
Wilfrid Laurier University
Scholars Commons @ Laurier

Theses and Dissertations (Comprehensive)

2010

The Influence of Dopamine Replacement on
Movement Impairments During Bimanual
Coordination in Parkinson’s Disease (PD)
Matt Brown
Wilfrid Laurier University

Follow this and additional works at: http://scholars.wlu.ca/etd

Part of the Kinesiology Commons

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations
(Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact scholarscommons@wlu.ca.

Recommended Citation
Brown, Matt, "The Influence of Dopamine Replacement on Movement Impairments During Bimanual Coordination in Parkinson’s
Disease (PD)" (2010). Theses and Dissertations (Comprehensive). 1016.
http://scholars.wlu.ca/etd/1016

http://scholars.wlu.ca?utm_source=scholars.wlu.ca%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/42?utm_source=scholars.wlu.ca%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholars.wlu.ca/etd/1016?utm_source=scholars.wlu.ca%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patnmoine de I'edition 

395, rue Wellington 
OttawaONK1A0N4 
Canada 

Your Tile Votre reference 
ISBN 978-0-494-75373-6 
Our file Notre reference 
ISBN 978-0-494-75373-6 

NOTICE AVIS 

The author has granted a non
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distnbuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats 

The author retains copyright 
ownership and moral rights in this 
thesis Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autonsation 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis 

Conformement a la lot canadienne sur la 
protection de la vie pnvee, quelques 
formulaires secondaires ont ete enleves de 
cette these 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis 

Bien que ces formulaires aient mclus dans 
la pagination, il n'y aura aucun contenu 
manquant 

• • I 

Canada 





The influence of dopamine replacement on 
movement impairments during bimanual 
coordination in Parkinson's disease (PD) 

Matt Brown 

Honours Bachelor of Science in Kinesiology and Physical Education, Wilfrid Laurier 
University, Canada, 2008 

Thesis 
Submitted in partial fulfillment of the requirements for the degree of Master of Science in 

Kinesiology and Physical Education 

Department of Kinesiology and Physical Education 
Faculty of Science 

Wilfrid Laurier University 
Canada 

November 2010© 



Acknowledgements 

I would like to thank several people for their help and support throughout the completion 

of my Master's degree and thesis First and foremost, I cannot express enough gratitude for the 

advise, commitment and encouragement I have received from Dr Quincy Almeida as my 

undergraduate thesis and MSc supervisor I was fortunate enough to be approached by Dr 

Almeida as an undergraduate student to do a thesis project and he commenced my appreciation 

for academia and research This thesis could not have been completed without his guidance and 

mentorship 

To my supervising committing (Dr Mike Cinelh and Dr Jayne Kalmar) and colleagues 

at the Movement Disorders Research and Rehabilitation Centre (MDRC), thank you for your help 

and support In particular, I would like to thank the recently successful PhD candidate, Dr 

Fanborz Rahimi for all of his time committed to assisting with developing the computer programs 

and in data collection Aside from Dr Almeida, Fanborz had the greatest contribution to 

completing my thesis project Fanborz is a great colleague and friend that I was fortunate to have 

his knowledge and help throughout the completion of my thesis 

Thank you to all my family and friends for their love and support My friends were 

particularly important for maintaining my good sense with life outside my thesis and provided 

many laughs along the way I would like to thank all the participants from the MDRC and 

National Science and Engineering Research Council (NSERC) This project could not be 

completed without their willingness to support research in Parkinson's disease (PD) 

Last but not least, I would like to thank my amazing wife Jocelyn You have had to make 

many compromises while I have pursued my goals but have provided nothing but love and 

encouragement during this process Thank you for always believing in me and supporting me 

u 



Abstract 

The purpose of the current thesis was to investigate the influence of dopamine 

replacement on performance during bimanual coordination in individuals with 

Parkinson's disease (PD) There has been conflicting research on the cause of movement 

impairments such as coordination deficits, slowed switching and upper limb freezing that 

occur during coordinated movements It is unclear whether decreased function of the 

dopaminergic system after withdrawal from dopamine replacement is responsible for 

these deficits Healthy age-matched control participants were compared to PD 

participants in two experiments to determine the movement impairments that occurred 

during three-dimensional wrist flexion-extension bimanual coordination as a result of PD 

In addition, individuals with PD were compared without ('off) and with ('on') dopamine 

replacement in both experiments to determine whether modulation of the dopaminergic 

system influenced coordinated movements 

In Experiment 1, continuous bimanual coordination was performed in m-phase 

(simultaneous wrist flexion and extension) and anti-phase (flexion of one wrist while 

extending other wrist) with movements externally paced with increasing across seven 

cycle frequencies (0 75 to 2 Hz) Visual feedback was also manipulated in one of three 

sensory conditions no vision, normal vision or augmented vision Visual feedback, phase 

and cycle frequency manipulation was performed to determine whether other deficits 

(e g sensory and/or attentional deficits) may influence coordinated movements Despite 

reduced amplitude of movements in both limbs of individuals with PD (PD 'off), 

coordination deficits were not observed in PD compared to healthy control participants 

in 



In addition, there was an increased occurrence of upper limb freezing (ULF) when cycle 

frequency demand was greater Dopamine replacement did increase the amplitude of 

movements in individuals with PD but did not influence coordination performance or the 

occurrence of ULF 

In Experiment 2, coordinated movements were initiated in either m-phase or anti

phase and participants were required to voluntarily switch to the other phase pattern when 

an auditory cue was presented Trials were performed at one of two cycle frequencies (1 

or 2 Hz) and one of two sensory conditions (no vision or normal vision) to determine 

whether other deficits (e g sensory and/or attentional deficits) may influence coordinated 

movement In addition, a separate block of trials were performed in anti-phase 

coordination with an auditory cue that did not require a switch Non-switching trials were 

included to investigate whether the presence of a distracting cue could evoke ULF 

comparable to when switching between movements was required PD 'off participants 

demonstrated slower switching, more delayed responses and deficits in coordination 

performance when compared to healthy control participants The increased demand of 

cycle frequency particularly when initiating anti-phase coordination, after voluntary 

switching and with the presence of the auditory cue without switching contributed to a 

large occurrence of ULF in individuals with PD Dopamine replacement improved the 

ability to switch between phase patterns but had no overall influence on coordination 

performance or the occurrence of ULF 

Overall, the results of the current thesis demonstrated that dopamine replacement 

can improve motor symptoms during coordinated movements (e g hypometna and 

bradykinesia) but does not contribute to coordination performance or ULF in individuals 

IV 



with PD As a consequence, it was concluded that coordination deficits and ULF are not 

caused by the dysfunctional dopaminergic system but rather associated to secondary 

impairment caused by PD The movement impairments caused by secondary dysfunction 

of PD were proposed to be associated with increased attentional demands and possible 

executive dysfunction related to fronto-stnatal pathways that cannot be modulated by 

dopamine replacement Thus, treatment of complex movement impairments such as 

coordination deficits and ULF may benefit from rehabilitation or non-dopamine therapies 

that focus on the global dysfunction caused by PD 
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Chapter 1- Prologue 

1.1 Problem statement 

Parkinson's disease (PD) is a progressive neurodegenerative disorder It results 

from diminished dopamine release from the substantia nigra to the basal ganglia 

(Graybiel, Hirsch, & Agid, 1990, Hirsch, 1994, Hirsch, Graybiel, & Agid, 1988) PD is 

characterized by several motor symptoms including hypometna (reduced amplitude), 

bradykmesia (slowness) and freezing (a penod of time when no movement occurs despite 

voluntary movement intention) Importantly, the basal ganglia are considered cntical 

structures responsible for the poor execution of simultaneous movements known as 

bimanual coordination or inter-limb coordination However, the contribution of the 

dopaminergic system in proper execution of coordinated bimanual movements is poorly 

understood Individuals with PD have displayed coordination deficits (Almeida, Wishart, 

& Lee, 2002, Byblow, Summers, Lewis, & Thomas, 2002) and upper limb freezing 

(Almeida, Wishart, & Lee, 2003, Nieuwboer et al, 2009) dunng execution of continuous 

bimanual coordination Reductions in amplitude (Byblow et al, 2002, Swinnen et al, 

1997) and frequency of movements (Almeida et al, 2002, Swinnen et al, 1997) have also 

been demonstrated and provide some evidence that the dopaminergic system and these 

dopa-responsive motor symptoms such as hypometna and bradykmesia may contribute to 

the poor execution of bimanual coordination in PD However, coordination deficits and 

freezing were even more apparent after the inclusion of a cued intentional change in 

coordination patterns during rhythmic coordinated movements (Almeida et al, 2003, 

Byblow et al, 2002) This may be representative of deficits in central programming or 
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executive function that are not directly related to dopaminergic system dysfunction 

Furthermore, these movement impairments could be explained by deficits related to 

attetional demands of the task (Almeida et al, 2003) or result of disrupted propnoceptive 

processing or sensorimotor integration (Abbruzzese & Berardelli, 2003, Demirci, Grill, 

McShane, & Hallett, 1997, Klockgether, Borutta, Rapp, Spieker, & Dichgans, 1995, Lim, 

Hamm, Byblow, & Kirk, 2005, Rickards & Cody, 1997) It is unclear how the 

dopaminergic system is involved in the different aspects that are essential to the 

execution of coordinated movements These may be the caused by dysfunction of the 

dopaminergic system or other basal ganglia related dysfunction Thus, it is important to 

study how basal ganglia dysfunction with and without dopaminergic modulation 

influences the different parameters that are necessary for bimanual coordination 

1.2 Rationale 

Although the influence of dopaminergic replacement on continuous bimanual 

coordination has not been studied in PD, certain aspects of movement have been shown 

to improve with treatment Based on clinical evaluations, motor symptoms such as 

hypometna and braykinesia are typically responsive to dopaminergic treatment (Deleu, 

Northway, & Hanssens, 2002, Espay et al, 2009, Factor, 2001, Talati, Reinhart, Baker, 

White, & Coleman, 2009) In addition, sequencing of unimanual movements (Benecke, 

Rothwell, Dick, Day, & Marsden, 1987b) and reach-to-grasp upper limb movements 

(Schettino et al, 2006) have been shown to improve with dopaminergic replacement 

However, freezing of gait (FOG) does not reliably respond to dopaminergic modulation 

(Nomoto & Nagai, 2006, Schroeteler, Ziegler, Fietzek, & Ceballos-Baumann, 2009) 

Thus, performance dunng bimanual coordination may be influenced by improvements in 
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amplitude and frequency Manipulating dopamine replacement in PD can provide a 

unique approach to examine the influence of the dopaminergic system on the various 

aspects that influence the execution of coordinated bimanual movements A more 

thorough understanding of the deficits and the role of the dopaminergic system in 

bimanual coordination can contnbute to improved treatment (such as medication and 

upper limb rehabilitation) as well as possible diagnostic tools for PD 

1.3 Outline of thesis 

The current thesis intends to determine how the dopaminergic system contributes 

to the execution of a coordinated movement (bimanual coordination) Coordination 

performance (accuracy and stability), amplitude of movements and frequency of 

movements were all measured since all of these measures may have the potential to 

contnbute to performance (or impairments) during bimanual coordination The aim is to 

determine what factors alone or in combination with dopamine replacement may 

influence bimanual coordination including sensory feedback, phase and/or cycle 

frequency This thesis was structured to answer this detailed problem with multiple 

research questions that are presented in the subsequent paragraphs 

Chapters two through four present two expenments that evaluate coordination 

performance dunng three-dimensional bimanual wnst flexion-extension using haptic 

devices Each of the two expenmental studies manipulated the dopaminergic system of 

the basal ganglia by testing individuals with Parkinson's disease (PD) both 'off and 'on' 

their regular dopamine medication The manipulation of dopamine replacement was 

investigated to understand how the dopaminergic system contributes to performance 

dunng bimanual coordination (e g coordination performance, frequency and amplitude) 
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Additionally, sensory feedback, phase and cycle frequency were manipulated in both 

experimental studies to examine their influence to bimanual coordination in combination 

with the dopaminergic system 

Chapter two presents a comparison of continuous, coordination performance with 

between group (PD 'off and controls 1st session) and within-group (PD 'off vs 'on') 

designs Cycle frequencies, coordination patterns (m-phase and anti-phase) and sensory 

conditions (no vision, normal vision and augmented vision) were manipulated across 

trials This permitted an evaluation of the effect of the different factors related to basal 

ganglia dysfunction that could influence coordination, frequency and amplitude with a 

specific interest in the dopaminergic system Chapter three describes the performance of 

a voluntary switch in phase pattern (e g m-phase to anti-phase or anti-phase to m-phase) 

and subsequent continuous coordination performance of individuals with PD and healthy 

control participants A focus of this chapter is how dopaminergic modulation affects the 

temporal component of the switch and the successful completion of the switch This was 

conducted to isolate the contributions of bradykinesia compared to hypometna or 

freezing to sequencing movements during bimanual coordination Chapter four presents 

upper limb freezing (ULF) in PD that was a primary focus of both experimental studies 

The amount of freezing is presented during continuous bimanual coordination (from 

study #1) and during continuous bimanual coordination before and after a voluntary 

change in movement (from study #2) The occurrence of freezing episodes is compared 

across different parameters with the goal to develop a better understanding the etiology of 

upper limb freezing In addition, clinical characteristics of individuals who displayed 

ULF {upper limb freezers) are presented 
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Chapter five provides a detailed synthesis of the most significant findings of the 

current thesis This involved examining the major findings from Chapters 4, 5 and 6 and 

identifying the main conclusions There was a specific interest in how the dopaminergic 

system is involved m the execution of continuous coordinated bimanual movements and 

change in movements In addition, sensorimotor integration and ULF are discussed The 

implications of the findings, the limitations of the current thesis and future directions of 

research involving bimanual coordination, dopaminergic modulation, sensory feedback 

and freezing in PD are presented 

Appendix A attempts to examine muscle activity from surface electromyography 

(sEMG) during continuous bimanual coordination The main focus of this chapter is to 

detect if irregular timing of muscle activity is associated with ULF This would help 

clanfy if a physiological link exists between upper and lower limb freezing A secondary 

focus is to determine if sEMG could be used to help detect ULF in PD A thorough 

explanation of the methods, limitations of these methods for examining sEMG in PD and 

future directions are provided 

1.3.1 Primary research questions for thesis 

• Does withdrawal of dopamine replacement in combination with sensory feedback, 

phase and/or cycle frequency, result in movement impairments including upper 

limb freezing, coordination, amplitude or frequency deficits during bimanual 

coordination in individuals with Parkinson's disease compared to healthy older 

adults'? 
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• Can dopamine replacement in combination with sensory feedback, phase and/or 

cycle frequency, improve movement impairments during bimanual coordination 

in individuals with Parkinson's disease9 

1.3.2 Specific research questions for chapters 

Chapter Two 

• Do individuals with PD have coordination (accuracy and stability), frequency or 

amplitude deficits compared to healthy older adults9 Are movement impairments 

related to sensory, phase and/or cycle frequency manipulations9 

• If coordination, frequency or amplitude deficits are present, do they always occur 

simultaneously or can they exist separately9 

• How does dopamine replacement affect frequency, amplitude and coordination 

(accuracy and stability) in individuals with PD9 Is there a relationship between 

dopamine replacement and sensory, phase and/or cycle frequency manipulations9 

• Are practice effects (as revealed by coordination performance) present during two 

consecutive sessions in healthy older adults9 If so, how might this influence 

interpretations using the current design to examine dopamine replacement on 

individuals with PD9 

Chapter Three 

• Do individuals with PD have difficulty voluntarily switching between 

different coordination patterns compared to healthy older adults9 Specifically, 

are switches slower, delayed or unsuccessful m PD9 Is this related to sensory, 

phase and/or cycle frequency manipulations9 
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• How does a cued and intentional change in movement influence the 

subsequent coordination accuracy and stability m PD and healthy older 

adults'? 

• Does dopaminergic modulation influence switching performance or 

coordination performance after a switch in PD? Is the influence of dopamine 

replacement related to sensory, phase and/or cycle frequency manipulations9 

Chapter Four 

• Are upper limb freezing episodes present during continuous, bimanual 

coordination in PD? 

• Does cycle frequency, phase or type of sensory feedback affect the amount of 

freezes? Does an intentional change in movement increase the amount of 

freezes? Does an attentionally demanding external cue in the middle of 

continuous coordination evoke ULF? 

• What mechanism can explain the occurrence of ULF in PD? 

• Does dopamine replacement influence the amount of freezes similar to other 

motor symptoms in PD? 

• What factors are characteristic of upper limb freezers'* Is there any evidence 

for a relationship between upper and lower limb freezing? 

Appendix A 

• Can surface electromyography (sEMG) reliably examine muscle activity in 

the forearms of individuals with PD dunng bimanual coordination? Are there 

factors that limit its' use in PD? 
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• What methods of processing and analyzing sEMG would be most accurate to 

examine this muscle activity in PD9 

• Is there irregular timing of muscle activity in the pnmary agonist and 

antagonist prior to a ULF? If so, is this a physiological link between 

individuals with PD that display freezing of gait (FOG) and upper limb 

freezing9 

1.4 The basal ganglia and Parkinson's disease (PD) 

1.4.1 An overview of the basal ganglia in PD 

The basal ganglia are a group of neural substrates that function together to 

contribute to movement control The system is composed of the caudate nucleus and 

putamen (together forming the stnatum), substantia nigra compacta (SNc), substantia 

nigra reticulata (SNr), globus palhdus internal/medial (GPi), globus palhdus 

externa/lateral (GPe) and subthalamic nucleus (STN) Their primary output is to the 

thalamus and ultimately, the motor cortices including the supplementary motor areas 

(SMA), premotor cortex and pnmary motor cortex by thalamocortical pathways 

(Alexander & Crutcher, 1990, Alexander, Crutcher, & DeLong, 1990, Crossman, 2000) 

Smaller projections also extend from the GPi to the pedunculopontine nucleus (PPN) 

(Crossman, 2000) In addition to having several output projections, there are multiple 

structures that input to the basal ganglia as part of the glutamatergic corticostnatal 

pathway such as the pnmary motor cortex, supplementary motor area (SMA) and dorso

lateral prefrontal motor cortex (Alexander & Crutcher, 1990, Alexander et al, 1990, 

Crossman, 2000) In addition to those motor areas, these corticostnatal pathways also 

include projections from oculomotor, limbic and somatosensory areas (Alexander & 
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Crutcher, 1990, Alexander et al, 1990) There also exists thalamostnatal pathways that 

project from the intralaminar nuclei of the thalamus to the striatum (Crossman, 2000) 

Until recently, these thalamostnatal projections have not been considered to have a 

prominent functional role in PD (Smith et al, 2009) However, there is evidence that 

these projections may relay sensory feedback for sensorimotor integration or attentional 

information back to the striatum (Smith et al, 2009) 

PD is a progressive neurodegenerative disordered characterized by a substantial 

loss of dopamine-producing cells in the SNc This results in a dysfunctional basal ganglia 

due to a lack of dopamine release to the striatum from the nigrostnatal pathways 

(Graybiel et al, 1990, Hirsch, 1994, Hirsch et al, 1988) The lack of dopamine available 

to the basal ganglia increases activity in striatum This can influence the basal ganglia 

function by direct and indirect pathways The direct pathway involves decreased activity 

in the GPi and SNr resulting in decreased inhibition (increased activity and excitatory 

output) of the thalamus The indirect pathway involves decreased activity of the GPe 

followed by decreased inhibition (increased activity) of the STN Due to its excitatory 

nature, increased STN activity results in increased activity in the GPi and SNr that results 

in greater inhibition of the thalamus Ultimately, there is a dysfunction in the excitatory 

activity of the thalamus (Graybiel et al, 1990, Hamam & Lozano, 2003) 

However, evidence supports that other pathways (secondary dysfunction) are 

affected by the dysfunction of the nigrostnatal pathway such as the projections between 

GPi and PPN (Nandi, Stein, & Aziz, 2002) and corticostnatal pathways that project 

between the motor cortex (e g SMA) and basal ganglia (Sabatmi et al, 2000) For 

example, the SMA receives input into exclusively its central portions and non-exclusively 
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into its rostral portions from the nuclei in the thalamus that receives their input from the 

GPi (Cunnington, Bradshaw, & lansek, 1996) This could have important implications for 

movement as the frontal cortex is involved in both movement and executive function 

(Alexander & Crutcher, 1990, Alexander et al, 1990, Playford et al, 1992) The 

dysfunctional basal ganglia and associated structures evident m PD result in the cardinal 

hypokinetic motor symptoms of bradykinesia, akinesia, rigidity, resting tremor and 

postural instability (DeLong, 1990) Additionally, secondary motor complications result 

from PD such as gait disturbances (Morns, lansek, Matyas, & Summers, 1998) In 

addition to gait disturbances, the basal ganglia have been connected to many aspects of 

voluntary limb movements (Stelmach & Phillips, 1991) and cognitive function 

(Duchesne, Soucy, Masson, Chouinard, & Bedard, 2002) However, the relationship 

between the basal ganglia and bimanual coordination is not clear 

The basal ganglia have been proposed to have several roles in executing complex 

voluntary movements that are relevant for bimanual coordination The basal ganglia have 

been argued to contribute to the initiation and sequencing of motor programs (Contreras-

Vidal & Stelmach, 1995) They have also demonstrated roles in the initiation and 

regulation of force control (Stelmach & Wornngham, 1988) and timing parameters 

(Harrington, Haaland, & Hermanowicz, 1998) Additionally, the striatum has been found 

to be important in guiding responses with information from external stimuli in rat models 

(Bailey & Mair, 2006) It has also been suggested that a central pattern generator in the 

midbrain is responsible for generating coordination patterns but works in conjunction 

with higher cortical areas and the basal ganglia to control rhythmic coordination (Asai, 

Nomura, Abe, Matsuo, & Sato, 2003, Asai, Nomura, Sato et al, 2003) All of this 
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evidence supports that the basal ganglia have an important contribution to initiation of 

coordination patterns and the subsequent control of the limbs and timing required for 

rhythmic inter-limb coordination However, the basal ganglia are not the only neural 

substrates responsible for these movement parameters The SMA is responsible for 

preparation and selection of movements (Cunmngton et al, 1996) In addition, the SMA 

contributes to the initiation and execution of movement Studies have demonstrated that 

the SMA is particularly important dunng internally-guided voluntary movements 

(Cunmngton et al, 1996, Cunmngton, Iansek, Bradshaw, & Phillips, 1995) However, 

there is also evidence that the SMA has increased activation dunng externally-cued 

movements (Debaere et al, 2001) Thus, there appears to be a prominent relationship 

between the SMA and basal ganglia for bimanual coordination 

The most prominent theory proposes that the basal ganglia indirectly influences 

coordinated movements through the SMA (Cunmngton et al, 1995, Williams et al, 

2002) This hypothesis has been supported due to the increased activation in the SMA 

that has been confirmed dunng inter-limb coordinated movements (Debaere et al, 2001) 

Research has demonstrated that dysfunction related to PD can influence activation in the 

SMA that may be normalized with dopamine replacement (Dick et al, 1987, Dick et al, 

1989) Debaere et al (2001) venfied that the SMA and cingulate motor cortex have 

increased activation when coordinated movements become increasingly unstable such as 

during anti-phase coordination The connections between the basal ganglia and SMA 

have been proposed to have an important contribution to learning and automatization 

stages of bimanual skill acquisition (e g learning a 1 2 multifrequency in-phase pattern) 

(Puttemans, Wenderoth, & Swinnen, 2005) These authours demonstrated the both the 
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putamen and anterior cerebellum were important structures for learned coordination 

tasks Overall, the basal ganglia have a role in initiating and executing bimanually 

coordinated movements Based on the evidence, its role in movement initiation and 

execution is largely influence by the SMA in the frontal cortex 

1.4.2 The basal ganglia and sensory feedback 

One of the potential functions of the basal ganglia is to aid in processing and 

integrating sensory feedback for movement which is referred to as sensorimotor 

integration (Abbruzzese & Berardelh, 2003, Demirci et al, 1997, Lim et al, 2005, Lim, 

Hamm, Byblow, & Kirk, 2006, Moore, 1987) Several studies that have examined 

sensory feedback during voluntary upper limb movements have supported that 

proprioceptive (kinesthetic) processing is disrupted in Parkinson's disease For example, 

when the hands were passively moved without vision, individuals with PD were more 

likely to terminate movements earlier and short of the required goal with the passive limb 

blocked on a digitizing tablet (Klockgether et al, 1995) They concluded that individuals 

with PD have a kinesthetic deficit that may be more evident at slow cycle frequencies 

They suggested that this deficit could be the result of altered afferent input from the 

periphery, increased fusimotor drive (increased la afferent drive through gamma motor 

neurons due to rigidity in muscles) or abnormalities m processing this information in the 

basal ganglia Dunng a bimanual tnangle drawing coordination task on digitizing tablets, 

individuals with PD showed a marked dnft away from the goal by increased changes in 

continuous X-Y positions over time when blindfolded (Swinnen, Steyvers, Van Den 

Bergh, & Stelmach, 2000) However, no differences were observed in the frequency or 

amplitude of bimanual movements They determined that the dnft was related to changes 
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in shoulder and elbow angles that were related to decrease in kinesthetic input or 

decreased processing of propnoceptive information Several studies using more advanced 

techniques have also supported a proprioceptive deficit in PD Investigation of antagonist 

tendon vibration on flexor carpi radiahs during wrist flexion-extension without vision of 

the moving limb showed that PD undershot the mean (+SD) trajectory amplitude more 

than healthy controls (Rickards & Cody, 1997) They proposed that this was the result of 

a proprioceptive deficit that can contribute to motor impairment in PD A study by 

Schrader et al (2008) investigated the relationship between cortical excitability using 

transcranial magnetic stimulation (TMS) and proprioceptive processing of primary 

muscle spindles using muscle vibration (MV) TMS was used to examine both corticial 

inhibition (short-latency intracortical inhibition and cortical silent periods) and excitation 

(intracortical facilitation) in relation to changes in cortical excitability that is typical with 

MV They found that PD did not demonstrate the expected increase in motor evoked 

potential (MEPs) with MV that was found in healthy controls (Schrader et al, 2008) 

They proposed that this was related to a deficit in processing propnoceptive related to the 

changes in the basal ganglia and subsequent dysfunction of the thalamocortical pathways 

Although there is currently a considerable amount of evidence for a specific 

propnoceptive deficit in PD, several authours continue to debate whether there may be a 

more generalized deficit m processing and integrating multiple forms of sensory feedback 

for movement (Abbruzzese & Berardelli, 2003, Demirci et al, 1997, Lim et al, 2005, 

Lim et al, 2006, Moore, 1987, Schneider, Diamond, & Markham, 1987) This may be 

related to central processing or an inability to adequately gate sensory information (J W 

Brown, Bullock, & Grossberg, 2004, Nowak & Hermsdorfer, 2006) In addition, this 
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could be a consequence of increased sensory demands or sensory overload This is an 

important concept to understand since bimanual coordination tasks in PD often require 

processing and integrating multiple forms of sensory feedback 

1.4.3 Augmented sensory feedback in Parkinson's disease 

As a consequence of the proposed proprioceptive deficit in PD, studies have 

compared upper limb movements with and without vision available to determine whether 

vision alone can improve movement Research by Schettino et al (2006) investigated 

individuals with PD during reach-to-grasp with and without It was found that PD had 

more errors (revealed by failed or incorrect grasps) compared to healthy controls without 

vision but no difference was observed when full vision was provided vision (Schettino et 

al, 2006) As descnbed above (1 4 2), Swinnen et al (2000) found that PD demonstrated 

more drift during bimanual triangle drawing when blindfolded compared to healthy 

controls No differences were observed between PD and healthy controls when vision of 

the moving limbs was provided Although visual feedback alone has been shown to 

return upper limb movements to that of healthy controls, recent research has incorporated 

the use of different forms of augmented visual feedback during bimanual coordination in 

PD (Almeida et al, 2002, 2003) However, due to the possible deficits in sensorimotor 

integration, it is unclear if augmented feedback improves or hinders inter-limb 

coordination in PD 

Augmented visual feedback has been provided in various forms on a computer 

monitor (Almeida et al, 2002, 2003, Horstink, Berger, van Spaendonck, van den 

Bercken, & Cools, 1990, Lazarus & Stelmach, 1992, Palmer et al, 2009, Verschueren, 

Swinnen, Dom, & De Weerdt, 1997) This form of feedback has often been provided as a 
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real-time display on a computer monitor of a discrete figure such as orthogonal or 

Lissajous figure (Almeida et al, 2002, 2003, Lee, Swinnen, & Verschueren, 1995, 

Wishart, Lee, Cunningham, & Murdoch, 2002) Other forms of augmented visual 

feedback exist including a visual representation of the hands (Debaere, Wenderoth, 

Sunaert, Van Hecke, & Swinnen, 2003), angular displacement patterns of the limbs 

(Swinnen, Walter, Lee, & Semen, 1993) and horizontal lines representing the desired 

goal and a moving line which moves in accordance with the movement of the limbs 

(Palmer et al, 2009) Theoretically, augmented visual feedback may be beneficial to 

individuals with PD Research that examined augmented visual feedback dunng 

bimanual coordination using fMRI m healthy adults found that there is increased activity 

in a cerebellar network compared to the basal ganglia (Debaere et al, 2003) They 

suggested by using this source of feedback that the basal ganglia were bypassed In 

younger adults research has shown that augmented visual feedback improves 

coordination (Bogaerts, Buekers, Zaal, & Swinnen, 2003, Debaere et al, 2003, Lee et al, 

1995) Typically, this type of feedback helps older individuals improve coordination 

accuracy and stability dunng learning of new coordination patterns such as a 90 ° pattern 

(Swinnen et al, 1993, Wishart et al, 2002) Augmented visual feedback was shown to 

improve coordination accuracy in the acquisition of a new 90° coordination pattern in PD 

but learning could not be transferred when the feedback was not available (Verschueren 

et al, 1997) Unfortunately, in tasks that do not focus on motor learning (considenng 

both the m-phase and anti-phase are intnnsic coordination patterns, see section 2 3 1) 

there remains little expenmental support that augmented visual feedback can improve 

coordination performance In addition, there is evidence that augmented visual feedback 
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decreased the ability to couple the limbs during bimanual movements in healthy 

populations (Cardoso de Ohveira & Barthelemy, 2005, Puttemans, Vangheluwe, 

Wenderoth, & Swinnen, 2004) 

Cardoso de Ohveira et al (2005) examined discrete reversal bimanual arm 

movements (moved to and from separate targets) with and without visual feedback on a 

computer monitor It was found that augmented visual feedback compared to normal 

vision of moving limbs resulted in decoupling of the movement amplitudes but not the 

temporal coupling across the limbs (Cardoso de Ohveira & Barthelemy, 2005) 

Puttemans et al (2004) examined augmented visual feedback (real-time representation of 

the limbs on a computer monitor) compared to normal vision in the acquisition of new 

bimanual line or star patterns in healthy adults They found difficulties in acquiring the 

bimanual movements with augmented visual feedback They concluded that this may 

have been a consequence of disturbed natural and spontaneous attentional processes with 

augmented visual feedback Thus, augmented visual feedback may influence bimanual 

coordination due to difficulties with sensorimotor integration (see section 1 4 2) or 

attentional processes During bimanual coordination with augmented visual feedback, 

individuals with PD were more vanable and less accurate during anti-phase coordination 

especially as cycle frequency increased (Almeida et al, 2002, 2003) Although the 

authors did not directly attribute augmented visual feedback to causing difficulties with 

coordination, they suggested that external cuemg does not necessarily improve 

coordination (Almeida et al, 2002, 2003) It was suggested that external cueing may 

impose increased attentional demands This research has been supported by Brown and 

Jahanshahi (1998) that examined unimanual compared to bimanual placing of pegs on a 
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pegboard and/or repetitive finger tapping It was found that PD participants had 

decreased performance on both tasks relative to healthy control participants but were 

improved dunng the bimanual combined task (finger tapping with peg placing) It was 

suggested that the removal of attention from placing the pegs and focusing on the finger 

tapping increased the automatic execution of both tasks Finally, it was proposed that this 

could have been a consequence of limited attentional resources to allocate between tasks 

(R G Brown & Jahanshahi, 1998) Similarly, Horstink et al (1990) examined the 

simultaneous execution of squeezing a rubber bulb with triangle drawing (or writing the 

letter e) in PD They demonstrated a decreased amplitude of squeezing that they 

concluded was a decreased ability of PD to shift attention between the tasks (Horstink et 

al, 1990) The hypothesis of decreased attentional resources and ability to shift attention 

in PD has been supported by other research (Cools, Rogers, Barker, & Robbins, 2010, 

Hocherman, Moont, & Schwartz, 2004) Thus, it may be possible that the attentional 

demands or sensorimotor integration required for augmented visual feedback decreases 

performance dunng bimanual coordination in PD This issue is further complicated in PD 

by the incorporation of rhythmic pacing from metronomes to externally cue the timing of 

coordinated movements (Almeida et al, 2002, 2003, Byblow et al, 2002, Johnson et al, 

1998) 

Internal timing deficits have been commonly reported dunng upper limb 

movements in PD (Freeman, Cody, & Schady, 1993, Nakamura, Nagasaki, & 

Narabayashi, 1978, OBoyle, Freeman, & Cody, 1996, Pastor, Jahanshahi, Artieda, & 

Obeso, 1992, Yahalom, Simon, Thome, Peretz, & Giladi, 2004, Ziv et al, 1999) 

O' Boyle et al (1996) examined self-paced finger tapping in individuals with PD It was 
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found that PD participants had increased tapping variance and faster tapping relative to 

the required frequency during self-paced tapping compared to healthy control 

participants Pastor et al (1992) examined rhythmic flexion-extension movements of the 

wrist It was found that individuals with PD showed less accurate timing at 2 and 2 5 Hz 

(not at 0 5, 1 or 1 5 Hz) compared to healthy control participants In addition, they 

demonstrated that individuals who had moderate or severe PD were less accurate at all 

frequencies They concluded that these deficits were related to impairment in the internal 

timekeeper (internal timing deficits) (Pastor et al, 1992) Internal timing deficits have 

been supported by other rhythmic unimanual tapping research in PD (Nakamura et al, 

1978, Ziv et al, 1999) Yahalom et al (2004) investigated a series of unimanual finger 

tapping m individuals with PD that included self-paced, fast as possible, tap in rhythm 

and changing rhythms with a metronome They observed that PD participants had 

difficulty internally generating fast rhythmical movements (slowed tapping) but 

externally or self-paced movement were preserved Research by Konczak et al (1997) 

examined the execution of unimanual and bimanual finger and lip tapping with and 

without external cueing in individuals with PD It was found that PD participants had 

increased vanability and reduced amplitude in tapping but not frequency that was largely 

influenced by hastening (increased frequency of tapping) It was concluded that this was 

due to deficits in an internal cueing mechanism and external cueing did not improve these 

impairments suggesting that it may have negative effects of repetitive movements 

(Konczak, Ackermann, Hertnch, Spieker, & Dichgans, 1997) The use of augmented 

auditory feedback has been controversial in individuals with PD during bimanual 

coordination Pacing was provided from a metronome for half of the 20-second trials 
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dunng an bimanual coordination task, and no difference m coordination, cycle frequency 

or size of movements was seen with the metronome (Almeida et al, 2002) Similarly, no 

effects of auditory cueing were seen on temporal, spatial, pattern switching or 

coordination in a bimanual coordination task (Byblow, Summers, & Thomas, 2000) 

Furthermore, no differences were seen in temporally regulating symmetrical bimanual 

triangle drawing with or without a metronome (Swinnen et al, 2000) Based on this 

evidence, it appears that auditory cueing does not negatively influence coordination 

performance in PD However, research by Johnson et al (1998) demonstrated that 

external cues from a metronome improved accuracy and stability of bimanual 

coordination during in-phase coordination but caused individuals with PD to switch from 

anti-phase to in-phase dunng anti-phase tnals It was suggested that this may have 

increased the complexity of the task (Johnson et al, 1998) However, this may also have 

been the contnbution of increased attentional demand as proposed by Almeida et al 

(2003) Thus, it remains unclear whether external auditory cueing negatively affects 

coordination performance in PD as it may increase attentional demands or affect 

coordination through the proposed sensonmotor integration deficits This would be 

largely dependent on the other sources of sensory feedback provided such as augmented 

visual feedback 

Overall, it remains controversial as to whether the addition of augmented 

feedback results in improvements in coordination performance m PD It is possible that 

external auditory cueing regulates the internal timekeeper deficit that has been proposed 

in PD In addition, augmented visual feedback may reduce the complexity of the 

movement (Wenderoth et al, 2009) or use circuitry that by-passes the basal ganglia 
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However, these forms of sensory feedback may be influenced by difficulty in integrating 

multiple forms of sensory feedback for movement (deficit in sensorimotor integration) in 

PD Alternatively, multiple sources of feedback may require additional attentional 

resources or shifting between resources that could contribute to decreased coordination 

performance m PD Providing an answer to this problem is important for determining 

how the basal ganglia is involved in the use of sensory feedback for bimanual 

coordination and how this ultimately affects coordination performance in individuals with 

PD 

1.5 Bimanual coordination 

1.5.1 Dynamics of bimanual coordination 

Coordination dynamics have been studied extensively in healthy adults Studies 

investigating inter-limb coordination have found that the limbs are attracted temporally to 

work together as a single synergistic unit (Kelso, Southard, & Goodman, 1979b) This 

has been found across different movement systems (Kelso & Tuller, 1984) Two stable, 

intrinsic coordination patterns (m-phase and anti-phase) exist in the human motor system 

and have often been used to evaluate bimanual coordination from the perspective of 

motor control (Haken, Kelso, & Bunz, 1985, Kelso, 1984, Kelso, Southard, & Goodman, 

1979a, Schoner, 1990, Yamamshi, Kawato, & Suzuki, 1980) In-phase is a symmetrical 

pattern that requires the synchronized use of homologous muscles in both limbs (Schoner 

& Kelso, 1988d) Contrary to in-phase, anti-phase is an asymmetrical pattern that 

requires the use of non-homologous musculature (Schoner & Kelso, 1988d) The relative 

phase is a dynamic measurement that measures the phase difference between the two 

limbs in degrees (°) (Haken et al, 1985) Accurate in-phase coordination is represented 
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by a relative phase of 0° (or 360°) Perfectly synchronized anti-phase coordination is 

characterized by a relative phase of 180° (Schoner & Kelso, 1988c) 

The existence of these patterns was originally proposed to allow individuals to 

limit the degrees of freedom and naturally reduce the complexity of movements (Kelso & 

Schoner, 1988) This was supported by research that examined other phase relationships 

such as the 90° out of phase pattern As cycle frequency was increased, variability in the 

phase relationship increased and people were naturally attracted to and shifted into either 

m-phase or anti-phase (Kelso, 1984) This phase transition represented the inherent 

stability of both the m-phase and anti-phase relative to other patterns Although anti

phase was more stable than other coordination patterns, participants appeared to be 

naturally drawn to a shift to m-phase, as cycle frequency was increased preceded by 

increased variability in relative phase (Kelso, Scholz, & Schoner, 1986) Based on this 

evidence, anti-phase may be considered stable coordination pattern but m-phase is the 

most stable pattern that has been found m the human motor system 

Spontaneous and intentional transition between phases is an important aspect of 

coordination dynamics Spontaneous transitions from anti-phase to m-phase have 

documented at varying cycle frequencies from person to person and between different 

tasks (Byblow, Carson, & Goodman, 1994, Byblow & Goodman, 1994) Spontaneous 

switches for healthy young adults were performed at a mean frequency of 2 34 Hz for 

free movement and 1 83 Hz with resistive loading (Kelso, 1984) Older adults 

demonstrated similar switching frequencies of 2 41 Hz in non-loading situations (Byblow 

et al, 2002) It has traditionally been argued that spontaneous pattern switching occurs to 

simplify the demands on the motor system by using homologous rather than different 
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musculature (Johnson et al, 1998, Kelso, 1984, Kelso & Schoner, 1988) Recently, some 

well designed experiments comparing congruent with incongruent muscles in a wrist 

flexion-extension, finger tapping and bimanual circle drawing found that the attraction 

for symmetry dunng in-phase was due to the perceptual spatial symmetry rather than any 

other motor explanation such as the simplicity to the motor system of using homologous 

muscles (Mechsner, Kerzel, Knobhch, & Pnnz, 2001) The examination of voluntary 

(intentional) pattern switches allows examination of the intention to change behaviour but 

is highly dependent on the inherent pattern stability (Scholz & Kelso, 1990, Schoner & 

Kelso, 1988a) Switch time has been shown to be longer from in-phase to anti-phase 

compared to the reverse (Semen & Swinnen, 1999) The slowed switching has been 

argued to be a result of the difficulty in transitioning from a high to low stability 

coordination mode The attraction to particular coordination patterns and the behavioural 

outcomes with cycle frequency and changing are well understood in healthy adults 

1.5.2 Coordination performance in Parkinson's disease (PD) 

A wide variety of deficits have been found in individuals with PD dunng 

bimanual coordination Coordination accuracy and vanabihty as revealed by the relative 

phase (see section 1 7 4 for relative phase calculation) were found to be worse in PD 

participants dunng both in-phase and anti-phase but it was more pronounced in anti

phase when producing a cyclical movement towards and away from the midline of the 

body (Semen, Steyvers, Debaere, Stelmach, & Swinnen, 2000) PD participants were 

found to have less accuracy and more vanabihty dunng anti-phase (but not in-phase) 

dunng a medial-lateral sliding task and a pronation-supination task of the forearms while 

grasping handles (Almeida et al, 2002, Byblow et al, 2000) More vanabihty was seen 



in the relative phase during both anti-phase and m-phase but more so in anti-phase in 

individuals with PD Accuracy of relative phase was not measured during a task that 

required flexion-extension of the forearms with the hands resting flat (van den Berg, 

Beek, Wagenaar, & van Wienngen, 2000) In-phase was found to be less accurate and 

more variable at both 1 and 2 Hz and anti-phase was less accurate at 1 Hz in individuals 

with PD Additionally, both PD and age-matched control participants performed poorly 

during anti-phase at 2 Hz during a rotational task with manual cranks (Johnson et al, 

1998) 

Accuracy and vanability deficits in coordination have not been universally found 

Individuals with PD were less accurate but no differences were seen in variability in both 

isodirectional (m-phase) and non-isodirectional (anti-phase) coordination during cyclic 

movements in the sagittal plane (Swinnen et al, 1997) It is not clear why this study did 

not find any differences in vanability between groups but it may have been a result of the 

age of the participants Mean age of PD participants was 67 8 years where as the healthy 

controls mean age was 76 4 years It has been found that coordination is lost with the 

aging process (Wishart et al, 2002) Thus, the lack of difference between groups may 

have been a result of the aging deficits in the control group Accuracy and stability of 

coordination was not different in PD compared to healthy control participants (Byblow et 

al, 2002) It was proposed that this was a result of individuals with PD using preferred 

frequencies of 1 02 Hz for compared to 1 56 Hz in healthy controls dunng a pronation-

supination task Similarly, no differences in relative phase were observed in individuals 

with PD using a frequency of 0 6 Hz with wnst flexion-extension movements (Byblow, 

Lewis, & Stinear, 2003) These expenments suggest that the cycle frequency demand is 
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critical to establish deficits Coordination performance has also been investigated using 

the number of successful tnals Individuals with PD were shown to have more 

unsuccessful tnals during m-phase at high frequencies and anti-phase at low frequencies 

than healthy age-matched controls dunng bimanual circular drawing (Ponsen et al, 

2006) No differences in unsuccessful tnals were found between groups during anti-phase 

at 1 75 Hz It was suggested that this could have occurred due to a lack of amplitude 

requirements 

Overall, it appears that deficits m coordination accuracy and vanabihty are most 

evident and more pronounced during anti-phase at cycle frequencies around 1 Hz but 

they have also been found in some studies dunng m-phase with high-cycle frequency 

demand (e g above 1 Hz ) in individuals with PD However, coordination deficits have 

not been universally found in individuals with PD Several factors such as slow cycle 

frequencies, small amplitude requirement and age-related deficits in coordination (e g 

anti-phase at fast cycle frequencies) may have contributed to a lack of coordination 

deficits in individuals with PD In addition, the relationship between sensory feedback 

and attentional demands (see sections 14 2 and 14 3) may also contnbute to whether 

coordination deficits are observed in individuals with PD Hence, careful consideration is 

needed to understand the circumstances that they occur since this could provide important 

insight into the role of the basal ganglia in bimanual coordination 

1.5.3 Amplitude and frequency during bimanual coordination in PD 

Coordination involves the temporal and spatial coupling of the limbs (Swmnen, 

2002) However, the individual assessment of amplitude and frequency are important to 

consider in bimanual coordination in individuals with PD due to the possible 
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contributions of motor symptoms including bradykmesia (slowness of movement) and 

hypometna (reduced size of movement) (see section 1 4 1) to voluntary movement In 

addition to coordination deficits, impairments in amplitude and frequency have been 

documented in individuals with PD while performing bimanual tasks Smaller amplitudes 

were seen during both m-phase and anti-phase at a frequency of 1 Hz (Swinnen et al, 

1997) In addition, smaller amplitudes were observed during symmetrical (m-phase) 

triangle drawing, but only symmetrical patterns were used (Swinnen et al, 2000) 

Byblow et al (2002) found smaller amplitude of movements predominantly with 

increasing the frequency from below to above the spontaneous transition frequency m 

individuals with PD Semen et al (2000) observed more variable amplitudes across all 

conditions for individuals with PD Swinnen et al (2000) demonstrated that amplitude of 

movements were more variable in symmetrical triangle drawing in individuals with PD 

However, conflicting evidence has also found that amplitudes were not more variable 

during a cyclical flexion-extension task in individuals with PD (Swinnen et al, 1997) 

The reason for this finding is unclear but it was suggested that the novel task used m this 

experiment could have resulted in variability of amplitude to be high across all 

participants 

Frequency deficits have also been found in individuals with PD during bimanual 

coordination tasks The frequency of movements in PD participants was found to be 

slower than healthy control participants only at a frequency of 1 75 Hz but not at 0 75 or 

1 25 Hz (Almeida et al, 2002) Longer cycle durations were found in PD participants 

either when both arms moved 80 degrees or when one moved 80 while the other moved 

40 degrees but not during movements of 40 degrees (Semen et al, 2000) Swinnen et al 
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(1997) also found longer cycle durations dunng both in-phase and anti-phase 

coordination at 1 Hz in individuals with PD In addition, Swinnen et al (2000) observed 

longer cycle durations dunng symmetncal tnangle drawing when there was a goal of 1 5 

seconds per cycle in individuals with PD Johnson et al (1998) found the velocity of 

movements to be more vanable at 1 0 Hz in both in-phase and anti-phase coordination in 

individuals with PD Lazarus and Stelmach (1992) observed a slower and longer time to 

reach peak velocity as well as a longer time to reach peak negative and positive 

acceleration m individuals with PD Ponsen et al (2006) demonstrated that PD 

participants had more vanable frequency of movements at higher cycle frequencies and 

to a greater extent dunng anti-phase Finally, more vanabihty was observed in cycle 

durations in PD participants dunng a cyclical flexion-extension task (Swinnen et al, 

1997) and dunng in-phase tnangle drawing (Swinnen et al, 2000) 

Overall, it appears that PD participants have deficits in amplitude and frequency 

dunng bimanual coordination Collectively, the results from previous expenments 

demonstrate a potential deficit in the amplitude and frequency of movements that may be 

representative of the motor symptoms of hypometna (reduced amplitude) and 

bradykinesia (slowness) in PD 

1.5.4 Phase switching during bimanual coordination in PD 

As previously descnbed (see section 15 1), individuals are naturally drawn to m-

phase coordination and will perform a spontaneous shift from anti-phase or other less 

stable coordination patterns Spontaneous transition frequencies were found to be lower 

in individuals with PD compared to healthy older adults (1 76 Hz compared to 2 41 Hz) 

(Byblow et al, 2002) Spontaneous transitions from anti-phase to in-phase were also 
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found to occur more often in individuals with PD (Byblow et al, 2000, Ponsen et al, 

2006) 

Individuals with PD have been shown to have difficulty in sequencing between 

movements (Benecke, Rothwell, Dick, Day, & Marsden, 1987a, Harrington & Haaland, 

1991) Intentional pattern switching requires sequencing movements and performing a 

voluntary change between two coordination patterns rather than spontaneous switch 

Voluntary pattern switches especially from m-phase (stable) to anti-phase (less stable) 

pattern caused for longer transitions and longer initiation of the voluntary switch in 

individuals with PD (Almeida et al, 2003, Byblow et al, 2003, Byblow et al, 2000) 

After switches to anti-phase (from m-phase,) there was less accuracy and more variability 

in coordination performance m individuals with PD (Almeida et al, 2003) Thus, the 

inclusion of a pattern switch dunng the performance of a coordinated movement adds an 

additional demand on the motor system It can provide further insight into the role of the 

basal ganglia in the execution of bimanual coordination 

1.5.5 Freezing during bimanual coordination in PD 

Akinesia (absence of movement) has been proposed to represent a complex PD 

motor symptom that incorporates exacerbated forms of hypometna, bradykinesia and 

freezing (Imai, 1996) Freezing has been described as one of the most debilitating 

symptoms of PD since it can severely alter the ability to perform everyday tasks and 

remains one of the most challenging features of PD (Imai, 1996) A period of time dunng 

which no movement occurs despite the intention to move is charactenstic of freezing 

The term motor block has also been used m alternative to freezing to refer to any sudden 

stop m movement or inability to initiate movement (Giladi et al, 1992) Freezing is 



28 

similar to the hastening that has been found to occur in the lower limbs during gait 

(Giladi et al, 2001, Lamberti et al, 1997) Freezing was originally documented in gait 

initiation, during continuous walking, during turning and walking through narrow 

doorways (Almeida & Lebold, 2010, Giladi et al, 2001, Lamberti et al, 1997) Freezing 

has also been found m other tasks such as speech, unimanual finger tapping and 

handwriting (Nakamura et al, 1978, Popovic, Dzoljic, & Kostic, 2008, Ziv et al, 1999) 

Manual motor blocks (MMBs) were examined during a unimanual finger tapping task 

(Ziv et al, 1999) MMBs were identified to occur more often and for longer durations in 

PD but were not exclusive to individuals with PD Correlations with MMBs were only 

found between freezing of gait but not with any other symptoms or disease duration and 

levodopa did not reduce the amount of MMBs 

Freezing has been also been shown to occur during continuous bimanual 

coordination in the upper limbs (Almeida et al, 2002) and after pattern switching in 

upper limbs during coordination tasks (Almeida et al, 2003) using a medial-lateral 

sliding task Using a computer algorithm to detect freezing, individuals with PD were 

found to freeze m their upper limbs in 8 1% of anti-phase tnals (Almeida et al, 2002) A 

successive study by Almeida et al (2003) using the same definition and computer 

algorithm, documented upper limb freezing in 52 9% of trials after a pattern switch 

predominantly from anti-phase to m-phase 

Recently, research has been conducted to examine upper limb freezing episodes 

(FO-UL) using visual examination of displacement profiles during a bimanual rhythmic 

task using digitizing tablets (Nieuwboer et al, 2009) They detected 25 FO-UL episodes 

(10 4% of tnals) all dunng anti-phase Neither cycle frequency (between 1 08 and 1 71 
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Hz) nor amplitude (2 or 4 cm) significantly influenced the amount of freezing episodes 

A trend revealed that visual cueing may result in less freezing compared to without visual 

cues in non-freezers but the opposite was found in freezers Finally, they found that the 

amount of FO-UL were correlated with scores on a freezing of gait questionnaire but no 

correlation was found with age, Hoehn and Yahr stage, UPDRS score or Mini Mental 

State Examination (MMSE) (Nieuwboer et al, 2009) 

Early research into the mechanism of unimanual movement interruptions 

proposed that PD have a deficit in internally-cueing continuous, repetitive movements 

that was referred to as a dysfunctional motor pacemaker (Ziv et al, 1999) Similarly, 

hastened tapping was argued to represent an internal or intrinsic oscillation that did not 

allow for maintenance of synchronized tapping (Nakamura et al, 1978) Freezing dunng 

bimanual coordination cannot be explained by the same internal-cueing deficit since 

episodes have been identified with external cueing They have been argued to occur due 

to increased attentional demands presented by the task through pattern difficulty during 

anti-phase coordination and cycle frequency (Almeida et al, 2002) Furthermore, it was 

suggested that the attentional demand of anti-phase, externally paced movements in 

combination with switching between patterns resulted in increased movement 

impairments dunng bimanual coordination (Almeida et al, 2003) Similar results by 

Nieuwboer et al (2009) demonstrated that only the demand of anti-phase coordination 

resulted in freezing However, this same effect was not seen with small amplitudes and 

increasing cycle frequency In addition, they demonstrated that visual cueing decreased 

the amount of freezing (Nieuwboer et al, 2009) Thus, the mechanism for upper limb 

freezing warrants further investigation since the current explanations of a dysfunction 
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internal timing mechanism or increased attentional demands cannot fully explain 

previous research 

1.6 The possible contributions of the dopaminergic system to 

bimanual coordination 

1.6.1 Dopamine replacement on primary motor symptoms and freezing 

Early research identified the relationship between dopamine and Parkinsonism 

(Carlsson, 1959, Homykiewicz, 1963,1966) This led researchers to explore dopamine as 

a therapeutic treatment for PD (Bernheimer, Homykiewicz, & Birkmayer, 1963, Cotzias, 

1968, Cotzias, Papavasihou, & Gellene, 1968) Historically, this treatment has been 

provided primarily in the form of levodopa (L-dopa) (Caraceni & Musicco, 2001, 

Cotzias, 1968, 1969, Cotzias, Duby, Gmos, Steck, & Papavasihou, 1970, Cotzias et al, 

1968, Cotzias, Papavasihou, & Gellene, 1969a, 1969b, Factor, 2001) However, various 

forms of dopamine analogues were identified (Cotzias et al, 1970) and slowly other 

variations and alternatives to L-dopa were developed (Papavasi Ps et al, 1972, Yahr & 

Duvoisin, 1971) As a consequence, various forms of dopamine replacements have been 

developed to alleviate the symptoms related to PD including B-monoamine oxidase 

inhibitors (MAO-B) (Sieradzan et al ,1995, Talati et al, 2009, Tyce, Dousa, & Muenter, 

1990) and dopamine agonists (Bonuccelh & Pavese, 2006, Deleu et al, 2002, Piccoh & 

Riuggen, 1995) Although each treatment distinctively manipulates the dopaminergic 

system, all forms of modulation aim to increase the amount of dopamine available in the 

basal ganglia These treatments do not replenish levels of dopamine to the expected level 

of older adults and as the disease progresses the level of medication is often increased As 

a consequence, there are an increase in complications such as dyskinesia and motor 
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fluctuations are often inevitable (Almeida & Hyson, 2008, Caracem & Musicco, 2001, 

Fahn, 2008) 

Although individual variability exists for motor symptom improvement for the 

various forms of dopamine replacement, the primary motor symptoms of PD have been 

shown to improve with dopamine replacement These include rigidity (Andrews & 

Burke, 1973), resting tremor (Burleigh, Horak, Nutt, & Frank, 1995, Duffau, Tzouno, 

Caparros-Lefebvre, Parker, & Mazoyer, 1996, Stnan, Benkert, & Micheler, 1972), 

bradykmesia (Kaufmann, Butz, & Wiesenda M, 1970, Spiegel, Szekely, & Zivanovi, 

1968, Utterbac, Pozos, & Stiles, 1971) and postural instability (Chaco & Abramsky, 

1971, Folkerts & Njiokikt, 1972) Improvement in total motor symptoms (Siderowf, 

Stern et al, 2002, Yamamoto et al, 1997) and specific motor symptoms such upper limb 

amplitude and bradykmesia (Espay et al, 2009, Kishore et al, 2007) have been further 

revealed by clinical evaluations on the motor subsection of the Unified Parkinson's 

Disease Rating Scale (UPDRS) (Fahn & Elton, 1987) This clinical tool has been shown 

to have very high test-retest reliability for motor symptoms in PD (Siderowf, McDermott 

et al, 2002) However, despite the improvement of most motor symptoms with dopamine 

replacement there is much debate about the responsiveness of akinesia (freezing) to 

dopamine replacement (Bloem, Hausdorff, Visser, & Giladi, 2004, Iansek, Huxham, & 

McGinley, 2006, Imai, Nakamura, Kondo, & Narabayashi, 1993, Narabayashi, Kondo, 

Nagatsu, Hayashi, & Suzuki, 1984, Nomoto & Nagai, 2006, Okuma, 2006, Schaafsma et 

al, 2003, Schroeteler et al, 2009, Ziv et al, 1999) 

Research that has examined the influence of dopamine replacement on freezing of 

gait (FOG) in PD found general improved gait characteristics including speed, stride 
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length and step size as a result of dopaminergic manipulation that are proposed 

precursors of freezing of gait (Iansek et al, 2006) Freezing of gait frequency was found 

to be more prominent during turning in the 'off state compared to the 'on' state in PD 

but not it was still apparent during the 'on' state (Okuma, 2006, Schaafsma et al, 2003) 

Additionally, they found that total akinetic freezing episodes were only evident in the 

'off state However, several studies have found that dopaminergic modulation does not 

influence the amount of freezing of gait (Bloem et al, 2004, Imai et al, 1993, Nomoto & 

Nagai, 2006, Schroeteler et al, 2009) Furthermore, the frequency of upper limb 

movement interruptions during a unimanual task was not improved with dopaminergic 

modulation (Ziv et al, 1999) This suggests that freezing does reliably respond to 

dopaminergic replacement in contrast to other motor symptoms An understanding of the 

involvement of the dopaminergic system in freezing is necessary for accurate etiology of 

freezing There has been a proposition that the mechanism for freezing of gait and 

akinesia may involve basal ganglia dysfunction that does not typically respond to 

dopamine replacement This includes executive function in the frontal cortex (Dagan, 

Plotmk, Grundlmger, Giladi, & Hansdorff, 2008, Giladi & Hausdorff, 2006, Giladi, 

Huber-Mahhn, Herman, & Hausdorff, 2007) that may be mediated by acetylcholine 

rather than dopamine (Rodnguez-Oroz, Jahanshahi et al, 2009, Rodnguez-Oroz, Lage et 

al, 2009) In addition, akinesia has been proposed to involve a non-dopaminergic GABA 

mediated pathway involving the basal ganglia and degeneration of the pedunculopontine 

nucleus (PPN) (Bloem et al, 2004, Nandi et al, 2002) Thus, it is necessary to determine 

whether upper limb freezing during continuous, bimanual coordination tasks is 

responsive to dopaminergic manipulation 
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1.6 2 Dopamine replacement on complex voluntary movements 

The effect of dopaminergic replacement has been controversial in complex 

voluntary movements Dopaminergic modulation has been shown to produce secondary 

improvements in gait including stride length, double support and cadence (Morris, 

Matyas, lansek, & Summers, 1996) Similarly, PD under dopaminergic manipulation can 

reach a target while walking more accurately than individuals with PD who were non-

medicated (Almeida et al, 2005) However, PD participants were less accurate at 

reaching a target when walking 'off dopammergic medications when only 

proprioception was available Furthermore, individuals with PD were shown to have an 

increased step-to-step variability and decreased mean temporal gait as a result of 

dopaminergic manipulation (Almeida, Frank, Roy, Patla, & Jog, 2007) 

There have been few studies that have investigated the effect of dopamine 

replacement on complex voluntary movements in the upper limbs Research that involved 

single limb reach-to-grasp found that individuals with PD 'off dopammergic medication 

have difficulty integrating proprioceptive with visual information to correctly coordinate 

the reach and grasp components (Schettmo et al, 2006) In the same study, dopaminergic 

manipulation improved the speed of movements but it could not improve the 

sensorimotor integration problem Dopamine replacement in PD was not found to 

influence a unimanual and bimanual task involving squeezing a bulb and key pressing as 

revealed by similar error rates and force outputs (Palmer et al, 2009) No previous 

studies have evaluated the contribution of the dopaminergic system for continuous, mter-

hmb coordination m the upper limbs Pilot work from this lab examined found that no 

overall differences in coordination were present with or without dopaminergic 
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manipulation (M J N Brown & Almeida, 2008)) It was found that there may be 

differences in the ability for individuals with PD not under the influence of dopaminergic 

medication (PD 'off) compared to individuals who were under the influence of 

dopaminergic medication (PD 'on') to use and integrate sensory feedback Specifically, 

relying on a novel source of augmented visual feedback may result in decreased and more 

variable coordination in PD 'off compared to the combination of both vision of the 

hands and augmented visual feedback Additionally, PD 'off may have a deficit in 

coordination that is more influenced by factors such as pattern difficulty such as anti

phase and increasing cycle frequency demand Though these results were preliminary 

they suggest the dopaminergic system could be involved in sensorimotor integration or 

potentially allocating attentional demands Further research is necessary to support these 

findings 

Manipulating the dopaminergic system during bimanual coordination in PD can 

provide critical information into whether and how it is involved in executing 

simultaneous movements Additionally, dopaminergic manipulation can help discern the 

relationship between motor symptoms such as hypometna, bradykinesia and upper limb 

freezing on coordination performance m individuals with PD This would help to 

distinguish whether difficulties while executing simultaneous movements such as 

coordination or sensory deficits are accounted by the dopaminergic system or other 

dysfunction as a result of PD 

1.7 Methodology 

1.7.1 Instrumentation 
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There have been a variety of instruments used to perform coordinated movements 

and collect data in bimanual coordination research in PD These include measuring arm 

displacement using linear potentiometers attached to horizontal sliding devices at 200 Hz 

(Almeida et al, 2002, 2003) Rotational movements of the forearms were measured using 

custom-made handles mounted on the edge of a table at 200 Hz (Byblow et al, 2002, 

Byblow et al, 2000) Rotational/cyclical arm movements have been measured with shaft 

encoders attached to two horizontal rotational levers measuring movement at 150 Hz 

(Semen et al, 2000), two horizontal rotational mampulanda measuring at 150 Hz 

(Swinnen et al, 1997) and manual cranks with two wheels to measure vertical plane 

rotational movements using code-wheel and optical decoders at 200 Hz (Johnson et al, 

1998) Other methods of measuring displacement include digitizing tablets to measure 

bimanual circle drawing with matching electronic pencils at 99 Hz (Ponsen et al, 2006) 

Only one previous study has examined wrist flexion-extension using mampulanda that 

measured sagittal plane displacement at 1000 Hz (Byblow et al, 2003) One of the major 

limitations of these instruments is that they do not allow for manipulation of the type of 

movement or degrees of freedom Furthermore, although these devices may be adequate 

at measuring coordination performance, new instruments may provide more accurate 

measurement and increased clinical application These limitations could be resolved with 

the use of robotic haptic devices that have recently been used in the field of 

neurorehabilitation with stroke (Wolbrecht, Chan, Reinkensmeyer, & Bobrow, 2008) and 

individuals with multiple sclerosis (Casadio, Sanguineti, Solaro, & Morasso, 2007) 

Continuous, bimanual coordination in PD has not been evaluated using haptic 

devices but they can provide several possible advantages Traditionally, bimanual 
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coordination has been investigated in either one or two dimensions Haptic devices 

provide a unique opportunity to evaluate coordination in three-dimensions that few 

studies have evaluated at high precision recording (e g 1000 Hz) Another major 

advantage of haptic devices is the ability to not only determine traditional kinematics 

such as displacement and velocity but also to measure and apply forces including 

constant, fnctional or viscous m three-dimensions For example, the haptic interface is 

able to apply constant forces in all three directions to form a virtual path and when 

participants deviated from the required path, it would apply reactive forces to push people 

back into it (Mihelj, Nef, & Riener, 2007) This essentially can create any desirable 

virtual environment and could constrain movements to a single dimension if required 

Aside from being useful as a measurement tool, haptic devices have other 

important applications They can be used to create virtual environment for upper limb 

rehabilitation Also, haptic devices have been used to evaluate different forms of tremor 

in PD (Gnmaldi, Sattar, Lammertse, & Manto, 2007) Consequently, they could be used 

as a diagnostic tool in PD Thus, haptic devices are multifaceted and have many possible 

applications This makes them a valuable instrument to measure bimanual coordination in 

PD Although these devices have been used for single limb reaching tasks, it is 

reasonable to propose that the use of two haptic devices simultaneously could be 

beneficial to evaluate bimanual coordination A preliminary study investigated the use of 

haptic devices constrained to two-dimensions in individuals with PD in a single arm task 

(Bardorfer, Mumh, Zupan, & Pnmozic, 2001) Therefore, haptic devices have the 

potential to serve as useful tools to measure upper limb functioning in PD 

1.7.2 Upper limb coordination tasks 
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There remains to be a single standardized movement or task to examine bimanual 

coordination in PD Continuous, bimanual coordination is different from discrete 

bimanual coordination as it requires a rhythmic component and its primary goal is not 

goal-directed to a discrete location Though there is often a required movement distance, 

the primary focus of bimanual coordination is on temporally and spatially coordinating 

the limbs 

A wide variety of um-dimensional tasks have been used to study upper limb 

coordination in PD including arm/wrist flexion-extension movements in the horizontal 

plane (Almeida et al, 2002, 2003, Nieuwboer et al, 2009, Semen et al, 2000, van den 

Berg et al, 2000, Verschueren et al, 1997), forearm movements in the sagittal plane 

(Swinnen et al, 1997), pronation/supination of the forearms (Byblow et al, 2002, 

Byblow et al, 2000), and vertical plane movements with manual cranks (Johnson et al , 

1998) Previous research has demonstrated that individuals with PD have more difficulty 

performing a bilateral prehension task with more degrees of freedom (Alberts, Tresihan, 

& Stelmach, 1998) Additionally, multi-dimensional tasks are more applicable to 

movements of daily living Thus, examining bimanual coordination in more than one-

dimension may provide a better representation of the actual deficits that occur in 

individuals with PD 

Movements that have not been constrained to a single dimension include circle 

drawing (Nieuwboer et al, 2009, Ponsen et al, 2006), triangle drawing (Swinnen et al, 

2000) and index finger tapping (Nieuwboer et al, 2009, Verheul & Geuze, 2004) All of 

these tasks maintain temporal and spatial characteristics between the limbs Other 

irregular tasks include drawing triangles with one hand while squeezing a rubber ball 
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with the other hand (Horstink et al, 1990), key pressing combined with squeezing a 

rubber bulb (Palmer et al, 2009) and combining isotonic and isometric movements 

(Lazarus & Stelmach, 1992) These tasks are not traditional continuous, bimanual 

coordination tasks since they are focused on examining time-sharing and attention of 

simultaneous movements similar to what is observed in dual-tasks In comparison, 

continuous bimanual coordination is focused on the spatial and temporal coordination 

between the limbs 

There are several limitations with comparing different bimanual coordination 

tasks One problem between comparing different tasks is that each requires a varying 

amount of muscle recruitment and degrees of freedom across different joints in the upper 

limbs to produce the movement (e g arm horizontal plane movements require the use of 

shoulder abduction/adduction, elbow flexion/extension and wnst flexion/extension where 

as finger tapping only requires digital flexion/extension) To resolve this issue, several 

tasks make use of special apparatus to decrease the degrees of freedom (across different 

joints) and isolate movements For example, forearms were attached and fastened in a 

mampulanda to stop any forearm movements (Swinnen et al, 1997, van den Berg et al, 

2000, Verschueren et al, 1997) As described above, some researchers would argue 

against isolating single movements in one dimension since it does not reveal as 

prominently all deficits that would be found as the degrees of freedom are increased 

(Alberts et al, 1998) However, research in bimanual coordination in healthy adults using 

elbow flexion-extension demonstrated that there was increased forearm pendulum-like 

motion m two-dimensions and three-dimensions with increased frequency of movement 

(Buchanan & Kelso, 1999, Buchanan, Kelso, DeGuzman, & Ding, 1997) It was 
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suggested that the systematic increases in degrees of freedom help to stabilize 

coordination Ultimately, it is presumed that the more muscles involved in the movement, 

the better the ability to detect deficits in coordination Therefore, careful consideration 

needs to be taken for choosing a movement task that eliminates the ability to recruit 

different joints but does not constrain the degrees of movement withm the specific joint 

being measured to maximize the ability to detect deficits in PD 

The current thesis used an apparatus that permitted three-dimensional wrist 

flexion-extension movements with the forearms constrained This movement allowed 

unconstrained movement and degrees of freedom at the wnst compared to movement in a 

single plane In addition, the movement aimed to isolate the forearm muscles and avoid 

use of muscles at the elbow and shoulder joints This was in an effort to identify 

coordination deficits and freezing in the wnst without compensation by elbow or 

shoulder joints 

1.7.3 Coordination patterns, cycle frequency and amplitude 

Most commonly m-phase and anti-phase are used to examine bimanual 

coordination in PD (Almeida et al, 2002, 2003, Byblow et al, 2002, Byblow et al, 2000, 

Johnson et al, 1998, Ponsen et al, 2006, Semen et al, 2000, Swinnen et al, 1997) 

These coordination patterns are stable, attractor states that inherently exist (Cohen, 1971, 

Kelso, 1984) Other studies have used 90° out-of-phase pattern in individuals with PD 

(Verheul & Geuze, 2004, Verschueren et al, 1997), healthy young adults (Fontaine, Lee, 

& Swinnen, 1997, Lee et al, 1995) and healthy elderly adults (Wishart et al, 2002) 

However, patterns other than anti-phase and m-phase (e g 90° out-of-phase) are not 

intrinsic so they require learning and forming new attractor states (Lee et al, 1995, 
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Schoner, Zanone, & Kelso, 1992, Zanone & Kelso, 1992) Research has also 

demonstrated that PD could not perform (2 or more trials) in over half of the trials (53%) 

in a finger tapping task requiring 90° out of phase coordination (Verheul & Geuze, 2004) 

Thus, the current study used m-phase and anti-phase to evaluate continuous, bimanual 

coordination to limit motor learning in relation to the coordination pattern and to verify 

completion of the task 

A variety of cycle frequencies have been used to examine bimanual coordination 

in PD ranging from 0 6 Hz (Byblow et al, 2003), self-paced movements (Byblow et al, 

2000) to cycle frequencies of 3 0 Hz (van den Berg et al, 2000) As detailed in section 

15 1, research in bimanual coordination has demonstrated that as frequency of movement 

is increased, there is increased variability in coordination and attraction to m-phase 

coordination (Kelso, 1984) Furthermore, research has found that at frequencies around 

3 0 Hz individuals with PD either hasten (increase actual frequency of movement relative 

to required frequency) or cannot produce the movement in both ummanual finger tapping 

(Freeman et al, 1993) and during anti-phase coordination (van den Berg et al, 2000) 

This may be in relation to the timing deficits (see section 1 4 3) or bradykinesia (see 

section 1 5 3) m individuals with PD The most common frequencies used to evaluate 

bimanual coordination in PD range from 0 75 to 2 0 Hz Pilot work from this lab 

evaluated frequencies as low as 3375 Hz and found that movements at exceptionally 

slow cycle frequencies were difficult to remain rhythmic and continuous (M J N Brown 

& Almeida, 2008) Typically, studies that have evaluated cycle frequency demand on 

coordination have used separate trials at different frequencies (Almeida et al, 2002, 

Byblow et al, 2002, Byblow et al, 2000) Dynamic cycle frequency protocols have 
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previously been used in bimanual coordination to evaluate increased coordination 

variability and spontaneous phase transitions m healthy young adults (Scholz, Kelso, & 

Schoner, 1987) and individuals with PD (Byblow et al, 2000) Although the goal of the 

current study was not to specifically evaluate spontaneous transition frequencies, a 

dynamic cycle frequency protocol was employed to increase the coordination variability 

(see Chapter 2 and Experiment 1 in Chapter 4) This increased coordination variability 

may also contribute to increased occurrence of freezing in individuals with PD as 

increased variability of step length and step time is characteristic of FOG (Almeida & 

Lebold, 2010) A previous study systematically evaluated dynamic switching during 

bimanual coordination between 4 different amplitudes within 60-second trials and found 

this to be a good method to evaluate continuous coordination (Byblow et al, 2003) Thus, 

dynamic cycle frequency changes within a single trial will serve as a promising novel 

paradigm to evaluate continuous coordination deficits and freezing in PD However, this 

method would not be appropnate when examining changes or voluntary pattern switches 

in movements (see Chapter 3 and Experiment 2 in Chapter 4) It is suggested that 

combining these two methods would make evaluating the results more complex since it 

would be difficult to determine whether increasing cycle frequency demand or the change 

in movement contributed to the outcomes 

Amplitude requirements have varied depending on the type of task Amplitude 

demands for each limb have ranged from small 2cm movements (Byblow et al, 2000) to 

large 16 cm movements (Almeida et al, 2002, 2003) Rotational amplitudes have 

consisted of 40, 60, 80 and 100 ° (Byblow et al, 2003, Semen et al, 2000) However, 

other studies have avoided specific amplitude requirements but encouraged large and 
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consistent movement amplitude (Swinnen et al, 1997) or comfortable amplitudes to 

maintain the frequency and coordination of movement (Ponsen et al, 2006) Similarly, 

the current study did not use a specific amplitude requirement but required participants to 

perform large but comfortable movements with discrete amplitude goals This was done 

to emphasis the correct frequency and coordination of movement 

1.7.4 Outcome measures 

All outcome measures were calculated using customized scripts m MatLab and 

assigned to data spreadsheets The experimenter was only responsible for transferring 

data into a master spreadsheet in Excel This was done to increase accuracy of data 

acquisition by limiting the contribution of the experimenter and potential errors in 

handling the data 

Coordination performance 

There are no universal outcome measures that have been used to study bimanual 

coordination Coordination performance has been measured by the inability to perform a 

task by examining unsuccessful trials (van den Berg et al, 2000) However, this measure 

does not provide insight into the specific deficits that may be causing the unsuccessful 

trials Coordination accuracy and stability have most commonly been used to measure 

coordination performance Three methods have been used to measure the relative phase 

between the limbs The Hilbert phase has been been used to measure only the stability of 

coordination (Ponsen et al, 2006) The most common way that has been used to calculate 

accuracy and variability between the limbs was formulated in the form of relative phase 

(a k a HKB model) (Haken et al, 1985, Kelso et al, 1986) The relative phase 

determines the position of one limb relative to the other using the formula 



0 = tan-1 [(dXR/dt)/XR] 

Where 9 is the relative phase between limbs at each sample, X is the position of 

each limb within a cycle rescaled to the magnitude [_1,1], (dXR/dt) refers to the 

normalized and continuous instantaneous velocity (Haken et al, 1985) Several studies 

examining bimanual coordination in PD have used this to measure coordination 

performance (Almeida et al, 2002, 2003, Johnson et al, 1998, Semen et al, 2000, 

Verschueren et al, 1997) Other studies have used similar relative phase measurements 

referred to as the pseudo relative phase (Bailey & Mair, 2006, Byblow et al, 2003, 

Byblow et al, 2002, Byblow et al, 2000) Beek and Beek (1988) developed the pseudo 

relative phase based on the pnncipal that rhythmic movement is non-linear but externally 

driven However, the relative phase developed in the HKB model is only based on the 

assumption that rhythmic movement is non-linear (Beek & Beek, 1988) Although these 

methods of calculation are similar very few studies have adapted the use of the pseudo 

relative phase This may be in part that coordination dynamics have been formed based 

on the pnnciples of the relative phase developed in the HKB model (Kelso, 1984, Kelso, 

Holt, & Flatt, 1980, Kelso, Holt, Rubin, & Kugler, 1981, Kelso et al, 1986, Kelso, 

Scholz, & Schoner, 1988, Kelso & Schoner, 1988, Kelso et al, 1979a, 1979b) 

Therefore, the current study used the relative phase measure from the HKB model rather 

than the pseudo relative phase to be able to compare the current results with the vast 

knowledge that exist for dynamic bimanual coordination 

Spatial and temporal aspects of movement 

The temporal aspect of each limb can be measured in several different ways 

Velocity measured from the derivative of the displacement has been used as measures of 
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been used to calculate the difference between the required frequency and the actual 

frequency (Ponsen et al, 2006) Cycle duration has also been used to calculate the time 

(in seconds) between subsequent positive peaks (Semen et al, 2000, Swinnen et al, 

1997) However, most bimanual coordination studies have calculated the frequency of 

movement in hertz (Hz) This is measured by determining the amount of cycles (positive 

to positive peaks) within a given time (Almeida et al, 2002, 2003, Byblow et al, 2002, 

Semen et al, 2000, Swinnen et al, 2000, Swinnen et al, 1997) Typically, a mean value 

over a given amount of time is determined as a measure of frequency for each limb 

Within-tnal and between-trial variability have also been calculated by measuring the 

standard deviation of frequency but it is less favorable due to the inconsistent results 

(Almeida et al, 2002, 2003, Byblow et al, 2002, Johnson et al, 1998, Swinnen et al, 

2000) Measuring the mean movement frequency produced by each limb can provide 

information about the temporal aspect of coordination In combination with dopaminergic 

modulation, movement frequency is an important measure as it can be used to determine 

the relationship between clinical symptoms such as bradykinesia during continuous 

coordination and voluntary phase transitions 

Movement amplitude of each limb is often determined to measure the spatial 

aspect of coordination Mean squared amplitude of X and Y direction has been used 

during bimanual circle drawing (Ponsen et al, 2006) Typically, the absolute distance 

between positive and negative peaks has been used to measure amplitude (Ponsen et al, 

2006, Semen et al, 2000, Swinnen et al, 2000, Swinnen et al, 1997, Verschueren et al, 

1997) Standard deviation of amplitude has also been used to measure spatial variability 
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but have inconsistent results compared to spatial accuracy (Semen et al, 2000, Swinnen 

et al, 1997) The mean amplitude of movement over a given trial is the most common 

method to determine the amplitude In addition, it can be used with dopaminergic 

modulation to examine the relationship between hypometria in PD during bimanual 

coordination and switching performance 

Pattern Switching 

Original experiments that examined intentional switching behaviour in healthy 

adults used switching time (the time it takes to switch between patterns) and first exit 

time as the pnmary outcome measures (Schoner & Kelso, 1988b) This was calculated by 

determining the time at which the new pattern is entered first entry time compared to first 

exit time as a measure of when the original pattern leaves its stable level, A more recent 

study calculated switching time by taking the time between the deviating from the mean 

of the original relative phase to maintenance within 20° of the intended relative phase for 

2 consecutive movement cycles (Semen & Swinnen, 1999) 

Visual identification of relative phase data has been used to determine the 

duration of phase transitions in individuals with PD (Byblow et al, 2002) They 

examined when the relative phase quickly changed by 180° (or 360°) Markers were 

placed at the pre and post transition regions A linear regression line was calculated in the 

midpoint of the transition and when this line intersected the pre and post transitions it 

classified the start and finish time of transitions The onset of transition was determined 

from the beginning of the trial to pre-transition time Different measures were used to 

examine intentional switches using an interactive window m individuals with PD 

(Almeida et al, 2003) Successful switches were determined by maintenance of the 
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Voluntary switch time was calculated from the time of the auditory cue until the 

beginning time of a successful switch They also examined delayed responses to the 

auditory cue if voluntary switch time was longer than 2 seconds (Almeida et al, 2003) 

However, the visual determination of different variables such as time to switch and 

successful switches allows for subjective interpretations in analyzing the data In 

addition, the visual determination may be different between experimenters and have low 

inter-rater reliability 

A more objective approach was used for the current study to eliminate 

subjectivity of the experimenter Voluntary switch time, successful switches and delayed 

responses were all calculated using a script created in MatLab using previous definitions 

(Almeida et al, 2003) However, data was automatically calculated and stored rather than 

extracted from an interactive window by the experimenter This was suggested to 

increase the accuracy and eliminate subjectivity by the investigator 

Upper limb freezing 

A few definitions and classification methods have been used to document 

movement interruptions in the upper limbs Manual motor blocks (MMBs) were 

documented when the time between sequential taps exceeded 2 standard deviations of the 

mean inter-tap interval (Ziv et al, 1999) This method used the computer generated 

values (inter-tap interval) to calculate the amount of motor blocks Alternatively, other 

researchers have used computer algorithms using the definition of at least 1 second of no 

change in movement amplitude to detect upper limb freezing episodes (Almeida et al, 

2002,2003) 



47 

Another method used visual determination of displacement profiles by 2 qualified 

examiners due the possible limitations of computer algonthms in differentiating between 

voluntary pattern corrections, fatigue and actual freezing (Nieuwboer et al, 2009) They 

classified upper limb freezing episodes (FO-UL) based on the definition of one or both 

limbs displayed no change in movement for at least 1 second preceded by reductions in 

either amplitude or irregular cyclic frequency These authours have attempted to expand 

the definition of upper limb freezing by incorporating 4 possible scenanos involuntary 

stop of movement that lasts at least 75% of the mean cycle duration, absence of clear 

oscillating movement with abnormal form (width and duration) of the cycles for at least 

75% of the mean cycle duration, high frequency oscillation without a stop in movement 

for at least 75% of the mean cycle duration or less than 50% of the mean average normal 

amplitude (Nieuwboer, unpublished, see Appendix B) However, this approach may also 

be too subjective and may not be reliable between examiners 

Although visual determination can be effective, the exclusive use of visual 

determination warrants concern about subjectivity and the possibility of expenmenter 

bias in the determination of freezing episodes Thus, the current study attempted to 

incorporate the objectivity of a computer algonthm in combination with visual inspection 

after an already defined freezing episode A computer algonthm was used for the current 

study that used a definition of a 75% reduction in amplitude (25% of the mean reference 

amplitude) that was maintained for at least 1 second After freezing episodes were 

identified using this algonthm, visual determination was performed on the displacement 

to check for any discrepancies This approach has been recommended when using 



computer algonthms for electromyography burst onset detection as well (Hodges & Bui, 

1996, Nieuwboer et al, 2004) 
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Chapter 2 - Study #1: The influence of dopamine 
replacement on hypokinesia during bimanual 
coordination in Parkinson's disease (PD) 

2.1 Abstract 

The influence of the dopaminergic system on coordinated upper limb movements 

was examined in Parkinson's disease (PD) and healthy age-matched participants 

Individuals with PD performed two sessions first session after overnight withdrawal of 

dopamine replacement ('off) than a second session after self-administration of dopamine 

replacement ('on') Three-dimensional wnst flexion-extension coordination was 

performed in m-phase (simultaneous flexion and extension of wrists) and anti-phase (one 

wnst flexed while other wnst extended) The frequency of movements was paced with an 

external metronome and cycle frequency was increased within each tnal from 0 75 to 2 

Hz by 0 25 Hz Visual feedback was also manipulated in three sensory conditions no 

vision, normal vision and augmented vision Coordination performance was measured by 

the mean (accuracy) and standard deviation (stability) in the absolute error of the relative 

phase In addition, the mean frequency and amplitude of movement was measured in 

each limb Overall, no differences m coordination were observed between PD and healthy 

participants despite reduced movement amplitude in both limbs of PD participants 

Dopamine replacement improved the amplitude in both limbs (hypometna) of PD 'on' 

compared to PD 'off but did not influence coordination All participants paced the 

frequency of movements with metronome suggesting that attention was directed at the 

external cues allowing for preservation of coordinated movements As a result, the 
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dopaminergic system does not contribute to overall coordination performance despite 

improvements in hypometna It was concluded that dopaminergic system dysfunction 

and motor symptoms are not directly responsible for coordination deficits in individuals 

with PD 

2.2 Introduction 

Parkinson's disease (PD) is a progressive neurodegenerative disorder of the 

dopamine-producing cells of the basal ganglia Motor symptoms such as bradykinesia 

(slowness) and hypometna (decreased amplitude) manifest from dopamine loss These 

symptoms have been shown to be responsive to dopamine replacement (Espay et al, 

2009) Several behavioural studies have identified coordination deficits (e g decreased 

accuracy and/or stability) in individuals with PD during continuous bimanual 

coordination (inter-limb or inter-manual coordination) (Almeida, Wishart, & Lee, 2002, 

Byblow, Summers, & Thomas, 2000, Johnson et al, 1998, Semen, Steyvers, Debaere, 

Stelmach, & Swinnen, 2000, van den Berg, Beek, Wagenaar, & van Wienngen, 2000) 

This suggests that basal ganglia dysfunction contributes to poor coordination 

performance in individuals with PD In addition, slower (Semen et al, 2000, Swinnen et 

al, 1997) and smaller movements (Byblow, Summers, Lewis, & Thomas, 2002, Semen 

et al, 2000, Swinnen et al, 1997) have been documented in individuals with PD during 

bimanual coordination that may be representative of bradykinesia and hypometna 

However, it remains unclear if the dopaminergic system influences coordination directly, 

or if coordination deficits are secondary to the typical hypo and bradykmetic movements 

in individuals with PD 
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Imaging research using fMRI has established that the basal ganglia (e g striatum 

and globus palhdus) are part of a distributed network that are involved in bimanual 

coordination that includes the supplementary motor area (SMA), cerebellum, primary 

motor cortex, premotor cortex, cingulate cortex, primary sensonmotor area (Aramaki, 

Honda, Okada, & Sadato, 2006, Carson, 2005, De Luca, Jantzen, Comam, Bertollo, & 

Kelso, 2010, Oulher, Jantzen, Steinberg, & Kelso, 2005, Swinnen, 2002) This has 

important implications for bimanual coordination in PD that associates secondary 

dysfunction rather than exclusively the dopaminergic system in coordination 

performance For example, coordination impairments in PD could be related to 

sensonmotor integration deficits (Abbruzzese & Berardelli, 2003, Lim, Hamm, Byblow, 

& Kirk, 2005, Lim, Hamm, Byblow, & Kirk, 2006) Schettmo et al (2006) manipulated 

visual feedback and dopamine replacement while coordinating a unimanual reach-to-

grasp movement in PD They demonstrated that PD participants were slower and unable 

to integrate propnoceptive and visual information for accurate coordination in the task 

compared to healthy controls participants Furthermore, dopamine replacement improved 

the speed of movement but did not influence the ability to integrate visual and 

propnoceptive information (Schettmo et al, 2006) Alternatively, increased attentional 

and cognitive demands may negatively influence coordination performance as suggested 

by Almeida et al (2003) Increased attentional demands may involve performing anti

phase coordination (Johnson et al, 1998, Riddenkhoff, Peper, & Beek, 2008) or the 

combination of anti-phase with the presence of external auditory cuemg (Almeida et al, 

2002) This could be related to difficulties in shifting attention or limited attentional 

resources that have been proposed for individuals with PD when performing 



63 

simultaneous tasks (Brown & Jahanshahi, 1998, Horstink, Berger, van Spaendonck, van 

den Bercken, & Cools, 1990) It has been argued that executive dysfunction related to 

attention may be mediated by neural mechanisms that are not responsive to dopamine 

replacement (Leroi, Collins, & Marsh, 2006, Rodriguez-Oroz, Jahanshahi et al, 2009) 

Research by Riekkinen et al (1998) compared the effects of dopamine replacement and 

noradrenalm (clomdine) replacement on different attention tasks in individuals with PD 

It was found that dopamine replacement improved the speed of movement but had no 

effect on attention itself It was concluded that attentional processes are not influenced by 

dopamine replacement in PD (Riekkmen, Kejonen, Jakala, Soinmen, & Riekkinen, 1998) 

Based on these findings, although motor symptoms improve with dopamine replacement, 

it appears that bimanual coordination may be influenced by dysfunction secondary to 

dopamine loss that cannot be modulated or corrected by dopamine replacement 

The primary objective of the current study was to determine if the dopaminergic 

system influenced performance alone or in combination with sensory, phase and/or cycle 

frequency manipulations during continuous bimanual in individuals with PD In addition 

to coordination performance (accuracy and stability), amplitude and frequency of 

movements were also examined in order to understand whether dopamine replacement 

may influence coordination performance through improvements in bradykinesia and 

hypometna It was hypothesized that if the dopaminergic system influenced coordination 

performance than deficits would be observed in individuals with PD compared to healthy 

older participants after withdrawal of dopamine replacement (PD 'off) and dopamine 

replacement would improve these deficits in individuals with PD Furthermore, if 

coordination deficits are related to other PD dysfunction (e g executive dysfunction 
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related to attention or difficulties with sensorimotor integration) than increasing sensory 

demands, anti-phase coordination and/or increased cycle frequency would result in 

impairments in coordination performance in individuals with PD regardless of dopamine 

replacement 

2.3 Methods 

2.3.1 Participants 

Fifteen (n=15, mean age=68 +1-6 3) participants with a confirmed diagnosis of 

Parkinson's disease (PD) were examined in this study In addition, fifteen age-matched 

(n=15, mean age=65 5 +1-1 2) participants without any neurological impairment were 

investigated as healthy controls All individuals were right-hand dominant based on 

responses to the Waterloo Handedness Questionnaire (WHQ) (Steenhuis & Bryden, 

1989) To verify that all individuals had the cognitive ability to perform the experiment 

and free from dementia, they self-reported years of education and were assessed on the 

Modified Mini Mental State Examination (3-MS) (Teng & Chui, 1987) (see Table 2 1 for 

demographic information including 3-MS scores) A cntenon score of 81 out of 100 was 

used This score was the lowest cntenon score that had high sensitivity (100%) to 

correctly identify participants with Alzheimer's disease (AD) and negative predictive 

power across both groups of education (0-8 and 9+ years) and age (65-79 and 80-89 

years) (Tombaugh, McDowell, Knstjansson, & Hubley, 1996) All PD (mean 3-MS= 

94 1 +1-5 2) and healthy control participants (mean 3-MS= 96 3 +1-3 8) had scores above 

the cntenon 

PD participants were assessed on the motor subsection of the Unified Parkinson's 

Disease Rating Scale (UPDRS-III) (Fahn & Elton, 1987) both with ('on') and without 
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('off) dopamine replacement Assessment 'off (mean UPDRS-III= 30 6 +/- 8 6) 

occurred after overnight withdrawal from all dopaminergic medications (mean time 

'off = 14 9 hours +/- 1 8) It is important to note that although the length of withdrawal 

from dopamine replacement was considerable, it only represented an acute 'off state 

rather than complete removal of all influences of dopaminergic replacement (true 'off 

state) After completion of the first session during their 'off state, PD participants self-

admimstered their regular dosage of medications and were re-accessed on the UPDRS-III 

to represent their 'on' state (mean time 'on'= 76 3 mm +/- 8 1) A minimum 5-point 

difference was utilized as a criterion between 'off and 'on' scores on the UPDRS-III to 

be classified as dopa-responsive for the current study To determine which upper limb 

was more affected by PD, upper limb laterality scores were calculated and compared for 

both limbs from items 20-25 on the UPDRS-III that evaluates upper limb motor 

symptoms similar to what has been performed by previous research (Plotmk, Giladi, 

Balash, Peretz, & Hausdorff, 2005, Plotmk, Giladi, & Hausdorff, 2008) Based on these 

laterality scores, individuals with PD were also classified as bilaterally affected if both 

sides summed to 5 (or above) or were separated by less than 1 point Session two was 

then completed in their 'on' state (mean UPDRS-III= 20 0 +/- 7 9) (see Table 2 2 for 

clinical charactenstics) PD participants maintained there regular schedule and dosage of 

dopamine replacement after the second session was started Furthermore, to investigate if 

practice effects were present between the first and second sessions, all of the healthy 

control participants also performed two sessions (mean time between= 72 6 min+/-6 5) 

Individuals were excluded from the study if they had any recent injury to their 

upper limbs that would influence their ability to perform the task, uncorrected vision 
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(including uncorrected macular degeneration, cataracts or glaucoma) or uncorrected 

heanng Additionally, participants were excluded if they had previous history of stroke or 

senous brain trauma Individuals with PD were included regardless motor symptoms (e g 

tremor, dyskinesia or freezing) All PD participants were recruited from the patient 

database at the Sun Life Financial Movement Disorders Research and Rehabilitation 

Centre (MDRC) at Wilfrid Launer University Healthy control participants were 

recruited from family and friends of the PD participants Ethics for this study was granted 

from the Research Ethics Board (REB) at Wilfrid Launer University 
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Table 2 1-Demographic information of healthy control and PD participants 
Participant 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Group' 

PD 
PD 
PD 
PD 
PD 
PD 
PD 
PD 
PD 
PD 
PD 
PD 
PD 
PD 
PD 
HC 
HC 
HC 
HC 
HC 
HC 
HC 
HC 
HC 
HC 
HC 
HC 
HC 
HC 
HC 

Age (in 
years) 

52 
62 
72 
77 
67 
67 
76 
69 
63 
66 
72 
65 
75 
67 
70 
74 
65 
63 
76 
75 
67 
66 
58 
62 
68 
54 
58 
68 
74 
55 

Gender 

F 
F 
M 
M 
M 
F 
M 
M 
F 
F 
M 
F 
F 
F 
M 
M 
F 
F 
F 
F 
M 
F 
M 
M 
F 
M 
F 
M 
F 
F 

3-MS (out of 
100)3 

100 
96 
96 
98 
91 
92 
93 
88 

100 
98 

100 
98 
83 
91 
88 

100 
99 

100 
97 
93 
97 
93 
92 
99 
89 
98 

100 
100 
92 
95 

Education (in 
years) 

14 
12 
16 
20 
12 
10 
12 
10 
20 
12 
21 
15 
10 
15 
18 
18 
16 

15 5 
10 5 

16 
14 
9 

15 
18 5 

10 
22 
16 
12 
9 

16 

Time between Session 
(in minutes)4 

90 
90 
75 
70 
75 
70 
70 
90 
75 
70 
75 
70 
70 
70 
85 
65 
75 
70 
70 
70 
80 
65 
75 
80 
70 
70 
70 
70 
90 
70 

1 PD= Parkinson's disease particpants, HC= healthy control participants 
2 M= male, F= female 
3 3-MS represents the modified Mini-Mental State Examination 
4 Time between sessions is equivalent to time 'on' medication for PD participants 
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Table 2 2-
Participant 

1 
2 

3 
4 
5 

6 
7 

8 
9 
10 

11 
12 

13 
14 
15 

Clinical characteristics of PD partici 
Duration 
since 
diagnosis 
(in 
years)1 

9 
5 

8 
4 
11 

6 
9 

1 
2 
8 

05 
4 

4 
4 
5 

Duration 
since l5' 
reported 
symptom 
s(in 
years)' 

10 
6 

10 
6 
11 

6 
9 

3 
6 
11 

1 
5 

5 
4 
6 

Dopamine 
medications 
2 

LD-CD 
LD-CD, 

LD-CD 
LD-CD 
LD-CD, 
ras, pram, 

LD-CD 
LD-CD, 
tn, pram 

LD-CD 
LD-CD 
LD-
CD/entaca 
pone, ras 
LD-CD 
LD-CD, 
pram 

LD-CD 
LD-CD 
rop, ras 

pants 
Time 'off 
medication 
(hours) 

13 5 
12 

15 5 
14 5 
13 5 

18 
15 

15 
12 5 
16 5 

16 
14 5 

13 5 
17 
17 

UPDRS-
III 'off 
(out of 
108)3 

27 
46 

30 5 
20 
31 

42 5 
38 

21 
32 

185 

215 
34 

415 
26 5 
29 5 

Time 'on' 
medication 
(nun) 

90 
90 

75 
70 
75 

70 
70 

90 
75 
70 

75 
70 

70 
70 
85 

UPDRS 
-III 
'on' 
(out of 
108) 3 

13 5 
35 5 

22 
12 5 

22 

22 5 
30 5 

14 5 
23 
10 

12 5 
23 

30 5 
10 5 
17 5 

Difference 
•n UPDRS 
'ofT and 
'on' 

13 5 
10 5 

85 
75 

9 

20 
75 

65 
9 

85 

9 
11 

11 
16 
12 

Disease 
Laterality 
3 

R<L 
L<R 

L<R 
L<R 
R<L 

R<L 
L<R 

L<R 
L<R 
L<R 

L<R 
R<L 

R<L 
L<R 
R<L 

Information obtained from patient history on database Duration since diagnosis was always reported Duration since lsl symptoms 
was reported as duration since diagnosis if not reported differently by patient 
2LD-CD= levodopa-carbidopa (L-dopa/ Dopa decarboxylase inhibitor), ras= rasagilme (MAO-B selective agent), pram=pramipexole 
(dopamine receptor agonist), ent= entacapone(COMT inhibitors), rop=ropmirole (dopamine receptor agonist), tn= trihexyphenidyl 
(antimuscannmc) 
3 UPDRS-III scores represent clinical evaluation on the motor subsection of the Unified Parkinson's Disease Rating Scale Disease 
laterality was based on the sum of scores on the right side compared to the left side 

2.3.2 Apparatus 

To perform the bimanual wrist flexion-extension movements, two robotic 

Phantom Omni haptic devices (SensAble Technologies Inc , Woburn, MA, USA) were 

placed 28 cm apart on a table (192 by 87 by 66 cm) These devices were synchronized 

together and used concurrently The Omni haptic devices were synchronized to a 
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computer (Dell Computer, with a g-force intel Pentium 4 with SSE2) for data recording 

using MatLab R2007b (The MathWorks Inc, Nattick, MA, USA) Pen-shaped handles 

(16 5 cm in length) projected from the robotic arms that attached to the base of the device 

that allowed for three-dimensional (3-D) movements (16 cm in medial-lateral direction, 

12 cm in superior-inferior direction and 7 cm in anterior-posterior direction) A device 

was created (76 5 by 30 by 6 cm) to constrain the forearms to avoid unwanted 

movements at the elbow and shoulder joints and promote unrestrained 3-D wrist 

movements (see Figure 2 1) The forearm constraint device had the forearms resting on a 

foam pad and resulted in the hands being elevated above the table 4 cm at rest 

Figure 2 1 - Expenmental set-up including Omni Devices, forearm constraints and computer monitor with 
augmented feedback display 
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A computer program Free Motion was created using Simulink in MatLab R2007b 

to run each trial An internal computer-generated metronome was synchronized to 

MatLab using QuaRC (Quanser Inc , Markham, On, Canada) that produced a beat at a 

pitch of 800 Hz at several different cycle frequencies (see Protocol) Free Motion was 

designed to work with QuaRC to synchronize timing of the metronome beats and record 

displacement from each of the Omni devices 

A computer monitor (ADI Pro Vista) was situated 102 cm away from participants 

at eye level Online augmented visual feedback was created using Simulink in MatLab 

R2007b Augmented visual feedback used the same principles that have been previously 

applied to create Lissajous plots (Almeida, Wishart, & Lee, 2003, Verschueren, Swinnen, 

Dom, & De Weerdt, 1997) This form of visual feedback was created by displacement of 

the right hand that formed the abscissa or vertical line and displacement of the left hand 

produced the ordinate or horizontal line The combined movement of both hands 

produced a single integrated online diagonal or elliptical representation on the computer 

monitor The current study presented this form of augmented feedback as a purple ball to 

represent the displacement of the limbs that did not remain on the computer monitor 

unlike Lissajous plots Additionally, two transparent diagonal cylinders with slopes of 1 

(for m-phase) and -1 (for anti-phase) were displayed and remained on the blackened 

computer screen The length of the diagonal cylinders was equivalent to the maximum 

movement in the medial-lateral direction (32 cm) and provided the participants with a 

precise spatial component of the movement (see Figure 4 1) To cover the arms during 

the trials that used the augmented visual feedback, an arm-covering device was created 

resembling a haircutting apron 
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2.3.3 Protocol 

Each participant was required to perform the protocol in two sessions within a 

single day Participants performed coordinated bimanual wrist flexion-extension 

movements with their forearms constrained and hands pronated 90° (thumbs facing 

upwards) Individuals grasped the pen-shaped attachment (16 5 cm) with the whole hand 

(thumb on-top and facing forwards) to move the robotic arms and rotate the base of the 

device Participants were instructed to move primarily in the medial-lateral direction but 

to not be concerned if they naturally deviated from this path 

Before each trial began, participants were instructed to coordinate their limbs in 

either m-phase or anti-phase In-phase and anti-phase have both been shown to be 

intrinsic, stable coordination patterns that exist in the human motor system and have often 

been used to evaluate bimanual coordination from the perspective of motor control 

(Haken, Kelso, & Bunz, 1985, Kelso, 1984, Kelso, Southard, & Goodman, 1979, 

Schoner, 1990, Yamamshi, Kawato, & Suzuki, 1980) In-phase was performed as a 

symmetrical pattern that required simultaneous flexion and extension of the wrists This 

coordination required the synchronized use of homologous muscles in both limbs and a 

relative phase goal of 0°or 360° (Schoner & Kelso, 1988b) Anti-phase was performed as 

an asymmetrical pattern that had participants perform simultaneous flexion with one 

wrist and extension with the other wrist This phase pattern required the use of non

homologous musculature in each limb and a relative phase goal of 180° (Schoner & 

Kelso, 1988b) 

Prior to the beginning of each trial, visual feedback was manipulated to permit 

three sensory feedback conditions l) no vision eliminated vision by blindfolding 
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participants, n) normal vision allowed participants to see their wrist movements with the 

Omni devices, 111) augmented vision eliminated vision of the moving limbs and required 

participants to use the augmented visual feedback on the computer monitor 

Before the first session began, participants had a famihanzation session of 4 

practice trials with the haptic devices and the augmented visual feedback The 

investigator instructed participants that the goal of augmented visual feedback was to 

keep the moving ball in the three-dimensional cylinders since this represented an accurate 

relative phase and deviations from the required relative phase resulted in the ball going 

outside the cylinders The participants were informed that if the ball began to move more 

horizontally than the left limb was producing inappropriate movements and adjustments 

were required Additionally, if the ball moved in a more vertical fashion than the right 

limb was producing inappropriate movements and corrections were needed Participants 

practiced these movements with the augmented visual feedback dunng the famihanzation 

session 

To begin each tnal the investigator manually started Free Motion Free Motion 

automatically produced a warning signal at 5 seconds that indicated to participants to get 

into a 'ready' position and maintain this position until the metronome began at 12 

seconds The 'ready' position had participants elevate their hands in the superior 

direction with the Omni devices from 4 to 8 5 cm unless due to rigidity they were already 

at the desired level The level of the 'ready' position was marked with a red line on the 

actual base of each Omni device After the warning signal, the metronome beats began at 

12 seconds at a cycle frequency of 0 75 Hz Participants were required to move 
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continuously and rhythmically with the metronome producing a full cycle of wrist flexion 

and extension with each beat 

For the duration of each trial, a dynamic cycle frequency protocol was used to 

increase the cycle frequency at approximately equal intervals of 7 seconds Free Motion 

automatically initiated the increases to a specific cycle frequency during each trial at 

designated time intervals at 18 64 seconds to 1 Hz, at 24 66 seconds to 1 25 Hz, at 31 06 

seconds to 1 5 Hz, at 37 05 seconds to 1 75 and at 43 36 seconds to 2 Hz until 50 

seconds Thus, each trial lasted 50 seconds but coordinated movement was only required 

for 38 seconds The use of the dynamic increases m cycle frequency was adapted from 

studies that have investigated spontaneous phase transitions (Byblow et al, 2002, 

Byblow et al, 2000, Geuze, 2001) The goal of the cycle frequency manipulations within 

trials was to promote increases in coordination variability (Kelso, 1984) 

Participants were informed that movement characteristics might naturally change 

especially when cycle frequency is increased resulting in increased variability 

Individuals were to preserve the required movement to the best of their ability If a 

spontaneous pattern switch occurred, participants were required to maintain continuous 

movement but switch back to the necessary pattern Additionally, if a freeze occurred in 

participants with PD (with one or both limbs) they were to maintain movement in any 

limb that was not frozen and once they could move the frozen limb to maintain the 

desired phase relationship and cycle frequency 

The combination of phase and sensory manipulations created 6 conditions Each 

condition was performed in a -randomized order 3 times for a total of 18 trials per 

session The testing sessions were performed concurrently with other ummanual and 
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bimanual trials that were concerned with PD tremor (results presented elsewhere) Each 

testing session lasted approximately one and a half hours including set-up, UPDRS and 3-

MS assessments and testing protocol Rest was provided when needed to reduce fatigue 

2.3.4 Data Processing and Analysis 

Matlab R2007b recorded displacement in all three dimensions at a rate of 1000 

Hz per second from each of the Omni devices for a total of 38000 samples per tnal Data 

was recorded and stored in MatLab R2007b Data analysis was performed on medial-

lateral displacement using a script created in MatLab R2007b Anterior-posterior and 

superior-inferior displacement was kept for future analysis 

Coordination Accuracy and Stability 

A calculation of the relative phase (position of one limb relative to the other) was 

used to evaluate coordination accuracy and stability The relative phase was determined 

from the position of one limb relative to the other using the formula 

Relative phase (9) = tan-1 [(dXR/dt)/XR] 

Where 9 was the relative phase between limbs at each sample, X was the position of each 

limb within a cycle rescaled to the magnitude [-1,1] and (dXR/dt) referred to the 

normalized and continuous instantaneous velocity (Haken et al, 1985) Since phase 

relationships could range from 0 to 360°, a linear transformation was performed on the 

relative phase to obtain values from 0 to 180° using the formula 

New Relative Phase (6n) =180-(relative phase (9) -180) 

Absolute error (AE) of the relative phase (On) was used to calculate coordination 

accuracy The mean AE of 9n was determined for each cycle frequency during every 
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tnal In addition, the standard deviation of AE was determined for each cycle frequency 

during every tnal as a measure of coordination stability 

Amplitude 

The amplitude of each limb was measured independently to evaluate the spatial 

component of the movement Specifically, this measure was used to evaluate if any 

amplitude deficits representative of hypometna existed in individuals with PD The 

amplitude was determined from each cycle of movement using the formula 

Amplitude (in cm)= Amplitude Peakmax (in cm)- Amplitude Peakmin (in cm) 

The mean amplitude of each limb was determined from averaging the amplitude of each 

peak dunng each cycle frequency for every tnal 

Frequency 

The frequency of movement of each limb was calculated to evaluate the temporal 

component of the movement This measure was purposely used to evaluate if any 

frequency deficits representative of bradykinesia existed in individuals with PD The 

frequency was calculated using the movement cycles (positive to subsequent positive 

peak) during a given time using the formula 

Frequency (in Hz) = number of cycles / time (in s) 

The mean frequency of each the nght and left limb was determined at each cycle 

frequency for every tnal 

Statistical Comparison 

All of the tnals were calculated, coded and organized using MatLab R2007b 

Each file was then transferred into a Microsoft Excel spreadsheet Statistical analyses 

were performed using Statistica 8 (StatSoft Inc , Tulsa, Ok, USA) using the general linear 
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model function T-tests were performed on age, 3-MS scores, education and time 

between sessions to verify that no differences existed between PD and healthy control 

participants Additionally, a paired t-test was performed on UPDRS-III scores of PD 'off 

and PD 'on' 

To analyze coordination accuracy (mean relative phase) and stability (standard 

deviation of relative phase), a mixed-model (between and within-group) ANOVA was 

performed session*condition * phase * cycle frequency Planned comparisons were 

performed between session 1 of PD (PD 'off) and healthy control to determine the 

effects of basal ganglia dysfunction on coordination performance Additionally, a planned 

comparison was performed between session 1 (PD 'off) and session 2 (PD 'on') of PD 

participants to determine the effects of dopamine replacement on coordination 

performance Finally, a planned comparison was performed on session 1 compared to 

session 2 of healthy control participants to determine if any practice effects existed (only 

interactions that included session were reported) 

Mean amplitude and frequency were compared in a mixed-model ANOVA 

session* limb * condition * phase * cycle frequency To determine the effect of basal 

ganglia dysfunction on amplitude and frequency the more and less affected limbs in PD 

'off (see Table 2 2) were compared to matched hands in healthy controls Hands were 

matched based on age (and gender when possible) To determine the effect of the 

dopaminergic system on amplitude and frequency, the more affected limb was compared 

to the less affected in session 1 (PD 'off) compared to session 2 (PD 'on') of PD 

participants 
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An alpha level of 0 05 was used to define statistical significance Tukey's HSD 

post hoc analysis was used to investigate any significant interactions 

2.4 Results 

2.4.1 Comparison of demographic variables 

Student's t-tests were performed on the mean values for each demographic 

variable All measures between PD and healthy control participants including age, self-

reported education, time between sessions and 3-MS scores were not different (see Table 

4 3) The UPDRS-III scores were found to be significantly different (mean difference= 

10 6 +/-3 6) between PD 'off (mean UPDRS 'off = 30 6 +/- 8 6) and PD 'on' (mean 

UPDRS 'on'= 20 +/- 7 9) (t(14)= 3 5, p< 001) (see Table 4 2) 

Table 2 3 -Statistical comparisons of age, education, 3-MS and time between sessions of PD and healthy 
control (HC) participants 

Age (in years) 

3-MS (out of 100) 

Self-reported education 
(in years) 
Time between sessions 
(in minutes) 

PD 

68 (+/- 6 3) 

94 1 (+/- 5 2) 

14 5 (+/- 3 8) 

76 3 (+/- 8 1) 

HC 

65 5 (+/- 7 3) 

96 3 (+/- 3 7) 

14 5 (+/- 3 8) 

72 7 (+/- 6 5) 

T statistic (df) and p-
value 
t(28)= 0 99, p= 0 33 

t(28)=l 3p=0 21 

t(28)= 0 24, p=0 98 

t(28)=14,p=0 18 

2.4.2 PD 'off vs. healthy control participants 

Coordination Accuracy 

There were significant mam effects of phase (F(l,28)= 33 47, p< 001) and cycle 

frequency (F(5,140)=54 22, p< 001) that was superseded by a significant interaction 

between phase and cycle frequency (F(5,140)= 18 52, p< 001) Tukey's post hoc analysis 

revealed that there was greater accuracy in coordination during m-phase compared to 

anti-phase as cycle frequency increased (1 25, 1 5, 1 75 and 2 Hz) Additionally, greater 
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coordination accuracy was found dunng in-phase and anti-phase at 0 75 and 1 Hz 

compared to 1 75 and 2 Hz 

No main effect or interactions were revealed between groups for coordination accuracy 

Coordination Stability 

A significant main effect of phase was found (F(l,28)= 67 31, p< 001) that 

demonstrated that coordination was less vanable dunng in-phase compared to anti-phase 

In addition, there was a significant mam effect of cycle frequency (F(5,140)= 63 34, 

p< 001) Tukey's post hoc analysis showed that there was less vanability at the two 

slowest cycle frequencies (0 75 and 1 Hz) but coordination became increasingly more 

vanable at each subsequent cycle frequency interval A significant main effect of 

condition was also revealed (F(2,56)= 9 96, p< 001) Tukey's post hoc analysis found 

that there was less vanable coordination in no vision and normal vision relative to 

augmented vision 

A difference (main effect or interactions) between groups was not found for 

coordination stability 

Mean amplitude (affected/less affected limbs PD 'off compared to matched limbs) 

There was a main effect of group on the mean amplitude (F( 1,2 8)= 17 1, p< 001) 

Overall, amplitudes were larger in both limbs in healthy controls (mean=14 6 cm) 

compared to PD 'off (mean=8 5 cm) This was succeeded by significant main effects of 

phase (F(l,28)=12 2, p< 01) and cycle frequency (F(5,140)=15 9, p< 001) and significant 

interactions between group and cycle frequency (F(5,140)=12 3, p< 001) and group, 

phase and cycle frequency (F(5,140)=3 5, p< 01) As illustrated in Figure 2 2, Tukey's 

post hoc analysis showed that healthy controls were performing larger movements with 
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both limbs compared PD 'off except comparable amplitudes during anti-phase at 0 75 

Hz Healthy controls increased the amplitude of movements from 0 75 to 1 5 Hz than 

maintained this amplitude at the faster cycle frequency during m-phase but during anti

phase increased from 0 75 to 1 25, than further from 1 5 to 1 75 Hz and maintained at 2 

Hz PD 'off did not change amplitude regardless of phase or increasing cycle 

frequency 

Disease laterality was shown to affect amplitude as revealed by an interaction 

between limb and cycle frequency (F(5,140)=3 8, p< 01) Tukey's post hoc analysis 

showed that the less affected limb PD (matched limb in healthy controls) had larger 

movements at 2 Hz compared to the more affected limb Overall, the more affected and 

less affected limbs increased amplitude between 0 75 to 1 25 Hz The more affected limb 

decreased amplitudes between 1 25 and 1 5 and further between 1 75 and 2 Hz The less 

affected limb decreased between 1 25 and 1 5 had an increase in amplitude between 1 5 

and 1 75 Hz than decreased between 1 75 and 2 Hz 

There was also a main effect of condition (F(2,56)=20 4, p< 001) Tukey's post 

hoc analysis demonstrated that larger amplitude movements (regardless of group or limb) 

were produced in normal vision compared to no vision and no vision compared to 

augmented vision 
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Figure 2 2 -Mean amplitude (cm) of limb movements (including standard error bars) compared between 
PD 'off and healthy control participants as a function of phase and cycle frequencies Results showed that 
significantly (p< 01) larger amplitude movements were produced by healthy control participants compared 
to PD 'off participants except during anti-phase at 0 75 Hz 

Mean frequency (affected/less affected in PD 'off compared to matched hands in healthy 

controls) 

There was a significant main effect of cycle frequency (F(5,140)=394 8, p< 001) 

that was superseded by a significant interaction between group, limb and cycle frequency 

(F(5,140)=3 4, p< 01) Tukey's post hoc analysis indicated that the frequency of both 

limbs was not directly different at any cycle frequency between PD 'off and healthy 

controls PD 'off increased the frequency of the both limbs with increasing cycle 

frequency demand (except a decrease between 1 25 and 1 5 Hz) Healthy control 

participants also increased the frequency of movements with the both limbs with 
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increasing cycle frequency (except between 1 25 and 1 5 Hz there was a maintained 

frequency) 

There was also a main effect of phase (F(l,28)=8 5, p< 01) that was succeeded by 

a significant interaction between phase and cycle frequency (F(5,140)=5 5, p< 001) 

Tukey's post hoc analysis showed that faster movements were performed dunng m-phase 

compared to anti-phase at 1 75 and 2 Hz Overall, frequency of movements increased 

with increased cycle frequency demand except maintenance of frequency between 1 25 

and 1 5 Hz 

2.4.3 PD 'off vs. PD 'on' 

Coordination Accuracy 

Significant main effects were found for cycle frequency (F(5,70)= 29 70, p< 001) 

and phase (F(l,14)=21 23, p< 001) that was superseded by a significant interaction 

between phase and cycle frequency (F(5,70)= 11 55, p< 001) Tukey's post hoc analysis 

demonstrated that coordination was more accurate dunng in-phase at 4 cycle frequencies 

(1 25, 1 5, 1 75 and 2 Hz) compared to anti-phase Additionally, coordination was more 

accurate at 3 cycle frequencies (0 75, 1 and 1 25 Hz) relative to 2 Hz dunng in-phase and 

more accurate at 0 75 and 1 Hz relative to 1 5, 1 75 and 2 HZ dunng anti-phase A main 

effect of condition was also found (F(2,28)= 4 1, p< 05) that revealed coordination was 

more accurate in no vision compared to augmented vision 

There was no significant influence (main effect or interactions) of dopamine 

replacement on coordination accuracy 

Coordination Stability 
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Mam effects were found for phase (F(l,14)=42 5, p< 001) and cycle frequency 

(F(5,70)=32 6, p< 001) that was succeeded by a significant interaction between phase and 

cycle frequency (F(5,70)=13 01, p< 001) Tukey's post hoc analysis revealed that 

coordination was less variable during m-phase at all cycle frequencies compared to anti

phase In addition, less variable coordination was found during m-phase at 0 75, 1 and 

1 25 Hz compared to 2 Hz Furthermore, coordination was less variable at 0 75 and 1 Hz 

compared to 1 75 and 2 Hz as well at 1 5 Hz compared to 1 75 Hz and 1 75 HZ compared 

to 2 Hz during anti-phase A significant main effect of condition was found 

(F(2,28)=4 39, p< 05) that demonstrated coordination was less variable in normal vision 

compared to augmented vision 

Similar to coordination accuracy, there was no influence of dopamine 

replacement (significant main effect or interactions) on coordination variability 

Mean amplitude (More affected compared to less affected) 

The influence of disease laterality and dopamine replacement on amplitude was 

revealed by a significant main effect of cycle frequency (F(5,70)=4 5, p< 01) that was 

superseded by significant interactions between dopamine replacement and cycle 

frequency (F(5,70)=9 0, p< 001), limb and cycle frequency (F(5,70)=7 5, p< 001) and 

dopamine replacement, limb and cycle frequency (F(5,70)=4 5, p< 01) As illustrated in 

Figure 2 3, Tukey's post hoc analysis indicated that larger amplitude movements were 

produced with the more affected limb at 3 cycle frequencies (0 75, 1, and 1 25 Hz) in PD 

'off compared to PD 'on' However, at 1 5 and 2 Hz PD 'on' performed larger 

movements in their more affected limb compared to PD 'off In addition, less affected 

limb in PD 'off (compared to PD 'on') performed larger movements only at 1 Hz where 



as this limb in PD 'on' (compared to PD 'off) produced larger movements at most cycle 

frequencies (0 75,1 5,1 75 and 2 Hz) Specifically for PD 'off, larger amplitudes were 

performed with the less affected hmb compared to the more affected limb at 1 75 and 2 

Hz PD 'on' performed larger movements in the less affected hmb compared to the more 

affected limb at all cycle frequencies 

There was also a main effect of condition (F(2,28)=5 5, p< 01) Tukey's post hoc 

analysis showed that larger movements were performed in normal vision compared to 

augmented vision 
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Figure 2 3 - The influence of dopamine replacement on the mean amplitude (cm) of the more and less 
affected limbs in PD participants across cycle frequencies (including standard error bars) Results 
demonstrated that PD participants 'on' dopamine replacement produced significantly (p< 01) larger 
amplitude movements in both limbs predominantly at faster cycle frequencies 

Mean frequency (More affected compared to less affected) 

Unlike amplitude, dopamine replacement did not have an influence (significant 

main effect or interactions) on frequency of either limb There was a mam effect of cycle 

frequency (F(5,70)=169 17, p< 001) that was superseded by a significant interaction 



between limb and cycle frequency (F(5,70)=2 5, p< 05) Tukey's post hoc analysis did 

not demonstrate any direct differences between the more and less affected limbs at any 

given cycle frequency The frequency of more affected limbs increased with increasing 

cycle frequency except maintenance of frequency between 1 25 and 1 5 Hz In 

comparison, the frequency of the less affected limbs increased with increasing cycle 

frequency except a decrease m frequency between 1 25 and 1 5 Hz 

A significant interaction between condition, phase and cycle frequency was found 

(F(10,140)=2 4, p< 05) Tukey's post hoc analysis showed that during m-phase the 

frequency of limb movement increased m no vision, normal vision and augmented vision 

with increased cycle frequency (except stayed same between 1 25 and 1 5) This same 

effect was seen during anti-phase coordination in normal vision However, during anti

phase in normal vision, frequency did not increase between 0 75 and 1 or between 1 25 

and 1 5 Hz During anti-phase in augmented vision, frequency of limb movements did not 

increase between 0 75 and 1 Hz and actually decreased during 1 25 and 1 5 before 

increasing in subsequent cycle frequencies 

2.4.4 An examination of practice effects in coordination performance (Healthy 

control's session 1 vs. session 2) 

Coordination Accuracy 

A significant main effect of session was found (F( 1,14)= 15 05, p< 01) that 

indicated healthy control participants' coordination were more accurate in the second 

session relative to the first session (15 09 vs 17 06°) There was also a significant main 

effect of cycle frequency (F(5,70)= 29 83, p< 001) that was superseded by a significant 

interaction between session and cycle frequency (F(5,70)=2 65, p< 05) Tukey's post hoc 
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analysis revealed that there was more accuracy in coordination at the fastest cycle 

frequency in session 2 relative to session 1 Additionally, there was more accuracy in 

coordination at 0 75 and 1 Hz relative to each successive cycle frequency (see Figure 

2 4) 
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Figure 2 4 - Coordination accuracy as revealed by the mean in absolute error of the relative phase (°) across 
two sessions in healthy control participants while coordinating at different cycle frequencies (standard error 
bars included) Results revealed that healthy control participants were significantly (p< 05) more accurate 
at coordinating at 2 Hz dunng session 2 compared to 1 

Coordination Stability 

There was a significant main effect of session (F(l,14)=31 08, p< 001) that 

demonstrated healthy controls had less vanability in session 2 relative to session 1 (11 77 
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vs 12 94°) This was further represented by a significant main effect of phase (F(l,14)= 

28 86, p< 001) and a significant interaction between session and phase (F(l,14)=5 07, 

p< 05) Tukey's post hoc analysis revealed that there was less variability dunng anti

phase in session 2 compared to session 1 (but no difference dunng m-phase) 

Additionally, coordination was less vanable dunng m-phase compared to anti-phase (see 

Figure 2 5) 
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Figure 2 5 - Coordination stability as revealed by the standard deviation of the relative phase in healthy 
control participants during both m-phase and anti-phase across sessions (standard error bars included) 
Results revealed that healthy control participants significantly (p< 05) improved their stability during anti
phase coordination 

2.5 Discussion 

The pnmary objective was to determine if the dopaminergic system was 

associated to performance (coordination, amplitude and frequency) dunng a continuous 

bimanual task in individuals with PD It was hypothesized that regardless of the effects of 

dopamine replacement on amplitude and frequency of movement, dopamine modulation 
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would not influence coordination performance in PD Our results partially supported this 

hypothesis The main findings were that dopaminergic modulation increased amplitude of 

movements in both limbs but did not influence coordination performance in PD This 

supports the notion that dopamine replacement improves motor symptoms but not 

coordination in itself Although decreased amplitudes were observed in both limbs in PD 

'off (relative to healthy control participants), coordination deficits were not found m PD 

compared to healthy control participants regardless of manipulations in sensory feedback, 

phase or cycle frequency Thus, there was no direct evidence to support that dysfunction 

outside the dopaminergic system (e g sensory and/or attentional deficits) influenced 

performance during bimanual coordination in individuals with PD 

As expected, anti-phase coordination was performed with greater error and 

variability at the faster cycle frequencies in all participants (Kelso, 1984) However, no 

differences in coordination accuracy or stability were found between PD 'off and healthy 

control participants Several studies have found coordination accuracy and stability to be 

comparable in PD and healthy control participants in rhythmic bimanual coordination 

during m-phase and anti-phase (Byblow, Lewis, & Stinear, 2003, Byblow et al, 2002), 

only during m-phase (Almeida et al, 2002, Byblow et al, 2000) and during anti-phase at 

2 Hz (Johnson et al, 1998) Johnson et al (1998) suggested that the discrepancy between 

previous studies was in part due to the relationship between different task demands (e g 

cycle frequency, phase, external cueing, visual feedback, type of movement and 

amplitude) The current study had participants bimanually coordinate their movements 

with the presence of an external metronome without any specific amplitude requirements 

The current results demonstrated that individuals with PD were able to coordinate with 
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the appropnate frequency of movements in each limb despite the existence of hypometnc 

deficits This is in agreement with previous studies that have found that auditory cueing 

(compared to removal of cues) is useful for maintaining the correct frequency of 

movements in PD dunng bimanual coordination (Byblow et al, 2002, Johnson et al, 

1998) It has been argued that individuals with PD have an impaired ability to internally 

regulate timing of repetitive movements especially at fast cycle frequencies (Cunmngton, 

Iansek, Bradshaw, & Phillips, 1995, Freeman, Cody, & Schady, 1993, Georgiou, 

Bradshaw, Phillips, Iansek, & Mattingley, 1993, Yahalom, Simon, Thorne, Peretz, & 

Giladi, 2004) In view of the fact that individuals with PD were maintaining the correct 

frequency of movements with the metronome, it would suggest that attention was 

directed at synchronizing movements with the external cues to compensate for internal 

timing deficits However, these increased attentional demands from external auditory 

cueing did not negatively influence coordination performance as suggested by Almeida et 

al (2002) 

In addition, the results of the current study do not support the notion that 

sensonmotor integration deficits can account for coordination performance in individuals 

with PD Difficulties in sensonmotor integration in PD are usually observed dunng slow 

voluntary movements (Abbruzzese & Berardelh, 2003) such as self-paced reach-to-grasp 

movements (Mongeon, Blanchet, & Messier, 2009, Schettino et al, 2006) rather than 

externally cued fast movements like the current study Furthermore, it has been 

demonstrated that tactile cues are able to attenuate conflicting propnoceptive information 

dunng a 45° honzontal arm matching task (Rabin, Muraton, Svokos, & Gordon, 2010) 

This would suggest that the fast movements used in the current study and tactile cues 
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from grasping the stylus on the haptic devices reduced the influence of sensory deficits in 

PD participants 

The current study found that external timing cues were sufficient to remove the 

effects of bradykinesia (slowness) and dopamine replacement did not influence the 

frequency of movements during bimanual coordination in individuals with PD 

Dopamine replacement was found to improve the amplitude of movement (hypometna) 

particularly on the more affected limb relative to the less affected limb especially at faster 

cycle frequencies This supports previous research that has identified the benefits of 

dopamine replacement on the amplitude of voluntary limb movements (Espay et al, 

2009) and that improvements of amplitude are usually more pronounced on the more 

affected side relative to the less affected side during bimanual movements (Kishore et al, 

2007) However, despite improvements in the amplitude neither coordination accuracy 

nor stability was influenced by dopaminergic modulation The lack of contribution of 

dopamine replacement to coordination was in agreement with the hypothesis that 

bimanual coordination is influenced by a distributed network (Aramaki et al, 2006, 

Carson, 2005, De Luca et al ,2010, Oulher et al, 2005, Swinnen, 2002) and not 

associated directly to dopamine loss or dopa-responsive motor symptoms However, the 

current results were not able to attribute this to the proposed sensory and/or attention 

deficits One possibility is that the attentional demands of the current task were not 

sufficient to challenge the attentional resources of individuals with PD Alternatively, the 

current results demonstrated that attention was directed at the external auditory cues to 

coordinate the timing of their movements It may be possible that individuals with PD 

directed attention away from visually demanding information and it did not have a major 
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influence of overall movement performance This was further supported since no 

differences were observed in PD and healthy control participants when manipulating 

visual feedback 

The current study's findings about dopaminergic modulation in PD need to be 

carefully considered in combination with the improvement in coordination performance 

observed across sessions in healthy control participants It was revealed that coordination 

accuracy (with increased cycle frequency) and stability (during anti-phase) improved 

from session 1 to 2 in healthy control participants However, no improvements were seen 

in PD across sessions (regardless of practice or dopamine replacement) The 

improvements observed in healthy older adults were surprising given that learning should 

have been minimal during in-phase and anti-phase coordination since they are considered 

stable intrinsic coordination patterns (Schoner & Kelso, 1988a) It has previously been 

suggested that PD are impaired m motor learning (Jahanshahi et al ,2010, Krebs, Hogan, 

Hening, Adamovich, & Poizner, 2001, Rodnguez-Oroz, Lage et al, 2009) Furthermore, 

motor learning has been argued to be influenced by dopaminergic modulation 

(Jahanshahi et al ,2010) Jahanshahi et al (2010) proposed that the tonic release of 

dopamine as provided by dopamine replacements impairs the phasic release of dopamine 

that is essential for learning The lack of learning in individuals with PD could be an 

alternative explanation for the current results such that motor learning was not able to 

occur between sessions due to the administration and subsequent influence of dopamine 

replacement However, it may be possible that the improvements observed in healthy 

older adults were in relation to participants becoming more efficient at the movement 

rather than learning This needs to be carefully considered in future research 
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In conclusion, the current results support that coordination performance is not 

influenced by dopamine replacement in individuals with PD In addition, external 

auditory cueing was beneficial for maintaining the inter-limb timing and frequency of 

movements of each limb This resulted in comparable coordination performance in PD 

and healthy control participants It is proposed that coordination deficits are not universal 

in PD but are dependent on the task demands Collectively, these results could suggest 

that secondary dysfunction related to attentional demands of the task (rather than 

dopaminergic system dysfunction) could be responsible for coordination deficits m 

individuals with PD Although the current results did not directly support that increased 

attentional demands result in impairments in coordination performance, this may have 

been related to the current experimental set-up Future research should incorporate the 

use of eye trackers to monitor visual attention This would be particularly important when 

examining the attentional demands from different sources of visual feedback In addition, 

examining bimanual coordination in individuals with PD during a task that requires 

increased cognitive and attentional demands could help to reveal the influence of 

attention on bimanual coordination This could be done by adding a cued-voluntary 

switch or dual-task during rhythmic bimanual coordination Finally, it would be 

beneficial to examine dopaminergic modulation m PD in studies that limit the possible 

effects of motor learning 
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Chapter 3- Study #2: The influence of dopamine 
replacement on cued-intentional pattern switching 
during bimanual coordination in Parkinson's 
disease (PD) 

3.1 Abstract 

Cued-switching during bimanual m-phase (symmetrical, simultaneous 

movements) and anti-phase (asymmetrical, alternating movements) coordination results 

in slowed switching, delayed responses and subsequent coordination deficits in 

individuals with Parkinson's disease (PD) However, due to the known improvements of 

bradykinesia (slowness) with dopamine replacement, modulation of the dopaminergic 

system may improve overall performance on such tasks PD and healthy age-matched 

control participants were compared on a rhythmic coordination task that required a cued 

voluntary switch between phases (m-phase and anti-phase) in the middle of trials PD 

participants performed two consecutive sessions after overnight withdrawal ('off) then 

after administration ('on') of dopamine replacement Coordinated movements were 

performed at one of two cycle frequencies (1 or 2 Hz) paced by an external auditory 

metronome and across one of two sensory conditions no vision or normal vision 

Measures of voluntary switch time and temporally delayed responses revealed that PD 

'off required more time than healthy participants to switch between phases regardless of 

coordination mode The deficits in switching resulted in disrupted coordination in PD 

'off participants as revealed by the mean (accuracy) and standard deviation (stability) of 

absolute error of relative phase Dopamine replacement decreased the time needed to 



switch and amount of delayed responses in PD participants but had no influence on 

coordination performance Thus, although modulation of the dopaminergic system could 

improve slowness dunng switching that may have been the result of bradykinesia and/or 

bradyphrema, impairments in coordinated movements are the result of secondary 

dysfunction that may be related to attentional demands that cannot be improved with 

dopamine replacement 

3.2 Introduction 

Bradykinesia (slowness in executing voluntary movements) is a cardinal motor 

symptom of Parkinson's disease (PD) that is caused by a loss of dopamine to the basal 

ganglia Clinical assessments have confirmed that bradykinesia can be modulated by 

dopamine replacement (Espay et al, 2009, Kaufmann, Butz, & Wiesenda M, 1970) 

Individuals with PD have impairments such as slowness in switching (e g sequencing) 

between different unimanual motor tasks (Benecke, Rothwell, Dick, Day, & Marsden, 

1987a, 1987b, Stelmach & Phillips, 1991, Stelmach, Wornngham, & Strand, 1987) 

Research has found that dopamine replacement can improve the speed of executing a 

switch between different motor programs during a sequential unimanual squeeze and 

elbow flexion task (Benecke et al, 1987b) Studies that have combined a voluntary cued-

switch phase pattern switch dunng bimanual coordination have identified that 

individuals with PD initiate switches slower (Byblow, Summers, Lewis, & Thomas, 

2002) and perform voluntary switches slower than healthy older adults (Almeida, 

Wishart, & Lee, 2003, Geuze, 2001) In addition, more delayed responses and inability to 

execute switches have been identified in PD compared to healthy control participants 

(Almeida et al, 2003, Byblow et al, 2002, Geuze, 2001) This impaired switching has 



been found to contribute to subsequent coordination deficits in both accuracy and 

stability (Almeida et al, 2003) This might indicate that switching and subsequent 

coordination performance may be associated with bradykinesia related to dysfunction of 

the dopaminergic system However, there is no research that has directly manipulated 

dopamine replacement to examine the contribution of dopaminergic system in intentional 

switching during continuous bimanual coordination 

Almeida et al (2003) proposed that increased cognitive and attentional demands 

required for anti-phase coordination and an externally cued-switch contributed to the 

slower switching and coordination performance In addition, research on bimanual 

coordination in healthy adults observed increased attentional demands when initiating 

anti-phase coordination and when performing a dual-task of verbally responding to a 

stimulus (Riddenkhoff, Peper, & Beek, 2008) It has also been proposed that external 

auditory cues provide an additional attentional challenge for individuals with PD 

(Almeida, Wishart, & Lee, 2002) However, this could be related to difficulties m 

sensorimotor integration that have also been observed in PD (Abbruzzese & Berardelh, 

2003, Lim, Hamm, Byblow, & Kirk, 2005) Previous research has demonstrated that 

neither attention (Riekkinen, Kejonen, Jakala, Soininen, & Riekkinen, 1998) nor 

sensorimotor integration during voluntary movements (Mongeon, Blanchet, & Messier, 

2009, Schettmo et al, 2006) are improved with dopamine replacement Thus, executing a 

cued-voluntary switch and resulting coordination deficits in individuals with PD may be 

influenced by attention demands or sensorimotor integration that is secondary to 

dopaminergic system dysfunction and improvements in bradykinesia 
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To examine the ability to execute a change dunng continuous coordination in 

individuals with PD, the current study used a cued intentional pattern switching task The 

goal of the current study was to determine whether the dopaminergic system influenced 

the execution (speed and completion) of a cued switch dunng coordinated movement and 

coordination performance (accuracy and stability) It was hypothesized that if the 

dopaminergic system was involved in executing a switch and/or coordination 

performance than switching and coordination deficits would be observed m individuals 

with PD after withdrawal from dopamine replacement (PD 'off) compared to healthy 

older adults Furthermore, dopamine replacement would improve these impairments m 

individuals with PD However, if executing a switch and/or coordination performance 

was related to other basal ganglia related dysfunction (e g attentional or sensonmotor 

integration deficits) in individuals with PD than more difficulty in switching and 

coordination performance would be found when increasing sensory information, anti

phase coordination and/or cycle frequency regardless of manipulations in dopamine 

replacement 

3.3 Methods 

3.3.1 Participants 

Fifteen (n=15) individuals with a confirmed diagnosis of PD (mean age=67 +/-

7 5) and fifteen (n=l 5) healthy older adults (control participants) (mean age=67 8 +/-8 7) 

participated in this study (see Table 3 1 for demographic information of PD and healthy 

control participants) All participants were assessed on the Modified Mini Mental State 

Examination (3-MS) to examine for signs of dementia and ensure they were cogmtively 

intact to perform the expenment (Teng & Chui, 1987) A cntenon score of 81 out of 100 



was used as the cut-off based on previous recommendations (Tombaugh, McDowell, 

Knstjansson, & Hubley, 1996) All PD (mean 3-MS=95 5 +/-4 5) and healthy control 

participants (mean 3-MS=95 9 +/-3 0) had scores above this criteria In addition, all 

participants were right-hand dominant based on responses to the Waterloo Handedness 

Questionnaire (WHQ) (Steenhuis & Bryden, 1989) 

Motor symptoms of PD participants were evaluated on the motor subsection of 

the Unified Parkinson's Disease Rating Scale (UPDRS-III) (Fahn & Elton, 1987) The 

first evaluation was performed after overnight withdrawal of all dopamine replacements 

(mean time 'off = 14 7 hrs +/- 2 8) and was used as a representation of PD 'off state 

(mean UPDRS 'off = 32 5 +/-8 8) The second evaluation (mean UPDRS 'on'= 24 2 +/-

7 8) occurred after completion of the first session and participants self-administered their 

regular dosage of dopamine replacement (mean time= 74 7 mm +/- 6 4) For the current 

study, a minimum difference of 5 points was used as a criterion between 'off and 'on' 

scores to be classified as dopa-responsive (mean difference= 8 2 +/-2 6) for the current 

study (see Table 3 2 for clinical variables of PD participants) 

Participants were excluded from the study if they had uncorrected vision, 

uncorrected hearing and any upper limb impairments that would not allow them to 

perform the required task In addition, participants were excluded if they had previously 

had a stroke or any serious brain trauma PD participants included regardless of motor 

symptoms such as tremor, freezing or rigidity All PD participants were recruited from 

the patient database at the Sun Life Financial Movement Disorders Research and 

Rehabilitation Centre (MDRC) at Wilfrid Launer University Healthy control participants 

were recruited from family and friends of the PD participants Ethics approval for this 
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study was granted by the Human Research Ethics Board (REB) at Wilfrid Launer 

University 
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Table 3 1 - Demographic vanables of healthy control and PD participants 
Participant 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

Group ' 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

HC 

HC 

HC 

HC 

HC 

HC 

HC 

HC 

HC 

HC 

HC 

HC 

HC 

HC 

HC 

Gender2 

F 

F 

M 

M 

M 

F 

F 

M 

F 

M 

M 

F 

M 

M 

F 

F 

M 

F 

F 

F 

F 

F 

M 

F 

F 

M 

F 

M 

F 

M 

Age (years) 

63 

75 

69 

77 

58 

66 

53 

76 

68 

72 

74 

57 

60 

72 

65 

75 

68 

63 

75 

54 

79 

77 

58 

78 

66 

54 

69 

75 

59 

67 

3-MS (out of 

100)3 

99 

87 

93 

86 

94 

99 

99 

97 

97 

99 

91 

99 

94 

100 

98 

91 

95 

100 

98 

98 

94 

98 

96 

95 

97 

99 

91 

100 

94 

92 

Education 

(years) 

18 

10 

14 

11 

17 

12 

17 

14 

10 

20 

12 

13 

14 

20 

16 

15 

17 

14 

16 

14 

12 

11 

13 

11 

12 

21 

10 

18 

14 

8 
1 PD= Parkinson's disease participants, HC= healthy control participants 
2 M= male, F= female 
3 3-MS represents the modified Mini-Mental State Examination 
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Table 3 2 -
Participant 

1 
2 
3 
4 
5 
6 

7 

8 
9 
10 
11 
12 
13 

14 
15 

Clinical Characteristics o f PD participants 
Duration 
since 
diagnosis 
(in years)' 

3 
5 
3 
1 
1 
9 

8 

2 
7 
9 
3 
2 
12 

1 
5 

Duration 
since V 
self-
reported 
symptom 
(in years)' 
7 
6 
4 
1 
3 
12 

11 

6 
7 
11 
10 
2 
12 

2 
6 

Dopamine 
medication 

LD-CD 
LD-CD 
LD-CD 
LD-CD 
Pram 
LD-
CD/ent, 
ras 
LD-
CD/ent 
LD-CD 
LD-CD 
LD-CD 
Rop 
LD-CD 
LD-CD, 
rop, sel 
LD-CD 
LD-CD, 
pram 

Time 'ofr 
medication 
(in hours) 

12 
14 5 
15 
12 5 
17 5 
16 

12 5 

15 
14 
12 5 
12 
19 
12 

21 5 
14 

UPDRS 
-III 
'off 
(score 
out of 
108)' 
34 
38 5 
35 5 
47 5 
28 5 
16 

42 5 

32 5 
26 
38 
32 
30 
39 5 

15 5 
31 

Time 'on' 
medicatio 
n 

85 
65 
70 
90 
70 
70 

75 

70 
70 
75 
75 
80 
75 

75 
75 

UPDRS-III 
'on' (score 
out of 108) 2 

25 
315 
29 
37 5 
185 
9 

32 

23 5 
19 
31 
23 5 
24 5 
24 

10 
25 5 

Difference 
between 
'ofr and 
'on' 

9 
7 
6 5 
10 
10 
7 

10 5 

9 
7 
7 
8 5 
5 5 
155 

5 5 
5 5 

Disease 
Laterality3 

R<L 
L<R 
L<R 
R<L 
L<R 
L<R 

L<R 

R<L 
R<L 
L<R 
R<L 
L<R 
R<L 

R<L 
R<L 

Information obtained from patient history on database Duration since diagnosis was always reported Duration since 1st symptoms 
was reported as duration since diagnosis if not reported differently by patient 
2LD-CD= levodopa-carbidopa (L-dopa/ Dopa decarboxylase inhibitor), ras= rasagilme (MAO-B selective agent), pram=pramipexole 
(dopamine receptor agonist), ent= entacapone(COMT inhibitors), rop=ropinirole (dopamine receptor agonist), tn= trihexyphenidyl 
(antimuscannnic) 
3 UPDRS-III scores represent clinical evaluation on the motor subsection of the Unified Parkinson's Disease Rating Scale Disease 
laterality was based on the sum of scores on the right side compared to the left side 

3.3.2 Apparatus 

Individuals were comfortably seated in front of a table with a height-adjustable 

chair Two Phantom Omni haptic robotic devices (SensAble Technologies Inc , Woburn, 

MA, USA) were placed on the table 28 cm apart and synchronized to allow for 3-

dimensional bimanual wrist-flexion movements (16 cm in medial-lateral direction, 12 cm 

in superior-inferior direction and 7 cm in the anterior-posterior direction) To limit 

unwanted movements at the elbow joint, the forearms were pronated 90 degrees and 

constrained using an apparatus (see Figure 3 1) 

Displacement data was recorded using MatLab R2007b (The Math Works Inc, 

Nattick, MA, USA) from the Omni devices by synchronizing to a computer (Dell 
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Computer, with a g-force mtel Pentium 4 with SSE2) Computer programs 

(Free_Motwn_lHz and Free_Motwn_2H) were created in Simulink in MatLab R2007b 

to run each dial To pace each trial, an internal metronome (pitch level of 600 Hz) was 

created using QuaRC (Quanser Inc , Markham, On, Canada) and synchronized with the 

computer programs in MatLab R2007b Additionally, to initiate pattern switches, a higher 

pitched auditory cue of 800 Hz was generated using QuaRC and synchromzed in each 

trial using MatLab R2007b 

Figure 3 1 - Apparatus used in experiment including Omni Devices, forearm constraints and computer 
monitor 
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3.3.3 Protocol 

All PD participants performed two sessions on the same day Healthy control 

participants were only required to perform a single session Individuals with PD 

performed the first session after overnight withdrawal from dopamine replacement 

followed by an approximate 70 mm rest after their typical self-administered dopamine 

replacement (see Table 2 time 'on') This rest was followed by the second testing session 

Participants held the pen-like stylus that attached to the arms of the devices with their 

thumbs up and facing forward Wrist flexion-extension was performed primarily in the 

medial-lateral direction However, participants were instructed to not be concerned if 

movements naturally deviated from this movement 

Before trials began, participants were informed which coordination pattern (m-

phase or anti-phase) they would be required to perform The relative phase (see Data 

Analysis) was a dynamic measurement that measures the phase difference between the 

two limbs (Haken, Kelso, & Bunz, 1985) Participants heard an auditory cue different 

from the metronome at the midpoint of a trial (eg 12 seconds since movement began at 2 

seconds) that signaled that they should attempt to perform a phase transition to the 

opposite pattern and continue movement m that pattern until the end of the tnal Thus, if 

participants began m-phase coordination they were required to perform a pattern switch 

to anti-phase or the reverse if they began in anti-phase Participants were instructed to 

perform the transitions as quickly and smoothly as possible without intentionally 

stopping their movement 

Visual feedback was randomly manipulated to determine the contribution of 

sensory feedback to the coordinated movement Half of the trials were performed 
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blindfolded in a no vision condition The second condition normal vision provided 

participants with the ability to see their moving limbs with the Omni devices 

To initiate each trial, FreeMotion 1Hz or Free_Motion_2Hz was run in MatLab 

R2007b The program produced a warning cue at a pitch of 800Hz and the metronome 

began at 2 seconds Two different cycle frequencies were used in this expenment (1 and 

2 Hz at a pitch of 600 Hz) To avoid anticipation of the auditory cue, participants were 

verbally instructed with a "go" signal to begin movement with the metronome, 2 or 4 

seconds after the initiation of the metronome Participants were required to continue wnst 

flexion-extension movements in rhythm with the metronome beats After 10 seconds at 

the midpoint or 12 second time point, the program produced the auditory cue at a pitch of 

800 Hz to prompt the phase transitions to the participants The next beat of the 

metronome resumed at 13 seconds and participants were required to move in the new 

phase pattern for the remaining 10 seconds until the end of the trial 

Cycle frequency (1 and 2 Hz) was blocked and the order was counter-balanced 

across participants Three tnals of each of the four conditions combining phase and 

condition were randomly performed for a total of twelve tnals This resulted in two 

blocks of twelve trials for a total of twenty-four trials per session (PD participants 

performed forty-eight tnals) Each testing session lasted approximately 45 minutes 

including set-up, UPDRS/3-MS assessments and experimental testing 

3.3.4 Data Processing and Analysis 

Matlab R2007b recorded 3-D displacement at a rate of 1000 Hz from each of the 

Omni devices for a total of 23000 samples per tnal Data was stored in MatLab R2007b 

Data analysis was performed on medial-lateral displacement using an automated scnpt 



created in MatLab R2007b Supenor-infenor and anterior-posterior displacement was 

kept for future analysis 

Coordination Accuracy and Stability 

Coordination accuracy and stability were measured by comparing the position of 

one limb relative to the other, using the formula 

Relative phase (9) = tan-1 [(dXR/dt)/XR] 

Where 0 was the relative phase between limbs at each sample, X was the position of each 

limb within a cycle rescaled to the magnitude [-1,1] and (dXR/dt) referred to the 

normalized and continuous instantaneous velocity (Haken et al, 1985) Since phase 

relationships could range from 0 to 360°, a linear transformation was performed on the 

relative phase to obtain values from 0 to 180° using the formula 

New Relative Phase (6n) =180-(relative phase (0) -180) 

Absolute error (AE) of the relative phase (0n) was used to calculate coordination 

accuracy and stability The mean and standard deviation of AE of 0n was determined for 

every trial The relative phase accuracy and stability was measured before (4 seconds 

before the cue) to calculate whether individuals did switch between patterns before and 

after the cue However, coordination accuracy and stability are only presented for after 

the auditory cue based on what has previously been reported (Almeida et al, 2003) 

Successful switch, delayed responses, unsuccessful switches and voluntary switch time 

Voluntary switches were used to measure the planning and execution of a change 

in movement The cntena for a successful switch was similar to what has been previously 

used (Almeida et al, 2003, Lee, Almeida, & Chua, 2002) A switch was deemed 

successful when individuals performed a change from the relative phase pattern before 



the auditory cue to the new phase after the cue and maintained the error within 45 of the 

intended phase relationship (eg 135° and above for anti-phase or 45° and below for m-

phase) for a minimum of 2 seconds Temporally delayed responses were determined if 

switches took longer than 2 seconds after the auditory cue Furthermore, trials were 

classified as unsuccessful switches if participants either did not switch patterns or were 

unable to maintain the intended pattern for at least 2 seconds Voluntary switch time was 

used to determine the amount of time that was required after the auditory cue to begin a 

successful switch (maintain 45° of intended pattern for at least 2 seconds) (Almeida et al, 

2003) 

Statistical Comparison 

All of the trials were calculated, coded and organized using MatLab R2007b 

Each file was then transferred into a Microsoft Excel spreadsheet Statistical analyses 

were performed using Statistica 8 (StatSoft Inc , Tulsa, Ok, USA) using the general linear 

model function 

A mixed-model (between and within group) ANOVA (session * condition* 

phase* cycle frequency) was used to calculate the outcome measures (coordination 

accuracy and stability after the auditory cue, voluntary switch time) in separate analyses 

Planned comparisons were performed between session one of healthy control and PD 

participants (PD 'off) to determine the effects of basal ganglia dysfunction on 

coordination and switching performance In addition, a planned comparison was 

performed between session 1 (PD 'off) and session 2 (PD 'on') of PD participants to 

determine the influence of dopamine replacement on coordination and switching 

performance 



Tukey s post hoc analyses were used for any significant interactions The 

frequency of successful switches, delayed responses and unsuccessful switches were 

compared using chi-squared analyses Additionally, demographic information including 

age and 3-MS scores was compared using Student's t-tests UPRDS 'off and 'on' scores 

were also compared using a paired student's t-test An alpha level of 0 05 was used to 

define statistical significance for all effects 

3.4 Results 

3.4.1 Comparison of demographic information 

PD and healthy control participants were not found to have any significant 

difference in age, 3-MS or self-reported years of education (see Table 3 3) UPDRS-III 

'off (mean score= 32 5 +/-8 8) and 'on' scores (mean score= 24 2 +1-1 8) were found to 

be significantly different (mean difference= 8 2 +1-2 6) (t(14)= 12 1, p<0 001) 

Table 3 3 - Statistical comparison of demographic variables of PD and healthy control (HC) participants 

Age (in years) 

3-MS (out of 100) 

Self-reported education 
(in years) 

PD 

67 (+/- 7 5) 

95 5 (+/- 4 5) 

14 5 (+/- 3 3) 

HC 

67 8 (+/- 8 7) 

95 9 (+/- 3 0) 

14 1 (+/- 3 3) 

T statistic (df) and p-
value 
t(28)= 0 27, p= 0 79 

t(28)= 0 28, p=0 78 

t(28)=0 38,p=0 70 

3.4.2 Participants' switching performance 

Participants' performance on the switching task was evaluated using a number of 

dependent measures including the amount of successful switches, unsuccessful switches 

and delayed responses (see Table 3 4) Chi-squared analysis revealed that PD 'off had 

more unsuccessful switches (j£2= 26 3, p< 001) and more delayed responses (x2= 519, 

p< 001) than healthy control participants PD 'off and 'on' were not different in the 
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amount of unsuccessful switches (x2= 0 45, p> 05) However, PD 'off did display more 

delayed responses than PD 'on' (y_2= 4 77, p< 05) 

Table 3 4 - Amount of successful switches, unsuccessful switches and delayed responses for healthy 
control (HC) and PD participants (both 'off and 'on') 

PD 'off 
PD 'on' 
HC 
Overall 

Successful Switches 
327 (91%) 
332 (92%) 
357 (99%) 
1016(94%) 

Unsuccessful Switches 
33 (9%) * 
28 (8%) 
3(1%) * 
64 (6%) 

Delayed Responses 
65(18%)** *** 
44 (12%) *** 
7 (2%) ** 
116(11%) 

* & ** denote significance differences (p< 001) *** denotes significant difference (p< 05) 

3.4.3 PD 'off* vs. healthy control participants 

Coordination accuracy 

After the auditory cue, healthy control participants (mean error= 29 7°) performed 

with significantly greater coordination accuracy than PD 'off (mean error= 40 1 °) as 

revealed by a significant mam effect of group (F(l,28)=4 9, p< 05) In addition, there 

were significant main effects for phase (F(l,28)=14 3, p< 001) and cycle frequency 

(F( 1,28)= 16 5, p< 001) as well as a significant interaction between group, phase and 

cycle frequency (F(l,28)= 6 1, p< 05) As revealed in Figure 3 2, PD 'off had less error 

in coordination after switching to in-phase compared to anti-phase at 1Hz and during in-

phase at 1 Hz compared to 2 Hz In addition, healthy control participants had less error in 

coordination when switching to in-phase compared to anti-phase at 2 Hz There was also 

a significant main effect of condition (F(l,28)=7 3, p< 05) that revealed that less error in 

coordination was observed in no vision compared to normal vision 



3 = PD "off 
5 £ Healthy controls 

Anti-phase In-phase Anti-phase In-phase 

1 Hz 2 Hz 

Figure 3 2 - The mean absolute error of the relative phase (coordination accuracy) between PD 'off and 
healthy control participants with phase and cycle frequency manipulations (standard error bars included) 
Results demonstrated that overall PD 'off participants produced a significantly (p< 05) more error in 
coordination compared to healthy control participants 

Coordination stability 

A trend was found in the main effect of group for coordination stability after the 

auditory cue (F(l,28)= 3 9, p= 059) that revealed that healthy control participants (mean 

vanabihty= 41 8°) had less variability in coordination compared to PD 'off (mean 

vanabihty= 44 6°) Furthermore, there was a significant main effect for phase 

(F(l,28)=39 1, p< 001) and a significant interaction between group, phase and cycle 

frequency (F(l,28)=4 9, p< 05) Tukey's post hoc analysis revealed that PD 'off had 

more stable coordination when switching and performing in-phase compared to anti

phase at both 1 and 2 Hz while healthy control participants only at 2 Hz (see Figure 3 3) 
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Figure 3 3 - Coordination stability revealed by the standard deviation in absolute error of the relative in PD 
'off and healthy control participants while manipulating both cycle frequency and phase (standard error 
bars included) Results demonstrated that overall a trend (p= 059) for greater coordination stability in 
healthy control compared to PD participants 

Voluntary switch time 

3 PD participants were excluded from these analyses due to the high amount of 

unsuccessful switches which resulted in insufficient data for these variables As revealed 

by Figure 3 4, there was a significant main effect of group on voluntary switch time 

(F(l,25)=5 8, p< 05) that showed that healthy control participants (mean switch time= 

963 04 ms) switched faster than PD 'off (mean switch time= 1185 68 ms) 
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Figure 3 4 - The voluntary switch time (in ms) compared between PD 'off and healthy control participants 
(standard error bars included) Results revealed that PD participants were significantly (p< 05) slower than 
healthy control participants at switching between phase patterns 

3AAPD'off'vs.PD<on' 

Coordination accuracy 

A main effect of condition was found (F(l,14)= 7 4, p< 05) that demonstrated that 

there was less error in coordination in no vision compared to normal vision There was 

also a main effect of phase (F(l,14)=6 6, p< 05) that showed that coordination was more 

accurate when switching to and performing m-phase compared to anti-phase Finally, 

there was a main effect of cycle frequency (F(l,14)= 9 2, p< 01) that indicated that there 

was less coordination error at 1 Hz compared to 2 Hz 

No main effect or interactions were found for dopamine replacement on 

coordination accuracy once prompted to switch 

Coordination stability 
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A significant main effect of phase was discovered (F( 1,14)= 19 3, p< 001) that 

revealed that coordination was more stable when switching to and performing m-phase 

compared to anti-phase after the auditory cue 

Similar to coordination accuracy, dopamine replacement did not influence 

coordination stability after the auditory cue as revealed by no main effect or significant 

interactions 

Voluntary switch time 

3 participants were excluded from analysis (same as above) due to a large amount 

of unsuccessful switches that led to insufficient data Unlike coordination, voluntary 

switch time was influenced by dopamine replacement as revealed by a significant main 

effect (F(l,l 1)=10 4, p< 01) As shown in Figure 3 5, PD 'on' (mean time= 1032 26 ms) 

were able to switch patterns faster than PD 'off (mean time= 1185 68 ms) 
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Figure 3 5 - The effect of dopamine replacement on voluntary switch time (ms) in PD participants 
(standard error bars included) Results revealed that PD participants with dopamine replacement were 
significantly (p< 01) faster at switching between phase patterns than without dopamine replacement 
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3.5 Discussion 

The current study aimed to determine whether the dopaminergic system was 

associated to switching and subsequent coordination performance in individuals with PD 

The novel findings of the current study were that impairments in switching performance 

(voluntary switch time, delayed responses and unsuccessful switches) were observed m 

PD participants compared to healthy participants Furthermore, dopamine replacement 

improved the speed of switches and decreased the amount of delayed responses in 

individuals with PD As a consequence, deficits in the execution of an intentional switch 

may be the result of bradykinesia (slowness in execution of movement) and are 

influenced by the dopaminergic system dunng bimanual coordination m individuals with 

PD Alternatively, it may be possible that the slowed switching and improvement with 

dopamine replacement was related to bradyphrema (cognitive slowing) in individuals 

with PD However, dopamine replacement did not influence coordination accuracy or 

stability in PD 'on' despite coordination impairments in PD 'off compared to healthy 

control participants Thus, coordination performance is not associated to the 

dopaminergic system and may be related to secondary dysfunction (e g attentional or 

sensorimotor integration deficits) related to PD 

Similar to the current results, individuals with PD (compared to healthy older 

adults) were slower at sequencing movements (Benecke et al, 1987a, 1987b) and 

performing cued voluntary switches dunng continuous bimanual coordination (Almeida 

et al, 2003, Byblow et al, 2002, Geuze, 2001) Additionally, the current study also 

observed more delayed responses and unsuccessful switches m PD 'off (compared to 

healthy control participants) comparable to what was observed by Almeida et al (2003) 



In agreement with previous research in PD, the slowness in switching was regardless of 

whether the switches occurred from more stable m-phase to less stable anti-phase 

coordination (Byblow et al, 2002, Geuze, 2001) However, conflicting research on 

individuals with PD (Almeida et al, 2003) and healthy adults (Carson, Byblow, 

Abernethy, & Summers, 1996, Schoner & Kelso, 1988) has found that deficits in 

switching were related to the attraction to m-phase coordination As a consequence, 

deficits in switching are typically more pronounced when switches occurred from m-

phase to anti-phase coordination (Almeida et al, 2003, Carson et al, 1996, Schoner & 

Kelso, 1988) It is unclear why the current study did not observe the same results 

As suggested by Geuze (2001) individuals with PD may not be affected equally 

by the attraction to m-phase coordination Alternatively, Byblow et al (2002) proposed 

that slowed initiation of switching dunng bimanual coordination in individuals with PD 

resulted due to pre-programming deficits when planning sequential movements If pre

programming deficits were responsible for slowness dunng phase switching, this may 

point towards a link between bradyphrema and slowed voluntary pattern switches 

Bradyphrenia or cognitive slowing has been demonstrated in vanous cognitive tasks in 

individuals with PD (Poewe, Berger, Benke, & Schelosky, 1991, Ransmayr et al, 1990, 

Sawamoto, Honda, Hanakawa, Fukuyama, & Shibasaki, 2002, Tachibana, Aragane, 

Miyata, & Sugita, 1997) It has previously been argued that it is difficult to separate 

whether slowness dunng movement tasks that require planning is caused by bradykinesia 

and/or bradyphrenia (Marsden, 1982, Sawamoto et al, 2002) Based on the current 

results, dopamine replacement improved both the speed of switching and decreased the 

amount of delayed responses It is important to consider that deficits in voluntary 



switching during bimanual coordination could be related to dysfunction of the 

dopaminergic system associated with bradykinesia or pre-programming deficits 

(bradyphrenia) The contribution of the dopaminergic system, bradykinesia and pre

programming deficits to sequencing movements has been supported by Benecke et al 

(1987b) It was observed that dopaminergic modulation improved the mter-onset latency 

(onset to onset), pause (termination to onset), movement time for the entire sequence and 

each individual task in sequential movements that required performing a squeeze then 

elbow flexion in PD It was suggested that dopamine replacement improved both the 

speed of execution and the execution of each component motor program (Benecke et al, 

1987b) Collectively, these results support that dysfunction related to the dopaminergic 

system influences switching between coordination patterns rather than the dynamical 

attraction to in-phase coordination that is observed in healthy adults Conversely, the 

subsequent coordination performance was not directly related dysfunction related to the 

dopaminergic system 

The current study found decreased coordination accuracy and stability in PD 'off 

compared to healthy control participants after switching (regardless of phase) that was 

more pronounced when switching to anti-phase coordination at faster cycle frequencies 

This is in agreement with Almeida et al (2003) that found after switching from in-phase 

to anti-phase, coordination was performed with decreased accuracy in individuals with 

PD Furthermore, Geuze (2001) also observed decreased coordination stability in 

individuals with PD compared to healthy control participants after a voluntary switch 

The current results also demonstrated that dopamine replacement did not improve 

coordination performance (accuracy or stability) in individuals with PD Thus, a 



secondary dysfunction related to dopamine loss contnbuted to coordination performance 

after an intentional phase switch Previous research from our lab did not observe deficits 

in coordination performance in PD 'off compared to healthy older participants or an 

influence on coordination accuracy or stability with dopamine replacement in PD (see 

Chapter 2) These conflicting findings suggest that when greater instability in 

coordination occurs after switching between phase patterns (compared to when switching 

is not required) there is an increased reliance on the secondary pathways that are 

influenced by dopamine loss in PD 

Research by De Luca et al (2010) examined neural activity using fMRI during 

continuous bimanual coordination when an intentional pattern switching was required in 

healthy adults Increased activity was observed in the pre-SMA and bilateral putamen 

during switching that was related to decreased stability of coordination (e g switching 

from a more to less stable pattern or m-phase to anti-phase) and was not correlated with 

frequency of coordination Although they did not observe this increased activity post-

switch, the increased activity in putamen was observed with decreased stability pre-

switch indicative of the phase stability-dependent frontostnatal circuit in switching (De 

Luca, Jantzen, Comani, Bertollo, & Kelso, 2010) The decreased coordination accuracy 

and stability observed in individuals with PD 'off (compared to healthy older adults) in 

the current study could explain the increased reliance on the dysfunctional frontostnatal 

pathways to stabilize coordination However, due to the dysfunction in these pathways 

caused by PD efficient switching and subsequent stabilization of coordination could not 

occur regardless of dopamine replacement Collectively, these results support that 



secondary dysfunction from dopamine loss related to increased attentional demand or 

sensonmotor integration could have contributed to coordination performance in PD 

The current results could have been explained by increased demand of 

sensonmotor integration since all participants demonstrated more coordination error after 

switching with normal vision compared to when no vision was provided in our study 

However, there was no difference with these sources of feedback between PD 'off and 

healthy control participants Consequently, increased demands of sensonmotor 

integration were not responsible for the current findings Alternatively, it is suggested 

that the increased attentional demands from a cued voluntary switch especially to anti

phase with increased external cueing (at the faster cycle frequencies) contnbuted to the 

deficits in coordination performance in individuals with PD as suggested by Almeida et 

al (2003) This has been supported by previous research by Riddenkhoff e/ al (2008) 

that has observed that there are increased attentional demands when initiating anti-phase 

coordination and when performing a dual-task of verbally responding to a stimulus 

dunng bimanual coordination in healthy adults (Riddenkhoff et al, 2008) Furthermore, 

previous research by Riekkinen et al (1998) demonstrated that attentional deficits in PD 

could not be modulated by dopamine replacement Thus, the current results support that 

non dopa-responsive frontostnatal dysfunction secondary to dopamine loss related to 

increased attentional demands particularly after a cued voluntary switch contnbutes to 

coordination deficits in PD 

In conclusion, individuals with PD have a decreased ability to switch between 

coordination patterns based on dysfunction related to the dopaminergic system that may 

be the result of bradykinesia and/or bradyphrema that can be modulated with dopamine 
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replacement However, it is proposed that the increased attentional demands of a cued 

voluntary switch during bimanual coordination resulted in decreased stabilization of 

coordination and increased dependency on dysfunctional frontostnatal pathways between 

the SMA and putamen that could not be modulated by dopamine replacement Imaging 

research is needed to confirm that attentional demands and the frontostnatal pathways 

may be responsible for coordination deficits in PD Furthermore, future research should 

be directed at understanding the degree of attentional demand that results in coordination 

deficits in PD This would be important for developing rehabilitative programs for 

individuals with PD to assist in properly executing complex voluntary movements (e g 

bimanual coordination) in attentionally demanding contexts since dopamine replacement 

is not sufficient 
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Chapter 4 - The dopaminergic system in upper 
limb freezing (ULF) during bimanual 
coordination in Parkinson's disease (PD) 

4.1 Abstract 

Upper limb freezing (ULF) (inability to initiate or sudden discontinue in 

voluntary movements) has been identified in various tasks m individuals with 

Parkinson's disease (PD) In particular, ULF has been observed during rhythmic 

bimanual coordination when switching between phase patterns is required (e g between 

m-phase and anti-phase) However, there has been no consensus on the mechanism that 

evokes ULF or whether freezing responds to dopamine replacement like other motor 

symptoms of PD The current chapter investigated the occurrence of ULF in PD 

participants without ('off) and with ('on') dopamine replacement in two different 

expenments using bimanual wnst flexion-extension with externally paced movements In 

Expenment 1, coordination was performed in either m-phase (simultaneous flexion and 

extension) or anti-phase (asymmetncal flexion and extension between the limbs) in either 

one of three sensory conditions no vision, normal vision or augmented vision Cycle 

frequency was increased within each tnal across 7 cycle frequencies (0 75 to 2 Hz) In 

Expenment 2, coordination was initiated in either phase pattern and participants 

intentionally switched between phases in the middle of tnals with an auditory cue Tnals 

were performed at one of two cycle frequencies (1 or 2 Hz) and one of two sensory 

conditions no vision or normal vision Healthy age-matched control participants were 

also investigated in both expenments for the occurrence of freezing that was measured 



using automated detection from a computer algorithm The results from Experiment 1 

indicated that only increasing cycle frequency resulted in more ULF in individuals with 

PD during continuous coordinated movement It was proposed that ULF may have 

occurred due to the increased attentional demand of external auditory cueing rather than 

necessarily the demand of cycle frequency Experiment 2 further revealed an increased 

the occurrence of ULF with increased external cueing (cycle frequency) Furthermore, a 

large amount of ULF was observed when initiating anti-phase coordination at 2 Hz, after 

external cued switches and with distracting auditory cues when no switch was required 

Dopamine replacement was not found to influence the frequency of ULF m either 

experiment suggesting that ULF was not caused by the dysfunctional dopaminergic 

system It was concluded that ULF results from increased attentional demands likely 

associated with secondary impairment of PD related to executive dysfunction and fronto-

stnatal pathways 

4.2 Introduction 

One of the most debilitating motor symptoms of Parkinson's disease (PD) is 

akinesia (severe or complete absence of movement) because it incorporates hypokinesia 

(poverty of movement), bradkykinesia (slowness of movement) and freezing (Imai, 

1996) Freezing (also referred to as motor blocks) has been defined by abrupt cessations 

or the inability to initiate voluntary movements (Giladi et al, 1992, Imai, 1996, 

Nakamura, Nagasaki, & Narabayashi, 1978) Freezing is traditionally identified in the 

lower limbs during vanous aspects of walking (e g initiation, turning) which has been 

termed freezing of gait (FOG) (Giladi et al, 2001, Lamberti et al, 1997) In addition to 

FOG, vanous studies have identified movement interruptions during rhythmic ummanual 



finger tapping (Nakamura et al, 1978, Ziv et al, 1999) and bimanual coordination (also 

known as inter-limb or inter-manual coordination) (Almeida, Wishart, & Lee, 2002, 

2003, Nieuwboer et al, 2009) Although upper limb freezing (ULF) has been identified 

in various studies, the mechanism for ULF and its' response to dopamine replacement 

remains unclear Additionally, little is known about the individuals who display ULF 

{upper limb freezers) such as the relationship between disease laterality and FOG 

A few mechanisms have been proposed for movement interruptions in the upper 

limbs Motor blocks were documented in PD during internally-paced unimanual 

movements (Ziv et al, 1999) It was proposed that these movement interruptions were 

caused by a dysfunctional motor pacemaker resulting in disrupted internal timing 

However, ULF has been documented in 8 1 % of anti-phase tnals even during externally-

paced continuous bimanual coordination (Almeida et al, 2002) Almeida et al (2002) 

argued that freezing occurs due to inhibition of limb synchronization (attraction to m-

phase coordination) In a subsequent study, Almeida et al (2003) found an increased 

occurrence of ULF during bimanual coordination after a voluntary pattern switch 

Freezing was observed in 53 9% of tnals when switching from anti-phase to m-phase 

(compared to 15 5% in the opposite direction) It was suggested that ULF occurs due to 

increased attentional and cognitive demands placed on a prefrontal-neostnatal network 

that is required when shifting between motor sets (Almeida et al, 2003) 

Similarly, research on FOG in PD has proposed that an increased cognitive 

demand observed dunng dual-tasking (Giladi & Hausdorff, 2006) and attentional 

demands from perceptual information in the environment (Almeida & Lebold, 2010) may 

contnbute to evoking FOG It is possible that ULF is associated with deficits in 
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sensorimotor integration that have been identified in individuals with PD (Abbruzzese & 

Berardelli, 2003, Lim, Hamm, Byblow, & Kirk, 2005, Lim, Hamm, Byblow, & Kirk, 

2006) Nieuwboer et al (2009) found a trend that more upper limb freezing occurred 

without target line visual cues compared to with visual cues However, in the freezer sub

group there was decreased coordination stability with visual cueing It was proposed that 

deficits in sensorimotor integration could contribute to ULF (Nieuwboer et al, 2009) 

Alternatively, ULF may be related to attention and executive dysfunction Executive 

function refers to several higher-order processes of the frontal cortex including planning, 

behavioural control such as inhibiting responses, maintaining attention and shifting 

attention (Rodnguez-Oroz et al, 2009) PD have marked deficits in attentional processes 

such as shanng resources and shifting attention (Brown & Marsden, 1991, Cools, Rogers, 

Barker, & Robbins, 2010) However, there is little research that has investigated the 

relationship between different types of attentional demands (executive function) and/or 

sensonmotor integration and the occurrence of ULF 

Although dopamine replacement improves motor symptoms there is little 

evidence to support that it can modulate executive functions (Cooper, Sagar, Jordan, 

Harvey, & Sullivan, 1991) or sensonmotor integration dunng voluntary movements 

(Mongeon, Blanchet, & Messier, 2009, Schettino et al, 2006) Similarly, it remains 

unclear if ULF is responsive to dopaminergic modulation The amount of motor blocks 

was not influenced by dopamine replacement during ummanual finger tapping (Ziv et al, 

1999) However, there has been conflicting evidence for the response of FOG to 

dopaminergic replacement (Bloem, Hausdorff, Visser, & Giladi, 2004, Imai, Nakamura, 

Kondo, & Narabayashi, 1993, Nomoto & Nagai, 2006, Schroeteler, Ziegler, Fietzek, & 
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Ceballos-Baumann, 2009) (Iansek, Huxham, & McGinley, 2006) (Okuma, 2006, 

Schaafsma et al, 2003) Thus, it is unclear if ULF during bimanual coordination is 

influenced by dopaminergic modulation 

ULF was recorded in two different experimental studies using bimanual 

coordination in PD The primary objective was to determine whether the dopaminergic 

system alone or in combination with different forms of attention and/or sensorimotor 

integration influenced the amount of ULF with (PD 'on') or without (PD 'off) dopamine 

replacement in individuals with PD This was investigated by manipulating dopamine 

replacement across two sessions m PD in two experimental studies In addition, 

Experiment 1 manipulated visual feedback, cycle frequency (external auditory cueing) 

and phase (anti-phase and m-phase) during continuous bimanual coordination 

Experiment 2 included a cued intentional pattern switch or a distracting external auditory 

cue during continuous bimanual coordination while manipulating visual feedback, cycle 

frequency and phase It was hypothesized that if ULF was related to the dopaminergic 

system than a greater occurrence of ULF would be documented in individuals with PD 

after withdrawal from dopamine replacement (PD 'off) and a decreased occurrence after 

dopamine replacement (PD 'on') Alternatively, if ULF was related to other dysfunction 

caused by PD related to sensory and/or attentional demands than an increased occurrence 

of ULF would be observed in individuals with PD with increasing sensory demands, anti

phase coordination and/or cycle frequency regardless of manipulations in dopamine 

replacement A secondary objective was to document the charactenstics of the upper limb 

freezers in PD such as the limb that typically freezes and the relationship between disease 

laterality and FOG 
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4.3 General Methods 

4.3.1 Apparatus 

The apparatus for these experiments has previously been described in detail (see 

Chapter 2 3 2 and Chapter 3 3 2) Briefly, both experiments had participants seated in a 

height adjustable chair with their forearms resting on a padded surface and forearms 

constrained to avoid unwanted movements at the elbow and shoulder joints The forearms 

were pronated 90° with the palms facing inward and thumbs facing upwards Movements 

were performed on two separate robotic Phantom Omni haptic devices (SensAble 

Technologies Inc , Woburn, MA, USA) that were synchronized and linked to a desktop 

computer (Dell Computer, with a g-force Intel Pentium 4 with SSE2) for data recording 

using MatLab R2007b (The Math Works Inc, Nattick, MA, USA) A pen-shaped stylus 

was attached to a pivoting arm that allowed for three-dimensional (3-D) movements 

Wrist flexion-extension movements were performed m rhythm with a computer-

generated metronome using QuaRC (Quanser Inc , Markham, On, Canada) To run all the 

different experimental sessions, automated programs were created using Simuhnk in 

MatLab R2007b 

4.3.2 Procedure 

For both experiments, participants performed wrist flexion-extension primarily in 

the medial-lateral direction with the hands grasping each stylus However, the wnsts were 

not restricted allowing 3-D movements if necessary The goal of both tasks during 

continuous bimanual coordination was to maintain rhythmic coordination in pace with 

the metronome Participants were instructed to perform as large movements as possible 

with both limbs but no specific amplitude requirements were given 
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In both experiments, m-phase and anti-phase coordination patterns were used 

(Kelso, Holt, Rubin, & Kugler, 1981) In-phase required the symmetrical movement of 

both limbs with simultaneous extension and flexion of the wrists using homologous 

muscles Anti-phase was performed as an asymmetrical pattern requiring flexion of one 

wrist and extension of the opposite wrist using non-homologous muscles 

Two sensory feedback conditions were used in both experiments In the normal 

vision condition participants were able to see their moving limbs The no vision condition 

involved the removal of vision by blindfolding participants 

4.3.3 Data Processing and Analysis 

For both experiments, displacement data was collected at a rate 1000 Hz and 

stored from each Omni device using MatLab Displacement data was used to calculate 

coordination accuracy, coordination stability, limb frequencies and limb amplitudes (see 

Chapter 2 and Chapter 3) The movement amplitude of each limb were used for freezing 

analysis 

Voluntary stops were analyzed and documented given that freezing episodes can 

be falsely identified as intentional arrests in movement (and vice-versa) A voluntary stop 

was defined as any discontinued movement that was not preceded by a reduction in 

amplitude (Nieuwboer et al, 2009) These could occur in re-establishing coordination 

after a transition, early termination of movement at the end of a trial or during trials due 

to equipment restrictions During the testing sessions, two investigators recorded any 

time distinct voluntary stops occurred due to participants stopping or equipment issues If 

clear voluntary stops occurred, participants were asked to re-perform the trial However, 

it was possible that voluntary stops still occurred during trials 
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The current study classified freezing episodes using criteria that combined 

previous definitions Freezing episodes in the upper limbs have previously been classified 

based on at least 1 second of no change in movement amplitude (Almeida et al, 2002, 

2003) However, recent research m freezing of gait has indicated that total cessation in 

movement does not always occur with a freeze (Giladi & Nieuwboer, 2008) Thus, the 

definition for upper limb freezing episodes was recently modified to incorporate either a 

reduction in amplitude (less than 50% of regular amplitude) prior to a freeze or irregular 

cyclic movement (Nieuwboer et al, 2009) (see Appendix B) For the current study, upper 

limb freezing episodes were defined as a 75% reduction of amplitude for at least 1 

second The current definition of freezing allowed for classification of ULF that did not 

produce a total arrest in movement 

4.4 Experiment 1 

4.4.1 Methods 

Participants 

Fifteen (n=15) individuals with Parkinson's disease and fifteen (n=15) healthy 

age-matched healthy controls participated in the current expenment These participants 

have been described in detail elsewhere (see Chapter 2 3 1) Briefly, all participants were 

right-hand dominant All participants were evaluated on the Modified Mini-Mental State 

Examination (3-MS) for signs of dementia and to ensure all individuals had the mental 

capacity to perform the expenment All participants performed two experimental sessions 

separated by approximately 70 minutes study (see Table 2 1 for demographic information 

of participants) 



For individuals with PD, the first session was performed after overnight 

withdrawal from dopaminergic medication Individuals were evaluated on the motor 

subsection of the Unified Parkinson's Disease Rating Scale (UPDRS-III) to document 

motor symptoms after withdrawal from dopamine replacement (PD 'off) After 

completion of the first session, medication was self-administered Re-evaluation of motor 

symptoms occurred after the 70 minute waiting period to document the response to 

dopamine replacement (PD 'on') (see Table 2 2 for clinical characteristics of PD 

participants) Upper limb laterality scores were calculated and compared for both limbs 

from items 20-25 on the UPDRS-III that examined upper limb motor symptoms to 

classify the more and less affected limbs and bilaterally affected PD participants (see 

Chapter 2 3 1) Patient history was reviewed for symptoms of gait freezing Any 

individual who had reported FOG was classified as a gait freezer PD participants were 

recruited from the patient database at the Sun Life Financial Movement Disorders 

Research and Rehabilitation Centre (MDRC) at Wilfrid Launer University Healthy 

controls were recruited from family and friends of PD participants Ethics approval for 

the current experiment was received from the Human Research Ethics Board (REB) at 

Wilfrid Launer University 

Procedure 

In addition to no vision and normal vision, a third sensory feedback condition 

augmented vision was used for Experiment 1 Augmented vision covered vision of the 

moving limbs but provided a modified Lissajous figure on the computer monitor A 

purple ball represented the integrated movement of both limbs The phases (in-phase and 

anti-phase) were represented by diagonal cylinders that remained on the computer 



132 

monitor In-phase was represented by a diagonal cylinder with a slope of 1 Anti-phase 

was represented by a diagonal cylinder with a slope of-1 The goal was to maintain the 

purple ball m the cylinders during the given phase pattern Before the first session began, 

individuals had a familiarization session with the augmented feedback 

A dynamic cycle frequency protocol was used to set the cycle frequency for each 

trial Similar to previous research that has used scaled frequency during trials (Geuze, 

2001), the cycle frequency was gradually increased from 0 75 to 2 Hz at set intervals The 

dynamic increase in cycle frequency was used to attempt to de-stabilize coordination 

within each trial and increase the probability of freezing to occur 

Each trial lasted 50 seconds beginning with a resting period of 5 seconds The 

resting period was followed by 7 seconds of maintaining a 'ready' position Continuous 

coordinated movements began at 12 seconds with the metronome at a frequency of 0 75 

Hz At approximately every 7 seconds, the cycle frequency automatically increased (by 

0 25 Hz) and participants were required to maintain rhythm with the metronome 

throughout each trial Each phase and sensory feedback manipulations was randomly 

performed and resulted in a total of 18 trials within each session Each participant 

performed a total of 36 trials over 2 sessions 

Data Processing and Analysis 

Detection of freezing episodes was automated using a script created in MatLab 

R2007b To detect freezes, the peak-to-peak amplitude of each cycle was measured over 

a trial and compared to the reference amplitude The reference amplitude of movement 

was obtained from the mean peak-to-peak amplitude within each trial when participants 

were moving at 1 Hz (between 7 and 12 seconds) Freezing episodes were classified as a 



75% reduction in amplitude compared to the reference amplitude for at least 1 second 

All freezing episodes that were detected by the computer algorithm were visually 

inspected on displacement profiles to ensure that ULF were accurately detected with the 

automated script Visual inspection was performed to confirm that the automated script 

did not classify hypometna (decreased movement amplitude over an extended period of 

time) or voluntary stops as freezing episodes 

Freezing episodes were classified and described based on different clinical 

characteristics All freezing episodes were compared using chi-square analyses on the 

dopaminergic status, sensory condition, phase and cycle frequency A significance level 

of 0 05 was used to define statistical significance In the event of significance between 

more than 2 variables for either cycle frequency or sensory condition, individual chi-

square tests were performed to determine which factors were different 

4.4.2 Results 

Qualitative description of freezing episodes during continuous bimanual coordination in 

PD 

An example of a freezing episode is displayed in Figure 6 1 No freezing episodes 

were identified in healthy controls At least one ULF was documented in 6 out of 15 PD 

participants Of these 6 upper limb freezers, half were more affected on the left side while 

the other half were more affected on the right side based on upper limb laterality scores 

on UPDRS In addition, 3 out of the 6 upper limb freezers were considered bilaterally 

affected Only 2 out of the 6 were classified as gait freezers (compared to 3 out of 9 non-

upper limb freezers were known gait freezers) 
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Figure 4 1 - (top) An example of a freezing episode in the more affected left limb of PD non-FOG (below) 
Red line illustrates the point when all the cntena were met for a ULF by the computer algonthm Green 
line represents the beginning of the freeze The end of the freeze was represented by the end of the tnal 

Based on the computer algonthm, freezing episodes were documented in 50 trials 

However, 6 tnals were excluded after visual inspection (see cntena in Data Processing 

and Analysis, section 4 3) resulting in 44 out of 50 (88 %) freezing episodes Multiple 

freezing episodes occurred within the same tnal in 7 of the 44 freezing tnals (15 9%) 

Both limbs froze at the same time in 4 out of 44 freezing tnals (9 1%) As a result, 

freezing episodes were identified in 29 separate tnals (in 6 different people) Freezing 

episodes were documented in 5 4% of all tnals (29 out of all 540 tnals) of PD 

participants (see Table 4 1) 
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Overall, 80 9% of all freezing episodes occurred on the more affected side The 4 

freezing episodes (9 6%) in the less affected limb and 4 (9 6%) that occurred in both 

limbs (see Table 4 1) were in individuals that were more affected on their right side and 

were bilaterally affected The length of freezes ranged from 1 27 to 14 51 seconds with 

an average length of 2 75 (+1-2 4) seconds 

Table 4 1 - Breakdown of freezing episodes detected using computer-algonthm and visually venfied in PD 
both 'off and 'off dopaminergic medication 

Total 
freezing 
episodes 
%of 
total 
trials ** 
%of 
total 
freezes 
*** 

PD 'off 
More 
affected* 
18(13) 

4 8% 

40 9% 

Less 
affected* 
1(1) 

0 04% 

2 3% 

Both 
Limbs* 
0 

0% 

0% 

Total 

19(14) 

5 2% 

43 2% 

PD 'on' 
More 
affected* 
14(9) 

3 3% 

31 8% 

Less 
affected* 
3(2) 

0 07% 

6 8% 

Both 
Limbs* 
4(4) 

1 5% 

9 1% 

Total 

21(15) 

5 6% 

47 7% 

* Out of brackets represents all freezing episodes including when multiple freezes occurred in the same trial In brackets, only 
represents the first freezing episode and excludes subsequent freezing episodes withm the same trial 
** Percentage (%) is calculated by dividing freezing episodes (excluding freezing episodes when multiple freezes occurred) by total 
trials of each dopaminergic status (=270) 
*** Percentage (%) is calculated from all freezing episodes including when multiple freezes occurred (= 44 freezing episodes) 

Chi-square analyses of freezing episodes during continuous bimanual coordination in PD 

Based on chi-squared analysis, cycle frequency was found to influence the 

amount of freezing episodes (%2 (5) = 34 6, p< 001) Individual comparisons using chi-

square tests revealed that more freezes occurred at 1 75 (n=15) and 2 Hz (n=14) 

compared to the three slowest cycle frequencies (0 75 Hz (n=0), 1 Hz (n=l) and 1 25 Hz 

(n=3)) Additionally, more freezes occurred at 1 5 Hz (n= 7) compared to the two slowest 

cycle frequencies (0 75 and 1 Hz) However, dopamine replacement, condition and phase 

were not found to influence the amount of freezing episodes (p> 05) 

4.4.3 Discussion 



ULF were only identified in PD participants and predominantly in the more 

affected limb (80 9%) Freezes on the less affected side were demonstrated in PD 

participants that were more affected on their nght side Individuals that displayed ULF in 

both limbs at the same time were all bilaterally affected In addition, upper limb freezers 

were not exclusively gait freezers suggesting that different mechanisms could exist for 

upper and lower limb freezing Alternatively, upper limb freezing may precede FOG in 

individuals with PD or freezing may be influenced differently by walking Nieuwboer et 

al (2009) found that upper limb freezing episodes were correlated with scores on a 

freezing of gait questionnaire in individuals with PD suggesting freezing shares a 

common mechanism (Nieuwboer et al, 2009) Due to the conflicting results of the 

current experiment, it is unclear whether a similar mechanism is responsible for both 

upper and lower limb freezing 

Although there has been conflicting results, research has found some evidence 

that the dopaminergic system can contribute to FOG (lansek et al, 2006, Okuma, 2006, 

Schaafsma et al, 2003) Investigations of FOG in PD observed that dopamine 

replacement could modulate the precursors for FOG (lansek et al, 2006) and decrease the 

amount of FOG during turning, walking through narrow spaces and gait initiation 

(Schaafsma et al, 2003) Based on the current results, dopamine replacement did not 

influence the occurrence of ULF Ziv et al (1999) also did not find an influence of 

dopamine replacement on motor blocks during unimanual finger tapping in individuals 

with PD (Ziv et al, 1999) If the dopaminergic system can contribute to FOG but not 

ULF, upper and lower limb freezing would likely be influenced by different mechanisms 

inPD 
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The current results did not find any evidence for the influence of sensonmotor 

integration on ULF as revealed by no influence of sensory conditions on the occurrence 

of ULF Riddenkhoff et al (2008) have previously suggested that bimanual coordination 

was not affected specifically by the processing of sensory signals It was proposed that 

open-loop control high-order cognitive processes compared to closed-loop control low-

order sensonmotor contribute to coordination performance (Riddenkhoff, Peper, & Beek, 

2008) Previous research has demonstrated that anti-phase requires greater attentional 

resources dunng continuous bimanual coordination m healthy adults (Stinear & Byblow, 

2001) Additionally, Almeida et al (2002) demonstrated that upper limb freezing only 

occurred dunng anti-phase coordination It was suggested that movement interruptions 

dunng anti-phase occur to inhibit limb synchronization (attraction to synergy of m-

phase) However, the cmrent results demonstrated that anti-phase coordination did not 

influence the occurrence of ULF It is unclear why the increased attention of anti-phase 

did not increase the amount of ULF It may be possible that the attentional demands of 

anti-phase in the current task were not sufficient to evoke ULF Riddenkhoff et al (2008) 

observed that only initiation of anti-phase (compared to m-phase) required greater 

attentional demands 

The current results did find some evidence for attentional demand and the 

occurrence of ULF as more freezing episodes were observed with increased cycle 

frequency demand that may have been related to external cueing Alternatively, it may be 

possible that the increased occunence of ULF with increased cycle frequency was related 

to the duration of movement (fatigue) or the frequency of movements It is important to 

take into consideration that Almeida et al (2002) did not examine the cycle frequency at 
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which freezing occurred Nieuwboer et al (2009) did not find any difference between the 

amount of freezing during normal and fast-paced coordination This would suggest that 

ULF is not related to the frequency of movement However, previous research has 

observed movement interruptions during rhythmic movements with increasing cycle 

frequency demand due to internal timing deficits in individuals with PD (Freeman, Cody, 

& Schady, 1993, Nakamura et al, 1978, Pastor, Jahanshahi, Artieda, & Obeso, 1992, 

Yahalom, Simon, Thorne, Peretz, & Giladi, 2004) However, internal timing deficits 

could not explain the current results as overall individuals were able to perform the 

movements at the appropriate frequency (see Chapter 2) Johnson et al (1998) found that 

external cueing during anti-phase coordination resulted in decreased coordination 

performance in individuals with PD It was suggested that external cueing during anti

phase coordination increased the complexity of the task (Johnson et al, 1998) These 

results would suggest that executive dysfunction related to attentional demands may 

contribute to movement interruptions rather than issues with internal timing, frequency of 

movements, or sensorimotor integration However, it may be possible that the increased 

occurrence of ULF was related to the duration of movement (fatigue) rather than the 

cycle frequency 

Experiment 2 further examined the relationship between sensorimotor integration 

and attentional demands on ULF A cued voluntary pattern switch between phases (e g 

m-phase to anti-phase) during continuous bimanual coordination was added to increase 

the attentional demands of the task as suggested by Almeida et al (2003) while 

manipulating visual feedback Catch trials were also performed with the presence of the 

auditory cue without switching required In addition, a portion of the trials were initiated 



with external cueing at faster cycle frequencies (2 Hz) compared to initiation only dunng 

slow cycle frequencies (0 75 Hz) This was performed to determine if the attentional 

demands related to initiating anti-phase coordination as suggested by Riddenkhoff et al 

(2008) would increase the amount of ULF In addition, this would help to determine if 

the duration of movement was related to the occurrence of ULF It was hypothesized that 

if ULF was related to increasing attentional demands than an increased occurrence of 

ULF would be observed during pattern switching, with a distracting auditory cue (catch 

trials) and when initiating anti-phase coordination in individuals with PD 

4.5 Experiment 2 

4.5.1 Methods 

Participants 

Fifteen (n=15) individuals with PD and fifteen (n=15) age-matched healthy 

controls were included in Experiment 2 These participants have been descnbed in detail 

elsewhere (see Chapter 4 3 1) Similar to Expenment 1, all individuals were nght-hand 

dominant and evaluated on the 3-MS (see Table 3 1 for demographic information of 

participants) PD participants performed one session after overnight withdrawal of 

dopamine replacement (PD 'off) and another session following administration of 

dopamine replacement (PD 'on') These sessions were separated by approximately 70 

minutes Healthy control participants were only required to perform 1 session 

Classification of PD participants followed the same procedure as Experiment 1 

Participant recruiting and ethics were also the same as Expenment 1 

Procedure 



Unlike Experiment 1, augmented vision was not used In addition, cycle 

frequencies (1 and 2 Hz) were used in blocks rather than a dynamic cycle frequency 

protocol Blocks were randomized across participants 

The experimental procedure had participants begin each trial by performing 

continuous coordination in either m-phase or anti-phase At the midpoint of each tnal, a 

high-pitched auditory cue signaled individuals to perform a rapid and smooth transition 

(intentional switch) to the opposite phase pattern without stopping Each trial lasted 23 

seconds To avoid anticipation of the voluntary switch, the expenmenter randomly 

initiated trials with a verbal 'go' signal 2, 4 or 6 seconds after the beginning of each tnal 

resulting in a rest penod The auditory cue to switch was maintained at 12 seconds for 

each tnal The combination of switch, cycle frequency and sensory condition resulted in 

24 tnals each session PD participants performed a total of 48 tnals across two sessions 

and healthy controls performed 24 trials in one session 

In addition, to begin each expenmental session participants performed 6 catch 

trials (3 at 1 Hz and 3 at 2 Hz) These tnals had participants perform continuous 

coordination in anti-phase for 23 seconds (2 second rest penod at the start) At the 

midpoint a high-pitched auditory cue would be automated but without instructions to 

voluntanly switch between patterns 

Data Processing and Analysis 

Detection and venfication of freezing episodes was performed the same as 

Expenment 1 The reference amplitude for Expenment 2 was different from Expenment 

1 for two reasons Freezing was extremely prominent at 2 Hz as observed in Expenment 

1 and not all tnals had movements at 1 Hz like Expenment 1 Furthermore, the 
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investigators noted observationally that some tnals participants were frozen for nearly the 

whole duration of a tnal which limited the ability to use the reference amplitude similar 

to Expenment 1 As a consequence, the mean amplitude was calculated over 4 seconds 

within each tnal before the cue to switch (from 6 to 10 seconds) The tnal with the largest 

maximum amplitude (over these 4 seconds) in each limb for each dopaminergic status 

was used as the reference amplitude 

The amount of freezing episodes was evaluated before and after a voluntary 

transition The freezing episodes were classified and descnbed by different clinical 

charactenstics Chi-square analyses compared the amount of upper limb freezing 

episodes based on dopaminergic status, condition, phase and cycle frequency An alpha 

level of 0 05 was used to define statistical significance In addition, the amount of freezes 

was documented in catch tnals after the auditory cue 

4.5.2 Results 

Qualitative description of freezing episodes before pattern switching in PD 

No freezing episodes were detected in healthy control participants Freezing 

episodes were identified in 5 out of 15 PD participants Only 1 out of the 5 upper limb 

freezers was classified as a gait freezer All 5 upper limb freezers were more affected on 

the left side 3 out of the 5 were considered bilaterally affected 

A total of 73 ULF were identified in PD participants using the automated 

computer algorithm 53 out of the 73 (72 6%) were visually venfied as freezing episodes 

Multiple freezes occurred in 9 out of 53 (17%) and 1 out of 53 (1 9%) occuned m both 

limbs at the same time Overall, ULF was identified in 43 tnals out of 720 (6 0%) total 



tnals of PD participants In addition, 96 2% (51 out of 53) occurred in the more affected 

limb 

Furthermore, 31 out of the 53 (58 5%) freezing episodes that occurred before the 

cue lasted until after the cue to voluntanly switch patterns The length of freezes ranged 

from 1 2 to 5 2 seconds (mean= 2 6 +/-1 2 s) (see Table 4 2) 

Table 4 2 - The amount of ULF before pattern switching in PD participants 

Total 
freezing 
episodes 
%of 
total 
trials ** 
%of 
total 
freezes 
*** 

PD 'off 
More 
affected* 
24 (20) 

5 6% 

45 3% 

Less 
affected* 
0(0) 

0% 

0% 

Both 
Limbs* 
10) 

0 28% 

19% 

Total 

25 
(21) 

5 88% 

47 2% 

PD 'on' 
More 
affected* 
27 (22) 

6 1% 

50 9% 

Less 
affected* 
0(0) 

0% 

0% 

Both 
Limbs* 
0(0) 

0% 

0% 

Total 

27 
(22) 

6 1% 

50 9% 

* Out of brackets represents all freezing episodes including when multiple freezes occurred in the same trial In brackets, only 
represents the first freezing episode and excludes subsequent freezing episodes within the same trial 
** Percentage (%) is calculated by dividing freezing episodes (excluding freezing episodes when multiple freezes occurred) by total 
tnals of each dopaminergic status (=360) 
*** Percentage (%) is calculated from dividing freezing episodes by all freezing episodes (= 53 freezing episodes) including when 
multiple freezes occurred in same trial and both limbs freezing at same time 

Chi-square analyses of freezing episode before pattern switching 

Chi-square analysis revealed that cycle frequency significantly influenced the 

amount of ULF (x2(l) = 19 6, p< 001) as more freezes were identified in tnals at 2 Hz 

compared to 1 Hz In addition, phase significantly influenced the amount of ULF (x2(l) = 

14 8, p< 001) since more freezes were identified dunng anti-phase compared to in-phase 

Dopamine replacement and condition did not influence the amount of freezing (p> 05) 

(see Table 4 3) 

The four combinations of cycle frequency and phase were also compared Chi-

square analysis found a significant effect (x2(3) = 32 4, p<„001) Overall, 29 (54 7%) 
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ULF occurred dunng anti-phase at 2 Hz, 11 ULF (20 8%) dunng anti-phase coordination 

at 1 Hz and 13 ULF (24 5%) dunng m-phase coordination at 2 Hz No ULF were 

documented dunng m-phase coordination at 1 Hz 

Table 4 3 - Statistical analysis of ULF before pattern switching in PD participants 

Dopamine replacement 

Condition 

Phase 

Cycle frequency 

PD 'off 

26 

No vision 

30 

In-phase 

13 

1Hz 
11 

PD 'on' 

27 

Normal Vision 

23 

Anti-phase 

40 

2 Hz 
42 

X2(l)=0 02,p=0 89 

%\l)= 1 0, p=0 32 

X2(l)=14 8,p<001 * 

X2(l)=19 6,p<001 * 

Qualitative description of freezing episodes after pattern switching in PD 

Three episodes of "freezing" were identified in healthy control participants Based 

on visual inspection, these tnals represented short voluntary stops due to not being 

preceded by amplitude reductions (see Figure 4 2) As a consequence, these episodes 

were not classified as freezing episodes As well, 41 ULF were identified within the 

transition penod after the cue to switch in PD 12 out of the 41 episodes (29 3%) had 

been classified as delayed responses (see Chapter 3) As a consequence, 17 trials 

remained where transition freezes may have occurred However, none of these could 

clearly be identified as freezes based on visual inspection since amplitude reductions 

would have occurred to perform transitions In addition, these transition freezing episodes 

appeared similar in some circumstances to the "freezing" detected in healthy controls (see 

Figure 4 3) 
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x10 

x10 

Figure 4 2 - (top) An example of a "freezing episode" detected in the nght limb dunng a transition in a 
healthy control (below) Red line represents the point when all the cntena were met for a ULF by the 
computer algonthm Green lines illustrate when the computer algonthm detected the "freezing episode" 
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Figure 4 3 - (top) An example of PD "freezing episode" detected in the less affected left limb dunng the 
transition period (below) Red line represents the point when all the criteria were met for a ULF by the 
computer algorithm Green lines illustrate when the "freezing episode" was detected by the computer 
algorithm 

Excluding these freezing episodes, an additional 126 ULF were identified after 

the cue to switch by the computer algorithm Visual inspection confirmed that 102 out of 

the 126 (81 7%) were ULF In addition, 88 8% (90 out of 102) of all freezes occurred in 

the more affected limb Multiple freezes occurred in 28 out of the 102 (27 5%) (see 

Figure 4 4) Freezes in both limbs at the same time were identified in 5 out 102 (4 9%) 

Overall, ULF was identified in 66 tnals out 720 (9 2%) total tnals of PD participants (see 

Table 4 4) The duration of freezes ranged from 1 1 to 9 1 seconds (3 02 +/- 19 s) 
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Figure 4 4 - (top) An example of a multiple ULF after a pattern switch from anti-phase to m-phase in the 
more affected limb of PD (below) Blue lines represent periods of decreased amplitude that did not last 1 
second Red lines illustrate the points when all the catena were met for a ULF by the computer algonthm 
Green lines represent the beginning and end of each freeze The second freezing episode terminated at the 
end of the tnal 

ULF was identified in 8 out of 15 PD participants Only 3 out of 8 upper limb 

freezers were freezers of gait (compared to 2 gait freezers out of 7 non-upper limb 

freezers) In addition, 6 out of the 8 were more affected on the left side and 6 out of the 8 

were considered bilaterally affected Both freezes that occurred in the less affected limb 

(1 9%) (see Table 4 4) were in individuals that were more affected on their right side 

Bilateral freezes (9 3%) occurred in 3 individuals that were more affected on their left

side and 1 more affected on their right side However, all 3 of these participants were 

considered bilaterally affected 



Table 4 4 - The amount of ULF after pattern switching in PD participants 

Total 
freezing 
episodes 
%of 
total 
trials ** 
%of 
total 
freezes 
*** 

PD'ofP 
More 
affected* 

41(31) 

8 6% 

40 2% 

Less 
affected* 

1(1) 

0 06% 

09% 

Both 
Limbs* 

5(5) 

17% 

4 9% 

Total 

47 
(37) 

10 6% 

45 2% 

PD 'on' 
More 
affected* 

49 (28) 

7 8% 

48 0% 

Less 
affected* 

1(1) 

0 06% 

09% 

Both 
Limbs* 

0(0) 

0% 

0% 

Total 

50 (29) 

8 3% 

48 09% 

* Out of brackets represents all freezing episodes including when multiple freezes occurred m the same trial In brackets, only 
represents the first freezing episode and excludes subsequent freezing episodes within the same trial 
** Percentage (%) is calculated by dividing freezing episodes (excluding freezing episodes when multiple freezes occurred) by total 
trials of each dopaminergic status (=360) 
*** Percentage (%) is calculated from dividing freezing episodes by all freezing episodes (= 102 freezing episodes) including when 
multiple freezes occurred in same trial and both limbs freezing at same time 

Chi-square analyses of freezing episode after pattern switching during continuous 

bimanual coordination in PD 

As seen in Table 4 5, chi-square analysis indicated that cycle frequency had a 

significant influence on the amount of freezes (x2(l) = 24 2, p< 001) as more freezes 

were identified at 2 Hz compared to 1 Hz In addition, a significant influence of phase 

was seen on the amount of freezes (x2(l) = 10 3, p< 001) as more freezes were identified 

after switching to and performing anti-phase compared to m-phase Dopamine 

replacement and condition did not influence the occurrence of freezing episodes 
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Table 4 5 - Statistical analysis of ULF after pattern switching in PD participants 

Dopamine replacement 

Condition 

Phase 

Cycle frequency 

PD 'off 

52 

No vision 
55 

In-phase 

36 

1Hz 
28 

PD 'on' 

50 

Normal Vision 
47 

Anti-phase 

66 

2 Hz 
74 

X2(l)=0 05p=0 83 

X2(l)=0 7,p=0 39 

X2(l)= 10 3, p< 001 * 

X2(l)=24 2,p<001* 

Freezing during catch trials after the auditory cue in PD participants 

No freezing episodes were documented in healthy controls ULF were identified 

in 64 tnals after the auditory cue when no switch occurred in PD participants Only 41 

out of 64 (64 1%) were visually confirmed as freezing episodes Several of these tnals 

were venfied as small voluntary stops with the auditory cue that were noted by the 

investigators dunng testing 

Multiple freezes occurred in the same tnal in 8 out of 41 (19 5%) freezing 

episodes Both limbs froze in 3 out of 41 (7 3%) of freezing episodes As a result, 

freezing episodes were identified in 17 separate tnals out of 90 (18 9%) total catch tnals 

of PD participants 

4.5.3 Discussion 

The pnmary objectives of Expenment 2 were to venfy that increased attentional 

demands (rather than sensorimotor integration, movement frequency or movement 

duration) contnbuted to ULF and dopamine replacement did not influence ULF The 
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current findings confirmed the results of Expenment 1 that the dopamine replacement did 

not influence the amount of upper limb freezing episodes The current results also 

verified that upper limb freezers were not exclusively freezers of gait Furthermore, the 

current results also confirmed that manipulating visual information was not found to 

influence the amount of ULF 

Similar to Expenment 1, cycle frequency was found to increase the amount of 

ULF both before and after a pattern switch The current results also demonstrated that 

initiating a pattern switch from m-phase to anti-phase and attempted maintenance of anti

phase coordination resulted in a greater amount of ULF Almeida et al (2003) also found 

that voluntary pattern switching from m-phase to anti-phase (compared to anti-phase to 

m-phase) resulted m a greater occurrence of upper limb freezing (53 9% compared to 

15 5%) It was proposed that phase switching particularly when there was an increased 

difficulty when attempting to de-stabilize m-phase coordination requires increased 

cognitive demand resulting in movement interruptions (Almeida et al, 2003) The 

cognitive demands of de-stabilizing m-phase coordination cannot fully explain the 

cunent results since the presence of an auditory cue in the middle of anti-phase 

coordination in catch tnals without any switch resulted in a similar amount of freezing to 

when switching was required In view with the mechanism proposed in Experiment 1, the 

auditory cue without a required response would have attracted attention and required a 

greater cognitive demand to suppress or inhibit any response Sharing attentional 

resources and suppressing behaviours are both related to executive function (Rodnguez-

Oroz et al, 2009) Based on these findings, it would suggest that ULF does not 
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necessarily occur due to shifting between motor sets but rather due to increased attention 

demand that can be produced from several attentionally demanding situations 

Although Experiment 1 did not find an effect of phase on ULF, Experiment 2 

demonstrated that more ULF occurred when initiating coordination in anti-phase (before 

the cue to switch) Temprado et al (1999) and Stinear and Byblow (2001) observed that 

anti-phase coordination requires greater attentional resources than m-phase In 

comparison, Riddenkhoff et al (2008) only observed that initiating (rather than 

maintaining) anti-phase coordination increased attentional demands The results of 

Experiment 2 demonstrated that 79 2% of ULF occurred when initiating coordinated 

movement in either anti-phase or m-phase with increased cycle frequency (2 Hz) 

confirming that ULF was not related to the duration of movement (fatigue) The main 

difference between the two studies was that coordination was always self-initiated at slow 

cycle frequencies and cycle frequency dynamically increased in Experiment 1 In 

Experiment 2, trials were either initiated at 1 or 2 Hz by a verbal 'go' signal Thus, it is 

possible that the discrepancy between Experiment 1 and 2 was that increased attentional 

demands of the 'go' signal were able to evoke ULF Alternatively, the difference between 

Experiment 1 and 2 could be explained by initiating coordinated movements with 

increased attention to external cueing (eg 1 or 2 Hz compared to 0 75 Hz) 

Increased attentional demands contributing to ULF was further supported since 

over half of all ULF (54 7%) before the cue to switch occurred by initiating anti-phase at 

2 Hz These results suggest that the increased attentional demands of external auditory 

cueing combined with the attentional demands of initiating anti-phase contributed to 
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ULF The current results provide further support that executive dysfunction related to 

increased attentional demands may be the primary contributor for evoking ULF in PD 

4.6 General Discussion 

4.6.1 Attentional demands and sensorimotor integration in ULF 

Previous research by Almeida et al (2002) has suggested that upper limb freezing 

during externally-paced bimanual coordination occurs due to difficulties in performing 

anti-phase coordination The deficits during anti-phase coordination were proposed to 

occur due to the inability to divide attention during coordinated movements and 

decreased ability to inhibit the attraction to in-phase coordination (Almeida et al, 2002) 

In addition, it was subsequently proposed that upper limb freezing resulted due to 

increased attentional demands required to shift between motor sets (Almeida et al, 2003) 

The main finding from the current studies was that attentional demands appeared to be 

the primary factor to evoke ULF similar to what was proposed by Almeida et al (2003) 

Increased attentional demands contributing to freezing has also been supported by 

clinical observations (Giladi & Hausdorff, 2006) and experimental evidence that have 

found greater cognitive load (Plotnik et al ,2010) and dual-tasking (Dagan, Plotnik, 

Grundhnger, Giladi, & Hansdorff, 2008) exacerbates FOG 

Unlike Almeida et al (2003), the current results demonstrated that increased 

attentional demands could be produced from different sources It was demonstrated that 

the cycle frequency rather than anti-phase had an influence on the occurrence of ULF 

during continuous bimanual coordination (Experiment 1) Participants were able to 

maintain frequency of movements (see Chapter 2) suggesting that participants focused 

attention on the external cueing However, the increased attentional demands of initiating 



anti-phase coordination (compared to m-phase) with external cueing at fast cycle 

frequencies and a verbal 'go' signal resulted in ULF (Expenment 2) Finally, an external 

auditory cue during continuous anti-phase coordination without switching required and 

when pattern switching from anti-phase to m-phase coordination resulted in the largest 

amount of ULF that may have been the result of greater attentional demands for 

individuals with PD (Expenment 2) 

It is important to consider that perceptual demands from different forms of visual 

feedback were not found to have an influence on the amount of ULF in either of the 

current studies This confirmed that deficits in sensonmotor integration were not 

responsible for ULF and higher-order cognitive processes have a greater contribution to 

bimanual coordination than low-order sensonmotor integration as was proposed by 

Riddenkhoff et al (2009) Previous research in PD proposed that the increased attention 

to perceptual information required when walking through narrow doorways contnbuted 

to an increased occurrence of FOG (Almeida & Lebold, 2010) Thus, it was expected that 

an increased occurrence of freezing would occur when attentionally demanding visual 

information was provided (e g augmented visual feedback) It may be possible that 

attentional demands from certain visual sources do not influence the mechanism of ULF 

However, the results from the current expenments suggest that attention was 

focused on external auditory cueing rather than visual feedback Anecdotal evidence 

documented several cases of participants looking away from the computer monitor or 

closing their eyes dunng trials with augmented visual feedback It is possible that visual 

feedback was ignored when situations became attentionally demanding (e g with 

augmented visual feedback) As a consequence, it remains unclear if the attentional 



demands from visual feedback can influence ULF Based on the proposed mechanism, it 

would be expected that visual sources that require a great deal of attention resources 

would increase the amount of ULF 

4.6.2 Dopaminergic modulation and ULF 

ULF during bimanual coordination did not respond to dopaminergic modulation, 

which is consistent with previous research in ummanual finger tapping (Ziv et al, 1999) 

There has been conflicting evidence for the effect of dopamine replacement on FOG 

Several studies have found no effect of dopamine replacement on FOG (Bloem et al, 

2004, Imai et al ,1993, Nomoto & Nagai, 2006, Schroeteler et al, 2009) Other studies 

have found that FOG can be modulated by dopamine replacement (Iansek et al, 2006, 

Okuma, 2006, Schaafsma et al, 2003) Based on these findings on FOG, Iansek et al 

(2006) has previously suggested that there may be a dual causation for FOG It was 

argued that one mechanism involves the reduction in frequency of FOG by improvement 

m stride length by dopamine replacement eliminating the mismatch between the limbs 

and the resultant festination Their alternative mechanism was that dopamine replacement 

decreases attention or increases mental confusion eliminating the ability to compensate 

for the internal deficits (Iansek et al, 2006) The alternative mechanism related to 

attention and mental confusion would support the disrupted executive dysfunction that 

has been proposed in the current chapter It can also explain why dopamine replacement 

was not found to decrease the amount of ULF Furthermore, it suggests that multiple 

mechanisms could exist for ULF 

4.6.3 Upper limb freezer vs. FOG 



Research has examined the relationship between onset of disease laterality, 

symptoms and cognitive function in PD (Katzen, Levin, & Werner, 2006) Individuals 

with PD who displayed onset of bradykinesia or rigidity had greater cognitive 

impairments regardless of disease laterality In addition, PD participants with tremor 

onset only demonstrated cognitive impairment if tremor symptoms began on the left side 

(Katzen et al, 2006) As a consequence, ULF may be influenced by disease progression 

and laterality if the mechanism is related to executive function Freezes were 

predominantly in the more affected limb (as revealed by UPDRS laterality scores) There 

was no trend to suggest that upper limb freezers were more affected on the nght and left 

sides However, bilateral freezes only occurred in individuals that were bilaterally 

affected In addition, freezes in the less affected limb were only demonstrated in 

individuals with PD that had higher UPDRS upper limb laterality scores on their right-

side Stewart (2009) found similar results when examining disease laterality in PD 

Individuals with PD who were right-hand dominant (like all participants in the current 

study) and greater laterality of PD on the right-side demonstrated more symmetry of 

motor impairments (Stewart et al, 2009) The relationship between disease laterality, 

motor symptoms and ULF needs to be examined in greater detail 

The current results showed that upper limb freezers were not exclusively FOG 

and not all gait freezers demonstrated ULF Nieuwboer et al (2009) found conflicting 

results as a positive correlation between episodes of upper limb freezing and scores on a 

freezing of gait questionnaire were observed It was suggested that freezing m the lower 

and upper limbs shares a common mechanism The discrepancy between these results 

could be explained by the type of movements (e g externally vs internally paced 
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movements) used in each experiment Most FOG studies have used self-paced walking 

similar to the internally-paced bimanual upper limb movements used by Nieuwboer et al 

(2009) However, similar to the current study, movement interruptions in the upper limbs 

have used externally-paced movements (Almeida et al, 2002, 2003, Freeman et al, 1993, 

Nakamura et al, 1978, Pastor et al, 1992, Yahalom et al, 2004) Based on these 

findings, it may be possible that multiple mechanisms exist for ULF depending on 

whether the movements are internally or externally paced 

4.6.4 The automatic detection of ULF using a computer algorithm 

Recent research has attempted to develop new methods for the automatic 

detection of freezing (Delval et al ,2010) and motor blocks (Popovic, Dzoljic, & Kostic, 

2008) Delval et al (2010) suggested that a computerized process is important for 

detection of subtle and brief freezing that may not be identifiable visually One of the 

primary purposes for the use of automated detection of freezing in the current chapter 

was to eliminate bias and increases efficiency and accuracy of detection The computer 

algorithms used in the current studies were able to automatically detect freezing with 

72 3%-88% accuracy (based on visual inspection) However, the accuracy after visual 

inspection was only 64 1% in the trials when no switch occurred Small voluntary stops 

after the auditory cue were the primary reason for eliminating trials during visual 

inspection The voluntary stops were likely a result of uncertainty related to the 

distracting auditory cue or inhibiting responses during the second session in each 

experiment There were other limiting factors of the computer algorithm since transition 

penods and hypometna were detected as freezing episodes which reduced the accuracy of 

the automated detection The decreased accuracy may have been a consequence of only 



using peak-to-peak amplitudes compared to reference amplitudes which also contnbuted 

to 3 tnals being detected as "freezing episodes" in healthy control participants Thus, it is 

necessary to improve the cntena for automatic detection of freezing by computer 

algonthms possibly using other methods of detection such as time-frequency analysis 

proposed by Delval et al (2010) 

4.6.5 Conclusion 

In conclusion, increased attentional demands were the pnmary contnbutor to 

evoking ULF Deficits in executive function such as maintaining, shifting and shanng 

attentional resources have been identified in individuals with PD (Brown & Marsden, 

1991, Cools et al ,2010, Rodnguez-Oroz et al, 2009) Consequently, the occurrence of 

ULF with increased attentional demands may have been related to executive dysfunction 

in individuals with PD Rodnguez-Oroz et al (2009) suggested that deficits in the 

cortico-basal ganglia pathways could have an essential role in the executive dysfunction 

that may be regulated by neurotransmitters other than dopamine (e g acetylcholine) If 

ULF involves cortico-basal ganglia pathways that are not regulated by the dopaminergic 

system than dopaminergic modulation should not influence ULF (comparable to what 

was observed in the current chapter) Furthermore, Almeida et al (2003) also proposed 

that a network including the prefrontal areas (e g dorso-lateral prefrontal cortex and 

supplementary motor area) and the neostriatum may be responsible for upper limb 

freezing It was suggested that movement interruptions occur when there is an increased 

cognitive demand from shifting between motor sets on the cortico-stnatal network 

resulting in an increased attentional load (Almeida et al, 2003) Overall, the cunent 

results support that the attentional demands placed by several factors not exclusively 
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shifting between motor plans can contribute to the breakdown of movement 

Conceivably, the cortico-stnatal network between the prefrontal areas and basal ganglia 

could play an essential role m ULF 

However, it is possible that multiple mechanisms could exist for ULF, one that 

may resemble the mechanism of lower limb freezing Future research should be directed 

at identifying the neural structures involved in both upper and lower limb freezing 

Understanding the activity of neural substrates during freezing may help to clarify the 

conflicting research and the possibility of different mechanisms More research is 

necessary to confirm the effects of different types of attentional load and executive 

dysfunction on ULF Dual-tasking dunng bimanual coordination in PD could provide an 

important procedure for confirming the effects of attentional load and ULF Furthermore, 

more research should be directed at examining whether perceptual demands from 

different visual sources can evoke ULF by incorporating the use of an eye tracker to 

monitor visual attention Finally, research should be directed at developing a more 

complete definition that could be used for accurate automated detection of ULF 
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Chapter 5 - Epilogue 

The primary objective of the current thesis was to determine how the 

dopaminergic system contributes to bimanual coordination in PD By manipulating 

dopamine replacement across consecutive sessions in both expenments and manipulating 

sensory condition, phases and cycle frequency, it was possible to examine whether the 

dopaminergic system directly or other secondary dysfunctions (e g deficits in attention 

and/or sensorimotor integration) contributed to movement impairments during bimanual 

coordination in individuals with PD Additionally, the influence of dopa-responsive 

motor symptoms such as hypometna and bradykmesia on the overall movements was 

examined Investigation of these factors could help to determine what impairments were 

associated to the dopaminergic system Determining the influence of the dopaminergic 

system on movements would help to direct treatment to circumvent other basal ganglia 

related dysfunction that is not responsive to traditional dopamine replacement 

In addition, the current thesis secondary objective was to gam a greater 

understanding of the mechanism that evokes upper limb freezing (ULF) during bimanual 

coordination in PD Determining the mechanism for ULF could help to improve methods 

of diagnosing and treating since there has been a debate about whether freezing responds 

to dopamine replacement (lansek, Huxham, & McGinley, 2006, Imai, Nakamura, Kondo, 

& Narabayashi, 1993, Nomoto & Nagai, 2006, Okuma, 2006, Schaafsma et al, 2003, 

Schroeteler, Ziegler, Fietzek, & Ceballos-Baumann, 2009, Ziv et al, 1999) The current 

chapter synthesizes the major themes that were formed from the results These findings 

are discussed in relevance to the limitations of the current thesis Finally, possible 
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directions of future research will be discussed in relevance to dopaminergic modulation, 

bimanual coordination and ULF in PD 

5.1 Summary of major findings 

Four major themes emerged from the current thesis Firstly, motor symptoms 

were evident dunng bimanual coordination that could be modulated by the dopaminergic 

system However, these motor symptoms did not have an overall influence on 

coordination performance Secondly, movement impairments in individuals with PD 

compared to healthy older adults were dependent on global impairment related to basal 

ganglia related dysfunction Thirdly, attention had a major influence on coordination 

performance and upper limb freezing (ULF) Finally, ULF is a complex symptom that 

may involve multiple mechanisms 

5.1.1 The dopaminergic system in bimanual coordination 

PD is characterized by cell death to dopamine producing cells within the 

substantia nigra pars compacta that ultimately leads to dysfunction of the direct and 

indirect pathways of the basal ganglia system (Alexander & Crutcher, 1990, Crossman, 

2000, DeLong, 1990) The decreased dopamine in the basal ganglia results in the cardinal 

motor symptoms of PD and other secondary complications like gait disturbances 

(Almeida, Frank, Roy, Patla, & Jog, 2007, Morns, Iansek, Matyas, & Summers, 1994) 

Clinical assessment on the motor subsection of the Unified Parkinson's Disease Rating 

Scale (UPDRS-III) has revealed that improvements in motor symptoms such as 

bradykinesia and hypometna occur after dopamine replacement (Espay et al, 2009, Fahn 

& Elton, 1987) Improvements in motor symptoms were also venfied by the clinical 

assessments performed in the current thesis (see Table 2 2 and 3 2) It was possible that 
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improvements in motor symptoms could result in improvements in overall motor function 

during bimanual coordination 

The findings of the current thesis found that movement amplitude could be 

modulated by dopamine replacement during continuous bimanual coordination (Chapter 

2) However, it had no effect on frequency or the overall coordination (accuracy or 

stability) Overall, these findings would support that the dopaminergic system is involved 

in certain aspects of coordinated movements but overall motor function during bimanual 

coordination in PD is regulated by a distributed network Previous research has identified 

a distributed network involving cortical and sub-cortical structures for bimanual 

coordination (Carson, 2005, Jantzen, Steinberg, & Kelso, 2009, Kraft et al, 2007, Pollok, 

Butz, Gross, & Schmtzler, 2007, Swinnen, 2002, Wenderoth, Debaere, Sunaert, & 

Swinnen, 2005) Furthermore, the current findings of improvements in hypometna but no 

universal improvement in coordination demonstrates that control of coordinated 

movements occurs regardless of the dysfunction or improvement of the dopaminergic 

system 

In addition, the dopaminergic system was not found to have an effect on the 

occurrence of upper limb freezing (ULF) (see Chapter 4) similar to what has been 

observed by Ziv et al (1999) The results from Chapter 4 also demonstrated that 

increased attentional demands resulted in the greatest occurrence of ULF (see section 

4 2 3) These results were indicative that executive dysfunction in the frontal lobes due to 

PD may have contributed to movement interruptions rather than the dopaminergic 

system Previous research by Almeida et al (2003) proposed that upper limb freezing 

may be caused by increased attentional demands placed on a prefrontal-neostnatal 
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network Furthermore, there has been evidence from FOG studies that cognitive demand 

may be related to the freezing phenomenon (Dagan, Plotmk, Grundhnger, Giladi, & 

Hansdorff, 2008, Giladi & Hausdorff, 2006, Giladi, Huber-Mahhn, Herman, & 

Hausdorff, 2007) PD have been shown to have difficulty in executive functions related 

to the frontal lobe such as shifting, maintaining and sharing attention between resources 

(R G Brown & Marsden, 1991, Cools, Rogers, Barker, & Robbins, 2010, Horstmk, 

Berger, van Spaendonck, van den Bercken, & Cools, 1990) Overall, these results support 

that deficits dunng complex movements in PD are caused by global impairment resulting 

from PD that cannot merely be circumvented by dopamine replacement It also suggests 

that brain neural re-organization and compensatory mechanisms may have an important 

role in complex movements in PD 

Neural plasticity has been documented in stroke patients after rehabilitation 

(Carey & Seitz, 2007, Seitz, Matyas, & Carey, 2008) In addition, positive neural 

adaptations as revealed by decreased motor symptoms on UPDRS have been observed in 

individuals with PD after rehabilitation (Farret, Chouza, & Benaiges, 2007, Sage & 

Almeida, 2009) suggesting a possible role of rehabilitation in treating global impairment 

in PD No research has documented the amount of cortical dysfunction or subsequent 

adaptation that results over time from PD However, evidence has supported that cortical 

adaptation results from dysfunction of the basal ganglia Palmer (2009) used fMRI to 

examine simultaneous movements of squeezing a rubber ball with one limb while 

pressing a button with the other limb m PD It was found that PD 'off and to a lesser 

extent PD 'on' had a distinct reorganization of connections for bimanual movements 

compared healthy controls It was argued that these changes were representative of neural 
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adaptations (Palmer et al, 2009) In support of neural adaptation, Sabatini (2000) used 

fMRI to investigate a complex sequential motor task in PD It was determined that there 

was hypoactivation in the rostral part of the SMA and dorso-lateral prefrontal cortex 

Concurrently, there was increased activity m areas such as the primary sensorimotor 

cortex It was proposed that these changes in connectivity were an attempt at re

organization to overcome the functional deficits that are characteristic of PD (Sabatini et 

al, 2000) As a consequence, individuals with PD have the ability to develop 

compensatory mechanisms to overcome functional deficits outside the dopaminergic 

system It also proposes that distributed neural function is more important than the 

dopaminergic system m PD Treatment of PD should focus on rehabilitative methods to 

compensate for secondary dysfunction rather than exclusively dopamine replacement 

5.1.2 PD movement impairments are related to secondary dysfunction not specifically 

motor symptoms 

As previously mentioned, the results from the clinical assessment on the UPDRS-

III revealed that individuals with PD have increased motor symptoms including 

bradykinesia and hypometna without dopamine replacement (see Tables 2 2 and 3 2) It 

was possible that these motor symptoms could result m coordination and switching 

deficits in PD compared to healthy control participants Previous research has 

documented bimanual coordination deficits in PD (Almeida, Wishart, & Lee, 2002, K A 

Johnson et al, 1998) especially when including a change in movement (Almeida, 

Wishart, & Lee, 2003, Byblow, Summers, Lewis, & Thomas, 2002) In addition, previous 

research has observed deficits m individuals with PD when changing or sequencing 

between movements compared to healthy older adults in other upper limb tasks 
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(Benecke, Rothwell, Dick, Day, & Marsden, 1987a, 1987b, Stelmach, Wornngham, & 

Strand, 1987) It was observed that slowness as revealed by slower voluntary switch time 

and more delayed responses as well as more unsuccessful switches were evident when 

changing between phase patterns in PD 'off compared to healthy control participants 

(Chapter 3) In addition, the subsequent coordination performance (both accuracy and 

stability) was impaired m PD 'off participants compared to healthy older adults (Chapter 

3) However, dopamine replacement improved the time to switch and delayed responses 

but did not influence the subsequent coordination in PD (Chapter 3) It is important to 

consider that this slowness may have been the result of bradykinesia (slowness in 

movement execution) and/or bradyphrema (cognitive slowing) If deficits and 

improvement with dopamine replacement in intentional pattern switching in individuals 

with PD were related to bradyphrema rather than bradykinesia than it would suggest that 

motor symptoms do not influence performance during bimanual coordination The 

findings of the Chapter 2 also did not support the hypothesis that motor symptoms 

contribute to other movement impairments It was found that amplitude deficits 

(hypometna) were found during continuous bimanual coordination in both limbs in PD 

'off compared to healthy control participants (Chapter 2) However, individuals with PD 

did not demonstrate impairments in movement frequency (bradykinesia) or coordination 

performance compared to healthy older adults during continuous bimanual coordination 

(Chapter 2) Thus, neural damage from PD resulting in motor symptoms such as 

bradykinesia and hypometna does not inevitably exacerbate other motor impairments 

such as coordination deficits or freezing 
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The differences observed with coordination performance without a switch 

(Chapter 2) and with an intentional switch (Chapter 3) suggests that the basal ganglia are 

more involved when a change in movement is required in continuous bimanual 

coordination that may be related to secondary dysfunction from PD Research by De 

Luca et al (2010) demonstrated that that pre-supplementary motor area (SMA) and 

bilateral putamen have increased activity dunng intentional pattern switching from m-

phase and anti-phase dunng bimanual coordination However, increased activity m the 

pre-SMA and bilateral putamen was not observed post-switch Importantly, they 

observed that increased activity was associated with decreased stabilization of 

coordination pre-switch indicative of the phase stability-dependent frontal-stnatal circuit 

m switching (De Luca, Jantzen, Comani, Bertollo, & Kelso, 2010) Thus, the decreased 

stability of coordination when switching is required would partially explain why 

individuals with PD were more affected with the addition of a change in behaviour dunng 

continuous bimanual coordination (Chapter 3 compared to Chapter 2) However, no 

differences were observed between phase patterns for these slowed and delayed 

responses (Chapter 3) The results of Chapter 4 did demonstrate that coordinating 

movements in anti-phase before the cue to switch (compared to m-phase) resulted in a 

larger amount of ULF in PD Consequently, the increased amount of freezing would have 

resulted in decreased stabilization of coordination In addition, there was a large amount 

of ULF after the cue to switch (Chapter 4) that may have ultimately contributed to the 

decreased coordination performance (Chapter 3) Thus, these results emphasize the 

relationship between fronto-stnatal (e g SMA, dorso-lateral prefrontal cortex and 

stnatum) pathways and motor impairment dunng bimanual coordination in PD 
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Interestingly, it was suggested that the deficits and improvement in the slowness 

of switching (voluntary switch time and delayed responses) in individuals with PD might 

have been related to bradyphrema rather than bradykinesia (Chapter 3) Although it is 

difficult to distinguish between these impairments, previous research by Marsden (1982) 

has suggested that slowness during movement can often be attributed to cognitive 

slowing during movement planning (bradyphrema) rather than slowness in movement 

initiation and execution (bradkykinesia) (Marsden, 1982) Sawmoto et al (2002) 

examined spatial and verbal mental operation tasks in individuals with PD that did not 

require an explicit voluntary movement It was found that performance became worse as 

the frequency of the tasks increased representative of cognitive slowing (bradyphrema) 

Regardless of the fact that these tasks did not require a movement, a strong correlation 

was observed between cognitive slowing (bradyphrema score) and bradykinesia score 

based on clinical assessment It was suggested that both motor and cognitive slowness 

share common pathways that may be related to dysfunction in the medial prefontal cortex 

and/or stnatum (Sawamoto, Honda, Hanakawa, Fukuyama, & Shibasaki, 2002) Thus, if 

the observed improvements in voluntary switch time and delayed responses with 

dopamine replacement in Chapter 3 were representative of bradykinesia, this might 

suggest that dopamine replacement can improve function in medial prefrontal-striatal 

pathways However, several results in the current thesis such as the unresponsiveness of 

ULF to dopamine replacement as descnbed in Chapter 4 were linked to prefrontal-stnatal 

pathways It was proposed that these prefontal-stnatal pathways that were unresponsive 

to dopamine replacement were linked to the dorso-lateral prefrontal cortex, SMA and 

stnatum (see section 5 2 4) Collectively, the conflict between these results might suggest 
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that medial prefrontal-striatal pathways are responsive to dopamine replacement where as 

dorso-lateral prefronal-SMA-stnatal pathways are unresponsive to dopamine 

replacement This would be in agreement with research by Rodnguez-Oroz et al (2009) 

that argued that although many executive functions related to the frontal cortex can be 

modulated with dopamine replacement, there are other executive dysfunction that are not 

improved with dopamine replacement It was argued that this may be in relation to 

dopamine overdose in frontal-stnatal pathways and/or other neurotramitters such as 

acetylcholine (Rodriguez-Oroz et al, 2009) This would be an important area for future 

research 

5.1.3 Attention has a significant contribution to bimanual coordination and ULF in 

individuals with PD 

In Chapter 2 (and Experiment 1 of Chapter 4), visual feedback was manipulated 

across 3 different conditions to determine its effects on bimanual coordination These 

conditions included no vision, normal vision and augmented vision In Chapter 3 (and 

Experiment 2 of Chapter 4), no vision and normal vision were compared to determine its' 

effect on performing a change in movement during bimanual coordination In Chapter 2, 

it was possible that PD would have difficulty using augmented visual feedback compared 

to use of visual information since difficulties have been documented in PD (Verschueren, 

Swinnen, Dom, & De Weerdt, 1997) and healthy adults (Puttemans, Vangheluwe, 

Wenderoth, & Swinnen, 2004) when relying on augmented feedback in non-motor 

learning situations during bimanual coordination In addition, research has argued that 

individuals with PD have difficulties with sensorimotor integration (Abbruzzese & 

Berardelh, 2003, Home, 1973, Lewis & Byblow, 2002, Lim, Hamm, Byblow, & Kirk, 
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2005, Lim, Hamm, Byblow, & Kirk, 2006, Moore, 1987) The results of Chapter 2 found 

no differences in frequency or amplitude between individuals with PD and healthy older 

adults when relying on augmented visual feedback In addition, no difference in 

coordination performance was observed between individuals with PD and healthy older 

adults when relying on augmented visual feedback (Chapter 2) Alternatively, it was also 

possible (in Chapters 2, 3 and 4) that PD would have difficulty when blindfolded 

compared to when they used visual information since research has proposed that PD have 

difficulties when relying on proprioceptive feedback (Almeida et al, 2005, Mongeon, 

Blanchet, & Messier, 2009, Rickards & Cody, 1997, Schrader et al, 2008) The results of 

Chapter 2 found no differences in amplitude, frequency or coordination accuracy or 

stability when blindfolded between individuals with PD and healthy older adults (Chapter 

2) The results of Chapter 3 demonstrated that voluntary switch time and coordination 

stability and accuracy were no different between PD and healthy control participants with 

no vision Furthermore, visual feedback had no influence on the amount of ULF (Chapter 

4) These results do not support that deficits in proprioceptive or sensorimotor integration 

contribute to movement impairments during bimanual coordination in individuals with 

PD However, careful consideration needs to be taken to the influence of attentional 

demands rather than perception or sensorimotor integration on the current bimanual task 

Previous research has suggested that bimanual coordination is regulated by 

higher-order cognitive (attentional) processes compared to lower-order sensorimotor 

integration (Riddenkhoff, Peper, & Beek, 2008) Attentional resources are limited 

particularly in individuals with PD as revealed through difficulty sharing or shifting 

attentional resources (Cools et al ,2010, Hocherman, Moont, & Schwartz, 2004, Horstink 
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et al, 1990) It is important to consider that both studies (Chapter 2, 3 and 4) used 

external auditory cueing Additionally, the goal of the task was to coordinate both limbs 

in rhythm with the metronome It is possible that the goal of the task and presence of 

external cueing directed attention to the rhythmic temporal coordination of the limbs The 

results of Chapter 2 supported that attention was directed at external cueing and 

maintaining the temporal coordination since individuals with PD were able to maintain 

the correct frequency of movements and coordination performance The results of 

Chapter 4 also proposed that increased attentional demands from external auditory cueing 

at fast cycle frequencies and a distracting external auditory cue during continuous 

bimanual coordination increased the occurrence of ULF As a consequence, if attention 

was directed to the external auditory cues and temporal coordination of the limbs there 

would have been limited attentional resources focused on visual feedback 

As described in Chapter 4, anecdotal evidence documented that PD may have 

focused attention away from visual feedback when it became too attentionally 

demanding Thus, motor impairments during complex movements may be influenced by 

attentional demands rather than solely perceptual information or sensonmotor integration 

Furthermore, research has suggested that impairments during rhythmic movements can 

be explained by deficits with an internal timekeeper (Freeman, Cody, & Schady, 1993, 

Konczak, Ackermann, Hertnch, Spieker, & Dichgans, 1997, Nakamura, Nagasaki, & 

Narabayashi, 1978, Ziv et al, 1999) However, the current results found that directing 

attention to external cues rather timing contributed to movement impairments in 

individuals with PD such as freezing (Chapter 4) Thus, it is possible that direction of 

attentional resources rather than timekeeping mechanisms has a greater contribution to 
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impairments during rhythmic movements such as bimanual coordination in individuals 

with PD 

5.1.4 Multiple mechanisms could exist for upper limb freezing (ULF) in PD 

Freezing has been classified with akinesia as a motor symptom that incorporates 

exaggerated forms bradykinesia and hypometna (Imai, 1996) Although it has been 

classified as a motor symptom, there is growing evidence that FOG is more than a simple 

motor impairment Unlike traditional motor symptoms, there has been conflicting 

evidence for the response of FOG to dopamine replacement in PD (Iansek et al, 2006, 

Imai et al ,1993, Nomoto & Nagai, 2006, Okuma, 2006, Schaafsma et al, 2003, 

Schroeteler et al, 2009) Research has indicated that cognitive factors such as cognitive 

demand, stress and anxiety influence FOG in PD (Dagan et al, 2008, Giladi & 

Hausdorff, 2006, Plotmk et al, 2010) In addition, perceptual demand from visual 

information may also contribute to the occurrence of FOG (Almeida & Lebold, 2010) 

Overall, the results from Chapter 4 provided evidence that ULF is a remarkably complex 

symptom of PD Most of the findings from Chapter 4 supported that increased attentional 

demands evoked ULF The results of Chapter 4 demonstrated that increased external 

auditory cueing (Experiments 1 and 2) and initiation of coordinated movements with a 

verbal cue particularly with increased auditory cueing and anti-phase coordination 

(Expenment 2) contributed to increased attentional demands and occurrence of ULF 

Furthermore, a distracting auditory cue in the middle of continuous anti-phase 

coordination (Expenment 2) and a cued-intentional switch (Experiment 2) also increased 

attentional demands and increased the occunence of ULF Based on this evidence, it was 
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to the frontal lobes in connection with the striatum 

However, the complexity of ULF was illustrated by the results from Chapter 4 

that demonstrated ULF was not exclusively associated to individuals who display FOG in 

conflict with research by Nieuwboer et al (2009) The pnmary difference between these 

studies was that bimanual coordination was externally-cued in the current thesis 

compared to internally-cued in the study by Nieuwboer et al (2009) The complexity of 

ULF was further complicated by the findings that ULF may be related to disease 

laterality and progression The results showed that most ULF was recorded in the more 

affected limb (Chapter 4) However, individuals who displayed ULF in the less affected 

limb were more affected on their nght-side (Chapter 4) As well, freezing episodes that 

were documented in both limbs at the same time were all in individuals that were 

considered bilaterally affected (Chapter 4) Together, these results suggest that multiple 

mechanisms could exist for ULF 

Plotnik et al (2005) have observed that asymmetry in the timing (swing time) of 

stepping between the left and nght limbs was evident in individuals with PD who 

displayed FOG compared to individuals with PD who do not display FOG The timing 

asymmetry between the limbs dunng stepping was proposed to cause deficits in gait 

coordination and FOG that was independent of motor symptom asymmetry or simple 

hand timing (Plotnik, Giladi, Balash, Peretz, & Hausdorff, 2005) In a subsequent study, 

Plotnik et al (2008) determined that the asymmetry in the stnde durations of each limb 

dunng gait as revealed by the phase coordination index (PCI)) was greater in individuals 

with PD who display FOG It was proposed that poor bimanual coordination resulted in 
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to FOG, the results from Chapter 2 determined no difference in the frequency of 

movements between the limbs In addition, the results of Chapter 2 also did not 

demonstrate coordination deficits suggesting that irregular timing between the limbs is 

not responsible for deficits in bimanual coordination leading to ULF Almeida (2009) 

suggested that the asymmetry dunng bimanual coordination contnbutmg to FOG may be 

related to amplitude rather than timing (Almeida, 2009) The results from Chapter 2 

showed that the amplitude of the more affected limb was smaller than the less affected 

limb at the fastest cycle frequency (2 Hz) As revealed by the results of Chapter 4, ULF 

was more evident at faster cycle frequencies Thus, amplitude asymmetry could 

contnbute to ULF 

A dual causation mechanism has previously been proposed for FOG in PD 

(Iansek et al, 2006) For ULF, the distinction between mechanisms may be related to 

internally-guided movements (internal timing-deficits) and possibly responsive to 

dopamine replacement The other mechanism may be related to externally-dnven 

movements with auditory cueing, increased attentional demands and non-responsive to 

dopamine replacement Dual mechanisms could explain the discrepancy for ULF 

between the current thesis and the study by Nieuwboer et al (2009) 

Furthermore, previous research by Katzen et al (2006) has indicated that disease 

laterality at onset and dominant symptoms may contnbute to cognitive dysfunction 

Cognitive impairments were found in individuals with PD with bradykinesia or ngidity 

onset on both sides but only in individuals that displayed tremor onset on the left side 

(Katzen, Levin, & Werner, 2006) Collectively, the results of Chapter 4 proposed that 



175 

attention related to frontal lobe function was the primary contributor to ULF which may 

explain the discrepancies between the presentations of freezing The results of Chapter 4 

demonstrated that freezes were predominantly in the more affected limb, bilateral freezes 

only occurred in individuals that were bilaterally affected In addition, the results of 

Chapter 4 also identified that freezes in the less affected limb were only demonstrated in 

individuals with PD that were more affected on their right-side It may be possible that 

the current mechanism of ULF associated to executive dysfunction is related to 

individuals with PD that have rigidity or bradykmesia onset on either side or tremor onset 

on the left side Alternatively, another mechanism may exist for individuals that have 

tremor onset on the right side The side of onset and motor symptom onset could provide 

an important dissociation between mechanisms of ULF 

5.2 Limitations and Future Directions 

Although the current thesis generated many significant findings, there were 

several limitations that could have influenced the current results Other methods that 

could be used to improve these limitations are discussed as future directions for research 

investigating bimanual coordination and ULF in PD 

The methods used in the current thesis for testing dopaminergic modulation in PD 

were consistent with previous research (Almeida et al, 2007, Benecke et al, 1987b, A 

M Johnson et al, 2004, Stegemoller, Allen, Simuni, & MacKinnon, 2010) Individuals 

with PD performed two consecutive sessions ('off followed by 'on') within the same day 

(see 2 3 1 and 3 3 1) However, it was demonstrated that improvements in coordination 

performance were present as revealed by healthy controls' improved coordination 

performance between sessions 1 and 2 (Chapter 2) Improvement across sessions suggests 
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that motor learning may factor into performance between consecutive sessions Pilot 

work from our lab found that 48 hours between sessions did not result in practice effects 

(M J N Brown & Almeida, 2008) Future research that involves testing PD 'off and 

'on' may benefit from testing individuals with PD on separate days and counter

balancing the first sessions The separation of 'on' and 'off sessions would be in line 

with recent research that has adopted this method of testing the dopaminergic system in 

PD (Jahanshahi et al, 2010, Mongeon et al, 2009) 

Fatigue (peripheral, central or cognitive) can have a negative impact on 

movements in PD (Beiske & Svensson, 2010, Friedman, 2009, Lou, 2009) Participants 

were allowed to take breaks when needed to reduce the possibility of fatigue m the 

current thesis Participants also had a minimum 70 minute break between consecutive 

sessions However, the testing procedure may have contributed to fatigue caused by the 

length of the testing procedure (combined 3 to 5 5 hours) Previous research in rhythmic 

finger tapping did not find any evidence of a loss of force-generating capacity indicative 

of peripheral fatigue in PD (Stegemoller et al ,2010) Although there was no evidence 

that fatigue occurred in the current thesis, research is needed to investigate whether and 

when fatigue can result from rhythmic bimanual coordination and the consequences of 

fatigue on the movement outcomes particularly for individuals with PD Understanding 

the relationship between repetitive bimanual movements and fatigue would help to set the 

appropriate testing duration to eliminate the contribution of fatigue in future studies 

Anecdotal evidence was presented (Chapter 4) suggesting that participants did not 

always rely on the source of visual feedback provided Situations were documented when 

individuals closed their eyes during normal vision conditions Additionally, individual 
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directed vision away from augmented visual feedback Avoiding attentionally demanding 

visual information could have influenced certain outcomes m the current study (see 

5 2 3) As presented in the current thesis, the direction of attention can have a significant 

influence on the outcomes of the task since external auditory cueing was beneficial for 

maintaining the frequency of movements (Chapter 2) Future research that examines the 

use of visual feedback needs to carefully control for visual attention with the use of an 

eye tracker Based on the attentional demand theory proposed in the current thesis, ULF 

and coordination deficits may occur if attention was focused on visual information that 

overloaded the attentional resources The possible influence of increased attentional 

demands of visual information on ULF would be supported by research that proposed 

increased attention to perceptual demands of a narrow doorway contributes to FOG in PD 

(Almeida & Lebold, 2010) Thus, future research is also needed to examine overloaded 

attentional resources from visual feedback during internally-regulated bimanual 

coordination in PD Future research is also needed to examine bimanual coordination m 

PD that is regulated only by sensory feedback Manipulating and controlling sensory 

feedback would help to clarify how sensory impairments such as proprioceptive and/or 

sensorimotor integration deficits compared to attention related to sensory information 

contribute to bimanual coordination in individuals with PD 

The current thesis examined bimanual three dimensional (3-D) wrist extension-

flexion movements using haptic devices Previous research that has examined bimanual 

coordination in PD used movements that are constrained to either one (1-D) or two 

dimensions (2-D) (Almeida et al, 2002, 2003, K A Johnson et al, 1998, Swinnen et al, 

1997) Based on the results of the current thesis, there appears to be important differences 
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when individuals are able to recruit extra degrees of freedom for the movement as 

suggested by previous research (Buchanan & Kelso, 1993, Buchanan, Kelso, DeGuzman, 

& Ding, 1997) Future research is necessary to directly compare the differences during 

bimanual coordination m individuals with PD when movements are constrained to ID or 

2D compared to unconstrained in 3D The available degrees of freedom may have an 

important contribution to the movement impairments that manifest and will be important 

to direct rehabilitation aiming to improve upper limb function in PD 

Surface electromyography (sEMG) was collected in both studies These results 

are presented in Appendix A The primary goal of incorporating sEMG in bimanual 

coordination was to examine the muscle timing before ULF since irregular muscle timing 

was shown prior to lower limb freezing episodes (Nieuwboer et al, 2004) However, in 

post-processing the raw sEMG signals it was determined that these signals were too noisy 

to complete the proposed burst analysis The noise in sEMG signals was hypothesized to 

result primarily from cross-talk between other small forearm muscles and muscle activity 

related to PD tremor Research has suggested that isolating forearm muscles is very 

difficult with surface electrodes (Burne, Blanche, & Morris, 2004) In addition, previous 

research has demonstrated that PD tremor has distinct and large muscle activity (Caviness 

et al, 2006) Furthermore, several other factors may have contributed to the noisy signals 

such as impedance due to fat tissue, electrodes moving on the skin due to the nature of 

the movement and reduced muscle in elderly participants (Farina, 2006, Farina, Merletti, 

& Enoka, 2004) It is possible that the noise would have been improved with wireless 

electrodes and/or fine-wire recording Also, removing participants with tremor or 

removing tremor in post-processing may have improved collection of sEMG in 
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individuals with PD Future research is needed to determine the effectiveness of sEMG in 

detecting muscle timing during bimanual coordination in PD Future research is also 

needed to determine if muscle activity (timing or amplitude) is irregular for ULF 

Understanding the muscle timing could be helpful to clarify the relationship between 

upper and lower limb freezing Additionally, it could be used by clinicians as a diagnostic 

marker for PD 

Finally, the results from Chapter 4 found that the automatic detection using a 

computer algorithm led to errors in detecting of ULF in 10 to 30% of detected freezes 

The definition used in the current thesis involved determining 75% reductions in the peak 

to peak amplitude to reference amplitudes for a minimum of 1 second In comparison, 

Almeida et al (2002, 2003) used no change in movement amplitude for at 1 second 

However, research has documented that freezing does not always incorporate a complete 

arrest in movement (Giladi & Nieuwboer, 2008, Nieuwboer et al, 2009) Anecdotal 

evidence from the current thesis also found that high-frequency oscillations were present 

during some ULF (Appendix C) Future research is necessary to determine all kinematic 

variables that are influenced during ULF Incorporating EMG as was discussed m the 

previous paragraph or time-frequency analysis (Delval et al ,2010) could improve the 

definition of freezing and allow for accurate automated detection Proper automatic 

detection of freezing would be important for research that examines the mechanisms of 

ULF as well as if being used as a diagnostic tool for clinicians 

5.3 Conclusion 

Overall, the results from Chapters 2, 3 and 4 provided evidence that PD is a 

complex disorder that cannot be characterized solely by dysfunction of the dopaminergic 
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system The traditional model of PD is focused on nigrostnatal dysfunction and 

dopaminergic modulation of motor symptoms However, evidence supports that 

secondary pathways such as the projections between globus palhdus internal and PPN 

(Nandi, Stein, & Aziz, 2002) and frontostnatal pathways between the motor cortex such 

as dorso-lateral prefrontal cortex and SMA and basal ganglia (Sabatini et al, 2000) are 

affected by dopamine loss As a consequence, research in PD needs examine motor 

function from the view of global impairment rather than exclusively the dopaminergic 

system The current thesis found that most of the impairments in coordination 

performance (Chapter 3) and freezing (Chapter 4) were related to secondary dysfunction 

(e g executive dysfunction) resulting from dopamine loss The results did find some 

evidence that the dopaminergic system contributes to the amplitude during coordinated 

movements (Chapter 2) and speed of changing between phase patterns (Chapter 3) since 

dopamine replacement improved these parameters However, these improvements did not 

have an effect on the overall coordination performance or freezing Furthermore, 

impairments were observed in the amplitude (Chapter 2) and speed of switching between 

phase patterns (Chapter 3) in PD 'off compared to healthy control participants However, 

these results could be explained by dysfunction between the SMA and striatum since the 

results from Chapter 4 demonstrated that attentional demands of external cueing, anti

phase and pattern switching had a major influence on the occurrence of ULF Overall, 

research and treatment of PD should be focused on all basal ganglia dysfunction rather 

than only the dysfunction related to the dopaminergic system Due to the complex 

biochemistry and pathways of the brain, it may be a difficult goal for pharmological 

treatments to alleviate the influence of executive dysfunction to movement impairments 
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in individuals with PD Rehabilitation focused on improving overall neural function 

including cognitive and motor performance should be the pnmary focus of treatment in 

individuals with PD due to the prospect of neural plasticity 
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Appendix A - Surface electromyography (sEMG) 
to detect upper limb freezing during bimanual 
coordination in Parkinson's disease (PD) 

A. 1.0 Introduction 

Freezing is arguably one of the most debilitating motor symptoms of Parkinson's 

disease (PD) It is charactenzed by the inability to initiate movements or sudden arrests in 

voluntary movement (Giladi et al, 1992, Imai, 1996, Nakamura, Nagasaki, & 

Narabayashi, 1978) Freezing episodes have been documented by visual detection and 

using kinematic data in both the upper (Almeida, Wishart, & Lee, 2002, 2003, 

Nieuwboer et al, 2009) and lower limbs (Almeida & Lebold, 2010, Bloem, Hausdorff, 

Visser, & Giladi, 2004, Giladi et al ,2001, Iansek, Huxham, & McGinley, 2006, 

Nieuwboer et al, 2004) Recently, surface electromyography (sEMG) was used to detect 

a temporal discoordinaiton in muscle activity (l e premature activation) in both the 

gastrocnemius and tibialis anterior muscles prior to freezing of gait (FOG) in PD 

(Accardo, Mezzarobba, Millevoi, & Monti, 2008, Nieuwboer et al, 2004) They argued 

that there exists a problem in the central timing mechanism for muscle activation prior to 

freezing Furthermore, recent research found a correlation between the occurrence of 

upper limb freezing and scores on a freezing of gait (FOG) questionnaire (Nieuwboer et 

al, 2009) It was suggested that freezing in the upper and lower limb share a common 

mechanism Since behavioural evidence has been conflicting (see Chapter 6), it is 

possible that a common mechanism for these types of freezing is an irregular timing of 

muscle activity However, no research has examined whether this is also charactenstic of 

upper limb freezing 
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Furthermore, sEMG may have additional benefits for detection of upper limb 

freezing Traditionally, upper limb freezing has been defined using no change in 

amplitude over a given amount of time from kinematic data (Almeida et al, 2002, 2003) 

However, recent research in FOG has suggested that complete arrests in movement do 

not always occur (Giladi and Nieuwboer, 2008) This has resulted in alternative 

definitions of freezing that include irregular cyclic frequency (Delval et al ,2010, 

Nieuwboer et al, 2009)(Appendix B) and significant reductions in amplitude for a given 

amount of time (Chapter 6) Accordingly, sEMG could also be useful technique to help 

detect freezing by quantifying muscle activity before, dunng and after a freezing episode 

sEMG is used to record the electrical activity of muscles to understand muscle 

function In individuals with neurological impairment such as PD, this is often used to 

understand how dysfunction of particular brain areas (l e basal ganglia) can affect control 

of the muscles To date, there has been no standardized method developed to analyze 

sEMG signals particularly for individuals with PD Due to this factor, there remains 

uncertainty (l e concerns with validity and reliability) about the ability to explain the 

signal in reference to the neurophysiological processes (Hogrel, 2005) Nieuwboer et al 

(2004) has currently developed the only method to successfully detect muscle burst 

activity dunng FOG in individuals with PD Video assessments were used to venfy 

freezing episodes dunng gait The 3 strides before a freezing episode and 2 stndes before 

a voluntary stop were than used to compare muscle burst activity The raw and processed 

sEMG activity in both the gastrocnemius and tibialis antenor were normalized as a 

percentage of the gait cycle Muscle burst activity was determined by setting a threshold 
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based on average 3 peaks relative to the background noise Finally, the normalized for the 

differences in gait cycles by separating activity during total gait cycle, stride and stance 

phases as percentages (Nieuwboer et al, 2004) The current study attempted to use 

similar methods for detecting muscle burst activity dunng upper limb freezing (ULF) in 

individuals with PD 

sEMG was recorded dunng two expenments using bimanual coordination in PD 

The current chapter pnmary objective was to determine if an automated computer-

algonthm could be used to detect muscle burst activity dunng bimanual coordination in 

PD In addition, muscle bursts were compared across flexor and extensor muscles to 

determine whether irregular timing of muscle activity was charactenstic of upper limb 

freezing episodes dunng bimanual coordination in PD Finally, the muscle burst activity 

and amplitude were compared to determine if there was any distinct muscle activity 

(either in timing or amplitude) prior to, dunng or after a freezing episode that could aid in 

the future detection of upper limb freezing 

A.2.0 Methods 

A.2.1 Participants 

See sections 4 3 1 and 5 3 1 

A.2.2 sEMG placement and procedure 

The movement used in both the current expenmental studies involved bimanual 

wrist flexion-extension performed on two robotic Phantom Omni haptic devices 

(SensAble Technologies Inc , Woburn, MA, USA) The forearms were constrained to 

reduce movements at the elbow and shoulder joints Arms were pronated 90 ° degrees 

(l e palms facing inward) for successful grasping of the pen-shaped stylus Bipolar 



surface electromyography (sEMG) was used to examine the rhythmical muscle activity 

patterns in both forearms Placement of two Blue Sensor N Ag/AgCl electrodes (Ambu 

International A/S, Denmark) was on the extensor digitorum and flexor carpi radiahs of 

each forearm muscle To place these electrodes, the investigators performed two 

procedures Firstly, participants performed isometric extension and flexion against the 

investigators hand to isolate these muscles Secondly, participants actively performed 

wrist flexion and extension so investigators could confirm the muscles isolated during 

isometric resistance In addition, a ground electrode was placed on the elbow 

The procedure for electrode placement and skin cleaning followed guidelines for 

sEMG that were previously recommended (Hermens, Frenks, Disselhorst-Klug, & Rau, 

2000) Electrodes were placed a minimum of 20 mm away from each other Placement 

was the muscle belly, halfway between the most distal motor end plates and distal tendon 

as well as a transverse location away from the edges to avoid crosstalk Onentation of the 

electrode was parallel to the muscle fibers The skin for all participants was shaved and 

rubbing alcohol applied to clean the skin for the most reliable results (Hermens, Frenks, 

Disselhorst-Klug, & Rau, 2000) Electrodes were left on participant's forearms between 

sessions to avoid any variability 

A.2.3 Apparatus 

An Octopus AMT analog electromyography system (Bortec Electronics Inc , 

Calgary, AB, Canada) was used to collect sEMG from 4 forearm muscles at a rate of 

1000 Hz (band-pass filtered between 10-1000 Hz) This sampling rate was above the 

Nyquist rate (2*greater than highest frequency) to avoid aliasing the signal (Ives & 

Wigglesworth, 2003) Each of the 4 APE 500 electrode-connecting wires had an 



192 

amplifiers built in The electrodes were attached to a portable pre-amphfying patient unit 

that sent the encoded signal to the receiving unit where information was further amplified 

(Total gain of system=500) Signals were preprocessed from analog to digital BNC 

cables were connected to a computer receiving unit (National Instruments Corporation, 

Vaudreuil-Donon, Quebec, Canada) Digital signals were sent to the computer (Dell 

Computer, with a g-force intel Pentium 4 with SSE2) and recorded in Matlab R2007b 

(The Math Works Inc, Nattick, MA, USA) The raw electromyography signals were 

available for further offline processing and analysis 

A.2.4 Data Processing 

Offline processing of raw sEMG signals for muscle activity followed previous 

recommendations (De Luca, 1997, Difabio, 1987, Hodges & Bui, 1996) This included 

full-wave rectification and low-pass or band-pass filtenng that were done using scnpts 

created in MatLab However, there have been conflicting recommendations for filtering 

sEMG signals (Hodges & Bui, 1996) so several filtenng techniques were attempted in the 

current study to eliminate high frequency noise These included using low-pass and band

pass filtenng and manipulating the cutoff frequencies between 3 - 1000 Hz and using 

2nd, 4th, 6th, and 8th order Butterworth filters These methods of filtenng were compared to 

determine at which point there was not enough (high cut-off frequency) vs too much 

smoothing (low cut-off frequency) (Hodges & Bui, 1996) Based on visual inspection, it 

was determined that signals were appropnately filtered using a low pass 4' order 

Butterworth filter with a cutoff frequency of 10 Hz 

A.2.5 Data Analysis 

Muscle burst detection 



Data analyses were performed using scripts created in MatLab A double 

threshold technique of detection was used to determine the onset, duration and offset of 

muscle bursts (Difabio, 1987, Hodges & Bui, 1996, Staude, Flachenecker, Daumer, & 

Wolf, 2001) This method has been shown to be superior to a single threshold method 

(l e signal goes above a threshold at any point in time) (Reaz, Hussain, & Mohd-Yasin, 

2006, Staude et al, 2001) Muscle burst onset involved choosing a threshold (l e number 

of standard deviations above the mean) and a sliding window (l e how many ms the 

signal needed to stay above the threshold) The mean noise of the signal (mV) was 

calculated for the first 50, 100, 500 or 1000 ms (l e data points) within each trial In 

addition, several different combinations of standard deviations (SD) above the mean (1, 

2, 3 and 5 SD) and sliding windows (25, 50, 100 and 500 ms/data points) were used This 

was performed due to the effect that different combinations can have on the accuracy of 

muscle burst detection (Hodges & Bui, 1996) 

Muscle burst offsets were calculated in the reverse of the muscle burst onset (l e 

below threshold for sliding window duration) Muscle burst durations were calculated 

from the time between onset and subsequent offset of muscle bursts In addition, due to 

the proximity (in time) of detected muscle bursts, bursts were merged if they were 

125ms in proximity based on previous recommendations (Merlo, Farina, & Merletti, 

2003) The script was also run without burst merging The script used the same filtering 

and detection methods for each forearms' flexor and extensor However, muscle bursts 

each of the four muscles were detected separately 

Timing of muscle bursts 



To analyze the timing of muscle activity before freezing episodes the time of 

freeze onset was calculated (see Chapter 6) and entered into the script Each movement 

cycle was measured (for each limb) from the peak positive to positive amplitude (see 

Chapter 4 and 5) The 5 movement cycles before each freeze were examined to analyze 

the time before freezes This was similar to the 3 step cycles that were used for sEMG 

before FOG analysis (Nieuwboer et al, 2004) The amount of time inflexion and 

extension was calculated for each movement cycle This was expressed in both time and 

percentage of overall movement cycle similar to the methods by Nieuwboer et al (2004) 

The amount of overlap time for each muscle was calculated between the flexor and 

extensor within the same limb based on the muscle bursts detected In addition, the 

percentage (%) of overlap was calculated based on the amount of overlap time of each 

muscle relative to the given burst duration 

sEMG muscle activity related to signal amplitude 

In addition to muscle burst activity, the amplitudes of each muscles' sEMG signal 

was measured over the whole duration of a tnal to detect for any irregular activity 

Irregular activity was defined when amplitude was either longer or shorter than the 

amplitude of the mean muscle burst amplitude The mean muscle burst amplitude was 

calculated from averaging each muscle burst for each muscle over a given tnal Irregular 

activity was calculated as either low- activity or high-activity muscle bursts Low activity 

muscle bursts were determined when amplitude remained lower than the mean muscle 

burst amplitude for longer than the average movement cycle duration High-activity 

muscle bursts were determined when amplitude remained higher than the mean muscle 

burst amplitude for longer than the average movement cycle duration 



Statistical Analysis 

The methods of comparison were adapted from the methods used by Nieuwboer 

et al (2004) This involved comparing all measures in all muscles for tnals where upper 

limb freezing (ULF) occurred to non-ULF tnals in PD In addition, ULF, non-ULF in PD 

were compared to trials of healthy controls The data was averaged across multiple tnals 

An ANOVA was used to calculate the differences between dopaminergic status, 

conditions, phase and cycle frequency Tukey's post hoc analyses were used on any 

significant interactions from the ANOVA A separate ANOVA was also performed 

between the flexor and extensor muscles of each limb Statistical significance was 

determined with p values < 05 

A.3.0 Results 

The scripts to analyze muscle burst activity were run on ULF tnals first to 

determine the ability of these to properly detect muscle burst activity Based on 

observation, it was determined that the computer-algonthm was not properly detecting 

muscle burst activity during freezing tnals Examples are presented below (Figure A 1 

and A 2) Several other distinct ULF and non-ULF trials in PD were examined to 

substantiate this finding An example of a non-ULF trial is presented in Figure A 3 This 

finding (l e irregular detection of muscle bursts throughout trials) was confirmed by the 

signals in the majonty of ULF (of Expenment 1) and the sample of non-ULF tnals that 

were examined In an attempt to resolve this issue, the parameters of detection (l e 

filtenng, mean noise, threshold and sliding window) were all manipulated in various 

combinations However, this did not improve the detection method 



Based on these findings, statistical analyses were not performed due to a lack of 

validity in muscle burst detection A small qualitative descnption is presented of muscle 

burst activity in a ULF trial compared to non-ULF (m PD) and healthy control tnals 

A. 3.1 Qualitative description of muscle burst activity 

For the current muscle burst detection the parameters included 500 ms mean 

noise calculation (dunng quiet part at beginning of tnals), threshold was set at 2 standard 

deviations above the mean, a sliding window of 50 ms, low-pass 4th order Butterworth 

with a cutoff frequency of 10 Hz All graphs compared in each section were controlled 

for condition, phase and session 

Healthy Control Right Limb 

Figure A 1 and A 2 illustrate filtered and rectified extensor and flexor muscle 

activity, respectively Despite expected displacement in the right limb, irregularity in 

muscle burst detection can be seen This was demonstrated even with manipulations of 

the detection parameters 
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Figure A 1 - Right extensor muscle activity and displacement of a healthy control (top) red line represents 
filtered and rectified nght extensor activity, blue lines represent anytime the amplitude exceeded the 
threshold and black lines represent the actual muscle bursts detected (bottom) red line represents the 
displacement of the nght wnst (black circles represent each movement cycle), red circles represent the 
detected muscle burst onset and blue circles represent the subsequent muscle burst offset 
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Right Flexor and Activation 
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Figure A 2 - Right flexor muscle activity and displacement of a healthy control (top) red line represents 
filtered and rectified nght flexor activity, blue lines represent anytime the amplitude exceeded the threshold 
and black lines represent the actual muscle bursts detected (bottom) red line represents the displacement of 
the nght wnst (black circles represent each movement cycle), red circles represent the detected muscle 
burst onset and blue circles represent the subsequent muscle burst offset 

Healthy Control vs non-ULF PD 

Figure A 3 and A 4 present the rectified and filtered left flexor and extensor 

muscle activity (respectively) of a healthy control These demonstrated relatively 

accurate detection of muscles bursts However, there were still some missing bursts 

detected (1 e between 22 and 25 seconds on Figure A 3) Figure A 5 and A 6 depict the 

rectified and filtered left flexor and extensor muscle activity of a PD non-ULF, 

respectively Comparing the activity across participants, there was some indication that 

PD non-ULF had an increased amount of muscle bursts, particularly in the left flexor 



This is supported by the observation that the detection remained on around 22 seconds 

until the end of the trial 

Left Extensor and Acbvatnn 

Figure A 3 - Left extensor muscle activity and displacement of a healthy control (top) red line represents 
filtered and rectified right extensor activity, blue lines represent anytime the amplitude exceeded the 
threshold and black lines represent the actual muscle bursts detected (bottom) blue line represents the 
displacement of the leftwnst (black circles represent each movement cycle), red circles represent the 
detected muscle burst onset and blue circles represent the subsequent muscle burst offset 
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left Flexor and Activation 
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Figure A 4 - Left flexor muscle activity and displacement of a healthy control (top) red line represents 
filtered and rectified left flexor activity, blue lines represent anytime the amplitude exceeded the threshold 
and black lines represent the actual muscle bursts detected (bottom) blue line represents the displacement of 
the left wrist (black circles represent each movement cycle), red circles represent the detected muscle burst 
onset and blue circles represent the subsequent muscle burst offset 
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Figure A 5 - Left extensor muscle activity and displacement of a PD non-ULF (top) red line represents 
filtered and rectified left extensor activity, blue lines represent anytime the amplitude exceeded the 
threshold and black lines represent the actual muscle bursts detected (bottom) blue line represents the 
displacement of the nght wnst in cm (black circles represent each movement cycle), red circles represent 
the detected muscle burst onset and blue circles represent the subsequent muscle burst offset 
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Left-Flexor and Activation 
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Figure A 6 - Left flexor muscle activity and displacement of a PD non-ULF (top) red line represents 
filtered and rectified left flexor activity, blue lines represent anytime the amplitude exceeded the threshold 
and black lines represent the actual muscle bursts detected (bottom) blue line represents the displacement of 
the left wnst in cm (black circles represent each movement cycle), red circles represent the detected muscle 
burst onset and blue circles represent the subsequent muscle burst offset 

ULFvs non-ULF PD 

Figure A 7 and A 8 represent filtered and rectified left extensor and flexor muscle 

activity in a PD non-ULF (different from above), respectively These figures 

demonstrated relatively accurate muscle burst detection more so for the left extensor 

(Figure A 7) compared to the left flexor Unlike the PD non-ULF, the muscle burst 

activity appears to be relatively normal when compared to healthy controls (Figures A 3 

and A 4) The left extensor activity of a PD ULF is presented in Figure A 9 The onset of 

the freeze was detected at 35 5 seconds Despite displacement at the beginning of the 
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trial, no muscle bursts were detected This was also found for the left flexors as the 

activity never even exceeded the threshold or remained active the whole trial Figure 

A 10 illustrates the muscle activity in both the left extensors and flexors for this same 

trial There were three important observations that can be made from this figure Firstly, 

before movement began (1 e before 5 seconds), there was a substantial amount of noise 

in the both the extensor and flexor This appeared to be representative PD resting tremor 

Secondly, in both muscles the activity (l e bursts) appeared to be very irregular 

particularly in the flexors Thirdly, dunng the freezing episodes there was increased and 

very irregular activity in both the flexors and extensors Figure A l l depicts another ULF 

in the left limb in a different trial involving 3 different freezes within the same trial 

Based on these figures, the muscle activity in the left extensors appears very irregular 

after 30 seconds The activity in the left flexors appeared to be normal before 32 5 

seconds but two bursts of high activity were observed around the time of the first freeze 

(34 2 to 35 7s) and for about 2 seconds before the final freeze (45 to 50 s) The same 

amount of increase and irregular activity was not seen in the flexors and extensors dunng 

the final freeze similar to what was observed in Figure A 10 
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Figure A 7 - Left extensor muscle activity and displacement of a PD non-ULF (top) red line represents 
filtered and rectified left extensor activity, blue lines represent anytime the amplitude exceeded the 
threshold and black lines represent the actual muscle bursts detected (bottom) blue line represents the 
displacement of the right wrist in cm (black circles represent each movement cycle), red circles represent 
the detected muscle burst onset and blue circles represent the subsequent muscle burst offset 
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Figure A 8 - Left flexor muscle activity and displacement of a PD non-ULF (top) red line represents 
filtered and rectified left flexor activity, blue lines represent anytime the amplitude exceeded the threshold 
and black lines represent the actual muscle bursts detected (bottom) blue line represents the displacement of 
the left wnst in cm (black circles represent each movement cycle), red circles represent the detected muscle 
burst onset and blue circles represent the subsequent muscle burst offset 
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L«d- Exttnsw and Activation 

Figure A 9- Left extensor muscle activity and displacement of a PD ULF (top) red line represents filtered 
and rectified left extensor activity, blue lines represent anytime the amplitude exceeded the threshold and 
black lines represent the actual muscle bursts detected (bottom) blue line represents the displacement of the 
right wnst in cm (black circles represent each movement cycle), red circles represent the detected muscle 
burst onset and blue circles represent the subsequent muscle burst offset 



Left Ext EMG (Rectified) 

02 

0 0 4 

0 02 

0 

illflyHtililW I iniinJliltlliii • i i i l LB,,yJ ikjiliidiiittiit.UMnillillHlkitiJl.ln.HliiimhbniMiWiiliyiiad 
20 25 30 

Left Ext BvlQ (Filtered) 

I I 1 1 I I I I I 

20 25 30 

Left Fbc EMG (Rectified) 

01 

lllt^.l,.l|llll|,lNtllL^l 
10 20 25 30 

Left Fix EMQ (Filtered) 

Figure A 10 - The filtered and rectified EMG of the left extensors (top 2 figures) and flexors (bottom 2 
figures) of a PD ULF Displacement of the left limb (in cm) is presented in the middle figure Freeze onset 
was detected at 35 5 s until end of trial 
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Figure A 11 - The filtered and rectified EMG of the left extensors (top 2 figures) and flexors (bottom 2 
figures) of a PD ULF Displacement of the left limb (m cm) is presented in the middle figure Freeze onsets 
were detected at 34 2s (to 35 7s), 39 7s (to 41 8 s) and 44 3 s (until end of trial) 

A.4.0 Discussion 

The main finding of the current paper was that the current methods of computer-

automated detection were not adequate to determine muscle burst activity in PD Muscle 

burst activity was examined by a double threshold method that used the criteria of 

maintaining a level of activity above (or below) a given threshold for a given amount of 

time (l e data points) Despite manipulating all the parameters of detection (I e filtering, 

mean noise, threshold and sliding window) in different combinations, accurate detection 

of muscle burst activity could not be achieved Based on qualitative examination, there 
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was some evidence that muscle activity was irregular in PD This may be particularly true 

during trials where ULF was observed 

A.4.1 Evidence for irregular muscle activity in PD during voluntary movements 

sEMG has been used to examine various aspects of movement in PD (Hogrel, 

2005) The majority of previous research on voluntary upper limb movements in PD has 

examined sEMG during ummanual movements These included stereotyped dynamic 

movements (Hallett, Shaham, & Young, 1977, Rissanen et al, 2009), ummanual aiming 

and sequential movements (Benecke, Rothwell, Dick, Day, & Marsden, 1987a, 1987b, 

Pfann et al, 2004), rapid ummanual movements (Berardelh, Dick, Rothwell, Day, & 

Marsden, 1986, Berardelh et al, 1996), repetitive finger movements (Stegemoller, Allen, 

Simuni, & MacKinnon, 2010) The majority of research has supported a distinct triphasic 

pattern of muscle burst activity during discrete voluntary movements This includes an 

agonist burst (AG1) followed by an antagonist burst (ANT) concluded by a second 

agonist burst (AG2) (Berardelh et al, 1996) Only a small amount of ummanual research 

in PD has focused on the forearm extensor and flexor muscles (Berardelh et al, 1986, 

Berardelh et al, 1996, Stegemoller et al, 2010) Berardelh et al (1986) examined the 

muscle activity in the flexor and extensor muscle groups during a rapid wrist flexion 

movement They visually determined muscle bursts and integrated the rectified signal for 

amplitude measurements They found that PD 'off demonstrated similar muscle activity 

and amplitude to healthy controls In PD 'on' compared to 'off there was a decreased 

amount of bursts but bursts were larger in amplitude Overall, they concluded that muscle 

activity is not abnormal in PD in this type of movement Stegemoller et al (2010) 

examined integrated EMG from the extensor digitorum communis (and first dorsal 
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interosseous) during repetitive finger movements in PD They also did not find any 

significant differences in PD in relation to peak integrated EMG However, Berardelli et 

al (1996) reviewed previous research and concluded that individuals with PD may not be 

able to appropriately scale the activation of the first agonist burst to movement 

parameters This provided some evidence that muscle burst activity may be irregular in 

PD 

Only a few studies have previously examined bimanual movements in PD These 

included sequential movements (Benecke et al, 1987b, Lim, Hamm, Byblow, & Kirk, 

2006) and simultaneous movements (Benecke et al, 1987b) Lim et al (2006) examined 

self-paced unimanual and bimanual simple finger tapping (1 e index finger to thumb) and 

complex finger tapping (l e sequential thumb to each finger) for 60s trials They 

examined the RMS over a 40 s period in wrist and digit extensors for both limbs but did 

not find any significant findings related to the sEMG amplitude Benecke et al (1987) 

examined sEMG (in the biceps and triceps) during a bimanual task that required 

simultaneously 15° flexion at the elbow and squeezing a strain gauge as rapidly as 

possible They qualitatively observed that individuals who preserved the typical triphasic 

or a multi-burst EMG pattern during individual tasks demonstrated tonic activity in both 

the biceps and triceps during simultaneous movements This provided further evidence 

that there may be irregular muscle burst activity in PD 

Together these results demonstrated that muscle activity amplitude appears to be 

typical during voluntary movements in PD However, there may be some difficulties in 

relation to the muscle burst activity as proposed by Benecke et al (1986) and Berardelli 

etal (1996) 
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A.4.2 Different parameters that may affect sEMG in bimanual coordination in PD 

The current paper was the first study to examine rhythmic bimanual coordination 

of the wrists in PD Several studies have previously used surface electromyography 

(sEMG) during wrist bimanual coordination in healthy adults (Peper & Carson, 1999, 

Riddenkhoff, Peper, & Beek, 2006, Riddenkhoff, Peper, & Beek, 2005, 2007, 

Riddenkhoff, Peper, Carson, & Beek, 2004, Vardy, Daffertshofer, Riddenkhoff, & Beek, 

2007) Only Pepper and Carson (1999) examined the EMG muscle burst activity (3 SD 

above the baseline noise) of the forearm flexor and extensor carpi radiahs dunng 

bimanual wnst flexion and extension They found that the timing of EMG onsets was 

significantly more vanable at slower cycle frequencies (1 Hz) compared to faster cycle 

frequencies (1 4Hz) These limited results provide some evidence that the parameters 

related to the task (I e cycle frequency) can have an impact on muscle timing 

In addition, there may be PD related factors that may contnbute to sEMG sEMG 

has been used to examine the effects of dopaminergic modulation on muscle activity in 

PD (Johnson et al, 1994, Robichaud, Pfann, Comella, & Corcos, 2002, Strambi, Rossi, 

De Michele, & Sello, 2004) Robichaud et al (2002) used visual inspection to determine 

muscle burst activity in biceps and tnceps during an elbow flexion movement They 

determined that dopamine replacement did not affect the timing of muscle activity 

However, this has not been examined for bilateral movements 

Muscle activity has been examined in different motor symptoms (other than 

freezing) in PD such as limb dyskinesia (Silberstein et al, 2005), bradykinesia 

(Berardelli, Rothwell, Thompson, & Hallet, 2001, Hallett & Khoshbin, 1980), action and 
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resting tremors (Burne, Blanche, & Morns, 2004, Cavmess et al, 2006) and rigidity 

(Levin et al, 2009, Sepehn, Esteki, Shahidi, & Moinodin, 2009) All of these motor 

symptoms have been shown to influence the muscle activity observed dunng sEMG 

A.4.3 Limitations and other methods of muscle burst detection in sEMG 

Nieuwboer et al (2004) used a threshold method to successfully determine 

muscle burst activity dunng freezing in the lower limbs in individuals with PD However, 

the current study was not able to apply all methods for detecting ULF such venfying 

freezing episodes by video assessment and normalization of the sEMG as a percentage of 

gait cycles Furthermore, gait cycles were separated based on stnde and stances phases of 

gait (Nieuwboer et al, 2004) The cunent study defined movement cycles as penods of 

flexion and extension in the upper limbs rather than swing and stance phases However, 

clear penods of flexion and extension were not always available particularly dunng 

freezing tnals (for example see Figure A l l ) This provided a major limitation for 

companng muscle burst activity across the muscles similar to what was performed by 

Nieuwboer et al (2004) There were several other limitations not related to PD that may 

have increased noise in the signal and influenced the ability to properly detect muscle 

burst activity Berardelh et al (1996) have suggested that the presence of co-contraction 

across muscles and co-activation of the different muscle bursts (AG1, ANT, AG2) can 

affect detection even in rapid, small single limb movements This would be related to the 

difficulty in isolating the small forearm muscles and the cross-talk that may occur 

(Fanna, 2006, Fanna, Merletti, & Enoka, 2004) Previous research has suggested that 

sEMG examines the forearm flexor and extensor groups rather than individual muscles 

(Burne et al, 2004) 
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Other factors may have contributed to the noisy signals such as impedance due to 

fat tissue, electrodes moving on the skin due to the nature of the movement and reduced 

muscle in females and elderly participants (Farina, 2006, Farina et al, 2004) 

Currently, there are a variety of highly computational methods that have been 

developed to improve the threshold methods of detecting EMG bursts For wrist 

bimanual coordination, a method of coherence analysis using weighted coherence and 

full-wave rectified EMG has been developed to measure the similarity between different 

muscles activation patterns (Riddenkhoff et al , 2006, Riddenkhoff et al, 2005, 2007) 

Other automated computer algorithms have been developed for detecting muscle bursts in 

gait including double thresholds with the inclusion of a whitening filter (Bonato, 

D'Alessio, & Knaflitz, 1998), continuous wavelet transform (CVT) (Merlo et al, 2003) 

and advanced methods (I e statistical, artificial intelligence) (Reaz et al, 2006, Staude et 

al, 2001, Vaisman, Zanffa, & Popovic, 2010) However, most of these methods are 

highly computational and cannot be readily used in clinical research Research by Morey-

Klapsing (2004) has suggested that relying only on automatic detection of muscle burst 

onset times might not adequate in some applications They suggested that incorporating 

the use of I E M G and onset detection provides more accurate and applicable results 

A.4.4 Conclusion 

The current paper demonstrated that muscle burst detection is extremely difficult 

in PD and the current computer-detection methods available to clinicians are inadequate 

The qualitative examination of muscle activity provided some evidence that there may be 

irregularities in muscle bursts in PD during bimanual coordination However, no clear 

conclusions were evident when examining ULF There may have been increased and 



irregular activity in one of the two muscles pnor to and dunng ULF These conclusions 

need to be further examined Future research should be focused on developing methods 

of detecting muscle timing that can be applied in the clinical setting Future research 

should also examine the relationship between muscle timing dunng bimanual 

coordination and ULF m PD This could aid in understanding the neural mechanism 

responsible for ULF Furthermore, it would help to clanfy the relationship between ULF 

and FOG based on previous observations with sEMG (Nieuwboer et al, 2004) This 

could also have important applications for diagnosis 
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Appendix B - Nieuwboer and colleagues 
(unpublished) freezing definitions, freezing 
examples and reliability study 
Definition of upper limb freezing 

1. We define a freezing episode as: 
involuntary stop of ongoing movement with duration > 75% of 
normal cycle duration* 

- OR a clear absence of effective cyclic movement 
1 clear oscillating movement with abnormal form (width, 

duration) of the cycle with duration > 75% of normal cycle 
duration* 

2 Uncontrolled festination high frequency oscillation, without 
real stop of movement with duration > 75% of normal cycle 
duration 

3 Abnormal small movement less than 50% of the normal0 

amphtude= average amplitude of the first 6 non-cued cycles 
(cycle 6-12) (compromise for effect of cue and not having 
enough cycles without freeze) 

*Normal cycle duration duration of 3 trials preceding the possible 
freezing episode (if the 3d is not regular, take the 2n or 4* ) 

*A long period of absence of movement without any abnormalities 
(particularly at the beginning of the tnal or at the end), is most likely NOT 
freezing episodes but a delay due to an attempt to follow the metronome 
(beginning) or a voluntary stop (end) 

2 The beginning of the freeze is 
a Begin of stop 
b Begin of oscillatory movement with abnormal cycle form 
c Begin of high frequency oscillation 

3 The end of the freeze is 
a The moment after which movement is regular, controlled again for at least 

one cycle 
- No more stops, festination or interruption 

One cycle with flexion and extension amplitude >50% of 
normal0 amplitude and no interruption 
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Freezing episodes (examples) 
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Reliability study results 
12 trials of upper limb movement (bimanual flexion/extension of index finger) were 
presented to 4 independent raters who were asked to 
1 Indicate for each trial if they think freezing episodes occurred or not (parameter 
'Freeze(l/0)') 
2 Indicate the beginning and the end of the freezing episodes, allowing to calculate the 
duration of the freezing episodes in seconds (parameter 'Duration Freeze (s)') and in 
cych (parameter 'Duration Freeze(cycle)') 

On these three parameters a Intraclass correlation coefficient (ICC) was calculated, showing high 
correspondence on all raters on all parameters 
(info and abbreviations + formula below) 
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Calculation ICC (ICC(2 4) 

(model 2 4 raters) 

ICC= 0 982308593 

ICC= 0 995140051 

ICC= 0 976034858 

info 

n= number of subjects (12) 

k= number of independent raters (4) 

ICC= Intraclass correlation coefficient 

BMS= Between subjects Mean Squares 

EMS= Error Mean Squares (within subjects) 

RMS= Rater Mean squares (within subjects) 

Formula used (Poitney L G and Watkins M P editors Foundations of clinical research 

Applications to practice New Jersey Upper Saddle River 2000) (chapter 26 p 564) 

ICC(2 k)= (BMS EMS) 

BMS + (RMS EMS)/n) 
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Appendix C - Videos of upper limb freezing 
(ULF) during pattern switching (on CD) 
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