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Inaccuracies in Eviction Records: Implications for Renters and
Researchers
Adam Porton, Ashley Gromis and Matthew Desmond
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ABSTRACT
Administrative court records are increasingly used to study the prevalence
of eviction. Yet inaccuracies in court records bias estimates of eviction and
distort tenants’ true rental histories. This is the first study to systematically
assess the prevalence of inaccuracies across jurisdictions. Drawing on over
3.6 million administrative eviction court records from 12 states, we find
that, on average, 22% of eviction records contain ambiguous information
on how the case was resolved or falsely represent a tenant’s eviction
history. Adjusting for multiple inaccuracies in the data produces signifi-
cantly different eviction rate estimates. Cases with increased complexity,
such as those involving multiple tenants and lawyers, are more likely to
contain inaccuracies. However, inaccuracies vary most prominently
between states, indicating that state court system characteristics funda-
mentally shape the official record of the evicted population.
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In recent years, a growing body of research has focused on eviction. Researchers from different
disciplines have employed multiple methods to study the prevalence, causes, and consequences of
forced displacement from housing (Brickell, Arrigoitia, & Vasudevan, 2017; Nelson, 2019). Studies
have shown that evicted families often face downward residential mobility (Desmond &
Shollenberger, 2015) and can become trapped in a cycle of poverty, as eviction has been linked to
job loss, depression, and prolonged homelessness (Crane & Warnes, 2000; Desmond, 2016).
Accordingly, researchers have begun to analyze the effectiveness of federal, state, and local policies
aimed at preventing eviction, from legal interventions such as providing an attorney to tenants in
housing court (Greiner, Pattanayak, & Hennessy, 2012; Seron, Martin, Gregg, & Kovath, 2001) to
nonhousing related programs such as Medicaid expansion (Zewde, Eliason, Allen, & Gross, 2019).

Recognizing the negative impacts of eviction on families, schools, and communities, policymakers
have introduced legislation to lower rates of displacement and promote residential stability. At the
municipal level, cities like New York City and San Francisco, California, have recently instituted the
right to counsel for families facing eviction (Mironova, 2019), whereas cities like Cleveland, Ohio,
have established diversionary community courts that provide tenants with legal aid and social
services (Center for Court Innovation, 2019). At the state level, states like Virginia have deepened
their investment in affordable housing in direct response to recently published data showing
eviction to be widespread in the state (Desmond et al., 2018b; Office of Governor Ralph
S. Northam, 2019), whereas states like Washington have passed legislation sealing eviction records,
recognizing that those records can negatively affect renters’ housing prospects, credit histories, and
access to affordable housing programs (Office of Senator Patty Kuderer, 2019). At the federal level,
multiple lawmakers have recently introduced legislation aimed at reducing evictions, including the
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bipartisan-sponsored Eviction Crisis Act of 2019, which calls for better nationally representative
eviction data, funds local interventions, and extends protections to tenants with false eviction
records (Office of Senator Michael Bennet, 2019).

Housing policy researchers and policymakers themselves are increasingly interested in understand-
ing the dynamics of displacement and developing interventions aimed at preventing eviction.
Understanding the scope and geography of the problem and evaluating the effectiveness of different
policy interventions requires having access to accurate eviction data across multiple local and state
jurisdictions. However, there are no comprehensive local or federal statistics (Hartman & Robinson,
2003) or nationally representative surveys (Desmond& Kimbro, 2015) that reliably estimate the number
of U.S. households evicted each year. Administrative housing court records from civil courts provide
a novel and more comprehensive source of information for estimating the population prevalence of
formal eviction.1 Since administrative records are seldom created with research in mind, they must be
critically assessed for omissions, errors, and biases (Loftin & McDowall, 2010; Salganik, 2017).

Housing court records in particular are known to contain data-entry mistakes, vague case out-
comes, and the misleading inclusions of unadjudicated cases, all of which can distort estimates of
eviction (Kleysteuber, 2006; Spector, 2000). Beyond their impact on statistics, inaccurate or incom-
plete court records also misrepresent the nature and frequency of tenants’ eviction histories.
Landlords routinely deny prospective renters who appear to have been previously filed against or
evicted (Gold, 2016). Inaccurate court records can therefore prevent tenants from accessing desirable
neighborhoods and public housing (Desmond & Shollenberger, 2015; Greiner et al., 2012). For these
reasons, auditing eviction court records for errors promotes both statistical accuracy and judicial
fairness. It also provides policymakers with a straightforward way to evaluate the soundness of an
important source of eviction data.

Drawing on over 3.6 million administrative eviction court records from 12 states, we find that, on
average, 22% of eviction records contain ambiguous information on how the case was resolved or
falsely represent a tenant’s eviction history. We demonstrate that researchers who make different
decisions about how to treat eviction data will produce significantly different results from the same
data. Cases with increased complexity, such as those involving multiple tenants and lawyers, are
more likely to contain inaccuracies. However, inaccuracies vary most prominently between states,
suggesting that state court systems fundamentally shape the official record of the evicted popula-
tion. Accounting for inaccuracies in eviction court data promotes researchers’ abilities to conduct
evidence-based assessments of eviction- and housing-related policies and to make comparisons
across different studies and geographies.

The Challenges of Measuring Eviction

Most estimates of eviction are generated from population surveys that undercount its prevalence.
The disadvantaged households who are most at risk of eviction, including the residentially unstable
and homeless, are not well represented in standard household sampling frames (Desmond, 2012;
Tourangeau, Edwards, & Johnson, 2014). Furthermore, surveys designed to measure eviction in
specific metropolitan areas (e.g., Los Angeles Family and Neighborhood Survey, California;
Milwaukee Area Renters Study, Wisconsin) or among targeted populations (e.g., Fragile Family and
Child Well Being Study) are by design limited in scope. In addition, how eviction-related survey
questions are asked may undermine their ability to reveal a complete picture of housing displace-
ment (Desmond & Kimbro, 2015). For example, the American Housing Survey (United States Census
Bureau, 2015) only directs eviction questions to those who have recently moved, and both the
American Housing Survey and the Panel Study on Income Dynamics (The Institute for Social
Research, 2015) provide response categories that group eviction with many other types of forced
moves (e.g., foreclosures, job transfers, natural disasters). In total, survey data have yet to produce an
accurate and complete accounting of eviction in America.
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Administrative data are amore comprehensive source of information about court-ordered evictions.
Formal eviction cases are tracked via publicly accessible court records, and researchers have started
using these records to estimate eviction prevalence and study its effect on housing displacement
(Desmond et al., 2018b; Raymond, Duckworth, Miller, Lucas, & Pokharel, 2016; Shelton, 2018). Yet there
are several key barriers to using administrative data for research purposes. For one, comprehensive
administrative data sets, including housing court records, are often time-consuming and expensive to
build (Hartman & Robinson, 2003; Newman, 2010; Sawicki & Craig, 1996). Once assembled, housing
court data are not free from error or bias. One reason we expect inaccuracies in eviction records is the
high volume of cases processed by housing courts. Eviction cases are often decided in a matter of
minutes, and few tenants are represented by attorneys who could slow down the process or help
ensure accurate recordkeeping (Desmond, 2012; Gold, 2016). Indeed, prior scholarship using local data
has documented inaccuracies in housing court records including unclear or misleading judgment
outcomes, unadjudicated cases that remain on a tenant’s eviction history, and cases that show legal
evictions when no eviction occurred (Hartman & Robinson, 2003; Kleysteuber, 2006; Spector, 2000).

Eviction data, like other kinds of administrative records, must be carefully examined to avoid
producing biased estimates (Connelly, Playford, Gayle, & Dibben, 2016). However, there are no
studies that systematically identify eviction record inaccuracies using large, multistate data. As
a result, it is unclear whether prior research that draws on court records to assess the causes and
consequences of eviction has adequately accounted for court record inaccuracies. For example, two
recent articles that analyze eviction court data for Atlanta, Georgia, and Lexington, Kentucky, do not
clarify whether or how they accounted for the inaccuracies we identify here (Raymond et al., 2016;
Shelton, 2018). In general, this lack of clarity may contribute to ambiguity in how eviction is
measured in analyses (which may differ depending on the research questions) and hinder reprodu-
cibility of study results by others researchers.

Beyond the impact of faulty records on eviction statistics, inaccurate eviction data are also
harmful to tenants. Because landlords routinely discriminate against prospective renters who have
a history of involvement with housing court, any false or misleading information in a tenant’s file
puts them at greater risk of being denied housing in the future (Kleysteuber, 2006). And since
eviction records can affect credit scores, inaccurate eviction case information can also detrimentally
impact a tenant’s borrowing and employment prospects (Greiner et al., 2012). Although the Fair
Credit Report Act requires tenant screening companies to verify the accuracy of their reports, lax
enforcement disincentivizes them from thoroughly checking for errors (Spector, 2000).

The uncritical use of administrative records disproportionately harms marginalized groups. For
example, despite the fact that background checks based on criminal court records also contain
inaccurate information, they are still routinely used in employment and housing screening (Walter,
Viglione, & Tillver, 2017; Yu & Dietrich, 2012). The harm caused by inaccurate criminal records is
exacerbated for groups that have disproportionate contact with the criminal justice system, parti-
cularly low-income black and Latino men (Western, 2006). By the same token, inaccurate eviction
records are more likely to harm the marginalized communities who are most at risk of experiencing
an eviction, particularly low-income black and Latina women (Desmond, 2012). Fundamentally,
inaccurate eviction court records cause harm by overrepresenting marginalized renters in the
data. This differs from many other types of administrative data, which cause harm by underrepre-
senting marginalized groups and communities (Maantay & Maroko, 2009; Park & Evans, 2018).

Evaluating Eviction Court Records for Inaccuracies

This is the first study to systematically catalog the prevalence and impact of inaccuracies in eviction
court data. To do so, we search for two broad types of inaccuracies: ambiguous records and false
records.2 Ambiguous records are court records that fail to clearly indicate the case’s result. They appear in
two forms: unresolved cases and opaque cases. Unresolved cases are missing both judgment dates and
judgment information, suggesting that the cases were never adjudicated. Opaque cases contain
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unclear judgment fields that fail to clarify which party, if any, prevailed in court. Opaque cases are
particularly troublesome for estimating eviction rates since they represent completed cases but
obscurewhether a formal evictionwas ordered. Both unresolved and opaque cases potentially penalize
tenants who may have won or settled their disputes but whose records do not clearly reflect that fact.

False records incorrectly indicate that a tenant was filed against or evicted. They present as
duplicate cases and serial cases. Duplicate cases appear in the record multiple times with the exact
same case characteristics and are likely the results of recordkeeping mistakes. Duplicate cases can
inflate both eviction statistics and tenants’ eviction histories since they represent multiple instances
of the same case. Serial cases are groups of cases involving the same landlord filing repeated eviction
claims against the same tenant at the same property. Serial cases often end in an eviction judgment,
but the presence of subsequent cases between the same parties indicates that the landlord did not
remove the tenant. Serial cases artificially increase displacement statistics and saddle tenants with
a distorted eviction history. Unlike duplicate cases, serial cases are genuine case filings and are
therefore not strictly recordkeeping errors. Instead, they result from landlords using eviction filings
to enforce past-due rent payments rather than clear intentions to remove tenants from a property
(Garboden & Rosen, 2019; Immergluck, Ernsthausen, Earl, & Powell, 2019). Figure 1 shows the general
progression of eviction cases in courts, including where the types of inaccuracies discussed here are
likely to be generated.

Using the above framework to examine inaccuracies in court records we investigate three main
questions: What is the prevalence of ambiguous and false records in eviction court data? How do
ambiguous and false records affect the estimation of eviction statistics? And what case character-
istics predict the likelihood that a case will contain an inaccuracy?

Eviction Court Record Data Used in the Analysis

We obtained statewide eviction court data from 12 states: Alabama, Connecticut, Hawaii, Iowa,
Minnesota, Missouri, Nebraska, North Carolina, North Dakota, Pennsylvania, South Carolina, and
Virginia.3 The data we received cover a varying number of years. To maximize the comparability of
records, we restricted our analytic sample to 3,643,023 cases filed between 2011 and 2015.

Although there was some variation in the information included from each state, most data sets
contained the following main fields: case number, county where the case was filed, an identifier of
the filing court, case filing date, case judgment date, defendant and plaintiff names, defendant and
plaintiff addresses, and information about the outcome of the case. In addition, the data for four
states—Nebraska, Pennsylvania, South Carolina, and Virginia—contained variables indicating
whether the defendant and plaintiff were represented by an attorney.

We formatted and geocoded the defendant addresses to create a standardized street address.
Approximately 93% of the defendant addresses were geocoded at the point or street address level,
both of which are precise enough to provide an accurate standardized street address.4 We also
checked defendant name fields for anonymous monikers: John/Jane Doe, resident, or occupant.
Identifying anonymous defendants was an important step in computing the percentage of duplicate
and serial cases since those measures look for identical combinations of a tenant’s name and
address. Finally, we marked and excluded cases that appeared to involve a commercial defendant,
using regular expressions to search for terms commonly associated with businesses.5

We marked cases unresolved if all outcome fields attached to the case, as well as their correspond-
ing judgment date fields, were left blank. Wemarked cases opaque if all of their outcome codes failed
to definitively indicate whether the case was decided in favor of the plaintiff or the defendant, or was
settled. Opaque codes have values such as judgment, verdict, disposed, and other. By comparison,
nonopaque codes have values such as find for plaintiff, find for defendant, settled, and dismissed.
Opaque cases also include those with blank outcome fields but a populated judgment date variable.
We classified outcome codes as opaque after confirming with courts that there was no way to
identify from the electronic case record which party had prevailed.6 We marked cases as ending in
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a definitive eviction judgment if they contained codes like finding for plaintiff, eviction judgment,
summary judgment, or similar.

We checked for duplicate cases on the basis of six key variables: court identifier, filing date,
defendant name, standardized defendant address, case judgment date, and money judgment
amount.7 We marked a case as a duplicate if any of its defendant listings perfectly matched another

Figure 1. General progression of eviction cases in courts.
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defendant listing on a different case across all six of these fields. Only duplicated cases beyond the
first instance were classified as duplicates.8 We marked cases as serials if they contained any
defendants who had been filed against multiple times at the same standardized address but on
different dates. All occurrences but the final one of a defendant name–address combination were
classified as serials since these nonfinal cases are the ones that, when they end in an eviction
judgment, increase eviction rate statistics.9

Measuring Inaccuracies in Eviction Court Records

First, we provide statewide descriptive statistics on the prevalence of ambiguous and false eviction
records. Second, we analyze the impact of inaccuracies on eviction rates. To do so, eviction statistics
are measured at the state level and averaged across the 5-year sample period. When calculating
eviction statistics, we distinguish between two main measures: the case filing rate and the eviction
rate. Case filings are all cases filed with a court, regardless of the outcome. We define the case filing
rate as the number of case filings divided by the number of renter households in the state. The
eviction rate is the number of filed cases that resulted in an eviction judgment, divided by the
number of renter households. To measure the uncertainty introduced by inaccuracies in eviction
records, we calculate (a) a baseline unadjusted eviction rate that assumes all opaque outcomes are
evictions and includes duplicate and serial cases in eviction counts; and (b) an adjusted eviction rate
that assumes all opaque outcomes are not evictions and that excludes duplicate and serial cases.10

Third, we run a set of logistic regression models to assess whether case characteristics predict the
likelihood that a case exhibits a particular inaccuracy. The covariates in these models include case
length, number of unique defendants, legal representation, and the filing court’s monthly case
volume. These variables capture the complexity of each eviction case (e.g., how long it lasted, how
many people were involved) as well as each court’s capacity to adequately address such complexity.
We measured case length by subtracting the filing date from the final action date. We created
a variable that counted the number of unique defendant names associated with a case.11 For the four
states with attorney information, we generated two dummy variables: one indicating whether
attorney names were present for a defendant on a case, and one indicating whether plaintiff
attorney names were present.12 We include legal representation to assess whether there is a
relationship between attorneys and the accuracy of eviction records. Finally, we generated
a monthly court volume variable by summing the number of cases filed monthly in each county
court.

We also include several control variables in the models. Eviction filings often peak during summer
months (Desmond, 2012). For this reason, we control for the season in which the case was filed. We
also control for case filing year to account for variation in the prevalence of inaccuracies over time.
We estimate separate case-level logistic regression models for each state and each type of inaccu-
racy. Descriptive statistics for all variables are shown in Table A1.

The Difference in Inaccuracy Rates Across States

Figure 2 shows the percentage of cases that contain inaccuracies. We find that, on average, 22% of
state eviction cases are ambiguous or false records. The state with the lowest overall inaccuracy rate
is Connecticut, where 7.40% of eviction records contain inaccuracies. The state with the highest
overall inaccuracy rate is South Carolina, where 46.57% of eviction records contain inaccuracies.
Looking at each of the four inaccuracy types individually shows additional variation. Four states—
Minnesota, Missouri, North Dakota, and Nebraska—have no unresolved cases. This indicates that
some states purge unresolved cases from their systems, do not include unresolved cases in the
records released to outside parties, or ensure that all cases are formally closed. By contrast, the
remaining five states contain unresolved cases in amounts ranging from 118 in Connecticut to 9,769
in South Carolina. In these states, hundreds or thousands of people whose eviction cases were never
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adjudicated remain in the court record. The public release of these cases is potentially harmful to
tenants whose truncated contact with the court system may still be noted by landlords.

The overall prevalence of opaque cases is noticeably higher than that of unresolved cases, and it
varies more widely between states. In Virginia, only a small percentage of cases have judgment codes
that make it impossible to definitively determine the case’s outcome. In North Dakota, however,
almost 17% of cases have opaque codes. High levels of opaqueness add uncertainty to research
efforts aimed at estimating eviction rates. For tenants, the impact is more complex. Tenants with
opaque outcomes who in fact won their cases are potentially harmed since their record does not
clearly communicate their victory. However, tenants with opaque outcomes who were in fact legally
evicted may benefit from the ambiguity in the record.

The second panel of Figure 2 shows the prevalence of duplicate cases. Overall, state duplicate
rates are extremely low, with an average rate across all 12 states of just 0.12%. In five states—
Alabama, Connecticut, Hawaii, Nebraska, and North Dakota—there are almost no duplicate records.
Despite the small percentage of duplicates, hundreds of defendant listings are still affected in
absolute terms, depending on the size of the state.13 The number of extra defendant listings gives
a fuller picture of the number of tenants impacted by duplicate cases. In Minnesota, for example,
duplicate cases affect more than 800 defendant listings. And despite Virginia’s modest 0.11%
duplicate rate, 1,004 defendant listings are affected.

The second panel of Figure 2 also shows the prevalence of serial cases for each state. Serial case
rates are much higher, and vary much more substantially, than duplicate case rates. In Pennsylvania,
173,681 cases (31.02% of total cases) are serial cases in which the same tenant appeared on
a subsequent case at the same property. Of these cases, 35.51% showed an eviction judgment in

Figure 2. Prevalence of inaccuracies by state and type.
Note. North Carolina did not contain outcome code fields needed to determine unresolved and opaque cases. Iowa courts use a
simplistic coding scheme that precludes them from unresolved and opaque analysis.
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the official record (see Table A2) despite the fact that the tenant was never expelled from their home.
In total, the substantial differences between state rates for all four inaccuracies suggest that features
of each state’s court or legal system directly shape the quality and scope of eviction court records.

The Impact of Inaccuracies on Eviction Statistics

Figure 3 shows how opaque, duplicate, and serial eviction records impact statewide eviction rates.
We report averages from the 5-year period from 2011 to 2015 and compare an adjusted eviction rate
—which excludes opaque, duplicate, and serial cases from eviction counts—with an unadjusted rate
that does not account for these inaccuracies. These unadjusted and adjusted measures delineate the
range of possible eviction rates that could be produced by researchers analyzing the same court
data. The adjusted eviction rate is lower than the unadjusted eviction rate in every state. We
document considerable variation in the difference between the two rates across states. In South
Carolina, where 43% of cases are serial cases, the unadjusted eviction rate is 21.3%. Removing
ambiguous and false evictions from the records lowers the eviction rate to 11.5%, a reduction of 46%.
In Missouri, which has a relatively high prevalence of opaque cases, removing ambiguous and false
evictions lowers the average annual eviction rate by 19%. Across all states, adjusting for these
inaccuracies reduces state eviction rate estimates by an average of 14%.

Some inaccuracies bias eviction rates in more straightforward ways than others. For example,
including false records inflates eviction rates because the same household is counted as being
evicted multiple times. Ambiguous records, on the other hand, can inflate or deflate rates depending
how researchers handle unresolved and ambiguous cases. In some instances, cases may be unre-
solved because the tenant vacated the property before an eviction was adjudicated. Certainly, some
opaque cases result in the household being displaced, even if the outcomes appear less straightfor-
ward. As such, removing ambiguous records may overadjust the eviction rate and underestimate the
number of households displaced.

Figure 3. Average annual eviction rates before and after adjusting for inaccuracies, 2011–2015.
Note. States sorted by size of percentage decrease in eviction rates after adjusting for inaccuracies. North Carolina did not contain
outcome code fields needed to compute eviction rates. Iowa’s adjust eviction rate does not account for unresolved or opaque cases.
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False and ambiguous evictions may differently impact the calculation of eviction measures other
than the displacement rate. If researchers are interested in how courts are utilized by landlords in the
management of their property, including as a tool to extract rent payments (Garboden & Rosen,
2019; Immergluck et al., 2019), multiple serial filings resulting in eviction judgments against the same
household would be an important component of this measure. Most serial cases, regardless of their
placement in the chronology of household filings, are resolved. (As shown in Figure 2, many states
with high proportions of serial cases still have a very low prevalence of unresolved cases). Although
eviction judgments are more common in cases representing the final appearance of a household in
the court records, many of the preceding serial cases also result in eviction judgments (see Table A2).
This is consistent with previous findings that some landlords who file serial cases are not seeking to
evict their tenants and are instead using housing court as a rent collection mechanism. And whereas
only serial cases that end in eviction judgments distort measures of displaced households, all serial
cases increase the number of landlord–tenant disputes that appear in a tenant’s housing record.
Cross-state variation in the percentage of serial cases resulting in eviction judgments demonstrates
differences in how these cases are handled by landlords and courts.14

Court Case Attributes That Predict Inaccuracy

We now examine whether a case’s characteristics predict the likelihood that it contains an inaccu-
racy. Table 1 displays results for models predicting the likelihood that a case has entirely opaque
outcomes. In four states, the coefficients for number of unique defendants are both positive and
significant, meaning cases with more defendants are more likely to be opaque. In Missouri, for
example, each additional unique defendant increases a case’s odds of being opaque by an average
of 60%. For these states, the increased paperwork and split judgments common in multiple
defendant cases may compromise accurate recordkeeping. Cases with defendant legal representation
are also more likely to have opaque judgments. In Virginia, for example, a case with a defendant
attorney is almost 9 times more likely to be opaque than a case without an attorney. This finding is
somewhat counterintuitive, since we might expect that an attorney would help ensure accurate
recordkeeping. However, it is possible that defendants with attorneys are able to secure somewhat
unique settlements that are poorly captured in the court record. Finally, in five states, cases in courts
with higher monthly court volumes are less likely to be opaque. This result may be explained by the
fact that a higher percentage of cases in high-volume courts are unambiguously labeled default
judgments.

Table 2 presents coefficients for models predicting the likelihood that a case is a duplicate. In five
states, cases with higher numbers of unique defendants are more likely to be duplicates. This
relationship is expected since a case with more defendants is by definition more at risk of having
a duplicated defendant. By contrast, a higher monthly court volume decreases a case’s odds of
duplication for North Carolina but has no effect for the remaining states. This mixed result indicates
that although there isn't a strong relationship between court burden and duplicates in eviction
records, some states may still be better equipped to handle a heightened burden, perhaps with
additional staffing or technological procedures. In all three states with the measure, having
a defendant attorney increases the likelihood that a case is a duplicate. For example, in
Pennsylvania, cases with a defendant attorney have odds of duplication that are over 3 times higher
than cases without a defendant attorney. It is possible that by slowing down the process and actively
contesting cases, tenants with attorneys increase the number of actions associated with their file and
by extension their likelihood of being duplicated.

Table 3 details results for models predicting the likelihood that a case is part of a chain of serial
cases. Cases in which tenants are represented by an attorney are significantly less likely to be serial
cases. In fact, in Pennsylvania, South Carolina, and Virginia, legal representation reduces the odds
that a case is a serial case by between 65% and 70%. Several factors may be behind this finding.
Tenants showing up to court with an attorney may dissuade their landlord from pursuing
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a subsequent eviction against them. It is also possible that represented tenants are a select group
who, because they are able to secure an attorney, are also more likely to avoid a cycle of serial
evictions. Beyond the attorney effect, we find a seasonality pattern in a case’s likelihood of being
a serial case. In 9 of the 12 states, cases filed in winter months have a higher likelihood of being serial
compared with cases filed in the summer. This could reflect a reluctance by landlords to carry out
evictions in the winter, when finding new tenants may prove more difficult. It may also reflect
additional efforts by tenants to make rent or negotiate with landlords in the colder months.

Although several case-level features predict inaccuracies, few are consistently predictive across all
states. The one notable exception is defendant attorney, which predicts higher levels of opaque and
duplicate cases, as well as lower levels of serial cases, for all states where the measure is available.
Overall, the lack of consistency further suggests that state-level factors are primarily responsible for
shaping eviction court records.15

The Significance of Eviction Record Inaccuracies

A growing number of researchers have begun to investigate the dynamics of eviction. Their work has
helped to inform several policy interventions, introduced at multiple levels of government, intended
to promote residential stability by preventing forced displacement. The findings of this study have
implications for researchers who rely on eviction data, policymakers looking to accurately assess the
scope of the issue and evaluate the impact of eviction-prevention initiatives, and tenants whose lives
are directly affected by false eviction records.

Court data are the most comprehensive source of information about legally sanctioned evictions.
But inaccurate or incomplete court records can distort our understanding of who gets evicted and
how often. In this study, the first to systematically catalog inaccuracies in eviction records, we
examine 3.6 million eviction cases from 12 states. We identified four kinds of inaccuracies in the
court records, the frequencies of which vary significantly between states. By contrast, there is little
variation within states, and there are few case-level attributes that consistently predict inaccuracy.
This suggests that structural factors present in state legal and court systems are responsible for
shaping the reliability of eviction records. We find that adjusting for court record inaccuracies
reduces annual state eviction rates by an average of 14%. Depending on how they classify false
and ambiguous records, researchers who draw on the same data can arrive at significantly different
estimates of eviction prevalence.

Accurate estimates of eviction require minimizing the uncertainly and misrepresentation present
in administrative court records. Whereas past research using local data identified some of the
inaccuracies described here (Hartman & Robinson, 2003; Kleysteuber, 2006; Spector, 2000), our

Table 2. Logistic regression results for the likelihood of duplicate cases.

Iowa Minnesota Missouri
North
Carolina Pennsylvania

South
Carolina Virginia

Length of case (in 30-day periods) n/a 1.00 1.01 n/a 1.01** 1.05*** n/a
(0.05) (0.03) (0.00) (0.01)

Monthly court case volume (in
hundreds)

0.88
(0.07)

1.02
(0.02)

0.92
(0.09)

0.92***
(0.02)

1.00
(0.01)

1.00
(0.09)

0.98
(0.02)

Number of unique defendants 1.48*** 1.83*** 1.66*** 2.15*** 1.08 n/a 1.48***
(0.13) (0.08) (0.15) (0.32) (0.16) (0.11)

Defendant attorney n/a n/a n/a n/a 4.04*** 14.24*** 3.10***
(1.57) (8.71) (1.02)

Plaintiff attorney n/a n/a n/a n/a 2.04** n/a 1.16
(0.48) (0.29)

No. observations 67,106 95,216 213,927 883,876 559,831 741,498 871,316

Note. Separate models run for each state. n/a = variable not available. Coefficients are presented as odds ratios, with standard
errors given in parentheses. Alabama, Connecticut, Hawaii, Nebraska, and North Dakota were omitted because they had less
than 25 total duplicated cases each. Filing season and filing year are included as controls, but their coefficients not displayed.

*p < .05. **p < .01. ***p < .001.
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results provide a framework to help inform researchers drawing on eviction records. Some inaccura-
cies, including ambiguous records, complicate researchers’ abilities to calculate accurate eviction
estimates. Unresolved and opaque cases can inflate eviction rates when all cases are included and
can deflate rates when all are omitted. In the absence of reliable indicators of how many of these
cases result in tenant displacement, researchers should be clear about what outcomes they are
categorizing as evictions. Excluding opaque cases produces the most conservative estimates of the
eviction rate but also underestimates the true prevalence of displacement. The most conservative
estimate is not necessarily the most accurate one.

Alternatively, false records, including duplicate and serial cases, usually inflate eviction rates.
Researchers should identify these records and consider how their inclusion will affect eviction
estimates. For example, if examining displacement because of eviction, researchers should exclude
nonfinal eviction judgments in serial cases. However, for researchers examining landlords’ reliance
on court systems to collect rent or discipline tenants, or the degree to which tenants are over-
represented in the official eviction record, it would be important to include all serial case filings and
judgments. Overall, the large gap between unadjusted and adjusted eviction rates makes it critical
that researchers carefully communicate how they identified inaccuracies and defined measures of
eviction. Doing so will ensure that eviction rates derived from court data can be accurately under-
stood on their own terms as well as compared between studies and between jurisdictions.

Efforts taken to improve the clarity and accuracy of eviction estimates will not only benefit
research on this topic, it will also focus the policy debate. If researchers drawing on admin-
istrative records produce estimates of eviction without fully considering inaccuracies con-
tained in those records, they invite criticism that may challenge the precision of their
estimates and call into question the fundamental nature of the problem. A similar dynamic
has played out in the domestic poverty debate in recent years, with arguments over the best
way to calculate the U.S. poverty rate compelled not only by scientific commitments but
political and normative ones as well (Blank, 2008; Desmond & Western, 2018). Technical
differences in measurement practices result in substantially different poverty rates, which in
turn motivate drastically different policy responses (cf. Edin & Shaefer, 2015; Meyer & Sullivan,
2012). We believe housing policy researchers can learn from such debates, collaboratively and
transparently developing best practices for calculating eviction rates. By contributing to that
effort, this study hopes to help move beyond debates about measuring eviction to debates
about effective solutions.

Our findings also indicate that where an individual tenant lives directly affects their risk of
accruing an unrepresentative eviction history. It is well documented that having any presence
in the eviction record is a major impediment to securing future housing and credit (Gold, 2012;
Greiner et al., 2012). For this reason, unresolved and opaque cases penalize tenants who,
despite winning their cases or successfully negotiating with their landlord, are trailed by
records which elide such developments. Tenants living in a state like Minnesota, which does
not release unresolved cases to the public and has a low rate of opaque cases, are advantaged
compared with tenants living in a state like Hawaii, which has a comparatively higher total rate
of ambiguous records. False records are even more problematic, since they add completely
unearned records to a tenant’s eviction history. In states like Alabama, which has a relatively
low duplicate and serial rate, tenants have a much lower risk of accruing a false eviction record
compared with those living in a state like South Carolina.

These state-level geographic disparities suggest the need for more consistent judicial
recordkeeping procedures. To reduce the confusion caused by unresolved cases, states could
adopt policies limiting or prohibiting their release to tenant screening companies. To address
opaque cases, states could improve outcome code standards for civil courts. To reduce false
records, states could perform regular audits to eliminate duplicates. They could also clearly
mark serial cases as one continuing landlord–tenant dispute. In addition, more stringent
enforcement of the Fair Credit Reporting Act would provide tenants with more effective
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means to challenge inaccuracies in their eviction histories. In total, these reforms would have
a direct impact on both the lives of individual tenants and the public’s ability to obtain an
accurate picture of eviction in their communities.

Notes

1. Formal, court-ordered evictions occur when a landlord files a lawsuit against a tenant seeking the legal right to
remove the tenant(s) from the property. Informal evictions occur when landlords coerce or incentivize tenants to
vacate the property but do not file a formal eviction lawsuit (Desmond & Shollenberger, 2015).

2. We developed this classification system based on our review of the existing literature and our own analysis of
eviction court data.

3. We were only able to analyze 18.13% of the Connecticut data because the remaining data lacked the defendant-
specific information needed to compute inaccuracies.

4. We were able to geocode an additional 6% of addresses at less precise geographies (e.g., street name, zip code,
administrative place). For the 1.7% cases that contained multiple defendant addresses, we selected the address
that fell within the county in which the case was heard. If more than one address fit this criterion, we randomly
selected one of the in-county addresses to serve as the case address.

5. Additional details about the data preparation process can be found in Desmond et al. (2018a).
6. It is possible that additional information on the outcome of these cases could be gathered from paper files held

in court archives.
7. A case had to contain a nonanonymous defendant name to be classified as a duplicate or serial case.
8. We also checked for defendant records that were duplicated within the same case number. These were more

common than duplicate cases, and were usually the product of differences in variables that were outside our
interest in this study. Classifying records duplicated within the same case numbers as duplicate cases increases
the overall percentage of duplicate cases but does not affect the results of our logistic regression models.

9. Iowa and Minnesota update defendant addresses upon subsequent defendant contact with the court system,
which may inflate the number of serial defendants; however, a comparison with alternative data sources that do not
update defendant addresses did not reveal substantial differences in the prevalence of serial cases in these states.

10. We do not include a comparison of adjusted and unadjusted filing rates. However, we note that an adjusted
filing rate would likely include unresolved cases and exclude duplicate cases. Opaque cases do not affect filing
rates, nor do serial cases, which represent genuine filings in eviction court. Unresolved cases do not affect the
eviction rate since, by definition, no unresolved cases had recorded eviction judgments in our data; however, the
filing rate would be biased downward if unresolved cases were excluded from eviction measures. For states that
exclude unresolved cases in the public record, there is no reliable way to estimate the prevalence of these cases
or how they affect filing rates.

11. We could not measure the number of unique defendants in Hawaii and South Carolina because data from those
states did not enumerate individual defendants.

12. We removed instances in which the attorney field was populated with the defendant’s name or pro se, both of
which indicate that the defendant represented themselves.

13. Table A3 lists the number of total defendant records affected by each inaccuracy, since a single case can contain
multiple defendant listings.

14. In this study, we define serial cases as all nonfinal cases filed against the same tenant at a single property. We
exclude final serial cases from our serial inaccuracy measure because these cases are less likely to represent false
evictions.

15. In addition to the case likelihood models presented here, we also ran a series of ordinary least squares regression
models to test whether counties that are economically disadvantaged or have overburdened courts are more
likely to produce inaccurate records. To do so, we regressed county–year inaccuracy rates within states on court
case burden, median property value, and household density. These variables exhibited no significant relation-
ships with rates of unresolved, opaque, or duplicate cases, although densely populated counties with higher
property values were associated with higher rates of serial cases. In general, these results show that there is very
little variation within states or between counties.
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APPENDICES

Table A1. Eviction cases used in analytic sample, and descriptive statistics.

N Mean Median SD Min Max

Unresolved (1 = yes) 2,692,041 0.01 0.00 0.00 1.00
Opaque (1 = yes) 2,692,041 0.03 0.00 0.00 1.00
Duplicate (1 = yes) 3,643,023 0.00 0.00 0.00 1.00
Serial (1 = yes) 3,643,023 0.28 0.00 0.00 1.00
Length of case (in 30-day periods) 2,025,796 1.61 0.77 3.81 0.00 79.37
Monthly court case volume (in hundreds) 3,643,023 6.40 3.41 7.56 0.01 36.33
Number of unique defendants 2,878,931 1.25 1.00 0.52 0.00 27.00
Defendant attorney (1 = yes) 2,227,831 0.01 0.00 0.00 1.00
Plaintiff attorney (1 = yes) 2,227,831 0.32 0.00 0.00 1.00
Filing season

Summer 3,643,023 0.27 0.00 0.00 1.00
Fall 3,643,023 0.26 0.00 0.00 1.00
Winter 3,643,023 0.24 0.00 0.00 1.00
Spring 3,643,023 0.23 0.00 0.00 1.00

Filing year
2011 3,643,023 0.21 0.00 0.00 1.00
2012 3,643,023 0.20 0.00 0.00 1.00
2013 3,643,023 0.20 0.00 0.00 1.00
2014 3,643,023 0.20 0.00 0.00 1.00
2015 3,643,023 0.19 0.00 0.00 1.00

Note. SD = standard deviation. The N column denotes the analytic sample (not all variables are available for all states). The filing
season variable is broken down into summer: June, July August; fall: September, October, November; winter: December,
January, February; and spring: March, April, May.

Table A2. Portion of nonfinal and final serial cases ending in eviction judgments.

Total
cases

Serial
cases (%)

Serial cases ending in
eviction judgment (%)

Final cases in
serial series (%)

Final cases in serial series ending
in eviction judgment (%)

State
Alabama 117,241 7.34 29.98 6.09 53.17
Connecticut 18,974 6.00 51.05 6.09 76.28
Hawaii 12,631 4.07 22.18 4.01 42.41
Iowa 67,106 23.19 25.36 19.99 61.26
Minnesota 95,219 14.23 21.06 10.87 47.85
Missouri 214,196 11.36 47.42 8.89 69.02
Nebraska 45,222 14.50 30.55 10.91 72.17
North Carolina 883,876 15.37 n/a 8.26 n/a
North Dakota 5,949 6.77 36.97 5.21 78.06
Pennsylvania 559,832 31.02 35.51 15.44 54.01
South Carolina 751,461 42.97 18.96 16.80 32.34
Virginia 871,316 35.97 2.77 14.98 58.24

Note. Serial cases represent the nonfinal cases filed against a household. The data for North Carolina did not contain the outcome
code fields needed to compute the percentage of cases ending in eviction judgments.
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Table A3. Number of defendant listings affected by inaccuracies.

Number of defendant listings

Total cases Unresolved Opaque Duplicate Serial

State
Alabama 117,241 4,204 772 33 9,932
Connecticut 18,974 309 331 28 1,533
Iowa 67,106 n/a n/a 214 18,693
Minnesota 95,219 0 9,754 859 17,494
Missouri 214,196 0 33,526 504 29,848
Nebraska 45,222 3 527 211 8,052
North Carolina 883,876 n/a n/a 22 150,888
North Dakota 5,949 0 1,411 7 480
Pennsylvania 559,832 0 25,126 266 217,275
Virginia 871,316 2,672 1,041 1,004 377,052
Total 2,964,636 7,188 72,488 3,148 831,247

Note. Hawaii and South Carolina are omitted because data from those states lacked information on individual defendants.
Iowa courts use a simplistic coding scheme that precludes them from unresolved and opaque analysis. The data for North
Carolina did not contain the outcome code fields needed to compute unresolved and opaque cases.
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