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COMMENTARY

A functional antagonism between RhoJ and Cdc42 regulates fibronectin 
remodelling during angiogenesis
Ananthalakshmy Sundararaman a and Harry Mellorb

aCardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India; bSchool of 
Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK

ABSTRACT
Angiogenesis is the formation of new blood vessels from pre-existing ones. Angiogenesis requires 
endothelial cells to change shape and polarity, as well as acquire the ability to directionally migrate ‒ 
processes that are classically regulated by the Rho family of GTPases. RhoJ (previously TCL) is an 
endothelium enriched Rho GTPase with a 78% amino acid similarity to the ubiquitously expressed 
Cdc42. In our recent publication, we demonstrate that α5β1 integrin co-traffics with RhoJ. RhoJ 
specifically represses the internalization of the active α5β1 conformer, leading to a reduced ability of 
endothelial cells to form fibronectin fibrils. Surprisingly, this function of RhoJ is in opposition to the role 
of Cdc42, a known driver of fibrillogenesis. Intriguingly, we discovered that the competition for limiting 
amounts of the shared effector, PAK3, could explain the ability of these two Rho GTPases to regulate 
fibrillogenesis in opposing directions. Consequently, RhoJ null mice show excessive fibronectin deposi
tion around retinal vessels, possibly due to the unopposed action of Cdc42. Our work suggests that the 
functional antagonism between RhoJ and Cdc42 could restrict fibronectin remodelling to sites of active 
angiogenesis to form a provisional matrix for vessel growth. One correlate of our findings is that RhoJ 
dependent repression of fibronectin remodelling could be atheroprotective in quiescent vessels.
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Rho GTPases are central regulators of the cytoskeleton 
[1,5]. Rho GTPases were discovered quite serendipi
tously as being small molecular weight proteins homo
logous to the ras family of GTPases (Ras homologous- 
Rho) [6]. We now know that this family comprises of 
21 proteins in humans [7] of which RhoA, Rac1 and 
Cdc42 are the archetypical members. The entire Rho 
family of GTPases has arisen from a single ancestral 
gene through several gene duplication events generat
ing many in-and-out-paralogs [8]. Generally, dupli
cated genes are unstable and are lost from the genome 
unless there is a selective pressure on them to evolve 
new functions (neofunctionalisation) or partition old 
functions (subfunctionalisation) [9]. Of specific interest 
to us is the relationship between RhoJ and the ancestral 
Cdc42 genes. Two rounds of whole-genome duplication 
in the ancestral vertebrate [9] is believed to have 
resulted in ancestral Cdc42 gene duplicating to give 
rise to the present Cdc42, RhoQ, and RhoJ in humans. 
The emergence of the adaptive immune system, 
a closed blood vascular system, and more complex 
neural systems in the vertebrates could have led to 

neofunctionalisation and fixation of these newer 
RhoGTPases. Previous studies have indicated that 
Cdc42 and RhoJ could have several shared functions, 
owing to shared effector binding [2,3]. Notably, while 
endothelium specific Cdc42 deletion in mice leads to 
severe defects in lumen formation during embryonic 
development, causing lethality at E9-10 [10], RhoJ null 
mice have a milder phenotype with reduced number 
and branching of large vessels [11]. These results sug
gested that RhoJ could have distinct roles compared to 
Cdc42 in angiogenesis.

To study the unique roles of RhoJ in endothelial cells, 
we exploited the difference in subcellular localization of 
RhoJ and Cdc42. RhoJ is enriched in both small and large 
vesicles located both at the cell periphery and in the peri
nuclear region, while Cdc42 has a more homogenous 
distribution with enrichment at the Golgi. Therefore, we 
hypothesized that RhoJ might have roles in the trafficking 
of endothelial cargo not shared with Cdc42. To identify 
these, we used density gradient ultracentrifugation to 
enrich for RhoJ+ vesicles, separating out any RhoJ that is 
plasma membrane bound [4]. Further, we sorted out 
RhoJ+ vesicles with a particle sorter and identified 
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proteins present in the same vesicle as RhoJ by mass 
spectrometry. We followed up on the highest hit, the 
integrin α5β1 and found that RhoJ did not affect the 
total receptor levels or its distribution. Surprisingly, 
RhoJ had a conformation-specific effect on α5β1 integrin 
and siRNA mediated RhoJ depletion increased steady- 
state levels of active α5β1. To further understand the 
fate of the active receptor upon RhoJ modulation, we 
undertook receptor internalization and recycling assays 
wherein the surface receptors were biotinylated and 
chased across multiple time points. RhoJ had a clear effect 
on the internalization of active α5β1. Lack of RhoJ 
doubled the internalization rates suggesting that RhoJ 
acts as a brake on active receptor internalization. RhoJ 
also diverted the active α5β1 integrin to LAMP1+ com
partments poised for degradation while reducing their 
recycling through the TGN46+ compartments (Figure 1).

Active α5β1 integrin trafficking is linked to the abil
ity of cells to remodel fibronectin [12]. Since we saw 
that RhoJ reduced the flux of active integrin α5β1 in the 
cells, we hypothesized that RhoJ would negatively reg
ulate fibronectin remodelling. Using microscopy and 
biochemical deoxycholate insolubility assays, we 
showed that RhoJ indeed inhibited the bundling of cell- 
derived fibronectin (EDA-FN) into fibrils. Since the 
secretion of fibronectin is not perturbed upon RhoJ 
modulation, we think that the polarized and targeted 
release of fibronectin at basal fibrillar adhesions, which 
requires the coupling of fibronectin secretion with 
integrin trafficking [13], is perturbed resulting in low 
fibril formation when RhoJ is active.

Since Cdc42 has been reported to promote fibrillogen
esis in fibroblasts [14], we enquired if this was true for 
endothelial cells as well. Our results suggested that indeed 
Cdc42 was a positive regulator of fibrillogenesis in 
endothelial cells. This led to the intriguing question as to 
how RhoJ and Cdc42 drive cell behaviour in opposing 
directions. After failing to detect unique high-affinity 
interactors of RhoJ that did not bind Cdc42, we explored 
a common effector PAK3 that binds to both the Rho 
GTPases. PAK3 was also found to be a positive regulator 
of fibrillogenesis. However, upon co-expression of active 
RhoJ, PAK3 could no longer drive fibrillogenesis. This 
suggested that the RhoJ-PAK3 complex inhibited fibrillo
genesis while the Cdc42-PAK3 complex activated the 
same. Our results indicated that RhoJ and Cdc42 might 
compete for limiting amounts of PAK3 to regulate fibril
logenesis. Indeed, a previous study showed that PAK3 is 
limiting in cells and is competed for by Nck, βPIX and 
paxillin α [15]. PAK3 is known to heterodimerise with 
PAK1 [16], and our data revealed that PAK1 also regu
lates fibrillogenesis similar to PAK3.

Fibronectin deposition with the EIIIA domain 
(EDA-FN) happens almost exclusively around blood 
vessels in adults [17]. We utilized this specificity to 
query the role of RhoJ in fibronectin remodelling 
around blood vessels in vivo. Using a RhoJ knockout 
mouse model, we demonstrated that the lack of RhoJ 
causes increased fibronectin deposition around the 
developing retinal vessels. This substantiates our obser
vations that RhoJ is a negative regulator of fibrillogen
esis. In RhoJ null mice, the vessels have less stability 
and increased permeability [18]. Our work provides 
mechanistic insights into this phenotype, suggesting 
that the negative regulation of fibronectin deposition 
by RhoJ allows vessels to mature at the end of angio
genesis. Lack of RhoJ could cause persistence of the 
provisional fibronectin matrix leading to vessel instabil
ity. We had previously shown that RhoJ traffics podo
calyxin to the early apical surface of endothelial cells 
thereby aiding in lumen formation [19]. Together, our 

Figure 1. Quiescent endothelial cells rest on a laminin rich 
basement membrane matrix [38] (blue). High RhoJ activity in 
these cells prevents fibronectin bundling and deposition as 
fibrils. RhoJ inhibits the uptake of ligand-bound α5β1 and 
diverts the receptors into a degradative fate. At the onset of 
angiogenic sprouting, a fibronectin rich provisional matrix is 
laid out (yellow). RhoJ inactivation by angiogenic growth fac
tors promotes active α5β1 internalization and trafficking 
through the post-Golgi compartments to promote fibronectin 
fibrillogenesis.
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results suggest that RhoJ inactivation during sprouting 
and reactivation during lumenisation is necessary for 
normal angiogenesis. Interestingly, biallelic RhoJ over
expression in the endothelial cells of mice, mimic the 
phenotype of Cdc42 KO mice, showing severe defects 
in angiogenesis and embryonic lethality [20]. Our work 
suggests that this could be due to the overexpression of 
Rhoj out-competing endogenous Cdc42 function.

A stage-specific role for RhoJ and Cdc42 in the multi
step angiogenesis cascade is indicated by the ability of the 
different growth factors to switch between the two Rho 
GTPases. For example, the proangiogenic growth factor 
VEGF is known to activate Cdc42 and inactivate RhoJ 
[21] while a repulsive cue, Sema3E is known to inactivate 
Cdc42 while activating RhoJ [20]. We should highlight 
here that Kaur et al. have reported activation of RhoJ in 
response to VEGF stimulation over longer time periods 
[22]. The regulation of RhoJ is likely context dependent as 
evidenced by a recent study that demonstrates that RhoJ 
can integrate both the VEGF dependent attractive and 
Sema3E dependent repulsive cues in endothelial cells [11]. 
We have not been able to reliably measure RhoJ activation 
due to issues with the quality of available RhoJ antibodies. 
It will be important to resolve this apparent discrepancy 
in the kinetics of VEGF driven RhoJ activation using 
a more robust activation assay.

A recent study by Prof. Uemura’s group contextualizes 
the role of RhoJ in endothelial migration during develop
mental and pathological angiogenesis. RhoJ integrates 
VEGF and Sema3E dependent signals by altering 
VEGFR2 receptor binding partners, downstream signal
ling and receptor fate [11]. The ratio of the attractive 
(VEGF) to repulsive (Sema3E) cues in the microenviron
ment dictates RhoJ activation. Consequently, in VEGF 
high contexts, RhoJ drives VEGFR2-PlexinD1-Nrp1 
complex formation, which causes VEGFR2 Y1214 phos
phorylation promoting forward migration. On the other 
hand, Sema3E induces a VEGFR2-PlexinD1 complex 
devoid of Nrp1, again in a RhoJ dependent manner, that 
signals through p38 MAPK to promote reverse migration 
[11]. Significantly, in a context where the VEGF depen
dent signals predominate in vivo, as seen in the oxygen- 
induced retinopathy (OIR) mouse model, RhoJ deletion 
in ECs reduced neovascular tuft formation by 80%. This 
shows the in vivo requirement of the VEGF-RhoJ axis for 
forward migration and angiogenesis. This also suggests 
that RhoJ could be an effective target, under VEGF high 
contexts, to inhibit aberrant vascularization [11]. Indeed, 
our work provides the diametrically opposite context 
involving an intricate balance of attractive and repulsive 
cues during developmental angiogenesis. Retinal ECs are 
exposed to VEGF secreted by astrocytes in the same 
horizontal plane and Sema3E from the underlying 

neurons. Under these conditions, RhoJ deletion leads to 
increased fibronectin fibrillogenesis at the angiogenic 
front [4]. This could be due to the inability of Sema3E 
to induce actin depolymerization and a reduction in cel
lular contractility in the absence of RhoJ, that would have 
acted as a check on the bundling of fibronectin into 
fibrils [23].

Our study indicates that the functional antagonism 
between the paralogs RhoJ and Cdc42 is due to competi
tion for shared effectors. Such antagonism is evident in 
other paralogs within the Rho GTPase family. For exam
ple, Rnd proteins paralogous to RhoA-C antagonize 
RhoA dependent processes [24]. Rnd proteins are 
known to bind to the RhoA GAP – p190RhoGAP (albeit 
at a position distinct from that of RhoA), causing an 
increased GAP activity of this protein towards RhoA 
[25]. Another example is seen in the antagonism between 
RhoC and RhoD. RhoD recruits PAK6 to inhibit RhoC 
dependent cell contractility [26]. There are also reports 
where closely related proteins bind in a conformation 
sensitive manner to the same substrate leading to func
tional antagonism. For example, β arrestins1 and 2, have 
different affinities for the ligand-bound and unbound 
conformations of IGF1R, showing antagonistic effects 
on receptor fate and biological outcomes [27]. It is tempt
ing to speculate that RhoJ, through specific adaptor pro
teins, might be directly recruited to the active integrin tails 
to prevent internalization. Both conformers of integrins 
have very different trafficking repertoires within cells [28]. 
The ligand-bound active integrins are likely to travel to 
perinuclear compartments of low pH to facilitate ligand- 
receptor separation while the inactive conformer is likely 
to undertake short loop recycling [28]. The presence of 
RhoJ in large perinuclear vesicles that lack Cdc42 suggests 
that differential conformation-specific recruitment to and 
handling of integrins could be key to the functional 
antagonism between the two Rho GTPases. Indeed, it 
would be important to delineate the key effector(s) down
stream of RhoJ that allows for the regulation of conforma
tion-specific α5β1 internalization. As PAK3 failed to 
change the initial rate of internalization of the active 
receptor [4], we would like to speculate that the formins, 
particularly FMNL3, might play a role. FMNL2 regulates 
β1 integrin internalization [29] but is reported to be 
absent in endothelial cells [30]. Therefore, the closely 
related protein FMNL3, already known to function down
stream of RhoJ during lumenisation [19] and downstream 
of Cdc42 at the Golgi during anterograde trafficking [31] 
is a likely shared effector that could regulate RhoJ- 
dependent regulation of active α5β1 trafficking [32].

The functional antagonism between RhoJ and Cdc42 
coordinates angiogenesis, suggesting that the retention 
of the duplicated RhoJ gene, almost exclusively in the 
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cells of the vasculature, serves to dampen the ancestral 
Cdc42 gene activity during fibronectin fibrillogenesis. 
The appearance of fibronectin as an ECM protein spe
cific to the chordate lineage [33], and its critical roles in 
angiogenesis [34] may have fuelled the need to fine- 
tune its deposition and remodelling. Through the 
diversification of the roles of the duplicated Cdc42 
gene, RhoJ might have ended up taking a key regulatory 
role in trafficking the fibronectin-bound active integrin 
α5β1 receptor and fibronectin remodelling.

Endothelial fibronectin deposition in the areas of 
turbulent blood flow, is the initial trigger for athero
genic inflammation [35]. Subendothelial fibronectin 
deposition in mature vessels plays a causal role in 
atherosclerosis [36,37]. Our results indicate that 
RhoJ might play a critical role in maintaining vessel 
health by limiting fibrillogenesis in quiescent vessels. 
We need to perform experiments to directly verify if 
RhoJ activation could be atheroprotective. In conclu
sion, our study identifies RhoJ as a novel regulator of 
conformation-specific integrin trafficking. RhoJ is one 
of the few negative regulators of fibronectin remodel
ling known to us, and it serves to counterbalance 
Cdc42 by competing for shared effectors. The RhoJ- 
Cdc42 antagonism serves as an example of a unique 
way in which duplicated genes can acquire new func
tions through the course of evolution.
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