

1 4 1 0.0  

1 4 2 2.0  

1 4 3 0.0  

1 4 4 0.0  

2 1 1 0.0  

2 1 2 0.0  

2 1 3 0.5  

2 1 4 2.0  

2 2 1 0.0  

2 2 2 0.0  

2 2 3 0.0  

2 2 4 0.0  

2 3 1 0.5  

2 3 2 0.0  

2 3 3 0.0  

2 3 4 0.0  

2 4 1 2.0  

2 4 2 0.0  

2 4 3 0.0  

2 4 4 0.0  

3 1 1 0.0  
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Node 1 Node 2 Node 3 Input (Continued) 

3 1 2 0.5  

3 1 3 0.0  

3 1 4 0.0  

3 2 1 0.5  

3 2 2 0.0  

3 2 3 0.0  

3 2 4 0.0  

3 3 1 0.0  

3 3 2 0.0  

3 3 3 0.0  

3 3 4 0.0  

3 4 1 0.0  

3 4 2 0.0  

3 4 3 0.0  

3 4 4 0.0  

4 1 1 0.0  

4 1 2 2.0  

4 1 3 0.0  

4 1 4 0.0  

4 2 1 2.0  

4 2 2 0.0  

4 2 3 0.0  

4 2 4 0.0  

4 3 1 0.0  

4 3 2 0.0  

4 3 3 0.0  

4 3 4 0.0  

4 4 1 0.0  
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Node 1 Node 2 Node 3 Input (Continued) 

4 4 2 0.0  

4 4 3 0.0  

4 4 4 4.0  
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5.4.3. Output 

Source Sink Output 

1 1 0.5 

1 2 2.5 

1 3 0.5 

1 4 0.5 

2 1 2.5 

2 2 0.5 

2 3 0.5 

2 4 0.5 

3 1 0.5 

3 2 0.5 

3 3 0 

3 4 0.5 

4 1 0.5 

4 2 0.5 

4 3 0.5 

4 4 4 
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CHAPTER 6. CONCLUSION AND FUTURE WORK 

Bioinformatics, the application of information technology and computer 

science to the field of molecular biology, has seen a great amount of 

development since the term was first coined in 1979. (Hogeweg et al., 1979) The 

field has been of particular interest for informaticists and biologists to develop 

automatic methods to extract embedded knowledge from literature data. 

 

The biological literature is a huge and constantly increasing source of 

information which the biologist may consult for information about their field, but 

the vast amount of data can sometimes become overwhelming. Medline, which 

makes a great amount of biological journal data available online, makes the 

development of automated text mining systems and hence “data-driven 

discovery” possible. There are numerous varieties of existing bioinformatics tools 

available to extract knowledge through literature. 

 

6.1. Conclusions of the Research 

The aims in this paper were to present a method which uses a maximal 

network flow based algorithm to determine a confidence score for the derived 

transitive associations. A specific pathway in bone biology consisting of a number 

of important proteins is subjected to the text mining approach. We show that a 

significant higher agreement with an expert’s knowledge can be obtained with 

transitive mining than that with only direct associations. Both direct as well as the 

transitive associations were in much better agreement with the expert’s 

knowledge than a random association matrix. These results demonstrated the 
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usefulness of such text mining methodologies in general, and the transitive 

mining methods in particular. 

 

Further, there is the design of a generic architecture for a service-oriented 

mining environment that will be scalable, fault tolerant, and extendible. The 

realization of this architecture is in a real world application scenario by creating 

a system using data publicly available through the PubMed system. An empirical 

validation of the premise that an efficient TMS can be achieved by using existing 

data using new algorithmic approaches is validated. Finally, an establishment of 

a working TMS with transitive predictions for future biological study resulted. 

 

6.2. Future Work 

Future work on this problem would be very likely to include an extended 

set of vocabulary terms and extended work on the development of visualizations 

which are more meaningful to a bone biologist information expert. This would be 

achieved by extending the analysis in to hyperedges and hypergraphs, and 

through further collaboration with other computer scientists. 

 

6.2.1. Causal Model Development 

A systematic procedure for constructing causality models from text mining 

knowledge could also be developed.  

 

Such a method would focus on developing Bayesian networks, a model that 

encodes relationships among variables of interest. A Bayesian Network would 

offer many benefits:  

 Bayesian networks can be used to model causal relationships, and hence 

can be used to gain understanding about a problem domain and to predict 

the consequences of intervention. 

 Bayesian networks have both causal and probabilistic semantics, it would 

be an ideal representation for combining prior knowledge and data. 
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 Bayesian networks are very useful in modeling uncertainty in a domain. 

Two different approaches may be used to construct Bayesian networks, a 

data-based approach or a knowledge-based approach. The data-based 

approaches use conditional independence semantics of Bayes nets to induce 

models from the prior data. The knowledge-based approach use causal 

knowledge of domain experts in constructing Bayesian networks. The 

knowledge-based approach is especially useful in situations where domain 

knowledge is crucial and availability of data is scarce. 

 

Because text mining can derive causal knowledge, probability encoding 

techniques may be used to assess the numerical parameters of the resulting 

Bayes nets.  The process of constructing Bayesian network from text then 

consists of three steps:  

1) Derivation of the causal maps 

2) Modification of the causal maps to construct Bayesian Causal Maps 

3) Derivation of the Parameters of the Bayesian Causal Maps 

 

6.2.2. Biomedical Knowledge Visualization 

The development of a visualization environment would eventually aim to 

assist the biology domain experts to understand the integrated data sets and 

information and assist them in combining their domain expertise in the 

knowledge discovery and the hypothesis generation process. 

 

To achieve these goals, the visualization environment would be designed 

to provide the visual summaries of the problem domain, and to facilitate users’ 

reasoning process because users’ decision making is driven by the visual cues 

and supported by interactions that could explore and manipulate the data sets. 

The knowledge visualization environment would eventually address the demand 

of knowledge discovery in the context of a multi-level graph of biological entities.  
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For example, in investigating Osteoporosis using association values from 

literature mining, the multi-level graph of biological entities is a group of inter-

connected graphs, each of which have nodes belonging to a certain functional 

category. The graph could be acquired from diverse source to visualize a 

complex graph to enable knowledge discovery. 

 

6.3. Summary 

Helping bone biologists visualize possible biological pathways and 

generate likely new hypotheses concerning novel interactions through methods 

such as transitive closure and maximal network flow offer a new method to help 

find a cost-effective treatment to bone diseases such as osteoporosis. 

 

The thesaurus based method presented in this paper obtains a significant 

improvement over random guessing. Future work on this problem would be very 

likely to include an extended set of vocabulary terms and extended work on the 

development of visualizations which are more meaningful to a bone biologist 

information expert. Work on extending the examination in to associations 

between multiple proteins or terms could also be conducted in an effort to further 

improve the accuracy and obtain more meaningful results. This would be 

achieved by extending the analysis in to hyperedges and hypergraphs. 

 

Finally, a systematic procedure for constructing causality models from text 

mining using Bayesian networks could also be included.  The development of a 

visualization environment would eventually aim to assist the biology domain 

experts in integrating the transitive text mining results and causal models to 

enhance knowledge discovery. 
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APPENDIX: SELECTED TRANSITIVITIES FOR FURTHER STUDY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Associations computed by direct occurrences in text log-normalized over 

total occurrences in literature 

 Aid for biologist in finding potentially meaningful transitive relationships 

which require verification 

 Potentially new beta-catenin-zyxin-p130Cas path, beta-catenin-actin-

p130Cas path, and alpha-actinin-zyxin-p130Cas paths 

Beta-catenin 

PTH 

zyxin 

actin 

Alpha-actinin 

P130Cas 
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• Associations computed by direct occurrences in text log-normalized over 

total occurrences in literature 

• Aid for biologist in finding potentially meaningful transitive relationships 

which require verification 

• Potentially new ECM-beta-catenin-p130Cas, ECM-actin-p130Cas, and 

ECM-alpha-actinin-p130Cas paths 

ECM 

Beta-catenin 

actin 

PTH 

Alpha-actinin 

P130Cas 
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• Associations computed by direct occurrences in text log-normalized over 

total occurrences in literature 

• Aid for biologist in finding potentially meaningful transitive relationships 

which require verification 

• Potentially new PTH-alpha-actinin-p130Cas, PTH-actin-p130Cas, PTH-

ECM-p130Cas, and PTH-beta-catenin-p130Cas paths. 

 

PTH 

Alpha-actinin 

actin 

ECM 

Beta-catenin 

P130Cas 


