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ABSTRACT 

Carbon fiber reinforced polymers (CFRP) have become an increasingly notable material 

for use in structural engineering applications. Some of their advantages include high 

strength-to-weight ratio, high stiffness-to-weight ratio, and good moldability. Prediction 

of the fatigue life of composite laminates has been the subject of various studies due to 

the cyclic loading experienced in many applications. Both theoretical studies and 

experimental tests have been performed to estimate the endurance limit and fatigue life of 

composite plates. One of the main methods to predict fatigue life is the four-point 

bending test. In most previous works, the tests have been done in one direction (load 

ratio, R, > 0). In the current work, we have designed and manufactured a special fixture 

to perform a fully reversed bending test (R = -1).  Static four-point bending tests were 

carried out on three (0°/90°)15 and (± 45°)15 samples to measure the mechanical properties 

of CFRP. Testing was displacement-controlled at the rate of 10 mm/min until failure.  In 

(0°/90°)15 samples, all failed by cracking/buckling on the compressive side of the sample. 

While in (± 45°)15 all three tests, no visual fracture or failure of the samples was 

observed. 3.4 times higher stresses were reached during four-point static bending test of 

(0°/90°)15 samples compared to (± 45°)15. Same trend was seen in literature for similar 

tests. Four-point bending fatigue tests were carried out on (0°/90°)15 sample with stress 

ratio, R = -1 and frequency of 5 Hz. Applied maximum stresses were approximately 45%, 

56%, 67%, 72% and 76% of the measured yield stress for (0°/90°)15 samples. There was 

visible cracking through the thickness of the samples. The expected downward trend in 



 

xv 

 

fatigue life with increasing maximum applied stress was observed in S-N curves of 

samples.  There appears to be a threshold for ‘infinite’ life, defined as 1.7 million cycles 

in the current work, at a maximum stress of about 200 MPa. The decay in flexural 

modulus of the beam as it goes under cyclic loading was calculated and it was seen that 

flexural modulus shows an exponential decay which can be expressed as:  E = E0e
AN 

. 

Four-point bending fatigue tests were carried out on three (±45°)15 samples with stress 

ratio, R = -1 and frequency of 5 Hz. Maximum applied stress was 85% of the measured 

yield stress of (±45°)15  samples. None of the samples failed, nor any sign of crack was 

seen. Tests were stopped once the number of cycles passed 1.7x10
6
. In general, current 

study provided additional insight into the fatigue and static behavior of polymer 

composites and effect of fiber orientation in their mechanical behavior. 
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CHAPTER I 

INTRODUCTION 

Composite materials are one of the four basic categories of structural materials 

and typically are made by different combinations of the other three: metals, polymers and 

ceramics. The properties of composite materials are intended to be superior compared to 

the properties of the constituent materials performing individually [1, 2]. In structural 

applications, a composite material usually consists of a reinforcement which is stiffer and 

stronger than the less stiff surrounding material called the matrix. The properties of the 

composite depend on many factors including the properties, geometry and distribution of 

its phases [1-3].  

Some of the properties that can be optimized by utilizing composites include 

strength, stiffness, resistance to corrosion and wear, thermal conductivity, density and 

fatigue life. The objective of composite material usage is to improve one or more of the 

aforementioned properties to perform a specific task [1]. The anisotropic and 

heterogeneous character of composite materials provide many degrees of freedom for 

optimizing the material [2].  

Many materials are much stronger in fiber, rather than bulk, form [1, 3].  A. A. 

Griffith [4] measured properties of glass fibers and glass rods and compared the results of 

tensile tests with different diameters. He found that as the fibers got thinner they got 

stronger. He related these results to a reduced probability of production of surface cracks. 

Based on another study [5] it is believed that carbon nanotubes are the stiffest and 
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strongest reinforcement materials known [1]. Advanced composite materials are typically 

made from carbon, silicon carbide, boron and aramid polymer reinforcement. As seen in 

Table 1, higher modulus, higher strength and lower density are the main advantages of 

advanced fibers [1, 2]. Carbon nanotubes are the strongest of the bulk and fibrous 

materials mentioned. 

 

Table 1. Selected properties of bulk and fibrous materials [1, 2]. 

Material Tensile Strength 

(MPa) 

Tensile Modulus 

(GPa) 

Density (g/cm
3
) 

Bulk Materials    

6061 T6 Aluminum  310 69 2.71 

4340 Steel 1030 200 7.83 

Polyvinylchloride 40 3.1 1.44 

Silicon Carbide .4 400 3.4 

Aluminum Oxide .5 380 3.8 

    

Fibers    

E-Glass 3448 72 2.54 

S-Glass 4278 228 2.49 

AS4 Carbon Fibers 4278 228 1.79 

T300 Carbon Fibers 3750 231 1.76 

Kevlar 29 aramid 3620 83 1.44 

Polyethylene 3340 124 .97 

Boron 3400 400 2.52 

Carbon Nanotubes 30000 1000 1.9 

 

Applications 

Due to mechanical and structural advantages, carbon fiber reinforced polymers 

(CFRP) have become increasingly notable materials used in many engineering 

applications from aerospace to infrastructure to alternative energy. Metals, such as 

aluminum and steel, used to be the main materials for manufacturing racing cars. In the 

early 1980's, Formula 1 initiated a revolution that today had become its hallmark: 
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manufacturing car chassis out of carbon fiber (CF) composites. These days, almost all 

parts of racing car chassis, suspension systems, wings and engine covers are built out of 

carbon fiber composites. The main advantages of CF composites are [6, 7] :  

- great weight and part saving, 

- high strength, 

- high stiffness, 

- parts consolidation, 

- design flexibility, 

- corrosion resistance, and 

- complex shape manufacturing. 

  
Recent developments in carbon fiber research have reduced the costs and 

enhanced the understanding of CF composites. As a result, the feasibility of using CF 

composites has been increased in many industries including the automotive industry [8].  

Due to the aforementioned advantages, carbon fiber composites have found a lot 

of use in high-end sports equipment such as hockey sticks and race bicycles. New, 

advanced materials have enormous impact on society and sports. Advanced products and 

materials generate new sports and affect existing sports. These customized products 

create external tools for athletes to use to enhance their ability to perform [9]. As an 

example, carbon fiber composite comprise the legs of Oscar Pistorius, the “Blade 

Runner”, who had double below-knee amputation and competed in the 400 meter dash in 

the London Summer 2012 Olympics. The carbon fiber composite spring blades weigh 

only 500 g are capable of holding up to 150 kg of weight [10]. They are stiff enough to 

support the whole weight of an athlete, flexible enough to enable him to run, and store 
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and release compressive energy to make it possible for the athlete to achieve his best 

performance.  

Composite materials have been used in commercial airplanes for decades. The 

application of composite materials has been developed from small scale in past decades 

to large structures today. Typical examples of widespread applications of composites in 

commercial aircraft are the Boeing 777 and 787, and Airbus A340 and A350 [7]. These 

aircraft have replaced main parts in wings and fuselage with CFRP and the weight 

fraction of carbon composites in some air craft is up to 50% [11-13].     

Purpose of Fatigue Testing 

In all of the aforementioned applications, improved performance, increased 

lifetime and reduced manufacturing costs are of high importance. Therefore, studying and 

improving of static, fatigue and fracture behavior of composite materials is critical to the 

successful execution of an effective structural design. Extensive studies have been carried 

out to study the fatigue behavior of composite materials under cyclic loading [14-18] and 

predict their life and failure [19-24]. The main purposes of fatigue testing can be 

summarized as [25]:  

- To estimate load (stress), strain, deflection amplitude and cycle life-to-failure, 

- To compare fatigue properties of two or more materials or components, 

- To obtain practical design data relevant to specific service applications, 

- To study the mechanism of stiffness degradation and ultimate failure, 

- To ensure that fatigue life is greater than required, and/or replacement life is 

identified, and/or 
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- To compare materials under standard loading conditions as a basis of material 

development or material selection. 

Fatigue in Composites 

With the increase of industrial and structural applications of composite materials 

such as aircraft, automobiles, power plants and sports where the material is exposed to 

multiaxial/biaxial loading conditions, extreme temperatures, vibrations, impacts, etc., 

understanding the behavior of the materials under such environments and loading 

conditions has become a matter of great importance [26]. Materials in engineering 

applications are subjected to long-term loading and often go through repeated loading and 

unloading conditions (fatigue). Most materials, when subjected to fatigue loading, are 

likely to fail after certain of cycles. An important aspect of structural design is to 

understand a material’s behavior under fatigue loading. The machines and devices 

designed for service under such loads need to be similarly characterized [27-29]. Fatigue 

is defined as the process of progressive localized permanent structural change that occurs 

in a material subjected to variable stresses and strains. Fatigue might end in cracking 

(damage accumulation) or complete failure after a certain number of cycles. The number 

of cycles of stress or strain that the material undergoes before failure is referred to as the 

fatigue, or service life. The service life depends on the applied stress level, loading 

frequency, and other factors [25]. This behavior is typically collected in the form of an S-

N curve, shown schematically in Figure 1 [30-32]. 
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Figure 1. Schematic S-N curve, average stress (σa) versus cycles to failure (Nf) [30-32]. 

For some materials, as shown in Figure 1, a stress exists below which fatigue 

failure is not likely to occur (endurance limit).  However, an endurance limit has not been 

observed in most composites. As a result of the inhomogeneous and anisotropic nature of 

composite materials, their fatigue behavior is more complicated than for more 

homogeneous and nominally isotropic materials such as metals. Composite fatigue failure 

modes include combinations of damage such as matrix failure, fiber cracking, debonding, 

delamination and ply failure [30, 31]. 

Fatigue Damage in Composites 

Because of their inhomogeneous and anisotropic nature, failure in composite 

materials does not happen by propagating a single crack, but by damage accumulation 

throughout the material. The mechanisms of damage accumulation include fiber 

breakage, matrix breakage, debonding, transverse-ply cracking, and delamination. 

Sometimes these mechanisms occur independently and sometimes interactively. They are 

highly affected by material properties and testing variables [25].  

Most composites sustain damage at low levels of stress in monotonic loading or 

early life during fatigue loading. The damage is distributed over the stressed area and 

usually reduces the stiffness of the composite. This phenomenon, as shown in Figure 2, 
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also known as wear-out, is usually accompanied by a slight increase in strength at early 

stages of cyclic loading.  Damage accumulation in some regions of composites might be 

so large that the residual load in that region reaches the same level as the maximum stress 

in the fatigue cycle and, as a result, failure occurs [25]. 

 

Figure 2. Degeradation of composite strength by wear-out. 

In 1972, Owen and Howe studied damage accumulation in chopped glass 

reinforced plastic under tensile and fatigue loading [33].  They found that cyclic loading 

will create more intensive resin cracking than monotonic loading and, as a result of resin 

cracking, the tensile strength will be reduced. Also, accumulation of fatigue damage is 

non-linear and independent of the amount of stress. They suggested a cumulative damage 

rule: 

 

                     (1) 
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where n is number of cycles experienced by the composite at a stress level which will 

cause failure after N cycles, B and C are constants, and ∆ = 1 at failure. They predicted 

residual strength after fatigue loading of chopped strand mat polyester laminates by 

means of modification of this rule. They found that the different damage mechanisms 

accumulate damage at different rates [33]. As a result, different damage models can have 

various results for different damage mechanisms. Similarly, Chen and Harris showed that 

multiple damage mechanisms are responsible for changes in the mechanical properties 

and eventual failure of CFRP during cyclic loading [34]. 

Poursartip et al. [35, 36] developed the mechanics of fatigue damage of carbon 

fiber composite laminates. They derived a general differential formulation for damage 

accumulation. They assumed that the rate of damage accumulation, dD/dN, depends on 

the current level of damage, the load ratio and the stress amplitude. This relation can be 

expressed as: 

 
                

(2) 

 where, ∆σ is the stress amplitude, R is ratio            and D is the current level of damage. 

Because the function   is unknown, they used changes in the elastic modulus to monitor 

the damage. By integration from Di to Df, they were able to predict the life, Nf. The final 

relation can be expressed as: 

                                   
 (3) 

where g is the relation between the current elastic modulus, E, and the undamaged elastic 

modulus, E0, and g' is the derivative of g with respect to D. To find the parameters in 

their proposed model, they conducted series of tests for a range of values of ∆σ at 
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constant E/E0 and R, for a range of R at constant ∆σ and E/E0, and for a range of E/E0 at 

constant ∆σ and R. To analyze their experimental results using their damage model, they 

used the same method O'Brien derived [37]. O'Brien derived a simple rule of mixtures 

analysis and, with the help of plate theory, predicted the stiffness decrease caused by 

delamination. He also verified his model with sets of experimental tests and found 

excellent agreement. Poursartip et al. observed that, under load control, the damage 

growth rate was independent of the current damage present. Also, their experiments 

showed that the damage growth rate is a power function of the range of applied stress and 

the mean stress. At very high stresses the failure behavior tends to be static failure and at 

very low stresses there is a threshold stress for damage growth. In addition, they applied 

their damage model to predict life under constant stress amplitude at different mean 

stresses and found reasonable agreement. However, life predictions for various and 

random loading were less satisfactory. They concluded that their damage model can be 

used to predict the S-N curve for different R-ratios [36]. 

Different Fatigue Test Setups 

Bending tests are widely used to study the fatigue behavior of structural materials, 

especially composite materials [38-46]. Generally, bending tests have some advantages 

over uniaxial tension-compression tests including: (i) in-service load conditions often 

include bending components, (ii) the danger of Euler buckling is removed, and (iii) the 

forces required to achieve the required stresses are typically much lower than for uniaxial 

loading [47]. Different three-point and four-point bending test configurations have been 

designed and used to model the fatigue loading conditions in variety of studies, to obtain 

flexural strength and flexural moduli, and to verify different fatigue damage models and 
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predict fatigue life. The loading conditions in bending tests are valuable for validation of 

damage models. These setups can impose both tension and compression in the specimen 

at different locations. As a result, these setups can be used to validate (i) a static damage 

model that includes both tensile and compressive damage, (ii) a fatigue damage model 

that includes combinations of tension-tension and a compression-compression.  

Transverse force and moment diagrams for 3- and 4-point bending setups are illustrated 

in Figure 3 [48]. 

 

Figure 3. Transverse force and moment diagrams for three point and four point bending setups [48]. 

Three-Point Bending Setup with Rotating Supports 

 Debaere et al. studied a standard three-point bending setup for thin composite 

laminates [49]. They conducted fully-reversed bending experiments with a three-point 

bending setup designed to investigate if this setup can be used for validation of a 

combination of damage models for thin composite laminates in static or fatigue loading 
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conditions. The material used for this study was carbon fiber-reinforced polyphenylene 

sulphide (PPS with commercial name of CETEX). The carbon PPS plates were fabricated 

by hot pressing and test samples (160mm x 30mm) were cut by a diamond saw. The 

stacking sequence used for the study was [(0°, 90°)]4s, where (0°, 90°) represent one layer 

of fabric. The resulting maximum stress can be calculated as [48-50]: 

                (4) 

where Ixx is the moment of inertia and h is height of the beam. Above the neutral axis, 

material is in compression and below the neutral axis it is in tension. The maximum 

bending moment can be written as: 

           
(5) 

Debaere et al. carried out fatigue tests at the speed of 300 mm/min and all the 

specimens broke at approximately 20 mm displacement at a corresponding stress of 625 

MPa. Comparing a rotating support setup with a single-sided setup, for equal 

displacements, lower forces are reached with rotating outer supports, and higher bending 

stiffnesses and ultimate loads were reached with the use of single-sided setup without 

rotating supports. During the fatigue tests, large mid-span displacements were reached 

which limited the test frequency. Friction on the supports caused extra difficulties in 

interpreting hysteresis loops [49]. 

Debaere et al. used ABAQUS to perform a finite element simulation of regular 

and fully-reversed three-point bending setups. Simulation of the three-point bending 

setup has some difficulties. As seen in Figure 3, there is a transverse force, V, over the 

entire beam equal to F/2, and the bending moment grows linearly till the maximum value 
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which is at the center of the beam. To model these loads, the rotating supports should be 

modeled because they cannot be modeled by equivalent loads and boundary conditions. 

Modeling the rotating supports needs contact conditions with the friction coefficient of 

carbon PSS and steel. The simulation needed too much computation time due to 

modeling the effect of friction on the rotating supports [49]. 

Four-Point Bending Setup 

De Baere et al. [47], studied a modified jig design for a bending setup that may be 

be used for the validation of damage models. In this study they considered a four-point 

bending setup with rotating supports to carry out fatigue tests. Compared to three-point 

bending setup, a four-point bending setup has more interesting loading conditions. As 

seen in Figure 3, the area between two loading supports has constant bending moment of 

[47, 48, 50]: 

            
(6) 

And there is no transverse force in the mid-section. Therefore, finite element modeling 

seemed to be easier compared to three-point bending setup since only the area between 

the two indenting rollers must be modeled. However, they faced some problems during 

the experimental assessment of the setup. Because of the geometrical limitations of the 

setup, for load span of 40 mm and 50 mm the samples could not be bent to fracture. For a 

30 mm load span, the setup seemed to work, but still the mid-span displacements were 

relatively large for low loads, limiting the test frequency. Also, these large mid-span 

displacements caused another problem: the applied loads were no longer vertical, instead 

they are perpendicular to the bent surface of the specimen, creating normal forces in the 
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samples. As a result, the authors recommended that the whole setup be modeled in finite 

element software and non-linear calculations be carried out [49].  

Clamped Four-Point Bending Test 

To reach higher forces, De Baere et al. [47], proposed a modified four-point 

bending setup with clamping of the specimen ends. Although higher loads were reached 

for lower displacement, another problem was encountered: the specimen failed at the 

clamped ends. The stress (load) that was reached for mid-span displacement of 8.3mm 

was 1830 MPa (2636 N), compared to 625 MPa (900 N) stress for 20 mm displacement 

with the setup used in the previous study [49]. The same material and same sample 

geometry as [49] were used for these tests. 

Clamped Three-Point Bending Setup 

De Baere et al. used the same concept to fabricate a clamped three-point bending 

setup. In order to prevent the two clamped ends from any inward motions, a small piece 

of aluminum was placed between two grips [47]. It was observed that the results of tests 

from this setup were highly reproducible. Also, for low displacements, higher forces were 

reached. The loads were four times higher for less than half the displacement compared 

to three-point bending setup. The force at failure was measured to be 3.6 kN, which is 

notably lower than failure force in uni-axial tensile test (52.6 kN for the specimen having 

the same cross-section geometry). It was observed that during fatigue testing, after few 

hundred cycles, the indenter lost contact for a certain period. Further investigations 

revealed this loss of the contact is due to slipping of specimen out of the grips due to high 

membrane stresses. To determine how much of the bending force is due to bending and 

how much is because of membrane stresses, a finite element simulation using ABAQUS 
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was performed. The finite element analysis results revealed that, although simple one 

dimensional beam theory simulation can be used to validate fatigue damage models, a 

three dimensional simulation is also necessary. Also, sample slipping in the end grips has 

some influence on the measured loads [47].  

Effect of Friction on Hysteresis Loops from Three-Point Bending Tests 

Van Paepegem et al. studied the effect of friction between the tested material and 

the supports of the bending setup on stiffness degradation and energy dissipation [51]. 

This was achieved by comparing three-point bending fatigue tests to static bending tests 

with different support conditions. They performed a displacement-controlled fatigue test 

on the same material as the previous study with different stacking orders. The deflection 

was limited to 10 mm and three different support conditions were tested: (1) contact 

specimen-Teflon
®
 sheet, (2) contact specimen-bare steel and (3) contact specimen-emery 

paper. The shape of the hysteresis loop can be changed by changing the friction at the 

supports. The effect was observed to be less at lower displacements. To verify the effect 

of friction on hysteresis loops, the finite element code SAMCEF was applied to simulate 

the setup with different friction coefficient between carbon fibers and supports [51]. 

The results of the work of Van Paepegem et al. revealed that the shape of the 

hysteresis loop is significantly affected by friction at the supports. This effect is higher 

when larger displacements are present. Therefore, the energy dissipation and stiffness 

degradation of the closed hysteresis loop cannot be a valid reference and the information 

from hysteresis loops from bending test should be interpreted very carefully [51]. 

In conclusion, single-sided bending had the advantages of being easily modeled 

but during the fatigue tests there was a loss of contact between the indenter and the 
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sample after few thousand cycles which resulted in impact of the indenter and corrupted 

fatigue data. Fully-reversed bending setup does not have such a disadvantage; however, 

the finite element simulation required long calculation time because of the support 

rotation. Also, large displacement of the mid-span limited the frequency of the tests. 

A four-point bending setup had the advantage of easy modeling, but still the 

deflections were large for relatively low loads.  Adding membrane stresses by clamping 

the specimen at the ends on the four-point bending setup resulted in smaller 

displacements, but samples failed near the clamps due to high membrane stresses. 

Adding clamps to the end of specimen on three point-bending setup resulted in 

almost four times larger failure forces for less than half of the displacement compared to 

regular three-point bending tests. This implies that clamped three-point bending test is 

preferred over unclamped three-point bending. 

Based on the study of Van Paepegem et al., information from hysteresis loops in 

bending must be considered very carefully. Although stiffness degradation and 

micromechanical damage growth are typical fatigue mechanisms for fiber-reinforced 

composites, they cannot be directly related with the recorded force-displacement 

hysteresis curves of three-point bending tests, because of the effect of friction of samples 

with supports [47-51]. 

Fully-reversed Bending Test of Carbon Fiber Reinforced Epoxy Composite Strands 

Couillard et al. characterized bending fatigue behavior of unidirectional carbon 

fiber / epoxy composites using a fully-reversed bending test [30].  Composite strands 

with a cross-sectional diameter of 0.5 mm and fiber volume fraction of 0.43 were tested 

under fully-reversed bending fatigue test at frequency of 3 Hz. The fatigue damage 
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accumulation and the different modes of failure were investigated with the help of optical 

microscopy and SEM (Scanning Electron Microscopy). Figure 4 shows the bending 

fatigue test mechanism that they used to apply continuous bending moment at a 

frequency of 3 Hz. The load cell attached to the bottom grip was monitoring the bending 

moment as a function of time. The maximum curvature reached was 0.09 mm
-1

 which 

corresponds to maximum theoretical strain of 2.25% whilst the failure strain of the 

composite strand was mentioned to be 2.5%. The lifetime of the samples in this study 

was defined as a number of cycles required for a drop in the value of the initial bending 

moment. This drop was measured at three levels of moment loss, B/B0= 0.75, 0.6 and 0.4. 

Where  B0 is initial bending moment and B is measured moment.        

 

Figure 4.  Bending fatigue test mechanism used by Couillard et al. in [30] 

They expressed the fatigue lifetime as: 

                (7) 
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where t is time, B is measured bending moment, B0 is initial bending moment, K is a 

constant which they found it to be -0.039. The failure mechanism that Couillard et al. 

observed was mixed. It was primarily fiber breakage and matrix cracking. By increasing 

the number of bending cycles, there was crack growth in the matrix and along fiber 

interfaces [30].  

Strength Measurement of Optical Fibers by Bending 

In 1986, Matthewson et al. [52] utilized a bending technique to measure the 

strength of glass fibers. They also presented an analysis to determine the effective tested 

length as a function of statistical parameters that describe the fracture properties of the 

fiber. They used the mechanism shown in Figure 5. The two face plates are brought 

together by a computer-controlled stepper motor until fiber fracture is sensed by an 

acoustic detector. The fiber is clamped to the guide plate.  

 

Figure 5. Schematic of fiber bending mechanism used by Matthewson et al. [52]. 

The test provided failure force of the fiber which could be used to calculate failure 

stress of the fiber. As a result, they found this test to be very effective and recommended 
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it useful and to be used parallel with tensile test to determine the glass fiber strength [52]. 

Inspired by Mathewson et al., Nelson et al. [53] modified conventional a four-point 

bending apparatus to measure the strength of thin composite beams. Experimental results 

with their modified device had good agreement with the theoretical values. 

In [54], Ferry et al. designed a special apparatus to adapt on a uniaxial tensile 

machine and generate a multiaxial stress state. The device was designed to apply both 

four-point bending and torsion loads glass fiber / epoxy composite samples. The aim of 

the study was to investigate the fatigue behavior under mixed-mode conditions. A 

charge-coupled device (CCD) camera was used to monitor the damage progress in the 

samples. They found that the type of damage and initiation of failure depends on value of 

R as well as ratio of force/torque in mixed-mode testing. Three different failure 

mechanisms were observed:  delamination, fiber failure and cracking. 

Tomita et al. [55] studied bending fatigue behavior and fracture mechanism of 

Long carbon fibers with 3.5, 4.5, 5.0 and 5.5 GPa in average tensile stress reinforced 

epoxy laminates. They studied PAN based long carbon fibers and epoxy resin and 

manufactured carbon/epoxy laminates using hot-press method. They used a Schenk-type 

fatigue machine, Figure 6, to perform bending fatigue tests with cyclic stress ratio, R=-1 

and frequency of 30 Hz. They also measured the generated heat during fatigue testing 

using an infrared thermo-graphy. They found out that the fatigue limit of cross-ply 

laminated was influenced by compressive stress of 0° layers and heat generation during 

fatigue testing. For the 3.5, 4.5 and 5.5 GPa CFRP composites the fatigue limit was 

related to the compressive stress of 0° layers in the laminates. For quasi-isotropic 
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laminates, (0°/45°/90°), the fatigue limit was related to the compressive stress of the 0° 

layers in the laminates and failure mechanism was delamination during fatigue test. 

 

Figure 6. Schematic drawing of fatigue bending machine used in [27, 55]. 

In another study, Kawai et al. [56] performed load-controlled on-axis fatigue tests 

at room temperature and high temperature (100 °C) on cross-ply and unidirectional 

carbon/epoxy laminates manufactured by the autoclave forming technique.  They also 

observed that the S-N relationship for the cross-ply laminate is almost parallel to the 

result on the unidirectional laminates, and concluded that the fatigue strength of the 

cross-ply laminate is determined by the fatigue strength of the axial plies and the 

difference between the S–N relationships for the cross-ply and unidirectional laminates is 

characterized by their different magnitudes of static strength. 

Using classical lamination theory, they developed a simple fatigue failure model 

for cross-ply laminates as:  
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where Nf if the fatigue life of cross-ply laminates, σmax is the fatigue stress, X is the 

reference strength of unidirectional laminate, α/k is a scale factor and n is material 

constant.  

To validate their proposed fatigue model, they used their experimental data. The 

fatigue strength of the cross-ply laminates was successfully predicted using proposed 

fatigue model.  

Belingardi et al. [57] used the same mechanism of bending fatigue test as [56] to 

study fatigue stiffness and degradation in cross-ply and angle-ply carbon-glass/epoxy 

laminates. Tensile and flexural static tests and displacement-controlled bending fatigue 

tests were carried out with the stress ratio of R=0.1. They observed linear stress-strain 

curves for cross-ply laminates in static tensile and flexural tests while for angle-ply 

specimens these curves were non-linear. Also, they observed different damage 

mechanisms for the two specimens. Their results will be discussed more in Chapter III of 

this thesis.  

Conclusion 

As there is uprising need and interest for carbon fiber composite materials, they 

have been subject of many recent studies. One important aspect of study of CFRP is to 

investigate their fatigue behavior under different loading conditions. Because of the 

aforementioned advantages of bending tests over tensile and compression tests, different 

setups for bending tests have been proposed and have been used to study and investigate 

fatigue life of CFRP under bending tests. Several proposed bending fatigue fixtures and 
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their advantages and disadvantages were reviewed in this chapter. There has been very 

limited number of previous research has been done on four-point bending test of CFRP 

composites with stress ratio, R= -1. Based on the literature review and results of previous 

studies, fatigue behavior of cross-ply and angle-ply CFRP composites with has been 

studied and the methods and results are discussed in the following chapters of this thesis.   
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CHAPTER II 

MATERIALS AND METHODS 

To obtain the desired results from this research, an experimental method was set 

up to study the behavior of carbon fiber reinforced plastics under cyclic bending loads.  

Material 

The material used for this study was biaxial woven carbon fibers obtained from 

TenCate Advanced Composites located in Morgan Hills, California. The fabric is 2x2 

twill weave as shown in Figure 7. The matrix material was low reactive, intermediate 

viscose polyester resin, POLYLITE
®
, provided by Reichhold Chemicals located in 

Durham, North Carolina. 

 

Figure 7. Fabric structure used for this study. 

Sample preparation 

To prepare the samples needed for this study, two methods of laminate fabrication 

were used. Three plates were made by means of a hand lay-up method but each was 

rejected because of flaws resulting from the process. Ultimately, Vacuum Assisted Resin 
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Transfer Molding (VARTM) was selected for its repeatability and sample quality. Both 

methods are explained below.  

Hand lay-up method 

15 layers of biaxial carbon fibers, 2.6 mm thick, 300 mm x 300 mm were built up 

successively on the mold surface and worked by hand to fabricate the plate [58]. Figure 8 

shows a schematic of the stacking order. The smooth work surface was waxed before 

applying components; one layer of peel ply was applied on the work surface. Layers of 

carbon fibers were stacked on top of each other and resin was applied to each layer by 

means of a hand roller. A void roller was used to drive out any possible air bubbles 

between plies. Special care was taken to avoid any warpage in fiber orientations. Another 

layer of peel ply was applied on top, and a layer of breather on top of all materials. 

Vacuum bagging was placed over the stack of material and the working surface with the 

help of tacky tape. The plate was placed under vacuum with the help of a vacuum pump 

for 24 hours at room temperature at 23 °C.  

 

Figure 8. Hand lay-up setup for the first plate. 

The resulting plate is shown in the Figure 9. There were several flaws in the plate. 

As seen in the picture, the top surface had wrinkles due to the pressure of vacuum 

bagging with dry spots on the wrinkles and on the bottom surface of the plate. The 
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thickness of the plate also was uneven. To remove the vacuum bagging wrinkle effect, a 

different setup, shown in Figure 10, was used. Half inch thick plywood was placed over 

the pile of material under vacuum bagging. The same process was used as the first plate 

with same amount of cure time. 

 

Figure 9.  Surface of first plate after curing under vacuum at room temperature for 24 hours. 

 

Figure 10.  Hand lay-up set up for second plate. A piece of plywood was placed over the stack of 

material and under the vacuum bag. 

The plywood was effective in removing the wrinkles on the surface and to some 

extent reduced the thickness variation in the plate, but still there were some dry spots 

both on the top and bottom of the plate. Figure 11 shows the top surface of the second 

plate made.  
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Figure 11. Dry spots on surface of second plate made using the hand lay-up process. 

The next plate was fabricated with the same process; this time a different type of 

breather was used on the top and bottom of the carbon fiber plies. Also, the working 

surface was sprayed three times with rubberized undercoating spray in 10 hours intervals 

to achieve a better and smoother work surface in order to reduce the dry spots on the 

plate surface. The same process and material as the second plate were applied, and for 

this plate some heavy weights were placed over the vacuum bagging during 24 hours of 

room temperature curing to improve the consistency in the thickness of the plate. Figure 

12 shows a schematic of the set up. The result was better compared to previous two 

plates, but, as seen in Figure 13, there are some dry spots on the surface. Moreover, the 

thickness of the plate was not constant. 

 

Figure 12. Hand lay-up setup for third plate. 
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Figure 13. Dry spots on surface of third plate made using hand lay-up process. 

VARTM Method 

To achieve better quality, the next plate was fabricated using vacuum assisted 

resin transfer molding (VARTM). VARTM has been used to manufacture composites for 

more than 50 years, and it continues to be developed [59]. It is a very effective method to 

manufacture complex-shaped parts with lower tooling costs; VARTM will reduce the 

void content of the composite and improve the quality of the part [60, 61]. In this process, 

the reinforcement is assembled in a mold and is sealed inside a vacuum bag. The resin is 

transferred into the part through a resin inlet under ambient pressure. Figure 14 shows a 

schematic setup for the VARTM process and different components of the setup that was 

used to fabricate the composite plates for this study. The work surface was waxed and 

one layer of peel ply was placed on the work surface. Fifteen layers of carbon fiber with 

dimensions of 600 mm x 300 mm were stacked up on each other, two layers of peel ply 

were placed on top, a 600 mm x 300 mm perforated plywood and one layer of breather 

was placed on top of all materials. Finally, a vacuum bag was applied. Carbon fibers were 

aligned along the 0° direction to fabricate (0°/90°)15 specimens, and were rotated at 45° 

to fabricate (±45°)15 plates. After putting the vacuum bag over the material and mold 
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surface, the vacuum pump was started; when the vacuum pressure of -80 kPa was 

reached the resin inlet was opened to let the resin flow into the material. Once the flow of 

resin was seen in the overflow tank, the inlet flow was stopped and the pressure was 

lowered to -60 kPa. After 20 minutes and initial gelling of the resin, the plates were left 

under vacuum and cured at room temperature for 24 hours and then post-cured at 40°C 

for 16 hours. The final thicknesses of plates were 3.98 ± 0.15 mm for (0°/90°)15  and 3.71 

± 0.15 mm for (± 45°)15 plates, respectively.  

 

(a) 

 

(b) 

Figure 14. (a) VARTM infusion process.  (b) Components of VARTM set up. 
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Plate layup and curing details are given in Table 2. 

Table 2. Composite plate lay-ups, materials used and curing details. 

Lay-up Method Details 

 

Biaxial Carbon Plies (0°/90°)15 

VARTM 

Curing: 

24 hours at room temperature 

Post curing: 

16 hours at 40 °C 

Biaxial Carbon Plies (± 45°)15 

 

Figure 15 shows the VARTM process during and after resin transfer. Test 

samples were cut by diamond saw from the manufactured plates in accordance with 

ASTM D6272-02 [62] as shown in Figure 16. 

 

Figure 15. Composite plates (a) during and (b) after resin transfer process. 

 

Figure 16. Sample geometry for (0°/90°)15 fibers in accordance with ASTM D6272-02. 
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Determination of Fiber Volume Fraction (Vf) 

In fiber reinforced composite materials, the distribution of fibers throughout the 

matrix follows a repeating pattern. Although there are random arrangements of fibers, the 

cross-section of the material can be approximated as a square packed array. As seen in 

Figure 17, the cross-section of the fibers is a fraction of total cross section and is a 

measure of volume of fibers relative to the total volume of composite. This parameter is 

called fiber volume fraction, Vf [63, 64]. 

 

Figure 17.  Cross section of composite material as square packed array. 

The fiber volume fraction affects the material’s mechanical properties, hence, it is 

important to measure and determine Vf for each material tested [65]. There are several 

procedures to measure the fiber volume fraction in composite materials: 1) resin removal 

method, 2) thickness measurement method and 3) burn-off test. In the resin removal 

method, the mass of a test specimen is measured before and after removal of resin and 

therefore the volume fraction of the fibers is calculated. Combustion, nitric acid digestion 

and digestion in a sulfuric acid/hydrogen proxide mixture are some ways to remove the 



 

30 

 

matrix from the composite samples.  In the thickness measurement method, the thickness 

of the composite is measured over the entire surface of the composite. By using a known 

value of mass per unit area and density of the fibers, the fiber volume fraction of the 

composite is calculated [66]. To determine fiber volume fraction for the composite 

samples for this study, a burn-off test was conducted in accordance with ASTM D2548-

68 [67]. The ASTM D2548-68 burning method is a simple and useful way of determining 

fiber volume fraction of composite materials. In the case of composites with matrix 

fillers, the method shows some limitations. There is no standard procedure to separate 

filler material from fibers and resin to determine Vf [68]. 

To measure the fiber volume fraction, ceramic crucibles, electric furnace capable 

of maintaining a temperature of 400°C or more and weighing scale with accuracy of 

0.001 g were used. Ceramic crucibles were heated to 500°C for 10 minutes then they 

were cooled down to room temperature and their weight was measured and recorded. 

Three samples were cut from each plate and the weight of samples and crucibles were 

recorded. The crucible and specimen were placed in the furnace at temperature of 460°C 

for at least 6 hours until all resin was gone. After cooling down to room temperature, the 

weights of the fibers and crucibles were recorded.  

To calculate the fiber volume fraction, the following equations were used [1, 2, 

69]: 

            
 

where Mc is the mass of the composite sample, Mr is mass of reinforcement (carbon 

fibers) and Mm is the mass of matrix.  
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where Vr is the volume of reinforcement (carbon fibers) and ρr is the density of 

reinforcement (carbon fibers). 

         
 

where Vm is the volume of matrix and ρm is the density of matrix. 

            

where Vf is volume fraction of carbon fibers. 

  
 

         
 

where Wf is weight fraction of carbon fibers. Table 3 shows the result of the burn-off 

tests. 

Table 3. Result of burn-off test. 

Sample Mm (g) Mr (g) Vm(Cm
3
) Vr(Cm

3
) Wf(%) Vf(%) 

(0°/90°)15 0.84 ± 0.13 1.61 ± 0.23 0.71 ± 0.11 0.63 ± 0.01 66 ± 0.75 47 ± 0.85 

(±45°)15 1.05 ± 0.02 2.13 ± 0.02 0.89 ± 0.02 0.84 ± 0.01 67 ± 0.55 49 ± 0.63 

 

Testing Methods 

Static test 

Four-point static bending tests were conducted to determine the yield and ultimate 

strength of the samples. The tests were done using a Shimadzu AG-IS 50 kN universal 

test machine with a crosshead motion rate of 10 mm/min. Three samples from each plate 

were chosen and run in the four-point bending static test fixture shown in Figure 18.  
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Figure 18. Static four-point bending fixture. 

The tests were performed in accordance with ASTM D6272-02 [62]. A schematic 

of the test configuration is shown in Figure 19. The distance between the two support 

noses, L, was 170 mm and the distance between loading supports was 60 mm. The radii 

of the loading and support noses were 3.2 mm. By having such a setup, the support span-

to-depth ratio (L/h) was 42:1 and the overhang was 40 mm on each side of the support 

span. The instantaneous force and the crosshead displacement were measured at 0.5 

second intervals.  

 

Figure 19. Schematic of static and fatigue test setup. 

The flexural modulus was calculated as [62, 70]: 
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                 (8) 

where EB is flexural modulus (GPa), L is the support span (mm), b is the width of the 

beam (mm), d is the depth of the beam (mm) and m is the slope of the tangent line to the 

initial straight part of the load-deflection curve for tested samples. To calculate the strain, 

the following equation was used [62]: 

              
(9) 

where   is strain in the outer fiber (mm/mm) at deflection D (mm) of the center of the 

beam. The maximum strain occurs at the mid-span when deflection of the center of the 

beam is at its maximum value. 

Fatigue Test 

There have been different setups for four-point bending tests in the litrature [39, 

40, 44, 45, 47, 49, 54, 71-74]. During the fatigue testing, after a few thousand cycles, 

specimens can show permanent deflection. If the test is performed under displacement-

control, when the displacement is smaller than the amount of permanent deformation 

there is a loss of contact with the indenter; in the next cycle, the indenter will impact on 

the surface of the specimen, resulting in impact damage which leads to corrupted fatigue 

data. One solution can be performing the test as a load-controlled test, and then there is 

no problem of loss of contact. Load-controlled bending tests require more accurate PID 

controllers and lead to more convergence problems. Another solution can be keeping the 

permanent deformation at zero. This can be achieved by performing fully-reversed 

bending. In a fully-reversed bending test, each side of the sample is loaded in 

compression and tension; therefore, this test can be used to validate tension-compression 
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fatigue damage models [49]. To perform a fully-reversed bending test, a special fixture 

was designed and manufactured as shown in Figure 20.  

 

Figure 20. Fatigue fixture designed and manufactured to perform fully-reversed four-point bending 

test. All dimensions are in mm. 

The fixture consists of two rectangular bars that hold the upper and lower anvils 

and can be attached to the fatigue machine by two flanges at the upper and lower ends. 

The specimen will be clamped between two nested anvils and will be grabbed by two 

cylindrical rollers with radius of 3.2 mm to reduce the friction as well as allowing the 

specimen to rotate at supports. Specification of fixture is shown in Table 4. 
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Table 4. Specifications of four-point bending test. 

Maximum capacity kN 7 

Maximum load/support span mm 350 

Minimum load/support span mm 20 

Maximum thickness of specimen mm 9 

Maximum width of specimen mm 50 

Maximum deflection mm 17 

Material  Al 6061 

Total weight kg 3.3 

 

 Different components of the four-point bending fixture are shown in Figure 21. 

 

Figure 21. Different components of four-point fatigue bending fixture. 

Fatigue Test Apparatus 

Fatigue testing was conducted using a Bose Electroforce
®
 3510 test system. The 

machine has a load range of ±7.5 kN and a displacement range of ±25 mm. The machine 

is operated and controlled through WinTest
®
 4.1 software.  The use of high frequency in 
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fatigue testing of composite laminates can generate heat in tested specimens and therefore 

affect the fatigue results [75-77]. Also, in testing of composite materials, it is necessary to 

carry out fatigue tests at a constant rate of stress application [78, 79]. Therefore, a sine 

waveform at a frequency of 5 Hz was generated. All tests were done with stress ratio, R = 

-1. In the WinTest
®
 software, a limit action was defined as maximum displacement of 15 

mm so the system could sense specimen failure or unwanted rapid motion of the 

crosshead due to a large stiffness decrease in specimen.   

Electroforce
® 

test instruments are equipped with TuneIQ
® 

control optimization 

software, which improves the closed loop system performance of testing instrument. 

TuneIQ is used to adjust proportional integral derivative control loop settings and tune 

the parameters of linear motor of the machine based on the type of the specimen. This is 

to make sure the waveform produced by machine’s crosshead, is what we asked. When 

waveform used in the tests is defined, TuneIQ will use the waveform parameters to 

impose noise signals on a low and high frequency sine wave. Acquired data during this 

process will be analyzed and based on that the parameters of machine’s linear motor will 

be defined. It is required to tune machine for each load before doing the actual fatigue 

test. The same sample cannot be used both for tuning and the actual fatigue test, because 

during the tuning process, specimen won’t be exposed to load conditions further that 

waveform amplitude, but the frequency of the tuning process will be up to 200 Hz. This 

level of excitation will affect some mechanical properties and as a result, will affect 

fatigue life of the used sample.     

Four-point bending fatigue tests were carried out with maximum stresses of 

approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for (0°/90°)15 
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samples and 53%, 60%, 73%, 80% and 85% of measured yield stress for (± 45°)15 

samples. Tables 5 and 6 show geometrical properties of (0°/90°)15 and (± 45°)15 samples 

respectively. Samples were clamped in the fixture with 50 Nm torque on all bolts. 

Accurate measurements by a digital caliper were conducted to make sure that samples 

and the fixture are in perfect geometrical symmetry. 

Table 5. Fatigue test data log sheet for (0°/90°)15 and (± 45°)15 samples. 

Sample Lay-up Thickness (mm) Width (mm) 

14 (0°/90°)15 4.02 ± 0.02 24.71 ± 0.02  

2 (0°/90°)15 3.98 ± 0.03 25.08 ± 0.15 

1 (0°/90°)15 3.98 ± 0.01 24.60 ± 0.17 

3 (0°/90°)15 3.99 ± 0.03 24.89 ± 0.01  

4 (0°/90°)15 4.03 ± 0.08 24.55 ± 0.00 

6 (0°/90°)15 3.96 ± 0.02 24.78 ± 0.03 

11 (0°/90°)15 3.98 ± 0.05 24.99 ± 0.03 

12 (0°/90°)15 3.97 ± 0.01 24.93 ± 0.03 

8 (0°/90°)15 3.98 ± 0.01 24.95 ± 0.09 

9 (0°/90°)15 3.96 ± 0.04 24.90 ± 0.02 

10 (0°/90°)15 3.89 ± 0.05 24.90 ± 0.03 

5 (0°/90°)15 3.98 ± 0.04 24.85 ± 0.05 

13 (0°/90°)15 4.01 ± 0.04 24.91 ± 0.04 

15 (0°/90°)15 4.00 ± 0.02 24.73 ± 0.04 

3 (± 45°)15 3.69 ± 0.01 27.38 ± 0.23 

5 (± 45°)15 3.65 ± 0.04 24.64 ± 0.05 

4 (± 45°)15 3.59 ± 0.02 24.88 ± 0.03 

12 (± 45°)15 3.77 ± 0.02 24.78 ± 0.03 

7 (± 45°)15 3.74 ± 0.02 24.86 ± 0.03 

6 (± 45°)15 3.73 ± 0.00 24.85 ± 0.13 

1 (± 45°)15 3.70 ± 0.01 24.82 ± 0.06 

14 (± 45°)15 3.73 ± 0.02 24.82 ± 0.06 

2 (± 45°)15 3.74 ± 0.01 24.82 ± 0.03 

11 (± 45°)15 3.73 ± 0.00 24.68 ± 0.08 

12 (± 45°)15 3.71 ± 0.01 24.86 ± 0.06 

7 (± 45°)15 3.71 ± 0.04 24.87 ± 0.05 

8 (± 45°)15 3.69 ± 0.01 24.82 ± 0.03 

9 (± 45°)15 3.68 ± 0.01 24.82 ± 0.18 

10 (± 45°)15 3.71 ± 0.01 24.78 ± 0.00 
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CHAPTER III 

RESULTS AND DISCUSSION 

Static Test 

Static Test with Regular Four-Point Bending Fixture – (0°/90°)15 samples 

Static four-point bending tests were carried out on three (0°/90°) 15 to measure the 

mechanical properties of CFRP. Testing was displacement-controlled at the rate of 10 

mm/min until failure.  In all cases, samples failed by cracking/buckling on the 

compressive side of the sample.  

The maximum stress in outer fiber of the samples was calculated using : 

                     
(10) 

where F is the maximum load (N), L is support span (mm), Li is the load span (mm), b is 

the width of the beam (mm) and d is the depth of the beam (mm). For this setup L - Li = 

55 mm, so Equation 10 becomes: 

                 
(11) 

Tables 6 shows the measured and calculated mechanical properties of (0°/90°)15 

samples based on static tests.  The flexural modulus is calculated from Equation 8. Stress 

– deformation curves for the three tested samples are plotted in Figure 22. Strain is 

calculated from Equation 9. 
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Table 6. Measured mechanical properties of (0°/90°)15 samples. 

Property Measured average CV
a
 (%) 

Maximum load (N) 

Maximum stress (MPa) 

Maximum strain (%) 

Flexural Modulus (GPa) 

747 

314 

0.58 

75 

1.8 

3.1 

5.7 

1.5 

a
 CV = coefficient of variation = (standard deviation / average) x 100 % 

 

Figure 22. Stress- strain curves for four-point bending tests for (0°/90°)15 samples. 

Static Test with Clamped Four-Point Bending Fixture – (0°/90°)15 samples 

To compare the stresses occurring during fatigue tests with stresses observed 

during static testing, two samples from the (0°/90°)15 plate were tested in a Shimadzu 
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Universal testing machine with the newly designed clamped fixture explained in Chapter 

II. The setup is shown in Figure 23.  The samples were clamped in the fixture with 50 

Nm torque on all bolts. Accurate measurements by a digital caliper were conducted to 

make sure that samples and the fixture are in perfect geometrical symmetry. The test rate 

was 10 mm/min.  

 

Figure 23. Static test setup with clamped four-point bending fixture. 

Figure 24 shows direct comparison of stress – strain values measured with two 

different four-point setups. Also, Table 7 summarizes the results of comparison between 

the two fixtures. 

Table 7. Force, displacement and stress values for clamped and regular four-point bending fixture. 

Fixture Regular Clamped   Increase 

             

Maximum force 749 N 1063 N 42 % 

Maximum Displacement 9.2   mm 11.2 mm 21 % 

Maximum  Stress 315 MPa 480 MPa 52 % 
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Figure 24. Comparison of stress-strain values measured with two types of four-point bending setup 

for (0°/90°)15 samples. 

De Baere et al.[47] compared clamped four-point and three-point bending setups 

with regular four-point and three-point fixtures with rotating supports.  The clamped 

samples reached much higher forces than were reached in the current tests. Maximum 

stresses reached with the clamped fixture was 1830 MPa compared to 625 MPa for the 

regular fixture, an almost 300% increase [47]. De Baere et al. did the same comparison 

with a clamped three-point bending setup and a regular three-point bending fixture with 

rotating supports. Moreover, they simulated two fixtures using ABAQUS. Results of 

simulations and experimental tests with clamped fixture are shown in Figure 25. 
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Figure 25. Different stress-displacement curves for the simulation of clamping and regular three-

point bending fixtures in [47]. 

In the simulation of the clamped fixture, a maximum stress of 4860 MPa was 

measured; this value was 2180 MPa for the regular three-point bending fixture, an 

increase of 120% [47]. 

Static test Four-Point Bending – (± 45°)15 Fibers 

Static four-point bending tests were carried out on three samples from the (± 

45°)15 plate to measure mechanical properties of the CFRP. Tests were displacement-

controlled at the rate of 10 mm/min.  In all three tests, no visual fracture or failure of the 

samples was observed. The tests were stopped because of the geometrical limitation of 

the three-point bending fixture, shown in Figure 26. With the current setup, the test 
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machine’s crosshead can move down 38.8 mm before the loading supports touch the 

sample. Beyond this point, the measured load won’t be correct anymore; this value of 

deformation corresponds to 4.8% strain in the samples. 

 

Figure 26. Geometrical limitation of four-point bending test fixture for (± 45°)15 samples. 

Tables 8 shows the results of these tests and the calculated mechanical properties 

of (± 45°)15 samples based on these results. The modulus of elasticity is calculated from 

Equation 8. Stress – deformation curves for the three tested samples are plotted in Figure 

27. Strain is calculated from Equation 9. 
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Table 8. Measured mechanical properties of (± 45°)15 samples. 

Property Measured average CV
a
 (%) 

Maximum load (N) 

Maximum stress (MPa) 

Maximum strain (%) 

Flexural Modulus (GPa) 

192 

92 

2.3 

12 

7.5 

1.6 

3 

1 

a
 CV = coefficient of variation = (standard deviation / average) x 100 % 

 

Figure 27. Stress-strain curves for four-point bending tests for (± 45°)15 samples. 

Figure 28 shows a direct comparison between stress-strain curves for (0°/90°)15 

and (± 45°)15 samples. For cross-ply samples, the curve is linear up to failure, while for 

angle-ply samples the curve is non-linear and reaches a sort of “plateau” between strain 
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of 1.5% and 1.8%, where the displacement is increasing without hardly any increase in 

the load. Non-linearity of (± 45°)15 curves is  due to the significant contribution of the 

polymer matrix [57]. Alos, in literature [57], in four-point bending static tests, 

Theoretical predictions based on the Classical Laminate Theory showed that, for (0/90) 

laminates, at the failure load, the transverse tensile strength of outer carbon fiber lamina 

is reached while for (± 45°)15 specimens the shear stress exceeds the shear strength of the 

matrix. 

Herakovich et al. [80] studied the effect of fiber rotation on stiffness of [(± 45°)3]s 

carbon fiber/polyimide matrix composite laminates. They studied seven different 

laminates: [0]12, [90]12, [(±45)3]s, [(±67.5)3]s, [(0/90)3]s, [(±22.5)3]s and [0/-45/90/45]s. By 

performing monotonic and cyclic tension tests, they determined the parameters in the 

mesoscale damage model developed by Ladeveze [81]. The results of their stress-strain 

tests are plotted in Figure 30. Only results of [(0/90)3]s and [(±45)3]s laminates are shown. 
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Figure 28. Average stress-strain curves for (0/90)15 and (±45)15 samples. 

Comparing Figures 28 and 29, it is observed that in both cases, higher stress was 

reached with lower amount of strain for (0/90) laminates, while lower stresses in (±45) 

laminates caused higher strains. Also, the slopes of the initial part of the graphs in Figure 

28 correlate well with the results of Herakovich et al.. Herakovich et al. concluded that 

the orientation of fibers has a significant effect on the stiffness and lack of considering 

this effect in predicting large strain non-linear response and damage modeling prediction 

can result in significant errors [80]. The same conclusion can be derived based on the 

results of static four-point bending test shown in Figure 28. 
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Figure 29.  Stress-strain curves for (0/90) and (±45) samples from [80]. 

In another study [57], Belingardi et al. studied static and fatigue behavior of two 

lay-ups, cross-ply (0/90)10 and angle-ply (±45)10 carbon/glass hybrid composites. As part 

of their study, they compared static behavior of two different lay-ups as shown in Figure 

30. Same trend is seen in current study. However, stresses are twice as higher as we 

observed in this study. As mentioned in literature, hybrid composites have higher static 

and fatigue strength [82-84]. Belingardi et al. measured mean ultimate flexural stress of 

516 MPa and 145 MPa for cross-ply and angle-ply respectively. The mean stress values 

for cross ply were 3.5 times higher compared to angle-ply laminates. In current study, the 

mean values of maximum stresses are 314 MPa and 92 MPa for (0/90)15 and (±45)15 
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respectively. Stresses for (0/90)15 laminates are 3.4 times higher compared to (±45)15 

laminates. 

 

Figure 30. Stress – displacement curves for static flexural tests from [57]. 

Fatigue Test 

Four-Point Fatigue Test – (0°/90°)15 samples 

Figure 31 shows four-point bending fixture. The frequency of the fatigue tests 

was 5 Hz. To make sure to record one complete cycle during each sampling, a scan time 

period of 0.3 seconds with total 30 scan points was chosen in Wintest
®
. Up to 3000 scans 

were made during each test. Figure 32(a) shows a characteristic loading sine wave. The 

maximum load applied for this sample was set to ± 340 N. the corresponding deformation 

of the mid-span of the beam was +3.22 mm and -3.26 mm as seen in Figure 32(b). 
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Figure 31.  Fatigue test apparatus and four-point bending test fixture. 

 

Figure 32.  (a) Sample of sine wave applied (b) corresponding deformation at same cycle.   
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Four-point bending fatigue tests were carried out with maximum stresses of 

approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for (0°/90°)15 

samples. The resulting maximum stresses were nominally 140 MPa, 175 MPa, 210 MPa, 

225 MPa and 240 MPa.  The stopping limits on fatigue machine were set to ±15 mm, so 

the tests were stopped automatically if the samples in the fixture broke apart resulting in 

the displacement of the crosshead exceeding 15 mm. For maximum stresses of 140 MPa 

and 175 MPa there were no failures detected and tests were stopped after 1.7x10
6
 cycles. 

All other samples failed during cyclic loading. There was visible cracking through the 

thickness of the samples. Fatigue tests results are listed in Table 9.   

Table 9. Fatigue lives for CFRP samples with (0°/90°)15 layup. 

Sample Test Condition R σmax/σy Number of Cycles 

2 

14 

σmax = 140 MPa -1  0.45 

1.72 x 10
6
 

1.76 x 10
6
 

1 

3 

4 

σmax = 175 MPa -1  0.56 

1.71 x 10
6
 

1.70 x 10
6
 

1.71 x 10
6
 

6 

11 

12 

σmax = 210 MPa -1  0.67 

1.91 x 10
5
 

4.66 x 10
5
 

4.73 x 10
5
 

8 

9 

10 

σmax = 225 MPa -1  0.72 

1.31 x 10
5
 

1.15 x 10
5
 

1.21 x 10
5
 

5 

13 

15 

σmax = 240 MPa -1  0.76 

3.20 x 10
4
 

2.40 x 10
4
 

4.04 x 10
4
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Figure 33. S-N data for CFRP samples with (0°/90°)15 layup.  

Discussion of Fatigue Results for (0°/90°)15 Samples 

The fatigue results shown in Table 9 and Figure 33 show the expected downward 

trend in fatigue life with increasing maximum applied stress.  There appears to be a 

threshold for ‘infinite’ life, defined as 1.7 million cycles in the current work, at a 

maximum stress of about 200 MPa. No change in mechanism was observed for 

specimens that did exhibit failure. 

Tomita et al. examined the bending fatigue behavior of a variety of different 

carbon fibers and layups in fully-reversed bending at a frequency of 30 Hz [55].  As 

shown in Figure 34 for a cross-ply specimens and fatigue life of 10,000 cycles, they 

found stress amplitudes ranging from 450-475 MPa could be applied.  This would 
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correspond to maximum stresses of 230-240 MPa, very consistent with the values 

observed in the current work. 

 

Figure 34. S-N diagram for (0/90) laminates with 5.0 GPa CFRP from [55]. 

Based on previous results in the literature, e.g. [85], fully-reversed fatigue loading 

is expected to significantly reduce the fatigue life of carbon composites compared to 

positive values of R between 0 and 1.  Comparing the current results with those of Kawai 

and Maki [56], we see that this is indeed the case.  Under room temperature bending 

fatigue at R = 0.1 and 10 Hz, those authors found that a maximum stress of about 700 

MPa resulted in a fatigue life of 1 million cycles.  In the current study, the maximum 

stress resulting in failure at 1 million cycles was only 200 MPa.  For fatigue lives of 

10,000 to 1,000,000 cycles, the allowable maximum stress in the work of Kawai and 

Maki decreased from about 1000 MPa to 700 MPa (a decrease of 30%).  In the current 

work, for the same range of fatigue lives, the allowable maximum stress decreased from 
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about 250 MPa to about 200 MPA (a decrease of 20%), perhaps indicating a fundamental 

difference in the damage accumulation in the material during testing.  Additional 

characterization work is needed to determine if this is the case. S-N diagram for (0/90)3 

CFRP at room temperature is shown in Figure 35. 

 

Figure 35.  S-N diagram for (0/90)3 at room temperature in [56]. 

Predicting Fatigue Life of Composite Samples 

As reported in some bending fatigue studies [30, 86-88] , stiffness degradation is 

measured as reduction in relative bending moment (RBM) during fatigue loading. RBM 

is defined as the ratio between bending moment applied at first cycle and bending 

moment applied at N
th

 cycle.  

As tests in this study were done as load-controlled, and as there is a direct relation 

between stiffness and flexural modulus of the beam, we will calculate the decay in 
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flexural modulus of the beam as it goes under cyclic loading. Stiffness of a beam can be 

defined as [89, 90]: 

        
(12) 

where K is the stiffness of the beam, F is the applied force and D is the mid-span 

deflection caused by force, F.  Also for four-point bending we have [91, 92]: 

                     (13) 

where a is 55 mm (see Figure 19), E is the flexural modulus of the beam, L is the length 

of the beam(170 mm) and I is the moment of inertia. After plugging in values of a and L 

and rearranging Equation 13 we have: 

                     (14) 

To find reduction in the flexural modulus, the load and mid-span deformation of 

the composite beams recorded by WinTest
® 

were collected at different lives of each 

sample before failure. For each sample at each life, averages of 30 measurements were 

calculated. And flexural moduli at different lives were calculated using Equation 14. 

Figures 36 and 37 show flexural modulus plotted vs. lives of tested samples. In Figures 

36 and 35 average measurements for all samples with same value of stress ratio are 

plotted. 

As seen, during bending fatigue tests, samples showed a progressive decrease in 

stiffness which is result of damage accumulation in them. As the amount of applied stress 

goes higher, the amount of decay in stiffness is higher. Normalized flexural modulus vs. 

number of cycles for tested samples is represented in Figures 36 and 37 in linear and 

logarithmic scale respectively. Although samples with applied stress of 45% and 56% of 
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yield stress didn’t failed during fatigue tests, in Figure 36 there is decay in flexural 

modulus. The amount of this decay is more in samples 1, 3 and 4 where the stress was 

56% of yield stress.  

 

Figure 36. Loss in flexural modulus vs. lives of (0°/90°)15 samples. 

The linear curve shows at 76% and 72% of maximum stress, the loss of stiffness 

is almost linear while for 67% and 56% the loss of stiffness is initially greater and at 56% 

and 45% it will eventually level off. As Figure 37 shows, at failure, samples showed 25% 

decrease in flexural modulus.  

When the loss in flexural modulus is plotted versus natural log of the number of 

cycles to failure, it is seen that flexural modulus shows an exponential decay which can 

be expressed as: 

           
(15) 
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where E is flexural modulus after N cycles of loading, E0 is the flexural modulus at first 

cycle calculated from Equation 8 and A is a constant. Values of A for each sample can be 

calculated by using Figure 37, rearranging Equation 15 and solving for A. Table 10 

shows the measured valued of A for each sample.  

 

Figure 37. Loss in flexural modulus vs. lives of (0°/90°)15 samples (log scale). 

Table 10. Values of Constant A in Equation 15. 

Sample Test Condition R σmax/σy A 

6 

σmax = 210 MPa -1 0.67 

-1 x 10
-6 

11 -6 x 10
-7 

12 -9 x 10
-7 

8 

σmax = 225 MPa -1 0.72 

-2 x 10
-6 

9 -2 x 10
-6 

10 -2 x 10
-6 

5 

σmax = 240 MPa -1 0.76 

-8 x 10
-6 

13 -6 x 10
-6 

15 -7 x 10
-6 
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As seen from Figures 36 and 37 and Table 10, if less stress is applied, less 

damage occurs. As a result, the magnitude of the slope (flexural modulus decay rate) 

decreases and the life of the composite will increase. The fatigue life of composite 

samples can be expressed as: 

               (16) 

where Nf is the estimated fatigue life of the composite samples and B is decay constant 

which will be depending upon amount of stress applied. Solving Equation 16 for current 

results gives us B = -0.002.  

 

Figure 38. Loss of applied bending moment through 10
6 
cycles versus number of cycles for (0/90)15 

samples (linear scale) in [57]. 
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Belingardi et al. [27] evaluate the stiffness degradation by measuring reduction of 

RBM during fatigue tests. They plotted RBM vs fatigue life of their tested samples in 

linear and logarithmic scale as seen in Figures 38 and 39. They observed that in linear 

scale, loss of material stiffness was initially greater and as life went higher the curves 

leveled off. In logarithmic scale, they observed that at first couple of hundred of cycles, 

loss of stiffness was negligible and the stiffness drop was almost linear with logarithmic 

of number of cycles. They found the threshold for their fatigue tests at 30% of ultimate 

flexural stress [27].  

 

Figure 39. Loss of applied bending moment through 10
6 
cycles versus number of cycles for (0/90)15 

samples (logarithmic scale) in [57]. 
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Post-Fatigue Tests of (0/90)15 Samples 

To investigate more the mechanical properties of (±45°)15 samples, static four-

point bending tests were done on Samples 1, 3 and 4 after undergoing fatigue for 1.7x10
6
 

cycles with applied stress equal to 56% of the yield stress. The results of these static tests 

are shown in Figure 40. Also, the averages of three tests along with average of static tests 

before fatigue are plotted in Figure 41.  

 

Figure 40. Post-fatigue results of static four-point bending test for (0/90)15 Samples. 

As observed in Figure 41, same amount of stress was reached by samples before 

failure. Same as before, the curve is linear up to yield point. However, the slope of the 

cure is less than the curve from samples before fatigue tests. For the same amount of 

stress, higher strains were reached. These results are consistence with the results from 

previous section. As seen in Figure 36 and 37, for samples with applied stress of 56% of 

yield stress, after 1.7x10
6 

cycles, there is a loss in flexural modulus of 7%. As seen in 
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Figure 41, at yield stress of 314 MPa, there an increase of 8% in the amount of strain, 

which is due to decay in flexural modulus because of cyclic loading. 

 

Figure 41. Avergae of results before fatigue tests and after fatigue tests for samples 1, 3 and 4 of 

(0/90)15 . 

Four-Point Fatigue Test – (±45°)15 samples 

Four-point bending fatigue tests were carried out with a maximum stress of 80 

MPa, approximately 85% of the measured yield stress for (±45°)15  samples. Table 11 

shows the results of these tests. 

Table 11. Fatigue lives for CFRP samples with (±45°)15 layup. 

Sample Test Condition R σmax/σy Number of Cycles 

8 

σmax = 80 MPa -1 

  

0.85 

1.70 x 10
6
 

9 1.71 x 10
6
 

10 1.71 x 10
6
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Although the applied stress was 85% of the measured yield stress, none of the 

samples failed, nor any sign of crack was seen. Tests were stopped once the number of 

cycles passed 1.7x10
6
.   

As shown in Figure 27, the beam mid-span deformation for 80 MPa is about 16 

mm. As mentioned in Table 4, the maximum deformation of the fatigue fixture is 17 mm. 

As a result, testing composite samples with higher ratio of stress was not possible. 

Discussion of Fatigue Results for (±45°)15 Samples 

Based on similar studies in the literature e.g. [27], the lives of (±45°)15 samples at 

75% of the yield stress, were expected to be less than 1.7x10
6
 cycles. But there were no 

signs of failure in (±45°)15 samples. To investigate whether there was any degradation in 

stiffness of samples, a full analysis was performed on the recorded data on three samples 

to compare corresponding deformation of mid-span of the samples in different cycles. 

Same analysis as (0/90)15 fibers were done using Equations 12, 13 and 14. Figures 42 and 

43 show average normalized flexural modulus plotted versus lives of three tested samples 

in linear and logarithmic scale respectively. For each sample at each life, averages of 30 

measurements were calculated. And flexural moduli at different lives were calculated 

using Equation 14.  

As seen in figure 42, there is decay is flexural modulus till 100,000 cycles. After 

this point there is a slight increase in flexural modulus. The same trend is observed when 

flexural modulus is plotted versus life of samples in logarithmic scale. The minimum 

amount of flexural modulus observed during this period was 0.97 of the value, and then 

afterwards the value is gone up to 0.98 of the initial value of flexural modulus 
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Figure 42. Variation in flexural modulus vs. lives of (±45°)15 samples (linear scale). 

 

 

Figure 43. Variation in flexural modulus vs. lives of (±45°)15 samples (Logarithmic scale). 
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Post-Fatigue Tests of (±45°)15 Samples 

Based on experimental results and the aforementioned analysis, to investigate 

more the mechanical properties of (±45°)15 samples, static four-point bending tests were 

done on Samples 8, 9 and 10 after undergoing fatigue for 1.7x10
6
 cycles. First, Sample 8 

was put into four-point bending test and the first test was done. Compared to static test on 

other samples from the same plate, higher stresses were reached. As before, because of 

geometrical limitations of the four-point bending fixture, the test was stopped before any 

visible crack or failure. The same sample was put back into the fixture and the test was 

repeated. This procedure was repeated two more times (four total) and the stress-strain 

graphs were plotted in Figure 44. Figure 45 shows similar results for Sample 9 and results 

of similar tests are shown in Figure 46. As seen, the stresses reached on the first post-

fatigue test are slightly higher than next three tests. Figure 47 shows direct comparison of 

the average values of stress vs. strain for samples tested before fatigue tests, and samples 

after 1.7x10
6
 cycles of loading. 

In Figures 44, 45 and 46, the graph is linear until about 0.5% strain, which 

corresponds to about 60 MPa of bending stress in the samples. After this point for the 

same percent of strain, stresses are higher for samples which have been through fatigue 

loading (Figure 47). 

As observed in Figures 42 and 43, there is variation if flexural modulus of of 

(±45°)15 samples as they are exposed to cyclic loading. From 1 to 100,000 cycles, there is 

decay in flexural modulus of the beam. From this point there is a slight increase in 

stiffness of the beam. Since the tests were stopped at 1.7x10
7 

cycles, there is no 

information after this point. As seen in Figure 47, for the stress of 80 MPa, the strain for  
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Figure 44. Post-fatigue results of static four-point bending test for Sample no. 8. 

 

 

Figure 45. Post-fatigue results of static four-point bending test for Sample no. 9. 
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Figure 46. Post-fatigue results of static four-point bending test for Sample no. 10. 

 

Figure 47. Direct comparison of the average values of stress-strain for samples tested before 

fatigue, and samples after 1.7x10
6
 cycles of fatigue loading. 
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post-fatigue results, the strain reached is 40% less than the samples before fatigue tests. 

This can be result of aforementioned variations in the value of flexural modulus. 

Bryan Harris in [19, 25] mentioned a phenomena in composites called “wear-in”. 

Most composites sustain damage at early life during fatigue loading. The damage is 

distributed over the stressed area and usually reduces the stiffness of the composite. 

Wear-in is usually accompanied by a slight increase in strength at early stages of cyclic 

loading. These increases are results of slight improvement in fiber alignment. Also, there 

are small stress-induced, viscoelastic or creep deformations in the matrix. As discussed in 

discussion of static test results, orientation of fibers has significant effect on stiffness and 

strength of laminates. Also, as mentioned, in angle-ply laminates matrix has great 

contribution to stiffness of the samples. Considering the fact that the resin used in this 

study was polyester resin which is an intermediate viscose resin with viscosity of 90 GPa 

(900 poise) and the orientation of the fibers as angle-ply, might have made a stronger 

case for “wear-in” phenomena in current study. Further investigations and longer fatigue 

tests, over 10
7
 needed to see if this is the case. 
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CHAPTER IV 

SUMMARY AND CONCLUSION 

In this research, static and fatigue behavior of carbon fiber and polyester matrix 

were studies. The composite laminates used for this study were 15 layers of cross-ply, 

(0/90)15, and angle-ply, (±45)15 carbon fibers. 

1) Static four-point bending tests were carried out on three (0°/90°) 15 to measure the 

mechanical properties of CFRP. Testing was displacement-controlled at the rate 

of 10 mm/min until failure.  In all cases, samples failed by cracking/buckling on 

the compressive side of the sample. Average stress of 314 MPa was reached at 

failure of samples. This stress correlates with average strain of 0.58% at failure. 

2) Static four-point bending tests were carried out on three samples from the (± 

45°)15 plate to measure mechanical properties of the CFRP. Tests were 

displacement-controlled at the rate of 10 mm/min.  In all three tests, no visual 

fracture or failure of the samples was observed. Average maximum stress of 92 

MPa was reached during the tests, which correlates with 2.3% average maximum 

strain. 

3) For cross-ply samples, Stress-strain curve is linear up to failure, while for angle-

ply samples the curve is non-linear and reaches a sort of “plateau” between strain 

of 1.5% and 1.8%, where the displacement is increasing without hardly any 

increase in the load. 3.4 times higher stresses were reached during four-point 
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static bending test of (0°/90°)15 samples compared to (± 45°)15. Same trend was 

seen in literature for similar tests.  

4) Four-point bending fatigue tests were carried out on (0/90)15 sample with stress 

ratio, R = -1 and frequency of 5 Hz. Applied maximum stresses were 

approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for 

(0°/90°)15 samples. The resulting maximum stresses were nominally 140 MPa, 

175 MPa, 210 MPa, 225 MPa and 240 MPa. For maximum stresses of 140 MPa 

and 175 MPa there were no failures detected and tests were stopped after 1.7x10
6
 

cycles. All other samples failed during cyclic loading. There was visible cracking 

through the thickness of the samples. The expected downward trend in fatigue life 

with increasing maximum applied stress was observed in S-N curves of samples.  

There appears to be a threshold for ‘infinite’ life, defined as 1.7 million cycles in 

the current work, at a maximum stress of about 200 MPa.   

5) The decay in flexural modulus of the beam as it goes under cyclic loading was 

calculated and plotted. It was seen that flexural modulus shows an exponential 

decay which can be expressed as:  E = E0e
AN 

.  

6) Post-fatigue static tests were done on (0/90)15 samples which went under cyclic 

loading with applied stress of 56% of yield stress. Samples showed same yield 

stress with higher amount of strains. This can be result of decay in stiffness of the 

beam observed in 5. 

7) Four-point bending fatigue tests were carried out on three (±45)15 samples with 

stress ratio, R = -1 and frequency of 5 Hz. Maximum applied stress was 80 MPa, 

approximately 85% of the measured yield stress of (±45°)15  samples. None of the 
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samples failed, nor any sign of crack was seen. Tests were stopped once the 

number of cycles passed 1.7x10
6
. 

8) Flexural moduli of the (±45)15 samples as they go under cyclic loading were 

calculated and plotted versus number of cycles. It was observed that there was 

decay is flexural modulus till 10,000 cycles. After this point there was a slight 

increase in flexural modulus.  

9) Pre-cycled samples of (±45°)15 were tested in four-point bending machine to 

measure the strength after fatigue tests. All three samples showed 15% increase in 

maximum stress after going through 1.7x10
6
 cycles of fatigue loading. 
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APPENDIX A. CAD Drawings of four-point bending fatigue fixture 

  

Figure 48. Fatigue fixture, drawing of part 5. 
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Figure 49. Fatigue fixture, drawing of parts 2 and 3. 
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Figure 50. Fatigue fixture, drawing of part 4. 
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Figure 51. Fatigue fixture, drawing of part 1. 
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Figure 52. Fatigue fixture, assembly drawing. 
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