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ABSTRACT 

 

Dopamine is a neurotransmitter which belongs to the catecholamine and phenethylamine 

families of organic compounds, and plays an important role in the regulation of reward, 

movement, attention, behavior and cognition. Dopamine neurotransmission is marked by the 

initiation of its release from the pre-synaptic neurons and the signal is terminated by re-uptake of 

dopamine from the synapse. The synaptic concentration of dopamine and therefore, the level 

dopamine receptor stimulation is regulated to an extent by the activity of the dopamine 

transporter (DAT). DAT is responsible for the uptake of dopamine back into the presynaptic 

neuron from the synapse. DAT is known to play a critical role in certain pharmacological or 

pathological conditions. For example, DAT is one of the major targets of several 

psychostimulant drugs like cocaine and amphetamine. Cocaine competitively inhibits dopamine 

uptake by blocking DAT which leads to increased dopamine in the synapse, one of the initial 

steps that promote addiction. DAT is also a major target of amphetamine (AMPH), another 

powerful stimulating drug. AMPH is used regularly in the treatment of neurodevelopment 

disorders such as attention deficit hyperactivity disorder (ADHD) but despite its role as an 

effective medication in such disorders, AMPH is more commonly known for its psychostimulant 

and addictive properties as a drug of abuse. 

 

AMPH induces its rewarding and addictive properties by acting as a substrate of vesicular 

monoamine transporter (VMAT) and plasma membrane monoamine (dopamine, norepinephrine, 

and serotonin) transporters. AMPH is similar in structure to monoamines like dopamine, 

norepinephrine and therefore can bind and enter the presynaptic neurons via the transporters. 

Once in the neuron, AMPH causes an elevation in extracellular monoamine levels by inducing 
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vesicular depletion of monoamines and also by promoting reverse transport (efflux) of 

monoamines through plasma membrane transporters. Several groups have shown that acute 

AMPH treatments alter the function and the number of DAT on the cell membrane but the long-

term effects of chronic AMPH exposure have still not been clearly identified. Previous data from 

our laboratory suggested that parental AMPH exposure reduces dopamine uptake in C. 

elegans dopaminergic neurons isolated from progeny.   

 

In order to determine if the long-term effects caused by AMPH in native C. elegans cultured 

neurons is reproducible in human DAT (hDAT) expressing cells, we carried out our initial 

investigation in LLC-PK1 porcine kidney epithelial cells stably transfected with hDAT. Cells 

were treated with AMPH and then analyzed for dopamine uptake, after the cells had undergone 

one, two or three round of division. Results from the experiments showed a significant decrease 

in dopamine uptake compared to untreated cells. This suggests that changes caused by AMPH 

were conserved up to three cell divisions. These data led us to hypothesize that long term 

reduction in dopamine reuptake, as a result of chronic AMPH treatment, is caused by down-

regulation of DAT.  

 

In our next approach we investigated the long term effect of AMPH in the SH-SY5Y human 

neuroblastoma cell lines. Previous studies have shown that the SH-SY5Y cells can be chemically 

differentiated into more mature neuron-like phenotype by treatment with retinoic acid (RA). 

Thus, we pre-treated cells with AMPH and allowed cells to cross one or more cell divisions 

before treating them with RA. Dopamine uptake assays revealed a significant decrease in 

dopamine re-accumulation in AMPH-treated cells with respect to control. Results from these 
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experiments also revealed NET-mediated dopamine uptake in SH-SY5Y cells. In fact, 

desipramine, a specific NET inhibitor, totally blocked the dopamine uptake whereas GBR12909, 

which is a specific DAT inhibitor, did not show inhibition. Taken together, these results suggest 

that parental AMPH treatment down regulates the expression or activity of catecholamine 

transporters such as DAT and NET in daughter cells. 
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                                                           INTRODUCTION 

                                                           Neurotransmission 

The central nervous system (CNS) in humans is an complex system responsible for processing 

information from all parts of the body. The CNS is made up of two kinds of specialized cells- 

neurons and glia. Neurons are responsible for building up the information processing network in 

the brain by forming interconnections in the CNS and receiving, conducting and transmitting 

signaling chemicals called neurotransmitters to the synaptic cleft. The synaptic cleft or synapse is 

the gap between two neurons where the neurotransmitters are released [1]. 

 

Neurons are electrically excitable cells capable of transmitting information through an 

electrochemical process. The primary components of a neuron include the soma, axon, and 

dendrites. The soma is the spherical part of the neuron that makes up the cell body and is 

connected to the axon and smaller tree-like branches called dendrites. The soma is composed of 

the nucleus and other important organelles like the Golgi apparatus, ribosomes, mitochondria and 

endoplasmic reticulum. Synaptic signals from other neurons are received by the soma and 

dendrites whereas signals to other neurons, muscles and glands are sent by the axons. Axons are 

nerve fibers which are basically long projections that extend from the soma to the terminal 

buttons, more commonly known as axonal terminals. Signals from axons of other neurons are 

primarily received by the dendrites which are smaller branched projections from the soma and 

are located next to the axons. The axonal terminals contain neurotransmitters and are responsible 

for releasing neurotransmitters into the synapse, across which impulses are sent[2]. 

Neuronal communication builds the foundation of the general function of the CNS where 

electrical events propagate a signal within a neuron and chemical processes such as 



2	
  

	
  	
  

neurotransmission send signal from one neuron to another or to muscle cells (Figure 1). Neurons 

can communicate within the cell, referred to as ‘intracellular signaling’ and they are also capable 

of communicating between cells, known as ‘intercellular signaling’. The conductance of 

electrical signals or action potentials along axons is how a neuron achieves long distance, rapid 

communication with its own terminals or terminal boutons and the terminal boutons establishes 

communication between neurons by the process of neurotransmission[3]. 

 

Neurotransmission or synaptic transmission is communication between neurons which begins 

when an action potential travels along the axon of a presynaptic neuron and reaches the axon 

terminal. During conduction, an action potential can travel at a rate up to 150 meters or roughly 

500 feet per second. At the axon terminal, the neuron sends out its output across the synapse to 

other neurons[4]. At electrical synapses, the ‘output’ will be an electrical signal and at chemical 

synapses, the ‘output’ will be neurotransmitters. 
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Image courtesy, http://www.mind.ilstu.edu/curriculum/neurons_intro/imgs/synapses, with 

permission 

Figure 1: Difference between electrical and chemical synapses 

 

Once an action potential reaches the axon terminal it cannot cross the synaptic space. At the 

terminal button, the action potential causes membranous sacs called vesicles to move to the 

membrane of the terminal. Concurrently, membrane depolarization takes place which causes the 

voltage-dependent calcium (Ca
2+

) channel on the presynaptic neuron to open and allow Ca
2+ 

to 

enter into the cell. Once Ca
2+ 

enters the presynaptic neuron, it binds to the membrane of the 

vesicles causing vesicles containing neurotransmitters to deplete and release them into the 

synapse. The neurotransmitters then diffuse across the synaptic space and bind to special proteins 

called receptors on the post-synaptic neuron. The binding of a neurotransmitter to its receptor 



4	
  

	
  	
  

can trigger an action potential in the post-synaptic neuron[4, 5]. That electrical signal then moves 

towards the cell body of the post-synaptic neuron. Once the post-synaptic neuron elicits an action 

potential, the neurotransmitter dissociates from its receptor to the synaptic space where it is 

either degraded by enzymes in the synapse or translocated back into the pre-synaptic neuron by 

transporter proteins. The brief post-synaptic potential produced by neurotransmitters is usually 

terminated by their re-uptake (Figure 2). For monoamine transporters like dopamine, serotonin 

and norepinephrine post-synaptic potentials are terminated by re-uptake. 

 

 

Image courtesy, 

http://www.macalester.edu/academics/psychology/whathap/ubnrp/meth08/biochemistry/synapse 

Figure 2: Illustration of chemical neurotransmission 
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                                                  Monoamine neurotransmitters 

The monoamine family of neurotransmitters includes- dopamine, norepinephrine and serotonin. 

Their respective transporters- the dopamine transporter (DAT), the norepinephrine transporter 

(NET) and the serotonin transporter (SERT), which are transmembrane proteins are located in 

plasma membranes of monaminergic neurons. The monoamine transporters are a major target of 

psychostimulant drugs. Structurally, monoamines contain an amino group which is connected to 

an aromatic ring by a two carbon chain. Besides being referred to as monoamines, dopamine and 

norepinephrine are also addressed as catecholamines as they consist of a catechol group (Figure 

3)[6]. 

 

Catecholamine is an amine derived from the amino acid tyrosine, examples include epinephrine, 

adrenaline, norepinephrine, and dopamine that act as hormones or neurotransmitters. The amino 

acid tyrosine is created from phenylalanine by hydroxylation of the enzyme phenylalanine 

hydroxylase. Catecholamine-secreting neurons via several reactions convert tyrosine to L-DOPA 

and then to dopamine and then based on the cell type dopamine is sometimes further converted 

to norepinephrine and eventually to epinephrine[6, 7]. 

 

Image courtesy, http://mybrainnotes.com/brain-neurotransmitters-catecholamines 

Figure 3: Types of catecholamines 
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                                     Dopaminergic system and Noradrenergic system 

The dopaminergic system plays an integral role in the regulation of the reward system. When we 

are exposed to a rewarding stimulus, the brain responds by increasing release of the 

neurotransmitter dopamine. The pathway most often associated with reward is the mesolimbic 

dopaminergic pathway which originates in the ventral tegmental area (VTA). As a part of the 

reward pathway, dopamine is principally produced in the ventral tegmental area which is 

connected to the nucleus accumbens by the mesolimbic dopaminergic pathway. The nucleus 

accumbens is situated in the part of the brain that is strongly associated with motivational reward 

called the ventral striatum. When we experience something rewarding or use an addictive drug, 

dopamine neurons in the VTA are activated. These neurons project to the nucleus accumbens via 

the mesolimbic dopamine pathway and their activation causes extracellular dopamine levels in 

the nucleus accumbens to rise[8]. Another major dopamine pathway is the mesocortical pathway 

which also originates in the VTA and travels to the cerebral cortex specifically to the frontal 

lobe. This dopamine pathway is also activated during rewarding experiences and is considered a 

part of the reward system[9].  

 

Dopamine neurotransmission is also involved in the regulation of movement and emotional 

responses. Deficiency in dopamine can lead to delayed and uncoordinated movement, a clinical 

symptom seen in the neurological disease Parkinson’s. The dopaminergic system has been 

associated with psychiatric disorders like schizophrenia and attention-deficit hyperactivity 

disorder (ADHD) and also mediates extrapyramidal side effects in pathological conditions like 

dysphagia[10]. The dopaminergic system is a primary target of drugs of abuse and dopamine 

plays an integral role in drug abuse, dependence and addiction[11]. 
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Dopamine synthesis in the brain involves two enzymes- tyrosine hydroxylase (TH) and amino 

acid decarboxylase. Tyrosine is converted to the direct precursor of dopamine, L-DOPA, by TH 

and then L-DOPA is converted into dopamine by amino acid decarboxylase. Once synthesized, 

dopamine is transported from the cytosol into storage vesicles by vesicular monoamine 

transporter (VMAT). Dopamine is stored in these vesicles where it is protected from degradation 

by enzymes like monoamine oxidase and catechol-O-methyl transferase. Dopamine is stored in 

these storage vesicles until it is released into the synapse in response to physiological stimuli. 

Once in the synapse, dopamine binds to and activates dopamine receptors. All of the dopamine 

receptors are G-protein coupled receptors and their signaling is primarily mediated by interaction 

with and activation of G-proteins. The action in response to dopamine released is terminated by 

its reuptake into the presynaptic neuron which is principally regulated by the dopamine 

transporter (DAT)[12]. 

 

In noradrenergic neurons dopamine is converted to norepinephrine by the action of the enzyme 

dopamine-β-hydroxylase and this reaction takes place within the synaptic vesicles. 

Norepinephrine, also referred to as noradrenaline, works as both a hormone and a 

neurotransmitter, and is predominantly released from the ends of sympathetic nerve fibers 

(noradrenergic neurons). Neurons that produce norepinephrine are distributed throughout the 

brain stem, most notably in the locus coeruleus. The output of the noradrenergic locus coeruleus 

cells projects further throughout the cerebrum, cerebral cortex, thalamic nuclei, cerebellum and 

the spinal cord. Due to this broad range of projection paths, norepinephrine is involved in 

mediating many behavioral and physiological processes like mood, attention, stress, overall 

arousal and sexual behavior[13]. Like dopamine, norepinephrine has also been found to play a 
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large role in attention and focus (Figure 4). In neurodevelopment disorders like ADHD, 

psychostimulant medications are prescribed to help elevate levels of dopamine and 

norepinephrine.             

 

                                      

Figure 4: Monoamines and the functions they share[14] 

                                                                   

                                                        Monoamine Transporters 

Transporters like NET, SERT, GABA and DAT belong to the SLC6A gene family. NET, DAT 

and SERT are monoamine transporters responsible for regulating the synaptic concentration of 

monoamines (norepinephrine, dopamine and serotonin). DAT is a membrane spanning protein 

that pumps dopamine out of the synapse and back into cytosol where other vesicle membrane 

transporters like VMAT sequester dopamine into vesicles for storage and later release (Figure 5). 

Dopamine uptake by DAT provides the primary mechanism in which dopamine is cleared from 

synapse although there may be an exception in the frontal cortex where evidence suggests a 
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possibly larger role of NET in regulating dopamine uptake[15]. Transporters belonging to 

SLC6A gene family translocate neurotransmitters into cells by coupling transport to ion 

gradients, for example- DAT is a symporter that moves dopamine across the cell membrane by 

coupling the movement to the energetically favorable movement of sodium ions moving from 

high to low concentration into the cell. DAT function requires binding and co-transport of 2Na
+
 

ions and one Cl
-
 ion with dopamine substrate. The binding of dopamine and the ions induces 

DAT to undergo a conformational change which allows dopamine to unbind on the intracellular 

side of the membrane[16].  

 

The activity of DAT promotes regulation of dopamine mediated signals which are involved in 

cognition , behavior and also reward. DAT localization and distribution has been found in areas 

of the brain which include nigrostriatal, mesolimbic and mesocortical pathways. Previous studies 

have shown that functional regulation of DAT is largely accomplished by phosphorylation, 

palmitoylation and internalization of the transporter by the kinases, substrate pretreatment and 

interaction with presynaptic receptors[17, 18]. DAT is implicated in a number of dopamine 

related disorders including ADHD, bipolar disorder, clinical depression, addiction and 

alcoholism[19]. Since DAT is largely responsible for the termination of dopamine 

neurotransmission, it has a pivotal role in psychostimulant actions induced by stimulating drugs 

like cocaine and AMPH. The mechanism behind cocaine mediated inhibition is simple where the 

drug binds to the transporter and blocks dopamine uptake but AMPH causes inhibition at the 

transporter by binding to the transporter and entering the presynaptic neuron and inducing efflux 

of dopamine through DAT. 

 



10	
  

	
  

 
Image courtesy, Daniela. B et al, Transcranial sonography in movement disorders. The Lancet 

Neurology, 2008. Volume 7, No. 11, p1044–1055. 

 

Figure 5: Dopamine neurotransmission and uptake of dopamine by DAT 

                                                                   

 Like DAT, NET is responsible for clearing off extracellular norepinephrine (NE) from the 

synapse and pumping it back into the presynaptic neurons. NET mediated reuptake of NE is 

crucial in preventing excess concentration of the neurotransmitter in the synaptic cleft; it is also 

pivotal in the removal of norepinephrine from the heart and other peripheral organs like lungs, 

liver, kidney and muscles[20]. NE is hypothesized to play a role in psychiatric disorders like 

depression and ADHD. Psychostimulants like cocaine and AMPH, and antidepressants like 

desipramine, reboxetine and various others, impede the reuptake of norepinephrine via NET and 

elevate NE extracellular concentration and potentiate the activation of postsynaptic 

receptors[21]. AMPH acts as a substrate of monoamine transporters like NET and induces a 

reversal in the direction of neurotransmitter transport (efflux) which results in large accumulation 

of synaptic NE. Another important feature of NET is it can transport dopamine as well as NE. In 

fact, NET exhibits greater affinity for dopamine than DAT.                                                       
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                                                      Psychostimulant Drugs 

Psychostimulants are drugs that stimulate the brain mostly by causing activation of the 

dopaminergic system; besides dopamine, stimulants also may cause release of tremendous 

amount of norepinephrine and serotonin. The effect of stimulating drugs on dopamine and 

norepinephrine neurotransmission is primarily mediated by these drugs interfering with 

neurotransmitter transporter function. DAT and NET are often associated with addiction as they 

are high affinity molecular targets of powerful stimulating drugs like cocaine and AMPH[22].  

Psychostimulants have varying affinity for different monoamine transporters (DAT, NET, 

SERT), for example AMPH and methylphenidate have much lower affinity for SERT compared 

to their affinity for DAT and NET. Cocaine has earned the reputation of being one of the most 

addictive and dangerous illicit drugs. Cocaine is deemed as a simple inhibitor as it inhibits 

monoamine uptake by blocking plasma membrane monoamine transporters-DAT, NET and 

SERT[23]. 

 

AMPH and methamphetamine are also CNS stimulant drugs that fall under the category of 

substrate-type releasers. Releasers like AMPH are more effective in increasing synaptic 

concentration of monoamine neurotransmitters as they not only cause competitive inhibition of 

reuptake by competing with substrate binding to the transporters but also increase the pool of 

neurotransmitters available for release by transporter-mediated exchange. AMPH acts as 

substrate of DAT and NET and previous studies have reported the transport of AMPH into the 

presynaptic neuron via DAT results in more number of transporters in the inward-facing 

conformation which increases the probability of cytosolic dopamine to bind to DAT and exit the 
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neuron via reverse transport. Beside AMPH- induced reverse transport, AMPH analogues may 

affect monoamine transporters through phosphorylation and transporter trafficking[24, 25]. 

 

AMPH is commonly used to treat several disorders, including ADHD, narcolepsy, and obesity. 

Prescription AMPHs like Adderall are used to treat ADHD patients. AMPH has proven to be 

very effective in treating children, adolescents, and adults diagnosed with ADHD, with 

responsiveness rates in the range of 70-80%. Prescription AMPHs are known to induce a 

calming and ‘focusing’ effect on individuals diagnosed with ADHD since ADHD patients face 

difficulty to pay attention and they are more hyperactive or impulsive than people of their age.  

 

Despite being an effective medication, concerns have been raised about possible cardiovascular 

effects with the daily use of prescription AMPH.  There have been consistent reports of increase 

in mean heart rate and blood pressure following AMPH treatment. This could be due to 

peripheral functions of dopamine and norepinephrine. A substantial amount of dopamine 

circulates in the bloodstream which is produced by the sympathetic nervous system and is 

independent of dopamine synthesis and function in the brain. There are some dopamine receptors 

on the walls of arteries and the AMPH mediated increase in dopamine may act through the 

sympathetic nervous system to increase heart muscle contraction force and heart rate, thereby 

increasing cardiac output and blood pressure. 

 

Addiction to AMPH is also a matter of serious consideration for anyone taking this drug without 

medical supervision. When stimulants are prescribed by doctors they begin with low doses and 

gradually increase the dose until the therapeutic effect of the stimulant is achieved. The gradual 
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increase in dose enables slow and steady increases of dopamine, which are similar to the way 

dopamine is naturally produced in the brain. Addiction most likely occurs when stimulants are 

taken in doses and via routes other than those prescribed. Unsupervised use of prescription 

AMPH can increase brain dopamine in a rapid and highly amplified manner. This rapid rise in 

dopamine in the brain disrupts normal communication between brain cells and produce euphoric 

like sensation which leads to drug seeking and dependence and increases the risk of 

addiction[24]. There is in fact ongoing concern regarding use of stimulants to treat children or 

adolescents with ADHD. Stimulants prescribed to treat a child’s or adolescent’s ADHD could 

affect an individual’s vulnerability to developing drug and psychiatric problems at a later stage in 

life. Recent statistics have shown that the longer the use and abuse of Adderall continues, the 

stronger an addiction can become. For example, in the year 2012, almost 16 million prescriptions 

were written for Adderall and over 116,000 people were admitted to rehab for an addiction to 

Adderall. 

 

Taking these incidences of AMPH abuse and addiction into account we decided to analyze long 

term effect of AMPH. Previous studies done in our lab in the model organism C.elegans have 

shown that AMPH exposure during embryogenesis induces behavioral changes in adult worms 

suggesting that the presence of AMPH during development has a long term effect and we see 

consequences at a much later stage in the worm’s life.  

 

Also previous studies have demonstrated that AMPH specifically targets the DAT to promote 

dopamine release consequently engaging different classes of dopamine receptors (e.g. the D2 

like receptors).  
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We investigated how chronic AMPH exposure causes long term effect on dopamine uptake in 

cultured cells. For our investigation we used human DAT (hDAT) transfected cell line, the LLC-

PK1 , and the human neuroblastoma cells, SH-SY5Y, which endogenously expresses hDAT, in 

order to test our hypothesis that the ‘long term reduction in DA reuptake, as a result of chronic 

AMPH treatment, is caused by down-regulation of DAT. 

    

                                      

                                                     EXPERIMENTAL METHODS                                  

                                                              Cell Cultures  

                                    Lewis lung carcinoma-porcine kidney (LLC-PK1) cells 

The LLC-PK1 cells are derived from the kidney of a normal, healthy male pig and the cell line 

exhibits typical epithelial –like morphology. These pig kidney epithelial cells are widely used in 

pharmacologic and metabolic research investigations worldwide. 

 

For our experiments we obtained LLC-PK1 cells which were stably transfected with hDAT 

(courtesy of Vaughan and Foster labs). Transfected LLC-PK1 cells were maintained in α-

modified Eagle’s medium (AMEM) containing 2 mM L-glutamine, 5% fetal bovine serum 

(FBS), 200 µg/mL G418 sulfate and 1X penicillin/streptomycin. Cells were grown in a 5% CO2 

incubator at 37°C.  

 

After obtaining hDAT transfected LLC-PK1 cells, we maintained and propagated the cell line in 

Minimum Essential Medium (MEM) supplemented with L-Glutamine, Antibacterial and 
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Antimycotic (AA) solution, 5% Fetal Bovine Serum (FBS) and 200µg/ml G418. Cells were 

grown at 37°C in a 5% CO2 incubator throughout the course of experiments. 

 

                                                            

                                                            SH-SY5Y cells 

The human neuroblastoma cell line, SH-SY5Y was originally derived from a bone marrow 

biopsy of a neuroblastoma patient. The cell culture contains both adherent and floating cells 

where both types are viable. The SH-SY5Y has two morphologically distinct phenotypes- the 

neuroblast-like cells (N type) and the epithelial-like cells (S type). Cells with neuroblast-like 

phenotype are positive for the presence of catecholaminergic markers  as they express tyrosine 

hydroxylase and dopamine-β-hydroxylase. Another distinct feature of SH-SY5Y cells is that 

they can be chemically differentiated into a more mature neuron-like phenotype using Retinoic 

Acid (RA) or phorbol esters such as 12-O-tetradecanoyl-phorbol-13 acetate (TPA). In our 

experiments, cells were subjected to only RA-induced differentiation[26]. 

 

SH-SY5Y cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM). Medium was 

prepared by adding 50% Fetal bovine serum (FBS) and 1% Penicillin and Streptomycin solution 

(Pen Strep) in 500ml DMEM. Cells were grown at 37°C in a 5% CO2 incubator. 

 

During the course of the project, both LLC-PK1 and SH-SY5Y cells were passaged according to 

the following protocol where after removing media, cells were washed twice with 10ml sterile 

1X phosphate buffer saline (1X PBS). After 1X PBS wash, 2ml of 1X trypsin solution was added 

to promote cell detachment. Trypsin was removed by aspiration and the cells were incubated in 
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37°C incubators for 5 mins to promote cell detachment from the flask. Once cells detached, the 

cell suspension was gently mixed with 10 ml DMEM and collected in a 15 ml tube. Cell pellets 

were collected by centrifugation (at 1500 rpm and 4°C for 5 mins). Cells pellets were re-

suspended in 1ml fresh DMEM media and then equally divided in T75 flasks containing 10-15 

ml media. Cells were then grown in CO2 incubator till 75-90% confluent. 

 

                               

                                                    Methods 

                              Radiolabeled ([
3
H]) dopamine uptake assay 

In order to determine if AMPH pre-treatment has an effect on the dopamine uptake and if the 

effect persists in daughter cells after many cell divisions we performed [
3
H] dopamine uptake 

assays.  

                                               Uptake Assays in LLC-PK1 cells 

For each experiment a certain number of cells (150,000-300,000) were plated in 

24wells/12wells/6wells plates. After 6 or 7 hours once the cells have adhered to the wells, one 

set of cells were treated with 1µM or 50µM AMPH for 15 hours and the others served as control 

(without treatment). After 15 hours, the drug was washed off with 1X PBS and after three 

washes the cells were either taken to measure dopamine uptake after 15 hours of chronic AMPH 

treatment or they were allowed to grow in fresh media and cross one/two/three cell divisions in 

order to perform uptake assay in daughter cells. Uptake assay begins with washes with Krebs-

Ringer HEPES (KRH) buffer. After removing media from the cells, each well is washed two 

times with 1 ml of warm KRH buffer. After the washes, KRH buffer containing antioxidants and 

monoamine oxidase inhibitors- 0.1mMTropolone, 0.1mM Ascorbic Acid and 0.1mM Pargyline 
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(KRH+TAP), was added to wells to inhibit substrate degradation and the cells were incubated 

with 20nM [
3
H] DA for 5 minutes. Following the incubation, the cells were washed with cold 

KRH+TAP  3 times and lysed with 1%Triton. The lysates were collected in vials and 

disintegration per minute (DPM) of [
3
H] dopamine in the lysates was counted using the β-

counter. 

                                            

                                        Uptake Assays in SH-SY5Y cells 

The experimental paradigm  is similar to the experiments with LLC-PK1 cells where it starts with 

plating a certain number of cells in 24wells/12wells/6wells plates and treating them with 1µM or 

50µM AMPH for 15 hours after 6 or 7 hours once they have adhered to the wells. After 15 hours, 

the drug was washed off with 1X PBS and after three washes the cells were either taken for 

uptake assay to analyze dopamine uptake after 15 hours of chronic AMPH treatment or they 

were allowed to grow in fresh media and cross one/two/three cell divisions, in order perform 

uptake assay in daughter cells. The experiments with the SH-SY5Y cells involved one extra step 

where we differentiated the cells with 10 µM RA in low serum media (DMEM containing 1% 

FBS). After the cells crossed one/two/three cell divisions, they were subjected to RA induced 

differentiation for 5 days. Cells were treated with 10µM RA twice over 5 days before performing 

the [
3
H] dopamine uptake assay. Uptake assay begins with washes with Krebs-Ringer HEPES 

(KRH) buffer. After removing media from the cells, each well is washed two times with 1 ml of 

warm KRH buffer. After the washes, KRH buffer containing antioxidants and monoamine 

oxidase inhibitors- 0.1mMTropolone, 0.1mM Ascorbic Acid and 0.1mM Pargyline (KRH+TAP), 

was added to wells to inhibit substrate degradation and the cells were incubated with 20nM [
3
H] 

dopamine for 5 minutes. Following the incubation, the cells were washed with cold KRH+TAP  
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3 times and lysed with 1%Triton. The lysates were collected and disintegration per minute 

(DPM) of [
3
H] dopamine in the lysates was counted using the β-counter. 

 

                               Enzyme-linked Immunosorbent Assay (ELISA)  

To ensure that AMPH was completely washed out after the 1hour treatment, an ELISA kit was 

used to measure AMPH concentration in the cells prior to the uptake experiments. 

 

The AMPH Direst ELISA Kit (Abnova, TW) consists of micro-wells coated with polyclonal 

anti-d-AMPH, and d-AMPH conjugated to horseradish peroxidase (HRP). The principle of the 

assay is based on the competitive binding of AMPH and AMPH-HRP in proportion to their 

concentration in the reaction mixture. 10µl of  the experimental sample is incubated with 100µl 

dilution of enzyme (Horseradish peroxidase) labeled d-AMPH derivative in micro-plate wells 

which are coated with fixed amounts of oriented high affinity purified polyclonal antibody. Since 

it is a colorimetric assay, after removing the enzyme conjugate and washing the wells, a 

chromogenic substrate is added. A dilute acid stop solution is added to cease the color produced 

from the substrate and the absorbance in each well is read at 450 nm. The intensity of the color 

developed is inversely proportional to the concentration of drug in the sample. 

 

Before the assay cells were first detached with 1X trypsin and collected by centrifugation. Then 

cells were washed with cold 1X PBS three times and re-suspended in PBS. The samples were 

then sonicated (5 pulses for 5 seconds and then 10 pulses for 10 seconds) and subjected to 

centrifugation at 1500Xg (4000 rpm) for 10 mins at 2-8º C to remove cellular debris. 

Supernatants were collected and stored at -20°C or -80°C to avoid loss of bioactivity and 
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contamination. When performing the assay, samples were brought to room temperature. 

 

  After collecting the samples, the assay was carried out. First 10µL of appropriately diluted 

standards were added to wells (coated with polyclonal anti-d-amphetamine) in duplicate in a 96-

well plate. Then 10µL of cell lysates were added in duplicate in the 96-well plate. 100µL of the 

AMPH-HRP conjugate was added to each well. To ensure proper mixing the sides of the plate 

holder was tapped few times. The 96-well plate was incubated for 60 minutes at room 

temperature in the dark (18-26°C), after addition of enzyme conjugate to the last well. The wells 

were then washed 6 times with 200-350µL distilled water using either a suitable plate washer or 

wash bottle.  

After each wash the wells were inverted and dried on absorbent paper to ensure all residual 

moisture is removed. This step is critical to ensure that residual enzyme conjugate does not skew 

results. After that 100µL of substrate reagent was added to each well and properly mixed by 

tapping the sides of the plate holder. After adding the substrate reagent, the plate was incubated 

for 30 minutes at room temperature, preferably in the dark. After 30 minutes 100µL of Stop 

Solution was added to each well, to change the blue color to yellow. The absorbance was then 

measured at a wavelength of 450 nm within 1 hour of yellow color development. 

                                             

                                               

                                                Immunoblotting 

In parallel to the uptake assays, we also investigated whether chronic exposure to AMPH in 

progenitor cells alters the amount of DAT in daughter cells. We performed western blots in SH-

SY5Y cells to measure the total amount of DAT expressed in cells treated with AMPH with 
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respect to control cells. As we proceeded with our investigation in the SH-SY5Y cells, we found 

that the dopamine uptake was completely blocked by NET-specific inhibitor desipramine 

whereas the DAT specific inhibitor GBR12935 failed to inhibit [
3
H] dopamine uptake at low 

concentration (100nm). This suggested NET- mediated dopamine uptake in these cells and also 

revealed that AMPH can induce its effect via NET. This prompted us to blot for NET protein in 

daughter cells to determine any possible alteration in expression of NET in AMPH treated cells 

vs control. 

 

To see the effect of AMPH pretreatment in daughter cells, we allowed AMPH treated cells and 

control cells to cross one/two/three cell divisions, before differentiating them with 10µM RA for 

5 days. Following differentiation, the cells were lysed in 100µl - 400µl RIPA lysis buffer 

containing protease inhibitors. The lysates were then centrifuged at 14,000 rpm for 10 minutes at 

4°C to remove cellular debris. Supernatants were collected and then stored in -20°C. Prior to 

western blots, the total amount of protein in the supernatants were quantified using BCA Protein 

Assay Kit. The Thermo Scientific™ Pierce™ BCA Protein Assay is a detergent-compatible 

formulation based on bicinchoninic acid (BCA) for the colorimetric detection and quantitation of 

total protein.  

                                                                                                                              

                                                               

                                                          Western Blots 

Lysates of experimental samples were mixed with sample loading buffer (4:1 ratio) containing 

5% 2-mercaptoethanol and performed SDS-PAGE in a 12% polyacrylamide gel. Proteins were 

run in 1X tris-glycine running buffer at 120 Volts for 1.45 hours. Proteins were transferred in 1X 
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transfer buffer at 4°C  and 35 Volts  for 1.45 hours to polyvinylidene difluoride (PVDF) 

membranes. After transfer, membranes were blocked overnight by incubation with 3% bovine 

serum albumin (BSA) in PBS-T (PBS plus 0.1% tween-20) at 4°C. Subsequent to blocking, 

membranes were probed for 1 hour at RT with DAT specific goat polyclonal antibody (DAT 

antibody, C-20) raised against amino acids 601 to 620 of the C-terminus of hDAT or NET 

specific mouse monoclonal antibody (NET-human, NET17-1) raised against amino acids 17 to 

33 of the N-terminus of hNET (1:1000 dilution in 3% BSA/PBS). The bound primary antibodies 

were detected by incubating the membranes for 1 hour at room temperature with anti-goat or 

anti-mouse IgG secondary (2°) antibody linked to alkaline phosphatase (1:5000 dilution in 3% 

BSA/PBS). After each antibody treatment, membranes were washed 5 times with PBS-T. In 

order to develop the blot, membranes were incubated in 3 ml alkaline phosphatase substrate for 5 

minutes. The membranes were sandwiched between plastic film and imaged on Omega Lum™ G 

Imaging System and quantified using Adobe Photoshop software. 

 

                                                             Materials used                                                                  

                                                                   Reagents 

Phosphate Buffer Saline (1.37 M Sodium chloride, 2.7 mM Potassium chloride, 100mM 

disodium phosphate, 18mM potassium di-hydrogen phosphate, pH 7.4). Krebs-Ringer HEPES 

buffer (116 mM Sodium chloride, 4mM Potassium chloride, 1mM Magnesium chloride, 1.8 mM 

Calcium chloride, 25 mM Glucose, 10mM Hepes, pH 7.4). RIPA lysis buffer (20 mM Tris, 150 

mM NaCl, 1mM Na3VO4 , 10 mM NaF, 1mM EDTA , 1mM EGTA, 1% Triton,  0.1% SDS, 

0.5% deoxycholate, pH-7.4). 1X Transfer buffer (25 mM Tris, 192 mM glycine, 0.1% SDS; 20% 
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methanol). SDS-PAGE 10X gel running buffer (248 mM Tris, 1.92 M glycine, 1% w/v SDS); 

the 10X buffer is diluted to 1X for running SDS-PAGE gels. 

 

DMEM and Penicillin/Streptomycin media were from Thermo Fisher Scientific (Waltham, MA, 

USA); EMEM, G418 sulfate, 1X Trypsin, Antibacterial and Antimycotic and L-Glutamine were 

from Corning Cellgro (Manassas, VA, USA); FBS was from Atlanta Biologicals (Atlanta, GA, 

USA); Glucose, AMPH, and anti-mouse IgG 2° antibody linked to alkaline phosphatase were 

from Sigma Aldrich (St. Louis, MO, USA); DAT specific goat polyclonal antibody raised 

against amino acids 601 to 620 of the C-terminus of hDAT and anti-goat IgG 2° antibody linked 

to alkaline phosphatase were from Santa Cruz Biotechnology (Dallas, TX, US); Dimethyl 

Sulfoxide (DMSO), Sucrose, HEPES, EDTA, Protease Inhibitor Tablets, Tween-20, Triton X-

100, Sodium Deoxycholate, Sodium Chloride, Sodium Fluoride, BSA, Sodium Phosphate, 

Potassium Chloride, Disodium Phosphate, Calcium Chloride, Potassium Dihydrogen Phosphate, 

SDS, Methanol, Glycine, 2-Mercaptoethanol, Tris-HCl, DTT, and PVDF membranes were from 

Fisher Scientific (Waltham, MA, USA); Alkaline phosphatase substrate (ImmunStar) was from 

Bio-Rad (Hercules, CA, USA).                                                                                                                         

                                                                Equipment 

Transfected LLC-PK1 cells and SH-SY5Ycells were maintained in a Nuair 2700-30 water 

jacketed CO2 incubator and handled in a Nuair class II type A/B3 class II biological safety 

cabinet laminar flow hood. The cellular lysates for ELISA and western blots were centrifuged 

using an Eppendorf micro centrifuge 5424R. Cellular pellets were solubilized using a 

Bransonic® water bath sonicator. Cell membranes were assayed for protein content using Epoch 

microplate reader from Biotek. SDS-PAGE and protein transfer to PVDF membranes was 
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performed using Mini-Protean tetra electrophoresis apparatus and Mini trans-blot electrophoretic 

transfer cell respectively from Bio-Rad. The power supply used to control both the 

electrophoresis apparatus and electrophoresis transfer cell was also from Invitrogen. 

Illuminescence from PVDF membranes were imaged using an Omega Lum™ G Imaging System 

and quantified using Adobe Photoshop software. All statistical analyses were done using 

graphpad prism software. Chemical reagents were measured on analytical balance from Ohaus. 

Disintegration per minute (DPM) of [
3
H] dopamine in experimental samples were counted using 

LS 6500 multi-purpose scintillation counter from Beckman. 

                                                                

RESULTS 

Chronic AMPH exposure causes long term effect on dopamine uptake in hDAT expressing LLC-

PK1 cells 

AMPH is known to cause a down-regualtion of DAT activity, as well as NET and SERT 

functions. AMPH causes an elevation in synaptic concentration of dopamine by preventing 

neurotransmitter uptake by competitively binding to DAT and promoting dopamine efflux via 

reverse activity of the transporter. 

 

Studies have shown that AMPH targets DAT, among many other proteins, to promote elevated 

dopamine transmission and previous work done in our lab demonstrated that in the long run 

AMPH treatment reduces dopamine uptake by acting on the transporter in the model organism 

C.elegans . To find out if the effect we observed in C.elegans is reproducible in hDAT 

expressing cells and to focus on the effect of AMPH on hDAT, initial experiments were done in  

LLC-PK1 cells stably expressing hDAT. 



24	
  

	
  

  

In our initial experiments with LLC-PK1, cells were with 1µM or 50 µM AMPH for 15 hours 

and then dopamine uptake was measured by [
3
H] dopamine uptake assays. We also measured 

dopamine uptake following 15 hrs of AMPH treatment after the cells have undergone one, two 

and three cell divisions.  

 

When treated with 1µM AMPH the results show a significant reduction of  20% in dopamine 

uptake in treated cells with respect to control after 15 hours of treatment (Figure- 7A). However, 

this significant decrease in dopamine uptake was not maintained in daughter cells as we saw no 

significant change in dopamine uptake between AMPH treated cells and control after one, two, 

and three cell divisions (Figure- 7B, 7C, 7D).  

 

When cells were treated with much higher concentration of 50 µM AMPH, the results show a 

significant reduction of 35-40% in dopamine uptake in AMPH treated cells with respect to 

control (cells without treatment) after 15hrs of AMPH treatment (Figure-8A). This effect was 

transmitted and maintained in daughter cells up to at least three cell divisions where we saw a 

similar percent reduction (~40%) in dopamine uptake in treated cells (Figure- 8B, 8C, 8D). We 

used GBR12935 as a selective DAT inhibitor to validate that the dopamine uptake was solely 

mediated by DAT. 
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Figure 7: AMPH concentration of 1µM causes reduced dopamine uptake in hDAT expressing 

LLC-PK1 cells after (A) 15 hrs of treatment but the significant reduction was not maintained after 

(B) one cell division, (C) two cell divisions, and (D) three cell divisions. 10µM GBR12935 

completely blocked dopamine uptake validating the uptake we observed was specific to DAT. 

Statistical analyses were done by one-way ANOVA and Bonferroni's Multiple Comparison test, 

p<0.05, using Graphpad Prism software (version 5). Histograms represent dopamine uptake 

expressed as mean± SE of controls set to 100%, where ***= p<0.001. 

 

  

B. One cell division after AMPH treatment A. After 15 h of AMPH treatment 

C. Two cell divisions after AMPH treatment D. Three cell divisions after AMPH treatment 
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Figure 8: AMPH treatment of 50 µM causes reduced dopamine uptake in hDAT expressing 

LLC-PK1 cells after (A) 15 hrs of treatment, (B) after one cell division, (C) after two cell 

divisions, and (D) three cell divisions. 10µM GBR12935 completely blocked dopamine uptake 

validating the uptake we observed was specific to DAT. Statistical analyses were done by one-

way ANOVA and Bonferroni's Multiple Comparison test, p<0.05, using Graphpad Prism 

software (version 5). Histograms represent dopamine uptake expressed as mean± SE of controls 

set to 100%, where ***= p<0.001.  

B. One cell division after AMPH treatment A. After 15 h of AMPH treatment 

C. Two cell divisions after AMPH treatment D. Three cell divisions after AMPH treatment 
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AMPH-induced reduction of dopamine uptake in SH-SY5Y cells is maintained in daughter cells 

From our initial experiments in LLC-PK1 cells, we found that AMPH treatment for 15hrs 

significantly reduces dopamine uptake in parent cells and this effect was transmitted and 

conserved up to at least three cell divisions where we saw similar percent reduction in dopamine 

uptake in daughter cells. These data led us to hypothesize that chronic AMPH treatment causes 

long term reduction in dopamine uptake by down-regulating the expression or activity of DAT. 

 

To further test our hypothesis, we moved on from a heterologous system artificially 

overexpressing DAT to a cell line which brought us closer to the physiology of human 

dopaminergic neurons. In our next approach, we used the human neuroblastoma cell line- SH-

SY5Y. SH-SY5Y cells have been used frequently, either in an undifferentiated state, or in a 

neuron-like differentiated state after induction with retinoic acid (RA). RA treatment has been 

shown to induce the expression of tyrosine hydroxylase (TH), suggesting a shift towards a DA 

neurotransmitter phenotype. Based on literatures the neuroblast-like morphology of these cells 

are not only positive for TH but also  for dopamine-β-hydroxylase, the enzyme which is known 

to catalyze the conversion of dopamine to norepinephrine. Hence, SH-SY5Y has been used as a 

dopaminergic as well as a noradrenergic model system. 

 

For our experiments, we took advantage of the neuronal characteristics of these cells and the 

endogenous expression of monoamine transporters (DAT, NET, SERT). We repeated the same 

experiments using SH-SY5Y to determine if the long term behavioral effects of AMPH we 

observed in C.elegans and in the initial experiments with LLC-PK1 is reproducible. The 

experimental paradigm is similar where we pretreated SH-SY5Y cells with 1µM or 50 µM 
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AMPH or control solution for 15 hours. The cells were then washed three times to remove 

AMPH and allowed to undergo cell division(s). For one set experiments we performed uptake 

assays immediately after 15hours of AMPH treatment and for the rest of the experiments, after 

the cells crossed cell division(s) they were subjected to RA-induced differentiation for 5 days. 

After 5 days of differentiation [
3
H] dopamine uptake assays were carried out to measure 

dopamine uptake in daughter cells. 

 

 Uptake assays carried out after 15 hours of chronic 1µM AMPH treatment showed a significant 

reduction of 24% in dopamine uptake in AMPH treated cells with respect to cells without 

treatment (control) (Figure-9A) but the effect was not maintained after one, two, and three cell 

divisions (Figure- 9B, 9C, 9D).This result matched our initial experiments with LLC-PK1 cells. 

Results from these experiments also revealed NET mediated dopamine uptake in these cells. 

When 100nM of GBR12935 was used to selectively block DAT, it failed to inhibit dopamine 

uptake. Since we obtained a robust dopamine uptake in these cells, we tested whether dopamine 

was reaccumulated via the other monoamine transporter NET, by adding a specific NET 

inhibitor-desipramine. We found that 100nM of desipramine completely blocked dopamine 

uptake (Figure 9 and 10) suggesting that the uptake is mostly mediated by NET in SH-SY5Y 

rather than DAT. 

 

When the same experiments were repeated with 50 µM AMPH treatment for 15 hours, we saw a 

reduction of 45% in treated cells with respect to control (Figure- 10A). As the goal of these 

experiments were to determine if the effect of chronic AMPH treatment persists in daughter cells 

after many cell divisions, we performed uptake assays after one, two and three cell divisions. Our 
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results show a similar reduction of 45-50% in dopamine uptake in AMPH treated group vs 

control after cell division(s) (Figure- 10B, 10C, 10D). The complete inhibition of dopamine 

uptake by desipramine was seen repeatedly in all these experiments, validating that it is a NET 

mediated uptake and also suggesting that AMPH can induce its effect not only via DAT but also 

through other monoamine transporters like NET.   

 

While performing the uptake assays, the cell count and cell viability were monitored in AMPH 

treated group and control to ensure AMPH treatment does not have a toxic effect on cell growth. 

In every experiment cells were counted prior to uptake assay and results show that there is no 

significant difference in cell number or viability between treated cells and control (Figure-11) 

validating that the AMPH induced decreased dopamine uptake we observed was not due to a 

decrease in cell viability in treated cells.   
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 Figure 9: AMPH at a concentration of 1 µM causes reduced dopamine uptake in SH-SY5Y cells 

(A) 15 hrs after treatment  but the effect was not maintained in RA differentiated SH-SY5Y cells- 

after (B) one cell division, (C) two cell divisions, and (D) after three cell divisions. 100nM 

GBR12935 failed to block dopamine uptake whereas the same concentration of desipramine 

(Desp.) inhibited the uptake, validating that the dopamine uptake we observed was moreso 

specific to NET than DAT. Statistical analyses were done by one-way ANOVA and Bonferroni's 

Multiple Comparison test, p<0.05, using Graphpad Prism software (version 5). Histograms 

represent dopamine uptake expressed as mean± SE of controls set to 100%, where ***= p<0.001. 

 

B. One cell division after AMPH treatment A. After 15 h of AMPH treatment 

C. Two cell divisions after AMPH treatment D. Three cell divisions after AMPH treatment 



31	
  

	
  

 

Figure 10: AMPH treatment of 50 µM causes 45-50% reduction in dopamine uptake in SH-

SY5Y cells (A) 15 hrs after treatment. A similar percentage (45-50%) reduction was observed in 

RA differentiated SH-SY5Y cells after (B) one cell division, (C) two cell divisions, and after (D) 

three cell divisions. 100nM GBR12935 failed to block dopamine uptake whereas the same 

concentration of desipramine (Desp.) inhibited the uptake, validating that the dopamine uptake 

we observed was moreso specific to NET than DAT. Statistical analyses were done by one-way 

ANOVA and Bonferroni's Multiple Comparison test, p<0.05, using Graphpad Prism software 

(version 5). Histograms represent dopamine uptake expressed as mean± SE of controls set to 100%, 

where ***= p<0.001. 

B. One cell division after AMPH treatment A. After 15 h of AMPH treatment 

C. Two cell divisions after AMPH treatment D. Three cell divisions after AMPH treatment 
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Figure 11: Cell count on the day of the experiments revealed no significant difference in cell 

number or viability between AMPH treated and control (A, B, C, D). Cell viability was between 

99-100% in both groups. Statistical analyses were done by unpaired t-test, p<0.05, using  

Graphpad Prism software (version 5) and there was no significant difference between the two 

groups. 

 

 

 

 

B. One cell division after AMPH treatment A. After 15 h of AMPH treatment 

C. Two cell divisions after AMPH treatment D. Three cell divisions after AMPH treatment 
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ELISA to detect AMPH revealed very low concentration of AMPH remaining in the cells prior 

to the uptake assay 

The goal of our project was to establish that the effect of AMPH treatment on the catecholamine 

transporters is transmitted to daughter cells. In order to ensure that AMPH was completely 

washed out after 15 hours of treatment and by the time we performed our uptake assay, we used 

an ELISA kit to measure AMPH concentration in the cells prior to the uptake experiments. 

 

Our results revealed very low levels of AMPH in treated cells which was close to the background 

concentration we measured in control cells (Table-1). These results validated that the decrease in 

dopamine uptake we measured in AMPH treated cells was not due to the presence of AMPH 

during the uptake assays. 
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Table 1: Very low-levels of AMPH was left over in cells prior to the uptake assays 

 

        Conc.(ng/ml)     Conc. (fM) 

  Control        3.03±0.78     6.47 

  AMPH       6.51±1.59     13.8 

 

ELISA results showing concentration of AMPH remaining in AMPH treated cells after cell 

division(s). Initially cells were treated with 50µM AMPH and then the drug was washed off after 

15 hours of treatment. Cell lysates for ELISA were collected prior to uptake assays from both 

groups (treated and untreated). Very low concentration of AMPH was measured by ELISA 

which was close to the background concentration in untreated cells. 
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DAT protein expression in daughter cells following chronic AMPH treatment in progenitor cells 

We hypothesized that AMPH induces long term reduction in dopamine uptake by down-

regulating the activity or expression of DAT. Hence in parallel to the uptake assays done in SH-

SY5Y cells, we also investigated whether chronic exposure to AMPH in progenitor cells alters 

the amount of DAT in daughter cells.  

 

To look at DAT protein expression, we collected cell lysates from SH-SY5Y cells treated with 

50 µM AMPH or vehicle for 15 hours before being differentiated with RA for 5 days. Cells were 

lysed in 100-400µl RIPA buffer and used for western blot analysis to determine DAT protein 

expression. We immunoblotted against the DAT protein using a DAT specific goat polyclonal 

antibody raised against amino acids 601 to602 of the C-terminus of hDAT.  DAT levels were 

corrected for loading using Actin as a loading control. We blotted for β-Actin using a mouse 

monoclonal antibody raised against a recombinant protein corresponding to a region near the C-

terminus of β-Actin of human origin. From our results we observed no significant difference in 

the total amount of DAT expressed in AMPH treated cells with respect to control cells (Figure 

12). 
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Figure 12: Western blot results showing no significant difference in DAT protein expression 

between AMPH treated cells and control, following chronic AMPH treatment in progenitor cells. 

Membranes were probed with DAT specific goat polyclonal antibody (1:1000 dilution in 3% 

BSA/PBST) and the bound antibodies were detected with anti-goat IgG secondary antibody 

linked to alkaline phosphatase (1:5000 dilution in 3% BSA/PBST). Statistical analyses were 

done by unpaired t-test, p<0.05, using graphpad prism software                                                            
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                                                               DISCUSSION 

The abuse of drugs can be split into categories which include illicit use of prescription drugs or 

use of illegal drugs that mostly rises from the inability to stop seeking drugs that ultimately leads 

to drug tolerance or physiological dependence. The possible pleasurable effects achieved from 

the abuse of psychostimulants are often the reason behind possible incremental increase in drug 

intake and gradual development of addiction to the substance. 

 

AMPH is widely recognized for its role in treating ADHD, narcolepsy, chronic fatigue 

depression and several other disorders but despite its important medicinal role, AMPH and its 

analogues are highly abused illicit drugs all over the world. One of the primary molecular targets 

of AMPH, and its derivatives like methamphetamine, are the monoamine transporters. AMPH is 

known to induce excess extra-neuronal dopamine concentration by promoting dopamine 

efflux[27]. 

 

The use of AMPH in ADHD is a long term treatment and people taking AMPH for prolonged 

periods of time often develop addiction over months and sometimes for years. Popular 

prescription AMPHs like Adderall are often assumed to be safe as they are prescribed by doctors 

but abuse of Adderall can lead to an addiction that can be hard to break. Previous studies have 

illustrated the mechanism of how AMPH works on the monoamine transporters to induce 

dopamine efflux but very few studies have investigated the long term consequences of AMPH 

use. 
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The general interest of our lab is to look at changes happening from drug exposure, in the long 

term and across generations. Previous work done in the lab has already found that exposing 

C.elegans to AMPH during embryogenesis induces behavioral changes in adult worms. It has 

been found that in C.elegans, an excess of extracellular dopamine results in loss of motility in 

fluid- a behavioral phenotype termed ‘swimming induced paralysis’ (SWIP). Using SWIP assay 

it was shown that adult worms who were exposed to AMPH as embryos show increased SWIP 

when challenged with AMPH with respect to control groups (animals who never saw the drug). 

These data suggest that the animals have a memory of the drug exposure during their 

developmental stage. Even though the worms were only exposed to AMPH as embryos and 

never saw the the drug again, the exposure during development had a long term effect which 

resulted in increased SWIP behavior at a much later stage in the worm’s life. 

 

Since DAT is one of the major proteins which is targeted by AMPH to induce SWIP in 

C.elegans[28], we investigated the long term effect of AMPH in hDAT expressing cells, to 

determine if the effect of AMPH on C.elegans DAT is reproducible with hDAT. For our initial 

experiments, we worked with LLC-PK1 cells which were stably transfected with hDAT. This 

helped us determine the effect of AMPH on dopamine uptake by the transporter over long term. 

We treated cells with two different concentrations of AMPH, 1µM and 50 µM, for 15 hours and 

performed [
3
H] dopamine uptake assays after cell division(s). We know that for therapeutic 

purpose AMPH is prescribed in few µM range (1-10µM) but when abused the concentration is 

much higher. Hence, we chose to investigate AMPH induced effect on dopamine uptake once 

with a low concentration treatment (1µM) and then with a higher concentration of 50 µM[29]. 

Our results show a significant decrease in dopamine uptake in treated cells compared to 
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untreated cells when we performed uptake assay immediately after 15 hours of AMPH treatment. 

This significant reduction in dopamine uptake was transmitted and maintained in daughter cells 

after one, two and three cell divisions when 50 µM AMPH was used. These results demonstrated 

that the long-term effect we observed in C.elegans is reproducible in hDAT expressing cells. 

Since these experiments were done in a heterologous system, artificially over-expressing DAT, 

the results also helped us verify that AMPH induces a decrease in dopamine uptake by acting on 

the transporter either by down-regulating DAT expression on the cell surface or by impairing 

DAT activity to uptake dopamine. 

 

To further test our hypothesis we repeated similar experiments in the human neuroblastoma cells, 

SH-SY5Y. These cells have an endogenous expression of monoamine transporters (DAT, NET, 

and SERT) and exhibit neuronal characteristics. The use of SH-SY5Y cells helped us mimic the 

experiments done in C.elegans where AMPH treatment during embryogenesis caused behavioral 

changes in adult worms. The results suggests that the presence of AMPH during the 

developmental stage has an effect on the neuronal precursor cells that later develop into 

dopaminergic neurons in C.elegans and we see a consequence of that at a much later stage in the 

worm’s life. In the case of the SH-SY5Y cells, we treated the cells with AMPH before inducing 

differentiation with RA to determine if AMPH pre-treatment prior to differentiation, when 

neuronal precursor cells are present, induce a similar decrease in dopamine uptake in the long 

term. 

 

Our experimental paradigm included treating cells with AMPH for 15 hours and differentiating 

the cells with RA once they have crossed cell division(s), followed by the uptake assay. Our data 
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revealed that dopamine uptake in differentiated SH-SY5Y cells were mostly mediated by NET 

instead of DAT which was significantly reduced in AMPH treated cells with respect to control 

cells up to three cell divisions. We ensured that the decrease in dopamine uptake in daughter 

cells was not due to the presence of AMPH during the uptake assays, by performing ELISA 

against AMPH which displayed very low concentration of AMPH left-over in cells that was 

close to the background concentration measured in untreated cells. Taken together, these data 

suggest that ‘chronic AMPH treatment causes long term reduction in dopamine uptake via down-

regulation of expression or activity of monoamine transporters like DAT and NET’.  

 

With the SH-SY5Y cells we further investigated the expression of total DAT protein in daughter 

cells following AMPH treatment in progenitor cells and observed no significant difference in the 

total amount of DAT expressed in treated group with respect to control. This could imply several 

prospects like – (a)AMPH pre-treatment induces long term decrease in dopamine uptake not by 

altering the total transporter expression but via altering DAT expression only on the cell surface; 

(b) AMPH pre-treatment does not alter the number of DAT on the cell surface but down-

regulates its capability to uptake dopamine from the synapse; (c) as we found out from the 

experiments with the SH-SY5Y cells that the dopamine uptake in these cells is dominated by 

NET, AMPH pre-treatment can decrease NET expression on the cell surface or impair its 

activity, both of which culminates in decreased dopamine uptake. 
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                                                                 CONCLUSION 

AMPH is a potent CNS stimulant and is widely known for its addictive properties. Several 

studies have already shown that chronic AMPH treatment promotes increased monoamine 

transmission and decreases their uptake into the presynaptic neuron but very few studies have 

investigated the possibility of this effect to persist in the long term. The unique aspect of our 

investigation is we were able to show how AMPH induced reduced dopamine uptake in parent 

cells is transmitted to daughter cells in the absence of the drug. The cells had a memory of the 

treatment and the effect was maintained up to three cell divisions. Since AMPH is one of the 

most effective drugs to treat children and adolescents with conditions like ADHD, evidences 

indicating a long term effect from the use of the drug should be deemed important when 

considering AMPH’s therapeutic use and should be further investigated. 
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