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ABSTRACT 

Although possible deficits in proprioception have been implicated as a cause of 

gait impairments in individuals with Parkinson's disease (PD), little research has been 

done to investigate improving this possible deficit as a method to influence mobility. The 

overall purpose of the current thesis was to investigate the influence of increased plantar 

stimulation on stability and gait impairments. This study also investigated the 

contribution of attention to locomotion in PD. The two studies comprising this thesis 

addressed the possible influence of the ribbed insoles in the initial response of PD 

participants as well as the long-term use of the insole. 

The first study focused on developing a task to assess the influence of the 

facilitatory insoles on gait for individuals with PD compared to healthy control 

participants. For the purpose of evaluating the facilitatory insoles in a functionally 

relevant task participants performed a modified "Timed Up and Go" task with an 

additional secondary motor task. The secondary task of carrying a tray with glasses 

demonstrated that attention plays a large role in the production and maintenance of gait as 

gait deficits became more pronounced. However, the facilitatory insoles also influenced 

gait parameters which demonstrated that the possible deficits in proprioception contribute 

to the gait impairments in PD. The initial response to the insoles, in the first study, did 

not improve gait parameters, which suggests that PD participants may need more time to 

adjust to the increased plantar stimulation. 

The second study investigated the influence of the facilitatory insoles when they 

are worn for a longer period of time. Participants wore either the facilitatory insoles or 

blank insoles while completing the PD Sensory Attention Focussed Exercise (PD SAFEx) 
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rehabilitation program. Results demonstrated that when the facilitatory insoles are worn 

long-term, they can benefit the turning and straight-line walking in individuals with PD. 

PD participants became more confident in their ability to turn as they exerted less control 

over their centre of mass. Participants also displayed a decreased base of support and 

time spent in double limb support without negatively affecting lateral stability. These 

improvements suggest that the facilitatory insoles, when worn long-term, allow for a 

more normalized pattern of gait for individuals with PD. 

The TUG task used in this thesis proved to be a good measure to evaluate changes 

in stability and gait parameters in PD participants. Long-term use of the facilitatory 

insoles demonstrated improvements in stability and gait deficits during difficult aspects 

of gait such as turning. This suggests that the facilitatory insoles would be a simple and 

effective intervention to use, however further investigation should occur to ensure that 

the improvements will continue when facilitatory insoles are used on a daily basis. As 

well, investigation into the long-term use of other types of cutaneous stimulation such as 

vibratory insoles would be beneficial for the PD population. 

List of Abbreviations 
PD - Parkinson's disease 
COM - Centre of Mass 
BOS-Base of Support 
TUG - Timed Up and Go 
TrayWG - Tray with Glasses 
UPDRS - Unified Parkinson's Disease Rating Scale 
FI Group - Facilitatory Insole Group 
BI Group - Blank Insole Group 
TMS - Transcranial Magnetic Stimulation 
PET - Positron Emission Tomography 
EEG - Electroencephalography 
GRF - Ground Reaction Forces 
COP - Centre of Pressure 
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CHAPTER 1 

INTRODUCTION 

Parkinson's disease and Its Complications 

While there are many symptoms of Parkinson's disease (PD), including 

bradykinesia, rigidity of muscles, tremor (Kaji & Murase, 2001), postural instability and 

gait impairments may be the most debilitating since they can lead to falling and 

ultimately, limit independence. Ashburn and colleagues, in a community-based study, 

found that 64% of PD patients had experienced a fall in the past 12 months and 

approximately 50% experienced falls repeatedly (Ashburn, Stack, Pickering, & Ward, 

2001). Similarly, Bloem and colleagues found that during a six month period, 50.8% of 

PD patients fell at least once and 25.4% of PD patients had recurring falls. Bloem et al. 

also determined that PD participants had a nine-fold risk increase in reoccurring falls 

compared to healthy elderly individuals (Bloem, Grimbergen, Cramer, Willemsen, & 

Zwinderman, 2001). This predisposition is also demonstrated in everyday activities 

where individuals with more progressive PD employ strategies, such as standing on tips 

of toes while performing reaching tasks, that predispose them to falls (Stack, Ashburn, & 

Jupp, 2005). 

The most common method of counteracting the symptoms experienced by 

individuals with PD is through medication. Schaafsma et al. (2003) studied the 

relationship between levodopa therapy and falls in individuals with PD and found that 

levodopa significantly reduced stride time variability which has been found to increase in 

people with PD that fall on a frequent basis (Schaafsma et al., 2003). From this study and 

others, it is clear that pharmacotherapy has a positive effect, however, the effects of these 
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medications can wear off over time and have negative side-effects such as night time or 

early morning deteriorations, and medication induced dyskinesias (Guttman, Kish, & 

Furukawa, 2003; Johnson, 2007). Thus, it is important to investigate other possible 

interventions as possible treatments of this disease. A significant avenue to explore is the 

role of the sensory system in individuals with Parksinon's disease which has been 

implicated as a reason for postural instability and motor impairments (Bloem, 1992; Haas, 

Buhlmann, Turbanski, & Schmidtbleicher, 2006). Thus, it is necessary to determine if 

any intervention using this system could be employed to counteract the effects of the 

dysfunctional basal ganglia in PD patients. 

A Deeper Look at the Effects of PD: Postural Instability and Gait Impairments 

Postural sway is a well studied area of research that allows for investigation into 

the effects of PD on postural stability. In a study conducted by Beuter et al. (2008), they 

had participants withdraw from dopaminergic medication for an average of 16 hours prior 

to participation to evaluate postural sway with the assumption that the basal ganglia are 

no longer able to influence motor control. It was found PD patients exhibited mild 

changes in postural sway in the early stages of PD while OFF dopaminergic medication. 

The authors suggested that the basal ganglia or dopaminergic circuits play a role in 

maintenance and execution of postural control. Similarly, Contin et al. (1996) tested the 

effects of medication and disease severity on postural sway. A significant effect was 

found as individuals in OFF medication state exhibited higher postural sway scores than 

healthy, age-matched controls in both eyes open and eyes closed conditions. 
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Similarly, when investigating the effect of surface displacements on postural 

response patterns, individuals with PD have also been suggested to being posturally 

inflexible. Individuals with PD were less able to recover their balance once their centre of 

mass (COM) passed out of their base of support (BOS). This study reported individuals 

with PD having smaller limits of stability in which they operate, as demonstrated by a 

stiffer posture which they find to be more stable. This postural adaptation leads 

individuals with PD to walk with short, shuffling steps as they are more easily able to 

keep their COM within their stability limits. When confronted with a perturbation, PD 

participants respond with inadequate responses to correct their posture. The authors 

concluded that PD participants were unable to correct their posture in response to 

situational changes and levodopa medication was unable to improve this ability to adapt 

(Horak, Nutt, & Nashner, 1992). Therefore, individuals with PD demonstrate increased 

postural sway and an inability to adapt motor programs in response situational 

disturbances, which leads to postural instability. 

In addition to the postural instability experienced, gait impairments are also a 

central cause of falls in individuals with PD (Bloem et al., 2001). Individuals with PD 

normally display a decrease in stride length and gait speed during straight line walking, 
i 

which are considered to be manifestations of hypokinesia (Morris, Iansek, Matyas, & 

Summers, 1996; Rogers, 1996). Step-to-step variability is another common characteristic 

of gait observed in individuals with PD but more likely the result of testing times during 

the medication cycle and not hypokineisa (Morris et al., 1996). 

Another area of gait that is compromised in individuals with PD is gait initiation. 

Gait initiation is a difficult aspect of gait as it places considerable demand on postural 

3 



control to transition from a steady stance to a dynamic situation of walking, and requires 

the COM to move away from the centre of the BOS. It also requires the BOS to become 

narrower when walking begins (Martin et al., 2002). In general, individuals with PD 

exhibit a decreased step length and velocity when initiating gait (from standing to 

walking) compared to participants (Martin et al., 2002; Rosin, Topka, & Dichgans, 1997; 

Vaugoyeau, Viallet, Mesure, & Massion, 2003). In addition, there is agreement that PD 

participants spend more time in the postural phase compared to the locomotor phase of 

gait initiation (Rosin et al., 1997; Vaugoyeau et al., 2003), as well as exhibiting a smaller 

centre of pressure to COM distance during the locomotor phase (Hass, Waddell, Fleming, 

Juncos, & Gregor, 2005). The author of these studies concluded that individuals with PD 

appear to emphasize postural stability by ensuring that they remain stable rather than 

generating forward momentum to initiate their gait (Hass et al., 2005; Hass, Waddell, 

Wolf, Juncos, & Gregor, 2008; Martin et al., 2002; Rosin et al., 1997; Vaugoyeau et al., 

2003). Therefore, individuals with PD are more concerned with remaining stable than 

being efficient in gait initiation, as the latter poses a significant threat to their stability. 

Turning is also a difficult task for more than 50% of individuals with PD and falls 

commonly occur during turning (Bloem et al., 2001). Turning has been evaluated in 

several different ways to determine how individuals with PD turn differently than their 

healthy, age-matched peers. In a study by Mak et al. (2008), while evaluating PD 

participant's ability to turn suddenly, the onset time of response in body segments and the 

step width of the subsequent steps were measured while completing the turn. It was found 

that individuals with PD had later onset times for foot displacement and larger intervals 

of time between body COM and lateral foot displacement. Similarly, Huxham and 
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colleagues evaluated spatiotemporal characteristics of turning and found that individuals 

with PD did not turn as much as their peers when instructed to turn 60° or 120°. PD 

participants also used more steps to complete the turn as they severely reduced their 

stride length and showed significant temporal differences that suggest the timing control 

is impaired (Huxham, Baker, Morris, & Iansek, 2008). From these studies, it is clear that 

turning, in addition to normal walking and initiating gait, is a difficult aspect of everyday 

movement that can severely limit individuals with PD. 

Interventions to Counteract Gait Impairments 

The gait deficits observed during straight line walking, gait initiation and turning 

pose a significant problem to the stability of individuals with PD. Previous studies have 

addressed walking (Frazzitta, Maestri, Uccellini, Bertotti, & Abelli, 2009; Herman, 

Giladi, Gruendlinger, & Hausdorff, 2007; Pohl, Rockstroh, Ruckriem, Mrass, & 

Mehrholz, 2003; Protas et al., 2005) and gait initiation (Jobges et al., 2004) impairments 

through various interventions. For example, Protas et al. (2005) had PD participants 

undergo gait training that included forward, backward and sideways walking on a 

treadmill. After eight weeks of training, they found an improvement in measures such as 

velocity, and balance. Similarly, Jobges et al. (2004) trained compensatory stepping in 

reaction to a perturbation in individuals with PD and found that compensatory step length, 

and step time improved as well as during voluntary gait initiation. It is not surprising that 

when individuals with PD undergo gait training, improvements in their gait are observed. 

However, these improvements require a significant amount of time spent in intensive 

training as well as access to trainers and equipment in order to receive the benefits. 
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Therefore, it is important to investigate less intensive and less expensive methods of 

counteracting the gait deficiencies observed. 

Other interventions to counteract the common gait impairments found in 

individuals with PD involve external sensory cues. Verbal cues that instruct participants 

to "take a big step" (Behrman, Teitelbaum, & Cauraugh, 1998) and auditory cues such as 

a beep (Thaut, 1996) have been found to be beneficial for gait parameters such as stride 

length, velocity and cadence. Auditory cues were also used to improve the time to turn 

180° in individuals with freezing of gait (Nieuwboer et al., 2009). Visual cues, such as 

step targets, have received the greatest consideration as a method to enhance motor 

performance during postural control (Vaugoyeau, Viel, Assaiante, Amblard, & Azulay, 

2007) and gait (Almeida et al., 2005; Keijsers, Admiraal, Cools, Bloem, & Gielen, 2005; 

Lewis, Byblow, & Walt, 2000; Morris, Iansek, Matyas, & Summers, 1994; Morris et al., 

1996) studies. However, using visual cues to overcome gait deficits require visual cues to 

be available at all times and it may not be possible to place horizontal lines everywhere 

that an individual may walk. More importantly, visual cues such as ground lines require 

individuals to constantly attend to the lines in order to improve gait parameters, and this 

may not be safe as the individuals are no longer paying attention to their surroundings. 

In addition to the lack of practical applicability of visual cues, the efficacy of 

visual feedback declines as individuals with PD age. This was demonstrated in a study 

where PD participants were required to point to a remembered target in complete 

darkness and with a light attached to their index finger. Results of this study indicated 

that in addition to large constant and variable errors in both conditions of PD participants 

compared to healthy control participants, they showed an increase in the variable error 
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difference between the two conditions as a function of severity. The authors concluded 

that the use of visual feedback as a way to bypass the defective basal ganglia is no longer 

helpful as the disease progresses in severity (Keijsers et al., 2005). Similarly, in a study 

investigating the effect of age on postural control, it was found that vision plays a very 

important role in the maintenance of postural control in older adults. However, vision 

operates slowly so that if an older individual loses their balance and is relying on 

visually-guided postural reflexes, a fall may not be avoidable (Hytonen, Pyykko, Aalto, 

& Starck, 1993). Therefore, it is of great importance to explore alternative methods to 

visual cues in order to maintain or improve daily function for individuals with PD. 

Furthermore, instead of finding methods to bypass the defective basal ganglia by 

way of visual or auditory cues, this study will explore a potential underlying cause of the 

postural instability and gait deficiencies experienced by investigating the proprioceptive 

deficits observed in individuals with PD. 

Causes of Postural Instability and Gait Impairments: An Implication towards 

Proprioception 

Many sources have been identified as to the cause of the movement performance 

deficits in PD, including abnormal postural strategies (Beckley, Bloem, van Dijk, Roos, 

& Remler, 1991; Horak et al., 1992) and postural reflexes (Traub, Rothwell, & Marsden, 

1980); gait abnormalities (Morris et al., 1996; Rogers, 1996) and reduced muscular 

strength (Horak, Schupert, Mirka, A., 1989). Yet another factor has been suggested as a 

cause for postural instability. Specifically involving the proprioceptors and the 

integration of kinaesthetic information, it has been suggested that individuals with PD 
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may have a proprioceptive deficit (Bloem, 1992). This idea has been confirmed by 

several studies that investigated proprioceptive impairments found in individuals with PD 

(Jobst, Melnick, Byl, Dowling, & Aminoff, 1997; Klockgether & Dichgans, 1994; 

Konczak, Krawczewski, Tuite, & Maschke, 2007; Moore, 1987; Zia, Cody, & O'Boyle, 

2000). For example, it was found that when compared to healthy controls, PD patients 

were less able to locate a target outside their body without vision yet performed just as 

well as healthy controls on all other sensory evaluations (Jobst et al., 1997). Similarly, it 

was found that peripheral afferent feedback is significantly impaired in people with PD. 

This was clearly demonstrated when PD patients consistently underestimated the 

movement targets when vision was not available compared to age-matched controls 

(Klockgether & Dichgans, 1994). Using muscle vibration, PD patients demonstrated 

reduced movement errors during voluntary wrist and ankle movements supporting the 

notion that a general impairment of proprioceptive inputs (Khudados, Cody, & O'Boyle, 

1999; Rickards & Cody, 1997). 

Proprioceptive deficits have also been found to affect postural control in PD. In a 

study conducted by Vaugoyeau et al. (2007), the somatosensory system was isolated by 

manipulating the vestibular system with undetectable sinusoidal oscillations and the 

visual system with the individual's eyes closed. They found that when PD participants 

were relying on the cutaneous sensory sources for information, they were unable to 

maintain the vertical posture of the head and trunk. These results demonstrate that 

although the somatosensory system has been found to provide enough information to 

control posture in healthy individuals, it is not enough for individuals with PD 

(Vaugoyeau et al., 2007). Similarly, the proprioceptive deficits have also been found to 
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affect various temporal parameters of gait such as time spent in double limb support, 

When participants closed their eyes and were relying primarily on proprioceptive inputs 

to guide their walking, PD participants spent more time in double limb support (Almeida 

et al., 2005). Since these proprioceptive deficits exist in individuals with PD and can lead 

to postural instability and gait impairments, it is important to conduct further research to 

understand how proprioceptive feedback can modulate postural control and gait. 

However, it is not definitively known if the difficulty lies in defective sensory 

receptors, the transmission of the sensory information or in the central processing of the 

sensory input. Studies have found a sensory impairment of two-point discrimination and 

static joint position sense which would implicate defective sensory receptors (Schneider, 

Diamond, & Markham, 1987; Zia et al., 2000). As well, Pratorius et al. (2003) conducted 

a study investigating the sensitivity of the sole of the foot in individuals with PD. They 

found that PD patients have significantly higher thresholds of sensitivity, and thus PD 

patients require an amplified stimulus to overcome the increased threshold. They also 

found that relationship between severity and threshold where the more severely affected 

patient, the more increased the sensitivity threshold (Pratorius, Kimmeskamp, & Milani, 

2003). In accordance with this, Dietz et al. (1998) found that individuals with PD exhibit 

reduced load sensitivity and therefore, an increased threshold in the lower leg receptors 

which may also contribute to the movement deficits found in PD. If the deficit lies solely 

in the sensory receptors themselves, then an increase in stimulus intensity should be able 

to overcome the defective sensory receptors that may be responsible for the 

proprioceptive deficit, as suggested in previous research (Demirci, Grill, McShane, & 

Hallett, 1997; Jobst et al., 1997). However, it is also possible that a greater stimulus 
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actually may not do anything to improve receptor function or it does influence the 

sensory receptors but in a negative fashion that adds to the impairments observed. 

Despite the previous studies that suggest the impairment lies in the sensory 

receptors themselves, the majority of research findings strongly lean toward the notion 

that the proprioceptive impairment is of a central processing deficit as proposed by 

Delwaide (1993) and Seiss et al. (2003) both found evidence that muscle spindle 

sensitivity is normal in individuals with PD and led to the conclusion that the 

proprioceptive impairment is in the central processing of the sensory information. 

However, it has not been determined which area of the central nervous system is 

responsible for the "central processing impairment" theory. Cortical areas such as the 

supplementary motor area (SMA) have been implicated as a possible location for the 

proprioceptive impairment because the effect of dopamineric medication on step length 

and step accuracy varied across participants. The authors reasoned that the effect of 

medication should have been relatively equivalent across participants, if the basal ganglia 

are primarily responsible for the proprioceptive-motor deficit (Jacobs & Horak, 2006). 

Likewise, in a study by Mongeon et al. (2009), the variability between PD participants in 

the accuracy of a reaching task due to dopaminergic medication also led the authors to 

conclude that the dysfunction of the basal ganglia due to loss of dopamine is not 

responsible for the impaired processing of proprioceptive information. Thus, it is possible 

that the sensory processing impairment found in individuals with PD lies within higher 

brain structures, such as the supplementary motor area. 

Yet the majority of the research indicates that the deficit lies in subcortical areas. 

For example, the impairment may lie at the spinal level, as PD patients have significantly 
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reduced level of intracortical inhibition during static and passive conditions, as subjects 

performed flexion and extension movements of the wrist (Lewis & Byblow, 2002). 

However, most of the research has implicated the dysfunctional basal ganglia as the 

location for the proprioceptive processing impairment (Almeida et al., 2005; Demirci et 

al., 1997; Konczak et al., 2007; Labyt et al., 2003; Maschke, Gomez, Tuite, & Konczak, 

2003; Schrader et al., 2008; Tamburin et al., 2003; Valkovic, Krafczyk, & Botzel, 2006). 

Maschke et al. (2003) investigated the contributions of the cerebellum and the basal 

ganglia to sensory processing by comparing individuals with PD to participants with 

cerebellar degeneration. They found that only PD participants, but not participants with 

cerebellar deficits, demonstrated a kinaesthetic impairment and this impairment was 

correlated to the severity of the disease. The authors concluded that an intact cerebro-

basal ganglia loop is needed for kinaesthesia awareness and individuals with PD are 

lacking this intact loop. This has been corroborated with evidence from TMS studies 

which found a lack of motor evoked potentials induced by muscle vibration in the 

forearm in PD (compared to a group of healthy and Multiple System Atrophy 

participants). The authors suggested that this may demonstrate reduced excitability of the 

intracortical inhibitory pathways which reflects a change in the processing of 

proprioceptive information (Schrader et al., 2008; Tamburin et al., 2003). Positron 

emission tomography scans have also identified a reduced activation of the basal ganglia 

in individuals with PD (in contrast to healthy controls) when continuous vibration was 

applied to the index finger (Boecker et al., 1999). 

Researchers have theorized that the basal ganglia may play a role in sensorimotor 

integration whereby sensory input is integrated to determine a motor command or 
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program (Abbruzzese & Berardelli, 2003). Schneider et al. (1986) also suggested that the 

basal ganglia assesses and directs sensory inputs when transmitting the message to other 

areas of the brain (Schneider, Diamond, & Markham, 1986). Since the basal ganglia are 

no longer able to "gate" sensory inputs appropriately, the processing deficit has 

manifested itself various ways such as the scaling of motor output (Demirci et al., 1997; 

Labyt et al., 2003; Tamburin et al., 2003; Valkovic et al., 2006) and a possible delay of 

motor programming (Labyt et al., 2003). For example, Demirci (1997) found that PD 

patients perceive distances to be shorter than they actually are when they are using only 

proprioception to guide them, thus exhibiting a proprioceptive deficit. Yet in addition to 

this deficit, it is suggested that individuals with PD have reduced corollary discharge or 

"efference copy", where PD patients think they are reaching a target, but are actually 

undershooting the target as they are unable to recognize a discrepancy between their 

intended movement and the actual movement itself. The error is only recognized when 

PD patients are able to visually see the error in their results. Thus, there is an in ability to 

appropriately scale motor responses due to the abnormal sensory information being sent 

from the basal ganglia (Demirci et al., 1997). Similarly, Labyt et al. (2003) found that 

there is a delay in the response pattern in the regions contralateral to which side the 

movement was being performed during EEG recordings for individuals with PD. They 

attributed this delay to the inability of the basal ganglia to deliver correct sensory 

information to cortical areas (Labyt et al., 2003). Both of these deficits provide a possible 

cause for the movement deficits observed in PD. The over-all reduced sensory input to 

influence the original motor command, and the mismatch of the reduced efferency copy 

and peripheral feedback may lead to hypokinetic movements such as reduced step length 
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(Demirci et al., 1997). Similarly, the bradykinetic movements may be a product of the 

delay in motor programming due to the abnormal sensory input from the basal ganglia to 

the motor cortices. 

From these past studies, it is clear that the majority of research investigating the 

underlying cause of the proprioceptive deficit believe the impairment lies in the central 

processing of sensory information, and more specifically in the basal ganglia. If this 

theory is correct, then it may be possible to improve the amount of sensory information 

being received by the basal ganglia, which in turn, can increase the amount of sensory 

information the basal ganglia sends to the various cortical areas that use the sensory 

information to guide movement. Thus, the focus of this study is to determine if increased 

sensory stimulation is able to influence the various postural and gait impairments found 

in individuals with PD. If the impairment is due to reduced sensory information being 

sent and therefore received by central structures, then providing increased sensory 

stimulation should be able to overcome the sensorimotor integration deficit. To underline 

the importance of this investigation, Almeida et al. (2005) examined the influence of 

visual and proprioceptive inputs while moving toward a target. They found that 

individuals with PD significantly increased the time spent in double limb support when 

relying primarily on proprioception to guide them. The authors suggested that PD 

subjects might have been attempting to improve the amount of sensory feedback 

sampling, so as to improve their proprioceptive information being provided as they 

walked. These results demonstrate the importance of improving the sample of sensory 

feedback which may be necessary for individuals with PD to overcome their 

proprioceptive impairments. A possible method of providing increased sensory 
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stimulation and proprioceptive sampling for PD patients during locomotion is by way of 

mechanical facilitation of the plantar surface of the foot. 

Sensory Receptors and Mechanical Facilitation 

Peripheral afferents, such as mechanoreceptors and proprioceptors provide 

important information to allow for modulation of gait. Specifically, recent research has 

shown that mechanoreceptors play an important role in postural control and gait. In a 

study by Johansson et al. (1980), mechanoreceptors were found to be able to detect 

position, force, velocity and acceleration of a mechanical disturbance to the skin in 

healthy adults. Mechanoreceptors have also been found to play a significant role in 

postural control when looking specifically at plantar cutaneous mechanoreceptors. Perry 

et al. (2000) investigated the effect of balance perturbations when the foot soles of 

healthy young adults had been hypothermically anaesthetized. They found there was a 

direction specific effect of perturbation when the feet were cooled. For example, when 

individuals were forced to take a backward step, the degree to which the COM moved 

toward the posterior edge of the BOS increased when the feet were cooled. From this, the 

authors suggested that plantar cutaneous mechanoreceptors provide information that 

senses the relationship between the COM and the limits of stability of the BOS allowing 

for an internal awareness of a person's stability limits (Perry, Mcllroy, & Maki, 2000). 

Similarly, Meyer et al. (2004) suggested that plantar cutaneous afferents provide 

feedback such as production of ankle torque, information on weight transfer and limb 

loading as well as characteristics of the support surface. This has been demonstrated in a 

study where individuals with peripheral neuropathy demonstrated impaired balance, as 
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evidenced by increased postural sway in the anterior-posterior directions (Simmons, 

Richardson, & Pozos, 1997). 

The importance of sensory feedback from mechanoreceptors is also observed 

during gait in healthy individuals. A study investigated the relationship between tactile 

sensitivity and centre of pressure (COP) while walking found that individuals with a 

higher sensitivity to stimulation on the heel had higher peak pressures on the heel just 

prior to the push-off phase of gait. Thus, the individuals that had an increased sensitivity 

in the heel moved their centre of pressure to that area. The authors concluded that sensory 

feedback from the feet plays an integral role in dynamic foot placement and during foot 

contact (Nurse &Nigg, 1999). 

It has also been found that mechanoreceptors located in the feet interact with 

proprioceptors in the leg, even those in the upper leg. Duysens et al. (2008) found that 

vibration to the soles of the feet elicited stretch reflexes in muscle throughout the leg. It 

was demonstrated that mechanical facilitation, by way of vibration, can evoke a response 

from the proprioceptors, which can in turn affect the gait of an individual. This is 

reasonable to expect as various types of sensory receptors work together to provide 

accurate feedback to the central nervous system during locomotion. Thus, it is possible 

that mechanical facilitation of the plantar surface may be able to increase the sensory 

stimulation received to overcome the proprioceptive deficits that impair gait in 

individuals with PD. 

To our knowledge, there have only been three studies that investigated the use of 

cutaneous cues to gait parameters in individuals with PD. In a study by Burleigh-Jacobs 

et al. (1997), the effect of extraneous cues (by way of a pulse on the hand or earlobe) on 
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anticipatory postural adjustments of individuals with PD was investigated. They used 

centre of pressure (COP) and ground reaction forces (GRF) to measure various temporal 

and kinematic variables. It was found that the cutaneous cue improved step initiation, 

velocity and reaction times, similar to the effect of levodopa administration, when PD 

participants underwent a backward surface translation. The authors suggested that the 

external cue may have been a replacement for a dopaminergic influence on voluntary 

movement governed by central processes (Burleigh-Jacobs, Horak, Nutt, & Obeso, 1997). 

Similarly, Dibble et al. (2004) used auditory and cutaneous cues during a gait initiation 

task under temporal constraints. They measured three types of variables: 1) temporal 

variables including reaction time latency, double limb and single limb support durations; 

2) COP variables including lateral and posterior COP displacement and velocity; 3) 

kinematic variables including step length, and velocity of the swing limb. While these 

results are in agreement with the previous study, it was found that the sensory cues had a 

negative effect on displacement of the body and swing limb while initiating gait. 

However, the authors concluded that the cutaneous cue may have had this effect because 

it is not typically used as a "go" signal to initiate movement, unlike auditory cues. The 

authors suggested that individuals with PD may require training with cutaneous cues to 

achieve the same benefits as other sensory cues (Dibble et al., 2004). Another study, 

which is most closely linked to the current study, used insoles that had vibration devices 

inserted at the heel and metatarsal pads so that when pressure is placed on the insoles 

such as when the foot is in contact with the ground, vibration is induced to enhance 

proprioceptive stimulation. Results demonstrated that when the vibration insoles were 

worn, walking speed and stride length increased as well as stride to stride variability 
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improved for individuals with PD (Novak & Novak, 2006). Although these results are 

quite remarkable, due to the nature of the device, participants were unable to be blinded 

to the presence of the vibratory insole, which may have made participants aware of the 

intervention and consequently, changed their gait parameters. As well, this study only 

measured straight-line walking and did not focus on other aspects of gait, such as turning, 

that are difficult for individuals with PD. Similarly, this study used stride to stride 

variability to glean results for stability, but did not use any actual stability measures. Thus, 

this present study will address the effects of cutaneous cues not only on gait initiation but 

other aspects of human gait, such as turning. As well, the lateral stability margin will be 

evaluated with regards to the facilitatory insoles in order to give a direct measure of 

stability. 

In the current study, mechanical facilitation will be provided by way of a 

facilitatory shoe insole that has raised ridge near the perimeter of the sole (Maki, Perry & 

Mcllroy, 2001). The notion of the ridge is to provide increased stimulation of the 

receptors near the edge of the foot when the COM nears the BOS. The use of this ridge 

was developed after participants consistently indicated that they predominantly felt 

stimulation around the edge of their feet during a weight transfer task. These insoles were 

then tested in a balance-testing situation where participants were required to react to an 

external perturbation (Maki, Perry, Norrie, & Mcllroy, 1999). The facilitatory insoles 

reduced the amount of steps necessary to recover from the perturbation in healthy, older 

adults. The long-term use of the facilitatory insole was then evaluated in a healthy, older 

population. It was found that after twelve weeks of consistently wearing the facilitatory 

insoles, lateral stability improved while participants walked over uneven terrain as well 
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as reducing the fall rate of falls in elderly participants. These changes reduced the 

likelihood that the COM would venture outside the BOS, thus reducing the likelihood of 

a fall occurring (Perry, Radtke, Mcllroy, Fernie, & Maki, 2008). 

From these results, it was thought that the facilitatory insoles would provide the 

increased sensory stimulation necessary to influence gait impairments in PD. We 

conducted a pilot study using these facilitatory insoles in individuals with PD. This study 

required PD participants and healthy, age-matched controls to walk in a straight line 

wearing the facilitatory insoles compared to walking without the insoles. The results 

demonstrated muscle activation timing of the tibialis anterior became more normalized to 

healthy participants during heel strike phase of gait while wearing the facilitatory insoles, 

which allowed for a normal heel-to-toe pattern of gait. In conjunction with this, there was 

anecdotal evidence from the participants that they felt they could benefit from these 

insoles. However, no other noteworthy improvements in gait parameters such as velocity 

and step length were displayed (Jenkins et al., 2009). It is possible that these insoles may 

only have an effect on gait parameters when the individual's balance is being disturbed. 

Therefore, it is essential to investigate the possible effect of these facilitatory insoles on 

the gait of individuals with PD when their sense of balance is being tested such as in 

instance of gait initiation, turning and fast paced gait. 

A Balance-Disturbing Situation: The Timed Up-and-Go Task 

The Timed Up-and-Go (TUG) task requires individuals to stand up from a chair, 

walk to a designated spot at a distance of three metres, turn around at that spot, walk back 

to the chair and sit down. This entire process is timed and total duration of the activity is 
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the common measure. The TUG task is a clinical tool that allows for assessment of 

mobility and balance, commonly used to assess older individuals (Hall, Williams, Senior, 

Goldswain, & Criddle, 2000; Podsiadlo & Richardson, 1991) and also has been found to 

be a good predictor of falls in older adults (Shumway-Cook, Brauer, & Woollacott, 2000). 

The TUG task has also been used widely in special populations such as PD (Brusse, 

Zimdars, Zalewski, & Steffen, 2005; Matinolli et al., 2009; Sage & Almeida, 2009; Stack, 

Jupp, & Ashburn, 2004) and has been found to be highly correlated with the Unified 

Parkinson's Disease Rating Scale (UPDRS), an assessment to determine disease severity 

(Martinez-Martin, Fontan, Frades Payo, & Petidier, 2000). Morris et al. (2001) evaluated 

the TUG test and found it to be a reliable and valid measurement tool to detect changes in 

performance according to dopaminergic medication use as well as differences in 

performance between individuals with PD and those without PD. 

The TUG task will be used in the current study to evaluate the effectiveness of the 

facilitatory insole. This task was chosen as it incorporates various phases of gait that are 

challenging to individuals with PD as well as being functionally relevant to every day 

movements. However, in previous research, the TUG task has never been broken down 

into the separate phases of gait initiation, straight-line walking and turning. The current 

study will separate the modified TUG task into these phases in analysis and compare the 

results to previous research that has focussed independently on the three areas of gait 

initiation, turning and walking. 

The Role of Attention 

In previous research, individuals with PD have been found to have difficulty 
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multi-tasking. Cognitive and motor tasks have been found to have a detrimental effect on 

postural stability, evidenced by an increase in centre of pressure movement during stance 

(Marchese, Bove, & Abbruzzese, 2003). This also occurs when given a cognitive task to 

complete concurrently with walking, PD participants have been shown to increase their 

gait variability which indicates less stability (Hausdorff, Balash, & Giladi, 2003). This 

effect has also been demonstrated with a secondary motor task while walking, where they 

give greater priority to the secondary task and not to their walking. For example, when 

given a tray with glasses on it, individuals with PD will attend to the tray with glasses and 

marked declines in velocity and stride length are observed (Bond & Morris, 2000). The 

authors of these studies suggest that individuals with PD have reduced attentional 

capacities and therefore, cannot attend to both tasks and perform them properly (Bond & 

Morris, 2000; Hausdorff et al., 2003; Marchese et al., 2003). Furthering this idea, Bloem 

found that PD participants prioritize incorrectly and put more attention on the concurrent 

task (whether cognitive or motor) or try to attend to both equally, which ultimately leads 

to instability (Bloem, Grimbergen, van Dijk, & Munneke, 2006). From these studies, it is 

clear that individuals with PD have difficulty attending to multiple tasks and as a 

consequence, their gait and stability suffer. However, this field of research has yet to use 

a secondary task paradigm, whether it is cognitive or motor, to evaluate if the cause of 

gait deficits observed are truly attentional or if an underlying cause such as a 

proprioceptive deficit is to blame. 

The current study will use a secondary motor task of carrying a tray with glasses 

to address whether the possible improvements found in gait parameters while performing 

the modified TUG task, are due to the facilitatory insoles drawing the individuals 
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attention to their feet, or whether the improvements can be attributed to the increased 

proprioceptive stimulation provided by the facilitatory insoles. Presumably, if 

improvements in gait are found when the task is at its most complex (carrying the tray 

with glasses), then the improvements are not due to attention but rather the improved 

proprioceptive input. 

Thesis Objectives 

Postural instability and gait impairments pose a significant threat to the daily lives 

of individuals with PD. Various interventions, such as gait training and visual cues, have 

been shown to be beneficial in improving these deficits, however these studies are 

disregarding a very possible and significant underlying cause. The purpose of the current 

thesis is to determine whether proprioception is a possible cause of postural instability 

and gait impairments in PD as well as to develop a possible intervention to be used by 

individuals with PD to counteract gait impairments. This will be determined in the 

following three chapters by evaluating the effectiveness of a balance enhancing insole, 

which increases plantar stimulation and thus proprioceptive input, on individuals with PD 

while their balance is being tested during a modified TUG task. 

The first chapter focuses on the initial effect of the facilitatory insoles on PD and 

healthy control participants. Since previous research has shown improvements in gait 

parameters due to increased mechanical stimulation in individuals with PD (Burleigh-

Jacobs et al., 1997; Dibble et al., 2004; Novak & Novak, 2006), it is expected that these 

facilitatory insoles will also improve the stability and gait impairments in individuals 

with PD. The influence of the facilitatory insoles will be evaluated during a modified 
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TUG task that provides aspects of gait that are difficult for individuals with PD, and are 

also encountered in everyday life. The purpose of this study is: 1) to determine whether 

the modified TUG task is an appropriate task to challenge the gait of healthy control and 

PD , thus allowing the facilitatory insoles to influence lateral stability. If a detrioration in 

gait and stability parameters are found in both populations during the various conditions 

of the modified TUG task, then the task would appear to have challenged the gait of the 

participants. Following this, if a change is observed in these same measures when the 

facilitatory insoles are worn, this would indicate that the modified TUG task is able to 

measure these changes and thus, is able to effectively evaluate the influence of the 

facilitatory insole; 2) to determine whether the facilitatory insoles are able to influence 

specific measures pertaining to gait initiation, turning and walking; 3) to develop which 

measures to use to effectively assess the influence of the facilitatory insoles over a six 

week time period; and 4) to address the role of attention and proprioception in the 

possible changes in gait due to the facilitatory insoles. 

The second study introduces the facilitatory insoles into a six-week exercise 

rehabilitation program for individuals with PD. Various studies have shown the 

effectiveness of training to improve various gait parameters for individuals with PD. 

Similarly, the facilitatory insoles were effective for elderly individuals when studied over 

a twelve week period. It is expected that the facilitatory insoles will continue to 

demonstrate beneficial effects, or even have added benefits, on stability and gait 

parameters when used over a long-term period. Thus, the purpose of the second study is 

to allow for an evaluation of the effectiveness of the facilitatory insoles as a longitudinal 

intervention in the PD population, using the measures established in the first study. 
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Finally, the last chapter summarizes the results from both studies and provides a 

synthesis of the results to evaluate: 1) the effectiveness of the facilitatory insoles when 

first encountered and long-term use; 2) whether the proprioceptive deficits are a possible 

cause for the gait impairments found in individuals; and 3) whether the proprioceptive 

deficit lies in the sensory receptors or is an impairment in central processing of the 

sensory information. 
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CHAPTER 2 

USING A DUAL TASK TO EVALUATE THE INFLUENCE OF A 
FACILITATORY INSOLE ON GAIT IN PARKINSON'S DISEASE 

Abstract 

Previous research has suggested that the possible deficits in proprioception may 

contribute to the stability and gait impairments found in PD. The purpose of this study 

was to determine whether augmenting proprioceptive feedback of the plantar surface by 

way of a facilitatory insole can influence stability and gait measures in this population. 

This study also addressed the role of attention and proprioception on gait within this 

population. Fifteen PD participants and fifteen healthy controls completed a modified 

Timed-Up and Go (TUG) task which required them to rise from a chair, walk to a marked 

spot three metres away, turn around and walk back. Individuals completed this task under 

three conditions: 1) no tray; 2) empty tray; 3) tray with glasses. The task was completed 

with and without the facilitatory insoles. Each of the conditions was randomized and a 

total of thirty trials were completed. Main measures included step length, velocity, base 

of support, time to turn, and lateral stability margin which were collected by a pressure 

sensitive carpet and motion capture system. PD participants took more time to turn during 

the TrayWG condition compared to healthy controls (p<.0001). Similarly, PD 

participants demonstrated a trend where their minimum COM-BOS margin increased 

during the TrayWG condition (F(2,22)= 2.64; p<.0938). During the walk back aspect of 

the modified TUG task, PD participants demonstrated an increase in BOS during the 

TrayWG condition while wearing the facilitatory insoles (p<.0222) and a significant 

difference in the COM-BOS margin range where the COM-BOS margin range increased 
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during the TrayWG condition (p<.0436). Results demonstrated that the secondary motor 

task of carrying a tray with glasses resulted in even more pronounced gait deficits in PD 

participants during the turn, as well as an increase in the COM movement during the walk 

back which suggests that attention plays a key role in the control and maintenance of gait 

parameters. However, proprioception also contributes to gait as PD participants 

demonstrated an increase in their BOS during the TrayWG condition while wearing the 

facilitatory insoles. Participants might have been attempting to improve their stability 

because the facilitatory insoles were a novel stimulus. The modified TUG task and 

measures used in this study were successful in identifying the influence of the facilitatory 

insoles, which warrants further investigation using this task to determine the influence of 

long-term use of the facilitatory insoles on gait and stability impairments in PD. 
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Introduction 

Individuals with PD commonly demonstrate gait deficits that include short, 

shuffling steps with increased step-to-step variability (Hausdorff, Cudkowicz, Firtion, 

Wei, & Goldberger, 1998; Morris et al., 1996; Rogers, 1996). Some studies have 

suggested that a key factor contributing to gait impairments are due to attention where 

gait and postural stability deficits have been found when individuals with PD are 

presented with a secondary cognitive (Hausdorff et al., 2003; Marchese et al., 2003) or 

motor (Bond & Morris, 2000) task. For example, individuals with PD demonstrated an 

even greater stride length and velocity deficit when attending to a tray with glasses while 

walking, which suggests that attention plays an important role in the production and 

maintenance of gait (Bond & Morris, 2000). An argument could be made that the tray 

with glasses blocked vision of the limbs and this is why gait deficits were even more 

pronounced during this condition. However, these same gait deficits were not found when 

participant's carried just a tray. This suggests that vision is not required to guide 

movement of the lower limbs. As such, impaired proprioception in individuals with PD 

may also be implicated as an underlying cause of stability and gait impairments. To 

illustrate this, previous research has argued that individuals with PD demonstrate 

hypometric movements, such as shorter compensatory steps, due to abnormal 

proprioceptive-motor integration (Jacobs & Horak, 2006; Khudados et al., 1999). 

Similarly, Almeida et al. (2005) found that when relying primarily on proprioceptive 

feedback, PD participants demonstrated an increase in their step-to-step variability and 

amount of time spent in double limb support. Although these studies hint to the 

involvement of proprioception in gait deficits, the extent to which it is involved is still 
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unclear. The present study will address both proprioceptive and attentional factors in 

order to investigate the possible proprioceptive deficits as an underlying cause of stability 

and gait impairments in PD. 

Almeida et al. (2005) suggested that deficits including increased gait variability 

and time spent in double support may be a compensatory adaptation that allows 

individuals with PD to augment the amount of sensory feedback being provided as they 

walk. If this is true, then perhaps by improving proprioceptive sampling, postural and gait 

deficits might be improved in individuals with PD. Cutaneous stimulation, as a way to 

improve sensory feedback, has been investigated in some studies involving compensatory 

stepping where a vibrational pulse was delivered to the hand or earlobe. Both studies 

demonstrated improvements in gait initiation parameters (Burleigh-Jacobs, Horak, Nutt, 

& Obeso, 1997; Dibble et al., 2004). These results support further investigation into other 

forms of cutaenous stimulation to improve stability and gait. For instance, plantar 

cutaneous receptors have been found to contribute important information in healthy 

adults during compensatory stepping (Perry et al., 2000) and gait (Eils et al., 2004; Perry, 

Santos, & Patla, 2001). As such, increased stimulation of the plantar cutaneous receptors 

should be investigated in PD. Indeed, Novak et al. (2006) investigated the effect of 

plantar stimulation on gait by way of a pressure-sensitive vibratory insole that induced 

vibrations when feet were in contact with the ground. They found that velocity, stride 

length and stride-to-stride variability improved when the vibration insoles were worn. 

This study demonstrated that with increased plantar stimulation, PD participants were 

able to overcome the proprioceptive deficits to improve their gait. However, this study 

only evaluated the vibratory insoles during straight-line walking, not during other aspects 
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of gait that have been found to be difficult for individuals with PD. Similarly, this study 

only used stride variability as the indicator for improved stability. This leaves a need to 

investigate the effect of plantar stimulation on other aspects of gait such as turning and to 

use more specific measures to evaluate stability. 

The cutaneous stimulation to be explored in the current study will be provided by 

a patented facilitatory insole that provides mechanical stimulation to the edges of the feet, 

or perimeter of the base of support (BOS) (Figure 1) (Maki, Perry & Mcllroy, 2001). 

When a person is leaning, and therefore their COM is nearing their BOS, the raised ridge 

provides additional feedback as to where the edge of the BOS is located. These 

facilitatory insoles have been found to reduce the amount of stepping needed to recover 

from a forward step perturbation as well as to reduce the degree to which the centre of 

pressure (COP) approached the posterior BOS limit for healthy older adults (Maki, Perry, 

Norrie, & Mcllroy, 1999). As well, the long-term use of the insoles was evaluated to 

determine whether improvements would be maintained after a twelve week period. The 

results verified that the facilitatory insole increased the lateral stability margin while 

walking over uneven terrain in healthy, older adults. Thus, the insoles stabilized the 

participants while their balance was being perturbed and they did not habituate to these 

insoles after twelve weeks of wear (Perry, Radtke, Mcllroy, Fernie, & Maki, 2008). 

The facilitatory insoles have been found to be effective in walking environments 

that challenge balance such as walking over uneven terrain. It is important test the 

participants balance in a functionally challenging task that requires individuals to perform 

tasks encountered in everyday life. The Timed Up and Go (TUG) test is a clinical tool 
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that allows for assessment of mobility and balance, commonly used to assess older 

individuals (Hall, Williams, Senior, Goldswain, & Criddle, 2000; Podsiadlo & 

Richardson, 1991)). The TUG test has been used widely in special populations such as 

PD (Brusse, Zimdars, Zalewski, & Steffen, 2005; Matinolli et al., 2009; Sage & Almeida, 

2009; Stack, Jupp, & Ashburn, 2004) and has been found to highly correlate with the 

Unified Parkinson's Disease Rating Scale (UPDRS) (Martinez-Martin, Fontan, Frades 

Payo, & Petidier, 2000). The TUG test was chosen for the current study as it incorporates 

some difficult aspects of movement for individuals with PD, such as gait initiation (Hass, 

Waddell, Fleming, Juncos, & Gregor, 2005; Martin et al., 2002; Rosin, Topka, & 

Dichgans, 1997; Vaugoyeau, Viallet, Mesure, & Massion, 2003), turning (Huxham, 

Baker, Morris, & Iansek, 2008a, 2008b; Mak, Patla, & Hui-Chan, 2008) and fast paced 

walking. It was expected that the modified TUG task will put both healthy and PD 

participants in a balance-challenging situation and that the facilitatory insoles will 

improve the stability of both populations. We also hypothesized that due to the increased 

plantar stimulation to improve proprioceptive feedback, improvements in gait parameters 

will be observed, especially in difficult aspects of gait such as turning and gait initiation. 

In addition to the TUG task, a secondary motor task of carrying a tray with glasses will 

be used. No previous research, that we are aware of, has used a secondary task to 

evaluate other possible causes of postural instability and gait impairments. Therefore, the 

secondary motor task of carrying a tray with glasses will be used in the current study to 

investigate attention as a possible cause for gait impairments. However, if the insoles 

result in any changes to gait then the changes observed may be more related to 

augmentation of the proprioceptive feedback provided by the facilitatory insoles and not 
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due to the attention that the insoles might be drawing to the participant's gait. It was 

expected that the improvement in stability and gait parameters would be evident during 

the tray with glasses condition, as to demonstrate that proprioception, perhaps in 

replacement or in addition to attention, is a cause for the gait impairments commonly 

observed in PD. 

Therefore, the purpose of this study is to: 1) determine whether the modified TUG 

task is able to detect influences of facilitatory insoles on gait initiation, turning and 

straight-line walking in PD and healthy elderly participants; and 2) investigate the role of 

attention in stability and gait impairments. 

Methodology 

Participants 

Fifteen (9 males and 6 female; mean age = 67.06 years; age range 48-84) 

individuals previously diagnosed with Parkinson's disease were recruited from a patient 

database at the Movement Disorders Research and Rehabilitation Centre at Wilfrid 

Laurier University, Canada. Fifteen (5 males and 10 females; mean age = 66.46 years; 

age range 56-78) healthy controls were recruited independently (Table 1). All participants 

gave informed consent and the study was approved by the ethics committee at Wilfrid 

Laurier University which is in accordance with the ethical standards put forth by the Tri 

Council Policy in Canada. All participants were able stand and walk independent of any 

assistive devices. All participants were free from any primary sensory disorders, 

neurological disease other than PD, joint replacement or disease and significant visual 

impairment. PD participants reported to the laboratory while ON their dopaminergic 
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medication. Although there are differences between various dopaminergic medication, 

they generally begin to work immediately (within fifteen minutes) and peak dopamine 

levels are maintained for approximately two hours. Participants performed the required 

tasks in this study during this optimal dose period so they would be at their highest 

functioning level. PD participants were evaluated using the motor examination section of 

the Unified Parkinson's Disease Rating Scale to determine severity of their disease. All 

subjects underwent a sensory evaluation using monofilaments (Semmes-Weinstein, North 

Coast Medical Inc., Morgan Hill, CA, U.S.A.) to determine sensory thresholds of the 

plantar surface of the right and left feet at four locations including great toe, head of first 

metatarsal, head of fifth metatarsal and the centre of the heel. Participants were asked to 

close their eyes and indicate when they felt pressure applied to the plantar surfaces at the 

one of the four locations. The lowest gage of monofilament indicated by the participants 

was recorded. 

Equipment 

All participants completed the modified TUG task on a data-collecting, pressure-

sensitive carpet (GAITRite®, CIR Systems, Inc., Clifton, NJ, USA). This device collects 

data by capturing the geometry and relative arrangement of each footfall as a function of 

time and relays temporal and spatial parameters such as velocity, step length, double limb 

support, stride length and base of support (BOS). 

Whole body kinematics, to measure the stability margin, were tracked using a 

wireless optoelectronic recording system (OptoTrak; Northern Digital Inc., Waterloo, 

Ontario, Canada) at a sampling frequency of 60 Hz. Participants were set up with a 
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twenty one infrared light emitting diodes (IREDs) placed on the following landmarks: 5th 

metatarsal of right and left feet (which indicated the edge of the BOS for each foot), left 

and right anterior talofibular joint, left and right patella, left and right anterior superior 

iliac spine, zyphoid process, left and right acromion, left and right lateral epicondyle of 

the humerus and left and right styloid process of the ulna. Three markers were also 

located on the forehead, stabilized by the inside structure of a hard hat to prevent 

movement of the markers. Two markers were also placed on the posterior side of the left 

and right acromion, as well as one marker placed on T12. These markers were to be used 

in place the left and right acromion markers placed anteriorly and the zyphoid process 

marker, respectively, as signals from these markers went missing due to the set up of 

cameras and nature of the task to be performed. The markers located on the legs, trunk 

and head provided data for the cente of mass (COM) to be calculated and analyzed. 

The set up of the modified TUG equipment consisted of a standard chair 

(Allseating Ltd., Model # 3307) with arm rests placed at the beginning of the twelve foot 

GAITRite® mat, facing the direction of the mat. Three metres away from the chair, along 

the runway of the mat was a counter that provided the turn-around point for participants, 

as well as a place for the tray to rest. The tray was placed behind a curtain structure that 

allowed the tray to be hidden from participants, yet could be pulled through the curtain 

when the participants were completing the task (Figure 2). The purpose of the curtain was 

to hide the tray from the participants as to deter the participants from planning their turn 

around and walk back movements as they approached the counter. This was in order to 

compare the approach to the counter with the walk back aspect of the test to ascertain the 

effect of the tray and tray with glasses conditions. A table was also located beside the 
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chair where the participants started and ended the trial, to allow the participants to place 

the tray on the table before they sat down to complete the trial. 

The dual task paradigm used a tray carrying task while walking. The tray was 

plain, flat and plastic. It measured 36 x 25.5 cm and weighed 0.27 kg. On the tray were 

three crosses, placed in a triangular formation to mark the positioning of the glasses. The 

two crosses at the top were 12 cm from the edge of the tray and the third cross was 18 cm 

from the edge of the tray (Figure 3). The glasses used were identical, clear, empty, plastic 

wine glasses and weighed 0.09 kg. The glasses were 205 mm in height, with a base of 80 

mm. 

Procedure 

PD participants were evaluated using the UPDRS testing to determine severity of 

their disease. Sensory threshold testing was then completed using the Semmes-Weinstein 

monofilaments on four locations of the plantar surface including the great toe, base of the 

first metatarsal, base of the fifth metatarsal and centre of the heel. 

Each participant was then fitted with walking shoes (Rockport World Tour 

Classic Model) with either a blank or patented ribbed shoe insole (Maki, Perry & Mcllroy, 

2001). The order was completed in a randomised fashion, so that half of the participants 

completed the blank insole condition initially, followed by the facilitatory insole 

condition. 

Participants performed the modified TUG task with blank and facilitatory insoles 

with three randomized conditions: 1) normal TUG task (No Tray); 2) TUG task while 
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carrying an empty tray (Tray); 3) TUG task while carrying a tray with empty glasses on it 

(TrayWG). Participants were instructed to sit in the chair located at the beginning of the 

GaitRite® mat. Participants were instructed to rise from the chair, walk to the three metre 

mark, and look behind the curtain to see whether a tray or tray with glasses was sitting 

behind the curtain. If there was no tray, the participants were instructed to turn 180 

degrees, walk back to the chair and sit down. If a tray or tray with glasses was present, 

the participants were instructed to pick up the tray by the lateral edges and slid the tray 

through the curtain. Once the tray was free from the curtain, the participants were to turn 

180 degrees to their left, walk back to the chair, place the tray on the table and sit down 

in the chair. The participants were instructed to complete the modified TUG task as 

quickly as they could, but when the glasses were present, participants were to complete 

the task as fast as they could without tipping the glasses over. This was to ensure that the 

individuals were attending to the tray with glasses task. Each participant performed five 

trials of each condition with both blank and facilitatory insoles, for a total of thirty trials. 

Trials were discarded from analysis if the individual dropped all three glasses at any point 

during the trial for the TrayWG condition. If individuals dropped one or two glasses, the 

trials were kept in the analysis because the secondary task would still be effective if at 

least one glass was present. 

Analysis 

Data was retrieved from the GAITRite® mat and trials were divided into 

approach toward the counter, turn around and walk back. Gait initiation data were 

retrieved by taking the footfalls from stand up from the chair to the first step after the 
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individual stood up. Measures used for gait initiation included: sit-to-walk time which 

was the time to from the onset of GAITRite sensor activation to the heel strike of the first 

step (also identified as the first sensor activated by heel contact); length of the first step 

taken after stand up from the chair. Footfalls from after stand up to the last footfall in 

front of the counter were considered the approach phase. Footfalls that were included in 

the turn occurred after the individual had stopped at the counter and started their 180 

degree turn. The turn ended when the first footfall that was in the direction of the chair 

began. Measures used for the turn included time-to-turn and number of steps to turn. 

Footfalls that were included in the walk back phase of the task included the first footfall 

in the direction of the chair after the turn until the footfall that preceded the turn around 

to sit in the chair. The measures used for the approach and the walk back phases included 

velocity, step length, stride length, double support time, and base of support. 

Using data from the OptoTrak system, three COM-BOS measurements were 

measured (Figure 4). The COM was calculated using a segmental model with data from 

the head, trunk and leg markers. The edge of the BOS was calculated using the markers 

located on the 5th metatarsal on each foot. The minimum stability margin is the smallest 

distance that the COM approached the edge of the lateral BOS during a footfall. If there 

is a significant increase in this variable, it could indicate greater stability because the 

COM is better controlled to ensure that it does not approach the edge of the BOS. The 

maximum stability margin is the greatest distance the COM withdrew from the edge of 

the BOS during a footfall. If this significantly increases, the individual's COM is farther 

away from the edge of the BOS could indicate greater stability. However, it could also 

indicate less stability if the COM deviates too far from the edge of the lateral BOS, it is 
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closer to the edge of the BOS for the other foot. The COM-BOS range is the difference 

between the minimum COM-BOS margin and the maximum COM-BOS margin. This 

variable gives an idea of the COM excursions throughout a footfall. If an increase in the 

COM-BOS range is observed, it could indicate less control of the COM, which is 

allowing for greater COM excursions during the footfall. Thus, it is helpful to consider 

the maximum COM-BOS margin in concert with the COM-BOS range. Due to the nature 

of the task, the data for some participants was incomplete so some trials were discarded 

(see Appendix A for percentage of missing trials for each condition and other analysis 

results). Since the number of trials differed from participant to participant for each 

condition, three of the five trials were analyzed for each participant. The highest and 

lowest trials were discarded to allow for the three trials with median values for the 

variables to be analyzed for each condition. Also, some participants had to be dropped 

from analysis all together due to insufficient data. 

Statistical analysis tests were performed using Statistica. Independent t-tests were 

performed to determine any differences among the PD and Control group for age, height, 

and UPDRS score. The dependent measures were compared across conditions (with-in 

subject) and between groups (PD and control) using a repeated measures ANOVA. A 

Tukey HSD post-hoc test was performed for analysis of all significant findings. 
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Results 

Sensory Threshold 

Analysis of sensory threshold data revealed a main effect of group where PD 

demonstrated a significantly higher sensory threshold than healthy controls for all 

locations on both feet (F(l,28) =7.46; p<.0108) (Figure 2). 

Gait Initiation 

PD participants demonstrated a decreased step length of the first step taken after 

standing up from the chair compared to controls (F(l, 17) = 9.53; p<.0067) (Figure 3). 

PD participants also demonstrated a significantly increased sit-to-walk time compared to 

healthy controls (F(l,16) = 7.40; p<.0151). 

Approach to Counter 

PD participants demonstrated a decreased step length (F (1, 15) = 5.64; p<.0314) 

and velocity (F(l,16)= 5.15; p<.0374) compared to healthy controls in the approach to 

the counter. There were no significant differences between any of the tray conditions or 

the insole conditions for either of the groups. 

Turn 

PD participants exhibited an increased number of steps to turn (F(l,19) = 17.38; 

p<.0005) and time-to-turn (F(l,16) = 13.89; p<.0018) compared to healthy controls. 

These main effects were superceded by a significant two-way interaction of condition and 

group for the number of steps to turn measure (F(2,38) = 3.47; p<.0411). Post hoc 
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analysis revealed that PD participants took more steps to turn during the TrayWG 

condition compared to the No Tray (p<.0001) and healthy controls in all conditions, and 

was even more evident in the TrayWG condition (p<.0001). This two way interaction 

was also mirrored in the time-to-turn variable (F(2,38) = 7.87; p<.0014). Post hoc 

analysis revealed that PD participants took more time-to-turn during the TrayWG 

condition compared to the No Tray and Tray conditions (p<.0001) and compared to 

healthy controls in all conditions but especially in the TrayWG condition (p<.0001) 

(Figure 4). 

Stability Margin during Turn 

Although not significant, PD participants demonstrated a trend where their 

minimum COM-BOS margin increased during the TrayWG condition (F(2,22)= 2.64; 

p<.0938) (Figure 5),however no significant difference or trend was found between the 

blank insole and facilitatory insole conditions. 

Walk Back from Counter 

PD participants demonstrated a decreased step length (F(l,12) - 9.74; p<.0088) 

and velocity (F(l,l 1) = 25.14; p<.0004) compared to healthy controls yet no interaction 

effects between insole or tray conditions were found. Similarly, no main effects or 

interaction effects for variables such as double support time or stride length. No main 

effect was found for the BOS variable, however a three-way interaction between group, 

tray and insole conditions was demonstrated where PD participants demonstrated an 

increase in BOS during the TrayWG condition while wearing the facilitatory insoles 
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(F(2,32) = 4.30; p<.0222) (Figure 6). Post hoc analysis revealed that PD participants 

demonstrated an increase in BOS during the TrayWG condition while wearing the 

facilitatory insoles compared to the Tray (p<.0336) and No Tray (p<.0379) and compared 

to the healthy controls during the TrayWG conditions while wearing the facilitatory 

insoles (p<.0001). 

Stability Margin during Walk Back 

PD participants also demonstrated a trend where their maximum COM-BOS 

increased during the TrayWG condition (F(2,10)=3.43: p<.0732) and a significant 

difference in the COM-BOS margin range where the COM-BOS margin range increased 

during the TrayWG condition (F(2,10)=4.35; p<.0436) (Figure 7). 

Discussion 

This purpose of this study was to determine whether augmenting sensory 

feedback by way of a facilitatory insole could influence stability and gait parameters in 

individuals with PD. This study also sought to develop a functionally relevant task that 

could measure changes in gait to allow for an evaluation of the influence of facilitatory 

insoles on stability and gait parameters. A secondary task was also used to determine the 

contribution of attention to gait and stability impairments in individuals with PD. 

Does mechanical facilitation improve gait parameters? 

A main objective of the current study was to address whether mechanical 

facilitation, by way of the facilitatory insoles, could improve various gait parameters 

deficits observed in the PD population. Indeed, an effect of the facilitatory insoles was 
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found during the walk back phase of the modified TUG task. PD participants 

demonstrated an increased BOS during the TrayWG condition while wearing the 

facilitatory insoles, whereas healthy controls did not change their BOS regardless of 

condition and insole type. This increased BOS may have been an attempt to improve 

stability in response to the facilitatory insole. However, this reaction is not what was 

expected as improvements due to the insoles were hypothesized. Previous research that 

demonstrated improved gait parameters used a vibration stimulus to improve sensory 

feedback. This study found improvements in step length, velocity and step variability 

(Burleigh-Jacobs et al., 1997; Dibble et al., 2004; Novak & Novak, 2006). These 

improvements were expected in the present study as well, however this did not occur. 

Perhaps the facilitatory insoles used in the present study do not provide similar amount of 

stimulation that vibration does, and thus, do not provide enough stimulation in order to 

improve the sensory feedback and influence gait parameters. Similarly, since the 

facilitatory insoles provide mechanical pressure that stimulates the Merkel discs and 

Ruffini endings, whereas vibration stimulates the Meissner's corpuscles and Pacinian 

(Germann, 2005). Thus, the facilitatory insoles may also not provide the same type of 

stimulation as a vibrational stimulus does, which could account for the difference in 

results. It is also possible that different ascending pathways are used to send information 

to the central nervous system. For example, the vibratory insoles use the dorsal column-

medial lamniscal pathway to send information to the somatosensory cortex whereas the 

facilitatory insoles might send information via the spinothalamic tract. In addition to this, 

PD participants in the current study demonstrated an increased sensory threshold 

compared to the healthy control participants so they required an even greater stimulus to 
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overcome the sensory receptor deficit, and then to also provide enough sensory feedback 

to improve gait parameters. The facilitatory insoles appear to provide enough sensory 

feedback to influence various parameters such as BOS but not enough to actually 

improve these parameters. 

It is also possible that the facilitatory insoles acted as another distracter, in 

addition to the tray with glasses condition. Since the facilitatory insoles are a novel 

stimulation, it appears that the insoles influenced the PD participants react in such a way 

that actually led to their gait becoming more unstable. It is possible that more time spent 

with the facilitatory insoles is needed to allow individuals with PD time to adjust to the 

increased sensory stimulation provided by the facilitatory insoles. Since improvements in 

lateral stability due to these facilitatory insoles were found after twelve weeks of wear in 

healthy elderly participants (Perry et al., 2008), it is important to investigate whether 

long-term use of mechanical facilitation can improve stability and gait parameters when 

PD. 

Does the modified TUG task challenge gait? 

The Timed-Up and Go (TUG) task was chosen in the present study as it is a well 

used and documented test of mobility, but also because it incorporates difficult aspects of 

gait for elderly individuals such as initiation, turning and fast walking. The modified 

TUG task was able to draw out the gait deficits normally observed in individuals with PD, 

as the PD participants demonstrated a decreased step length and velocity in the approach 

and walk back aspects of the modified TUG task. These deficits were even more 

pronounced in the gait initiation phase of the modified TUG task as PD participants 

demonstrated a decreased first step length of 20 cm during gait initation. This result is 
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even greater than the 10 cm and 16 cm difference in step length found in previous 

research that evaluated initiation of gait in the PD population (Halliday, 1998; Buckley, 

2008). PD participants also demonstrated an increased number of steps to turn, as well as 

an increased time-to-turn compared to their healthy counterparts. These results are in 

agreement with previous research that has demonstrated gait impairments in walking 

(Morris, 1994; Rogers, 1996), gait initiation (Vaugoyeau, 2003; Rosin, 1997; Martin, 

2002; Haliday, 1998; Buckley, 2008) and turning (Bloem, 2001; Mak, 2008; Huxham, 

2008). Since the modified TUG task was able to draw out gait deficits in PD participants, 

this allows for a situation where the insoles are able to influence stability and gait 

parameters. Thus, it appears that the modified TUG task is a good measure to evaluate 

the potential influence of the facilitatory insoles in individuals with PD. 

How does the secondary attention task influence gait? 

The modified TUG task with the incorporated secondary motor task of carrying a 

tray with glasses was successful in drawing out further gait deficits found in individuals 

with PD, where they demonstrated an increased time-to-turn and number of steps to turn 

during the TrayWG condition. A possible explanation to account for these changes may 

be due to PD participants not having vision of their legs during the TrayWG condition as 

it has been found that vision is consistently used by this population to overcome their 

proprioceptive deficit (Jacobs & Horak, 2006). If the PD participants demonstrated 

further gait deficits in the current study due to loss of vision of their legs, then we would 

have expected to observe these gait deficits during the Tray condition, since vision was 

occluded in this condition as well. However, this did not occur, thus vision of limbs does 
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not appear to play an important role during gait. To account for the gait deficits observed 

during the TrayWG condition, the role of attention must be addressed. In previous 

research, it has been found that when individuals with PD were required to carry a tray 

with glasses, their stride length and velocity severely decreased because they were 

attending to the glasses to ensure they remain upright. The authors suggested this might 

occur due to limited attentional resource capacity in that individuals with PD are unable 

to attend to both motor tasks equally, thus performance on one task suffers (Bond & 

Morris, 2000). It has also been suggested that when walking and presented with a 

secondary task, either motor or cognitive, individuals with PD tend to prioritize the 

secondary task over their walking, and their walking deficits become even greater (Bloem, 

Grimbergen, van Dijk, & Munneke, 2006). This current study agrees and extends the 

previous research as PD participants demonstrated an increased time-to-turn and number 

of steps to turn during the TrayWG condition, where the healthy control participants did 

not demonstrate any changes due to the TrayWG task. Since the PD participants were 

attending to the glasses, they slowed down their turn and took more steps to complete 

their turn, which in effect made their turn more stable as evidenced by an increase in their 

minimum lateral stability margin. From these results, it is clear that the individuals with 

PD have difficulty maintaining normal turn dynamics when a secondary motor task 

requires attention in addition to their walking. It should be kept in mind that holding a 

tray could place additional constraints (such as lack of arm swing) on normal walking 

mechanics. However, this is unlikely since there were differences between the tray and 

tray with glasses conditions such as a decrease in step length and velocity. 
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In addition to the influence of the secondary task on turning, the effect carrying a 

tray with glasses appeared to manifest itself in the walk back phase of the modified TUG 

task. When carrying the tray with glasses, PD participants demonstrated an increase in 

the COM-BOS range. It is possible that these results indicate an improvement in the 

stability of the PD participants as older adults tend to limit the displacement and velocity 

of their COM when put in situations that pose a postural threat, such as being on a high 

platform. This research proposed that the central nervous system applies a tighter control 

on posture in fearful situations to ensure that a greater margin of stability, and thus safety, 

is maintained to ensure that the COM does not fall outside of its BOS (Adkin, Frank, 

Carpenter, & Peysar, 2000, 2002; Brown, 1997; Carpenter, Frank, Adkin, Paton, & 

Allum, 2004). From this research, it would be expected that participants would exhibit a 

greater control over their COM during the TrayWG condition, which would be evidenced 

by an increase in the minimum COM-BOS stability margin. However, the opposite trend 

was observed which may indicate that PD participants did not consider the TrayWG 

condition a threat to their stability and actually allowed their COM greater freedom 

during that condition. Yet, it is unlikely that the PD participants became more confident 

in their stability and did not require greater control over their COM during the TrayWG 

condition compared to the condition that only required them to perform the normal 

modified TUG task that did not include a secondary motor task. It is more likely that 

these results indicate that their walking became less stable when carrying the tray with 

glasses. It appears that the PD participants prioritized the secondary task of carrying the 

tray with glasses and their stability of their walking and turning parameters were 

compromised. 
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However, PD participants also demonstrated an increased BOS while wearing the 

facilitatory insoles, which indicates that attention is not the only contributing factor to the 

gait impairments observed. This effect was found specifically during the TrayWG 

condition..It appears as though when PD participants wore the facilitatory insoles, and 

received increased plantar stimulation, the BOS was influenced even when participants 

were attending to the TrayWG. This suggests that augmentation of proprioception was 

also capable of influencing gait parameters even when attention might have been 

expected to solely influence gait parameters. Thus, the role of attention may not be as 

imperative as had previously been thought and proprioception is an underlying cause of 

gait and stability impairments. 

There are some limitations to this study that should be addressed. Due to the 

length of the carpet and the nature of the task, we were unable to collect enough footfalls 

to adequately calculate gait variability measures. Since gait variability can be used to 

indicate stability, this would have been beneficial data to have in order to corroborate the 

lateral stability measure. As well, due to equipment restraints, kinematic data was not 

ideal and some participants either had to be dropped from analysis altogether, or for 

specific parts of analysis. Thus, it is possible that more participant data could have 

possibly led to significant findings for the maximum and minimum stability margin data. 

Unfortunately, this study was unable to replicate previous findings of the effect of 

a secondary motor task for gait parameters such as step length. Previous research found a 

decrease in stride length and velocity when PD participants completed a normal walking 

task while carrying a tray with glasses (Bond & Morris, 2000). These same results were 

expected for the current study yet this did not occur as PD participants did not shown any 
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further gait deficits, when carrying the TrayWG on the walk back. It is possible that we 

were unable to replicate previous findings due to a difference in walkway length. The 

walk back length in the current study was only three metres, whereas in the previous 

research that found effects of the TrayWG condition during straight-line walking had a 

walkway length of fifteen metres. Therefore, the distance covered in the present study 

may not have been long enough to capture the effect of the TrayWG condition. 

Another limitation in the present study reflects that no significant differences 

were found in the control group for any variables or conditions in modified TUG task 

when the facilitatory insoles were worn. Thus, we were not able to replicate Perry's 

(2008) findings for the population using the modified TUG task. The task may not have 

been challenging enough for the healthy control participants, even though the task 

requires difficult aspects of gait. The difference in ages used in the studies may account 

for this as the healthy participants in the current study ranged from 56-78 years of age, 

whereas in Perry's study, the age range was much smaller, from 65-75 years of age. Since 

the current study had a large range of ages, especially in the younger ages, the majority of 

healthy control participants may not have found the task challenging enough, thus their 

stability was not perturbed allowing for the facilitatory insoles to influence their gait. It is 

also possible that a difference in sensory thresholds exists between the healthy control 

participants in the current study and those in previous study (Perry et al., 2008). A 

difference in sensory thresholds would determine whether the insoles could be felt and 

thus, be influential to stability measures. 

Although this task was not challenging enough for the healthy control participants, 

they are able to be challenged in a task such as uneven terrain. Since this is the case, it is 
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important to note that potentially greater results could be found for the PD participants if 

they completed a task that was even more challenging than the modified TUG task. 

Nevertheless, the modified TUG task was able to challenge the PD participant's stability 

and gait during the turn and walk back phases of the task. Changes in gait due to the 

facilitatory insoles were also observed which suggests that the modified TUG task is a 

useful measure to assess potential changes in stability and gait measures in individuals 

with PD. 

This study has extended previous research that suggests that attention does play 

an important role in the execution and maintenance of gait. However, PD participants 

also demonstrated changes in BOS measure due to the facilitatory insoles. Therefore, 

enhanced sensory feedback to the plantar surface was also able to influence gait 

parameters which suggests that proprioceptive impairments are an underlying cause of 

the stability and gait impairments observed in PD. It is important to continue to 

investigate the influence of augmenting sensory feedback by way of the facilitatory insole, 

such as long-term use, as a possible method to improve the mobility of individuals with 

PD. 
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Table 1. Participant characteristics including age, gender, height and UPDRS score. 
Tabled values represent means with SDs in parentheses. 

Healthy Controls PD 

Sample Size 15 15 

Gender 5 males; 10 females 9 males; 6 females 

Age 66.46 (5.98) 67.06(11.27) 

Height 168.15(8.81) 168.83 (8.42) 

UPDRS Motor Score Not Applicable 28.27 (6.73) 

UPDRS, Unified Parkinson's Disease Rating Scale 
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Figure 1. The facilitatory insole to be evaluated in current study. 



Figure 2. Experimental set up. 
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Figure 3. Dimensions of the tray used. X's indicate placement of the glasses. 
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Figure 4. Stability margin measures. 



Figure 5. PD demonstrated a significantly higher sensory threshold than healthy controls 
for all locations on both feet (F(l,28) =7.46; p<.0108). 



PD Control 

Group 

Figure 6. PD participants demonstrated a decreased step length of the first step taken 
after standing up from the chair compared to controls (F(l, 17) = 9.53; p<.0067). 
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Blank Ribbed 

Figure 7. A significant interaction effect was found (F(2,38) = 7.87; p<.0014) where PD 
participants took more time-to-turn during the TrayWG condition compared to the No 
Tray and Tray conditions (p<.0001) and compared to healthy controls in all conditions 
but especially in the TrayWG condition (p<.0001). 
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Figure 8. PD participants demonstrated a non-significant trend where their minimum 
COM-BOS margin increased during the TrayWG condition (F(2,22)= 2.64; p<.0938). 
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Figure 9. A significant interaction was found (F(2,32) = 4.30; p<.0222) where PD 
participants demonstrated an increase in BOS during the TrayWG condition while 
wearing the facilitatory insoles compared to the Tray (p<.0336) and No Tray (p<.0379) 
conditions (p<.0336) and compared to the healthy controls during the TrayWG conditions 
while wearing the facilitatory insoles (p<.0001). 
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Figure 10. PD participants a significant increase in the COM-BOS range during the 
TrayWG condition (F(2,10)=4.35; p<.0436). 
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CHAPTER 3 

EVALUATION OF THE LONG TERM USE OF ENHANCED SENSORY 
FEEDBACK ON GAIT IN PARKINSON" S DISEASE 

Abstract 

Previous research has demonstrated that augmenting proprioceptive feedback via 

cutaneous stimulation can influence gait parameters. The purpose of this study was to 

determine whether enhancing proprioceptive feedback through the use of a facilitatory 

insole can improve stability and gait impairments in PD. This was achieved by 

introducing the facilitatory insoles into a rehabilitation program that focuses on 

improving individual's awareness of sensory feedback. It is possible that the facilitatory 

insoles may be an inexpensive and simple intervention to counteract gait deficits in the 

PD population. Eighteen PD participants were divided into two groups, one of which 

wore facilitatory insoles for six weeks during the PD SAFEx rehabilitation program, 

while the other wore blank insoles. Both pre and post assessment testing periods required 

participants to complete a modified Timed-Up and Go (TUG) task which required them 

to rise from a chair, walk to a marked spot three metres away, turn around and walk back. 

Individuals completed this task under three conditions: 1) no tray; 2) empty tray; 3) tray 

with glasses. The task was completed with and without the facilitatory insoles. Each of 

these conditions was randomized and a total of thirty trials were completed. Main 

measures included step length, velocity, base of support, time-to-turn, double support 

time and lateral stability margin which were collected a pressure sensitive carpet and 

motion capture system. The Facilitatory Insole group significantly increased their 
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stability margin range while turning during the post-assessment compared to their pre-

assessment period as well as compared to the Blank Insole group (p<.0024). Facilitatory 

Insole group significantly decreased their base of support during walk back aspect during 

the post-assessment period compared to the Blank Insole group (p<.0376). Similarly, the 

Facilitatory Insole group significantly decreased their double support time while wearing 

the facilitatory insoles during the post-assessment compared to their pre-assessment 

period (p<.0262). The facilitatory insoles, when worn for six weeks, appear to improve 

turning as PD participants do not require tighter control over their centre of mass which 

suggests increased confidence in their ability to complete a turn. Straight-line walking 

also showed improvements in base of support and double support time variables as a 

result of long-term use of the facilitatory insoles. Enhanced cutaneous stimulation 

provides a possible intervention to improve stability and gait impairments in PD. 
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Introduction 

Individuals with Parkinson's disease often suffer from postural instability and 

deficits during gait. Various interventions including gait training have been evaluated for 

their effectiveness to counteract these impairments. For example, Pohl et al. (2003) 

investigated treadmill training on gait parameters and found improvements in stride 

length and velocity. These improvements are certainly important; however they required 

intensive training and resources. Furthermore, these types of interventions do not address 

the underlying causes for the gait impairments. 

One possible source of the postural stability and gait deficits involves the 

proprioceptive system. A growing body of evidence has supported the existence of 

proprioceptive deficits (Jobst et al., 1997; Klockgether & Dichgans, 1994; Konczak et al., 

2007; Moore, 1987; Zia et al., 2000), which follows logically as the basal ganglia have 

been found to "gate" sensory inputs and influence the control of movement (Schneider et 

al., 1987). Almeida and colleagues (2005) found that when individuals with PD are 

relying primarily on proprioceptive information to guide themselves toward a target, their 

step variability and time spent in double limb support increased significantly. The authors 

reasoned that these changes in gait parameters may occur because individuals with PD 

are trying to improve their sampling of proprioceptive information from their 

environment (Almeida et al., 2005). PD may adapt their gait to gain more sensory 

information from their surroundings because their proprioceptive system appears to be 

impaired. This adaptation may be necessary as postural instability and gait impairments 

are generally less responsive to dopaminergic medication than other symptoms (Almeida 
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& Hyson, 2008). Thus, it is important to investigate possible interventions that may 

augment the sensory feedback to counteract the proprioceptive impairment. If the 

proprioceptive impairment is improved, this may allow individuals with PD to better 

control parameters of gait and function in their daily lives. 

Proprioceptors, such as muscle spindles, have been found to contribute to 

locomotion (Sorensen, Hollands, & Patla, 2002), while mechanoreceptors (specifically 

plantar cutaneous receptors) provide information that is crucial for the control of posture 

such as ankle torque, weight transfer and support surface characteristics (Meyer, Oddsson, 

& De Luca, 2004). Similarly, Perry and colleagues suggested that the plantar cutaneous 

receptors are able to sense the relationship between the centre of mass (COM) and the 

individuals base of support (BOS) during compensatory stepping (Perry et al., 2000). 

This information may also be important during gait to ensure that the COM does not go 

outside of the lateral edge of the BOS in order to avoid a fall. It is clear that these sensory 

receptors provide the cortex with information regarding body position during locomotion. 

To further express the relationship between proprioceptors and mechanoreceptors, 

Duysens and colleagues (2008) found that by applying vibrational stimulation to the 

plantar sole, muscle stretch reflexes were observed in the upper and lower leg (Duysens, 

Beerepoot, Veltink, Weerdesteyn, & Smits-Engelsman, 2008). These results emphasize 

the possibility of mechanically stimulating the plantar cutaneous receptors to improve 

sensory feedback. This increased stimulation may be able to overcome the proprioceptive 

deficit found in individuals with PD and counteract stability and gait impairments that 

predispose these individuals to falls. 
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Previous research has shown that augmenting sensory feedback of the plantar 

surface by way of vibratory insoles has improved gait parameters such as stride length, 

velocity and stride-to-stride variability during straight-line walking (Novak & Novak, 

2006). Their study demonstrates that mechanical stimulation is a viable method to 

influence gait parameters in the PD population. Using this idea, we evaluated the use of 

facilitatory insoles, which have raised up ridges along the outer aspects of the foot, on 

lateral stability and gait deficits in individuals with PD. Participants performed a Timed-

Up and Go (TUG) task while performing a secondary motor task of carrying a tray or a 

tray with glasses. The TUG task was chosen as it incorporates difficult aspects of gait 

such as initiation, turning and a fast walking pace and a secondary motor task was used to 

address the role of attention in gait deficits. PD participants demonstrated an increased 

base of support (BOS) when wearing the facilitatory insoles, which suggested that PD 

participants were attempting to improve stability. This might have occurred because the 

facilitatory insoles were a novel stimulation to which PD participants were not 

accustomed (van Oostveen, 2009). Therefore it is important to determine if the 

facilitatory insoles are able to improve stability and gait parameters when worn over a 

long term period. This is also necessary because long-term use of direct plantar 

stimulation to improve gait parameters in PD has never, to our knowledge, been 

investigated. Thus, the current study chose to integrate the facilitatory insoles into the 

second half of a twelve-week rehabilitation program. 

The PD Sensory Attention Focussed Exercise (PD SAFEx) program has been 

found to be effective in improving PD symptoms and improved performance in the TUG 

task (Sage, 2009; Sage & Almeida, In Press). This program was chosen as the method to 
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introduce the facilitatory insoles over a six-week period for several reasons. First, the 

main goal of the PD SAFEx program is to focus the participants attention on their 

sensory feedback (particularly proprioception) while exercising. This provides a situation 

where the augmented feedback being derived from the cutaneous receptors could be 

enhanced further as participants attend to their sensory feedback. Secondly, this program 

requires participants to be active while wearing the facilitatory insoles as well as 

providing a situation that challenges balance and co-ordination, which will allows the 

facilitatory insoles to be influential. Using the insoles during an exercise program also 

ensures that the two groups were evaluated based on a controlled access to the insoles as 

the only variable being manipulated. 

This study sought to determine if long-term use of the facilitatory insoles is 

beneficial Specifically, we hoped to observe improvements in parameters such as step 

length, velocity, base of support and lateral stability margin that would allow individuals 

with PD a more efficient but stable gait. It is important to determine whether the 

facilitatory insoles are of benefit as they would be simple to implement because they are 

a non-invasive and inexpensive intervention that may counteract the postural and gait 

impairments found in individuals with PD. 

Methodology 

Participants 

From January 2009 to April 2009, thirty individuals previously diagnosed with 

Parkinson's disease were recruited from the patient database at the Movement Disorders 
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Research and Rehabilitation Centre at Wilfrid Laurier University, Canada. These thirty 

participants participated in a twelve week PD SAFEx program at the Movement 

Disorders Research and Rehabilitation Centre at Wilfrid Laurier University, Waterloo, 

Canada. The main purpose of the PD SAFEx program is focus participants attention on 

sensory awareness while exercising. The exercise program includes thirty minutes of 

non-aerobic walking exercises and thirty minutes of sensory attention exercises that 

include stretching. All thirty participants were then invited to participate in the current 

study; however some were excluded based upon attendance rate and the use of an orthotic 

in everyday wear. Thus, eighteen participants were included in this study and completed 

the remaining half of the program that consisted of six weeks of exercises. Group 

assignments were assigned to group based on their Posture and Gait (PG) score, which 

includes last five items of the UPDRS motor score. This method has been used in 

previous research where these items are clinical indicators of posture and gait (Sage & 

Almeida, 2009). Each group was assigned a participant of an approximately equal PG 

score to ensure that the groups were evenly distributed. The Facilitatory Insole (FI) group 

included nine individuals (7 males and 2 females; mean age = 72.55; mean PG score = 

4.833) and the Blank Insole (BI) group included nine individuals (4 males and 5 females; 

mean age = 66; mean PG score = 4.667) (Table 1). 

Each participant underwent a pre-test to determine baseline values before the 

treatment was administered to the participants of the PD SAFEx program. This required 

participants with the ability to stand and walk independent from any assistive devices. All 

participants were free from any known sensory disorder, additional neurological disease 

(other than PD), and significant visual impairment. All participants reported to the 
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laboratory ON dopaminergic medication which begins to work immediately and optimal 

doseage lasts for approximately two hours before wearing off occurs. Participants 

participated in this study during this optimal dose period so they could perform at their 

highest functioning level. All participants were evaluated using the motor examination 

section of the Unified Parkinson's Disease Rating Scale to determine severity of their 

disease progression. All subjects underwent a sensory evaluation using monofilaments 

(Semmes-Weinstein, North Coast Medical Inc., Morgan Hill, CA, U.S.A.) to determine 

sensory thresholds of the plantar surface of the right and left feet at four locations 

including great toe, head of first metatarsal, head of fifth metatarsal and the centre of the 

heel. 

Equipment 

All participants completed the pre-test and post-test assessments on a data-

collecting, pressure-sensitive carpet (GAITRite®, CIR Systems, Inc., Clifton, NJ, USA). 

This device calculates temporal and spatial parameters such as velocity, step length, 

double limb support, stride length, base of support and step to step variability. 

Whole body kinematics were tracked using a wireless optoelectronic recording 

system (OptoTrak; Northern Digital Inc., Waterloo, Ontario, Canada) at a sampling 

frequency of 60 Hz. Participants were set up with a twenty one infrared light emitting 

diodes (IREDs) placed on the following landmarks: 5th metatarsal of right and left feet 

(which provided the location for the edge of the BOS), left and right anterior talofibular 

joint, left and right patella, left and right anterior superior iliac spine, zyphoid process, 

left and right acromion, left and right lateral epicondyle of the humerus and left and right 
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styloid process of the ulna. Three markers were also located on the forehead, stabilized 

by the inside structure of a hard hat to prevent movement of the markers. Two markers 

were also placed on the posterior side of the left and right acromion, as well as one 

marker placed on T12. These markers were to be used in place the left and right acromion 

markers placed anteriorly and the zyphoid process marker, respectively, as signals from 

these markers went missing due to the set up of cameras and nature of the task to be 

performed. The markers located on the head, trunk and legs of the participants provided 

the data to calculate the COM during the task. 

The set up of the modified TUG equipment consisted of a standard chair with arm 

rests placed at the beginning of the twelve foot GAITRite® mat, facing the direction of 

the mat. Three metres away from the chair, along the runway of the mat was a cart that 

provided the horn-around point for participants, as well as a counter-like surface where 

the tray could rest. The tray was placed behind a curtain structure that allowed the tray to 

be hidden from participants, yet could be pulled through the curtain when the participants 

were completing the task. The purpose of the curtain was to hide the tray from the 

participants as to deter the participants from planning their movements as they 

approached the counter. 

The dual task paradigm used a tray carrying task while walking. The tray was 

plain, flat and plastic. It measured 36 x 25.5 cm and weighed 0.27 kg. On the tray were 

three crosses, placed in a triangular formation to mark the positioning of the glasses. The 

two crosses at the top were 12 cm from the edge of the tray and the third cross was 18 cm 
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from the edge of the tray. The glasses used were identical, clear, empty, plastic wine 

glasses and weighed 0.09 kg. The glasses were 205 mm in height, with a base of 80 mm. 

Procedure 

All participants underwent a pre-test assessment before completing the second 

half of twelve week PD SAFEx program. Participants, after completing six weeks of the 

PD SAFEx program, then underwent the post-test assessment. The pre-test and post-test 

assessments procedures did not differ from each other and were identical to previously 

used methodology (van Oostveen, 2009) except for two differences. The first difference 

is that the length of the approach and walk back was extended from 3 metres to 3.5 

metres. The second change to the procedure was the removal of the chair after the 

participant had stood up to start each trial. This change required participants to walk off 

the end of the mat after the walk back phase of the task, instead of sitting back down in 

the chair. Both of these changes allow for calculation of the step-to-step variability 

measure during the approach and walk back which was not available in the first study due 

to insufficient footfalls. 

After the pre-test assessment was completed, the facilitatory insoles were 

introduced into the PD SAFEx program for six weeks. Participants received either blank 

insoles (regular shoe insoles) or the facilitatory insoles to wear for six weeks during the 

PD SAFEx program. Each participant had an area reserved in the changeroom for their 

specific insoles as to ensure that knowledge of the insole differences were unknown to 

participants as well as to ensure that the insoles were not taken home and worn by the 

participants. Attendance was recorded for the six weeks to ensure that the participants 
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were wearing the insoles for the allocated amount of time. Post-test assessments were 

carried out after six weeks where both groups of participants completed the modified 

modified TUG task with blank and facilitatory insoles. 

Analysis 

Data retrieved from the GAITRite® mat were divided into approach toward the 

counter, turn around and walk back. Gait initiation data were retrieved by taking the 

footfalls from stand up from the chair to the first step after the individual stood up. 

Measures used for gait initiation included: sit-to-stand time which measured the time 

required to go from a seated position to the heel strike of the first step as well as length of 

the first step taken after stand up from the chair. Footfalls from after stand up to the last 

footfall in front of the counter were considered the approach phase. Footfalls that were 

included in the turn occurred after the individual had stopped at the counter and started 

their 180 degree turn. The turn ended when the first footfall that was in the direction of 

the chair began. Measures used for the turn included time-to-turn and number of steps to 

turn. Footfalls that were included in the walk back phase of the task included the first 

footfall in the direction of the chair after the turn until the last footfall collected. The 

measures used for the approach and the walk back phases included velocity, step length, 

stride length, step-to-step variability, double support time, and base of support. 

Using data from the OptoTrak system, three COM-BOS measurements were 

calculated. The COM was calculated using a segmental model with data from the head, 

trunk and leg markers. The edge of the BOS was calculated using the marker located on 

the 5th metatarsal on each foot. The minimum stability margin is the smallest distance that 

86 



the COM approached the edge of the BOS during a footfall. If there is a significant 

increase in this variable, it indicates greater stability as greater control is applied to the 

COM to ensure that it does not approach the edge of the BOS. The maximum stability 

margin is the greatest distance the COM withdrew from the edge of the BOS during a 

footfall. If this significantly increases, the individual's COM is farther away from the 

edge of the BOS could indicate greater stability. However, it could also indicate less 

stability if the COM deviated farther from the edge of the BOS than normal. This 

deviation would bring the COM closer to the edge of the BOS for the other foot. The 

COM-BOS range is the difference between the minimum COM-BOS margin and the 

maximum COM-BOS margin. This variable gives an idea of the COM excursions 

throughout a footfall. If an increase in the COM-BOS range is observed, it could indicate 

less control of the COM, which is allowing for greater COM excursions during the 

footfall. It is helpful to consider the maximum COM-BOS margin in concert with the 

COM-BOS range. Due to the nature of the task, the data for some participants was 

incomplete so some trials were discarded (see Appendix A for percentage of missing 

trials for each condition). Since the number of trials differed from participant to 

participant for each condition, three of the five trials were analyzed for each participant. 

The highest and lowest trials were discarded to allow for the three trials with median 

values for the variables to be analyzed for each condition. Also, some participants had to 

be dropped from analysis all together due to insufficient data. 

Statistical analysis tests were performed using Statistica. Independent t-tests were 

performed to determine any differences among the RI and BI groups for age, height, 

UPDRS motor score and sensory threshold. The dependent measures were compared 
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across test periods (pre and post assessments), across conditions (with-in subject) and 

between groups (RI group and BI group) using a repeated measures ANOVA. A Tukey 

HSD post-hoc test was performed for analysis of all significant findings. 

Results 

Participant Demographics 

There was no significant difference between the FI and BI groups with regards to 

UPDRS motor score at the pre-assessment period or the post-assessment period. Groups 

also did not differ in regards to sensory threshold as there were no significant differences 

between pre and post assessments. Similarly, groups did not differ in height or attendance 

rate for the PD SAFEx program. Independent t-tests revealed that there was a significant 

difference between the age of FI group (M = 72.56, SD = 3.24) and BI group (M=66, SD 

= 4.71); t( 16) = 3.29, p=0.002) where the FI group was significantly older than the BI 

group (Table 1). 

Gait Initiation 

There were no significant differences between pre and post assessments for either 

group for gait initiation parameters such as sit-to-walk time, first step length or kinematic 

measures. Similarly, there were no differences between the FI and BI groups for gait 

initiation parameters between pre or post assessment values. 

88 



Turn 

A significant effect of condition was found where all participants, regardless of 

group, increased the time required to turn during the TrayWG condition during the pre-

assessment (F(2,12) = 44.64; p<.00005) and post-assessment (F(2, 16) = 12.42; 

p<.0006)(Figure 1). This effect was also found in the number of steps required to turn 

during the pre-assessment (F(2,14) = 16.39; p<.0002) and post-assessment (F(2,24) = 

50.29; p<.00003). However, there were no significant differences between the groups or 

between testing periods found for either time-to-turn or number of steps to turn variable. 

Stability Margin during Turn 

A significant difference was found between groups where the FI group 

significantly increased their COM-BOS range during the post assessment (F(l,2) = 38.84; 

p<.0024) (Figure 5). Post hoc analysis revealed a difference between groups where the FI 

group significantly increased their COM-BOS range post-assessment compared to their 

pre-assessment period (p<.003) as well as compared to the BI group pre assessment 

(p<.001) and post assessment (p<.0003) periods. A similar effect was found for 

maximum COM-BOS margin where the FI group significantly increased their maximum 

COM-BOS margin during the post assessment period (F(l,2) = 12.79; p<.0183). Post hoc 

analysis revealed a difference between groups where the FI group significantly increased 

their COM-BOS range post-assessment compared to their pre-assessment period (p<.006) 

as well as compared to the BI group pre assessment (p<.001) and post assessment 

(p<.001) periods. 
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Approach and Walk Back 

There were no significant differences found for any variables between groups 

regarding the approach for the pre-assessment period. Although there were no difference 

between groups for the walk back phase of the modified TUG task during the pre-

assessment period, there was an effect of condition found where all participants 

decreased their velocity (F(2,18) =15.13; p<.0001) (Figure 2) and step length (F(2,16) = 

80.41; p<.0004) and increased their double support time (F(2,16) = 9.54; p<.0019) during 

the TrayWG condition. The effect of the TrayWG condition was also found during the 

post-assessment period where all participants demonstrated a decreased velocity F(2,18) 

= 9.92; p<.0012) and step length (F(2,18) = 14.60; p<.0002). 

A significant interaction was found between groups and testing periods for the 

BOS variable (F(l,2) = 25.14; p<.0376) (Figure 3) where the FI group significantly 

decreased their BOS during the post-assessment period compared to the BI group. Post 

hoc analysis revealed that the FI group significantly decreased their BOS during the post-

assessment period compared to the BI group whether they were wearing the blank insoles 

(p<.01) or the facilitatory insoles (p<.0088). 

A significant interaction was found between groups and testing periods for the 

double support time variable (F(l,2) = 16.86; p<.0262)(Figure 4). Post hoc analysis 

revealed a difference between groups where the FI group significantly increased the time 

spend in double support in the post-assessment while wearing the blank insoles compared 

to their pre-assessment period with blank insoles (p<.035) as well as compared to the BI 

group across both assessment periods and both insoles worn. The FI group also 
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demonstrated a decrease in DS time during the post-assessment period while wearing the 

facilitatory insoles compared to the blank insole condition (p<.012) and showed a non-

significant trend compared to the BI group (p<.071). 

Discussion 

Research on improving plantar stimulation, and perhaps influencing 

proprioceptive feedback, as a possible intervention has not received much attention, even 

though proprioceptive deficits have been implicated for the presentation of postural and 

gait impairments in individuals with PD. The purpose of this study was to determine if 

individuals with PD would benefit from long-term use of increased stimulation to the 

plantar surface. As such, the insoles were introduced into the PD SAFEx program, a 

program that challenges balance and coordination while focussing on proprioceptive 

feedback the participants are receiving from their own body. 

In previous research, the PD SAFEx program used the TUG task as a functional 

task measure and found that the total time to complete the normal TUG task (without the 

tray carrying task) was improved in individuals that participated in the twelve-week 

program. In addition to this, participants of the PD SAFEx program also showed a trend 

of decreasing time spent in double limb support. The authors suggested that the program 

not only allows for improvements in symptoms severity, but also in movement control 

(Sage & Almeida, 2009). The results of the current study demonstrate that the facilitatory 

insoles, when used in conjunction with the PD SAFEx program, show additional benefits 

to certain aspects of gait such as turning and straight line walking. After wearing the 

facilitatory insoles for six weeks, the Facilitatory Insole group demonstrated a greater 
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COM-BOS range during the turn. At first glance, it would be expected that a decrease in 

range of COM excursion would be of greater benefit as it would demonstrate greater 

stability. However, in previous research, it has been found that when older adults and 

individuals with PD are in situations of postural threat, they respond by tightening the 

control on posture, to ensure that the COM does not approach the BOS (Adkin et al., 

2000, 2002; L. F. Brown, JS., 1997; Carpenter et al., 2004). Since turning is a difficult 

task that would pose a postural threat to individuals with PD, it might be expected that 

participants would tighten the control over the excursions of the COM during the turn to 

ensure that it did not approach the edge of the BOS and allowing for maximum stability. 

However, this was not observed and the Facilitatory Insole group actually decreased 

control over their COM during the turn which allowed for more COM excursions. This 

may suggest that the Facilitatory Insole group has become more confident in their ability 

to complete a turn while remaining stable, and are no longer as concerned with applying 

greater control over their COM during a difficult aspect of gait. Thus it appears as though 

the facilitatory insoles have improved the PD participant's confidence in turning when 

they were worn for an extended period of time. 

Along with the improvements during the turn, BOS and double limb support time 

improved from use of the facilitatory insoles during the walk back phase of the modified 

TUG task. The Facilitatory Insole group showed a marked decline in their BOS after 

wearing the facilitatory insoles for six weeks while participating in the PD SAFEx 

program. Since there was a change in the BOS measure, it could be expected that the 

stability margin would be influenced as well. Yet there was no significant difference in 

stability for the Facilitatory Insole group from pre to post assessment periods. This 
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suggests that the location of the COM relative to the edge of the BOS did not change, 

even though the BOS for this group was reduced. Therefore, the stability of the 

participants did not suffer due to this change in their BOS. In addition, it appears as 

though the facilitatory insoles allowed the BOS variable to return to a near-normal value. 

The average BOS value while wearing the facilitatory insoles during the pre-assessment 

testing period for the Facilitatory Insole group was 11.43 cm. This value changed to 

6.79cm in during post-assessment. This reduced value is comparable to healthy control 

participant data collected in a previous pilot study where the average BOS value for 

healthy control participants during normal walking was reported at 5.36cm (van Oostveen, 

2009). Thus, the facilitatory insoles allowed for individuals with PD to return to a more 

normalized gait pattern in terms of their BOS, without negatively affecting their stability. 

The facilitatory insoles also influenced the time spent in double limb support 

measure during the walk back aspect of the modified TUG task. During post-assessment, 

the Facilitatory Insole group increased their time spent in double limb support while 

completing the modified TUG task with the blank insoles. Almeida suggested that due to 

their proprioceptive deficit, individuals with PD increase their time spent in double limb 

support to improve their proprioceptive sampling (Almeida et al., 2005). If this is indeed 

the case, then it is possible that the Facilitatory Insole group may have been attempting to 

improve the sensory feedback they were receiving by increasing the time spent with both 

feet on the ground, when the facilitatory insoles are absent. When they completed the 

modified TUG task while wearing the facilitatory insoles they significantly decreased 

their double limb support time compared to when wearing the blank insoles. Similarly, 

although non-significant, they also demonstrated a trend toward decreased time spent in 
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double limb support compared to the BI group. These results suggest that when the 

Facilitatory Insole group performed the modified TUG task with the facilitatory insoles in 

place, the insoles provided the necessary increase in stimulation to improve sensory 

feedback and they were able to spend less time in double limb support. 

In addition to improving the proprioceptive sampling, the insoles may have a 

positive influence in the confidence of PD participants to perform the modified TUG task. 

Recent research has investigated the influence of postural threat on gait for older adults 

and individuals with PD and found that PD participants increased the amount of time they 

spent in double limb support when in a posturally threatening situation (L. A. Brown, 

Gage, Polych, Sleik, & Winder, 2002; Duarte Caetano, 2009). Thus, it is also possible 

that the Facilitatory Insole group spent less time in double limb support after six weeks of 

wearing the facilitatory insoles because they no longer found the modified TUG task a 

threat to their posture. Therefore, it appears as though when the facilitatory insoles are 

worn for a six week period, they improve the sampling of proprioceptive sampling the 

participants are receiving which allow for a more mechanically efficient gait as well as 

lessening the postural threat that a situation may place on an individual. 

When reviewing these results, it is important to note that although the Facilitatory 

Insole group was found to be significantly older than the Blank Insole group, there was 

no difference in sensory threshold between the two groups. Thus, a difference in sensory 

receptor sensitivity due to age should not be considered when results of the study are 

being interpreted. It is also important to note that all subjects in this study participated in 

six weeks of the PD SAFEx program prior to the introduction of the facilitatory insoles. 
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Similarly, most of these participants have also participated in a previous 12-week session 

of the PD SAFEx program. The PD SAFEx intervention has resulted in improved motor 

symptoms assessed using the UPDRS, as well as improved timed performance on the 

TUG task (Sage & Almeida, 2009). These results may suggest that participants in the PD 

SAFEx program are able to complete the modified TUG and manage a secondary motor 

task better than individuals that have not participated in the exercise program. Thus, the 

results in the current study may be an underestimation of the possible benefits the 

facilitatory insoles could have on the general PD population. 

Previous research conducted to improve stability in individuals with PD has 

focussed on balance training interventions and the measures used in these studies are 

quite varied. This makes comparison between previous work and the current study quite 

difficult. For example, after a ten week balance and strength training intervention, 

participants demonstrated a decrease in body sway during destabilizing test conditions 

such as eyes closed (Hirsch, Toole, Maitland, & Rider, 2003). Based on these results, the 

current study should have demonstrated a decrease in the COM-BOS range (which is a 

similar measure to body sway) when the facilitatory insoles were worn. Yet this was not 

found, and this may be due to a difference in the type of stability measured. The current 

study was interested in stability while an individual is walking, whereas the previous 

study measured participants in a static situation. These differences make it difficult to 

compare between these specific studies. However, another study used a dynamic gait 

index which rates performance on tasks that included turning, pivoting and various types 

of walking tasks (Cakit, Saracoglu, Gene, Erdem, & Inan, 2007). This measure may 

better mirror the dynamic stability the current study intended to quantify and indeed, 
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improvements were found after eight weeks of gait and balance training. These 

improvements reflect the improved stability of participants during various gait tasks 

including turning. The current study also found improvements in turning and gait due to 

long-term use of the facilitatory insoles. Since improvements in dynamic stability where 

found in both studies, this may suggests that the facilitatory insoles are able to improve 

dynamic stability during gait in a similar manner to a balance and gait training 

intervention. Although the PD SAFEx program has been found to improve UPDRS and 

PG scores, no improvements have been found in gait parameters such as double limb 

support time or BOS (Sage & Almeida, 2009). During the current study, improvements in 

gait were observed when the facilitatory insoles were used in conjunction with the PD 

SAFEx program suggesting that the improvements found in BOS and time spent in 

double limb support are due to the facilitatory insoles. 

Although the insoles seem to have a beneficial effect on turning and straight-line 

walking, this study does have limitations that need to be addressed. The number of 

participants was low due to poor attendance, sickness or inability to perform the modified 

TUG task. As well, the scheduling of participants for their pre and post assessment 

scheduling was not controlled for in terms of when participants were tested during their 

medication cycle. For example, although participants performed both the pre and post 

assessments while ON medication to be at optimal functioning, the time at which they 

performed during their drug cycle was not necessarily the same between assessment 

periods. Therefore, participants in either group may have been able to perform better 

depending on when they had taken their medication for each testing period. Group bias is 

another limitation that needs to be addressed. Although group assignments were 
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completely confidential, the Blank Insole group may have realized they were not wearing 

the insoles being tested for effectiveness, which could have affected their performance in 

the post-assessment period. 

Despite the limitations, this study provides evidence that mechanical facilitation 

to the plantar cutaneous surface, by way of a facilitatory insole, allowed for an 

improvement in gait. After wearing the facilitatory insoles for six weeks, individuals with 

PD appeared to be more confident when completing difficult aspects of gait such as 

turning and did not require tighter control over their COM because they may no longer 

perceive the task as threatening. This improvement in COM movement while turning 

may also have a significant implication for the common presentation of rigidity in 

individuals with PD. Rigidity has been found to negatively affect functional tasks such as 

reaching (Schenkman, Morey, & Kuchibhatla, 2000) and locomotion (Franzen et al., 

2009). Although no study, to our knowledge, has investigated the affect of rigidity on 

COM movement, it is certainly possible to suggest that a relationship does exist. 

Therefore, the improvement in COM movement while wearing the facilitatory insoles 

may also have a beneficial effect on the symptom of rigidity, however this requires 

further investigation. 

Long-term use of the facilitatory insoles also improved straight-line walking, 

which was evidenced by a decrease in the BOS, as well as a decrease in time spent with 

both limbs in contact with the ground. These improvements did not negatively affect the 

stability of the Facilitatory Insole group and suggests that they allowed for a 

mechanically efficient and normalized pattern of gait. Thus, the facilitatory insoles, by 
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way of improving the proprioceptive feedback the individuals are receiving, are able to 

benefit individuals with PD when worn on a long-term basis. These results are 

remarkable as this intervention is an inexpensive, non-invasive and easy method to 

implement in the daily lives of individuals with PD. Future research should focus on 

determining whether the benefits received from the facilitatory insoles extend over a 

longer period of time and whether greater benefits may occur with additional time spent 

with the facilitatory insoles. 
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Table 1. Mean (± standard deviation) of participant characteristics of both RI and BI 
groups. 
Group Gender Age Pre-Test 

PG 
Score 

Post-
Test PG 
Score 

Pre-Test 
UPDRS 
Motor 
Score 

Post-
Test 
UPDRS 
Motor 
Score 

Percentage 
of classes 
attended 
(%) 

Facilitat 
ory 
insole 

7 Male; 
2 
Female 

72.56 
(3.24) 

4.83 
(2.73) 

4.5 
(2.96) 

27 26.55 91.5 

Blank 
Insole 

4 Male; 
5 
Female 

66 
(4.71) 

4.67 
(2.4) 

4 (2.46) 25.44 23.5 90.2 

UPDRS, Unified Parkinson's Disease Rating Scale 

PG, Posture and Gait score 
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Figure 1. All participants increased the time-to-turn during the TrayWG condition during 
the pre-assessment (F(2,12) = 44.64; pc.OOOO). 
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Figure 2. All participants decreased their velocity on the walk back during the TrayWG 
condition (F(2,18) = 15.13; p<.0001). 

101 



18 n 

16 H 

14 -

?1 21 

1 8 

8 
m 6 

4 

2 

0 Blank Insole Ribbed Insole 

Pre Test Post Test 

• RI Group 

• BI Group 

Figure 3. RI group significantly decreased their BOS during the post-assessment period 
compared to the BI group (F(l,2) = 25.14; p<.0376). 
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0.45 

Blank Insole 

Pre Test Post Test 

Figure 4. A significant interaction where the RI group significantly increased the time 
spend in double support in the post-assessment (F(l,2) = 16.86; p<.0262). RI group 
significantly increased the time spend in double support in the post-assessment while 
wearing the blank insoles compared to their pre-assessment period with blank insoles 
(p<.035) as well as compared to the BI group across both assessment periods and both 
insoles worn. The RI group also demonstrated a decrease in DS time during the post-
assessment period while wearing the facilitatory insoles compared to the blank insole 
condition (p<.012) and showed a non-significant trend compared to the BI group 
(pc.071). 
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Pre Test Post Test 

Figure 5. A significant difference was found between groups where the RI group 
significantly increased their COM-BOS range during the post assessment (F(l,2) = 38.84; 
p<.0024). 
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CHAPTER 4 

GENERAL DISCUSSION 

Overall Objectives 

Postural instability and gait impairments can be some of the most harmful 

symptoms experienced by individuals with PD as they can lead to falls (Bloem et al., 

2001), and so it is important to investigate interventions that could improve these 

observed deficits. The overall objective of the current thesis was to investigate the 

influence of mechanical facilitation, by way of a facilitatory insole, on the stability and 

gait impairments of individuals with PD. An underlying theme of this thesis was to 

explore how possible deficits to proprioception might contribute difficulties in postural 

stability and gait present in this population. 

This was accomplished in two parts where the first study addressed the initial 

exposure to the facilitatory insoles by comparing individuals with PD to a age-matched 

population. In addition to addressing the influence of the facilitatory insoles, the first 

study sought to determine a protocol and task that could measure changes in stability and 

gait in both the healthy and PD populations. The protocol that was evaluated was called 

the modified Timed Up and Go (TUG) task which was separated into the approach, turn 

and walk back aspects of the task. The first study also investigated the role of attention as 

it pertains to the gait deficits observed in PD. The second study addressed the influence 

of long-term use of mechanical facilitation by comparing two groups of individuals with 

PD, one of which worn the insoles during the PD SAFEx exercise rehabilitation program 

109 



for six weeks. This study also sought to determine whether the facilitatory insoles would 

be beneficial as an intervention for individuals with PD. 

The Timed Up and Go task: A balance challenging situation 

In previous research, the facilitatory insoles used in the current thesis, were found 

to be effective when older adults were tested using inclined platforms to simulate uneven 

terrain, where their lateral stability margin improved when the facilitatory insoles were 

worn (Perry et al., 2008). In order to investigate the possible benefits these insoles may 

have for the PD population, the task they were required to perform needed to incorporate 

aspects of gait that are challenging. The Timed Up and Go task was chosen because it 

involves difficult aspects of gait such as initiation, turning and fast paced walking which 

are challenges that individuals face in their everyday life. It is also a well-documented 

tool that has been used to assess mobility in a clinical population such as PD (Morris, 

Morris, & Iansek, 2001; Sage & Almeida, 2009; Stack et al., 2004). By dividing the TUG 

task into four sections, the current study succeeded in evaluating four aspects of gait 

including gait initiation, approach to the target, turn and walk back. These divisions were 

necessary for this study because each aspect of gait had various and differing measures to 

assess possible improvements in gait. As well, it was possible that the facilitatory insoles 

may influence each aspect of the task differently, for instance, the insoles may only be 

beneficial in initiating gait and not in turns. 

Although the task used in the current study was different from previous insole 

studies that evaluated the influence of the facilitatory insoles over uneven terrain (Perry 

et al., 2008), it was important to use a similar measure to evaluate whether the modified 
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TUG task was effective in allowing the facilitatory insoles to be influential. Thus, the 

lateral stability margin was a central measure used in the current study. In addition to the 

TUG task, a secondary motor task of carrying a tray or a tray with glasses was used to 

address the role of attention but also to add to the complexity, and difficulty of the task to 

ensure that it was challenging. 

The modified TUG task was successful in challenging gait and stability of the PD 

participants. The task was able to draw out the hallmark gait deficits observed in 

individuals with PD during straight-line walking, which has been found in previous 

research (Morris et al., 1996). A decrease in step length and velocity were observed in the 

approach and walk back aspects on the modified TUG task in the first study as well as an 

increased number of steps to turn and time-to-turn. These deficits in PD participants were 

then exacerbated when the task was made more difficult with the addition of the tray with 

glasses condition. In addition to the gait deficits observed, changes in stability during 

various conditions were observed for the PD participants in both studies, which suggest 

that the modified TUG task was able to influence the stability of the PD participants. This 

allowed for the possibility of the facilitatory insoles to influence the stability and gait 

deficits. Indeed, the modified TUG task was also able to measure changes in gait 

parameters and stability when the facilitatory insoles were worn. For example, in the first 

study, an increased in the BOS was observed when facilitatory insoles were worn. Thus, 

the modified TUG task was able to challenge the stability and gait in the PD population 

and also evaluate the efficacy of the facilitatory insoles which lends credibility to the 

modified TUG task as a useful measure to assess potential changes in stability and gait in 

individuals with PD. 
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In contrast, it appears as though the modified TUG task may not have been an 

appropriate task to use to challenge the stability and gait for the healthy, older adults. It 

was expected that healthy older adult participants would demonstrate a decline in their 

stability with the added task of carrying a tray with glasses, compared to the conditions of 

carrying a tray or not carrying anything. Similarly, an improvement in stability was 

expected when the facilitatory insoles were worn, especially during the most difficult task 

of carrying a tray with glasses. However, no changes were observed in any of the 

conditions, and regardless of which insoles were worn for the control participants. This 

suggests that the modified TUG task may not have been enough to perturb the stability of 

the control participants, and thus, did not provide a situation where the facilitatory insoles 

could improve stability. This lack of results could be due to the greater age range of 

participants in the current study compared to previous research. It is also possible that the 

task used in the previous study directly perturbed the lateral stability in participants, 

whereas the modified TUG task used in the current thesis challenged the overall stability 

and gait of participants while they performed a functionally relevant task. In the healthy, 

older adult population, this may not have been enough to challenge the lateral stability 

specifically, and thus, no changes were observed. 

Although the modified TUG task did not challenge the healthy older adults, it was 

successful in doing so for the PD participants. Since this thesis was interested in the 

influence of the facilitatory insoles in the PD population, the modified TUG task is still 

considered an appropriate measure to use to evaluate changes in gait and stability 

parameters in PD. 
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Attention or Proprioception: A Cause for Gait Impairments 

Recent research has demonstrated that when individuals with PD are attending to 

their gait, they are able to improve gait parameters. For example, when individuals are 

given a visual cue such as a horizontal line on the ground, they are able to increase their 

stride length, velocity and double support time. Likewise, if they are instructed to focus 

on a mental image of walking with an increased stride length, these gait parameters also 

improve (Morris et al., 1996). Consequently, if given a secondary task to complete while 

walking, the gait deficits return and are even more pronounced (Hausdorff et al., 2003; 

Morris et al., 1996). From these studies, it is clear that attention can play a key role to 

benefit or negatively effect gait parameters in individuals with PD. However, possible 

deficits in proprioception have also been found to influence gait. The current study used a 

secondary task of carrying a tray with glasses to determine the extent to which attention 

and proprioception influence gait. It was thought that if improvements in gait and 

stability were observed due to the facilitatory insoles, then it could be argued that the 

improvements occurred because the facilitatory insoles drew the individual's attention to 

their walking. By introducing a secondary task for the participants to attend to, and if 

changes in gait are still observed, then they would be due solely to the influence of the 

facilitatory insole and not attention. In the first study, participants with PD showed an 

increased time-to-turn and number of steps to turn when carrying a tray with glasses 

compared to the healthy control participants in the first study. All participants in the 

second study also responded the same way to the TrayWG condition as they exhibited the 

same deficits when turning. Gait deficits due to the TrayWG were also evident in the 

walk back aspect of the modified TUG task where all participants demonstrated a 
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decreased step length, velocity and increase in double limb support time during the pre-

assessment testing. These results extend and confirm the previous notion that these more 

pronounced gait deficits occur when individuals are given an attention demanding task 

(Bond & Morris, 2000). However, it is also important to consider whether the tray acts 

solely as an attention demanding task or if the tray causes overall mechanical constraints 

on the participants while they were walking. Since arm swing normally counteracts the 

COM shift that occurs when a step is taken, COM might be disturbed without arm swing 

in conditions when a tray is present. It is also possible that the additional weight of the 

tray places extra motor demands that cannot be compensated for in individuals with PD. 

Thus, the tray carrying task may present an additional motor challenge that could account 

for the changes in gait observed in the PD participants. However, this is not likely 

because identical results would have been observed in both the tray and tray with glasses 

conditions. The fact that gait impairments were only observed in the TrayWG condition 

suggests that when glasses are added to the task, they place an additional demand on 

participants that is more likely attentional in nature. 

Although it is clear that attention contributes to gait impairments in PD, 

proprioception also plays a role. In the first study, PD participants increased their BOS 

while wearing the facilitatory insoles during the TrayWG condition. Based on the 

hypothesis, since a change in gait was observed during the TrayWG condition when the 

facilitatory insoles were worn, these changes must be due to the facilitatory insoles 

influencing sensory feedback and not due to attention being drawn to the participants gait 

because of the facilitatory insoles. This suggests that proprioception does play a critical 

role in influencing gait parameters in PD. 
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Results from the second study also point to proprioception as a clear contributor 

to gait deficits. Even though participants still demonstrated gait deficits in step length and 

velocity due to the TrayWG condition, improvements were demonstrated across all of the 

tray conditions in the post-assessment period. Attention clearly plays a large role in some 

gait deficits, but by providing increased plantar stimulation to augment sensory feedback, 

the facilitatory insoles were able to improve other gait parameters. As a result, 

proprioception appears to be an underlying influence of gait parameters. This distinction 

is important because although attentional strategies are effective in counteracting gait 

impairments, they become useless when the individual is required to attend to something 

else. More importantly, using attentional strategies to improve gait parameters does not 

address the underlying cause of the deficits but instead bypasses the issue altogether. 

Thus, it is important to explore potential roots of the impairments, such as the 

proprioceptive deficits, so that interventions can be developed to counteract the 

debilitating side effects of stability and gait impairments. 

Facilitatory insoles as an Intervention 

The main purpose of this thesis was to investigate the influence of a facilitatory 

insole as a possible intervention to counteract the postural stability and gait impairments 

found in individuals with PD. Previous research has found not only an improvement in 

the compensatory stepping reactions of younger adults, but also improvements in the 

lateral stability involving healthy, older adult population when the facilitatory insole was 

used (Maki et al., 1999; Perry et al., 2008). Thus, it was hypothesized that by providing 

increased plantar stimulation by way of the facilitatory insoles, PD participants would be 
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able to overcome the proprioceptive deficits that may be responsible for the stability and 

gait impairments commonly encountered in this population. Both studies required 

participants to complete the modified TUG task which was analyzed in sections including 

gait initiation, approach to the curtain, turn around and walk back from the curtain. 

Gait Initiation 

Analysis of gait initiation in this thesis included time required to move from a 

seated position to foot contact of the first step, the length of the first step taken after 

standing up from the chair as well as stability margin data. In the first study, PD 

participants demonstrated a marked decrease in step length and an increase in the time to 

rise from a seat position to taking the first step compared to control participants, which 

supports previous literature (Buckley, Pitsikoulis, & Hass, 2008; Hass et al., 2005; Martin 

et al., 2002; Rosin et al., 1997; Vaugoyeau et al., 2003). However, the insoles did not 

have an effect of gait initiation in either study. Previous studies that used cutaneous 

stimulation by way of vibration demonstrate improved step length and step time during 

gait initiation (Burleigh-Jacobs et al., 1997; Dibble et al., 2004). In these studies, it 

appears as though the cutaneous cue acted as a cue for participants to react to initiate gait. 

This type of cutaneous cue may have acted similarly to the reaction of a racehorse to an 

electric shock, to which the horse comes out of the gate much faster and with more force 

when electric shock is present. Participants in the previous studies may have reacted 

similarly to the cutaneous cue as it resulted in a greater production of force (Burleigh-

Jacobs et al., 1997) and increased COP displacement and velocity (Dibble et al., 2004). 

However, the cutaneous stimulation in the present studies differs in that the facilitatory 
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insoles were consistently worn throughout the testing period and therefore, did not act as 

a 'go' signal to cue the participants to initiate gait. It is also possible that the facilitatory 

insoles used in the current study stimulate a different ascending pathway to send sensory 

information to the central nervous system. Regardless of how the facilitatory insoles 

differ from other cutaneous stimulation, no improvements similar to previous studies 

were found. This suggests that PD participants may need a cue or a greater stimulus to 

improve gait initiation and the facilitatory insole is not able to supply this type of 

stimulation. 

There was also no difference between the lateral stability of the PD participants 

and healthy controls in the first study with regards to gait initiation. The second study 

also showed no significant differences between either of the groups between pre and post 

assessments for any measures nor did either study show any difference when the 

facilitatory insoles were worn. This may be due to the possibility that when rising from a 

chair and initiating gait, lateral stability is not as important as anterior-posterior stability. 

A study by Inkster et al. found that when completing a sit-to-walk task, PD participants 

demonstrated an exaggerated displacement of COM forward during the preparation phase 

to stand up (Inkster & Eng, 2004). These results make sense; however, there was no 

mention of the lateral motion of the COM. Similarly, most studies that investigate gait 

initiation use a centre of pressure (COP) or a COP-COM separation measure and do not 

measure COM independently. This measure was not used in the current study because the 

stability margin data was more important as it allowed evaluation of the influence of the 

facilitatory insoles compared to previous studies that have used these insoles (Perry et al., 

2008). Nonetheless, lateral COM movement does not seem to be an important measure in 

117 



previous research of gait initiation, it is possible that no changes in lateral stability during 

gait initiation were observed because lateral motion of the COM is negligible when 

performing a sit-to-walk movement. Thus, the insoles could not improve the lateral 

stability in participants because it simply may not matter. 

From these results, it appears as though mechanical facilitation by way of the 

facilitatory insoles is not enough to influence lateral stability measures because laterally 

stability may not play a role in gait initiation. The facilitatory insoles may also not 

provide the correct type of stimulation necessary to improve gait initiation parameters 

similar to previous research. 

Approach 

Common gait deficits in PD participants are observed during straight-line walking. 

These gait deficits include a decrease in stride length, gait speed and step-to-step 

variability compared to healthy counterparts (Hausdorff et al., 1998; Morris et al., 1996). 

The results of the first study also found these deficits in PD participants where a decrease 

step length and velocity were observed. Since these common deficits were found, it is 

clear that the PD participants in this study provide a good representation of the general 

PD population. However, no differences in gait or stability parameters were found during 

the approach when the facilitatory insoles were worn, in either study. This is not 

surprising as the approach only requires participants to walk forward towards the curtain, 

and most participants only took four or five steps to do so. This aspect of the task is 

similar to a pilot study we conducted with the facilitatory insoles that required only 

straight-line walking (Jenkins et al., 2009). In that study, no noteworthy changes in gait 
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parameters were found either. Since the approach aspect is quite simple, it is possible that 

this part of the task was not challenging enough to the participant's stability, thus the 

facilitatory insoles did not have an opportunity to influence these measures. Therefore, 

the facilitatory insoles did not influence straight-line walking when their gait is not 

challenged by something such as secondary motor task. 

Turn 

In a prospective assessment of falls in PD, it was found that falls occurred most 

often when individuals were turning (Bloem et al., 2001). Turning provides an extremely 

difficult aspect of everyday life that can perturb an individual's stability and this provides 

a situation in which the facilitatory insoles may be of great benefit. Previous research 

investigating turns in the PD population found that they tend to increase time taken to 

complete a turn as well as the number of steps taken while turning (Crenna et al., 2007; 

Huxham et al., 2008). The current thesis is in agreement with these past studies as PD 

participants, in the first study, demonstrated an increased time-to-turn and number of 

steps to turn compared to their healthy counterparts. Thus, it appears as though PD 

participants recognize turning as a difficult aspect of gait, and tend to slow down, and be 

more cautious as they complete the turn. It is also possible that they may slow down their 

turns to increase the sensory feedback they are receiving, in order to guide their 

movement during the turn. 

These gait deficits became even more pronounced when PD participants were 

presented with the TrayWG where an even greater increase in time-to-turn and number of 

steps to turn was observed. In the first study, this exaggerated time-to-turn and number of 
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steps to turn in response also may have lead to an increase in the lateral stability of PD 

participants, regardless of which insole was worn. These results suggest that PD 

participants consider turning a postural threat and in order to remain stable, slow down 

and take more steps, which allows their COM to remain in the centre of their BOS. Since 

most individuals complete many turns throughout their day, it is likely that PD 

participants consistently slow down when completing their turns and this becomes a 

normal strategy when turning. It is possible that this strategy has become so innate that 

the turn is already at its most stable; therefore the facilitatory insoles have no room to 

influence the turning strategy or stability measures. 

Conversely, PD participants may have changed their turning strategy when more 

time was spent wearing the facilitatory insoles as differences in turn measures were 

observed in the second study. Previous research has demonstrated that when older adults 

and individuals with PD are placed in situations of high postural threat, they limit the 

displacement and velocity of their COM (Adkin et al., 2000, 2002; Brown, 1997; 

Carpenter et al., 2004). The opposite response was observed in the turning of participants 

who wore the facilitatory insoles for six weeks. Although they still slowed down when 

turning with the TrayWG which suggests that attention has a large influence on gait 

parameters, they also demonstrated an overall increase the COM-BOS range and 

maximum COM-BOS margin. These results suggest that the Facilitatory Insole group no 

longer considers turning a postural threat and are able to allow their COM to move more 

freely when turning, which suggests that they have adjusted their turning strategy and 

become more confident in their ability to complete a turn. Therefore, it appears as though 
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the facilitatory insoles have improved turning in PD participants who have worn them 

over a longer period of time. 

Walk Back 

Similar to the approach, the walk back aspect of the modified TUG task required 

participants to walk from the curtain back to the starting position. Thus, PD participants 

demonstrated the common gait deficits when compared to healthy, older adult population 

in the first study. However, the walk back phase of the modified TUG differed from the 

approach in that participants were required to carry a tray or a tray with glasses for some 

trials. This allowed the task to become more complex as to perturb the balance and gait in 

order to allow for the facilitatory insoles to be influential. In the first study, it appears as 

though the PD participants, when carrying the TrayWG, became unstable. Furthermore, 

when the facilitatory insoles are worn, PD participants widened their BOS. Maki found 

that, despite the expectation that a wider BOS is indicative of greater stability, an 

increased BOS is actually predictive of falls (Maki, 1997). Unfortunately, it appears as 

though the facilitatory insoles did not improve gait and stability parameters, but instead 

may act as a detriment when they are first encountered. This may be occurring because 

the facilitatory insoles are a novel stimulus, which caused the PD participants to respond 

in a negative fashion. 

The tray with glasses condition influenced gait parameters in the second study, 

which suggests that attention still played a large role in gait. However, the Facilitatory 

Insole group showed an improvement in their BOS, where they demonstrated a narrower 

BOS across all conditions. Since there was no change in lateral stability, this 
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demonstrates that the distance of the COM relative to the BOS did not change. Thus, the 

narrower BOS did not negatively influence the stability of the PD participants, which 

suggests that the narrower BOS is beneficial to the gait of individuals with PD. In 

addition, this improvement allowed the BOS variable to return to a value similar to that 

of healthy, older adults. The facilitatory insoles allowed for individuals with PD to return 

to a more normalized gait pattern, without negatively affecting their stability. 

Another improvement in gait was also found as the Facilitatory Insole group 

decreased the amount of time spent in double limb when wearing the facilitatory insole. 

Since double limb support time has been found to be associated with falling in older 

adults (Maki, 1997), a decrease in double limb support time due to the facilitatory insoles 

is a significant benefit. This result follows the hypothesis put forth by Almeida et al. 

(2005) where individuals with PD appear to adapt their gait in order to improve the 

sensory feedback needed to guide movement. The insoles provided the improved sensory 

feedback needed by individuals with PD and no longer need to spend more time in 

double limb support. The changes in BOS and double limb support variables demonstrate 

that the facilitatory insoles allowed PD participants to return to a more normalized pattern 

of gait, which may reduce the risk of falling. 

Although interventions such as gait and balance training have improved various 

gait and stability parameters, they require a great amount of time and resources in order 

to be effective. The facilitatory insoles may represent an easier method to counteract the 

debilitating gait impairments as they are inexpensive in terms of time and finances. More 

importantly, instead of bypassing the issue, they tackle an underlying cause of the 
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impairments. This allows for greater knowledge of the disease in order to improve the 

lives of those affected by PD. 

Where does the proprioceptive deficit lie? 

Although attention can clearly influence gait in individuals with PD, 

proprioception also plays an important role. From previous research, it is apparent that 

individuals with PD demonstrate a proprioceptive deficit. However, it is uncertain as to 

where the deficit lies within the sensory system. Some studies suggest that the deficit is 

located in the sensory receptors, such as plantar mechanoreceptors (Pratorius et al., 2003) 

or lower leg proprioceptors (Dietz & Colombo, 1998). The current thesis also found an 

increase in the sensory threshold of the PD participants compared to the participants. 

Perhaps PD participants require some form of greater mechanical stimulation to be of 

benefit. However, if the deficit was solely in the sensory receptor themselves, the system 

would just require an increase in stimulus intensity to overcome this increased threshold. 

If an analogy can be used, the increased plantar stimulation provided by the facilitatory 

insoles would be like flipping a light switch. Every time the feet contact the ground, the 

facilitatory insoles provide increased stimulation that would augment the existing 

proprioceptive information to the central nervous system (including the basal ganglia and 

motor cortices) to be processed and improvements in gait would be observed 

automatically. From this, we would expect to see improve stability and gait parameters in 

the first study, however, this did not occur. Changes in both stability and gait parameters 

were observed in the first study; however, these changes were not improvements. This 

suggests that the increased stimulus was able to overcome the increased sensory threshold 
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in the receptors and send sensory information to the central nervous system. Yet this 

"new" sensory information did not improve or fix the deficits. Therefore, it appears as 

though the deficit is not within the sensory receptors themselves but lies in the integration 

and processing of the proprioceptive information by the central nervous system. 

The idea that the deficit lies within the central processing of the sensory 

information is also mirrored in the second study. Improvements were observed in some 

gait parameters but deficits in step length and velocity, still existed after long-term use of 

the facilitatory insole. These results are troubling as the plantar stimulation using 

vibrational insoles improved stride length, velocity and step to step variability in previous 

research (Novak & Novak, 2006). Since "flipping the light switch" did not lead to 

instantaneous improvements in gait and stability in the first study, perhaps improving 

sensory feedback is similar to a volume control instead. If the amount of stimulus is 

increased, such as using vibration, this may improve the ability of the central nervous 

system (including the basal ganglia) to integrate the sensory information to allow for 

better movement control and consequently, improve gait parameters. This idea may 

account for why some improvements were observed when the facilitatory insoles were 

worn for six weeks but were unable to improve specific gait parameters such as step 

length and velocity. Participants spent more time with the facilitatory insoles and some 

improvements were observed, so perhaps "turning up the volume" by increasing the time 

spent with the facilitatory insoles or introducing a greater stimulus, such as vibration. 

This may be necessary in order to improve the integration and processing of the sensory 

information within the central nervous system. 
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Another theory has been suggested that might account for the lack of 

improvement in gait parameters, such as stride length and velocity. Unlike the BOS 

variable that seems to be influenced by the proprioceptive system, previous research has 

suggested that gait variables such as stride length are preset and not necessarily regulated 

by proprioceptive inputs. Morris and colleagues (1996) postulated that the stride length 

deficits observed in individuals with PD are due to problems related to the interaction of 

the defective basal ganglia with the supplementary motor area (SMA). They suggested 

that the basal ganglia interact with the SMA for learned movements, such as walking. 

Since the basal ganglia are abnormal in PD, they appear to disturb the motor sequence 

and the performance of that motor sequence. From this, the authors reasoned that step 

length is preset by these cortical structures (Morris et al., 1996). This idea emerges in the 

current research as the increased plantar stimulation provided by the facilitatory insoles 

did not influence gait parameters such as step length or velocity. Thus, the facilitatory 

insoles were unable to influence the motor sequence that is preset by the basal ganglia 

and SMA and consequently, could not improve the stride length of PD participants. 

However, it is also possible that the stimulation provided by the facilitatory 

insoles used in the current study differs from previous research that used vibrational 

devices (Burleigh-Jacobs et al., 1997; Dibble et al., 2004; Duysens et al., 2008; Novak & 

Novak, 2006). The raised ridges that placed mechanical pressure stimulates the Merkel 

discs and Ruffini endings, whereas vibration stimulates the Meissner's corpuscles and 

Pacinian corpuscles found superficially and deep in the skin, respectively (Germann, 

2005). Thus, a possible reason that the insoles did not improve various aspects of gait, 
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specifically gait initiation measures as well as stride length and velocity, could reflect the 

difference in which sensory receptors were stimulated by the insoles. 

Regardless of why gait parameters such as step length did not improve, it is clear 

the mechanical stimulation by way of the facilitatory insole was able to overcome the 

increased sensory threshold in PD participants and influence stability and various gait 

parameters such as BOS and double support time. However, the stimulation provided by 

the facilitatory insoles was not enough to overcome all gait deficits, which strongly 

suggests that the proprioceptive deficit lies somewhere in the processing of the sensory 

information within the central nervous system. 

Future directions 

Developing new interventions to counteract the stability and gait deficits 

experienced by individuals with PD is of great importance. Although various strategies, 

such as gait training or visual cues, have been found to be advantageous, they require 

intensive training and lack efficacy in everyday life, respectively. These interventions 

also try to solve the problem with out addressing the potential causes of the very gait 

impairments they are attempting to improve. Using mechanical facilitation allows for an 

investigation into the proprioceptive deficit observed in individuals with PD and provides 

a potential method to counter this deficit. 

In order to evaluate the effectiveness of the facilitatory insole, the modified TUG 

task was used to provide a situation that perturbed stability and gait. Although 

unsuccessful in doing so for healthy, elderly participants, the modified TUG task was 

certainly effective in drawing out gait and stability deficits in the PD participants. 
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Therefore, the modified TUG task was useful in assessing gait and stability parameters in 

a clinical population. 

Even though the facilitatory insoles did not appear to benefit individuals when 

they are worn initially, individuals with PD benefited from the long term use of the 

insoles. This was evident in the stability and gait improvements found in the turning and 

walk back phases of the modified TUG task. These results are promising as the 

facilitatory insoles as an intervention are an inexpensive, non-invasive and non-time 

consuming method of counteracting the stability and gait impairments in individuals with 

PD. 

It is important to continue the investigation into whether mechanical facilitation, 

by way of the facilitatory insoles or other means, is an effective way to improve the gait 

and stability deficits in the PD population. Future research should continue to evaluate 

the benefits received from the facilitatory insoles over an extended period of time and 

whether greater benefits may occur with this additional time spent with the insoles. 

Similarly, since benefits have also been demonstrated with use of the vibrational stimulus, 

it may be advantageous to use this type of stimulus in various situations. This could 

include using a continuous vibrational stimulus to improve gait initiation, instead of as a 

cue to initiate gait. As well, it may be valuable to use a vibrational stimulus in 

conjunction with a secondary task to pursue the role of attention and proprioception with 

regards to gait in individuals with PD. 
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APPENDIX A 

Due to the nature of the task, the data for some participants was incomplete so 

some trials were discarded. Since the number of trials differed from participant to 

participant for each condition (see Table 1 and 2 for percentage of missing trials for the 

first and second study, respectively), we chose to analyze three of the five trials for each 

participant. The highest and lowest trials were discarded to allow for the three trials with 

median values for the variables to be analyzed for each condition. Also, some participants 

had to be dropped from analysis all together due to insufficient data. 

Other options for analysis were explored, however these options did not show any 

significant effects for the measures investigated. Below are examples of ANOVA tables 

for the various options explored. 

Table 1. Percentage of missing trials for stability margin data for first study. 

Healthy 
Controls Blank Insole Facilitatory insole 

No Tray Tray TrayWG No Tray Tray TrayWG 
Approach 3.85 9.23 6.15 4.62 7.69 0.77 
Turn 5.71 8.57 8.57 5.71 5.71 11.43 
Walk Back 9.09 12.73 7.27 5.45 7.27 9.09 
PD 
Approach 12.31 8.46 12.31 11.54 10.77 20.38 
Turn 13.85 9.23 13.85 15.38 12.31 21.54 
Walk Back 11.54 6.15 17.69 11.54 9.23 23.85 
Tray WG, Tray with glasses condition 
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Table 2. Percentage of missing trials for stability margin data for second study. 

Group Blank Insole Group 
Period Pre-Assessment Post-Assessment 
Condition Blank Insole Facilitatory insole Blank Insole Facilitatory insole 

No 
Tray Tray TrayWG 

No 
Tray Tray TrayWG 

No 
Tray Tray TrayWG 

No 
Tray Tray TrayWG 

Approach 3.57 5.71 7.86 10.71 8.57 7.14 12.22 11.67 16.67 11.67 16.67 17.22 
Turn 20.00 13.33 33.33 16.67 20.00 23.33 8.57 14.29 20.00 20.00 25.71 42.86 
WB 26.00 16.00 32.00 18.00 26.00 56.00 31.11 25.56 37.78 38.89 38.89 37.78 

Group Facilitatory Insole group 
Period Pre-Assessment Period Post-Assessment Period 
Condition Blank Insole Facilitatory insole Blank Insole Facilitatory insole 

No 
Tray Tray TrayWG 

No 
Tray Tray TrayWG 

No 
Tray Tray TrayWG 

No 
Tray Tray TrayWG 

Approach 19.44 16.11 12.78 10.00 12.22 11.11 18.13 16.25 13.75 18.13 14.38 15.63 
Turn 37.50 30.00 40.00 25.00 30.00 25.00 24.00 20.00 32.00 24.00 20.00 32.00 
WB 48.57 34.29 48.57 41.43 38.57 45.71 38.33 33.33 25.00 28.33 35.00 40.00 

Tray WG, Tray with glasses condition 

GP, Gait and Posture score 
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ANOVA TABLES FOR VARIOUS METHODS OF ANALYSIS OF STABILITY 
MARGIN DATA 

1) Using the mean across trials to fill in missing values 

Example: Minimum stability margin during walk back 

Summary of all Effects; design: (adstudy.sta) 
1- INSOLE, 2-CONDITIO, 3-FOOTFALL, 4-TRIAL 

df MS df MS 
Effect Effect Error Error F p-level 

1 1 .000344 9 .000605 .567986 .470316 
2 2 .000093 18 .000513 .181168 .835797 
3 1 .004286 9 .003882 1.104160 .320750 
4 2 .000046 18 .000235 .195883 .823838 
12 2 .000892 18 .000396 2.253125 .133883 
13 1 .000070 9 .000571 .123214 .733651 
23 2 .000536 18 .000335 1.599776 .229357 
14 2 .000718 18 .000211 .410260 .155482 
24 4 .000241 36 .000270 .892113 .478644 
34 2 .000106 18 .000216 .491636 .619602 
123 2 .000222 18 .000610 .364767 .699375 
124 4 .000320 36 .000260 1.231109 .314962 
134 2 .000419 18 .000250 1.678869 .214514 
234 4 .000310 36 .000243 1.273445 .298427 
1234 4 .000306 36 .000158 1.930658 .126426 
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2) Collapsing across trials to avoid missing data 

Example: COM-BOS range during walk back 

Summary of all Effects; design: (adstudy.sta) 
1-INSOLE, 2-CONDITIO, 3-FOOTFALL, 4-TRIAL 

df MS df MS 
Effect Effect Error Error F p-level 

1 1 .001185 8 .006808 .174039 .687517 
2 2 .014834 16 .008738 1.697658 .214479 
3 1 .109458 8 .039087 2.800389 .132778 
4 2 .006770 16 .003340 2.027067 .164183 
12 2 .004556 16 .007379 .617505 .551655 
13 1 .020490 8 .014733 1.390773 .272155 
23 2 .039116 16 .015685 2.493938 .114081 
14 2 .000572 16 .007009 .081651 .921975 
24 4 .005108 32 .004262 1.198494 .330508 
34 2 .003530 16 .004381 .805861 .464029 
123 2 .002557 16 .009598 .266376 .769482 
124 4 .008989 32 .007242 1.241206 .313295 
134 2 .017931 16 .008768 2.045005 .161852 
234 4 .003079 32 .001669 1.844377 .144622 
1234 4 .000725 32 .003519 .206131 .933133 
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