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ABSTRACT 

Per- and poly-fluoroalkyl substances (per- and poly-PFASs) are emerging contaminants 

that have raised great concern in recent years. Two anionic per-PFASs in particular, 

perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), has received worldwide 

attention for their persistence in the natural environment, resistance to typical environmental 

degradation, bioaccumulation potential, and adverse health effects in humans. The stable 

chemical characteristics have enabled these chemicals to be used in many industrial and 

consumer products over the past 50 years. They have been detected all over the world in various 

environmental matrices.  

The water treatment removal of per-PFASs has been well documented, but the full 

classification of PFASs has yet to be determined and new compounds are being discovered and 

tested. Recent studies have identified numerous cationic and zwitterionic poly-PFASs whose fate 

and removal during drinking-water and municipal wastewater treatment remain unclear. 

However, there is limited knowledge on the fate of these emerging PFASs in water treatment 

processes. Studies on the removal mechanisms of cationic and zwitterionic poly-PFASs are 

needed to select the efficient treatment approaches while limiting the secondary formation of 

PFOS and PFOA.  Furthermore, a few recently manufactured poly-PFASs as PFOS/PFOA 

alternatives have been found in drinking water and environmental samples. As the use of certain 

PFASs are being phased out of major manufacturers to reduce emissions, alternative PFAS 

compounds may start to become more detected in aquatic environments, which creates many 

unknowns for removal methods.  
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The goal of this project is to examine the removal of PFOS/PFOA alternatives and 

precursors and to model cationic and zwitterionic poly-PFAS compounds during conventional, 

enhanced, and advanced drinking-water treatment systems. Various water treatment technologies 

were investigated with regard to the removal and transformation of cationic and zwitterionic 

PFASs and PFOS/PFOA alternative compounds, including, enhanced coagulation, filtration, 

advanced carbon adsorption, chlorination, and ozone treatment to determine removal 

possibilities. These cationic and zwitterionic poly-PFASs have similar chemical structures as 

PFOS and PFOA, and our data as shown below indicate that certain cationic and zwitterionic 

poly-PFASs can convert to PFOS and PFOA during water disinfection processes with chlorine or 

ozone. The results of this work will shed light on the overall contribution of precursor 

compounds to the formation of PFOS and PFOA in engineered environmental systems. 

It was determined that the removal of the target PFASs during conventional techniques, 

coagulation, and sand filtration was low. As for filtration by activated carbon, the concentrations 

immediately were almost below detectable ranges proving its wide known effectiveness against 

the removal of longer chained PFASs. Disinfection technique, chlorination, was found to be 

effective for the removal of PFOAB and PFOAAmS. Alternatively, ozone was found to be more 

effective at removing PFOSB and PFOSAmS at high ozone concentrations. Remarkably, in 

certain experiments, we observed the generation of PFOA and PFOS from cationic and 

zwitterionic precursor PFAS compounds during disinfection with either chlorine or ozone. 

Supported by some of the results, it was concluded that PFOAB and PFOAAmS degrade to form 

PFOA and, PFOSB and PFOSAmS degrade to form PFOS. PFOA was generated as high 

>4000% of their initial concentrations under certain conditions. These results will shed light on 
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the degradation and removal behaviors of emerging PFASs during engineered systems and their 

contribution to the secondary formation of PFOS and PFOA. 
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1. INTRODUCTION 

1.1. Polyfluoroalkyl and Perfluoroalkyl Substances (PFASs) 

“Emerging contaminants” are substances that are not routinely included in water quality 

tests. They can broadly be defined as “any synthetic or naturally occurring chemical or 

microorganism that is not commonly monitored in the environment but has the potential to enter 

the environment and cause known or suspected adverse ecological and human health effects” 

(USGS, 2009). Per- and poly-fluoroalkyl substances (PFASs) or perfluorinated chemicals (PFCs) 

constitute a major subgroup of these contaminants. With any emerging contaminant, especially 

ones that are potentially hazardous to humans, studies should be conducted to discover the 

threats and treatment methods. Hence, strong concerted global regulatory initiatives are highly 

desirable to address PFAS emissions on a global scale.  

The compounds comprise of a family of manmade organic chemicals that have a 

completely (per-) or partially (poly-) fluorinated carbon chain connected to different functional 

groups. PFASs have received global public attention in recent years due to their persistence and 

resistance to typical environmental degradation (Appleman et al., 2014; ATSDR, 2009), 

bioaccumulation potential (Martin et al., 2003; Xu et al., 2014; Houde et al., 2011), and possible 

adverse effects on living organisms and autotrophic and heterotrophic food webs (Peng et al., 

2010; Martin et al., 2003), and capability for long-range transport through the atmosphere and 

water (Shoeib et al., 2006; Houde et al., 2011).  

A recent report estimates “that there are probably at least 3000 PFASs currently on the 

global market” (Wang et al., 2017). Two groups, perfluoroalkyl carboxylic acids [CnF2n+1COOH; 
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n ≥ 7 (PFCAs)] and perfluoroalkyl sulfonic acids [CnF2n+1SO3H; n ≥ 6 (PFSAs)], have been the 

focus of many studies. These groups have been shown to be very persistent and their longer 

chained compounds have shown to bioaccumulate and biomagnify in food webs (Buck et al., 

2011; Butt et al., 2010). In particular, one PFSA, perfluorooctane sulfonate (PFOS, C�F��SO�
		), 

and one PFCA, perfluorooctanoic acid (PFOA, C�F��COO
	), have been measured in many 

components of the biosphere and aroused the attention among the scientific and regulatory 

communities and the public. These compounds have been measured in drinking water at 

numerous sites in the United States and in other parts of the world at concentrations ranging from 

a few to several tens of ng/L (Eschauzier et al., 2012; Ericson et al., 2009; Hölzer et al., 2008; 

Quinones and Snyder, 2009). PFOS and PFOA have been included into the EPA’s Contaminant 

Candidate List 3 of chemicals under consideration for future drinking water regulation in the 

U.S. (USEPA, 2009). These two chemicals as well as perfluoroheptanoic acid (PFHpA), 

perfluorononanoate (PFNA), perfluorobutane sulfonic acid (PFBS), and 

perfluorohexanesulfonate (PFHxS) have been also added to the EPA’s Unregulated Contaminant 

Monitoring Rule 3 (UCMR 3), which requires nationwide monitoring by public water suppliers 

to provide occurrence data needed for regulatory decision making (Post et al., 2012; US EPA, 

2012). 

 

1.1.1. Production 

The stable chemical characteristics and water solubility have enabled these chemicals to 

be used over the past 50 years in many industrial and consumer products, including fabric 

surface protectants, upholstery, carpets, polishes, shampoos, fire-fighting foams, non-stick 

cookware, electrical wire casings, and pesticide formulations (Brooke et al., 2004; Kissa, 2001; 
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Yamashita et al., 2008). With ineffective pretreatment, these compounds directly release from 

industries to natural waterways or wastewater treatment plants. In addition, the indirect release of 

PFCAs and PFSAs are dominated by the abiotic and biotic degradation of precursors that can 

form PFCAs and PFSAs (Labadie & Chevreuil, 2011; Buck et al., 2011). Some of these 

precursors are semi-volatile and contribute to the spreading of the stable non-volatile PFAS to 

distant regions far from pollution sources (Buck et al., 2011; Butt et al., 2010). 

 

1.1.2. Transportation 

The physical transport and directional partitioning of PFASs are highly dependent on 

their physicochemical properties that which vary depending on their chain length and functional 

group. In some cases, many PFASs have been found in drinking water wells far from the point 

source, suggesting that multiple transportation mechanisms may be present (Post et al., 2012). In 

groundwater, PFASs can span long aquifer distances via the well-established pathway of 

migration of a contaminated groundwater plume (Xiao et al., 2015). However, it has been 

suggested that air emissions from nearby industrial facilities may result in a deposition to the 

groundwater (Post et al., 2012). These two pathways of transport of PFAS have been suggested 

to be the main contributors: hydrosphere and atmospheric. The atmospheric process is described 

as long-range atmospheric transport of volatile to semi-volatile precursors followed by oxidation 

to PFOA and other PFASs which are then deposited onto the land or the water (Li et al., 2011; 

Shoeib et al., 2006). This is the governing hypothesis for how they are transported from densely 

populated use areas to remote places. The transport process following these final degradation 

products proceeds mainly in the aqueous phase. At a global level, PFASs have been estimated to 

travel higher in the water phase as compared with transport in the atmosphere (Shoeib et al., 
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2006; Yamashita et al., 2005).  However, it is still under dispute whether the water phase 

transport or the atmospheric transport is the dominant pathway for ionizable PFASs.  

 

1.1.3. Exposure and Toxicity 

Some PFASs are extremely resistant to degradation and have therefore been frequently 

detected ubiquitously in the aquatic environment, including finished drinking water at pg/L to 

µg/L (Rahman et al., 2014). The contaminated drinking water has been suggested to be a major 

exposure pathway (Xiao et al, 2013). Low-level concentrations have been detected in human 

tissue and blood serum worldwide (ATSDR, 2009). In a Nation Health and Nutrition 

Examination Survey (NHANES), PFOA was found at > 0.1 ng/mL in the serum of 99.9% of 

2100 U.S. participants aged 12 or older; with a geometric mean of 4.13 ng/L (Post et al., 2012). 

PFASs are proteinophilic and are found in living organisms in protein-rich tissues such as liver, 

blood, kidney, and eggs and do not accumulate in fat tissue like POPs and other hydrophobic 

contaminants (Ladadie and Chevreuil, 2011, Butt et al., 2010). Some PFASs have a very low rate 

of elimination from serum with half-lives of several years (ATSDR, 2009; Seals et al., 2010). In 

addition, consumption of lower food web species fish with levels of PFASs showed the potential 

for concentration to significantly biomagnify through the process of bioaccumulation (Xu et al., 

2014). The prolonged half-life and bioaccumulation potential creates the potential for 

longstanding body burdens that could result in adverse outcomes.  

The studies of the toxic effects of PFASs are still not fully understood and are quite 

limited. In a study done in Ohio on residents that were exposed to contaminated drinking water 

or had worked at the DuPont Washington Works chemical plant found that thyroid, kidney, and 

testicular cancer risk increased with an increase of estimated cumulative PFOA serum 
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concentration (Vaugh et al., 2013). Other studies have suggested a link between other PFASs in 

blood serum and elevated cholesterol, increase in uric acid (Steenland et al., 2010), low birth 

weight and infertility measured as longer waiting time to pregnancy (Fei et al., 2007; Fei et al., 

2009), delayed puberty in children (Lopez-Espinosa et al., 2011), onset of early menopause in 

women (Knox et al., 2011), and low semen quality in men (Joensen et al., 2009). Much of the 

research out there on direct human effects is still progressing and being disputed, but the possible 

health effects from PFASs and their accumulation in humans, together with the detection of the 

compounds in drinking water, stress the importance of effective removal techniques of PFASs in 

water treatment plants.  

 

1.1.4. Treatment 

Wastewater and water treatment plants are considered a key factor in the elimination of 

water-borne contaminants. In May 2016, the U.S. EPA released an updated drinking water 

advisory on PFOA and PFOS specifying a maximum combined level of 70 ng/L. To accomplish 

this, removal processes need to be implemented at the municipal level (EPA, 2016). The removal 

and treatment of PFOA and PFOS have been highly researched, but many PFASs are still being 

discovered have little to no removal strategies established. It is generally believed that PFOA and 

PFOS are difficult to remove during conventional water and wastewater treatment (Xiao et al., 

2013; Xiao et al., 2012). At 130 kcal/mol, the C-F bond is the strongest covalent bond (Lemal, 

2004) and extremely difficult to destroy. These chemicals can be removed by advanced but 

expensive or energy-intensive technologies, such as activated carbon, reverse osmosis, and ion 

exchange (Appleman et al., 2014). These treatments simply transfer the contaminants from one 

phase to another. However, the total mass of PFOA/PFOS does not decrease, it is just collected. 
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To reduce the mass of these compounds, a chemical reaction and transformation would be 

necessary. However, in certain conditions, PFOA and PFOS are generated during biological and 

chemical treatment, possibly from their precursor compounds (Xiao et al., 2012).  

 

1.1.5. Alternatives, Precursors, and Undocumented PFASs 

The removal of per-PFASs has been well documented, but the full classification of 

PFASs has yet to be determined and new compounds are being discovered and tested. The 

primary manufacturers of PFOA/PFOS and related chemicals include 3M and DuPont. Since the 

phase-out in 2015 of PFOA/PFOS production by the manufacturers including the two 

companies, the production of fluoropolymer compounds has been shifted towards 1) shorter-

chained PFASs, which has proven to have shorter half-life in the human body (Butt et al., 2010), 

and 2) alternative compound, many of which have limited toxicity and removal data (Oliaei et 

al., 2013).   

With advancements in analytical methods, recent studies have identified numerous 

cationic and zwitterionic poly-PFASs whose fate and removal during drinking-water and 

municipal wastewater treatment remain unclear. Some of these, being precursor compounds, may 

degrade to PFOA and PFOS during water treatment. However, their fate and transformation 

pathways during the treatment are poorly understood. In this work, we focus on four potential 

cationic and zwitterionic precursor compounds, in terms of their removal and transformation 

behaviors during water treatment. Furthermore, a few recently manufactured poly-PFASs as 

PFOA alternatives, GenX and ADONA, have been found in drinking water and environmental 

samples (Strynar et al., 2015; Sun et al., 2016; Xiao, 2017). In addition to the precursor 

compounds, GenX and ADONA were also studied for removal during water treatment. The 
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treatment technologies include conventional coagulation, enhanced coagulation, sand filtration, 

activated carbon adsorption, chlorination, and ozonation. 

 

1.2. Conventional Drinking-water Treatment 

Although many of the already classified PFASs are being researched, there is little to no 

research on the unclassified emerging PFASs that could produce the same effects as the common 

types. The following treatment techniques are some of the most widely used strategies for 

organic contaminant removal. It is important to determine if removal is possible with these 

methods before moving to more advanced methods.  

 

1.2.1. Coagulation and Flocculation 

Coagulation, using hydrolysable metal salts, is a long-standing technology in drinking 

water treatment plants for removing suspended particulates and NOM (Edzwald, 1993; 

Matilainen & Sillanpää, 2010). Dissolved and suspended particles are present in most of the 

natural waters. To separate the particles from the water, coagulation and flocculation processes 

are used. The purpose of wastewater flocculation is to form aggregates or flocculants from finely 

divided particles and from chemically destabilized particles.  Flocculation is a transport step that 

brings about the collisions between the destabilized particles needed to form larger particles that 

can be removed readily by settling or filtration. Most of these destabilized particles suspended in 

water possess a negative charge, mainly due to an adsorbed layer of natural organic matter 

(Hunter & Liss, 1982). Coagulants with charges opposite to those of the suspended solids are 

added to neutralize the particles. Once neutralized, the suspended particles are capable of 

sticking together to form flocculants. These flocculants attract other organic compounds 
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suspended in the water and then settle out. Enhanced coagulation is loosely defined by the EPA 

as the addition of an excess coagulant to improve removal of TOC. This enhanced technique has 

been seen to have a small amount of removal of PFOS and PFOA (Xiao et al., 2013). It is 

expected that there could be a possibility for the cationic and zwitterionic precursor PFASs to 

attach to the negatively charged flocculants and settle out 

 

1.2.2. Media Filtration 

Filtration is often the next treatment step after coagulation/flocculation and sedimentation 

to remove remaining colloidal particles. There are many types of filtration media that can 

remove compounds and suspended particles. The most common filtration process employs a 

granular medium of a certain size and depth. The pretreated water slowly percolates through the 

porous material to remove particulate and other impurities, including floc, from the water being 

treated.  The particulate matter is collected by a series of collisions and forces throughout a 

porous media. This is generally used after coagulation to assist in the removal of colloidal 

particles, bacteria and viruses, organic matter, and heavy metals (Kawamura, 2000; Huisman & 

Wood, 1974; Collins et al., 1992; Aziz et al., 2008). For small soluble organic compounds, 

minuet forces are the cause of any collection or partitioning effects. 

 There are three main types of filters: rapid (gravity) sand filters, upward flow sand filters 

and slow sand filters. All of these methods are used extensively in the water industry throughout 

the world. Sand bed filters work by providing the particulate solids with many opportunities to 

be captured on the surface of a sand grain. As fluid flows through the porous sand along a 

tortuous route, the particulates come close to sand grains. They can be captured by direct 

collision with the sand particles or an attraction causing adsorption. This is due to either Van der 
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Waals forces or a strong surface to chemical charge attraction. There could also be electrostatic 

attraction or repulsion depending on the charge of the target contaminants. In a study done by 

Nakada et al., 2007, they found up to >80% removal of several selected pharmaceuticals and 

personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand 

filtration. Much like coagulation, it is expected that the positively charged precursor PFASs 

could have an attraction to the negatively charged sand particles.  

 

1.2.3. Activated Carbon Filtration 

Active carbon is a manufactured type of charcoal with strong sorption properties and a 

large surface area, up to 1000 m
2
/g. The AC has been shown to be an effective water cleaning 

agent for different pollutants. Recent studies have also documented its remediation capacity for 

soil and sediment (Hansen et al., 2010). Adsorption of organic contaminants by carbonaceous 

sorbents are influenced by many factors, and sorbent-specific factors including sorbent surface 

chemistry (e.g., elemental compositions, surface acidity and basicity, and point of zero charge) 

and physical properties (e.g., pore size distribution, pore volume, and shape) are often examined 

and used for selecting proper sorbents for a specific application (Zhi & Liu, 2015).  

 In addition to sorbent properties, molecular structure and water chemistry play an 

important role in sorption of PFASs at the solid-liquid interface. Previous studies PFAAs have 

found sorption to increase with increasing carbon chain length of the molecules when the carbon 

chain length is more than six (Pignatello & Xing, 1995; Ahrens et al., 2011; Higgins & Luthy, 

2006). Ochoa-Herrera & Sierra-Alvarez (2008) compared the sorption of PFOS, PFOA and 

PFBS to granular active carbon (GAC). The study showed that sorption was stronger for PFOS 

than for PFOA, and PFBS, reflecting the influence of an increasing carbon chain length and the 
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substitution of a carboxylic group by a sulfonic group. Due to their toxic effects and resistant 

nature, much of the literature, including this research, focus on these larger chain PFAS. 

 Granular activated carbon adsorption can be used together with sand filtration to form a 

dual filtration system or individually after conventional sand filtration. Powdered activated 

carbon (PAC) can also be added together with coagulants during coagulation as a slurry 

(Chowdhury et al., 2013). In the adsorption process of a compound, bonds are formed of 

intermolecular attraction energies, which are much weaker than the covalent bonds involved in a 

chemical reaction. If the bonds are instead formed between a compound and the interface of a 

specific phase it is called adsorption (Schwarzenbach et al., 2003). The term sorption can be 

used when both adsorption and absorption are involved. It is often suggested that the 

“hydrophobic effect” plays a dominant role for PFAS sorption in many instances despite the 

ionizable functional groups (Higgins & Luthy, 2006), which can be entirely ascribed to van der 

Waals interactions; the most well established intermolecular attractions involved in the 

partitioning process. Once the occurrence of the compounds is balanced between the different 

phases and as long as the external factors such as temperature and pressure remain unchanged, 

the equilibrium has been reached. 

 

1.2.4. Disinfection 

The purpose of the disinfection process is to kill the growing form of pathogenic 

microorganisms. Disinfection can be attained by means of physical or chemical 

disinfectants. There are many methods to disinfect wastewater, but none are universally 

applicable. The disinfection of pathogens takes place because of cell wall corrosion in the 

microorganisms, or changes in cell permeability, protoplasm or enzyme activity. For resistant 
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organic compounds, specific organic chemical reactions are necessary to take place in order to 

cause degradation. 

For the most part, chlorine and ozone are the most widely used oxidants used in water 

treatment disinfection. The presence of functional groups with high electron density such as 

double bonds, activated aromatic systems, and amino groups generally increase the reactivity of 

a compound with ozone (E0 ¼ 2.07 V), while the presence of electron withdrawing groups (e.g. 

−Cl, −NO2, −COOH) lowers their reactivity (Von Gunten, 2003).  PFAAs do not contain 

aromatic bonds or phenolic structures. Thus, the presence of the strong C-F bond together with 

the electron withdrawing functional groups -COOH and -SO3H in the structures of PFCAs and 

PFSAs, respectively, indicate that these compounds will likely be resistant to oxidation (Rahman 

et al., 2014). However, the polyfluorinated compounds containing C-H bonds may be oxidizable, 

which could cause noticeable degradation for those compounds.  

 

Chlorine 

As a halogen, chlorine is a highly efficient disinfectant and is added to public water 

supplies to kill disease-causing pathogens, such as bacteria, viruses, and protozoans, that 

commonly grow in water supply reservoirs, on the walls of water mains and in storage tanks 

(Calderon, 2000). Although this procedure removes pathogens, the chlorine can also react with 

compounds in the water. As a chemical oxidant, though less reactive than ozone, chlorine can 

transform numerous inorganic and organic compounds found in water (pharmaceuticals, 

estrogenic compounds, antibiotics, etc.) (Adams et al., 2002; Alum et al., 2004; Chamberlain & 

Adams, 2006; Benotti et al., 2008). 
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Chlorination can be achieved by using liquefied chlorine gas (Cl2), sodium hypochlorite 

(NaOCl) or calcium hypochlorite (Ca(OCl)2), and chlorine dioxide (ClO2). Many large cities 

have switched from chlorine gas to sodium hypochlorite because of the safety concerns and 

regulatory requirements related to the handling and storage of pressurized liquid chlorine. 

To ensure that there is enough chlorine available for disinfection (free chlorine), 

breakpoint disinfection is usually applied. The term breakpoint chlorination refers to the process 

whereby enough chlorine is added to react with all oxidizable substances and ammonia such that 

if additional chlorine is added it will remain as free chlorine. To assure effective disinfection, 

enough chlorine to obtain free chlorine needs to be added. After the chlorine demand has been 

met and the breakpoint has been achieved, combined chloramines are present as free chlorine 

which is a mixture at normal pH values of hypochlorous acid (HOCl) and hypochlorite (OCl
-
). 

 

Ozone 

Ozone (O3) is a slightly bluish unstable gas produced by electrical discharge in a gas 

phase when oxygen molecules are dissociated into atomic oxygen and subsequently collide with 

another oxygen molecule (Spellman, 1999). Ozone is often produced by ultraviolet light and 

lightning during a thunderstorm. Design engineers in the US began to evaluate ozone for 

wastewater disinfection in the early 1970s. Since then, ozone has been proved to be one of the 

most effective disinfectants and is widely used to inactivate pathogens in drinking water 

(Langlais et al., 1991).  

Ozone is very unstable and decomposes in water very fast, which can generate hydroxyl 

radicals (•OH) in water by the following pathways (Staehelin & Hoigne, 1985): 
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O� + H�O ⇌ HO�
� + OH	 

HO�
� + OH	 ⇌ 2HO� 

O� + HO� ⇌ HO⦁ + 2O� 

HO⦁ + HO� ⇌ H�O + O� 

The dot (⦁) that appears next to the hydroxyl and other radicals is used to denote the fact 

that these species have an unpaired electron. Since OH is an extremely reactive radical, it reacts 

as soon as it is formed. The half-life of the OH radical is very short at only about 10	� (Sies, 

1993), which means that these radicals are highly reactive and can be assumed to have great 

oxidizing power. These free radicals also possess the oxidizing power to react with other 

impurities in aqueous solutions that ozone may not be able to convert. While ozone is considered 

the dominant primary disinfectant, oxidation processes may occur through both oxidants. 

Therefore, the assessment of ozone processes as oxidation always involves the two species: 

ozone (O3) and OH radicals (Langlais & Reckrow, 1991).  

 Much like chlorination, ozone effectiveness is usually related to contact time (Ct) and 

disinfectant concentration. Ozone demand can be caused by certain inorganics, organics, and 

suspended solids. That is why the samples done in distilled water, may create the better 

understanding of the effect of ozone on the PFASs. Comparison of batch contact reactors (where 

the ozone gas is added at the start of the reaction) with continuous-flow reactors is made more 

difficult because of the simultaneous increase of dissolved ozone and decrease of oxidizable 

species as well as microorganisms. If Ct values are used, the assumption is that concentration 

remains constant throughout the contact time and that the kinetics (order and rate constant) are 

also constant. 
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1.3. Objective and Hypotheses 

The main objective of this master thesis was to examine the removal of PFOS/PFOA 

alternatives and model cationic and zwitterionic poly-PFASs during conventional, enhanced, and 

advanced drinking-water treatment systems (i.e., conventional and enhanced 

coagulation/flocculation, sand filtration, activated carbon adsorption, chlorine disinfection, ozone 

disinfection). These PFOS/PFOA precursors may be affected by these conventional techniques 

due to their positive electrical charges. These charges may cause the chemicals to be more 

inclined to sorb onto surfaces easier or have their chains broken by enhanced oxidation. Because 

of broken chains, the possibility of creating PFOS and PFOA as byproducts will be studied. As 

for the alternative compounds, it is expected that the fluorinated ether structure may have the 

possibility to break during advanced treatment, but it is unlikely. The results of this study will be 

useful for identifying effective treatment strategies dealing with these emerging organic 

contaminants.
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2. MATERIALS AND METHODS 

2.1. Test Water 

All batch experiments that were performed using surface water or distilled water with the 

purpose to give ideal conditions for treatment. The surface water was extracted from the Red 

River (Figure 1) at location at 47.942170, -97.048374. This site was initially chosen due to it not 

freezing in the winter. The samples were extracted into 5-gallon pales, as needed. The removal 

mechanics were studied for each of the techniques and there was no investigation on a micro 

scale level. The intention of this study was 

not to optimize the removal efficiency of 

these techniques but to investigate their 

successfulness for a range of different 

PFASs. In addition, this master thesis did 

not include an investigation of the 

influence of different water types on the 

removal efficiency of PFASs in water, 

which could play an important role.  

 

 

 

 
Figure 1: Sampling Location of Red River Surface 

Water (47.942170, -97.048374) 
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The batch experiments were performed at the 

College of Engineering and Mines, UND. The 

quantification of PFASs in solution was conducted with 

an Acquity Ultra Performance Liquid Chromatography 

(Figure 2) and SYNAPT G2-S High Definition Mass 

Spectrometer. The quantification was done based via 

external standards based on the peak areas at specific 

m/z values (Figure 3). This was then converted to 

concentration as available using the calibration 

standards in Appendix A. 

 
Figure 3: Example of UPLC—ESI

-
—ToF—MS Spectrum for a PFOA Sample 

 

 

 

 

 
Figure 2: The Acquity Ultra Performance 

Liquid Chromatography 
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2.2. Chemicals 

In this study, we focus on four cationic and zwitterionic compounds including 

perfluorooctaneamido ammonium salt (PFOAAmS), perfluorooctanesulfonamido ammonium 

salt (PFOSAmS) and their corresponding zwitterionic counterparts — perfluorooctaneamido 

betaine (PFOAB) and perfluorooctanesulfonamido betaine (PFOSB). PFOAB (pKa1 = -0.48, pKa2 

= 2.27), PFOSB (pKa1 = 1.91, pKa2 = 3.30), PFOAAmS (pKa = -0.53), and PFOSAmS (pKa = 

3.28) were purchased from Fluobon Surfactant Institute (China) (purity: PFOAB, 95%; PFOSB, 

95%; PFOAAmS, 98%; PFOSAmS, 98%). Their pKa values were estimated by a freeware 

(Marvin 15.10.26, ChemAxon, Cambridge, MA). It is notable that all the newly identified 

PFASs are polyfluoroalkyl compounds, which have perfluoroalkyl of varying carbon chain 

lengths and contain either tertiary amine, or quaternary ammonium groups. In addition, PFOS 

(potassium salt) (>98%) and PFOA (96%) were purchased from Sigma–Aldrich. HFPO-DA 

(GenX) and Sodium Dodecafluoro-3H-4,8-dioxanonanoate (NaDONA) were also a focus of this 

study along with any indirect sources of perfluorooctanesulfonic acid (PFOS) and 

perfluorooctanoic acid (PFOA). The molecular makeup of these compounds can be seen in Table 

1.  
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2.3. Water Treatment Procedures 

2.3.1. Coagulation/Flocculation 

The coagulation was performed by regular jar tests that simulate similar settling 

processes by drinking water treatment plants for estimating the optimum coagulant dosage (Xiao 

et al., 2008). Coagulation of surface water spiked with PFAS compounds was performed in a 

series of jar tests at different dosages of coagulant using the Phipps & Bird PB-700 Jar Tester 

(Figure 4) with alum (aluminum sulfate (Al2(SO4)3 ⋅ 18H2O)) as the coagulant. A known volume 

of alum stock solution was added to the jars to reach the required aluminum sulfate 

Table 1: PFASs examined in this study 

Compound Chemical Formula Molecular Formula MW 

GenX C6H4F11NO3 

 

347.084 

NaDONA C7H5F12NO4 

 

395.01 

PFOAAmS C14F15N2OH16 

 
513.27 

PFOAB C15F15N2O3H15 
 

556.27 

PFOSAmS C14F17SN2O2H16 

 

599.33 

PFOSB C15F17SN2O4H15 
 

642.33 

PFOA C8HF15O2 

 

414.07 

PFOS C8HF17O3S 

 

500.13 
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concentration. The stir rods were 

immediately activated following the 

coagulant spike and were rapidly mixed for 

1 min at 140 rpm. During this stage, the 

particles come in contact with hydrolyzed 

aluminum species and are neutralized. The 

rapid mix is to promote particle collision. After 1 min, the solution is slowly mixed for 20 min at 

40 rpm to ensure sufficient mixing and allow for the precipitated aluminum species to slump 

together into amorphous flocs. After coagulation, the solution was allowed to settle for at least 

20 min so that the flocs can precipitate. The supernatant was extracted and assumed to be the 

final concentration of coagulation tests to be analyzed for compound removal.  

2.3.2. Sand Filtration Procedure 

Sand filtration was also conducted to remove target 

PFASs. One of the important parameters of sand filtration is 

the flow rate. A typical ordinary slow sand filter and rapid 

sand filter have filtration rates of 0.05 gpm/ft
2
 and 2 gpm/ft

2
 

respectively (Kawamura, 2000), or with a 3” diameter base 

for the column, the flow range is between 0.05 gpm/ft
2
 and 2 

gpm/ft
2
. Contrary to popular belief, the filtration rate of high-

rate filters does not significantly affect the quality of the 

filtered water for flow rates up to 10 gpm/ft
2
 (Kawamura, 

2000). In this study, a filtration rate of 70 mL/min (0.094 

gpm/ft
2
) was chosen. The filter was Ottawa standard sand (Fisher Sci) with the size of 20−30 

Figure 4: Phipps & Bird PB-700 Jar Tester 

Figure 5: Sand filter design 



 

20 

 

mesh (0.595-0.841 mm). The flow rate was controlled with a Masterflex Easy-Load II peristaltic 

pump (filter shown above in Figure 5). The sand filter was first run with a nitrate tracer to 

determine the breakthrough time (Figure 6). After this was done, the filter was purged with clean 

tap water before running a PFASs solution through to see if any removal in the effluent was 

present. 

 

 

Figure 6: Nitrate tracer test for sand filter 
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2.3.3. Activated Carbon Adsorption 

The activated carbon adsorption 

experiments were performed using bituminous 

coal-based activated carbons: Calgon Filtrasorb 

200, which is a granular activated carbon 

(GAC), and Calgon WPL, a powdered activated 

carbon (PAC). Experiments were conducted on 

50 mL of filtered surface water spiked with 

PFASs in 50 mL polypropylene centrifuge 

tubes. The surface water was coagulated and 

paper filtered Red River water. The samples 

were kept under constant agitation in order to provide optimum surface area contact (Figure 7). 

This process was run for 10 days to ensure that equilibrium was met.  

After this, the adsorption isomers could be created for applicable use. The adsorption 

isotherms are the functions between the aqueous-phase concentration and the amount of 

adsorbate adsorbed. The most widely used methods for finding the adsorption isotherms for a 

specific system are the Freundlich and Langmuir isotherm equations. PFASs’ adsorption 

isotherms can be described by the Langmuir and Freundlich models (Du et al., 2014). Using 

Freundlich model in Equation 1, the mass of compound adsorbed per mass of activated carbon 

can be found. These values are commonly used to compare adsorption capabilities that can be 

applied to advance filter designs for full-scale and lab-scale implementation. 

 

 

Figure 7: Tube rotator used to keep samples 

under constant agitation 
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�� =

��� − ��) ∗  

!
 (1) 

where Cs: mass compound uptake per mass of activated carbon 

C0: initial concentration  

Cw: final concentration 

V: volume of sample  

m: mass of activated carbon in sample 

 

 

Once the adsorption isotherm is created it can be applied to Equation 2. The log CS is 

plotted versus log CW for each of the influent concentration to determine the degree of removal 

achieved by adsorption processes and the adsorptive capacity of the carbon.  

 

 �� = "#�$
% (2) 

where KF: Freundlich adsorption coefficient 

Cw: final concentration 

n: Freundlich exponent indicating nonlinearity 

m: mass of activated carbon in sample 

 

 

2.3.4. Chlorination 

Free chlorine stock solutions were prepared by dilution from purchased 5% sodium 

hypochlorite solution (NaOCl) into distilled water. Stock solution concentrations were checked 

using the free chlorine test with the HACH Pocket Colorimeter II unit. Experiments were 

conducted on 25-mL with either laboratory water or filtered surface water spiked with individual 

PFASs or combined PFASs in a 60-mL amber vial. The laboratory water was distilled water to 

which sodium bicarbonate (NaHCO3) buffer was added to mimic the pH of surface water. The 

surface water was coagulated and paper filtered Red River water. The residual free chlorine (Cl2) 
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was monitored using the HACH Pocket Colorimeter II to regulate the available chlorine for 

disinfection after the breakpoint. The initial reading of free chlorine, prior to spiking, was about 

5 mg/L. After spiking, the residual chlorine measured at a range of 0.8-2.8 mg/L for surface 

water and 4-5 mg/L for buffered distilled water after 2 hours of contact time (Ct). After the set 

contact time was achieved, the samples were quenched with a stock solution of 0.1 mol/L 

sodium thiosulfate (Na2S2O3·H2O) at about a 5:1 ratio to free chlorine to ensure adequate 

neutralization. The objective of this experiment was to hopefully achieve breakpoint chlorination 

by representing dosages similar to water treatment concentrations. An ideal system supplies free 

chlorine at a concentration of 0.3-0.5 mg/L. 

 

2.3.5. Ozone 

Like chlorination, two types of degradation 

experiments were performed containing the studied 

PFASs: combined PFASs, individual PFAS. This was 

to examine more clearly which PFASs were being 

directly oxidized by the ozone. The individual PFAS or 

batch experiment PFASs were dissolved into 500 mL 

of pure or buffered distilled water or filtered surface 

water from the Red River. The PFAS solution was then 

transferred to a 750mL flask for ozone diffusion. Ozone 

(O3) was bubbled in using a diffuser stone at various 

lengths of time. Ozone was generated initially with an 

Aqua-6 Multi-Purpose ozone generator (A2Z Ozone Figure 8: A2Z Model Z-7G Ozone 

Generator 
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Inc., Louisville, KY), but was found to be inefficient to generate enough ozone to oxidize the 

compounds. To correct this, a more powerful generator A2Z Model Z-7G (A2Z Ozone Inc., 

Louisville, KY) was purchased (Figure 8). The input gas for the generator was wet ambient air 

for the initial stage of experiments, but was still unable to supply high O3 concentration (0.5 

mg/L). Fortunately, pure oxygen (O2) became available for a short period of experiments, which 

allowed for higher generation of ozone concentration (5.0 mg/L). The input of O3 concentration 

was measured in distilled water with an Evolution 220 UV-Visible Spectrophotometer at λ = 254 

nm (UV254) in a quartz cuvette (L = 1 cm). After the sample was tested in the UV 

Spectrophotometer, the samples were quenched with a stock solution of 0.1 mol/L sodium 

thiosulfate (Na2S2O3·H2O ) at about a 5:1 ratio to expected ozone residual concentration using 

Beer’s Law and a molar absorptivity of ε�(�= 3150 L/(mol·cm)to ensure adequate neutralization. 

For samples in surface water, this UV254 cannot be assumed to be the accurate concentration after 

converting due to the fact UV254 can pick up other organics in the water. For that reason, the 

expected concentration was assumed by experiments run in distilled water.  

Based on the degradation results, the thesis advisor, Dr. Feng Xiao at the University of 

North Dakota, did additional experiments with individual PFAS compounds using the same 

approach. The results can be found in a paper from us to be published at a later date.  
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3. RESULTS AND DISCUSSIONS 

The initial abstract of this research was to focus on the removal aspects of the studied 

compounds, which will be the discussed below firstly. It was assumed that the focus, like much 

other research, would be driven towards the removal by carbon adsorption. After several initial 

tests using oxidation, the conversion of PFSA precursors to PFOS/PFOA occurred. This will be 

discussed in more detail below after providing the initial conventional treatment techniques that 

were studied.  

3.1. Coagulation 

To determine the optimal coagulant dosage for 

future experiments, an experiment was conducted. 

Table 2 shows the optimal coagulant dosage during 

conventional and enhanced coagulation. It can be seen 

that a coagulant dosage between 40 and 80 mg/L 

reduces the turbidity the most while maintaining 

adequate pH.  

While coagulation can effectively remove 

turbidity particles, this process does not result in 

significant removal of the tested PFASs. Figure 9 and Figure 10 show two different tests using 

GenX, and GenX & NaDONA together. Figure 9 shows that the removal of GenX during 

coagulation is minimal. However, in another group of experiments (Figure 10), there were 33% 

Table 2: Optimal coagulant dosage results. 

Concentration of  

Aluminum Sulfate 
pH Turbidity 

mg/L 
 

FTU NTU 

0 7.8 
 

6.92 

5 7.64 7 4.71 

10 7.63 6 3.95 

20 7.56 12 8.79 

20 7.64 4 1.14 

40 7.41 8 4.75 

40 7.49 3 1.05 

60 7.2 7 1.17 

80 7.11 6 1.28 

80 7.14 3 1.65 

100 7.07 3 1.51 

120 7.01 2 0.836 

140 6.98 4 2.35 



 

26 

 

and 17% GenX removal for 100 mg/L and 40 mg/L alum dosages respectively. This, however, 

could be due to the differing suspending solids in treatment water or sampling and detection 

errors. If it is true, being that GenX has been a forefront of the PFAS news lately, this is 

promising for pretreatment removal.  Same goes for NaDONA with removal at 49% and 20% for 

100 mg/L and 40 mg/L respectively (Figure 10). In this case, 100 mg/L appeared to be the 

optimal coagulant dosage for both substances. 

 

 

 

Figure 9: Coagulation experiment of GenX and varying alum dosages (mg/L). 
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Figure 10: Coagulation experiment of combined compounds, GenX and NaDONA, for alum 

dosages of 40 mg/L and 100 mg/L. 

0

50

100

150

200

250

300

350

400

450

0 100

P
ea

k
 A

re
a

Alum Dosage (mg/L)

a

GenX

NaDona

0

50

100

150

200

250

0 40

P
ea

k
 A

re
a

Alum Dosage (mg/L)

b

GenX

NaDona



 

28 

 

As for the other PFASs (PFOAAmS, PFOAB, PFOSAmS, PFOSB), the PFSAs 

(PFOSAmS, PFOSB) were below detection limits in one of the experiments (Figure 11). As for 

the second experiment, they were nearly undetectable (Figure 12). The compounds might have 

precipitated in the stock solution due to their higher pKa values or had an extremely high 

affinity to the suspended particles due to their high tendency to be hydrophobic. The PFCAs 

(PFOAAmS, PFOAB) were still able to be detected and the results showed that there is no 

quantifiable amount of consistent reduction in concentration. The two experiments below were 

not from the same batch of surface water, so they do not have the same amount of TOC, NOM 

or total suspended solids (TSS). This concept would play an important role in the amount of 

flocculants created, however, both tests were not absent of flocculants masses capable of 

removing organic compounds. It appears, from the results, that enhanced coagulation is not 

efficient to remove PFOAAmS, PFOAB, PFOSAmS, and PFOSB.  

Figure 11: Coagulation experiment of combined compounds (PFOAB, PFOAAmS, PFOSB, 

PFOSAmS). PFOSB and PFOSAmS were below the detection limit. 
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Figure 12: Coagulation experiment of combined compounds (PFOAB, PFOAAmS, PFOSB, 

PFOSAmS). 

 

3.2. Sand Filtration 

Sand filtration was expected to follow similar results as coagulation. This did prove true 

for GenX and NaDONA (Figure 13). Both compounds had no significant removal as compared 

to the nitrate tracer. If there was any sorption, the curve should have been delayed by a specific 

factor indicating a time-lag from adsorption effects. Being that they followed the nitrate tracer 

directly, sand filtration is inefficient at all to remove GenX and NaDONA.  
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As for the precursor compounds, PFOSB and PFOSAmS were not detected again in any 

of the samples. Like before, they will have to be ignored for this section and will need additional 

research regarding their fate through a sand filter. PFOAAmS and PFOAB were detected. 

However, from Figure 14, it can be seen that the results are inconclusive for PFOAB. In general, 

it looks to follow the nitrate tracer. Controversially, PFOAAmS appeared to not have any 

variation in the data spread. From the results, PFOAAmS did appear to have a time-lag 

confirming some sorption onto the sand particles as they passed through the media filter. In other 

experiments done by the groupmates, PFOAAmS has a much stronger adsorption towards soil 

particles than PFOAB, which may explain the stronger attachment to sand and the longer time-

lag. Nevertheless, based on our results, sand filtration cannot be suggested as a successful 

removal for any of the studied PFASs, at this time. 

Figure 13: Sand filtration experiment of combined compounds(GenX and NaDONA). 
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3.3. Activated Carbon 

 Using Freundlich model, the amount of impurity in solution to the amount that was 

adsorbed was empirically derived. This data can be used for future analysis of packed bed 

activated carbon filters. However, isotherm data is developed by achieving equilibrium 

conditions, while field adsorption systems operate in a dynamic environment that is not 

necessarily in equilibrium, isotherm data overestimate the capacity of operating systems. In 

Figure 15, the GenX isotherm and empirical values were able to be generated for GAC and PAC 

experiments. In Figure 16, using GAC, and isotherm and empirical values for the other four 

precursor compounds was able to be generated. In the PAC tests, the concentration of the 

precursor PFASs, after adsorption, was below the detection limit immediately. Even for the 

Figure 14:  Sand filtration experiment of combined compounds (PFOAB, PFOAAmS, PFOSB, 

PFOSAmS). PFOSB and PFOSAmS were below the detection limit. 
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GAC, concentrations were below detection limits faster than expected. This could be due to the 

cationic effects creating a larger attraction to the surface of the carbon or higher adsorption due 

to the increased carbon-fluorine chain length. However, with the current results, it can be 

observed that adsorptive capacity did not appear to increase with increasing chain length for the 

four compounds, which is common throughout literature. Compared to the chain length of GenX, 

the results show a decrease in adsorption with increasing carbon-fluorine chain length.  

 From the results, a pilot study was expected to be continued for pressure filtration with 

this research, but time did not permit.  

Figure 15: Activated carbon experiment isotherm for GenX. 
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3.4. Chlorination 

As stated earlier, chlorination became one of the major scopes of this project halfway 

through for the compounds other than GenX and NaDONA. As expected, GenX and NaDONA 

did not degrade during chlorination disinfection. Figure 17 shows two tests that are clear to see 

no measurable decrease in concentration. In distilled water, the free chlorine concentration did 

not decrease much, reaffirming no reaction occurred in the solution to use up substation available 

free chlorine. These results show that disinfection with chlorination should not be expected to 

result in any removal on GenX or NaDONA.  

On the other hand, the other four precursor compounds produced interesting results. 

Figure 18 and Figure 19 display the results of the first chlorination trial in buffered distilled 

water and surface water respectively. For both tests, the compounds were combined in the 

solution and then chlorinated. The distilled water samples can be analyzed for a very clear 

decrease in concentration for PFOAAmS and PFOAB at 98% and 94% respectively. The 

available free chlorine supports that reactions occurred in the solution. It can be expected that the 

reactions were first with the sodium bicarbonate and then the PFCAs (PFOAAmS, PFOAB). 

Supporting this claim, the surface water experiment displayed removal of PFOAAmS and 

PFOAB at 23% and 31% respectively, assuming that there was no error in the initial samples. 

For the PFSAs (PFOSAmS, PFOSB), chlorination disinfection did not have any noticeable 

decrease in the concentration in either distilled or surface water or had inconclusive results. 

For the surface water experiment, it appears that the initial samples could have been spoiled. 
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Figure 17: Chlorine disinfection experiment of combined compounds (Genx, NaDONA) in (a) 

coagulated and filtered surface water and (b) buffered distilled water.  
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The most interesting part of this first experiment was the concentration change of 

PFOA and PFOS. In Figure 20, it is very clear to see that PFOA, a concerning PFCA, 

increased dramatically, especially in the distilled water experiment. In addition to PFOA’s 

increase in concentration, PFOS appeared to increase as well by a very small fraction. In the 

distilled water experiment, PFOA and PFOS increased by 2336% and 67% respectively and in 

the surface water experiment, PFOA and PFOS increased by 411% and 2755% respectively. 

This means that there must be a source that converted to these compounds to increase their 

concentrations. Comparing the molecular structures, a second hypothesis was made that the 

PFSAs precursors (PFOSAmS, PFOSB) should be responsible for any PFOS generation and 

the PFCAs (PFOAAmS, PFOAB) should be responsible for any PFOA generation. The 

following experiments were to examine this idea as a plausible side effect of using these 

compounds.  
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Figure 20: PFOS/PFOA generation in chlorine disinfection experiment in (a) buffered distilled 

water and (b) surface water. 
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This experiment was run again in Figure 21 for distilled water to confirm the results. 

This experiment was done in parallel for each compound and then combined at the end for 

analysis. This was done so that the competition for free chlorine would be substantially less. 

The results for the decrease in PFOAB and PFOAAmS were confirmed along with a 

contradicting decrease in PFOSAmS and PFOSB. However, the initial samples do appear to be 

major outliers for each of the graphs. If the initial samples were taken out of all of the graphs, 

the perfluoroalkyl carboxylates would display decreasing results at 98% for both, and the 

perfluoroalkyl sulfonates (PFOSAmS, PFOSB) would be 68% for both. In the surface water 

samples in Figure 22, which were done combined like the first experiment, similar results were 

found. Following the same issue with the initials, they were thrown out and the results showed 

PFOAAmS and PFOAB decreasing by 88% and 49% respectively, and PFOSB and PFOSAmS 

with no quantifiable decrease. As predicted, Figure 23 shows that PFOA was generated again 

from the experiment at 485% and 1633% for distilled and surface water respectively. There 

was no PFOS generation in either of the two experiments. Mistakenly, no samples were 

extracted prior to the combination. This information would have allowed us to see what 

portions of the PFCAs were generated by which compound.  
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Figure 23: PFOS/PFOA generation in chlorine disinfection experiment in (a) distilled water and 

(b)surface water. 
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To make up for this mistake, an experiment with individual compounds was conducted 

and kept separate. Figure 24 shows the results of the 3-day chlorination of each compound. 

The results were found to follow, for the most part, our previous results. PFOAAmS, PFOAB, 

PFOSB decreased by 99.98%, 94% and 50% respectively. PFOSAmS did not have any 

decrease for this experiment. The generation of PFOA is most noticeable for the PFOAAmS 

and PFOAB, as expected, at 5860% and 907% respectively. As for PFOS, a 134% and 239% 

generation for PFOSAmS and PFOSB experiments is observed.  

These results show that the perfluoroalkyl carboxylate (PFCA) precursor compounds 

have no problem degrading during chlorination as a preliminary method of removal. For the 

perfluoroalkyl sulfonates (PFSA) precursor compounds, it appeared that both may degrade at a 

small portion, if used as a preliminary method. However, if used as a preliminary method for 

treatment and removal of these PFASs, the creation of PFOA and PFOS may be observed and 

should be monitored.  
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3.5. Ozone 

As another disinfection method, ozone was hoped to create the same results as 

chlorination. The first experiment was done with GenX and NaDONA in combination with the 

other four precursor PFASs using the A2Z Aqua-6 Ozone Generator, which outputs a lower 

ozone dosage as a model that was purchased later on. Figure 25 shows the concentration over 36 

minutes of continuous input of ozone. Unfortunately, the initial samples were unable to be tested. 

In addition, it can be seen that the 2-min samples may have also been spoiled since they do not 

match the theoretical concentration. If those are thrown out, there still may be a slight decrease in 

concentration over the 36-min. Therefore, no conclusions can be made for degradation of GenX 

and NaDONA at the applied ozone dosage. Throwing out the initials and the 2-min samples for 

the other four precursor samples, Figure 26 shows that there looks to be a noticeable slight 

decrease in PFOAB only. As for PFOA and PFOS, Figure 27 shows that no generation occurred. 

If anything PFOA was shown to decrease by a fraction. 

Figure 25:  Ozone disinfection experiment of combined compounds (Genx, NaDONA, PFOAB, 

PFOAAmS, PFOSB, and PFOSAmS) in pure distilled water. 
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Figure 27: PFOS/PFOA generation in ozone disinfection experiment in pure distilled of 

combined compounds (GenX, NaDONA, PFOAB, PFOAAmS, PFOSB, PFOSAmS). 

Using the same ozone generator, PFOAB was chosen to study individually to confirm its’ 

decrease in concentration. To be compared to this, PFOSB was chosen as the opposite 

perfluoroalkyl sulfonate PFAS. Both compounds were run independently from each other, so 

that there would be no competition for disinfectant. This was done in pure distilled water. 

Figure 28 shows the PFOAB was shown to decrease slightly again (18.5%), as shown in the 

previous experiment. PFOA seemed to be generated initially, but is unable to be quantified. As 

for PFOSB in Figure 29, no noticeable decrease can be seen. As for PFOA and PFOS 

generation, a slight generation can be seen at about 400% and 18% respectively.  
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Figure 28: Ozone disinfection experiment in pure distilled water of individual compound (a) 

PFOAB and the corresponding (b) PFOS/PFOA generation. 
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Figure 29: Ozone disinfection experiment in pure distilled water of individual compound PFOSB 

and the corresponding (b) PFOS/PFOA generation. 
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Using the same approach and the new A2Z Model Z-7G (A2Z Ozone Inc., Louisville, 

KY) coupled with pure oxygen input, another set of parallel experiments were conducted for 

each of the four PFASs in distilled and surface water individually. After the experiment, the 

samples were combined for analysis.  Figure 30 shows that each of the compounds were found to 

decrease in distilled water, except for PFOAAmS. PFOSAmS appeared to decrease the most at 

98.5%, assuming the initials are correct. PFOAB and PFOSB also decreased at 46% and 92% 

respectively. As for surface water in Figure 31, the results were successful for all four 

compounds. PFOAB, PFOAAmS, PFOSB, PFOSAmS decreased at 45%, 52%, 96%, and 95% 

respectively. Figure 32 shows that PFOA and PFOS was not generated for distilled water with 

higher ozone levels and actually seemed to have a decrease in levels. This would mean that the 

initial samples were probably spoiled with an unforeseen and unaccounted for addition on PFOA 

and PFOS or that PFOA was generated very quickly right away and decreased throughout the 

contact time. The surface water experiment, on the other hand, displayed the results that were 

expected. PFOA and PFOS increased by 263% and 4317% respectively.  

To determine if this could be replicated with less competition, another individual 

compound experiment was run using the A2Z Model Z-7G (A2Z Ozone Inc., Louisville, KY) 

without oxygen in pure distilled water. This was to determine if the competition from the other 

compounds was conflicting with degradation and PFOA/PFOS generation. Figure 33 shows the 

results of this experiment. It can be seen that PFOSB and PFOSAmS were the only two to 

degrade at 43.7% and 96.4%. As for generation of PFOS, PFOSB and PFOSAmS were the only 

two to generate at 44.89% and 1712% respectively. For PFOSAmS, a generation of 1336% 

PFOA was also found. 
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Figure 32: Ozone disinfection experiment with pure O2 in (a) pure distilled water and (b) surface 

water of combined samples (PFOAB, PFOAAmS, PFOSB, and PFOSAmS). 
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The stability of ozone largely depends on the water matrix, especially its pH, the type and 

content of natural organic matter (NOM) and its alkalinity (Hoigne, 1998). It would be expected 

that the NOM in the surface water samples would cause competition for the free ozone and less 

decomposition would occur; this was not the case. One hypothesis is that the additional NOM, 

promote an accelerated transformation from O� to the OH radicals (OH⦁), which have a much 

stronger oxidation potential, which has been supported by multiple studies (Staehelin & Hoigne, 

1985; Vaughan & Blough, 1998; Von Gunten, 2003). Hydroxyl radicals are a non-selective, 

potent oxidant and being electron-thirsty they are prone to attack the perfluoro-anion and become 

quenched into hydroxide ions, leaving perfluorinated radicals for continuing chain reactions that 

lead to further decomposition (Lin et al., 2012). These added OH radicals could potentially be 

the source of the added biodegradation and PFOA/PFOS generation. 

 

3.6. Discussions 

Table 3 is a summary of the range of values that were found for disinfection throughout 

these experiments. The four newly discovered compounds are qualified as polyfluorinated 

compounds thereby containing C-H bonds that may be oxidizable. Thus, if ozone or chlorination 

were able to oxidize polyfluorinated precursors present in the raw water, the concentration of 

terminal compounds such as PFOS or PFOA may actually increase in finished water. Previous 

studies have shown indirectly shown similar results of the formation of PFOA and PFOS in 

various oxidation, aeration, disinfection treatment trains (Appleman et al., 2014; Tagaki et al., 

2011, Rahman et al., 2014). Being that it is very unlikely the chemicals generated naturally, the 

only logical explanation would be a partial degradation of other compounds in the system.  
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Table 3: Maximum degradation/generation for disinfection experiments. 

Experiment 

Chlorine Ozone 

Distilled Surface Water Distilled Surface Water 

Compound 
Maximum 

Degradation 

Maximum 

Degradation 

Maximum 

Degradation 

Maximum 

Degradation 

PFOAAmS 99.98 88 ND 52 

PFOAB 98 49 46 45 

PFOSB 68 ND 92 96 

PFOSAmS 68 ND 98.5 95 

           

Compound 
Maximum 

Generation 

Maximum 

Generation 

Maximum 

Generation 

Maximum 

Generation 

PFOA 5860 1633 1336 263 

PFOS 239 2755 1712 4317 

 

Multiple studies have shown that the oxidation of difficult-to-measure and unidentified 

PFAA precursors and alternatives has shown to generate stable, easily measured PFCAs 

(Anumol et al., 2016; Mejia-Avendaño et al., 2016; Mejia-Avendaño et al., 2015; Houtz & 

Sedlak, 2012; Plumlee et al., 2009; Dinglasan et al., 2004; Wang et al., 2009). These studies 

consistently provide enough information to determine a rapid transformation from the n:2 

fluorotelomer unsaturated carboxylic acids (FTUCA) and n:2 fluorotelomer alcohols (FTOH) to 

the n-C PFCA during the treatment process. In most of the cases, it was shown that 8:2 FTOH 

and 8:2 FTUCA, transformed to 8-C PFCAs, namely PFOA. A proposed biodegradation scheme 

(Figure 34) is based upon results of this laboratory study and built on earlier results presented by 

(Hagen et al., 1981).  
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Figure 34: Proposed biodegradation pathway and products of 8:2 FTOH. 

Using the same approach, a proposed degradation pathway may be proposed for the 

compounds studied in this research. From our results, it was seen that for the parent compound 

PFOAAmS and PFOAB were more capable of converting to PFOA than PFOSAmS and PFOSB. 

The direct pathways are shown below in Table 4 as well as well as the predicted 

biotransformation pathways of PFOSAmS and PFOAAmS presented by Mejia-Avendaño et al., 

2016 in Figure 35. 

 

 

 

 

 

Table 4: Proposed byproduct (PFOA/PFOS) for each compound. 

PFOAAmS  PFOA 

F(CF2)7CONH(CH2)3N(CH3)3
+ 

→ F�CF�)�COOH 

PFOAB  PFOA 

F(CF2)7CONH(CH2)3N(CH3)2(CH2)CO2
+ 
→ F�CF�)�COOH 

PFOSAmS  PFOS 

F(CF2)8SO2NH(CH2)3N(CH3)3
+ 

→ *��*�)�+,�- 

PFOSB  PFOS 

F(CF2)8SO2NH(CH2)3N(CH3)2(CH2)CO2
+ 
→ *��*�)�+,�- 
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Figure 35: Proposed biodegradation pathway and products of (a) PFOAAmS and (b) PFOSAmS. 

a 
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It can be seen that both compounds were eventually oxidized prior to the N-H bond and 

replaced by a hydroxyl found readily in water. From there, oxidation, even by molecular ozone 

and hydroxyl radicals (Eo = 2.8V), has been reported to have a limited capacity to break down 

PFOA or PFOS alone (Atkinson et al., 2008; Quinones and Snyder, 2009; Takagi et al., 2011).  

It was expected that the PFSAs (PFOSAmS, PFOSB) were expected to produce the 

same level of PFOS as the PFCAs (PFOAAmS, PFOAB) to PFOA, but this was not observed. 

This conclusion has been observed previously in a biotransformation study in aerobic soil, in 

which, PFOA increased to 30.1 mol% of the original PFOAAmS dosed and PFOS reached only 

0.3 mol% of the initial mass of PFOSAmS (Mejia-Avendaño et al., 2016). It was hypothesized 

that one reason for the higher persistence of PFOSAmS is its higher hydrophobicity than 

PFOAAmS or a high resistance to aerobic microbial degradation. Relating this to a high 

persistence seen for the case of chlorination, it can be implied that the oxidation and type of 

oxidant play an important role in the difference of degradation of n≥8 PFSAs and n≥6 PFCAs. 

This longer chain length and higher molecular weight has been known to cause higher 

persistence to degradation (Prevedouros et al., 2006). This would be the same assumption for 

comparing PFOSB and PFOAB.  
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4. CONCLUSIONS 

The extent to which these PFAS precursors play a role in human or environmental 

exposure to PFOA/PFOS is not well characterized. Drinking water quality leaving the effluent 

of a water treatment plant may, in some cases, go directly to consumers. This is why it is directly 

important to study emerging contaminants that may be of concern to the health of the general 

public. Poly- and per-fluoroalkyl substances have all the necessary components to warrant 

environmental and health concern. As stated previously; they are toxic, have a bio-accumulative 

potential and are highly persistent.  

Water is one of the most important reserves of PFASs in the environment due to their 

high solubility. Since most PFASs are extremely resistant to degradation and have therefore been 

detected ubiquitously in the aquatic environment, the chance for direct use by humans for 

drinking, agriculture, municipal services and industry is almost inevitable in certain areas. In 

2009, PFOA and its precursors were added to Annex B of the International Stockholm 

Convention Treaty on Persistent Organic Pollutants. However, many municipalities utilize the 

blending of treated wastewater with freshwater sources to augment water supplies along with 

urban runoff, which creates a major avenue for PFASs to enter drinking water. This could be 

especially true for downstream runoff sites of AFFF impacted soil sites. Some widely used 

treatment methods have been shown to be effective to remove PFASs from water, but new 

technologies have been tested showing a range of outcomes. That being said, there is still a great 

need for the expansion of knowledge in treating and removing to nontoxic levels for 

consumption.  
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Many water and wastewater treatment plants utilize the methods that were tested in this 

research. For the PFOA alternatives, it can be seen that the treatment techniques tested in this 

thesis may are not successful at removing high percentages of GenX and NaDONA. As for the 

cationic precursor compounds, the results suggest that the possible sorption may be present on 

the NOM in coagulation and sand filtration, but does not result in significant removal. In 

advance filtration using activated carbon, the results are conclusive with the hypothesis and the 

isotherms generated may be used for continuing research into activated carbon efficiency on the 

PFASs studied. Most interestingly, chlorine disinfection proved to be highly effective against the 

removal of the PFCA precursor compound, which ended up resulting in a conversion to more 

persistent and toxic PFASs. The significant generation of PFOA from the PFCA precursors 

demonstrated that PFAS-based cationic surfactants could be very important PFAA precursors 

in the environment and through treatment trains. However, this result was not seen for the PFSA 

precursor compounds. Although the PFSA precursors did not convert to PFOS as readily as the 

PFCA precursors, they did, however, still degrade in specific ozone trials and a few 

chlorination trials. This could prove that under the right oxidant and correct conditions, which 

PFOSAmS and PFOSB could degrade in treatment.  

The companies that are attempting to phase-out these compounds may not be successful 

in their efforts if their unregulated additional PFASs convert to the ones they were trying to 

phase-out. PFOA and PFOS have been on the radar for many years and were part of the phase-

out by major contributors. If these PFCAs (PFOAAmS, PFOAB) are truly capable of 

converting to PFOA, a strong PFCA, by chlorination, which is a major disinfectant process in 

water treatment, then these compounds should be seriously considered to be rejected as a 
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plausible addition for any PFAS-based manufacturing process and should be avoided at all 

costs.  

PFASs are a proven hazard to environmental and human health and present an important 

target for environmental chemistry research. This project is a small step towards developing 

important technologies for the viable and effective treatment of water contaminated with PFOA 

alternatives, PFAS precursors and other persistent organic pollutants. It also brings to light the 

continued debated practice of advanced oxidation processes (AOPs) that have been proven to 

create highly toxic disinfection by-products (DBPs) in finished treated water systems.  
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APPENDIX A 

 

 

 

 

 

 

  

  

  
Figure 36: Calibration standard curves. 

y = 44000x

R² = 0.9998

0

200000

400000

600000

800000

1000000

0 5 10 15 20 25

P
e

a
k

 A
re

a

umol/L

PFOAAmS

y = 14787x

R² = 0.9846

0

100000

200000

300000

400000

0 5 10 15 20 25

P
e

a
k

 A
re

a

umol/L

PFOSAmS

y = 18155x

R² = 0.9913

0

100000

200000

300000

400000

0 5 10 15 20 25

P
e

a
k

 A
re

a

umol/L

PFOAB

y = 5459.8x

R² = 0.9997

0

50000

100000

150000

0 5 10 15 20 25

P
e

a
k

 A
re

a

umol/L

PFOSB

y = 38258x

R² = 0.9968

0

50000

100000

150000

200000

0 1 2 3 4 5

P
e

a
k

 A
re

a

umol/L

PFOS

y = 4752.1x

R² = 0.9963

0

5000

10000

15000

20000

0 1 2 3 4 5

A
x

is
 T

it
le

umol/L

PFOA



 

65 
 

 

 

 

REFERENCES 

Appleman, T. D., Higgins, C. P., Quiñones, O., Vanderford, B. J., Kolstad, C., Zeigler-

Holady, J. C., & Dickenson, E. R. (2014). Treatment of poly-and perfluoroalkyl 

substances in US full-scale water treatment systems. Water research, 51, 246-255. 

Adams, C., Wang, Y., Loftin, K., & Meyer, M. (2002). Removal of antibiotics from surface 

and distilled water in conventional water treatment processes. Journal of 

environmental engineering, 128(3), 253-260. 

Ahrens, L. (2011). Polyfluoroalkyl compounds in the aquatic environment: a review of their 

occurrence and fate. J. Environ. Monit, 13, 20-31. 

Alum, A., Yoon, Y., Westerhoff, P., & Abbaszadegan, M. (2004). Oxidation of bisphenol A, 

17β‐estradiol, and 17α‐ethynyl estradiol and byproduct estrogenicity. Environmental 

Toxicology, 19(3), 257-264. 

Anumol, T., Dagnino, S., Vandervort, D. R., & Snyder, S. A. (2016). Transformation of 

Polyfluorinated compounds in natural waters by advanced oxidation 

processes. Chemosphere, 144, 1780-1787. 

Atkinson, C., Blake, S., Hall, T., Kanda, R., Rumsby, P., 2008. Survey of the Prevalence of 

Perfluorooctane Sulphonate (PFOS), Perfluorooctanoic Acid (PFOA) and Related 

Compounds in Drinking Water and Their Sources. Report DEFRA 7585. Drinking 

Water Inspectorate, Department for Environment, Food & Rural Affairs, London, UK 

http://dwi.defra.gov.uk/ research/completed-research/reports/DWI70_2_212PFOS.pdf 

(accessed 03.06.18). 

ATSDR, 2009. Draft Toxicological Profile for Perfluoroalkyls. U.S. Department of Health 

and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), 

Division of Toxicology and Environmental Medicine/Applied Toxicology Branch, 

Atlanta, Georgia. 

Avendaño, S. M., & Liu, J. (2015). Production of PFOS from aerobic soil biotransformation 

of two perfluoroalkyl sulfonamide derivatives. Chemosphere, 119, 1084-1090. 

Aziz, H. A., Adlan, M. N., & Ariffin, K. S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr 

(III)) removal from water in Malaysia: post treatment by high quality 

limestone. Bioresource technology, 99(6), 1578-1583. 

Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., & Snyder, 

S. A. (2008). Pharmaceuticals and endocrine disrupting compounds in US drinking 



 

66 
 

water. Environmental science & technology, 43(3), 597-603. 

Brooke, D., Footitt, A., & Nwaogu, T. A. (2004). Environmental risk evaluation report: 

Perfluorooctanesulphonate (PFOS). Wallingford: Environment agency. 

Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., De Voogt, P., ... & van 

Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the 

environment: terminology, classification, and origins. Integrated environmental 

assessment and management, 7(4), 513-541. 

Butt, C. M., Berger, U., Bossi, R., & Tomy, G. T. (2010). Levels and trends of poly-and 

perfluorinated compounds in the arctic environment. Science of the total 

environment, 408(15), 2936-2965. 

Calderon, R. L. (2000). The epidemiology of chemical contaminants of drinking water. Food 

and chemical toxicology, 38, S13-S20. 

Chamberlain, E., & Adams, C. (2006). Oxidation of sulfonamides, macrolides, and carbadox 

with free chlorine and monochloramine. Water Research, 40(13), 2517-2526. 

Chowdhury, Z. K. (2013). Activated carbon: solutions for improving water quality. American 

Water Works Association. 

Collins, M. R., Eighmy, T. T., Fenstermacher Jr, J. M., & Spanos, S. K. (1992). Removing 

natural organic matter by conventional slow sand filtration. Journal (American Water 

Works Association), 80-90. 

Dinglasan, M. J. A., Ye, Y., Edwards, E. A., & Mabury, S. A. (2004). Fluorotelomer alcohol 

biodegradation yields poly-and perfluorinated acids. Environmental science & 

technology, 38(10), 2857-2864. 

Du, Z., Deng, S., Bei, Y., Huang, Q., Wang, B., Huang, J., & Yu, G. (2014). Adsorption 

behavior and mechanism of perfluorinated compounds on various adsorbents—a 

review. Journal of hazardous materials, 274, 443-454. 

Edzwald, J. K. (1993). Coagulation in drinking water treatment: particles, organics and 

coagulants. Water Science and Technology, 27(11), 21-35. 

Environmental Protection Agency (EPA) (2016) Lifetime health advisories and health efects 

support documents for perfuorooctanoic acid and perfuorooctane sulfonate. Fed Regist 

81:33250–33251 

Ericson, I., Domingo, J. L., Nadal, M., Bigas, E., Llebaria, X., van Bavel, B., & Lindström, G. 

(2009). Levels of perfluorinated chemicals in municipal drinking water from 

Catalonia, Spain: public health implications. Archives of environmental contamination 

and toxicology, 57(4), 631-638. 

Eschauzier, C., Beerendonk, E., Scholte-Veenendaal, P., & De Voogt, P. (2012). Impact of 



 

67 
 

treatment processes on the removal of perfluoroalkyl acids from the drinking water 

production chain. Environmental science & technology, 46(3), 1708-1715. 

Fei, C., McLaughlin, J. K., Lipworth, L., & Olsen, J. (2009). Maternal levels of perfluorinated 

chemicals and subfecundity. Human Reproduction. 

Fei, C., McLaughlin, J. K., Tarone, R. E., & Olsen, J. (2007). Perfluorinated chemicals and 

fetal growth: a study within the Danish National Birth Cohort. Environmental health 

perspectives, 1677-1682. 

Hagen, D. F., Belisle, J., Johnson, J. D., & Venkateswarlu, P. (1981). Characterization of 

fluorinated metabolites by a gas chromatographic-helium microwave plasma 

detector—the biotransformation of 1H, 1H, 2H, 2H-perfluorodecanol to 

perfluorooctanoate. Analytical Biochemistry, 118(2), 336-343. 

Hansen, M. C., Børresen, M. H., Schlabach, M., & Cornelissen, G. (2010). Sorption of 

perfluorinated compounds from contaminated water to activated carbon. Journal of 

Soils and Sediments, 10(2), 179-185. 

Higgins, C. P., & Luthy, R. G. (2006). Sorption of perfluorinated surfactants on 

sediments. Environmental Science & Technology, 40(23), 7251-7256. 

Hoigné, J. (1998). Chemistry of aqueous ozone and transformation of pollutants by ozonation 

and advanced oxidation processes. In Quality and treatment of drinking water II (pp. 

83-141). Springer, Berlin, Heidelberg. 

Hölzer, J., Midasch, O., Rauchfuss, K., Kraft, M., Reupert, R., Angerer, J., ... & Wilhelm, M. 

(2008). Biomonitoring of perfluorinated compounds in children and adults exposed to 

perfluorooctanoate-contaminated drinking water. Environmental health 

perspectives, 116(5), 651. 

Houde, M., De Silva, A. O., Muir, D. C., & Letcher, R. J. (2011). Monitoring of 

perfluorinated compounds in aquatic biota: an updated review: PFCs in aquatic 

biota. Environmental science & technology, 45(19), 7962-7973. 

Houtz, E. F., & Sedlak, D. L. (2012). Oxidative conversion as a means of detecting precursors 

to perfluoroalkyl acids in urban runoff. Environmental science & technology, 46(17), 

9342-9349. 

Huisman, L., & Wood, W. E. (1974). Slow sand filtration (Vol. 16). Geneva: World Health 

Organization. 

Hunter, K. A., & Liss, P. S. (1982). Organic matter and the surface charge of suspended 

particles in estuarine waters. Limnology and Oceanography, 27(2), 322-335. 

Joensen, U. N., Veyrand, B., Antignac, J. P., Jensen, M. B., Petersen, J. H., Marchand, P., ... 

& Jørgensen, N. (2013). PFOS (perfluorooctanesulfonate) in serum is negatively 

associated with testosterone levels, but not with semen quality, in healthy men. Human 



 

68 
 

reproduction, 28(3), 599-608. 

Kawamura, S. (2000). Integrated design and operation of water treatment facilities. John 

Wiley & sons. 

Kissa E. 2001. Fluorinated surfactants and repellents (2
nd

 edition revised and expanded) 

(Surfactant science series 97). New York (NY): Marcel Dekker. 640 p.  

Knox, S. S., Jackson, T., Javins, B., Frisbee, S. J., Shankar, A., & Ducatman, A. M. (2011). 

Implications of early menopause in women exposed to perfluorocarbons. The Journal 

of Clinical Endocrinology & Metabolism, 96(6), 1747-1753. 

Labadie, P., & Chevreuil, M. (2011). Partitioning behaviour of perfluorinated alkyl 

contaminants between water, sediment and fish in the Orge River (nearby Paris, 

France). Environmental pollution, 159(2), 391-397. 

Langlais B, Reckhow DA, Brink DR. Ozone in water treatment, Application and engineering. 

Chelsea: Lewis, 1991. 

Langlais, B., Reckhow, D. A., & Brink, D. R. (1991). Ozone in water treatment: application 

and engineering: cooperative research report. 

Lemal, D. M. (2004). Perspective on fluorocarbon chemistry. The Journal of organic 

chemistry, 69(1), 1-11. 

Li, J., Del Vento, S., Schuster, J., Zhang, G., Chakraborty, P., Kobara, Y., & Jones, K. C. 

(2011). Perfluorinated compounds in the Asian atmosphere. Environmental science & 

technology, 45(17), 7241-7248. 

Lin, A. Y. C., Panchangam, S. C., Chang, C. Y., Hong, P. A., & Hsueh, H. F. (2012). 

Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under 

alkaline condition. Journal of hazardous materials, 243, 272-277. 

Lopez-Espinosa, M. J., Fletcher, T., Armstrong, B., Genser, B., Dhatariya, K., Mondal, D., ... 

& Leonardi, G. (2011). Association of perfluorooctanoic acid (PFOA) and 

perfluorooctane sulfonate (PFOS) with age of puberty among children living near a 

chemical plant. Environmental science & technology, 45(19), 8160-8166. 

Martin, J. W., Mabury, S. A., Solomon, K. R., & Muir, D. C. (2003). Bioconcentration and 

tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus 

mykiss). Environmental Toxicology and Chemistry, 22(1), 196-204. 

Matilainen, A., Vepsäläinen, M., & Sillanpää, M. (2010). Natural organic matter removal by 

coagulation during drinking water treatment: a review. Advances in colloid and 

interface science, 159(2), 189-197. 

Mejia-Avendaño, S., Vo Duy, S., Sauvé, S., & Liu, J. (2016). Generation of perfluoroalkyl 

acids from aerobic biotransformation of quaternary ammonium polyfluoroalkyl 



 

69 
 

surfactants. Environmental science & technology, 50(18), 9923-9932. 

Nakada, N., Shinohara, H., Murata, A., Kiri, K., Managaki, S., Sato, N., & Takada, H. (2007). 

Removal of selected pharmaceuticals and personal care products (PPCPs) and 

endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a 

municipal sewage treatment plant. Water research, 41(19), 4373-4382. 

Ochoa-Herrera, V., & Sierra-Alvarez, R. (2008). Removal of perfluorinated surfactants by 

sorption onto granular activated carbon, zeolite and sludge. Chemosphere, 72(10), 

1588-1593. 

Oliaei, F., Kriens, D., Weber, R., & Watson, A. (2013). PFOS and PFC releases and 

associated pollution from a PFC production plant in Minnesota (USA). Environmental 

Science and Pollution Research, 20(4), 1977-1992. 

Peng, H., Wei, Q., Wan, Y., Giesy, J. P., Li, L., & Hu, J. (2010). Tissue distribution and 

maternal transfer of poly-and perfluorinated compounds in Chinese sturgeon 

(Acipenser sinensis): implications for reproductive risk. Environmental science & 

technology, 44(5), 1868-1874. 

Pignatello, J. J., & Xing, B. (1995). Mechanisms of slow sorption of organic chemicals to 

natural particles. Environmental Science & Technology, 30(1), 1-11. 

Plumlee, M. H., McNeill, K., & Reinhard, M. (2009). Indirect photolysis of 

perfluorochemicals: hydroxyl radical-initiated oxidation of N-ethyl perfluorooctane 

sulfonamido acetate (N-EtFOSAA) and other 

perfluoroalkanesulfonamides. Environmental science & technology, 43(10), 3662-

3668. 

Post, G. B., Cohn, P. D., & Cooper, K. R. (2012). Perfluorooctanoic acid (PFOA), an 

emerging drinking water contaminant: a critical review of recent 

literature. Environmental research, 116, 93-117. 

Post, G. B., Louis, J. B., Cooper, K. R., Boros-Russo, B. J., & Lippincott, R. L. (2009). 

Occurrence and potential significance of perfluorooctanoic acid (PFOA) detected in 

New Jersey public drinking water systems. Environmental science & 

technology, 43(12), 4547-4554. 

Prevedouros, K., Cousins, I. T., Buck, R. C., & Korzeniowski, S. H. (2006). Sources, fate and 

transport of perfluorocarboxylates. Environmental science & technology, 40(1), 32-44. 

Quinones, O., & Snyder, S. A. (2009). Occurrence of perfluoroalkyl carboxylates and 

sulfonates in drinking water utilities and related waters from the United 

States. Environmental science & technology, 43(24), 9089-9095. 

Rahman, M. F., Peldszus, S., & Anderson, W. B. (2014). Behaviour and fate of perfluoroalkyl 

and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water 



 

70 
 

research, 50, 318-340. 

Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M. Environmental Organic Chemistry, 

2nd ed; John Wiley & Sons: Hoboken, NJ, 2003  

Seals, R., Bartell, S. M., & Steenland, K. (2010). Accumulation and clearance of 

perfluorooctanoic acid (PFOA) in current and former residents of an exposed 

community. Environmental health perspectives, 119(1). 

Shoeib, M., Harner, T., & Vlahos, P. (2006). Perfluorinated chemicals in the Arctic 

atmosphere. Environmental science & technology, 40(24), 7577-7583. 

Sies, H. (1993). Strategies of antioxidant defense. The FEBS Journal, 215(2), 213-219. 

Spellman, F. R. (1999). Choosing disinfection alternatives for water/wastewater treatment 

plants. CRC Press. 

Staehelin, J., & Hoigne, J. (1985). Decomposition of ozone in water in the presence of organic 

solutes acting as promoters and inhibitors of radical chain reactions. Environmental 

Science & Technology, 19(12), 1206-1213. 

Steenland, K., Fletcher, T., & Savitz, D. A. (2010). Epidemiologic Evidence on the Health 

Effects of Perfluorooctanoic Acid (PFOA). Environmental Health 

Perspectives, 118(8), 1101. 

Strynar, M., Dagnino, S., McMahen, R., Liang, S., Lindstrom, A., Andersen, E., ... & Ball, C. 

(2015). Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and 

sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass 

spectrometry (TOFMS). Environmental science & technology, 49(19), 11622-11630. 

Sun, M., Arevalo, E., Strynar, M., Lindstrom, A., Richardson, M., Kearns, B., ... & Knappe, 

D. R. (2016). Legacy and emerging perfluoroalkyl substances are important drinking 

water contaminants in the Cape Fear River Watershed of North 

Carolina. Environmental science & technology letters, 3(12), 415-419. 

Takagi, S., Adachi, F., Miyano, K., Koizumi, Y., Tanaka, H., Watanabe, I., ... & Kannan, K. 

(2011). Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water 

treatment processes. Water research, 45(13), 3925-3932. 

USEPA, 2009. Drinking Water Contaminant Candidate List 3-Final. Federal Register, 

Environmental Protection Agency, pp. 51850e51862, 74 FR 51850. 

USEPA, 2012. Revisions to the Unregulated Contaminant Monitoring Regulation (UCMR 3) 

for Public Water Systems. Federal Register, Enivronmental Protection Agency, pp. 

26071e26101, 77 FR 26071. 

Vaughan, P. P., & Blough, N. V. (1998). Photochemical formation of hydroxyl radical by 

constituents of natural waters. Environmental Science & Technology, 32(19), 2947-



 

71 
 

2953. 

Vaughn, B., Winquist, A., & Steenland, K. (2013). Perfluorooctanoic acid (PFOA) exposures 

and incident cancers among adults living near a chemical plant. Environmental Health 

Perspectives (Online), 121(11-12), 1313. 

Von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product 

formation. Water research, 37(7), 1443-1467. 

Wang, N., Szostek, B., Buck, R. C., Folsom, P. W., Sulecki, L. M., & Gannon, J. T. (2009). 8-

2 Fluorotelomer alcohol aerobic soil biodegradation: Pathways, metabolites, and 

metabolite yields. Chemosphere, 75(8), 1089-1096. 

Wang, Z., DeWitt, J. C., Higgins, C. P., & Cousins, I. T. (2017). A never-ending story of per-

and polyfluoroalkyl substances (PFASs)?. 

Xiao, F. (2017). Emerging poly-and perfluoroalkyl substances in the aquatic environment: a 

review of current literature. Water research, 124, 482-495. 

Xiao, F., Halbach, T. R., Simcik, M. F., & Gulliver, J. S. (2012). Input characterization of 

perfluoroalkyl substances in wastewater treatment plants: source discrimination by 

exploratory data analysis. Water research, 46(9), 3101-3109. 

Xiao, F., Ma, J., Yi, P., & Huang, J. C. H. (2008). Effects of low temperature on coagulation 

of kaolinite suspensions. Water research, 42(12), 2983-2992. 

Xiao, F., Simcik, M. F., & Gulliver, J. S. (2013). Mechanisms for removal of perfluorooctane 

sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional 

and enhanced coagulation. Water research, 47(1), 49-56. 

Xiao, F., Simcik, M. F., Halbach, T. R., & Gulliver, J. S. (2015). Perfluorooctane sulfonate 

(PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a US metropolitan 

area: migration and implications for human exposure. Water research, 72, 64-74. 

Xu, J., Guo, C. S., Zhang, Y., & Meng, W. (2014). Bioaccumulation and trophic transfer of 

perfluorinated compounds in a eutrophic freshwater food web. Environmental 

Pollution, 184(25), 4e261. 

Yamashita, N., Kannan, K., Taniyasu, S., Horii, Y., Petrick, G., & Gamo, T. (2005). A global 

survey of perfluorinated acids in oceans. Marine pollution bulletin, 51(8), 658-668. 

Yamashita, N., Taniyasu, S., Petrick, G., Wei, S., Gamo, T., Lam, P. K., & Kannan, K. 

(2008). Perfluorinated acids as novel chemical tracers of global circulation of ocean 

waters. Chemosphere, 70(7), 1247-1255. 

Zhi, Y., & Liu, J. (2015). Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: 

Effect of carbon surface chemistry. Environmental pollution, 202, 168-176. 
 


	University of North Dakota
	UND Scholarly Commons
	January 2018

	Removal Of Emerging Poly- And Per-Fluoroalkyl Substances By Water Treatment
	Ryan Alexander Hanson
	Recommended Citation


	tmp.1559259364.pdf.p0KwS

