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Abstract 

Estrogen has been shown to augment satellite cell activation, proliferation and 

total number and that this may occur through an estrogen receptor (ER) mediated 

mechanism. The purpose of this study was to investigate the role of ERs in the post-

exercise estrogen-induced augmentation of satellite cells in skeletal muscle of 

ovariectomized rats. Furthermore, the specific role of the ERa was examined through 

the use of an ERa agonist, propyl pyrazole triol (PPT). Ovariectomized rats were used 

(n=64) and separated into 4 groups: sham, estrogen supplemented, agonist 

supplemented and a combined estrogen and agonist supplemented group. These 

groups were further subdivided into control (unexercised) and exercise groups. 

Animals in the exercise group participated in an intermittent running protocol that 

involved animals running downhill on a motorized treadmill for 90 minutes. Surgical 

removal of white vastus and soleus muscles occurred 72 hours post-exercise. Muscle 

samples were immunostained for the satellite cell markers Pax7 and MyoD. 

Significant increases in total (Pax7-positive) and activated (MyoD-positive) satellite 

cells were found in all groups post-exercise. A further significant augmentation of 

total and activated satellite cells occurred in estrogen supplemented, agonist 

supplemented and the combined estrogen and agonist supplemented groups post-

exercise in white vastus and soleus muscles relative to unsupplemented animals. These 

results demonstrate that both estrogen and the ERa agonist, PPT, can significantly 

augment satellite cell number and activation following exercise-induced muscle 

damage. This suggests that estrogen acts through an ER-mediated mechanism to 



stimulate satellite cell activation and proliferation following exercise, with ERa 

playing a primary role. 
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Chapter One 

Introduction 

A fundamental role of skeletal muscle is the production of gross and fine 

movements. Skeletal muscle is made up of fibres that contain specialized contractile 

proteins that allow for muscle force generation and contraction to occur. Damage 

sustained by muscle fibres can cause pain, swelling and ultimately impair skeletal muscle 

function (Maclntyre et al., 1995; Proske & Allen, 2005). Muscle repair mechanisms 

therefore play a vital role in the proper and optimal functioning of skeletal muscle. Key 

components of the indices of muscle damage, inflammation and repair are further 

discussed below. 

1.1 Skeletal Muscle Damage 

Skeletal muscle damage involves the disruption of muscle fibres and can result 

from a variety of factors including exercise, muscular trauma, overuse injuries and 

ischemia reperfusion (I/R) injuries (Armstrong et al., 1983; Gute et al., 1998; Silverman, 

2007). In order to elicit muscle damage, many studies employ exercise regimes that 

involve eccentric contractions. Eccentric contractions occur when the muscle produces 

force as it lengthens. Numerous studies have demonstrated that eccentric contractions 

produce significantly more damage to muscle tissue than concentric contractions 

(Clarkson & Sayers, 1999; Gibala et al., 1995). There are various mechanical factors that 

play a role in this fact. Eccentric muscle contractions require the recruitment of fewer 

motor units and muscle fibres than concentric contractions and therefore increase the 

strain per fibre, causing more damage. Additionally, a smaller cross-sectional area of the 
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muscle is loaded, increasing the subsequent amount of damage (Enoka, 1996). Moreover, 

recruitment of structures not typically involved in excitation-contraction coupling, such 

as tendons, can occur during eccentric contractions (Brown et al., 1997). Morgan (1990) 

proposed a theory to explain this phenomenon. He stated that during eccentric 

contractions some sarcomeres become overextended and "pop," resulting in a decreased 

or total lack of overlap of the actin and myosin myofilaments in that particular sarcomere. 

In order to maintain the load, the activation of tendons then becomes necessary, which 

can increase the degree damage within the muscle. 

Histological evidence of muscle damage to the sarcolemma, sarcoplasmic 

reticulum, myofibrils and the cytoskeleton following eccentric exercise have been 

demonstrated in numerous studies (Armstrong et al., 1983; Friden et al., 1984; Trappe et 

al., 2002; Yu et al., 2003). The cytoskeleton of skeletal muscle fibres is composed of a 

variety of proteins including titin, desmin, a-actinin, nebulin and dystrophin. These 

proteins act to stabilize actin, myosin and the sarcomere as a whole (Morgan & Allan, 

1999). Exercise-induced damage, particularly from eccentric contractions, can damage 

these cytoskeletal proteins causing Z disc streaming to occur. Z disc streaming is a 

common feature of exercise-induced muscle damage where the Z discs of some 

sarcomeres are disrupted or torn (Figure 1). This type of damage has been shown in 

human muscle biopsies following eccentric contractions (Newham et al., 1983; 

Nurenberg et al., 1992; Gibala et al., 1995; Gibala et al., 2000). 
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Figure 1; An electron micrograph from a human leg muscle biopsy sample following an 
eccentric exercise protocol. The arrows indicate Z-disc streaming in two sarcomeres 
(Nurenberg et al., 1992). 



Secondary damage (damage occurring following the initial injury) to the muscle 

can occur post-exercise via the stimulation of non-lysosomal proteases including calpain 

(Brooks et al., 1983; Van der Westuyzen et al., 1981; Zenman et al., 1985). Calpain has 

three isoforms: calpain-1, calpain-2 and calpain-3. While calpain-3 is involved in skeletal 

muscle maintenance, acting to aid in the removal of cellular debris within the sarcomere 

(Beckmann & Spencer, 2008), calpain-1 and calpain-2 act in a proteolytic fashion 

contributing to the damage of the sarcoplasmic reticulum, connective tissue, contractile 

tissue and mitochondrial swelling in skeletal muscle following intense exercise or 

eccentric contractions (Brown et al., 1997; Duncan, 1987; Verburg et al., 2009). 

Furthermore, since 2-5% of the total amount of calpain in the muscle fibre is located at 

the I and Z bands, it is thought that calpain-1 and calpain-2 may play a role in the 

degradation of cytoskeletal proteins in the Z disc (Belcastro et al., 1988; Verburg et al., 

2009). Belcastro et al. (1988), for example, found a significant decrease in two proteins, 

58 Kda and 95 Kda, following exercise-induced muscle damage. These two proteins 

could correspond to desmin and a-actinin, both of which make up a large portion of the Z 

disc. Furthermore, studies conducted in vitro have demonstrated the ability of calpain-1 

and calpain-2 to cleave various proteins including desmin, which can cause the release of 

a-actinin, contributing to Z disc streaming (Goll et al., 1991; Saido et al., 1994; Verburg 

et al., 2009). These results show a plausible link between exercise-induced muscle 

damage, the activation of calpain and the resulting breakdown of a-actinin and desmin; 

contributing to Z disc streaming and further damage to the muscle fibre. 

Numerous studies support post-exercise induced muscle damage by calpain 

following eccentric exercise. Since calpain is activated by calcium, in skeletal muscle, 
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intracellular levels of calcium must increase following exercise in order for this damage 

to occur. Duncan (1987) demonstrated this in a study that utilized skinned amphibian 

pectoris cutaneous muscle where an increased intracellular calcium concentration caused 

cellular damage including Z disc streaming, loss of myofibril organization and 

mitochondrial swelling. Similarly, treatment of skeletal muscle with the calcium ionphore 

(A23187) increased the intracellular calcium concentration within the muscle fibre and 

caused ultrastructural damage to occur (Publicover et al., 1978). Warren et al. (1995) has 

linked eccentric exercise to an increase in free cytosolic calcium levels in the muscle cell 

and an associated damage to the sarcolemma. Overall, the concentration of calcium 

within the muscle not only plays a role in excitation-contraction coupling and cross-

bridge formation but it also can activate calpain-1 and calpain-2, leading to proteolysis of 

muscle tissue. Eccentric exercise was used in this study as a means to elicit exercise-

induced muscle damage due to the strong relationship between eccentric contractions, 

calpain-1 and calpain-2 activation and the subsequent skeletal muscle damage. 

Another source of secondary injury to muscle, which is also involved in initiating 

the muscle repair process, is the inflammatory response. 

1.2 The Inflammatory Response 

Following eccentric exercise and its associated muscle fibre damage, an 

inflammatory response is initiated involving the migration of leukocytes and other 

chemotactic agents to the site of injury (Clarkson & Sayers, 1999). Early stages of 

damage are characterized by an infiltration of neutrophils, followed by an increase in 

macrophages ED1+ and ED2+ to the site of injury (Tidball, 1995). 
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Neutrophils 

Neutrophils are thought to be the first cells to migrate to the site of damage in 

skeletal muscle (Tidball, 1995). Fielding et al. (1993) demonstrated an accumulation of 

neutrophils in skeletal muscle 45 minutes following eccentric exercise in humans and this 

neutrophil accumulation remained for 5 days. The infiltration of neutrophils to the site of 

injury typically peaks at 12 to 24 hours post-injury, however. While the exact function of 

neutrophils is not known, it is postulated that they are involved in the removal of cellular 

debris and in stimulating the migration of macrophages to the site of injury (Maclntryre 

et al., 1995; Teixeira et al., 2003; Tidball, 1995). Neutrophils may also play a role in 

secondary muscle damage as their infiltration to the site of damage can lead to the 

production of reactive oxygen species including superoxide. Reactive oxygen species 

cause cellular damage including peroxidation of membrane lipid bilayers and the 

disruption of functional proteins, all of which can contribute to secondary damage post-

exercise. This is a controversial topic, however, with studies showing support for 

(Nguyen and Tidball, 2003; Pizza et al., 2005) and against (Armstrong et al., 1983; 

Lapointe et al., 2002) secondary muscle damage caused by neutrophil infiltration. 

Macrophages 

Infiltration of macrophages to the site of damage in skeletal muscle is necessary 

for muscle regeneration to occur. This accumulation of macrophages peaks at 48 hours 

following injury (Hawke & Garry, 2001). Removal of cellular debris and necrotic tissue 

via phagocytosis is the primary role of macrophages in the inflammatory response; more 

specifically, it is postulated that this is completed by ED1+ macrophages (Lapointe et al., 
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2002; Lescaudron et al., 1999). Studies have shown that ED2 macrophages, on the other 

hand, do not participate in the removal of cellular debris but may play a role in the 

proliferation of satellite cells post-injury (Cantini et al., 1994; McLenna, 1993; St. Pierre 

& Tidball, 1994). In support of this, St. Pierre et al. (1994) demonstrated an accumulation 

of EDI+ macrophages in damaged myofibres 2 days following muscle reloading in mice, 

whereas ED2+ macrophages reached a peak accumulation 4 days following muscle 

reloading and were not directly involved in phagocytosis. Lescaudron et al. (1999) also 

demonstrated that muscle regeneration does not precede the infiltration of macrophages 

to the site of injury in vivo, providing evidence that macrophages may play a role in 

muscle regeneration. While this study does not examine the inflammatory response, the 

infiltration of neutrophils and macrophages to the site of damage in skeletal muscle plays 

an essential role in satellite cell signalling and activation, which this study did measure. 

1.3 Muscle Repair: Satellite Cells 

The term satellite cell was first coined by Alexander Mauro (1961) after their 

discovery in 1961. Satellite cells are mononucleated and fusiform in shape and reside 

between the basil lamina and the sarcolemma of muscles, running parallel to the 

myofibres. Since terminal differentiation of skeletal myocytes occurs in vertebrates, 

satellite cells are present to function as stem cells within skeletal muscle, aiding in 

postnatal muscle repair and regeneration (Mauro, 1961; Muir et al., 1965). 

Until activated by various stimuli, satellite cells remain in a quiescent, 

undifferentiated state with a high nuclear-to-cytoplasmic ratio and few organelles (Muir 

et al., 1965; Schultz, 1976). In addition, the nucleus within a satellite cell is small and 
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contains a greater amount of condensed chromatin compared to myonuclei (Schultz, 

1976). Stimuli that can activate satellite cells include myotrauma, ischemia, exercise and 

disease (Schultz & McCormick, 1994). Upon activation, satellite cells undergo a 

reduction in chromatin and an increase in organelle content and cytoplasmic-to-nuclear 

ratio. An increase in mitotic activity via entry into the cell cycle occurs as well, leading to 

the proliferation of satellite cells (Schultz & McCormick, 1994). Proliferation of satellite 

cells peaks 2 to 3 days following the myotrauma but can continue for up to 5 days post-

trauma. At this point in time, satellite cells withdraw from the cell cycle and differentiate. 

When satellite cells differentiate, fusion into existing myofibres can occur, contributing 

to hypertrophy. In addition, satellite cells can align and fuse together forming a new 

myotube which is known as hyperplasia (Figure 2). The fate of a differentiating satellite 

cell depends on the severity of the damage and muscle regeneration is typically complete 

10 days following the myotrauma (Garry et al., 1997; Hawke & Garry, 2001; Schultz & 

McCormick, 1994). 
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Figure 2: The satellite cell cycle (Hawke & Garry, 2001). 
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Satellite Cell Markers 

There are various markers for satellite cell identification that are expressed or 

incorporated by satellite cells at different phases of activation. Some commonly used 

immunohistochemical markers include 5-bromo-2'-deoxyuridine (BrdU), MyoD and 

Pax7. BrdU is a thymine analog that identifies proliferating satellite cells (Hawke & 

Garry, 2001). BrdU becomes incorporated into the DNA of proliferating satellite cells 

acting as a nonradioactive marker that can identify replicating cells in vivo (Hurme & 

Kalimo, 1991). 

Pax7 and MyoD are transcription factors that are common markers for satellite 

cell identification. Pax7 marks quiescent, activated and proliferating satellite cells 

(Hawke & Garry, 2001). MyoD, on the other hand, is not expressed in quiescent satellite 

cells but becomes up-regulated within 12 hours following muscle injury (Seale & 

Rudnicki, 2000). Activated satellite cells express MyoD and studies have shown that 

proliferating satellite cells express MyoD as well as other markers including Myf5 and 

desmin (Cornelison & Wold, 1997). Furthermore, studies utilizing MyoD(-/-) mice have 

demonstrated a continued proliferation of satellite cells while in the presence of 

differentiation-favoured conditions. As a result, it is postulated that MyoD may also play 

a role in satellite cell differentiation (Sabourin et al., 1999). 

This study measured satellite cells 72 hours post-exercise utilizing Pax7 and 

MyoD as positive satellite cell markers. This time period was chosen as numerous studies 

have demonstrated the presence of peak levels of activated and proliferating satellite cells 

72 hours post-exercise (Armstrong et al , 1983; Hawke & Garry, 2001; Hurme et al., 

1991). Furthermore, Enns & Tiidus (2008) demonstrated that satellite cells labelled by 
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Pax7 peak at 3 days post-exercise and MyoD-labelled satellite cells peak at 2-3 days post-

exercise when using the exercise protocol employed by this study. 

Satellite Cell Regulation 

Satellite cell activity may be regulated by numerous factors. It has been postulated 

that the extracellular matrix of skeletal muscle fibres store growth factors that are 

released through tears in the sarcolemma following eccentric exercise (Tatsumi et al., 

1998). The release of these growth factors into the muscle fibre may play a role in the 

regulation of satellite cell activation, proliferation and differentiation. Hepatocyte growth 

factor (HGF), insulin-like growth factor (IGF-I), fibroblast growth factor (FGF), 

leukemia inhibitory factor (LIF) and interleukin-6 (IL-6) are some such factors that may 

play a role in satellite cell regulation. These factors are further discussed below. 

Hepatocyte Growth Factor (HGF) 

HGF is a cytokine that acts on the c-met receptor located on satellite cells 

(Bischoff, 1997; Tatsumi et al., 1998). It is secreted by myoblasts (Anastasi et al., 1997) 

and by damaged tissue within the muscle (Cornelison & Wold, 1997; Tatsumi et al., 

1998). Proposed roles for the action of HGF include the activation and proliferation of 

satellite cells (Allen et al., 1995; Tatsumi et al., 1998). Additionally, HGF acts as a 

chemoattractant where its release from damaged muscle tissue may allow satellite cells to 

migrate to the site of injury by chemotaxis (Bischoff, 1997). Gal-levi et al. (1998) also 

demonstrated that treatment of quiescent satellite cells with HGF caused the activation of 

satellite cells by triggering entry into the cell cycle, shown by an increase in DNA 

synthesis. Gal-levi et al. (1998) further demonstrated that HGF not only plays a role in 
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the activation and proliferation of satellite cells but it also inhibits differentiation by 

inhibiting transcriptional factors necessary for differentiation, including MyoD and 

myogenin. 

Insulin-like Growth Factor-I (IGF-I) 

IGF-I is secreted by skeletal muscle and plays a role in the promotion of satellite 

cell proliferation and differentiation (Chakravarthy et al., 2000; Hawke & Garry, 2001; 

Johnson et al., 1990; Mills et al., 2007). Chakravarthy et al. (2000), for example, 

demonstrated the proliferative capability of IGF-I where its injection into atrophied 

skeletal muscle of rats was followed by a significant increase in the proliferation of 

satellite cells compared to controls, leading to a significant increase in muscle mass. 

Furthermore, numerous studies have also shown that IGF-I plays a role in increasing 

skeletal muscle mass, strength and hypertrophy (Barton et al., 2007; Barton-Davis et al., 

1998; Musaro et al., 1999). Since up-regulation of IGF-I occurs following eccentric 

exercise in humans (Hameed et al., 2007) and rats (Adams et al., 1998), IGF-I may be a 

key factor in skeletal muscle regeneration through the regulation of satellite cell 

proliferation and differentiation. 

Fibroblast growth factor (FGF) 

FGF is a cytokine that, like IGF-I, plays a role in satellite cell proliferation. A 

study by Floss et al. (1997) examined the role of FGF-6, an isoform of FGF, which is 

solely found in skeletal muscle. Using FGF-6 deficient mice, FGF-6(-/-), it was shown 

that following a crush injury, these mice had an impaired ability for muscle regeneration 

compared to mice with the FGF-6 gene. The authors postulated that FGF-6 may play a 

significant role in satellite cell activation or proliferation (Floss et al., 1997). The role that 
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FGF plays in the regulation of satellite cells was further examined by Scanta et al. (1999) 

who demonstrated that increasing the FGF receptor availability lead to an increase in 

satellite cell proliferation and a decrease in differentiation. Furthermore, decreasing FGF 

receptor availability lead to a decrease in satellite cell proliferation and an increase in 

differentiation of myocytes. This data shows that FGF plays a role in satellite cell 

proliferation and differentiation and that this may be regulated in part by receptor number 

and/or availability. 

Leukemia inhibitory factor (LIF) & interleukin-6 (IL-6) 

LIF and IL-6 belong to the same family of cytokines and are produced by a 

variety of cells including macrophages and myoblasts (Hawke & Garry, 2001; Hibi et al., 

1996). LIF and IL-6 play a role in satellite cell regulation by stimulating cell proliferation 

(Austin & Burgess, 1991; Hawke & Garry, 2001). Kurek et al. (1997) utilized LIF(-/-) 

mice to demonstrate the regenerative role of LIF in vivo as the LIF knockout mice had a 

significantly decreased capacity for muscle regeneration following a muscle crushing 

injury. Cantini et al. (1995) examined IL-6 and demonstrated that it is released by 

activated satellite cells and macrophages, promoting satellite cell proliferation. IL-6 also 

acts directly on macrophages and neutrophils to induce cellular apoptosis and is therefore 

a regulator of both satellite cell proliferation and the inflammatory process. During 

satellite cell proliferation there are an increased number of satellite cells present and a 

consequent increase in the amount of IL-6 released. This is a regulatory mechanism that 

may act to ensure that the breakdown of macrophages and neutrophils occur at the site of 

injury while new myocytes and myotubes are being formed (Cantini et al., 1995). 
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Overall, there are many growth factors that play a role in satellite cell regulation. 

Satellite cells may also be regulated by a variety of other factors including nitric oxide, 

transforming growth factors, platelet-derived growth factor and hormones such as insulin 

and testosterone (Hawke & Garry, 2001). In order to further understand the skeletal 

muscle repair process, it is important to elucidate the mechanism of satellite cell activity 

and the circumstances in which the factors described above will act to regulate satellite 

cell activity. This study looked specifically at a potential mechanism of estrogen 

influence on post-exercise satellite cell activation and proliferation. 

1.4 The Role of Estrogen 

Estrogens are steroid sex hormones that include estradiol, estrone and estriol. 

Estradiol is produced by the ovaries and is the primary estrogen in the body (Wierman, 

2007). In the past it was typically assumed that sex hormones target sex organs alone, 

however, recent studies have indicated that sex hormones, such as estrogen, have a 

number of target organs including skeletal muscle (Enns et al., 2008; Wang et al., 1999). 

Estrogen has two distinct receptors, estrogen receptor alpha (ERa) and estrogen receptor 

beta (ER(3). Both receptors are expressed in skeletal muscle, though they are encoded by 

separate genes (Hall et al., 2001; Wiik et al., 2003). In addition, ERa and ER|3 have a 

similar binding affinity for endogenous and synthetic estrogens and can be activated 

when bound with a ligand (Hall et al., 2001; Kalbe et al., 2007). 

Estrogen plays a role in skeletal muscle through its influence on muscle damage, 

inflammation and repair. Following various exercise protocols, sex differences in the 

degree of sustained muscle damage have been found. Komulainen et al. (1999), for 

14 



example, demonstrated an increase in cytoskeletal damage in male rats following an 

eccentric exercise protocol, compared to female rats. Estrogen has also been shown to 

attenuate damage caused by I/R injury and exercise-induced damage. In studies utilizing 

a rat forebrain ischemia model, administration of 17P-estradiol was shown to reduced I/R 

injury (Santizo et al., 2000; Wang et al., 1999). 

The presence of estrogen has also been shown to influence inflammation by 

attenuating neutrophil and macrophage infiltration in skeletal muscle following injury. 

Stupka & Tiidus (2001) presented the first study examining the effects of estrogen on 

leukocyte infiltration following an I/R-induced injury. Estrogen was shown to exert a 

protective effect on skeletal muscle and attenuated the infiltration of neutrophils in 

female rats following I/R injury. The relationship between estrogen and neutrophil 

infiltration following exercise-induced damage was further examined by Tiidus et al. 

(2001) in ovariectomized (OVX) rats. Neutrophil infiltration in the estrogen-

supplemented rats was significantly reduced post-exercise compared to the exercised 

placebo group. In addition, myeloperoxidase activity, a marker for neutrophil infiltration, 

was significantly reduced in the exercised estrogen group 1 hour post-exercise. These 

studies demonstrate the attenuation of neutrophil accumulation in damaged skeletal 

muscle in female, OVX rats with estrogen replacement. The same attenuation of 

neutrophil infiltration was demonstrated in estrogen supplemented male rats, suggesting 

that the presence of physiological levels of estrogen alone is sufficient to cause this 

reduction in neutrophil infiltration (Tiidus & Bombardier, 1999). 

The relationship between estrogen and satellite cell activation in damaged skeletal 

muscle has also been examined. A study by Tiidus et al. (2005) demonstrated that 
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eccentrically exercised, estrogen-supplemented male rats had a significantly greater 

number of satellite cells present in the soleus and white vastus muscles at 72 hours post-

exercise, compared to exercised male rats without estrogen-supplementation. The satellite 

cells in this study were identified by the marker Pax7 and it was therefore not known 

what stage of activation the identified satellite cells were in. Further investigation was 

conducted by Enns & Tiidus (2008), where OVX female rats underwent an eccentric 

exercise running protocol to induce skeletal muscle damage. The number of satellite cells 

present 72 hours post-exercise was then examined with the markers Pax7, MyoD and 

BrdU. This immunohistochemical analysis showed a significantly greater increase in 

total, activated and proliferating satellite cells post-exercise in the estrogen-supplemented 

exercised animals, compared to the exercised group without estrogen-supplementation. 

The results of this study suggest that estrogen may play a role in the activation of satellite 

cells following exercise-induced damage (Enns & Tiidus, 2008). 

While the exact mechanism of estrogen on the skeletal muscle repair process is 

not fully understood, possible mechanisms have been proposed. It is thought that these 

mechanisms may involve an increased activation of signalling proteins that are necessary 

for protein synthesis. The Akt-mammalian target of rapamycin (Akt-mTOR) pathway, for 

example, regulates protein synthesis in the muscle and estrogen has been shown to 

stimulate this pathway in cardiac muscle (Sitnick et al., 2006). Stimulation of the Akt-

mTOR pathway by estrogen causes mTOR to phosphorylate and activate a signalling 

protein, p70s6k. This leads to the phosphorylation of S6, a ribosomal protein, causing 

increased translation of mRNA that encodes proteins necessary for protein synthesis in 

muscle. In support of this pathway as a mechanism for the influence of estrogen on 
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skeletal muscle growth, Sitnick et al. (2006), observed a decrease in the activation of Akt 

and p70sk6 in OVX rats during muscle reloading, inhibiting muscle growth. 

Another pathway that may affect the skeletal muscle repair process is the 

phosphatidylinositol 3-kinase-Akt (PI3 kinase-Akt) pathway. Results from Patten et al. 

(2004) demonstrated an increased activation of PI3 kinase-Akt signalling by estrogen in 

cardiac muscle via interaction with the ERa. Interaction between ERa and p85, a 

regulatory subunit of PI3-kinase-Akt, causes an increase in the activation of this pathway 

which stimulates protein synthesis and muscle growth (Patten et al., 2004; Pedram et al., 

2002; Sitnick et al., 2006). Since ERa's are present in skeletal muscle, activation of the 

PI3-kinase-Akt pathway, via estrogen-ERa binding and the subsequent interaction with 

p85, may be a possible mechanism to explain how estrogen augments satellite cell 

activation and proliferation following muscle damage. 

The participation of an estrogen receptor (ER) mediated pathway as a potential 

mechanism for satellite cell activation and proliferation in skeletal muscle is supported by 

Enns et al. (2008) where an ER antagonist, ICI 182,780, was used to completely block 

ERs. This blocking of ERs in estrogen-supplemented rats eliminated the estrogen-

induced augmentation of satellite cells in damaged muscle fibres post-exercise. In 

addition, Lemoine et al. (2002) demonstrated an association between exercise and ERas 

where a significant increase in ERa mRNA transcripts in skeletal muscle was found 

following endurance training. These studies support the involvement of ERs in skeletal 

muscle during exercise and muscle repair. 

In order to corroborate the results from Enns et al. (2008), which suggest that 

estrogen acts through an ER-mediated mechanism to augment satellite cell activation and 
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proliferation, this study utilized the ERa agonist propyl pyrazole triol (PPT). PPT is an 

ERa agonist that has a 50% greater binding affinity for the ERa compared to estrogen 

itself (Kraichely et al., 2000; Stauffer et al., 2000). Through ERa binding, PPT has been 

shown to mimic the actions of estrogen by preventing body weight increases and bone 

mineral density losses in ovariectomized rats (Harris et al., 2002). In addition, PPT 

stimulates uterine growth with the same effectiveness as estrogen (Harris et al., 2002; 

Katzenellenbogen et al., 1995). Use of the ERa agonist, PPT, coupled with the results 

from Enns et al. (2008) will give further confirmation for the role that ERs play in the 

skeletal muscle repair process while also allowing the specific role that ERa plays in 

satellite cell activation and proliferation to be determined. 

1.5 Research Applications 

This research is potentially relevant to post-menopausal women. Since post

menopausal women have reduced levels of estrogen, these women may experience an 

increased susceptibility to muscle damage and delays in muscle regeneration and 

recovery. In fact, research has shown that post-menopausal women suffer higher rates of 

sarcopenia and tend to develop it at an earlier age compared to men (Sipila et al., 2001). 

Sarcopenia is a loss of muscle mass that typically affects those aged 65 and older and can 

severely affect one's muscle strength and functional ability (Thompson, 2007). 

Impaired satellite cell functioning has been implicated as a possible contributor to 

sarcopenia (Zammit et al., 2006). Given the role that estrogen plays in satellite cell 

augmentation it is possible that this impairment in satellite cells, and consequent decrease 

in muscle mass, may arise due to the reduction of estrogen levels in post-menopausal 
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women. Studies have shown that while physical activity is commonly used to counteract 

sarcopenia, estrogen supplementation in addition to increased physical activity, decreases 

the development of sarcopenia to a greater extent (Dionne et al., 2000). Moreover, it has 

been demonstrated that estrogen alone can improve muscle recovery and repair from 

disuse atrophy in animal models (McClung et al., 2006). By examining the relationship 

between estrogen and the skeletal muscle repair process, an increased body of knowledge 

regarding possible preventative or treatment measures for skeletal muscle loss caused by 

a reduction of estrogen may become available. This may ultimately lead to increases in 

mobility, muscular strength and overall quality of life for post-menopausal women. 
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Chapter Two 

The Influence of Propyl Pyrazole Triol on the Alpha Estrogen Receptor-Mediated 
Activation of Satellite Cells in Rat Skeletal Muscle 

Statement of Problem 

The purpose of this study was to investigate the role of the alpha estrogen receptor 

(ERa) on the activation and proliferation of satellite cells in skeletal muscle following 

eccentric exercise through the administration of an ERa agonist (PPT) to ovariectomized 

female rats supplemented with or without estrogen. 

Hypotheses 

1. Based on previous studies it was hypothesized that supplementation with estrogen 

would augment satellite cell activation and proliferation post-exercise. 

2. Administration of the ERa agonist, PPT, would mirror the effects of estrogen by 

augmenting satellite cell activation and proliferation post-exercise. 

3. A combined administration of estrogen and the agonist would also increase 

satellite cell activation and proliferation post-exercise. 

4. No significant differences in satellite cell activation and proliferation would exist 

between the estrogen supplemented, agonist supplemented and the combined 

estrogen and agonist supplemented animals post-exercise. 
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Introduction 

Repeated, high-intensity eccentric muscle contractions have been shown to elicit 

exercise-induced muscle damage (Proske & Allen, 2005). This sets in motion a series of 

well documented events: an inflammatory response in skeletal muscle that is 

characterized by the infiltration of neutrophils and macrophages to the site of injury 

(Tidball et al., 1995); and the activation and proliferation of satellite cells. Satellite cells 

are located between the basil lamina and the sarcolemma of skeletal muscle and are 

involved in the muscle repair process (Mauro, 1961; Muir et al., 1965). Satellite cells 

remain in a mitotically quiescent state until activated by certain stimuli, including 

myotrauma caused by eccentric exercise. Upon activation, satellite cells proliferate and 

migrate to the site of injury and differentiate to repair existing myofibres and/or form new 

myofibres (Hawke & Garry, 2001; Schultz & McCormick, 1994). 

Many studies have demonstrated sex differences on indices of muscle damage, 

inflammation and repair that are largely due to the female sex-hormone estrogen. 

Estrogen has been shown to decrease cytoskeletal damage caused by I/R injury and 

exercise-induced damage in rats (Komulainen et al, 1999; Santizo et al., 2000; Wang et 

al., 1999). The presence of estrogen has also been shown to attenuate neutrophil and 

macrophage infiltration in rat skeletal muscle following injury (Stupka & Tiidus, 2001; 

Tiidus & Bombardier, 1999; Tiidus et al., 2001). 

Estrogens' influence on satellite cells was first examined by Tiidus et al. (2005) 

where estrogen supplemented male rats showed a significant increase in the total number 

of satellite cells present post-exercise compared to a sham group with no estrogen. Enns 

& Tiidus (2008) conducted a follow-up study to determine which satellite cell stage is 
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influenced by estrogen using the satellite cell markers Pax7 (total), MyoD (activated) and 

BrdU (proliferating). A significant increase in the presence of all markers was observed, 

demonstrating that estrogen plays a role in the activation and proliferation of satellite 

cells, as well as increasing the total number present in myofibers post-exercise. 

While the exact mechanism that estrogen exerts its effect on the skeletal muscle 

repair process is not fully understood, possible mechanisms have been proposed. It is 

thought that these mechanisms involve an increased activation of signalling proteins that 

are necessary for protein synthesis. Estrogen, for example, has been shown to influence 

two such pathways: the phosphatidylinositol 3-kinase-Akt (PI3 kinase-Akt) pathway and 

the Akt-mammalian target of rapamycin (Akt-mTOR) pathway (Patten et al., 2004; 

Pedram et al., 2002; Sitnick et al., 2006). Results from Patten et al. (2004) demonstrated 

an increased activation of PI3 kinase-Akt signalling by estrogen in cardiac muscle via 

interaction with the ERa. Since ERa's are present in skeletal muscle (Hall et al., 2001; 

Kalbe et al., 2006), activation of the PI3-kinase-Akt pathway, via estrogen-ERa binding, 

may be a possible mechanism to explain how estrogen augments satellite cell activation 

and proliferation following muscle damage. 

In an attempt to elucidate the mechanism through which estrogen exerts its effect, 

Enns et al. (2008) utilized an estrogen antagonist, ICI 182,780, to study the estrogen 

receptor-mediated pathway in satellite cell activation and proliferation in skeletal muscle. 

This estrogen antagonist competitively binds to ERs with an extremely high affinity, 

preventing estrogen binding. OVX female rats were used with results showing a 

significant increase in total, activated and proliferating satellite cells post-exercise in rats 

supplemented with estrogen compared to those without estrogen. Use of the estrogen 
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antagonist, however, eliminated the observed estrogen-induced augmentation of total, 

activated and proliferating satellite cells post-exercise. This data, therefore, lends support 

to the theory that estrogen mediates satellite cell activation and proliferation in skeletal 

muscle through an estrogen receptor-mediated pathway. 

The purpose of this study was to further examine the estrogen receptor-mediated 

pathway in satellite cell augmentation resulting from exercise and estrogen 

supplementation. In order to address this issue the ERa agonist, PPT, was used to bind to 

and stimulate the skeletal muscle ERas, where the total number of satellite cells (Pax7-

positive) and activated satellite cells (MyoD-positive) were examined in unexercised and 

exercised, OVX rats. Use of PPT allowed for the specific role of the ERa in the skeletal 

muscle repair process to be established. Based on results from Enns et al. (2008), it was 

hypothesized that estrogen would act in a receptor-mediated fashion to augment the 

activated and total number of satellite cells present in rat skeletal muscle, as demonstrated 

by a significant but similar post-exercise increase in satellite cells in the estrogen 

supplemented, agonist supplemented and the combined estrogen and agonist 

supplemented animals. 
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Methods 

Animals 

This experimental protocol was approved by the Animal Care Committee at 

Wilfrid Laurier University and operated in accordance to the Canada Council on Animal 

Care. A total of 64 female Sprague-Dawley rats were used (Charles River Laboratories, 

LaSalle, QC) and surgical removal of their ovaries occurred at 9 weeks of age. The 

animals arrived to our laboratory approximately one week post-surgery and were housed 

two animals per cage, in a temperature-controlled environment with a 12:12 hour 

light/dark cycle. Animals were allowed access to food (Teklad 22/5 Rodent Diet, Harlan-

Teklad, Madison,WI) and water ad libitum. 

Experimental Design 

Upon arrival to our laboratory, animals were given one week to acclimatize to the 

environment. During the acclimatization period, the animals were randomly divided into 

4 groups: Sham (S), Estrogen supplemented (E), Agonist supplemented (A), and Estrogen 

and Agonist supplemented (EA). The animals were further subdivided into Unexercised 

Control (Con) and Exercise (Ex) groups within the 4 groups (Figure 3). Animal weights 

were recorded from the day of arrival until tissue collection. 
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Sham 
n=16 

Ovariectomized female rats 
n=64 

Estrogen 
n=16 

Agonist 
n=16 

Estrogen + 
Agonist 

n=16 

Con Ex Con Ex Con Ex Con Ex 
n=8 n=8 n= 8 n= 8 n= 8 n= 8 n= 8 n= 8 

Figure 3: Schematic outline of the experimental groups. Con = control (unexercised) 
condition; Ex = exercised condition. 
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Following the acclimatization period, the animals underwent pellet implantation 

or a sham surgery. These procedures all occurred under aseptic conditions where the rats 

were anaesthetized with gaseous isoflurane. A small incision, approximately 1 cm in 

length, was made in the skin folds of the neck and blunt dissection was used to separate 

the skin from the underlying connective tissue. Implantation of an estrogen pellet (0.25 

mg 17P-estradiol, 21-day time release pellet, Innovative Research of America, Sarasota, 

FL) underneath the skin occurred in groups E and EA. Groups S and A underwent a sham 

surgery which is identical to the procedure described for groups E and EA but did not 

include implantation of an estrogen pellet. Following the pellet implantation or sham 

procedure the incision was closed with Vetabond (3 M St Paul, MN). 

The ERa agonist PPT (Tocris, Ellisville, MO) was administered four days post-

surgery and three days prior to the exercise protocol. Each rat in the A and EA group 

received 0.5mg of PPT in a dimethyl sulfoxide (DMSO) vehicle per day, via a O.lmL 

subcutaneous injection for 6 days. The rats in group S and E received a O.lmL 

subcutaneous injection of DMSO daily for 6 days where the last injection occurred one 

day prior to tissue collection. This protocol was developed to ensure an appropriate, 

prolonged exposure of PPT to the skeletal muscle ERs. It was based on a study by Harris 

et al. (2002) where the same PPT protocol activated uterine ERs as demonstrated through 

a significant increase in uterine weight. 

The exercise protocol occurred seven days following the pellet implantation and 

sham surgery. This was to ensure optimal exposure of skeletal muscle ERs in groups E 

and EA to the estrogen hormone. All animals in the Ex groups participated in a non-

fatiguing exercise protocol where the animals ran downhill on a motorized rodent 
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treadmill with an electric shock grid (Columbus Instruments, Columbus, OH). The 

animals ran at approximately 17 m/min at a -13.5° grade. An intermittent protocol was 

used where the animals ran for 5 minutes, followed by 2 minutes of rest, for a total of 90 

minutes of running. This protocol elicits muscle damage to various muscles including the 

soleus and white vastus muscles (Komulainen et al., 1999). These muscles were selected 

due to their differing fibre types; the soleus is highly composed of type I fibres, while 

white vastus is predominantly composed of type lib fibres. One and two days prior to the 

exercise protocol the Ex rats underwent a familiarization period on the treadmill for 5 

minutes. This increased the comfort level of the rats on the treadmill and allowed the 90 

minute running session to be completed with greater ease and accuracy on the run day. 

Tissue Collection 

Previous research has established that positively labelled Pax7 and MyoD satellite 

cells peak 3 days following exercise (Enns & Tiidus, 2008). The Ex animals were, 

therefore, sacrificed 72 hours following completion of the running protocol; Con animals 

were sacrificed at the same time as the Ex animals. Animals were anesthetised with 

sodium pentobarbital (55 mg/kg i.p.). A toe web pinch was conducted to ensure loss of 

the withdrawal reflex prior to commencement of tissue collection. Blood samples were 

obtained from the femoral artery and were allowed to clot at room temperature. The 

samples were then centrifuged at 3000g for 10 min.; the serum was then removed and 

stored at -80°C until further analysis. 

The soleus and the white vastus muscles were then surgically removed. During 

removal, the muscle samples were rinsed in physiological saline to remove excess blood, 
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blotted dry and visible connective tissue was removed. Tissue samples for 

immunohistochemical analysis were mounted, coated in optimal cutting temperature 

(OCT) medium and frozen in isopentane that was chilled to the temperature of liquid 

nitrogen. All tissue samples were then immediately placed into liquid nitrogen until 

transferred to a -80°C environment. Samples remained at this temperature until analysis. 

See Figure 4 for a schematic outline of the experimental protocol. 

Serum Analysis 

Estrogen levels were analyzed via blood serum analysis using the Coat-a-Count 

radioimmunoassay kit (Inter Medico, Markham, ON). 

p-glucuronidase activity 

Using the Barrett method, the activity of p-glucuronidase was assessed (Barrett, 

1972). P-glucuronidase is a lysosomal hydrolase that is a marker of muscle damage, 

where increased activity indicates increased muscle damage (Salminen & Kihlstrom, 

1985). Performed in triplicate, muscle samples were assayed at 420 nm and activities are 

expressed as the amount of substrate (5 mM /?-nitrophenyl-|3-D-glucuronide, Sigma-

Aldrich) hydrolyzed per protein amount and incubation time. Protein concentration was 

measured using Lowry's method (Lowry et al., 1951). 
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Figure 4: Schematic outline of the experimental protocol timeline. 
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Immunohistochemical Analysis 

Using a cryostat (Leica CM3050S, Germany), muscle samples were transversely 

cut into 10 urn sections and placed onto Vactabond coated glass slides (Vector 

Laboratories, Burlington, ON). All slides were stored at -20°C until analysis. 

Immunohistochemical staining for markers of satellite cells, Pax7 ((Developmental 

Studies Hybridoma Bank, University of Iowa, Iowa City, IA) and MyoD (Dako Canada, 

Mississauga, ON) were completed. 

Quantification of satellite cells from the immunostains were conducted by placing 

the slides under a light microscope (Leica DMLS) that projects onto a computer screen at 

a magnification of 400x (lOx ocular and 40x objective lens). For each muscle sample, 2 

sections of 200 myofibers were counted for positive satellite cells, for a total of 400 

counted myofibers, as previously described (Enns et al., 2008; Enns & Tiidus, 2008). 

These measurements are considered to give an accurate representation of the relative 

number of satellite cells present since myofibers staining positively for more than one 

satellite cell was rarely observed (unpublished observations). A positive satellite cell was 

identified as a dark-stained ovoid body, located between the sarcolemma and basal 

lamina. Figure 5 depicts representative positive cells for Pax7 and MyoD that were used 

during quantification. 

Statistical Analysis 

Data is reported as mean ± SEM. Differences between groups were measured 

using a 2 (exercise) by 4 (treatment) factorial analysis of variance (ANOVA). All post-

hoc tests were completed using Fisher's LSD. 
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Figure 5: Representative rat skeletal muscle fibres immunostained for satellite cells; (A) 
Pax7 and (B) MyoD (400x magnification). 
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Results 

Serum Estrogen Levels 

Exercise treatment did not significantly influence serum estrogen levels compared 

to treatment-matched control animals. As a result, serum estrogen levels were pooled into 

four groups: Sham (S), Estrogen supplemented (E), Agonist supplemented (A) and 

Estrogen and Agonist supplemented (EA). As depicted in Table 1, the E and EA 

supplemented animals had significantly higher serum estrogen levels compared to the S 

and A groups (P < 0.01). 

Body Weights 

Since exercise did not influence animal body weight, animals were pooled 

according to treatment group. The S group had significantly greater body weights than all 

other treatment groups (P < 0.01). In addition, the EA group weighed significantly less 

than the E and A groups (P < 0.05). Estrogen and/or PPT supplementation therefore 

significantly reduced body weight compared to S treated rats (Table 2). These effects on 

body weights are typically seen in studies involving estrogen (Enns et al., 2008; Enns & 

Tiidus, 2008; Tiidus et al, 2005). 

Uterine Weights 

The activation of uterine ERs when bound with estrogen or an estrogen agonist 

has been shown to stimulate uterine growth (Harris et al., 2002; Katzenellenbogen et al., 

1995). As such, wet uterine weights were used to verify the effective delivery of PPT and 

estrogen to the uterine ERs. As shown in Table 2, supplementation with estrogen and/or 
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PPT significantly increased uterine weight compared to the S group (P < 0.01). 

Additionally, uterine weight in the E group was significantly greater than the A group (P 

< 0.05); while the EA group had a significantly higher uterine weight compared to all 

treatment groups (P < 0.05). When the uterine weights were normalized to overall body 

weight of the rats, these same trends were observed (Table 2). 

p-Glucuronidase Activity 

Measurement of P-Glucuronidase activity is a marker of muscle damage where 

increased activity indicates increased muscle damage (Salminen & Kihlstrom, 1985). As 

expected, the Ex S group had a significant increase in P-Glucuronidase activity in the 

soleus muscle 72 hours post-exercise compared to the Con S group (Table 3). An 

attenuation of muscle damage was seen in the Ex A group and the Ex EA group 

demonstrated by a significantly lower P-Glucuronidase activity compared to the 

treatment-matched S group (P < 0.01). Similar, non-significant trends for P-

Glucuronidase activity were seen in the white vastus muscle as shown in Table 3. 

Satellite Cells 

Quiescent, activated and proliferating satellite cells were measured using the 

marker Pax7 (Hawke & Garry, 2001). In the white vastus muscle, a main effect for 

exercise was observed where a significant increase in satellite cells was found in the Ex 

groups compared to treatment-matched Con groups (P < 0.01). In addition, the E, A and 

EA groups had a significantly greater number of satellite cells post-exercise compared 

with the treatment-matched S group (P < 0.01), as shown in Figure 6. 
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Figure 7 demonstrates the same effects in the soleus muscle where a significant 

increase in satellite cells was found in the Ex groups compared to the treatment-matched 

Con group (P < 0.01). A significant increase in satellite cells was also found in the E, A 

and EA groups post-exercise compared to the treatment-matched S group (P < 0.05). 

MyoD was used to positively mark activated and proliferating satellite cells 

(Cornelison & Wold, 1997). As depicted in Figure 8, a main effect for exercise was 

observed in the white vastus muscle where a significant increase in satellite cells was 

found in the Ex groups compared to the treatment-matched Con groups (P < 0.01). The E, 

A and EA groups also had a significantly greater number of satellite cells present post-

exercise compared with the treatment-matched S group (P < 0.01). 

Figure 9 demonstrates the same effects in the soleus muscle where a significant 

increase in satellite cells was observed in the Ex groups compared with the treatment-

matched Con groups (P < 0.01). The E, A and EA groups also had a significant increase 

in satellite cells post-exercise compared to the treatment-matched S group (P < 0.01). 

Furthermore, an additional significant increase in satellite cell numbers was found in the 

EA group post-exercise compared to the treatment-matched E and A groups (P < 0.01). 
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Table 1; Serum estradiol levels for sham, estrogen, PPT and E + PPT groups. Values are 
pooled Mean ± SEM as no significant differences were observed between treatment-
matched control and exercise values. * P < 0.01, compared with treatment-matched Sham 
group. % P < 0.01, compared with treatment-matched PPT group. 

Serum Estradiol 
(PB ml"1) 

Sham 
11 ±0.9 

Estrogen 
91±15*$ 

PPT 
34 ± 0.9 

E + PPT 
90 ±10*J 
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Table 2: Animal body weights and uterine weights for sham, estrogen, PPT and E + PPT 
treatment groups. Values are pooled Mean ± SEM as no significant differences were 
observed between treatment-matched control and exercise values. * P < 0.01, compared 
with treatment-matched Sham group, f P < 0.05, compared with treatment-matched 
Estrogen group. % P < 0.01, compared with treatment-matched PPT group. 

Body weight, g 
Uterine Weight, 

g 
Uterine weight, 
g lOOg"1 body 

weight 

Sham 
309 ± 4 

0.110 ±0.009 

0.037 ± 0.004 

Estrogen 
272 ± 3* 

0.409 ±0.161* 

0.152 ±0.010* 

PPT E + PPT 
278 ±2* 261±3*ft 

0.332 ±0.018*t 0.460 ± 0.022*tJ 

0.122 ±0.006*1 0.180 ±0.010*f$ 
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Table 3: Changes in soleus and white vastus muscle P-Glucuronidase activity with 
downhill running. Values are Mean ± SEM. * P < 0.01, compared with treatment-
matched Sham group, f P < 0.05, compared with treatment-matched Estrogen group. 
% P < 0.05, compared with treatment-matched control group. 

Sham Estrogen PPT E + PPT 
Soleus 

Control 
Exercise 

White Vastus 
Control 
Exercise 

4.70 ±0.34 
7.18±0.92J 

3.35 ±0.37 
3.45 ±0.33 

4.56 ±0.21 
6.04 ±1.00 

2.73 ± 0.42 
4.16 ±0.46 

5.21 ±0.18 
5.55 ±0.36* 

3.39 ±0.46 
3.14 ±0.33 

3.99 ± 0.43 
4.42 ± 0.34*t 

2.70 ±0.38 
3.42 ±0.38 
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a,b 
a,b 

a,b 

IH Sham 

• Estrogen 

• PPT 

HE + PPT 

Control Exercise 

Figure 6: Effects of supplementation with estrogen, PPT and a combination of estrogen 
and PPT on the number of positive muscle fibres for the satellite cell marker, Pax7, in rat 
white vastus muscle 72 hours following downhill running. Values are Means ± SEM. 
a P < 0.01 compared to Control (unexercised). b P < 0.01 compared to Sham treated. 
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a,b 

a,b a,b 

IHllSham 

• Estrogen 

• PPT 

DEE + PPT 

Control Exercise 

Figure 7: Effects of supplementation with estrogen, PPT and a combination of estrogen and 
PPT on the number of positive muscle fibres for the satellite cell marker, Pax7, in rat soleus 
muscle 72 hours following downhill running. Values are Means ± SEM.a P < 0.01 compared 
to Control (unexercised). P < 0.05 compared to Sham treated. 
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a,b a,b 
a,b , L. 

IMS ham 

• Estrogen 

DPPT 

OBE + PPT 

Control Exercise 

Figure 8: Effects of supplementation with estrogen, PPT and a combination of estrogen and 
PPT on the number of positive muscle fibres for the satellite cell marker, MyoD, in rat white 
vastus muscle 72 hours following downhill running. Values are Means ± SEM. a P < 0.01 
compared to Control (unexercised). b P < 0.01 compared to Sham treated. 
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a.b.c 

DJSham 

• Estrogen 

DPPT 

QUE + PPT 

Control Exercise 

Figure 9: Effects of supplementation with estrogen, PPT and a combination of estrogen and 
PPT on the numbers of positive muscle fibres for the satellite cell marker, MyoD, in rat 
soleus muscle 72 hours following downhill running. Values are Means ± SEM. a P < 0.01 
compared to Control (unexercised). b P < 0.01 compared to Sham treated. c P < 0.05 
compared to Estrogen treated and PPT treated. 
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Discussion 

Previous research has shown that estrogen augments satellite cell proliferation in 

skeletal muscle post-exercise (Enns et al., 2008; Enns & Tiidus, 2008; Tiidus et al., 

2005). While estrogens' mechanism of action in the skeletal muscle repair process is not 

fully understood, an ER-mediated pathway has been postulated. An ERa agonist, PPT, 

was used to examine the role of ERa in satellite cell activation. 

The findings of this study show that estrogen-related augmentation of satellite cell 

activation and proliferation following exercise acts through an ER-mediated mechanism 

and that the ERa plays a major role in this regulation. Animals supplemented with 

estrogen, PPT and a combination of estrogen and PPT all demonstrated a significant 

increase in total (Pax7-positive) and activated (MyoD-positive) satellite cells post-

exercise, compared to OVX sham animals. In addition, sole stimulation of ERa by PPT 

resulted in the same degree of satellite cell augmentation compared to animals 

supplemented with estrogen, indicating a key role for ERa in the skeletal muscle repair 

process. 

These results corroborate findings by Enns et al. (2008) where use of an ER 

antagonist, ICI 182,780, eliminated the estrogen-induced increases in total, activated and 

proliferating satellite cells post-exercise. In this study, animals supplemented with a 

combination of estrogen and ICI 182,780 had significantly fewer satellite cells present 

post-exercise compared to estrogen supplemented animals as well as the sham animals. 

These results support estrogens' mechanism of action through estrogen receptors. 

The significant increases in uterine weights observed in the PPT and estrogen plus 

PPT groups can verify that PPT, as used in this study, did bind ERs. Although this study 
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cannot fully elucidate the specific role of ERp in post-exercise augmentation of satellite 

cell numbers, the lack of significant difference between estrogen and PTT alone or in 

combination on post-exercise satellite cell numbers may suggest that the primary effects 

of estrogen are manifested through ERa. Different actions for ERa and ERp have been 

identified in other cellular processes including GLUT-4 expression; ERa acting as a 

positive regulator and ERp acting in an inhibitory fashion (Barros et al., 2006). The 

presence of the ERa has also been shown to play a role in reducing body weight in mice 

whereas ERp had no such effect (Brown et al., 2009). While both ERa and ERP are 

present in skeletal muscle and have a similar binding affinity for estrogen (Hall et al., 

2001), it is possible that each receptor regulates different cellular events. 

Animals supplemented with estrogen alone and in combination with PPT had an 

8-fold increase in serum estrogen levels compared to animals without estrogen. Female, 

ovary-intact rats experience cycling estrogen levels over a three to four day estrous cycle. 

The physiological range of circulating estrogen in rats may be varied depending on the 

estrous cycle stage. Serum estrogen values as low as 10 pg ml"1 in ovary intact rats have 

been reported (Persky et al., 2000), while values as high as 285 pg ml"1 have also been 

found (McNulty et al., 2000). Animals in this study experienced a continued, unvaried 

exposure of estrogen within the normal physiological range (90-91 pg ml"1). 

It is noteworthy that animals supplemented with both estrogen and PPT 

manifested a further significant increase in activated satellite cells in the soleus muscle, 

relative to the smaller augmentation induced by estrogen supplemented and PPT 

supplemented groups alone. This finding was not seen in the white vastus muscle or in 

either muscle for the total number of satellite cells (Pax7-positive). 
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The reason for this increased augmentation of satellite cells is not known. The 

combination of estrogen and PPT supplementation provides a greater amount of available 

substrate to activate ERs. This, coupled with the observation that type I muscle fibres, 

including soleus, have a greater number of ERas compared to type II muscle fibres 

(Lemoine et al., 2002b), could result in the activation of a greater number of ERas and a 

subsequent further augmentation of satellite cells in the soleus muscle. However, as no 

fibre type difference was observed in Pax7-positive satellite cells this remains 

speculative. One can speculate that the combined increase in circulating estrogen and 

PPT levels may stimulate ERs outside of skeletal muscle that influence satellite cell 

activation specifically. However, it is not known if ERs are present on satellite cells 

themselves. 

The downstream signalling pathways involved in satellite cell augmentation 

following ERa activation are not entirely understood. Various pathways that are involved 

in muscle growth and repair may play a role. The Akt-mTOR pathway, for example, 

regulates protein synthesis in muscle (Sitnick et al., 2006). Estrogen has been shown to 

stimulate this pathway in cardiac muscle, however, it is unclear as to whether or not 

estrogen stimulates this pathway through an ER-mediated process (Patten et al., 2004). 

Activation of ERa by estrogen has been shown to stimulate the PI3 kinase-Akt pathway, 

leading to an increase in protein synthesis and muscle growth (Patten et al., 2004; Pedram 

et al., 2002; Sitnick et al., 2006). Estrogen is also involved in the activation of two 

immediate early genes c-fos and egr-1 in proliferating myoblasts through an ER-mediated 

mechanism (Kahlert et al, 1997). Stimulation of these pathways by estrogen appears to 

regulate muscle growth and repair to some extent; further investigation for the role of 
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these pathways in satellite cell activation and proliferation is needed to further elucidate 

these and other possibilities. 

Various growth factors may also be involved in the estrogen-stimulated 

augmentation of satellite cell activation and proliferation. Numerous studies have 

reported increases in IGF-I mRNA expression in the uteri of rats following estrogen 

supplementation (Huynh & Pollak, 1993; Kamanga et al., 2008a). Furthermore, this 

estrogen-induced augmentation of IGF-I may be an ER-mediated process as use of the 

ER antagonist, ICI 182 780, eliminated the estrogen-induced increase in IGF-I gene 

expression (Huynh & Pollak, 1993; Kassem et al., 1998; Stygar et al., 2003). Since IGF-I 

is a known regulator of satellite cell proliferation and differentiation (Chakravarthy et al., 

2000; Hawke & Garry, 2001; Johnson et al., 1990; Mills et al., 2007), it is possible that 

estrogen, through receptor-mediated mechanisms, may act to increase IGF-I expression in 

skeletal muscle leading to the augmentation of satellite cell proliferation and 

differentiation. 

HGF is another known regulator of satellite cell activation and proliferation which 

may also be influenced by estrogen (Allen et al., 1995; Tatsumi et al., 1998). Estrogen is 

reported to increase nitric oxide synthase (NOS) and nitric oxide (NO) levels in animal 

(Node et al., 1997) and human models (Caulin-Glaser et al., 1997). Following skeletal 

muscle damage, NO has been shown to regulate the release of HGF (Tatsumi, 2002); 

moreover, inhibition of NOS, and subsequent decrease in NO levels, leads to a reduction 

in activated satellite cells (Anderson et al., 2000). Therefore, the presence of estrogen 

may act to indirectly augment satellite cell activation through NO-mediated stimulation 

of HGF. Further research into the role of estrogen and skeletal muscle ER involvement 
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with NO regulation of satellite cell activation and proliferation also needs to be 

conducted to follow up on these possibilities. 

The results of this study may have potential implications for post-menopausal 

women. Post-menopausal women suffer higher rates of sarcopenia and tend to develop it 

at an earlier age compared to men (Sipila et al., 2001). Given that estrogen seems to 

stimulate satellite cell activity, decreased estrogen levels in post-menopausal women may 

be a contributing factor to the development of sarcopenia and also potentially to 

diminished rates of muscle repair capacity in older females. 

In conclusion, estrogen mediates satellite cell activation and proliferation in 

skeletal muscle through an ER-mediated mechanism, with ERa playing a key role. Future 

research focusing on the downstream signalling pathways involved in estrogen-induced 

satellite cell activation will aid in the understanding of the factors and pathways involved 

in the skeletal muscle repair process. In addition, the differing roles of ERa and ERP in 

skeletal muscle damage, inflammation and repair are worthy of study as their differing 

roles may present pharmacological implications for estrogen and ER-specific agonists 

and antagonists. 
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Chapter Three 

Discussion & Conclusions 

Estrogen has been shown to play a key role in skeletal muscle by influencing 

skeletal muscle damage, inflammation and repair. Estrogen seems to have a protective 

role in skeletal muscle as it attenuates post-exercise calpain activity, decreases membrane 

damage and reduces the degree of damage sustained by the muscle (Enns et al., 2008; 

Enns & Tiidus, 2008; Tiidus et al, 2001). Estrogen also attenuates the inflammatory 

response by decreasing neutrophil and macrophage infiltration into the muscle post-

exercise (Enns et al., 2008; Tiidus et al., 2001). Furthermore, estrogen plays a role in 

skeletal muscle repair, though its mechanisms of action are not yet fully understood. 

The objective of this study was to examine the role of ERa in the estrogen-

induced augmentation of satellite cells in skeletal muscle. While previous studies have 

shown an estrogen-induced augmentation of satellite cells in rat skeletal muscle post-

exercise compared to OVX animals, estrogens' mechanism of action for this process was 

not fully understood (Enns et al., 2008; Enns & Tiidus, 2008; Tiidus et al., 2005). Given 

that both ERa and ERp are present in skeletal muscle (Wiik et al., 2003) and are 

upregulated with exercise (Lemoine et al., 2002; Wiik et al., 2005) it had been postulated 

that estrogen may influence satellite cells through an ER-mediated mechanism. This was 

examined through the use of PPT. 

PPT is an ERa agonist that binds to the ERa with a 50% greater binding affinity 

than estrogen (Kraichely et al., 2000; Stauffer et al., 2000). PPT has been shown to 

effectively mimic estrogen actions in numerous studies as its administration decreases 

food intake, meal size and body weight (Roesch, 2005; Santallo et al., 2007), while 
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increasing uterine weight in OVX rats (Harris et al., 2002; Katzenellenbogen et al., 

1995). In this study, the collected uterine weights confirmed that the administered doses 

of estrogen and PPT were sufficient to stimulate ERs. Use of PPT allowed for the specific 

action of the ERa in the skeletal muscle repair process to be elucidated. 

The main finding of this study was that estrogen acts through an ER-mediated 

mechanism to augment satellite cell activation in skeletal muscle, with ERa playing a 

primary role. PPT stimulated a significant post-exercise increase in total (Pax7-positive) 

and activated (MyoD-positive) satellite cells to the same extent as estrogen. Furthermore, 

supplementation with PPT and a combination of estrogen and PPT may play a protective 

role in skeletal muscle by decreasing the degree of muscle damage; this is depicted by a 

decrease in P-Glucuronidase activity compared to sham treated animals post-exercise in 

the soleus muscle. Similar findings have been reported by Enns et al. (2008) and Enns & 

Tiidus (2008). 

Future research focusing on the downstream signalling pathways that follow ERa 

activation by estrogen is needed. Activation of ERa by estrogen seems to be the initial 

step in a cascade of events that leads to satellite cell augmentation; though the pathways 

and factors involved following ERa activation remain elusive. A pathway that may 

potentially play a role is the PI3 kinase-Akt pathway. Activation of ERa by estrogen 

stimulates p85, a regulatory subunit of the PI3 kinase-Akt pathway, leading to its 

activation (Patten et al., 2004). Since the PI3 kinase-Akt pathway stimulates protein 

synthesis and muscle growth, one can speculate that its ERa-mediated activation by 

estrogen may also elicit a cascade of events that stimulate satellite cell activation and 

proliferation (Patten et al., 2004; Pedram et al., 2002; Sitnick et al., 2006). 
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Estrogen also increases IGF-I expression through an ERa-mediated mechanism. 

IGF-I is a known regulator of satellite cell proliferation and differentiation and plays a 

key role in skeletal muscle repair and hypertrophy (Chakravarthy et al., 2000; Hawke & 

Garry, 2001; Johnson et al., 1990; Mills et al., 2007). Interestingly, IGF-I, like estrogen, 

has also been shown to activate the PI3 kinase-Akt pathway in myoblasts (Latres et al., 

2005; Rommel et al., 2001). Therefore estrogen may augment satellite cell activation and 

proliferation through the direct ERa-mediated stimulation of IGF-I and the PI3 kinase-

pathway; in addition, IGF-I may further contribute to the skeletal muscle repair process 

by activating the PI3 kinase-Akt pathway as well. Overall, activation of the ERa by 

estrogen may, therefore, elicit various event cascades that act to augment satellite cell 

activation and proliferation. 

IGF-I may also indirectly augment satellite cells through its influence on ERs. 

Estrogen does not appear to significantly influence ER transcriptional activity in non-

reproductive organs as peak ER transcriptional activity reportedly occurs in the diestrus 

stage of the estrous cycle (Ciana et al., 2003). IGF-I, on the other hand, has been shown 

to increase ER transcriptional activity in mice in the absence of estrogen (Cenni & 

Picard, 1999). Given that ERa and ERp are expressed in human skeletal muscle in 

individuals with varying levels of estrogen including children, male and female adults 

and post-menopausal women (Wiik et al., 2009), one may speculate that ER expression in 

skeletal muscle may be regulated, in part, by IGF-I. IGF-I, therefore, may not only play a 

role in the skeletal muscle repair process by stimulating satellite cell activation and 

proliferation and the PI3 kinase-Akt pathway, it may also influence ER transcriptional 
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activity. The role IGF-I plays in the skeletal muscle repair process specifically in relation 

to estrogen therefore warrants further investigation. 

There is some controversy over whether or not estrogen does, in fact, enhance 

post-exercise muscle recovery and repair. While animal models consistently show that 

estrogen enhances post-exercise muscle recovery and repair, human studies report 

equivocal evidence. Some human studies, for example, have reported that no gender 

differences exist in the degree of structural damage and muscle force and strength deficits 

incurred by the muscle fibre following eccentric exercise (Sayers & Clarkson, 2001; 

Stupka et al., 2001). In addition, gender differences have not been found in some studies 

looking at muscle strength recovery post-exercise (Sayers & Clarkson, 2001; Thompson 

et al., 1997). Nevertheless, there are human studies that do show decreased levels of 

creatine kinase in women compared to men post-exercise, indicating a decreased degree 

of muscle damage in women (Sewright et al., 2008; Stupka et al., 2000). These studies, 

coupled with animal studies that demonstrate an estrogen-induced decrease in post-

exercise muscle damage, inflammation and an augmentation of muscle repair (Enns et al., 

2008; Enns & Tiidus, 2008; Tiidus et al., 2001; Tiidus et al., 2005), support the role of 

estrogen in mediating skeletal muscle damage and repair. 

The influence of estrogen on skeletal muscle damage, inflammation and repair 

may, therefore, have potential implications for post-menopausal women. Sarcopenia 

typically affects individuals aged 65 and older and involves a loss of muscle mass that 

can severely reduce muscular strength and functional ability (Thompson, 2007). Since an 

increased incidence of sarcopenia in post-menopausal women compared to men of the 

same age has been reported, it has been postulated that the development of sarcopenia 
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may be a consequence of decreased circulating estrogen levels in post-menopausal 

women (Sipila et al., 2001). 

Given that estrogen plays a role in the skeletal muscle repair process through the 

augmentation of satellite cell activation and proliferation, impairment in satellite cell 

function may contribute to sarcopenia. In fact, an age-related decline in satellite cell 

activation (Conboy et al., 2003) and proliferation (Mouly et al., 2005) has been reported. 

In addition, Shefer et al. (2006) has reported a significant decline in the total number of 

satellite cells present in human myofibers with age. One may therefore speculate that the 

impairment of muscle repair in post-menopausal women may be due the decreased levels 

of circulating estrogen, causing impairment in satellite cell activation and proliferation. 

In order to counteract sarcopenia, research has shown that women who participate 

in strength training regimes can increase muscle cross-sectional area, force and strength 

(Brown et al., 1997, Sipila et al., 1996). Hormone replacement therapy (HRT) has also 

been reported to increase muscular strength in the back extensor and flexor muscles 

(Heikkinen et al., 1997) and in lower limb muscle groups in post-menopausal women 

(Greeves et al. 1999; Sipila et al., 2001). Moreover, Dionne et al. (2000) found a further 

reduction in sarcopenia in women participating in both strength training and HRT 

compared to those participating in exercise regimes alone. HRT, therefore, seems to play 

a key role in increasing skeletal muscle strength and mass in post-menopausal women. 

Given this positive benefit of HRT in skeletal muscle, along with its other 

associated benefits which include the prevention of osteoporosis, HRT also has negative 

effects. Use of HRT has been link to an increased risk of developing venous 

thromboembolic events, gallbladder disease, and breast cancer (Mosca et al., 2001). As 
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result, its use is not recommended for women who may already have an increased 

susceptibility for these diseases. 

The development of pharmacological estrogen mimicking therapies that target 

specific pathways and ERs could have dramatic implications for post-menopausal 

women. Use of an ERa agonist, for example, could target skeletal muscle (amongst other 

organs) to augment satellite cell activation and proliferation to increase muscle repair in 

post-menopausal women. This may be refined to possibly avoid negative side effects 

from HRT that are caused by non-receptor mediated estrogen pathways or in pathways 

involving activation of the ERp\ Significant further research needs to be conducted in this 

area, however. 

Overall the results of this study, coupled with findings from Enns et al. (2008), 

demonstrate that estrogen augments satellite cell activation and proliferation through an 

ER-mediated mechanism. Furthermore, use of an ERa agonist revealed a key role for the 

ERa in the skeletal muscle repair process. Various downstream signalling pathways and 

factors may be involved in the estrogen-induced augmentation of satellite cell activation 

and proliferation. Further investigation into these ERa-mediated signalling cascades are 

worthy of study as they may have pharmacological and intervention implications for 

post-menopausal women. 
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Appendix A 
P-Glucuronidase Enzyme Assay 

Reaction 
p-nitrophenyl-beta-D-glucuronide +H20 *" alcohol + D-glucuronide + p-nitrophenyl 

Reagent Procedure 

1. Sodium acetate (anhydrous) (C2H302Na) (0.1N) (mw 82.03) 
0.82 gin 100 ml of H20 pH4.2 

2. Glycine Buffer (0.1M) pH 10.8 
A) 0.375g glycine (C2H5N02, mw 75.07) + 0.2922g NaCl (mw 58.44) in 50 ml H20 
B) 0.4 g of NaOH (mw 40) in 100 ml of H20 

Mix 52.2 ml of A and 47.8 ml of B and pH to 10.8 

3. Substrate: p-nitrophenyl-beta-D-glucuronide (5mM) (sigma N-1627) (mw 315.2) 
7.88 mg in 5 ml H20 

Procedure 

1. Homogenize tissue (10-20 mg; optimal 15 mg) in glass pestle using a 33.33:1 
(3%) dilution using distilled water. 

-use 16.66667 times the mass of tissue, do this 2 times 
2. Add 50 ul of homogenate and water to appropriately labeled test tube 
3. Add 450 ul of Acetate buffer to tubes using repeater pipette 
4. Preincubate tubes in 37°C bath for 5 minutes 
5. Add 250 JJ.1 of substrate using repeater pipette 
6. Incubate for 16-18 hours 
7. Add 1.5 ml of cold glycine buffer using repeater pipette 
8. Cool in ice water for 10 minutes 
9. Centrifuge at 3500 rpm for 10 minutes (temp 4°C) 
10. Read on spectrophotometer at 420 nm. 

Standard Preparation 
Standard: p-nitrophenol (mw 139.1) 

Standard, mM To make: 
0.125 Take 563 ul of 10 mM p-NP stock and add 437 ul dH20 
0.0625 Take 500 ul of 0.125 mM solution and add 500 ul dH20 
0.03125 Take 500 ul of 0.0625 mM solution and add 500 ul dH20 
0.015625 Take 500 ul of 0.03125 mM solution and add 500 ul dH20 
0 (distilled water) 
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Appendix B 
Lowry Protein Assay 

PROCEDURE: 

1. Use 12*75 mm culture tubes and do samples, standards, and blanks in triplicate. 

2. Add 50 ul of standards to appropriately labelled tubes. 

3. Add 50 ul of water to tubes labelled REAGENT BLANK. 

4. Prepare a 20:1 dilution of homogenizing media (10 ul media + 190 ul water). Add 50 
|il of dilute media to tubes labelled SAMPLE BLANK. 

5. Prepare a 20:1 dilution of EACH tissue sample (10 JJ.1 sample + 190 ul water). Add 50 
ul of dilute sample to tubes labelled SAMPLE. 

6. Add 0.5 ml of alkaline copper reagent to all tubes. 

7. Mix well and let stand for 10 minutes at 25°C (room temperature). 

8. Add 2.0 ml of phenol reagent to each tube. Mix each tube individually 
IMMEDIATELY after adding phenol reagent. 

9. Incubate for 5 minutes at 55°C. 

10. Cool in tap water for 1 minute. 

11. Read on spectrophotometer at 650 nm. 
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REAGENTS: 

1. ALKALINE COPPER REAGENT: 

0.05 g CuS04.5H20 
10.00 gNa2C03 

0.10 g POTASSIUM SODIUM TARTRATE 
2.00gNaOH 

TO 100 ml WATER ADD THE CuS04 AND DISSOLVE COMPLETELY. ADD 
THE REMAINING REAGENTS IN ORDER. STORE AT 20°C FOR 2 WEEKS. 

2. FOLIN-CIOCALTEU PHENOL REAGENT: f Sigma-Aldrich, St. Louis. MO) 

TO 80 ml WATER ADD 5.0 ml of 2 N PHENOL REAGENT. MAKE FRESH 
DAILY. 

3. BOVINE SERUM ALBUMIN STANDARD. 1.0 mg/ml: (BSA.Sigma-Aldrich. St. 
Louis, MO) 

ADD 10 mg of BSA TO 10 ml WATER. MIX BY INVERSION. SERIAL 
DILUTE TO OBTAIN SOLUTIONS AS FOLLOWS: 

1.0 mg/ml 
0.5 mg/ml 
0.25 mg/ml 
0.125 mg/ml 
0.0 mg/ml 

CALCULATION: 

(A650 of sample - A^o of sample blank) 

(A65o of standard - A65o of reagent blank) 

Multiply by 

Concentration of Standard (mg/ml) * 20 (dilution factor) = Protein concentration, mg/ml 
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Appendix C 
Pax7 Immunohistochemistry 

Use frozen sections of rat muscle cut 7-10 microns thick. 

1. Let slides air dry for 5 min or until warmed up to room temperature. 
2. Fix sections with 100% cold acetone for 10 min. 
3. Let slides air dry for 5-10 min. 
4. Permeablize cells in 0.5% Triton X-100 solution (in PBS) for 5 min. 
5. Wash in PBS for 3 x 5 min. 
6. Apply 0.6% H2O2 (in absolute methanol) for 10 min. 
7. Wash in PBS for 3 x 5 min. 
8. Block with 5% normal goat serum in PBS (containing 5% nonfat milk powder) for 30 

min. Tap off excess. 
9. Incubate in primary antibody: Pax 7 (1/20 diluted in blocking solution) for 1 h. 
10. Wash in PBS for 3 x 5 min. 
11. Apply bottle 3: GAM-Biotin (from Dako LSAB-2 kit) for 10 min. 
12. Wash in PBS for 3 x 5 min. 
13. Apply Bottle 4: Streptavidin-HRP (from Dako LSAB-2 kit) for 10 min. 
14. Wash in PBS for 3 x 5 min. 
15. Apply Vector NovaRed stain for 5 min (or until desired intensity is achieved). 
16. Rinse in dH20 liberally from wash bottle, then wash in bath for 2 x 5 min. 
17. Counterstain using Vector Hematoxylin QS (add hematoxylin for 10-15 s and rinse 

off with running 37°C tap water for 30 s). 
18. Place a drop of permanent mounting medium on cover slip and place slide upside 

down onto cover slip so that mounting medium covers section completely. 
19. Invert slide and apply gentle pressure on cover slip to remove any air bubbles. 
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Appendix D 
MyoD Immunohistochemistry 

Use frozen sections of rat muscle cut 7-10 um thick. 

1. Let slides air dry for 5 min or until warmed up to room temperature. 
2. Fix sections with 100% cold acetone for 10 min. 
3. Let slides air dry for 5-10 min. 
4. Permeablize cells in 0.5% Triton X-100 solution (in PBS) for 5 min. 
5. Wash in PBS for 3 x 5 min. 
6. Apply 0.6% H2O2 (in absolute methanol) for 10 min. 
7. Wash in PBS for 3 x 5 min. 
8. Block with 5% normal goat serum in PBS (containing 5% nonfat milk powder) for 30 

min. Tap off excess. 
9. Apply primary antibody: MyoD (DakoCytomation, 1/50 diluted in blocking solution) 

overnight at 4°C (in humidity chamber). 
10. Wash in PBS for 3 x 5 min. 
11. Apply bottle 3: GAM-Biotin (from Dako LSAB-2 kit) for 10 min. 
12. Wash in PBS for 3 x 5 min. 
13. Apply Bottle 4: Streptavidin-HRP (from DakoLSAB-2 kit) for 10 min. 
14. Wash in PBS for 3 x 5 min. 
15. Apply DAB stain (Vector Laboratories) for 5 min (or until desired intensity is 

achieved). 
16. Rinse in dH20 liberally from wash bottle. 
17. Counterstain using Vector Hematoxylin QS (add hematoxylin for 15 s and rinse off 

with running tap water for 30 s). 
18. Place a drop of permanent mounting medium on cover slip and place slide upside 

down onto cover slip so that mounting medium covers section completely. 
19. Invert slide and apply gentle pressure on cover slip to remove any air bubbles. 
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