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ABSTRACT 

 This work shows that a mix of Finite Element Analysis (FEA) and numerical 

differentiation and integration methods can be used in order to calculate the output charge 

of a thin piezoelectric film bonded to a shell structure. The method is applied to cases of a 

cylindrical shell structure, as well as a beam and plate for both generic and shaped 

piezoelectric films. An overview of the fundamentals of shell vibration theory is 

presented where the development of the piezoelectric film equation is reviewed and 

applied to the three different structure cases. The FEA process used is discussed in terms 

of mode frequency, harmonic, and spectrum analysis. The structural analysis data of the 

shell substrate is imported into Matlab for further processing using numerical 

differentiation and integration. The processed data is then used to calculate the film 

output charge assuming that the piezoelectric film is perfectly coupled with the structure 

continuum, but does not change its dynamic characteristics i.e. natural frequencies and 

mode shapes. The results presented herein indicate that the film correctly captures the 

modes of the structure. However, further investigation is needed for the film output to 

better predict other structural dynamic properties such as displacement, velocity, or 

acceleration. The proposed method can be applied to calculate the output charge of films 

attached to complex structures or structures with complex boundary conditions. Another 

application is cases where close form equations cannot be derived and the only data 

available are discrete or experimental. Moreover, in sensor design applications where the 

film is often shaped so that its output charge corresponds to a specific structural dynamic 

property, the proposed method greatly simplifies the design process. 
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CHAPTER I 

INTRODUCTION 

1.1 Literature Review 

 Piezoelectricity is described as the appearance of positive electric charge on one 

side of certain nonconducting crystals and negative charge on the opposite side when the 

crystals are subjected to mechanical pressure. Piezoelectricity was discovered in 1880 by 

Paul-Jacques and Pierre Curie, who found that when they compressed certain types of 

crystals including quartz, tourmaline, and Rochelle salt, along certain axes, a voltage was 

produced on the surface of the crystal. In 1881, they observed the converse effect, the 

elongation of such crystals upon the application of an electric current [1]. Basically, when 

a piezoelectric material expands or contracts, an electric charge collects on its surface. 

Conversely, when a piezoelectric material is subjected to a voltage change, it 

mechanically deforms. Many crystalline materials exhibit piezoelectric behavior. A few 

materials exhibit the phenomenon strongly enough to be used in applications that take 

advantage of their properties. One such material is barium titanate, the first piezoceramic 

discovered. It is a dielectric ceramic used for capacitors and it is a piezoelectric material 

used for microphone and other transducers.  

 Now, lead zirconate titanate (PZT) is the most commonly used piezoceramic 

today due to its higher Curie temperature, which is the temperature above which a 

piezoelectric material loses its piezoelectric characteristics. Another piezoelectric 

material, which is not a ceramic, but a polymer, is Polyvinylidene Fluoride (PVDF).  
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 In polymers, the polymer chains attract and repel each other when an electric field 

is applied, dissimilar to ceramics where its crystal structure creates the piezoelectric 

effect. In 1969, it was observed that PVDF had strong piezoelectric properties; having a 

piezoelectric coefficient of thin films as high as ten times that of any other polymer [2]. 

This makes it a better material for sensor applications. The electromechanical coupling of 

PVDF is lower than that of piezoceramics, but since the foil thickness can be as small as 

10 micrometers the vibration mass is extremely small. PVDF has a low density and low 

cost compared to other fluoropolymers. PVDF also has greater damping than ceramics, 

and the resulting dynamic characteristics allow very short pulses to be generated. This 

means that it is possible to measure shorter ranges using PVDF than is possible with 

piezoceramic transducers. PVDF is more frequently being used in aeronautics and 

aerospace applications.  

 It was discovered near the beginning of the 20
th
 century that piezoelectric 

materials could be used in practical applications. One such application is in the area of 

electrical sensing devices, also known as sensors, or more specifically, piezoelectric 

sensors [3]. A piezoelectric sensor is a device that uses the piezoelectric effect to measure 

pressure, acceleration, strain, or force by converting them to an electrical charge. 

Piezoelectric materials have inherent advantages: their modulus of elasticity is 

comparable to that of metals, the sensing elements have almost no deflection, have high 

natural frequencies, and have an extreme stability even at high temperatures [4]. 

Applications of sensing include: medical, automotive, communication, and aerospace.  

 In a paper by Hurlebaus et al. [5], PVDF film was used for sensors and actuators 

in an automotive application. They investigated active vibration control of more complex 
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geometries than beams and plates. They could not evaluate modal parameters from 

numerical calculations of local modes, because of the complications involved with proper 

boundary conditions. Therefore, they identified the modal data using experimental modal 

analysis. The objective of their work was to demonstrate the successful implementation 

of modal control to arbitrary curved panels using experimentally evaluated mode shapes. 

The applied modal formulation for the dynamics of the considered structure was 

advantageous, because it allowed for control of a small set of chosen modes. Also, they 

significantly reduced structural vibrations, which also lead to a reduction in acoustic 

radiation. However, their proposed concept has some drawbacks: the limitation of the 

frequency band limitation of the modal analysis, and the performance of the control 

method was compromised by modal spillover, and curve fitting to the experimental mode 

shapes. 

 Other research, done by Xu et al. [6], has also shown that PVDF film is being 

used in sensing applications. Their work was focused on the development of an acoustic 

pressure sensor with high sensitivity for aero-acoustic and clinical applications. They 

proposed a sensor design consisting of micron-sized PVDF pillars and patterned 

electrodes in which the pillars generated a charge when subjected to normal stresses 

associated with acoustic waves. The pillars are sandwiched between an electrode plate 

and a rigid membrane. They developed a constrained optimization algorithm as a 

function of geometric parameters and electrical parameters of the sensor and conditioning 

amplifier. One potential application for their proposed micro-acoustic sensor would be 

vehicle positioning. It would be able to provide localization of objects around the vehicle 

which would create safer driving conditions. 
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 The objective of research done by Choi et al. [7] was to enhance the damping 

performance for vibration suppression of rotating composite thin-walled beams using 

macro fiber composite actuators and PVDF sensors. They based their formulation on a 

thin-walled beam, including a warping function, centrifugal force, Coriolis acceleration 

and piezoelectric effect. They used a negative velocity feedback control algorithm to 

acquire adaptive capability of the beam. They performed numerical analysis using finite 

element method and Newmark time integration method was used to calculate the time 

response of the model. They observed that the feedback control gain had a linear effect 

on damping performance; hence, vibrations could be damped out quicker when a higher 

feedback control gain was applied within the limit of actuator voltage. The damping 

effect could be increased through structural tailoring. Furthermore, the position and 

distributed area of the sensor/actuator pair was an important factor in obtaining effective 

damping performance. 

 Very recent work by Song and Li [8] studied the aeroelastic flutter characteristics 

and active vibration control of supersonic beams. In their paper, they do further research 

applied to a supersonic composite laminated plate with piezoelectric actuator/sensor 

pairs. They used Hamilton‟s principle with the assumed mode method to develop the 

governing equation of the structural system. The impulse responses of the structural 

system were calculated by using the Houbolt numerical algorithm to study the active 

aeroelastic vibration control. From the numerical results, they observed that the 

aeroelastic flutter characteristics of the supersonic composite laminated plate can be 

improved and that the aeroelastic vibration response amplitudes can be reduced, 
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especially at the flutter points, by the velocity feedback control algorithm using the 

piezoelectric actuator/sensor pairs. 

 Other recent work was aimed to improve the efficiency of harvesting and reduce 

grain losses. Zhao et al. [9] designed a grain impact sensor utilizing PVDF films and a 

floating raft damping structure to monitor grain losses in the field. Through the analysis 

of a mathematical model of the sensor and the vibration characteristics of installation 

position, the sensor resonances were calculated. The performance of the sensor was 

verified by field experiments. They found that by using a floating raft damping structure, 

the acceleration amplitude and corresponding frequency spectrum of the PVDF films 

could be suppressed.  

 Saviz and Mohammedpourfard [10] presented work on the dynamic analysis of a 

laminated cylindrical shell with piezoelectric layers under dynamic loads. A cylindrical 

shell with finite length was simply supported at both ends and elasticity approach was 

used. The highly coupled partial differential equations are reduced to ordinary differential 

equations by means of trigonometric function expansion in plane directions. The resulting 

equations are solved by finite element method. Stress analysis and vibrational behavior 

are presented for different shell thicknesses and are compared for four different ring loads 

widths. Their worked showed that the dynamic elasticity solution provided an accurate 

analysis of active shell with piezoelectric layer as sensor and actuator.  

 In another recent paper, Benedetti et al. [11] presented a fast boundary element 

method for the analysis of three-dimensional solids with cracks and adhesively bonded 

piezoelectric patches used as strain sensors. Both the sensors and adhesive layer were 

modeled using a finite element approach, taking into account the full electromechanical 
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coupling in the piezoelectric layer. They utilize a generalized minimal residual method 

(GMRES) iterative solver with a preconditioner for the solution of the system of 

equations. They performed numerical experiments which showed that the sensor model 

offers accurate predictions of the output voltage. 

 In a paper by Alibeigloo and Kani [12], they address the free vibration problem of 

multilayered shells with embedded piezoelectric layers. The variable of the governing 

differential equation were changed to constant, and obtained the natural frequencies from 

the state equations. They investigated the effect of edges conditions, mid-radius to 

thickness ratio, length to mid-radius ratio, and the piezoelectric thickness on vibration 

behavior of a cylindrical shell. They consider simply-supported and clamped-clamped 

boundary conditions. Analytical solution was presented for the case of the simply-

supported edges, whereas for the clamped-clamped boundary condition, differential 

quadrature method is used. They also focused on the influence of the electromechanical 

coupling on the free vibration response of multilayered shells. The relevance of the 

effectiveness of the method in predicting the exact natural frequencies of vibration was 

checked by comparing numerical results for the shell without the piezoelectric layer and 

simply-supported boundary condition with corresponding numerical results from 

previous literature. 

1.2 Thesis Objectives and Significance 

 The vibration response of PVDF piezoelectric film in the context of sensor or 

actuator application is often investigated for structures with infinite radii of curvatures 

such as beams and plates. The objective is to develop a method to calculate the 

piezoelectric film output charge on any type of structure. In this research, a mix of finite 
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element and numerical differentiation and integration methods are utilized in order to 

calculate the output charge of a thin piezoelectric film which is bonded to a shell 

structure. Due to the complexity of structures, simple structures: a beam, a plate, and a 

cylindrical shell are used in this investigation. Generic and shaped films of the 

aforementioned structures are discussed. The proposed method can be applied to 

calculate the output charge of films attached to complex structures or structures with 

complex boundary conditions. An application is cases where close-form equations cannot 

be derived and the only data available are discrete or experimental. Furthermore, the 

proposed method greatly simplifies the design process in sensor design applications 

where the film is often shaped so that its output charge corresponds to a specific 

structural dynamic property. 

1.3 Approach 

 An approach to providing a way to calculate the output charge of a piezoelectric 

sensor can be found by looking at the generic output charge equation as described in 

Chapter II. In the equation, if the displacements are known, then the first and second 

partial derivatives of those displacements can be found, and therefore, the equation can 

be solved numerically. The displacement field can be obtained through measurement or 

finite element analysis. Then, another program, like Matlab, can be used to accomplish 

numerical differentiation and integration required by the piezoelectric charge equation. 

The results of the output charge equation are then obtained. This process is applied to the 

three structures: beam, plate, and cylindrical shell. The generic output charge equation is 

reduced for these structures to find their respective output charge equations, and a 

shaping function is added for the use of a shaped sensor to verify that the proposed 
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method can be applied to non-generic shaped sensors which can be designed to monitor 

specific nodes, such as a quadratic shape which was applied in this present work. This 

research employs ANSYS, a finite element analysis program, in order to model and 

simulate all three of the structures mentioned. Numerical differentiation and integration 

processes are then used with the program, Matlab, to determine the generic and shaped 

sensor output charges corresponding to the displacement frequency response of the 

coupled films‟ structures. The dynamic responses, i.e. natural frequencies and mode 

shapes of the film are finally compared to that of the structure. 

 In contrast to [5], the work in this thesis is focused on simple geometries: beams, 

plates, and cylindrical shells. Also, they use PVDF film as a point sensor, whereas here it 

covers the whole surface; hence, spillover may be reduced in this thesis by the 

implementation of a shaping function. In [6], they do not cover an entire surface with thin 

PVDF film, instead they use pillars of PVDF sandwiched between 2 rigid plates. 

Different from [7], the geometries used here do not include a thin-walled beam, do not 

include an actuator, and the sensor spans the entire length of the substrate. In [8], they 

used a simply supported composite plate; in contrast to work done here, the main focus is 

on a clamped-free aluminum beam, plate, and cylindrical shell. They are also interested 

in active vibration control, so they include an actuator and control algorithms in their 

analysis. In [9], they used three rectangularly-shaped sensors to measure vibration, 

whereas in this work, one sensor will be used which will cover an entire surface of a 

structure and also quadratically-shaped. In contrast to [10], they analyze rings, whereas in 

this work a beam, plate, and cylindrical shell are analyzed. Different from [11], they 

modeled a beam with small rectangularly-shaped sensors all along the length of the beam 
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instead of a sensor which covers the entire surface of a beam. Although, in [12] they 

investigate the vibration of a cylindrical shell, they focus on comparing different 

boundary conditions. They solved an eigenfrequency equation to obtain natural 

frequencies and then obtained state equations. However, they did not use dynamic output 

to numerically solve a film output charge equation in order to capture the dynamic of the 

substrate. 

1.4 Thesis Layout 

 In Chapter II of this thesis, piezoelectric shell vibration theory is introduced. This 

theory employs Love‟s equations of motion, which are used to derive the generic film 

output charge equations for arbitrary curved shells. These equations are simplified for 

cylindrical shells, plates, and beams. Then, a shaping function is added to the generic film 

output charge equation in order to verify that a shaped film can correctly capture the 

dynamic of the substrate. The sensors are assumed to span the entire length of the 

substrates. ANSYS is introduced in Chapter III, discussing the different element types 

involved in this study. Two verification manual test examples are performed and 

discussed which pertain to the simulation of the structures. In Chapter IV, a general 

procedure for the analyses and formulations used in this process are presented from 

ANSYS. In Chapter V, the structures of the aluminum beam, plate, and cylindrical shell 

are modeled and simulated using ANSYS. A random excitation force is applied to the 

structures and the nodal displacements of the structure are exported to Matlab for 

numerical differentiation and integration of the displacements. The output charges of the 

sensors are calculated using the output charge equation for the three structures. The 

modes of the output charge equations are compared to the frequency responses of the 
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structure substrates. This research shows that the proposed method can be an effective 

tool for correctly capturing the modes of a given structure for a given film.  
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CHAPTER II 

PIEZOELECTRIC SHELL VIBRATION THEORY 

 In order to obtain the output charge of a given structure, the development of the 

output charge equation must be the first task. In the equation, if the displacements are 

known, then the first and second derivatives of those displacements can be found, and 

therefore, the equation can be solved numerically. The displacement field can be obtained 

through measurement or finite element analysis. Then, another program, like Matlab, can 

be used to accomplish numerical differentiation and integration required by the equation. 

The results of the output charge equation are then obtained. This chapter discusses the 

general piezoelectric shell vibration theory and a general output charge equation is 

developed. The generic output charge equation is applied to these structures to find their 

respective output charge equations, and a shaping function is added for the use of a 

shaped sensor to verify the method can be applied to non-generic shaped sensors which 

can be designed to monitor specific nodes. 

2.1 Fundamentals 

 In this section, derivations of generic piezoelectric shell theories are reviewed 

based on linear piezoelectricity and Hamilton‟s principle presented by Tzou [13]. Figure 

2.1 depicts a generic piezoelectric shell continuum defined in a tri-orthogonal curvilinear 

coordinate system with 1  and 2  defining the shell neutral surface and 3  the normal 

direction. The shell sensor has a constant thickness S
h  which is much thinner than the 

shell structure and its radii of curvatures, 1R  and 2R , such that the strains in the film are 
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assumed constant and equal to the outer surface strains of the shell. Generic deflections: 

1U , 
2U , and 

3U , in three principal directions, respectively:
1 , 

2 , and 
3 , are assumed 

to be small. The piezoelectric sensor is perfectly coupled with the shell continuum, but 

does not change its dynamic characteristics.  

 

Figure 2.1: A Piezoelectric Sensor Bonded to a Shell Structure 

 In this section, some fundamental physical laws are defined, including Hamilton‟s 

principle which is the fundamental basis of all theoretical derivations performed. 

Hamilton‟s principle is written as: 

 
1

0

ˆ ˆ 0
t

t
dt K U             (2.1) 

where K̂  is the kinetic energy; Û  is the total potential energy (including the mechanical 

energy, electric energy, and work done by externally applied forces and charge);   is the 

variation with respect to the variable that follows, in this case kinetic energy and total 



13 

 

potential energy. For a piezoelectric continuum subjected to a prescribed surface traction 

t  and a surface charge per unit area Q , Hamilton‟s principle states: 

 

 
  

1 1

0 0

1

0

1
,

2

0

t t

j j ij j
t V t V

t

j j j
t S

dt U U dV dt H S E dV

dt t U Q dS

 

 

         

  

   

 
    (2.2) 

where  ,
ij j

H S E  is the electric enthalpy;   is the mass density; 
j

U  is the deflection in 

the 
j

  direction; 
ij

S  is the mechanical strain of the th
i  surface and the th

j  direction; 
j

E  

is the electric field strength in the 
j

  direction; 
j

Q  is the surface charge;   is the electric 

potential; V  is the piezoelectric volume considered; S  is the surface over the volume. 

Electric field 
j

E  and potential   relations in the curvilinear coordinate system are 

defined as: 

 
1

13
1

1

1

1

E

A
R






 

 
 

        (2.3) 

 
2

23
2

2

1

1

E

A
R






 

 
 

        (2.4) 

3

3

E




 
          (2.5) 

where 1A  and 2A  are the Lamé parameters from the fundamental equation: 

     2 2 22 2

1 1 2 2ds A d A d         (2.6) 

1A  and 2A  may also be referred to as the fundamental form parameters and 1R  and 2R  

are the radii of curvatures of 1  and 2  axes, respectively. The Lamé parameters are 
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named after the French mathematician, Gabriel Lamé, well known for his work of 

curvilinear coordinates. From Figure 2.1, the infinitesimal distance between points P  and

'P  can be defined on the neutral surface. The differential change d r  of the vector r

moving from P  to 'P  is 
1 2

1 2

dr dr
dr d d 

 
 
   

[14]. The magnitude ds  of d r  is 

obtained by  2
ds dr dr  . The following can be defined which produces Eq. 2.6: 

2

2

1

1 1 1

r r r
A

  
  

  
    and 

2

2

2

2 2 2

r r r
A

  
  

  
   . 

In general, linear piezoelectric relations of a piezoelectric continuum can be described as: 

        t

ij ij j
T c S e E 

 

       j ij j
D e S E    (2.7) 

where  ij
T  is the stress vector induced by two effects: mechanical and electrical [13]. 

 c  is the elastic constant matrix;  e  is the piezoelectric constant matrix;  ij
S  is the 

mechanical strain of the th
i surface in the th

j  direction;  jE  is the electric field strength 

in the 
j

  direction;  jD  is the electric displacement vector;    is the dielectric 

constant matrix. Eq. (2.7) denotes the converse piezoelectric effect and the direct 

piezoelectric effect. The direct piezoelectric effect is the internal generation of electrical 

charge which is the result of an applied mechanical force. Whereas the converse 

piezoelectric effect is the internal generation of a mechanical strain due to an applied 

electrical field [4]. A piezoelectric material with a symmetrical hexagonal structure 

 6 6
v

C mm  is isotropic in the transverse 3  but is anisotropic in the 1  and 2  
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directions. When an electric field having the same polarity and orientation as the original 

polarization field is placed across the thickness of a piezoelectric shell, the material 

expands along the axis of polarization (thickness direction) and contracts perpendicular to 

the axis of polarization. If it is polarized in the thickness direction,  c ,  e , and    

matrices are defined as [13]: 

 

11 12 13

12 11 13

13 13 33

44

44

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

c c c

c c c

c c c
c

c

c

c

 
 
 
 

  
 
 
 
  

       (2.8)

 

 
15

24

31 32 33

0 0 0 0 0

0 0 0 0 0

0 0 0

e

e e

e e e

 
   
  

       (2.9) 

 
11

11

33

0 0

0 0

0 0

 
    
  

         (2.10) 

where  66 11 12 2c c c  .  Note 31 32e e  for the 6 mm structure. If a piezoelectric material 

is electrically polarized, but is not mechanically stretched in the process, 24 15e e . 

Based on these matrices, enthalpy H can be written as: 

 

 

 

11 11 22 22 12 12 13 13 23 23 33 33

15 1 13 15 2 23 31 3 11 31 3 22 33 3 33

2 2 2

11 1 11 2 33 3

1

2

1

2

H S S S S S S

e E S e E S e E S e E S e E S

E E E

          

    

   

      (2.11) 

The strain-displacement relationships as defined in [14]: 
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 11 11 3 11

3 1

1

1 R
   


 


          (2.12) 

 22 22 3 22

3 2

1

1 R
   


 


          (2.13) 

  12

3 1 3 2

2

3 3 3
12 3 12

1 2 1 2

1

1 1

1 1
2 2

R R

R R R R


 

    


 

    
        
    

        (2.14) 

where the membrane strains are

 

31 2 1
11

1 1 1 2 2 1

1 uu u A

A A A R


 
  
  

 
          (2.15) 

32 1 2
22

2 2 1 2 1 2

1 uu u A

A A A R


 
  
  

 
         (2.16) 

2 2 1 1
12

1 1 2 2 2 1

A u A u

A A A A


 
     
        

         (2.17) 

and where the change-in-curvature terms (bending strains) are 

1 2 1
11

1 1 1 2 2

1 A

A A A

 
 
 

 
 

          (2.18) 

2 1 2
22

2 2 1 2 1

1 A

A A A

 
 
 

 
 

          (2.19) 

2 2 1 1
12

1 1 2 2 2 1

A A

A A A A

 
 

    
                  (2.20)

 

where 1  and 2  represent angles 

31
1

1 1 1

1 uu

R A





 


           (2.21) 
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32
2

2 2 2

1 uu

R A





 


           (2.22) 

Substituting Eq. (2.21) and Eq. (2.22) into Eq. (2.18) gives: 

 3 31 2 1
11

1 1 1 1 1 1 2 2 2 2 2

1 1 1 1u uu u A

A R A A A R A


   
     

            
      (2.23) 

Since 
11S  is equivalent to 11 , when substituting Eqs. (2.15) and (2.23) into Eq. (2.12) 

gives:  

31 2 1
11

3 1 1 1 1 2 2 1

3 31 2 1
3

1 1 1 1 1 1 2 2 2 2 2

1 1

1

1 1 1 1

uu u A
S

R A A A R

u uu u A

A R A A A R A

  


   

  
    

                        

      (2.24) 

Simplifying further: 

 
1 2 1 1

11 3

1 3 1 1 2 2 1

1

1

u u A A
S u

A R A R  
  

      
        (2.25) 

Similarly, 22S  and 33S  , the normal strain components become: 

 
1 2 1 1

11 3

1 3 1 1 2 2 1

1

1

U U A A
S U

A R A R  
  

      
        (2.26) 

 
2 1 2 2

22 3

2 3 2 2 1 1 2

1

1

U U A A
S U

A R A R  
  

      
       (2.27) 

3
33

3

U
S







            (2.28)

  

Substituting Eqs. (2.9) and (2.10) into (2.7) gives: 

15
1 1 13 1 1

11 11

1 e de
E D S E E   

 
         (2.29) 
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15
2 2 23 2 2

11 11

1 e de
E D S E E   

 
         (2.30) 

31 11 31 22 33 33
3 3 3 3

33 33

1 e de S e S e S
E D E E

 
   
 

       (2.31) 

where e

i
E  denotes the electric field induced by an electric displacement; d

i
E  denotes the 

electric field induced by the direct piezoelectric effect  1,2,3i  . These two separate 

effects are further defined as: 

,e i
i

ii

D
E 


  1,2,3i             (2.32) 

15
1 13

11

d e
E S


            (2.33) 

15
2 23

11

d e
E S 


            (2.34) 

31 11 31 22 33 33
3

33

d e S e S e S
E

 
 


          (2.35) 

These fundamental definitions and mechanical/electric relations will be used in 

derivations of piezoelectric shell theories. In order to derive the system electromechanical 

equations and mechanical/electric boundary conditions of the piezoelectric shell 

continuum, all variations in Eq. (2.2) need to be calculated. To find these, the first thing 

that must be looked at is the variation of kinetic energy and followed by energies 

associated with electric enthalpy H , and electric charge Q . A final variational equation 

is derived, which leads to all electromechanical system equations and boundary 

conditions [13]. The variation of kinetic energy K̂  is 
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1 1

0 1 2 3 0 1 2 3

1

0

1 2

3 3
1 2 3

1 2

3
1 1 2 2 3 3 1 2

1

3
1 2 3

2

1ˆ 1
2

1

1 1

t t

j j
t t

t

t v

dt Kdv dt U U A A

d d d
R R

p dt U U U U U U A A
R

d d d
R

     
  

    

  

   

 

  

    
 

  
 

         
   


 



       

 
      (2.36) 

Note that integration by parts was used in the kinetic energy variation. 

Next, the variation of electric enthalpy includes two components: mechanical strains,
ij

S , 

and electric fields, 
j

E . The variation of electric-field energy is derived: 

 

   

   

   

15 13 11 1

13
1

1

15 23 11 2

23
2

2

31 11 31 22 33 33 33 3

3

1

1

1

1

k

k

H
E

E

e S E

A
R

e S E

A
R

e S e S e S E
















 

 
 

 


 
 

 
 


   



        (2.37) 

Using integration by parts, the first term becomes: 
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15 13 11 1 2 2 3
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3
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t

t

t

t
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A
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d d d
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dt e S E A d d
R

e S E A
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      (2.38) 

Proceeding with all terms in Eq. (2.37) yields: 

 

 

 

1

0

1

0 2 3

1

0 1 3

1

0 1 2

3
15 13 11 1 2 2 3

2

3
15 23 11 2 1 1 3

1

3 3
31 11 31 22 33 33 33 3 1 2 1 2

1 2

15 1

1

1

1 1

t

k
t v

k

t

t

t

t

t

t

H
dt E dv

E

dt e S E A d d
R

dt e S E A d d
R

dt e S e S e S E A A d d
R R

e S
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1

0 1 2 3

3
3 11 1 2

2

1

3
15 23 11 2 1

1

2

3 3
31 11 31 22 33 33 33 3 1 2

1 2

1 2 3

3

1

1

1 1

t

t

E A
R

e S E A
R

e S e S e S E A A
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d d d

  









 

   


   
    

   
 



  
    

  


   
         

     



   

(2.39) 

Carrying out the variation of electrical potential energy in the variational equation gives:  
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2 1 1 3

1
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t
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       (2.40) 

Thus, the electric components of variations were carried out.  Derivations of system 

equations of the piezoelectric shell continuum can be proceeded. 

To obtain the charge equation, Eq. (2.41), simply take the fourth term of Eq. (2.39) inside 

the integral. 

   

 

3 3
15 13 11 1 2 15 23 11 2 1

2 1

1 2

3 3
31 11 31 22 33 33 33 3 1 2

1 2

3

1 1

1 1

0

e S E A e S E A
R R

e S e S e S E A A
R R

 

 

 



      
         

        
 

   
       

    


     (2.41) 

Substituting all energy variational terms into Hamilton‟s equation (but only 

observing the electric boundary conditions) yields the last three terms of the 

electromechanical equations. 

 

 

 

  

1

0 1

1

0 2

1

0 3

3
15 13 11 1 1 2 2 3

2

3
15 23 11 2 2 1 1 3

1

31 11 31 22 33 33 33 3 3 1 2

3 3
1 2

1 2

1

1

1

1 0

t

t S

t

t S

t

t S

dt e S E Q A d d
R

dt e S E Q A d d
R

dt e S e S e S E Q A A

d d
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   (2.42) 
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Electric boundary conditions are defined on the outside surfaces of the piezoelectric shell, 

that is, the electric field value is defined along the material interface. 

  3
15 13 11 1 1 2

2

1 0e S E Q A
R

 
    

 
         (2.43a) 

  3
15 23 11 2 2 1

1

1 0e S E Q A
R

 
    

 
      (2.43b) 

   3 3
31 11 31 22 33 33 33 3 3 1 2

1 2

1 1 0e S e S e S E Q A A
R R

   
        

  
  (2.43c) 

Note that the electric boundary conditions in Eqs. (2.43-a,b,c) indicate that the electric 

displacements D
 
on the surfaces are equal to the densities of surface charges  , which is 

defined as the amount of electric charge q
 
that is present on a surface of given area A . 

All 31i

i

A
R

 
 

 
 and 3 3

1 2

1 2

1 1A A
R R

   
   

  
 terms can be removed since 31 0i

i

A
R

 
  

 
 

and 3 3
1 2

1 2

1 1 0A A
R R

   
    

  
, because 

iA  cannot be zero, and 3  nor 
iR  can be a 

negative number. Thus,

 

 15 13 11 1 1 0e S E Q          (2.44a) 

 15 23 11 2 2 0e S E Q          (2.44b) 

 31 11 31 22 33 33 33 3 3 0e S e S e S E Q          (2.44c) 

Since the piezoelectric shell continuum is thin, the transverse shear deformations and 

rotary inertias are neglected. The transverse shear strains are also negligible, i.e., 13 0S   

and 23 0S  . Also, the in-plane electric fields 1E  and 2E  are neglected and only the 
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transverse electric field 
3E  is discernible; Eq. (2.41), the charge equation of 

electrostatics, becomes [15]: 

  3 3
31 11 32 22 33 3 1 2

3 1 2

1 1 0e S e S E A A
R R

 


  
         

   (2.45) 

3 iR  , curvature effect can be neglected: 

31 1
iR

 
  

 
         (2.46) 

In sensor applications, it is assumed there are no externally applied electric boundary 

conditions in an open-circuit condition: 

31 11 32 22 33 3 0e S e S E          (2.47) 

Integrating over the piezoelectric layer thickness yields: 

  
3 3

31 11 32 22 3 33 3 3 0e S e S d E d
 

          (2.48) 

Integrating the electric field 3E  gives the electric potential: 

 
3

3 3 3E d


           (2.49) 

  
3

3 31 11 32 22 3

33

1
e S e S d


   

        (2.50) 

For spatially distributed piezoelectric shell sensor continuum with an effective surface 

electrode area e
S , the total signal output 3

S  is: 

 

 
3

3 3
3 1 2 1 2

1 2

3 3
31 11 32 22 1 2 1 2 3

33 1 2

1 1

1
1 1

e

e

S

S

S

A A d d
R R

e S e S A A d d d
R R

   

    

  
   

  
  

         



 
  (2.51)  
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Note: 3

1

1
R


 , 3

2

1
R




 

Taking the surface average over the entire electrode area e
S , neglecting curvature effect: 

 
 

3
31 11 32 22 1 2 1 2 3

3

33

e
SS

e

e S e S A A d d d

S


  




 


 
     (2.52) 

Note that

 

3 3
1 2 1 21 1

e

e

S
A A d d S

R R

         
   , the effective electrode area. For a thin 

shell continuum, normal strains can be further divided into two strain components: 

membrane strains, 
ii

S
 and bending strains, 

ii :        

 
11 11 3 11S S            (2.53) 

 
22 22 3 22S S            (2.54) 

 Membrane strain is defined as average strain throughout the thickness of a shell, 

plate, or beam and occurs during in-plane expansion and contraction. Bending strain 

occurs during bending applications and is calculated by determining the relationship 

between the force and the amount of bending which results from it. For distributed 

sensors made of symmetrical hexagonal piezoelectric materials, the piezoelectric 

constants 31 32e e . Thus, the sensor output signal becomes: 

   
3

3 31 11 22 3 11 22 1 2 1 2 3

33

1 S

e

h
S

e S
e S S A A d d d

S 
                  (2.55) 

The membrane strains 
ii

S


 

and bending strains ii
 

can be further expressed as a function 

of three neutral-surface displacements, 1u , 2u , and 3u , in the three axial directions: 

31 2 1
11

1 1 1 2 2 1

1 uu u A
S

A A A R 
  
  

 
       (2.56) 



25 

 

32 1 2
22

2 2 1 2 1 2

1 uu u A
S

A A A R 
  
  

 
      (2.57) 

3 31 2 1
11

1 1 1 1 1 1 2 2 2 2 2

1 1 1 1u uu u A

A R A A A R A


   
     

            
   (2.58) 

3 32 1 2
22

2 2 2 2 2 1 2 1 1 1 1

1 1 1 1u uu u A

A R A A A R A


   
     

            
   (2.59) 

Substituting Eqs. (2.56), (2.57), (2.58), and (2.59) into Eq. (2.55) gives the general sensor 

equation: 

3

31 2 1
3 31

33 1 1 1 2 2 1

3 31 2 1
3

1 1 1 1 1 1 2 2 2 2 2

32 1 2
32

2 2 1 2 1 2

32
3

2 2 2 2 2 1

1 1

1 1 1 1

1

1 1 1

S

e

h
S

e S

uu u A
e

S A A A R

u uu u A

A R A A A R A

uu u A
e

A A A R

uu

A R A A A




 


   

 


 

          
      

                 
  

    

 
     

 

31 2
1 2 1 2 3

2 1 1 1 1

1 uu A
A A d d d

R A
  

 

              

(2.60) 

Note that the Lamé parameters, the iA s, and radii of curvatures, the iR s, are geometry 

dependent, e.g., 1 2 1A A   and 1 2R R   for a rectangular plate; 1 1A  , 2A R , 

1R   , and 2R R  for a cylindrical shell, etc. Thus, the sensor equation can be further 

simplified based on these four parameters defined for the geometries. The next section 

introduces shaping functions to the sensor equation which can be used to specify a certain 

sensor shape. 

2.2 Distributed Sensing of Elastic Shells 

 Observation spillover in a control system can give unwanted dynamic responses, 

thus, it is beneficial that sensors only monitor those modes which need to be controlled, 
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so that spillover is prevented. However, sensors respond to the unconrolled residual 

modes as well as the controlled modes. There are techniques which can reduce this 

occurrence; one such method is to use spatially distributed modal sensors which only 

respond to a structural mode or group of modes. In this section, detailed electromechanics 

of generic distributed shell sensors/actuators for modal sensing and control are studied. 

2.2.1 Generic Shape 

 A piezoelectric film is bonded to a flexible shell continuum. In a generic case, the 

film covers the entire surface of the structure. The piezoelectric film is perfectly coupled 

with the shell continuum, but does not change its dynamic characteristics, such as natural 

frequencies and mode shapes. The top piezoelectric layer on the generic shell distributed 

sensor/actuator system serves as a distributed sensor. In this section, a distributed sensing 

theory based on the direct piezoelectric effect and the shell strains/deformations is 

presented. It is assumed that the distributed piezoelectric layer is much thinner than that 

of the shell structure. Therefore, the piezoelectric strains are the same as the outer surface 

strains of the shell. For such thin film, only the transverse electric field 3E  is considered 

and thus the voltage across the electrodes can be obtained by integrating the electric field 

over the thickness of the piezoelectric sensor layer as shown in Eq. (2.61). 

3 3

Sh

E d           (2.61) 

where S
h  is the piezoelectric sensor thickness. Using Figure 2.1, Eq. (2.61) can be 

expressed in terms of normal strains in the sensor: 11

S
S  and 22

S
S  in the direction of 1  and 

2 , respectively, and dielectric displacement 3D . 

 3 31 11 32 22 33 3

S S S
h h S h S D          (2.62) 
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where 
33  and 

ij
h  denote respectively the impermeability and the strain charge 

coeffiecients of the piezoelectric sensor. It is assumed that the piezoelectric material is 

not sensitive to in-plane twisting shear strain 
12S . Also, since the shell is thin, the 

transverse shear strains 
13S  and 

23S  are neglected. The piezoelectric sensor layer is 

coupled with the elastic shell; thus, the normal strains in the sensor layer can be estimated 

by: 

3 31 2 1 1
11 1

1 1 1 2 2 1 1 1 1 1 1

31 2

1 2 2 2 2 2

1 1 1
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S Su uu u A u
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  (2.64) 

where 
1

S
r  and 

2

S
r  denote the distances measured from the neutral surface to the mid-

plane of the sensor layer. Rearranging Eq. (2.62), the electric displacement 
3

S
D  can be 

written as: 

3
3 31 11 32 22

33

1S S S

S
D h S h S

h




    
 

      (2.65) 

Since 3

S
D  is defined as the charge per unit area, Eq. (2.64) can be integrated over the 

electrode surface e
S  to estimate a total surface charge. An open-circuit voltage S  

condition can be obtained by setting the charge zero: 
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Substituting the strains into Eq. (2.65) yields the distributed sensor output  1 2,S    in 

terms of displacements and other system parameters. 
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  (2.67) 

 Eq. (2.67) relates the piezoelectric film ouput charge to the dynamic of the 

substrate shell structure. From this equation, many sensors and actuators have been 

developed using experimental, simplified analytical, and finite element approaches. The 

goal here is to develop a technique that uses a combination of numerical and 

experimental methods for sensors or actuators design.  

2.2.2 Spatial Thickness Shaping 

 Distributed piezoelectric shell layers can be either embedded or surface bonded 

with a flexible elastic shell, and the layers are used as distributed sensors. For a spatially 

distributed piezoelectric shell convolving sensor, a weighting function  1 2,W    and a 

polarity function  3 1 2sgn ,U      can be added to the generic shell sensor equation, Eq. 

(2.67). Also, a  sgn   denotes a signum function can be used to change the piezoelectric 
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polarity, in which  sgn 1   when   0  , 0 when   0  and 1  when   0  . 

 3 1 2,U    denotes a transverse modal function, mode shape function. Two weighting 

functions are discussed: thickness shaping and surface shaping. In thickness shaping, it is 

assumed that the thickness of the piezoelectric shell is a spatial function.  

 

Figure 2.2: Spatial Thickness Shaping 

In spatial thickness shaping, the sensor thickness varies over the effective sensor area. 

Figure 2.2 illustrates the thickness shaping of distributed shell sensors. The piezoelectric 

shell sensor thickness is a spatial function  1 2,
t

W   . Thus, the sensor equation, Eq. 

(2.51), becomes: 
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  (2.68) 

where e
S  denotes the effective sensor area or electrode area and 1r  is the distance 

measured from the shell neutral surface to the bottom of the piezoelectric sensor layer. 
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Note that the first term inside the second set of square brackets is contributed by the 

membrane strains and the second by the bending strains. The total output signal is 

contributed by the sum of membrane and bending strains.  

2.2.3 Spatial Surface Shaping 

 In the second case, the piezoelectric shell thickness is assumed constant. The 

piezoelectric film does not usually cover the entire surface of the substrate flexible shell 

structure. The film is shaped such that the output charge represents the desired dynamic 

characteristics of the structure. Figure 2.3 illustrates the surface shaping of a shell sensor. 

Sensor shape can be designed by using the weighting shape function  1 2,
S

W   . 
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     (2.69)  

 

Figure 2.3: Spatial Surface Shaping 

Hence, the generic sensor equation does not include a shape function, so the film 

covers the whole structure. As for the shaped sensor equation, it does have a shape 
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function, so the film covers a certain area of the structure. For this thesis, a surface 

shaped sensor will be utilized along with the generic shape of all three of the named 

structures. Considering Eq. (2.67) as the output of the piezoelectric film can be calculated 

analytically for simple structures such as beams, plates, and cylinders if 
1u , 

2u , 
3u  are 

known. However, for complicated structures and boundary conditions, analytical solution 

is impossible, but using numerical integration, the charge   could be calculated. In this 

approach, it is assumed that the structure displacement field can be obtained either 

experimentally or with finite element analysis. The spatial double derivatives are then 

computed before the numerical integration. Next, the generic sensor output charge 

equation is reduced for a cylindrical shell, plate, and beam. 

2.3 Cylindrical Shell 

 The generic sensor theory can be applied to other geometries with curvature, such 

as a cylinder, sphere, ring, cylindrical shell, etc. Here, a cylindrical shell is discussed. A 

cylindrical shell is a special case of the generic shell continuum defined by a three tri-

orthogonal axes 1 , 2 , and 3 . The cylindrical shell can be defined in a cylindrical 

coordinate system where the z-axis 1( )  is aligned with the length, the second axis 

2( ) defines the circumferential direction and the third axis 3( )  is normal to the neutral 

surface. For a generic sensor case, the sensor would cover the entire outer surface of the 

shell; Figure 2.4 shows the cylindrical shell with a piezoelectric shaped sensor adhered to 

the top half of it.  
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Figure 2.4: Cylindrical Shell with a Shaped Sensor Adhered 

It has Lamé parameters: 1 1A   and 2A R , and radii of curvatures: 1R    and 2R R . 

Substituting these four parameters into the generic shell sensor equation Eq. (2.67) gives:  
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Simplifying Eq. (2.70), where 
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Converting from curvilinear to cylindrical coordinates gives: 
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Where 0, 0R
u u

R z

 
 


 and multiplying through gives: 
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Which can be expanded to: 
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   (2.75) 

 It is observed that the transverse direction, when the cylindrical shell is under 

loading, exhibits greater displacement than that of the other two directions. Therefore, it 

is proposed that the cylindrical shell can be observed as the shape of a plate in order to 

visualize the shape of the sensor. Hence,
 2( )F k x Lx 

 
for a beam by Lee and Moon 
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[16],  is also used for the shaping function of the piezoelectric sensor for a cylindrical 

shell, because of existing previous research on the shaped film in order to verify that a 

shaping function can correctly capture the dynamic of the structure [16]. 

2.4 Plate Substrate 

 The next case is a zero-curvature shell, a plate. The general sensor equation can 

be applied here as well. In this section, the development of the generic sensor output 

charge equation for a plate is presented. 

 The Lamé paramters are derived from the fundamental equation 

         2 2 2 2 2
1 1ds dx dy   and therefore 1 2 1A A  and 1 2R R  . Substituting 

these values into Eq. (2.67) gives the piezoelectric film output charge as:  
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Simplifying Eq. (2.76), where 
 

1,2,3
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gives: 
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The plate can be defined in a coordinate system where the x-axis 
1( )  is aligned 

with the length, the y-axis 
2( ) defines the width and the third axis 

3( )  is normal to the 

neutral surface. Eq. (2.77) can further be simplified, where the plate, shown in Figure 2.6, 

experiences only a transverse vibration, where 1 2

1 2

0
u u
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The generic sensor output charge equation for a plate becomes: 
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      (2.79) 

Research has been done on known film shapes for a plate. Zahui and Wendt [17] 

proposed the following equation: 
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    (2.80) 

Where xL  and 
y

L  are the dimensions of the plate in the x  and y  directions, 

respectively. ( , )sW x y  is the surface shaping function of the plate and h  is given by the 

following equation: 

2

p sh h
h


          (2.81) 

Where 
p

h  and sh  define the plate and sensor thicknesses, respectively. 
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Figure 2.5: A Rectangular Plate Bonded with a Piezoelectric Sensor 

 As for the shaped sensor for the plate, the equation for the shape of a beam as 

proposed by Lee and Moon [16], can be applied for a plate. Hence, in this research, the 

shape in Figure 2.6 will be used in this method, because of previous research done on the 

known film shape. 

2.3 Beam Substrate 

 The general sensor equation can be applied to a beam structure. In this section, the 

generic and shaped sensor output charge equations for a beam are presented [13]. 

 Note that the plate can be reduced to a beam by considering only one effective 

axis, in this case, the x direction. Thus, the generic sensor output equation, Eq. (2.67) 

becomes: 

2

3
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ubh
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        (2.82) 

where b  is the beam width and x  defines the sensor length in the x direction. 

In a paper by Lee and Moon [16], it is reported that the electrical charge of an arbitrarily 

shaped PVDF sensor applied to a beam of length as 

31
0

( ) ( ) ''( )S

b s
h h h W x z x dx           (2.83) 
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where here, 
bh  and 

sh  are the beam and the PVDF sensor thicknesses, respectively. 
31h  is 

the PVDF sensor stress/charge coefficient, ''( )z x  is the second derivative of the 

displacement field, and ( )W x  represents the function describing the shape of the PVDF 

sensor. This shape covers the beam surface between ( )W x  and ( )W x  as pictured in 

Figure 2.5. 

 

Figure 2.6: Top View of Beam with Shaped PVDF Sensor 

 The shape of the PVDF film is defined as ( )W x  to be quadratic in the x  direction 

and to be independent of y . Hence, the shape in Figure 2.6 will be used in this method, 

because of previous research done with the known film shape [18] [19]. 

 The equation from which the frequency response and sensor output charge are 

compared, Equation 2.67, is used in conjunction with the aforementioned sensor shape 

function. In Chapter V, a beam, a plate, and a cylindrical shell are modeled and simulated 

in ANSYS. Their displacements are then read into Matlab, numerical differentiation and 

integration are performed in which the results are used in the generic and shaped sensor 

equations, and their results are presented. In Chapter III, the finite element program 

ANSYS is introduced, discussing the different element types involved. Also, two 

verification manual test examples are performed and discussed which pertain to the 

simulation of the stuctures.
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CHAPTER III 

INTRODUCTION TO FINITE ELEMENT ANALYSIS AND SIMULATION 

 Finite Element Analysis (FEA) is a numerical technique used to approximate 

solutions of partial differential equations. ANSYS is an engineering simulation program 

which uses FEA to simulate interactions of all disciplines of physics, structural, vibration, 

fluid dynamics, thermal, and electromagnetic. This chapter introduces Frequency 

Response Function (FRF), ANSYS finite element analysis methods used in this work for 

analysis and simulation, the different elements involved, and a couple of the verification 

manual examples are presented [20].  

3.1 Analysis Methods  

 In order to obtain the required displacements for numerical differentiation and 

integration, the Frequency Response Function of the structure must first be obtained. FRF 

is a tool for performing vibration analysis and testing. FRF is defined as the measure of 

the output spectrum of a system in response to an input. It is used to characterize the 

dynamic of the system over a range of frequencies. FRF is a transfer function, expressed 

in the frequency-domain. It can be created from either measured data or analytical 

functions. FRF expresses the structural response, in this case displacement, to an applied 

force as a function of frequency. FRF requires three analyses: modal analysis, harmonic 

analysis, and spectrum analysis. The first step to computing the FRF is to perform a 

modal analysis, which is used to calculate the natural frequencies and mode shapes of a 
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structure. Then, a spectrum analysis is performed, which is an extension of the modal 

analysis; it is used to calculate stresses and strains due to a response spectrum or a Power 

Spectral Density (PSD) input. Then a harmonic analysis is performed, which is used to 

determine the response of a structure to harmonically time-varying loads. The final 

solution of FRF is achieved as the sum of influence from all the involved modes. These 

analyses are discussed more in depth in Chapter IV. 

3.2 ANSYS Element Characteristics 

3.2.1 Element Type 

 There are many types of elements within ANSYS. Element types may be defined 

in input files with the ANSYS command “ET” where the element type is defined in the 

element library.  Information derived from the element type is used for succeeding 

commands. An element type may be identified by an element name or a number which is 

given in the element library. The elements used in these simulations are BEAM4 and 

SHELL63, which will be further discussed later. 

3.2.2 Element Degrees of Freedom 

 Each element type has a set of degrees of freedom, which are the primary nodal 

unknown values of the field variable. These may be displacements, rotations, 

temperatures, pressures, voltages, etc. Results, such as stresses, strains, heat flows, etc., 

may be derived from these degree of freedom results. Degrees of freedom are not defined 

on the nodes explicitly by the user, but rather are implied by the element types attached to 

them. Hence, it is important which element type is chosen. 
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3.2.3 Element Real Constants 

 Element real constants are properties that depend on the element type, such as 

cross-sectional properties of a beam element. Each element type has a different set of real 

constants. Real constants are required values of data used for calculations. The real 

constant command in ANSYS for input files is given by “R”.  Real constant values may 

be interpreted as area, thickness, stiffness, moment of inertia, etc.   

3.2.4 Element Material Properties 

 An element type may have various material properties. These may include 

Young‟s Modulus of elasticity, density, coefficient of thermal expansion, thermal 

conductivity, etc. Each property is referenced by an ANSYS label; for example, EX, EY 

and EZ are for the directional components of Young‟s Modulus. Material properties may 

be accessed by the command “MP” when using an input file. 

3.2.5 Node and Element Loads 

 There are two types of loadings: nodal and element. Nodal loads are defined at the 

nodes and are not directly related to the elements. These nodal loads are associated with 

the degrees of freedom at the node and are typically entered with the commands “D” and 

“F”, which specify nodal constraints and nodal force loads, respectively. Element loads 

are surface loads, body loads and inertia loads. Surface loads may be specified as 

pressures for structural elements, convections for thermal elements, etc. which may be 

input in a nodal format or an element format. Body loads are temperatures for structural 

elements, heat generation rates for thermal elements, etc. Either the nodal or the element 

loading format may be used for an element, with the element format taking precedence.  
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3.2.6 Element KEYOPT Options 

 Each element type may also have additional options, known as KEYOPTs, which 

are the key options specified according to each element type and can be switched on or 

off, whichever is required. Some element types have many key options, including 

element stiffness, stiffness matrix, extra displacement shapes, printouts, reduced or 

consistent pressure loading, etc. KEYOPT(1) indicates the first key option, KEYOPT(2) 

for the second, and so forth. From KEYOPTS (1) to (6), the ET command may be used; 

after that, KEYOPT(7) or greater must use the “KEYOPT” command. For example, 

KEYOPT(9) for BEAM4 allows the user to choose results to be calculated at 

intermediate locations on each element, and KEYOPT(3) for SHELL63 allows the user to 

suppress extra displacement shapes. 

3.3 Structural Elements 

 In this present work, when modeling the beam, plate, and shell in ANSYS, two 

element types are utilized: BEAM4 and SHELL63. BEAM 4 is used in the beam 

application, whereas SHELL63 is used in the plate and cylindrical shell applications. 

Before these elements can be used, an understanding of their element characteristics must 

first be gained. In the following sections, each will be discussed. 

3.3.1 BEAM4 

 BEAM4 is a uniaxial element with tension, compression, torsion, and bending 

capabilities. The BEAM4 element has six degrees of freedom at each node: translations 

in the x, y, and z directions and rotations about the x, y, and z axes. It also includes stress 

stiffening and large deflection capabilities. A consistent tangent stiffness matrix option is 

available for use in large deflection analyses. This matrix is used in nonlinear problems; 
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it is comprised of the main tangent stiffness matrix, the initial displacement matrix, initial 

stress matrix, and the initial load matrix. The geometry, node locations, and coordinate 

system for this element are shown in Figure 3.1. 

 

Figure 3.1: BEAM4 Geometry 

The element is defined by two or three nodes, the cross sectional area, two area moments 

of inertia, two thicknesses, an angle of orientation about the element x-axis, the torsional 

moment of inertia, and the material properties. The element x-axis is oriented from node I 

toward node J. 

Element Loads: Most loads can either be applied on the solid model, on keypoints, lines, 

and areas, or on the finite element model, on nodes and elements. For example, forces 

can be specified at a keypoint or a node. Similarly, surface loads can be specified on lines 

and areas or on nodes and element faces. Pressures may be input as surface loads on 
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element faces as shown in Figure 3.1. Positive normal pressures act into the element. 

Lateral pressures are input as a force per unit length. End “pressures” are input as a force.  

Table 3.1: BEAM4 Real Constants 

No. Name Description 

1 AREA Cross-sectional area 

2 IZZ Area moment of inertia 

3 IYY Area moment of inertia 

4 TKZ Thickness along Z axis 

5 TKY Thickness along Y axis 

6 THETA Orientation about X-axis 

7 ISTRN Initial Strain 

8 IXX Torsional moment of inertia 

9 SHEARZ Shear deflection constant Z 

10 SHEARY Shear deflection constant Y 

11 SPIN Rotational frequency 

12 ADDMAS Added mass/unit length 

 

Special Features: The BEAM4 element has special features of stress stiffening, large 

deflection, and element birth and death. Stress stiffening is the stiffening of a structure 

due to its stress state. This effect usually needs to be considered for thin structures with 

bending stiffness very small compared to axial stiffness, such as cables, thin beams and 

shells. The stress stiffening effect also changes the regular nonlinear stiffness matrix 

produced by large strain or large deflection effects. Element birth and death options may 
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be used to deactivate or reactivate selected elements if certain elements in a model may 

become existent or nonexistent when material is added or removed from a system. 

Table 3.2: KEYOPT Options for BEAM4 

KEYOPT (2) 

Stress stiffening option 

0: Use only the main tangent stiffness 

matrix when large deflection is ON. 

1: Use the consistent tangent stiffness 

matrix when large deflection is ON. 

2: Use to turn off consistent tangent 

stiffness matrix. 

KEYOPT(7) 

Gyroscopic damping matrix 

0: No gyroscopic damping matrix 

1: Compute gyroscopic damping matrix. 

Real constant SPIN must be greater than 

zero. IYY must equal IZZ. 

 

KEYOPT(6) 

Member force and moment output 

0: No printout of member forces or 

moments 

1: Print out member forces and moments 

in the element coordinate system 

KEYOPT(9) 

Output at intermediate points between 

ends I and J 

N: Output at N intermediate locations 

(N= 0, 1, 3, 5, 7, 9) 

 

 

Output Data 

The maximum stress is computed as the direct stress plus the absolute values of both 

bending stresses. The minimum stress is the direct stress minus the absolute value of both 

bending stresses. The stress output of the BEAM4 element is illustrated in Figure 3.2. 

 

Figure 3.2: BEAM4 Stress Output 
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Assumptions 

 The BEAM4 element has some assumptions associated with it. The beam must 

not have a zero length or area. However, the moments of inertia may be zero if large 

deflections are not used. The beam can have any cross-sectional shape for which the 

moments of inertia can be computed. However, the stresses will be determined as if the 

distance between the neutral axis and extreme fiber is one-half of the corresponding 

thickness. The element thicknesses are used only in the bending and thermal stress 

calculations. The applied thermal gradients are assumed to be linear across the thickness 

in both directions and along the length of the element. If the consistent tangent stiffness 

matrix is used, element real constants should be realistic, because the consistent stress-

stiffening matrix is based on the calculated stress in the element; hence, the calculated 

stress will become inaccurate. Eigenvalues calculated in a gyroscopic modal analysis can 

be very sensitive to changes in the initial shift value, leading to potential error in either or 

both the real or imaginary parts of the eigenvalues. 

Restrictions  

 There are also restrictions associated with ANSYS Professional using the BEAM4 

element. The SPIN real constant is not available. The damp material property is not 

allowed. The only special features allowed are stress stiffening and large deflections. 

KEYOPT(2) and (7) can only be set to 0, the default. 

3.3.2 SHELL63 

 SHELL63 is a shell structural element which has both bending and membrane 

capabilities. When modeled, it has the appearance of a thin sheet; Figure 3.3 gives a 

visualization of the SHELL63 geometry. Both in-plane and normal loads are permitted. 
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SHELL63 has six degrees of freedom at each node: displacements in the nodal x, y and z 

directions and rotations about the nodal x, y and z axes. Stress stiffening and large 

deflection capabilities are included. A consistent stiffness matrix option is available for 

use in large deflection analyses.  

 

Figure 3.3: SHELL63 Geometry 

Xij = Element x-axis if ESYS (Element Coordinate System) is not supplied. 

X = Element x-axis if ESYS is supplied. 

SHELL63 element is defined by four nodes: I, J, K and L, each with a thickness. The 

thickness is assumed to vary smoothly over the area of the element, with the thickness 

input at the four nodes. If the element has a constant thickness, only TK(I) needs to be 

input. Conversely, if the thickness is not constant, then all four thicknesses need input.  

Element Loads: Pressures may be input as surface loads on the element faces as shown 

on Figure 3.3. Positive pressures act into the element. Because shell edge pressures are 

input on a per-unit-area basis, per-unit-area quantities must be multiplied by the shell 

thickness.  
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Table 3.3: SHELL63 Real Constants 

No. Name Description 

1 TK(I) Shell thickness at node I 

2 TK(J) Shell thickness at node J 

3 TK(K) Shell thickness at node K 

4 TK(L) Shell thickness at node L 

5 EFS Elastic foundation stiffness 

6 THETA Element X-axis rotation 

7 RMI Bending moment of inertia ratio 

8 CTOP Distance from mid surface to top 

9 CBOT Distance from mid surface to bottom 

10,…,18 (Blank) -- 

19 ADMSUA Added mass/unit area 

 

Special Features: The SHELL63 element has the features of stress stiffening, large 

deflection and element birth and death. Stress stiffening is the stiffening of a structure 

due to its stress state. This effect usually needs to be considered for thin structures with 

bending stiffness very small compared to axial stiffness, such as cables, thin beams and 

shells. The stress stiffening effect also changes the regular nonlinear stiffness matrix 

produced by large strain or large deflection effects. Element birth and death options may 

be used to deactivate or reactivate selected elements if certain elements in a model may 

become existent or nonexistent when material is added or removed from a system. 
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Table 3.4: KEYOPT Options for SHELL63 

KEYOPT (1) 

Element stiffness 

0: Bending and membrane stiffness 

1: Membrane stiffness only 

2: Bending stiffness only 

KEYOPT(7) 

Mass matrix 

0: Consistent mass matrix 

1: Reduced mass matrix 

 

KEYOPT (2) 

Stress stiffening option 

0: Use only the main tangent stiffness 

matrix when large deflection is ON. 

1: Use the consistent tangent stiffness 

matrix when large deflection is ON. 

2: Use to turn off consistent tangent 

stiffness matrix. 

KEYOPT(8) 

Stress stiffness matrix 

0: “Nearly” consistent stress stiffness 

matrix (default) 

1: Reduced stress stiffness matrix 

KEYOPT(9) 

Element coordinate system defined 

0: No user subroutine to define element 

coordinate system. 

4: Element x-axis located by user 

subroutine. 

KEYOPT(3) 

0: Include extra displacement shapes 

1: Suppress extra displacement shapes 

2: Include extra displacement shapes KEYOPT (11) 

Specify data storage 

0: No user subroutine to define element 

coordinate system 

2: Store data for TOP, BOTTOM, and 

MID surfaces. 

 

KEYOPT(5) 

Extra stress output 

0: Basic element printout 

1: Nodal stress printout 

KEYOPT(6) 

Pressure loading 

0: Reduced pressure loading 

1: Consistent pressure loading 

 

Output Data 

 The solution printout includes the moments about the x face, the moments about 

the y face, and the twisting moment. The moments are calculated per unit length in the 

element coordinate system. The element stress directions are parallel to the element 

coordinate system. The stress output of the SHELL63 element is shown in Figure 3.4. 
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Figure 3.4: SHELL63 Stress Output 

Assumptions 

 There are some assumptions associated with the SHELL63 element. Zero area 

elements are not allowed; this occurs most often whenever the elements are not numbered 

properly. Also, zero thickness elements or elements tapering down to a zero thickness at 

any corner are not allowed. The applied transverse thermal gradient is assumed to vary 

linearly through the thickness and vary bilinearly over the shell surface. An assemblage 

of flat shell elements can produce a good approximation of a curved shell surface 

provided that each flat element does not extend over more than a 15° arc. If an elastic 

foundation stiffness is input, one-fourth of the total is applied at each node. Shear 

deflection is not included in this thin-shell element. A triangular element may be formed 

by defining duplicate K and L node numbers. The extra shapes are automatically deleted 

for triangular elements so that the membrane stiffness reduces to a constant strain 

formulation. For KEYOPT(1) = 0 or 2, the four nodes defining the element should lie as 

close as possible to a flat plane for maximum accuracy; however, a moderate amount of 

warping is permitted. For KEYOPT(1) = 1, the warping limit is very restrictive. In either 
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case, an excessively warped element may produce a warning or error message. If the 

lumped mass matrix formulation is specified, the effect of the implied offsets on the mass 

matrix is ignored for warped SHELL63 elements.  

Restrictions 

 There are also restrictions associated with ANSYS Professional using the 

SHELL63 element. The damp material property is not allowed. The only special features 

allowed are stress stiffening and large deflection. KEYOPT(2) and (9) can only be set to 

0, the default. 

3.4 ANSYS Verication Manual Test Examples 

 The primary purpose of this manual is to demonstrate a wide range of ANSYS 

elements and capabilities in straightforward problems which have readily-obtainable 

theoretical solutions. Furthermore, the close agreement of the ANSYS solutions to the 

theoretical results in the verification manual is intended to provide confidence in the 

ANSYS solution. These problems are served as the basis for additional validation and 

qualification of ANSYS capabilities for the application of interest in this work [20]. 

3.4.1 VM19: Random Vibration Analysis of a Deep Simply-Supported Beam 

Power Spectral Density (PSD) 

 The power spectral density (PSD) describes how the power of a signal or time 

series is distributed with frequency. Mathematically, it is defined as the Fourier 

Transform of the autocorrelation sequence of the time series. An equivalent definition of 

PSD is the squared modulus of the Fourier transform of the time series, scaled by a 

proper constant term. The Fourier transform and PSD are defined as in Eq. (3.1). 

Mathematically, the definition of the complex spectrum of a sound x(t) in the time range 

(t1, t2) is given by Eq. (3.1 ). 
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                                                                                 (3.1) 

For a sound x(t), defined for all times t in the domain (t1, t2) the complex spectrum X(f) for 

any frequency f is the Fourier transform of x(t), in the two-sided frequency domain 

( , )F F  , with a negative exponent is defined in Eq. (3.1). If x(t) is expressed in units of 

Pascal, X(f) is expressed in units of Pa/Hz. From the complex spectrum the one-sided 

power spectral density in HzPa /2
 can be computed as 

PSD
2

2 1( ) 2 ( ) ( )f X f t t                                                                            (3.2) 

where the factor 2 is due to adding the contributions from positive and negative 

frequencies. 

Test Example 

 In this test example, a deep simply-supported square beam is reviewed. The 

ANSYS input log file for VM19 is listed in Appendix A. The beam is of length 10m  

and has a square cross-sectional area of thickness 2.0t m . The beam is subjected to 

random force power spectral density. There are three analysis types used: Mode-

Frequency, Spectrum Analysis and Harmonic Analysis. The element type used is 3-D 

Elastic Beam, or BEAM4. The peak response PSD value is to be determined. The simply-

supported beam finite element model and PSD is shown in Figure 3.5. 

 

Figure 3.5: Simply-Supported Beam Problem Sketch 
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Material Properties and Loading 

Young‟s Modulus 9 2200 10 /E N m   

Poisson‟s Ratio 3.0  

Mass Density 38000 /m kg m  

6 2 2(10 / ) /PSD N m Hz  

Damping 02.0  

Analysis Assumptions and Modeling 

 All degrees of freedom in the Y direction are selected as master degrees of 

freedom. A frequency range of 0.1Hz  to 70Hz  is used as an approximation of the white 

noise PSD forcing function frequency. White noise is a random signal with a flat power 

spectral density. The signal contains equal power within a fixed bandwidth at any center 

frequency. 

Table 3.5: Result Comparison for VM19 

Description Analytical ANSYS Ratio 

Modal Frequency f (Hz) 42.65 42.66 1.00 

PSD Freq (Hz) 42.66 42.64 1.00 

Peak Deflection PSD (mm
2
/Hz) 180.9 179.36 0.99 

Peak Stress PSD (N/mm
2
)

 2
/Hz 58516. 58533. 1.00 

 

3.4.2 VM203: Dynamic Load Effect on Supported Thick Plate 

 In this ANSYS test case, a simply-supported thick square plate is subject to 

random uniform pressure power spectral density in order to determine the peak one-

sigma, or one standard deviation, displacement at undamped natural frequency. The 

results follow a Gaussian distribution; 68.3% of the time the response will be less than 

the standard deviation value. The dimensions of the plate are 10m  and 1.0t m . The 
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analysis types used are Mode-Frequency, Spectrum Analysis and Harmonic Analysis. A 

modal analysis of the structure should be initially performed to provide information about 

the structure‟s dynamic behavior; determining the mode frequencies and mode shapes. 

Then, a harmonic analysis should be performed to analyze the steady-state behavior of a 

structure subject to cyclic loads. Lastly, a spectral analysis studies the response of a 

structure under the action of loads with known “spectra,” for example, random loading 

conditions. The element type used is the 8-Node Finite Strain Shell Elements, or 

SHELL281. The problem sketch is shown in Figure 3.6. The ANSYS input log file for 

VM203 is listed in Appendix B. 

 

Figure 3.6: Thick Square Plate Problem Sketch 

Material Properties and Loading 

Young‟s Modulus 9 2200 10 /E N m   

Poisson‟s Ratio 3.0   

Mass Density 38000 /m kg m  

6 2 2(10 / ) /PSD N m Hz  

Damping 02.0  

Analysis Assumptions and Modeling 

 When conducting a modal analysis, an option is to use the reduced mode 

extraction method; this requires that all degrees of freedom, in this case in the z direction, 
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are selected as master degrees of freedom. Equivalent nodal forces are obtained from a 

uniform pressure load by a static run with all UZ degrees of freedom constrained. A 

frequency range of 1.0Hz  to 80Hz  is used as an approximation of the white noise PSD 

forcing function frequency. Equivalent analyses are done with Spectrum and Harmonic 

analyses to compare the peak one-sigma standard deviation. Results from the output are 

compared to analytical values in Table 3.6, which show that the analytical values are 

0.1% and 5.7% off the ANSYS values, respectively. In Figure 3.7, a dynamic analysis of 

the model is shown, depicting a natural frequency at 45.95 Hz. 

Table 3.6: Result Comparison for VM203 

Description Analytical ANSYS Ratio 

Frequency f (Hz) 45.9 45.95 1.009 

Peak Deflection PSD (mm
2
/Hz) 340.2 359.5 1.057 

 

 

Figure 3.7: Harmonic Response to Uniform PSD Force 
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 This chapter introduced the frequency response function, the finite element 

analysis methods in terms of mode frequency, harmonic, and spectrum analyses, the 

different elements involved including BEAM4 and SHELL63, and a couple of the finite 

element verification manual examples which are referred in the analysis and simulation 

using ANSYS. The next chapter further discusses the three analyses and their 

formulations in general. 
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CHAPTER IV 

ANALYSES FORMULATION 

 Simulations of the beam, plate, and cylindrical shell are carried out by a 

combination of analysis types. The objective of this chapter is to introduce the three 

analysis types involved with the FRF: their purpose, and to show a general formulation of 

the three analysis types. The ultimate purpose is to obtain the nodal complex 

displacements when a single point excitation force is applied at the opposite end to the 

support on the structure; on the beam the force is applied at the node at the end, on the 

plate the force is applied at the node in the center on the end of the plate, and on the 

cylinder the force is applied at the node in the center of the cylinder on the top end. Three 

analysis types are used in the simulation: mode-frequency, spectrum, and harmonic. The 

order in which the analyses are described is also the order in which they are performed in 

the simulation in order to achieve the required objective of the structure simulation. 

ANSYS [20] is used for the descriptions and formulations of the analyses in this chapter. 

4.1 Analyses Procedures 

4.1.1 Mode Frequency Analysis 

 This analysis type is used for natural frequency and mode shape determination of 

a structure which has no time varying forces, displacements, pressures, or temperatures 

applied. The modes are extracted and expanded within a specified frequency range, then 

are written to the results file. 
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4.1.2 Spectrum Analysis 

 A spectrum analysis is one in which the results of a modal analysis are used with 

a known spectrum to calculate displacements and stresses in the model. The spectrum is a 

graph of spectral values versus frequency that captures the intensity and frequency 

content of time-history loads, where the values may be displacement, velocity, 

acceleration, or force. The spectrum analysis must be preceded by a mode-frequency 

analysis, because a structure‟s mode shapes and frequencies must be available to 

calculate the spectrum solution. Also, by performing the spectrum solution before mode 

expansion, only the significant modes that contribute to the final solution can be 

expanded. 

4.1.3 Harmonic Response Analysis 

 In a structural system, any sustained cyclic load will produce a sustained cyclic or 

harmonic response. Harmonic response analysis gives the ability to predict the sustained 

dynamic behavior of structures, thus giving the ability to verify whether or not a design 

will successfully overcome resonance, fatigue, and other harmful effects of forced 

vibrations. This analysis technique calculates only the steady-state, forced vibrations of a 

structure. The transient vibrations, which occur at the beginning of the excitation, are not 

accounted for in a harmonic response analysis. In this analysis all loads as well as the 

structure‟s response vary sinusoidally at the same frequency. A typical harmonic analysis 

will calculate the response of the structure to cyclic loads over a frequency range (a sine 

sweep) and obtain a graph of some response quantity (usually displacements) versus 

frequency. “Peak” responses are then identified from graphs of response versus frequency 

and stresses are then reviewed at those peak frequencies. 
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4.2 Mode Frequency Analysis 

 In modal analyses, vibration characteristics, such as natural frequencies and mode 

shapes, of a structure or a machine component are determined. It can also serve as an 

initial point for another, more detailed, dynamic analysis, such as a transient dynamic 

analysis, a spectrum analysis, or a harmonic analysis. The natural frequencies and mode 

shapes are important parameters in the design of a structure for dynamic loading 

conditions. It is required to define stiffness as well as mass in some form. Stiffness may 

be specified using isotropic and orthotropic elastic material models, for example, 

Young‟s modulus and Poisson‟s ratio. Modal analysis is a linear analysis; any 

nonlinearity is ignored even if it is defined. The modal solution is needed to calculate the 

spectrum solution, and there are many mode-extraction methods available: Block 

Lanczos, Supernode, PCG Lanczos, reduced, unsymmetric, damped, and QR damped. 

Each method is unique, and which method should be used depends on what the situation 

requires. If the situation requires the inclusion of the missing mass effect in the spectrum 

analysis, then the Block Lanczos or PCG Lanczos method should be used. The number of 

modes extracted should be enough to characterize the structure‟s response in the 

frequency range of interest. 

4.2.1 Formulation 

 The general equation of motion for a damped system, expressed in matrix 

notation, and subjected to the force vector  F is given by Eq. (4.1). 

          M u C u K u F                                                                        (4.1)  
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 K  is the structural stiffness matrix,  C  is the structural damping matrix,  u  is the 

nodal displacement vector and  M  is the mass matrix. For a linear system, free 

vibrations are harmonic of the form: 

    cos
ii

u t                                                                                             (4.2)  

where,  
i

 is an eigenvector representing the mode shape of the th
i natural frequency and 

i  is the th
i natural circular frequency (radians per unit time) and t  is the time. 

Substituting Eq. (4.2) into Eq. (4.1), Eq. (4.3) becomes: 

       2 0
i i

M K                                                                                   (4.3) 

This equality is satisfied if either  
i

  is zero or if the determinant of     2

i
M K  is 

zero. The first option is the trivial one and, therefore, is not of interest. Thus, the second 

one gives the solution as    2 0K M  . This is an eigenvalue problem which may be 

solved for up to n values of 
2

n  and n  eigenvectors  
i

  which satisfy Eq. (4.3) where 

n  is the number of DOFs. Rather than outputting natural circular frequencies{ } , the 

natural frequencies  f  are output, where 

2

i
if




                                                                                                     (4.4) 

If normalization of each eigenvector  
i

 to the mass matrix is selected,  
i

 is 

normalized such that its largest component is 1.0. 

     1
T

i i
M                                                                                               (4.5) 

Eq. (4.2) can also be written in a more general form as a set of modal coordinates, 

iy  , is defined such that: 
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1

n

i i

i

u y


                                                                                                 (4.6) 

where,  i  is the mode shape of mode i , and n  is the number of modes to be used. The 

inverse relationship does exist for the case where all the displacements are known, but 

not when only some are known. Substituting Eq. (4.6) into Eq. (4.1) gives Eq. (4.7). 

             
.. .

1 1 1

n n n

i i i i i i

i i i

M y C y K y F  
  

                                             (4.7) 

Pre-multiplying by a typical mode shape  T

i gives Eq. (4.8). 

                     
.. .

1 1 1

n n n
T T T T

j i i j i i j i i j

i i i

M y C y K y F      
  

         (4.8) 

The orthogonal condition of the natural modes states that 

     0
T

j iM    if ji          (4.9) 

     0
T

j iK    if ji          (4.10) 

In the mode superposition method using the Lanczos and other extraction methods, only 

Rayleigh or constant damping is allowed so that: 

     0i

T

j C   if ji         (4.11) 

The Lanczos methods use the Lanczos algorithm, which is an iterative algorithm used to 

find eigenvalues and eigenvectors of a square matrix. It is useful for finding 

decompositions of very large sparse matrices (matrices made up of mostly zeros). 

Rayleigh‟s damping is expressed as      C M K   where   and   are constants to 

be determined from two given damping ratios that correspond to two unequal frequencies 
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of vibration. It is also known as proportional damping, because C  is proportional to a 

linear combination of  M  and  K . 

Applying these conditions to Eq. (4.8), only the i j  terms remain: 

                  
.. .T T T T

j j j j j j j j j j
M y C y K y F                        (4.12)    

The coefficient of 
..

jy , 
.

jy , and 
jy  are derived as follows: 

Coefficient of 
..

jy , by the normality condition in Eq. (4.5), 

     1
T

j jM           (4.13) 

Coefficient of 
.

jy : The damping term is based on treating the modal coordinate as a 

single degree of freedom system for which: 

     2
T

j j j jC C                                                                                        (4.14) 

     2 1
T

j j j jM M           (4.15) 

Eq. (4.43) can give a definition of 
j

 : 

1
j

jM
           (4.16)   

The critical damping constant:  

2
j j j j

C K M         (4.17) 

Where, 
j

  is the fraction of critical damping for mode j and,  

j j j
K M          (4.18) 

where, j  is the natural circular frequency of the mode j .  
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Combining Eq. (4.16) through Eq. (4.13) with Eq. (4.14), 

    
2

1
2 2

T

j j j j j j j

j

C K M
M

    
 
  
 
 

                                              (4.19) 

Coefficient of 
jy : 

from Eq. (4.3): 

     2

j j j
K M           (4.20) 

Pre-multiplying Eq. (4.3) by a typical mode shape  T

j , 

         2
T T

j j j j jK M                                                                      (4.21) 

Substituting Eq. (4.7) for the mass term, 

     2
T

j j jK           (4.22) 

For convenient notation, let 

   T

j jf F         (4.23) 

represent the right-hand side of Eq. (4.40). Substituting Eq. (4.41), Eq. (4.47), Eq. (4.8) 

and Eq. (4.9) into Eq. (4.40), the equation of motion of the modal coordinates is obtained 

in Eq. (4.52). 

.. .
22j j j j j j jy y y f                                                                                     (4.24) 

Where, jy is modal coordinate, j  is natural circular frequency of mode j, j is fraction of 

critical damping for mode j  and jf  is force in modal coordinates. Since j  represents any 

mode, Eq. (4.10) represents n  uncoupled equations in the n  unknowns jy . 
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4.3 Spectrum Analysis 

 Two types of spectrum analyses are supported: the deterministic response 

spectrum method and the nondeterministic random vibration method. Both the excitation 

at the support and excitation away from the support are allowed. The three types of 

spectra are the single-point, multi-point, and dynamic design analysis method. The 

random vibration method uses the power spectral density, PSD, approach.  

4.3.1 Response Spectrum 

 A response spectrum represents the response of single degree of freedom systems 

to a time-history loading function. It is a graph of response versus frequency, where the 

response might be displacement, velocity, acceleration, or force. Two types of response 

spectrum analysis are possible: single and multi-point response spectra. In a single-point 

response spectrum analysis, one response spectrum curve is specified, or a family of 

curves, at a set of points in the model, such as at all supports, as shown in Figure 4.1 (a). 

In a multi-point response spectrum analysis, different spectrum curves are specified at 

different sets of points, as shown in Figure 4.2 (b). 

 

 (a)    (b) 

Figure 4.1: (a) Single-Point and (b) Multi-Point Response Spectra 
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4.3.2 Dynamic Design Analysis Method (DDAM) 

 The Dynamic Design Analysis Method (DDAM) is a technique used to evaluate 

the shock resistance of shipboard equipment. The technique is essentially a response 

spectrum analysis in which the spectrum is obtained from a series of empirical equations 

and shock design tables provided in the U.S. Naval Research Laboratory Report NRL-

1396. 

4.3.3 Power Spectral Density (PSD) Approach 

 Power spectral density, or PSD, is a statistical measure defined as the limiting 

mean-square value of a random variable. It is used in random vibration analyses in which 

the instantaneous magnitudes of the response can be specified only by probability 

distribution functions that show the probability of the magnitude taking a particular 

value. A PSD is a statistical measure of the response of a structure to random dynamic 

loading conditions. It is a graph of the PSD value versus frequency, where the PSD may 

be a displacement PSD, velocity PSD, acceleration PSD, or force PSD. Mathematically, 

the area under a PSD-versus-frequency curve is equal to the variance. Similar to response 

spectrum analysis, a random vibration analysis may be single-point or multi-point. In a 

single-point random vibration analysis, one PSD spectrum is specified at a set of points in 

the model; whereas in a multi-point random vibration analysis, different PSD spectra are 

specified at different points in the model.  

4.3.4 Single Point Response Random Vibration Analysis 

 The spectrum analysis must be preceded by a modal analysis. If mode 

combinations are needed, the required modes must also be expanded. One of the four 

options available is the single-point response spectrum method. Both excitation at the 
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support, base excitation, and excitation away from the support, force excitation, is 

allowed for the single-point response spectrum analysis.  

4.3.5 Random Vibration Method Formulation 

 The random vibration method allows multiple power spectral density (PSD) 

inputs in which these inputs can be: full correlated, uncorrelated, or partially correlated. 

The procedure is based on computing statistics of each modal response and then 

combining them. It is assumed that the excitations are stationary random processes. For 

partially correlated nodal and base excitations, the complete equations of motion are 

segregated into the free and the restrained degrees of freedom as: 
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where, { }
f

u  are the free DOF and { }ru  are the restrained DOF that are excited by 

random loading,  F  is the nodal force excitation activated by a nonzero value of force. 

The value of force can be other than unity, allowing for scaling of the participation 

factors. The free displacements can be decomposed into pseudo-static and dynamic parts 

as in Eq. (4.26). 

     f S d
u u u                                                                                            (4.26) 

The pseudo-static displacements may be obtained from Eq. (4.25) by excluding the first 

two terms on the left-hand side of the equation and by replacing  
fu by su . 

   1

s ff fr ru K K u


         =   ruA                                                             (4.27) 
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in which   1

ff frA K K


        . Physically, the elements along the th
i column of  A  are 

the pseudo-static displacements due to a unit displacement of the support DOFs excited 

by th
i  the base PSD. Substituting Eqns. (4.26) & (4.27) into (4.25) and assuming light 

damping yields: 

         { }
ff d ff d ff d ff fr r

M u C u K u F M A M u                              (4.28)    

The second term on the right-hand side of the above equation represents the equivalent 

forces due to support excitations. Using the mode superposition analysis, as described in 

the Mode Superposition Method section in ANSYS Help, gives the Eq. (4.29) 

       tytud                      (4.29) 

The above equations are decoupled yielding Eq. (4.30) 

.. .
22j j j j j j jy y y G            ( 1,2,3,..., )j n                                              (4.30) 

where, n  is the number of modes chosen for the evaluation, jy  are the generalized 

displacements, j  and j  are the natural circular frequency and modal damping ratio, 

respectively. The modal loads jG  are defined by Eq. (4.31) 

   ..T

j j r j
G u                                                                                            (4.31)                

The modal participation factors corresponding to support excitation are given by: 

         
j

T

frffj MAM                                                                        (4. 32) 

and for nodal excitation: 

   T

j j F                                                                                                 (4.33) 
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4.3.6 Response Power Spectral Densities and Mean Square Response 

 Using the theory of random vibrations, the response PSDs can be computed from 

the input PSDs with the help of transfer functions for single DOF systems  H  and by 

using mode superposition techniques. The response PSDs for th
i DOF are given by the 

Dynamic part, Pseudo-static part and Covariance part as described below. 

Dynamic Part  

       

     

1 1

2 2

_
*

1 1 1 1

^
*

1 1

i

r rn n

d ij ik j mk j k m

j k m

r r

mj mk j K
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Pseudo-Static Part    

   
2 2 ^

4
1 1

1
i

r r

ms i im

m

S A A S 
 

   
 

  

Covariance Part 

      
2 2 ^

2
1 1 1

1
i

r rn

msd ij i mj j

j m

S A H S   
  

    
 

  

where, n  is the number of mode shapes chosen for evaluation. 1r  and 2r  are the number 

of nodal (away from support) and base PSD tables, respectively. The transfer functions 

for the single DOF system assume different forms depending on the type of the input 

PSD and the type of response desired. The forms of the transfer functions for 

displacement as the output are listed below for different inputs in Eq. (4.34), (4.35), and 

(4.36).  

When input as a force or acceleration: 
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                                                                      (4.34) 

When input as a displacement: 

   
2

2 2 2
j

j j j

H
i


    


 

                                                                      (4.35) 

When input is a velocity: 

   2 2 2
j

j j j

i
H

i


    


 

                                                                      (4.36) 

where   is the forcing frequency and j  is the natural circular frequency for the th
j  

mode and 1i . Now, random vibration analysis can be used to show that the absolute 

value of the mean square response of the th
i free displacement is Eq. (4.37) 

 2 2 2 2 ,
i i i i if d s v s d

C U U                                                                        (4.37) 

where, 
2

id
  is the variance of the th

i  relative (dynamic) free displacement, 
2

is
  is the 

variance of the th
i  pseudo-static displacement and  ,

i iV s d
C U U  is the covariance 

between static and dynamic displacements. The general formulation described above 

gives simplified equations for several situations commonly encountered in practice.  

Results from a random vibration analysis are written to the structural results file, which 

consists of expanded mode shapes from the modal analysis, static solution for base 

excitation, and the one sigma displacement solution output. These one sigma, or one 

standard deviation, values follow a Gaussian distribution. The interpretation is that 68.3% 

of the time the response will be less than the standard deviation value. The results may be 

reviewed in ANSYS POST1, the general postprocessor, and then response PSDs can be 

calculated in POST26, the time-history postprocessor. 
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4.4 Harmonic Response Analysis 

 The harmonic response analysis solves the time-dependent equations of motion 

for linear structures undergoing steady-state vibration. It is assumed this analysis is valid 

for structural, fluid, magnetic, and electrical degrees of freedom. Also, the entire structure 

has constant or frequency-dependent stiffness, damping, and mass effects. Another 

assumption is that all loads and displacements vary sinusoidally at the same known 

frequency, although not necessarily in phase. Element loads are assumed to be real (in-

phase) only, except for current density and pressures in SURF153 and SURF154 

elements. 

4.4.1 Formulation 

 Consider the general equation of motion for a structural system with damping. 

          a
M u C u K u F                                                                    (4.38) 

where,  M  is the structural mass matrix,  C  is the structural damping matrix,  K  is the 

structural stiffness matrix,  u  is the nodal acceleration vector,  u  is the nodal velocity vector, 

 u  is the nodal displacement vector and  a
F  is the applied load vector. All the points in the 

structure are moving at the same known frequency, however, not necessarily in the same phase. 

Also, it is known that the presence of damping causes phase shifts. Therefore, the displacements 

may be defined by Eq. (4.39). 

    tii
eeuu

 
max                                                                          (4.39)   

where, maxu  is the maximum displacement, i  is 1 ,   is the imposed circular frequency in 

(radians/time) or 2 f , f  is the imposed frequency (cycles/time), t  is time, and   is the 

displacement phase shift (radians). maxu  and   may be different at each degree of freedom. The 
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use complex notation allows a compact and efficient description of the problem. Eq. (4.39) can be 

rewritten as: 

    max cos sin i t
u u i e          (4.40) 

or as:       1 2

i t
u u i u e

            (4.41) 

where,    1 max cosu u  which is the real displacement vector and    2 max sinu u   is the 

imaginary displacement vector. 

The force vector can be described analogously to the displacement: 

    tii
eeFF

 
max                                          (4.42) 

     ti
eiFF

  sincosmax       (4.43) 

       ti
eFiFF

 21                                                                                   (4.44) 

where, maxF  is the force amplitude.  ψ is force phase shift (in radians).    cosmax1 FF    is 

the real force vector.    sinmax2 FF   is the imaginary force vector. 

Substituting Eq. (4.41) and (4.44) into Eq. (4.38) produces Eq. (4.45). 

                2

1 2 1 2

i t i t
M i C K u i u e F i F e

                           (4.45) 

The dependence on time 
ti

e


from both sides gives Eq. (4.46). 

               2121

2
FiFUiUKciM                                    (4.46) 

4.4.2 Complex Displacement Output 

 The complex displacement output at each degree of freedom may be given in 

one of two forms: first, the form 1u , the real displacement vector, and 2u , the imaginary 

displacement vector, and second, the form maxu , the amplitude, and  , the phase angle, 

computed at each degree of freedom as: 
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           2 2

max 2iu u u          (4.47) 

           1 2

1

tan
u

u
           (4.48) 

4.4.3 Nodal and Reaction Load Computation 

 Inertia, damping and static loads on the nodes of each element are computed. The 

real and imaginary inertia load parts of the element output are computed by: 

    2

1 1

m

e ee
F M u        (4.49) 

    2

1 2

m

e ee
F M u                                                                                    (4.50) 

where,  
e

m
F1  and  

e

m
F2  are the real and imaginary parts of the vector of element inertia 

forces, respectively.  1 e
u ,  2 e

u  are the real and imaginary parts of the element 

displacement vectors, respectively.  eM  is the element mass matrix. 

The real and imaginary damping loads, part of the element output, are computed by Eqs. 

(4.51) and (4.52) 

    1 2

c

e ee
F C u          (4.51) 

                2 1

c

e ee
F C u                                                      (4.52) 

where,  
e

c
F1  is a vector of element damping forces, the real part,  

e

c
F2  is a vector of 

element damping forces, the imaginary part, and  eC  is the element damping matrix. The 

real static load is computed the same way as in a static analysis using the real part of the 

displacement solution 1 e
u . The imaginary static load is computed also the same way, 

using the imaginary part  2 e
u . The imaginary part of the element loads is normally zero, 

except for current density loads. The nodal reaction loads are computed as the sum of all 
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three types of loads (inertia, damping, and static) over all elements connected to a given 

fixed displacement node.  There are three available methods for the solution of harmonic 

response analysis: Full Solution Method, Reduced Solution Method, and Mode 

Superposition Method, which is used in this simulation. 

4.4.4 Mode Superposition Method 

 Three harmonic response analysis methods are available: full, reduced, and mode 

superposition. The ANSYS Professional program allows only the mode superposition 

method. In this method a modal analysis is first performed to compute the natural 

frequencies and mode shapes. Then the mode superposition solution is carried where 

these mode shapes are combined to arrive at a solution. This method is faster and less 

expensive than either the reduced or the full method for many problems. The equation of 

motion can be expressed as in Eq. (4.53). 

          M u C u K u F                                                                       (4.53) 

 F  is the time-varying load vector, given by Eq. (4.54) 

     snd
FsFF          (4.54) 

where,  nd
F  are time varying nodal forces,  s

F  are load vectors from the modal 

analysis, and s  is the load vector scale factor. The load vector  s
F  is computed when 

doing a modal analysis and its generation is the same as for a substructure load vector. A 

set of modal coordinates iy  is defined, such that: 

   
1

n

i i

i

u y


                                                                                                 (4.55) 
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where,  i  is the mode shape of mode i , and n  is the number of modes to be used. The 

inverse relationship does exist for the case where all the displacements are known, but 

not when only some are known. Substituting Eq. (4.55) into Eq. (4.53) gives Eq. (4.56). 

             
.. .

1 1 1

n n n

i i i i i i

i i i

M y C y K y F  
  

                                             (4.56) 

Pre-multiplying by a typical mode shape  T

i gives Eq. (4.57). 

                     
.. .

1 1 1

n n n
T T T T

j i i j i i j i i j

i i i

M y C y K y F      
  

         (4.57) 

The orthogonal condition of the natural modes states that 

     0
T

j iM    if ji          (4.58) 

     0
T

j iK    if ji          (4.59) 

In the mode superposition method using the Lanczos and other extraction methods, only 

Rayleigh or constant damping is allowed so that: 

     0i

T

j C   if ji         (4.60) 

Applying these conditions to Eq. (4.57), only the i j  terms remain: 

                  
.. .T T T T

j j j j j j j j j j
M y C y K y F                        (4.61)    

The coefficient of 
..

j
y , 

.

j
y , and jy  are derived as follows: 

Coefficient of 
..

jy : By the normality condition in Eq. (4.5), 

     1
T

j jM           (4.62) 
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Coefficient of 
.

jy : The damping term is based on treating the modal coordinate as a 

single degree of freedom system for which:  

     2
T

j j j jC C                                                                                        (4.63) 

     2 1
T

j j j jM M           (4.64) 

Eq. (4.64) can give a definition of 
j

 : 

1
j

jM
           (4.65)   

The critical damping constant:  

2
j j j j

C K M         (4.66) 

Where, 
j

  is the fraction of critical damping for mode j 

and,  

j

j

j
M

K
          (4.67) 

where, j  is the natural circular frequency of the mode j .  

Combining Eq. (4.65) thru Eq. (4.62) with Eq. (4.63), 

    
2

1
2 2

T

j j j j j j j

j

C K M
M

    
 
  
 
 

                                              (4.68) 

Coefficient of jy : 

from Eq. (4.3): 

     2

j j j
K M           (4.69) 
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Pre-multiplying by  T

j , 

         2
T T

j j j j jK M                                                                      (4.70) 

Substituting Eq. (4.70) for the mass term, 

     2
T

j j jK           (4.71) 

For convenient notation, let 

   T

j jf F         (4.72) 

represent the right-hand side of Eq. (4.61). Substituting Eq. (4.62), Eq. (4.68), Eq. (4.71) 

and Eq. (4.72) into Eq. (4.61), the equation of motion of the modal coordinates is 

obtained in Eq. (4.73). 

.. .
22

j j j j j j j
y y y f                                                                                     (4.73) 

Where, jy is modal coordinate, j  is natural circular frequency of mode j, j is fraction of 

critical damping for mode j  and jf  is force in modal coordinates. Since j  represents any 

mode, Eq. (4.73) represents n  uncoupled equations in the n  unknowns jy . The jy  are 

converted back into geometric displacements { }u  (the system response to the loading) by 

using Eq. (4.55). That is, the individual modal responses jy  are superimposed to obtain 

the actual response, and hence the name “mode superposition.” 

For a steady sinusoidal vibration, 
j

f  has the form: 

i t

j jc
f f e

          (4.74) 

where 
jc

f  is the complex force amplitude and   is the imposed circular frequency. 

For Eq. (4.73) to be true at all times, 
j

y  must have a similar form as 
j

f , or 
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ti

jcj eyy
           (4.75) 

where, 
jcy  is the complex amplitude of the modal coordinate for mode j . Differentiating 

Eq. (4.75), and substituting Eq. (4.74) and Eq. (4.75) into Eq. (4.73), 

  2 22i t i t i t i t

jc j j jc j jc jc
y e i y e y e f e              (4.76) 

Collecting coefficients of jcy  and dividing by ti
e

  

 2 22
j j j jc jc

i y f              (4.77) 

Solving for 
jcy , 

   2 2 2

jc

jc

j j j

f
y

i  


  
                                                                        (4.78)  

The contribution from each mode is give by Eq. (4.79) 

   j j jc
C y                                                                                                 (4.79) 

where,  
jC  is the contribution of mode j  and  j  is the mode shape for mode j . 

Finally, the complex displacements are obtained from Eq. (4.55) as 

   
1

n

c j

j

u C


                                                                                                 (4.80) 

where,  cu  is the vector of complex displacements. 

 This chapter discusses the three analysis types involved in the FRF: their 

purpose, and to show a general formulation of the three analysis types. Three analysis 

types are used in the simulation: mode-frequency, spectrum, and harmonic. The ultimate 

purpose is to obtain the nodal complex displacements when a single point excitation force 

is applied at the opposite end to the support on the beam, plate, and cylinder. The order in 

which the analyses are described is also the order in which they are performed in the 
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simulation in order to achieve the required objective of the structure simulation. The next 

chapter applies the method to the beam, plate, and cylindrical shell; the modeling and 

simulation, numerical differentiation and integration, and the results are discussed.



78 

 

CHAPTER V 

MODELING AND SIMULATION 

 This chapter describes the process of providing a way to calculate the output 

charge of a thin piezoelectric film bonded to a shell structure. The method is applied to 

cases of a cylindrical shell structure, as well as a beam and plate for both generic and 

shaped piezoelectric films. In Chapters III and IV, different ANSYS verification manuals 

and analyses are discussed. This process is carried out using ANSYS Parametric Design 

Language or APDL for short. Techniques for creating the structure, specifying material 

properties, and specifying boundary conditions are specified. Also discussed are the 

analyses techniques, and the process of reading ANSYS displacement results in Matlab. 

Then, the process of numerical differentiation and integration is performed per the 

requirements of the sensor equation. The results are then discussed. 

5.1 ANSYS Parametric Design Language 

 More frequently referred to as APDL, is a scripting language which may be 

used in order to more easily create the desired structure in terms of parameters. Some of 

the commands include repeating a command, macros, if-then-else branching, do-loops, 

and scalar, vector, and matrix operations. In this analysis, commands are written in a 

separate program, commonly used is notepad, and simply either copy-and-pasted into the 

ANSYS command prompt, or by using the Read Input From option under the File tab. 

APDL can be understood as a macro language; one can record a frequently used sequence 

of ANSYS commands in a macro file. A macro enables the creation of custom ANSYS 
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commands. In addition to executing a series of ANSYS commands, a macro can call GUI 

functions or pass values into arguments. 

5.2 Beam Modeling 

 The method is first applied to a beam with characteristics as described below. The 

beam is modeled using ANSYS, and the simulation is performed to find the displacement 

field. Then, numerical differentiation and integration are performed on the displacements 

in Matlab and inputted into the beam sensor output charge equation as described in the 

previous chapters. The results are then discussed. 

Beam Modeling and Material Properties 

 The cantilevered beam is first created using APDL code. The shape of the beam 

is decided upon standard manufactured materials; the beam geometrical and material 

properties [21] are shown in Table 5.1. 

Table 5.1: Geometrical and Material Properties for Cantilevered Beam 

Parameter Value Units 

Length, L  0.3048 m  

Height, H  0.003175 m  

Width, B  0.0508 m  

Substrate Material 6061-T6 Aluminum - 

Mass density,   2700 3/Kg m  

Young‟s modulus, E  70E9 2
mN

 

Poisson ratio,    0.33 - 

 

Using the APDL code in Appendix C, the beam substrate is created in ANSYS. The 

APDL code follows the stepwise process below for the creation of the beam substrate. 

1. Assigning of the required length, height, and width. 
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2. Define frequency, number of load steps, force, and number of nodes to be used. 

3. Define element type and material properties. 

4. Specify REAL Constants 

5. Define number of nodes in the x  direction, as in Figure 5.1. 

6. Fill the nodes with elements as depicted in Figure 5.2. 

Only the beam substrate is being modeled and simulated, because the PVDF film does 

not affect the dynamic characteristics of the beam substrate, as described in Chapter II. 

 

Figure 5.1: Node Creation using APDL Code 

 

Figure 5.2: Element Creation using APDL Code 

Element Type 

 BEAM4 element is selected. The area moment of inertias are calculated in the 

APDL code outlined in Appendix C. The nodes are generated using the N command 

which defines a node in the order it was created. Then the E command is used to define 

an element by node connectivity; this is done for the initial line of nodes. The EGEN 

command is then used to create more elements from an existing pattern of elements. 

Boundary Conditions 

 In order to simulate the clamped-free model, all the degrees of freedom are 

constrained on the left end of the beam. Figure 5.3 shows the boundary conditions on the 
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FEA model. All nodes are selected as master degrees of freedom; however, this is not 

illustrated. The input for the command is in Appendix C. 

 

Figure 5.3: Clamped-Free Aluminum Beam 

5.3 Beam Simulation 

 A series of analyses are carried out in a specific sequence in order to study the 

dynamic frequency response of the beam substrate. The sequence of the analyses is Mode 

Frequency Analysis, Single Point PSD Spectrum Analysis, and Harmonic Response 

Analysis. A more in depth look at these analyses are presented in Chapter III. 

5.3.1 Mode Frequency Analysis 

 This analysis type is used for natural frequency and mode shape determination. 

For this particular clamped-free beam, the first three mode shapes are shown in Figures 

5.4, 5.5, and 5.6; the first occurring at a natural frequency of 28.057 Hz, the second mode 

shape occurring at a natural frequency of 175.81 Hz, and the third at 492.18 Hz. In mode 

frequency analysis, the first six modes are expanded and extracted, with a frequency 

range of 0 to 1600 Hz. A list of the modes at their respective frequencies is laid out in 

Table 5.2. 

 

Figure 5.4: First Mode Shape of Cantilevered Beam (28.057 Hz) 
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Figure 5.5: Second Mode Shape of Cantilevered Beam (175.81 Hz) 

 

Figure 5.6: Third Mode Shape of Cantilevered Beam (492.18 Hz) 

Table 5.2: Frequencies at the First Six Modes 

Mode Frequency (Hz) 

1 28.057 

2 175.81 

3 492.18 

4 964.19 

5 1593.3 

6 2378.9 

 

5.3.2 Single Point PSD Spectrum Random Vibration Analysis 

 The next step after mode frequency analysis is to perform a spectrum analysis. 

The first six modes are included in the spectrum analysis to calculate element stresses. 

The model is excited in the Y-direction with a force of 600 N and the modal responses 

are combined using power spectral density mode combination method. The damping ratio 

is set to 0.02. Lastly, a one-sigma displacement solution output is written to the results 

file from the PSD analysis.  
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5.3.3 Harmonic Response Analysis 

 The third analysis is harmonic response using the mode superposition method 

option which sums factored mode shapes to calculate the harmonic response. A harmonic 

analysis is performed after a spectrum analysis. The frequency ranges from 1.0 to 1600 

Hz. The harmonic output option to print complex displacements as real and imaginary 

components is turned on, whereas the cluster option is turned off for uniform spacing of 

frequency solutions. These results are written in binary file *.rfrq format. This binary file 

contains all the displacement data for all the nodes at each frequency interval. In Figure 

5.7, the frequency response function (FRF) for the clamped-free beam is plotted. The first 

four modes are easily distinguishable, defined by the peaks; hence, they have a greater 

effect on the displacement response than the fifth and sixth modes which are not visible.  

 

 

Figure 5.7: FRF Plot of Clamped-Free Beam 
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5.4 Processing of ANSYS Results of Beam in Matlab 

 The next step is to gather all of the displacement information at each frequency 

which is done with the harmonic analysis. The information is written to a *.rfrq file 

which is an ANSYS output binary file. This information will be imported in Matlab, 

which requires this data to be in text (ASCII) form. The ANSYS DUMP command 

converts the binary data into ASCII data. The nodal displacements are listed in ascending 

node order and then in ascending frequency. The format for this is outlined in Appendix 

I. 

Stepwise Method of Processing the *.rfrq Binary File Data in Matlab 

1. The ANSYS DUMP command is found in the GUI under Main Menu> List> 

Files> Binary Files, while choosing All Records to be listed and Entire Record of 

output per record. The file „file.rfrq‟ is selected, creating the „DUMP.txt‟ file. 

This file contains all the complex displacement for the beam for each node at each 

frequency. 

2. The „FRFResult.txt‟ file is created from the DUMP.txt file starting after Record 8. 

3. An „NLIST.lis‟ file is saved, containing all the nodes and their coordinates. 

4. The „FRFProc_01.m‟ Matlab file, which is listed in Appendix D as are the other 

Matlab files for the beam, reads the „FRFResult.txt‟ file and places the complex 

displacements in the y direction into matrix format for all the nodes and 

frequencies. 

5. The complex displacements are used to calculate the magnitude displacement at 

each frequency.  
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6. A plot of the FRF of the beam substrate is illustrated in Figure 5.8. This figure is 

obtained through Matlab; it confirms that the displacements were successfully 

transferred from ANSYS and organized correctly. 

 

Figure 5.8: FRF Plot of Clamped-Free Beam 

7. The „DisplDerivative_02.m‟ file is then run in order to obtain the required first 

derivatives and second derivatives of displacement with respect to the required 

direction. 

8. After finding the derivatives, the „Film_Shape_03.m‟ file is run. This file 

basically lists the attributes of the sensor and the beam. The end result is the shape 

of the sensor pictured in Figure 5.9.  
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Figure 5.9: Generic Film Shape for Beam 

  

Figure 5.10: Shaped Film for Beam 

9. Here, a generic shaped sensor, a sensor which covers the entire surface of the 

beam as depicted in Figure 5.9, is analyzed. The displacement frequency response 

of the clamped-free beam and sensor output charge for each frequency is plotted 

as in Figure 5.11 for the generic sensor output charge equation: 

2

3
31 2

S
S S

xe x

ubh
h r dx

S x


 
    

 .  

10. Running „SensorOutput_Shaped_05.m‟ analyzes the sensor shaped like that of 

Figure 5.10. The displacement frequency response of the clamped-free beam and 

sensor output charge for each frequency is plotted as in Figure 5.12 for the sensor 

output equation with a shaping function: 
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Figure 5.11: Frequency Response of Beam vs. Generic Sensor Output Charge 

 Electric potential
 
   is equal to the electric potential energy of a charged particle, 

measured in joules, divided by the charge of the particle, measured in coulombs, which 

equates to joules per coulomb, or volts.
 

 Suffixes are commonly attached to the basic dB unit in order to indicate the 

displacement reference level against which the decibel measurement is taken. The units 

when plotting the FRF are frequency on the horizontal axis and displacement on the 

vertical axis, whereas the unit for the vertical axis for the sensor voltage FRF output 

charge is voltage, dBV. 
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Figure 5.12: Frequency Response of Beam vs. Shaped Sensor Output Charge 

 It can be shown in both Figure 5.11 and Figure 5.12 that the films can correctly 

capture the natural frequencies of the beam. 

5.5 Plate Modeling 

 The method is then applied to a plate with characteristics as described below. The 

plate is modeled using ANSYS, and the simulation is performed to find the displacement 

field. Then, numerical differentiation and integration are performed on the displacements 

in Matlab and inputted into the plate sensor output charge equation as described in 

previous chapters. The results are then discussed. 
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Plate Modeling and Material Properties 

 The cantilevered plate is first created using APDL code. The shape of the plate 

is decided upon standard manufactured materials; the plate geometrical and material 

properties [21] are shown in Table 5.3. 

Table 5.3: Geometrical and Material Properties for Cantilevered Plate 

Parameter Value Units 

Length, L  0.6096 m  

Height, H  0.381 m  

Width, B  0.0047625 m  

Substrate Material 6061-T6 Aluminum  

Mass density,   2700 3/Kg m  

Young‟s modulus, E  70E9 2
mN

 

Poisson ratio,    0.33 - 

 

Using the APDL code in Appendix E, the plate substrate is created in ANSYS. The 

APDL code follows the stepwise process below for the creation of the plate substrate. 

1. Assigning of the required length, height, and width. 

2. Define frequency, number of load steps, force, and number of nodes to be used. 

3. Define element type and material properties. 

4. Specify REAL Constants. 

5. Define number of nodes in the x  and y  directions, as in Figure 5.13. 

6. Fill the nodes with elements as depicted in Figure 5.14. 

Only the plate substrate is being modeled and simulated, because the PVDF film does not 

affect the dynamic characteristics of the plate substrate, as described in Chapter II. 
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Figure 5.13: Node Creation using APDL Code 

 

Figure 5.14: Element Creation using APDL Code 

Element Type 

 SHELL63 element is selected. The area moment of inertias are calculated in the 

APDL code outlined in Appendix E. The nodes are generated using the N command 

which defines a node in the order it is created. The NGEN command is then used to 
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create more nodes from a pattern of nodes; in this case, a line is copied and generated in a 

linear pattern. Then the E command is used to define an element by node connectivity; 

this is done for the initial line of nodes. The EGEN command is then used to create more 

elements from an existing pattern of elements. 

Boundary Conditions 

 In order to simulate the clamped-free model, all the degrees of freedom are 

constrained on the left end of the plate. Figure 5.15 shows the boundary conditions on the 

FEA model. All nodes are selected as master degrees of freedom; however, only in the Z 

direction. The input for the command is in Appendix E. 

 

Figure 5.15: Clamped-Free Aluminum Plate 

5.6 Plate Simulation 

 A series of analyses are carried out in a specific sequence in order to study the 

dynamic frequency response of the plate substrate. The sequence of the analyses is Mode 
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Frequency Analysis, Single Point PSD Spectrum Analysis, and Harmonic Response 

Analysis. A more in depth look at these analyses are presented in Chapter III. 

5.6.1 Mode Frequency Analysis 

 This analysis type is used for natural frequency and mode shape determination. 

For this particular clamped-free plate, the first four mode shapes are shown in Figures 

5.16, 5.17, 5.18, and 5.19; the first occurring at a natural frequency of 10.881 Hz, the 

second mode shape occurring at a natural frequency of 40.363 Hz, the third at 67.644 Hz, 

and the fourth at 134.34 Hz. In mode frequency analysis, the first six modes are expanded 

and extracted, with a frequency range of 0 to 250 Hz. A list of the modes at their 

respective frequencies is laid out in Table 5.4. 

 

Figure 5.16: First Mode Shape of Cantilevered Plate (10.881 Hz) 

 

Figure 5.17: Second Mode Shape of Cantilevered Plate (40.363 Hz) 
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Figure 5.18: Third Mode Shape of Cantilevered Plate (67.644 Hz) 

 

Figure 5.19: Fourth Mode Shape of Cantilevered Plate (134.34 Hz) 

Table 5.4: Frequencies at the First Six Modes 

Mode Frequency (Hz) Mode Shape 

1 10.881 

 

2 40.363 

 

3 67.644 
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Mode Frequency (Hz) Mode Shape 

4 134.34 

 

5 187.98 

 

6 221.46 

 

 

Table 5.5: Natural Frequency Convergence 

Number 

of 

Elements 

35 105 171 253 360 713 1457 1989 2961 

Mode 1 

Freq. 

(Hz) 

10.87 10.87 10.87 10.87 10.88 10.88 10.88 10.88 10.88 

2 44.77 42.84 41.80 41.14 40.36 39.62 39.26 39.05 38.91 

3 68.15 67.66 67.64 67.63 67.64 67.62 67.62 67.62 67.62 

4 147.7 141.6 138.5 136.6 134.3 132.1 131.1 130.5 130.1 

5 192.8 189.4 188.9 188.5 187.9 186.8 186.1 185.6 185.2 

6 273.3 250.1 237.7 230.1 221.4 213.7 210.3 208.4 207.2 

 

 It can be observed from Table 5.5 that at mode six, the natural frequency 

converges to 207 Hz. In this thesis, using 360 elements is a beneficial number for 

reducing computation time and an adequate number for the accuracy of the natural 

frequency of mode six; therefore, 360 elements are used in this thesis for the simulation 

of a clamped-free plate.
 

5.6.2 Single Point PSD Spectrum Random Vibration Analysis 

 The next step after mode frequency analysis is to perform a spectrum analysis. 

The first six modes are included in the spectrum analysis to calculate element stresses. 

The model is excited in the Z-direction with a force of 50 N and the modal responses are 
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combined using power spectral density mode combination method. The damping ratio is 

set to 0.02. Lastly, a one-sigma displacement solution output is written to the results file 

from the PSD analysis.  

5.6.3 Harmonic Response Analysis 

 The third analysis is harmonic response using the mode superposition method 

option which sums factored mode shapes to calculate the harmonic response. A harmonic 

analysis is performed after a spectrum analysis. The frequency ranges from 1.0 to 250 

Hz. The harmonic output option to print complex displacements as real and imaginary 

components is turned on, whereas the cluster option is turned off for uniform spacing of 

frequency solutions. These results are written in binary file *.rfrq format. This binary file 

contains all the displacement data for all the nodes at each frequency interval. A plot of 

the FRF of the clamped-free plate is presented in Figure 5.20. The second and fourth 

modes are torsional; hence, they do not have as great of an effect as the bending modes, 

modes one and three, on the displacement response of the plate. 
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Figure 5.20: FRF Plot of Clamped-Free Plate  

5.7 Processing of ANSYS Results of Plate in Matlab 

 As was with the beam, the next step is to gather all of the displacement 

information at each frequency which is done with the harmonic analysis. The information 

is written to a *.rfrq file which is an ANSYS output binary file. This information will be 

imported in Matlab, which requires this data to be in text (ASCII) form. The ANSYS 

DUMP command converts the binary data into ASCII data. The nodal displacements are 

listed in ascending node order and then in ascending frequency. The format for this is 

outlined in Appendix I. 

Stepwise Method of Processing the *.rfrq Binary File Data in Matlab 

1. The ANSYS DUMP command is found in the GUI under Main Menu> List> 

Files> Binary Files, while choosing All Records to be listed and Entire Record of 

output per record. The file „file.rfrq‟ is selected, creating the „DUMP.txt‟ file. 
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This file contains all the complex displacement for the plate for each node at each 

frequency. 

2. The „FRFResult.txt‟ file is created from the DUMP.txt file starting after Record 8. 

3. An „NLIST.lis‟ file is saved, containing all the nodes and their coordinates. 

4. The „FRFProc_01.m‟ Matlab file, which is listed in Appendix F along with the 

subsequent Matlab files for the plate, reads the „FRFResult.txt‟ file and places the 

complex displacements in the z direction into matrix format for all the nodes and 

frequencies. 

5. The complex displacements for each individual node at each frequency are then 

combined to create a displacement magnitude. 

6. A plot of the FRF of the plate substrate is illustrated in Figure 5.21. This figure is 

obtained through Matlab; it confirms that the displacements were successfully 

transferred from ANSYS and organized correctly. 
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Figure 5.21: FRF Plot of Plate 

7. The „DisplDerivative_02.m‟ file is then run in order to obtain the required first 

derivatives and second derivatives of displacement with respect to the required 

direction. This is required for the sensor output charge equation. 

8. After finding the derivatives, the „PLATEreadcoord_02.m‟ file is run. This file 

reads the „NLIST.lis‟ file to extract the nodal coordinates of the plate. Running 

this file essentially gives a [16 x 25] matrix of the x or y coordinates of each node 

to be used as an input for the charge output equation. 

9. After finding the derivatives, the „Film_Shape_03.m‟ file is run. This file 

basically lists the attributes of the sensor and the plate. The end result is the shape 

of the sensor pictured in Figure 5.22, also in matrix format, depicted in Figure 

5.23 for calculations. During calculations, the matrix represents the sensor shape 
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function  1 2,
S

W    in the sensor output charge equation for a plate. Unlike a 

shaped sensor, a generic sensor would still have this matrix, only it would be 

filled with all 1s, representing the shape of the sensor. The sensor shape function 

matrix gets multiplied by the corresponding second derivatives in the sensor 

output charge equation. Wherever there is a “1” means that the sensor is covering 

that location; conversely, wherever there is a “0” means that there is not a sensor 

at that location. 

  

Figure 5.22: Generic Film Shape for Plate 
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Figure 5.23: Shaped Film for Plate 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

 

Figure 5.24: Shaped Film in Matrix Form

 

10. Here, a generic shaped sensor, a sensor which covers the entire surface of the 

plate as depicted in Figure 5.22, is analyzed. The displacement frequency 

response of the clamped-free plate and sensor output charge for each frequency is 

plotted as in Figure 5.25 for the generic sensor output charge equation: 
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11. Running „SensorOutput_Shaped_05.m‟ analyzes the sensor shaped like that of 

Figure 5.23. The displacement frequency response of the clamped-free plate and 

sensor output charge for each frequency is plotted as in Figure 5.26 for the sensor 

output charge equation with a shaping function: 
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Figure 5.25: Frequency Response of Plate vs. Generic Sensor Output Charge 
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Figure 5.26: Frequency Response of Plate vs. Shaped Sensor Output Charge 

It can be shown in both Figure 5.25 and Figure 5.26 that the films can correctly 

capture the natural frequency of the plate. The discrepancies in resonant frequencies 

between the sensor output charge and the frequency response of the plate can be 

accounted for by the following explanation. The output charge equation integrates 

“strains” over the whole surface of the sensor; it is the summation of the derivatives of 

displacements. The displacement frequency response function shown on the figure only 

takes into account one point on the substrate; this point may not see certain modes. For 

instance, in the case of the beam in Figure 5.27, the particular point considered is a node 

and will not correctly capture the third mode of the beam. The sensor output charge 

equation, however, captures all the modes and therefore will show more modes than the 

substrate point considered. 
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Figure 5.27: Node on a Beam Example 

As an example, an accelerometer attached to the substrate at a node of a mode will not 

measure that mode, because it will remain “still” at excitation coinciding with that mode. 

In surface shaping sensor design, the objective is to design a sensor which monitors those 

modes which need to be controlled. Hence, the FRF of a point may show fewer modes 

than the FRF of the sensor output charge.  

5.8 Cylindrical Shell Modeling 

 Lastly, the method is applied to a cylindrical shell with characteristics as 

described below. The cylindrical shell is modeled using ANSYS, and the simulation is 

performed to find the displacement field. Then, numerical differentiation and integration 

are performed on the displacements in Matlab and inputted into the cylindrical shell 

sensor output charge equation as described in previous chapters. The results are then 

discussed. 

Shell Modeling and Material Properties 

 The cylindrical shell substrate is first created using APDL code. The shape of 

the cylinder is decided upon standard manufactured materials; the cylinder geometrical 

and material properties [21] are shown in Table 5.6. 

Table 5.6: Geometrical and Material Properties for Aluminum Cylindrical Shell 

Parameter Value  Units 

Length, L  0.3048 m  
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Parameter Value  Units 

Outside Radius,  R  0.022225 m  

Thickness,  bh  0.000889 m  

Substrate Material 6061-T6 Aluminum - 

Mass density,   2700 3/Kg m  

Young‟s modulus, E  68.9E9 2
mN

 

Poisson ratio,    0.33 - 

 

Using the APDL code in Appendix G, the shell substrate is created in ANSYS. The 

APDL code follows the stepwise process below for the creation of the shell substrate. 

1. Assigning of the required length, radius, and thickness. 

2. Define frequency, number of load steps, force, and number of nodes to be used. 

3. Define element type and material properties. 

4. Specify cylindrical coordinates 

5. Define number of nodes in the z  direction and number of nodes in the   

direction, as in Figure 5.28. 

6. Fill the nodes with elements as depicted in Figure 5.29. 

Only the shell substrate is being modeled and simulated, because the PVDF film does not 

affect the dynamic characteristics of the shell substrate, as described in Chapter II. 

 

Figure 5.28: Node Creation using APDL Code 
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Figure 5.29: Element Creation using APDL Code 

Element Type and Meshing 

 SHELL63 element with bending and membrane element stiffness option is 

selected. The nodes are generated using the N command which defines a node in the 

order it is created. The NGEN command is then used to create more nodes from a pattern 

of nodes; in this case, a line is copied and generated in a circular pattern. Then the E 

command is used to define an element by node connectivity; this is done for the initial 

line of nodes. The EGEN command is then used to create more elements from an existing 

pattern of elements. This is how the mesh is created. 

Boundary Conditions 

 In order to simulate the clamped-free model, all the degrees of freedom are 

constrained on the left end of the shell. Figure 5.30 shows the boundary conditions on the 

FEA model. The input for the command is Appendix G. 

 

Figure 5.30: Clamped-Free Aluminum Cylindrical Shell 
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5.9 Cylindrical Shell Simulation 

 A series of analyses are carried out in a specific sequence in order to study the 

dynamic frequency response of the cylindrical shell substrate. The sequence of the 

analyses is Mode Frequency Analysis, Single Point PSD Spectrum Analysis, and 

Harmonic Response Analysis. A more in depth look at these analyses are presented in 

Chapter III. 

5.9.1 Mode Frequency Analysis 

 This analysis type is used for natural frequency and mode shape determination. 

For this particular clamped-free cylindrical shell, the first six mode shapes are shown in 

Figures 5.31, 5.32, 5.33, 5.34, 5.35, 5.36; the first and second occurring at a natural 

frequency of 452.46 Hz, the third and fourth mode shapes occurring at a natural 

frequency of 1247.6 Hz, and the fifth and sixth at 1550.7 Hz. It is noted that the first and 

second, third and fourth, and the fifth and sixth modes occur at the same frequency. In 

mode frequency analysis, the first six modes are expanded and extracted, with a 

frequency range of 0 to 1600 Hz, with the element calculation key turned OFF. A list of 

the modes at their respective frequencies is laid out in Table 5.7. 

 

Figure 5.31: First Mode Shape of Cantilevered Cylinder (452.46 Hz) 
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Figure 5.32: Second Mode Shape of Cantilevered Cylinder (452.46 Hz) 

 

Figure 5.33: Third Mode Shape of Cantilevered Cylinder (1247.6 Hz) 

 

 

Figure 5.34: Fourth Mode Shape of Cantilevered Cylinder (1247.6 Hz) 

 

 

 Figure 5.35: Fifth Mode Shape of Cantilevered Cylinder (1550.7 Hz) 
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Figure 5.36: Sixth Mode Shape of Cantilevered Cylinder (1550.7 Hz) 

Table 5.7: Frequencies at the First Six Modes 

Mode Frequency (Hz) 

1 452.46 

2 452.46 

3 1247.6 

4 1247.6 

5 1550.7 

6 1550.7 

 

5.9.2 Single Point PSD Spectrum Random Vibration Analysis 

 The next step after mode frequency analysis is to perform a spectrum analysis. 

The first six modes are included in the spectrum analysis to calculate element stresses. 

The model is excited in the Y-direction with a force of 200 N and the modal responses 

are combined using power spectral density mode combination method. The damping ratio 

is set to 0.02. Lastly, a one-sigma displacement solution output is written to the results 

file from the PSD analysis.  

5.9.3 Harmonic Response Analysis 

 The third analysis is harmonic response using the mode superposition method 

option which sums factored mode shapes to calculate the harmonic response. A harmonic 
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analysis is performed after a spectrum analysis. The frequency ranges from 1.0 to 1600 

Hz. The harmonic output option to print complex displacements as real and imaginary 

components is turned on, whereas the cluster option is turned off for uniform spacing of 

frequency solutions. These results are written in binary file *.rfrq format. This binary file 

contains all the displacement data for all the nodes at each frequency interval. A plot of 

the FRF of the clamped-free cylinder is presented in Figure 5.37. The third, fourth, fifth, 

and sixth modes are not purely bending; hence, they do not have as great of an effect as 

the purely bending modes, modes one and two, on the displacement response of the 

cylindrical shell. 

 

Figure 5.37: FRF Plot of Clamped-Free Cylindrical Shell  

5.10 Processing of ANSYS Results of Cylindrical Shell in Matlab 

 The next step is to gather all of the displacement information at each frequency 

which is done with the harmonic analysis. The information is written to a *.rfrq file 



110 

 

which is an ANSYS output binary file. This information will be imported in Matlab, 

which requires this data to be in text (ASCII) form. The ANSYS DUMP command 

converts the binary data into ASCII data. The nodal displacements are listed in ascending 

node order and then in ascending frequency. The format for this is outlined in Appendix 

I. 

Stepwise Method of Processing the *.rfrq Binary File Data in Matlab 

1. The ANSYS DUMP command is found in the GUI under Main Menu> List> 

Files> Binary Files, while choosing All Records to be listed and Entire Record of 

output per record. The file „file.rfrq‟ is selected, creating the „DUMP.txt‟ file. 

This file contains all the complex displacement for the cylindrical shell for each 

node at each frequency. 

2. The „FRFResult.txt‟ file is created from the DUMP.txt file starting after Record 8. 

3. An „NLIST.lis‟ file is saved, containing all the nodes and their coordinates. 

4. The „FRFProc_01.m‟ Matlab file, which is listed in Appendix H along with the 

subsequent Matlab files for the cylinder, reads the „FRFResult.txt‟ file and places 

the complex displacements in the x , y , and z  directions into matrix format for 

all the nodes and frequencies. However, only the top half of the shell is taken into 

account for ease of computation. 

5. The complex displacements for each individual node at each frequency are then 

combined to create a displacement magnitude. 

6. Then the „NLIST.lis‟ file is read into Matlab to give the node numbers in order 

and their coordinates.  
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7. Since the displacements are in Cartesian coordinates, they are first converted to 

cylindrical coordinates, and then consolidated into one matrix. These are then 

placed into “Shell Coordinates”, three different [21x21x250] matrices 

representing the shell as if it was laid out with displacements of each node at each 

frequency. A plot of the FRF of the cylindrical shell substrate is illustrated in 

Figure 5.38. This figure is obtained through Matlab; it confirms that the 

displacements were successfully transferred from ANSYS and organized 

correctly. The plot illustrates the proposed assumption that the transverse 

direction exhibits a much greater displacement than that of the other two 

directions. Displacement in the X direction is negligible, whereas displacement in 

the Z is less than 22 % of that in the Y at the first mode, 10 % at the second mode, 

and negligible at the third mode. 

  

Figure 5.38: FRF Plot of the Cylindrical Shell 

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9
x 10

-3 FRF Plot of the Cylindrical Shell 

Frequency (Hz)

D
is

p
la

c
e
m

e
n
t 

(d
b
/1

m
m

)

 

 

X Displacement

Y Displacement

Z Displacement



112 

 

8. The „DisplDerivative_02.m‟ file is then run in order to obtain the required first 

derivatives and second derivatives of displacement with respect to the required 

direction. 

9. After finding the derivatives, the „Film_Shape_03.m‟ file is run. This file 

basically lists the attributes of the sensor and the cylindrical shell. The end result 

is the shape of the sensor pictured in Figure 5.40, also in matrix format, depicted 

in Figure 5.41 for calculations. During calculations, the matrix represents the 

sensor shape function  1 2,
S

W    in the sensor output charge equation for a 

cylindrical shell. Unlike a shaped sensor, a generic sensor would still have this 

matrix, only it would be filled with all 1s, representing the shape of the sensor. 

The sensor shape function matrix gets multiplied by the corresponding second 

derivatives in the sensor output charge equation. Wherever there is a “1” means 

that the sensor is covering that location; conversely, wherever there is a “0” 

means that there is not a sensor at that location. 

  

Figure 5.39: Generic Film Shape for Cylindrical Shell 
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Figure 5.40: Shaped Film for Cylindrical Shell 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

 

Figure 5.41: Film Shape in Matrix Form 

10. Figure 5.39 shows a generic shaped sensor, a sensor which covers the entire 

surface of the cylindrical shell, is analyzed. The displacement frequency response 

of the clamped-free cylindrical shell and sensor output charge for each frequency 

is plotted as in Figure 5.42 for the generic sensor output charge equation: 
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11. Running „SensorOutput_Shaped_05.m‟ analyzes the sensor shaped like that of 

Figures 5.40 and utilizes the values in Figure 5.41 in its calculations. The 

displacement frequency response of the clamped-free cylindrical shell and sensor 

output charge for each frequency is plotted as in Figure 5.43 for the sensor output 
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charge equation with a shaping function: 
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 Here, the graphs of the displacement frequency response of the clamped-free 

cylindrical shell and sensor output charge for each frequency of the generic sensor and 

the shaped sensor are shown.  

 

Figure 5.42: Frequency Response of Shell vs. Generic Sensor Output Charge 
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Figure 5.43: Frequency Response of Shell vs. Shaped Sensor Output Charge 

It can be observed in both Figure 5.42 and Figure 5.43 that the films can correctly 

capture the mode shapes of the displacement frequency response of the substrate; 

however, they experience some discrepancies between the sensor output charge and the 

frequency response of the cylindrical shell. The discrepancies in resonant frequencies 

between the sensor output charge and the frequency response of the cylindrical shell can 

be accounted for by the same explanation as for the plate. The output charge equation 

integrates “strains” over the whole surface of the sensor; it is the summation of the 

derivatives of displacements. The displacement frequency response function shown on 

the figure only takes into account one point on the substrate; this point may not see 

certain modes. For instance, in the case of the beam in Figure 5.27, the particular point 

considered is a node and will not correctly capture the third mode of the beam. The 
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sensor output charge equation, however, captures all the modes and therefore will show 

more modes than the substrate point considered. As an example, an accelerometer 

attached to the substrate at a node of a mode will not measure that mode, because it will 

remain “still” at excitation coinciding with that mode. In surface shaping sensor design, 

the objective is to design a sensor which monitors those modes which need to be 

controlled. Hence, the FRF of a point may show fewer modes than the FRF of the sensor 

output charge.  

5.11 Conclusions and Future Scope 

Conclusions 

 This work shows that a mix of finite element and numerical differentiation and 

integration methods can be used in order to calculate the output charge of a thin 

piezoelectric film bonded to a shell structure. The method was applied to cases of a 

cylindrical shell structure, as well as a beam and plate for both the generic and shaped 

piezoelectric film. The method can be applied to cases where the required input variables 

such as film shape and shell vibration profile are in discrete form. Therefore, 

experimentally obtained input variables can be used with the herein described method to 

calculate the piezoelectric film output charge and thus, design a sensor for desired output.  

The results indicate that sensor output captures the behavior of the structures as far as the 

modes are concerned. The proposed method can be applied to calculate the output charge 

of films attached to complex structures or structures with complex boundary conditions. 

This can also be applied in cases where close form equations cannot be derived and the 

only data available are discrete or experimental. Moreover, in sensor design applications 
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where the film is often shaped so that its output charge corresponds to a specific 

structural dynamic property, the proposed method greatly simplifies the design process. 

Future Scope 

 After the simulation of the beam, plate, and cylindrical shell and finding the 

output charge of their sensors, the next step would be to develop an actuator and use it in 

the same control system as the sensor. After that, an experiment should be performed to 

verify the findings. A possible change could be to apply the method to more complex 

structures, and a possible improvement could be to use an increased number of nodes for 

all three structures for increased resolution; this may decrease errors in numeric 

computing.  
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APPENDIX A 

ANSYS INPUT LOG FILE FOR VM19 

/COM,ANSYS MEDIA REL. 120 (02/19/2009) REF. VERIF. MANUAL: REL. 120 

/VERIFY,VM19 

/PREP7 

/TITLE, VM19, RANDOM VIBRATION ANALYSIS OF A DEEP SIMPLY-

SUPPORTED BEAM 

/COM REFERENCE:  NAFEMS FORCED VIBRATION BENCHMARKS TEST 5R 

ET,1,BEAM4                         ! DEFINE ELEMENT TYPE 

MP,EX,1,200E9                      ! DEFINE MATERIAL PROPERTIES 

MP,NUXY,1,0.3 

MP,ALPX,1,0.1E-5 

MP,DENS,1,8000 

R,1,4,1.333,1.333,2,2,0            ! DEFINE REAL CONSTANTS 

RMORE,0,2.2496,1.177,1.177 

N,1,0 

N,11,10 

FILL 

E,1,2 

EGEN,10,1,1 

FINISH 
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/SOLU 

ANTYPE,MODAL                       ! DEFINE ANALYSIS TYPE 

MXPAND,9,,,YES                     ! EXPAND 9 MODES, CALC. STRESS VALUES 

MODOPT,REDUC 

D,1,UX,0,0,1,1,UY,UZ,ROTX          ! APPLY CONSTRAINTS 

D,11,UY,0,0,11,1,UZ 

M,2,UY,10,1 

SOLVE 

*GET,FREQ,MODE,1,FREQ 

FINISH 

/COPY,,tri,,mode,tri 

/SOLU 

ANTYPE,SPECTR                      ! PREFORM SPECTRUM PSD ANALYSIS 

SPOPT,PSD,9,ON                     ! CALC. STRESS RESPONSE FOR FIRST 9 MODES 

PSDUNIT,1,FORCE 

DMPRAT,0.02 

F,1,FY,-0.5E6                      ! SCALE LOADS 

F,11,FY,-0.5E6 

F,2,FY,-1E6,,10,1 

PSDFRQ,1,1,0.1,70. 

PSDVAL,1,1,1                       ! IN N**2/HZ 

PFACT,1,NODE 

PSDRES,DISP,REL 
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PSDCOM  

SOLVE 

FINISH 

 

/POST26 

STORE,PSD,10 

NSOL,2,6,U,Y 

RPSD,8,2 

PRTIME,42.640,42.641 

PRVAR,8 

*GET,P1,VARI,8,RTIME,42.64 

PM=P1*1000000 

FINISH 

 

/POST26 

STORE,PSD,10 

ESOL,3,5,6,LS,7   

RPSD,9,3 

PRTIME,42.640,42.641 

PRVAR,9 

*GET,P2,VARI,9,RTIME,42.64 

PM2=P2/(1E12) 

*DIM,LABEL,CHAR,3,2 
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*DIM,VALUE,,3,3 

LABEL(1,1) = 'FREQ1','PEAK d','PSD(N/mm' 

LABEL(1,2) = ' (Hz)',' mm^2/Hz','^2)^2/Hz' 

*VFILL,VALUE(1,1),DATA,42.65,180.9,58515.6 

*VFILL,VALUE(1,2),DATA,FREQ,PM,PM2 

*VFILL,VALUE(1,3),DATA,ABS(FREQ/42.65) ,ABS(PM/180.9 ),ABS(PM2/58515.6 ) 

FINISH 

/COM 

/OUT,vm19.vrt 

/COM,------------------- VM19 RESULTS COMPARISON --------------------- 

/COM, 

/COM,                 |   TARGET   |   ANSYS   |   RATIO 

/COM, 

*VWRITE,LABEL(1,1),LABEL(1,2),VALUE(1,1),VALUE(1,2),VALUE(1,3) 

(1X,A8,A8,'   ',F10.2,'  ',F10.2,'   ',1F5.2) 

/COM,----------------------------------------------------------------- 

/COM, 

/COM,----------------------------------------------------------------- 

/COM,NOTE: THERE ARE VERIFIED RESULTS IN VM19 NOT CONTAINED IN 

/COM,THIS TABLE 

/COM,----------------------------------------------------------------- 

/OUT 

*LIST,vm19.vrt 
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APPENDIX B 

ANSYS INPUT LOG FILE FOR VM203 

/VERIFY,VM203    

/PREP7 

/TITLE, VM203, DYNAMIC LOAD EFFECT ON SIMPLY-SUPPORTED THICK 

SQUARE PLATE 

/COM REFERENCE: NAFEMS FORCED VIBRATION BENCHMARKS, TEST 21R 

C***          USING SHELL281 ELEMENTS 

ET,1,SHELL281            ! DEFINE ELEMENT TYPE 

SECTYPE,1,SHELL 

SECDATA,1,1,0,5       ! THICKNESS 

MP,EX,1,200E9                ! DEFINE MATERIAL PROPERTIES 

MP,NUXY,1,0.3 

MP,ALPX,1,0.1E-5 

MP,DENS,1,8000 

N,1,0,0,0                    ! DEFINE MODEL 

N,9,0,10,0 

FILL 

NGEN,5,40,1,9,1,2.5 

N,21,1.25,0,0 

N,29,1.25,10,0 
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FILL,21,29,3 

NGEN,4,40,21,29,2,2.5 

EN,1,1,41,43,3,21,42,23,2 

EGEN,4,2,1 

EGEN,4,40,1,4 

FINISH 

SAVE,MODEL 

*CREATE,SOLVIT,MAC 

/SOLU 

ANTYPE,MODAL                 ! DEFINE ANALYSIS TYPE AS MODAL VIBRATION 

MODOPT,REDUC 

MXPAND,16,,,YES 

SFE,ALL,,PRES,,-1E6          ! PRESS LOAD OF 1000,000 N/M**2 

D,ALL,UX,0,,,,UY,ROTZ        ! APPLY CONSTRAINTS 

D,1,UZ,0,0,9,1,ROTX 

D,161,UZ,0,0,169,1,ROTX 

D,1,UZ,0,0,161,20,ROTY 

D,9,UZ,0,0,169,20,ROTY 

NSEL,S,LOC,X,.1,9.9 

NSEL,R,LOC,Y,.1,9.9 

M,ALL,UZ                      ! SELECT MASTERS 

NSEL,ALL 

SOLVE 
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*GET,F,MODE,1,FREQ 

FINISH 

/SOLU 

/TITLE, VM203, RANDOM VIBRATION , RESPONSE TO UNIFORM PSD FORCE 

ANTYPE,SPECTR                 ! DEFINE ANALYSIS TYPE 

SPOPT,PSD,2,ON                ! USE FIRST 2 MODES, CALC ELEM. STRESSES 

PSDUNIT,1,PRES                ! DEFINE TYPE OF PSD AS A PRESSURE SPECTRUM  

DMPRAT,0.02 

PSDFRQ,1,1,1.0,80.0 

PSDVAL,1,1.0,1.0              ! IN N**2/HZ 

SFEDELE,ALL,,PRES,, 

LVSCALE,1                     ! USE AND SCALE THE LOAD VECTOR GENERATED 

AT MODAL ANALYSIS 

PFACT,1,NODE 

PSDRES,DISP,REL 

PSDCOM 

SOLVE 

FINISH 

/POST1 

SET,3,1                       ! ONE SIGMA DISPLACEMENT SOLUTION RESULTS 

/VIEW,1,2,3,4 

PLNSOL,U,Z 

PRNSOL,U,Z 
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L2=NODE(2,8,0)   

*GET,SIGEL2,NODE,L2,S,EQV    

NSEL,,NODE,,L2 

PRNSOL,S,COMP 

NSEL,ALL 

FINISH 

/SOLUTION 

ANTYPE,HARMIC                ! REDEFINE ANALYSIS TYPE AND SOLVE AGAIN  

HROPT,MSUP                   ! USING MODE SUPERPOSITION HARMONIC 

ANALYSIS 

HROUT,OFF,ON                 ! PRINT AMPLITUDE & PHASE, CLUSTER 

FREQUENCIES 

KBC,1 

HARFRQ,1,80 

DMPRAT,0.02 

NSUBSTEP,10 

SOLVE 

FINISH 

/POST26 

FILE,,rfrq 

PRCPLX,1 

NSOL,2,85,U,Z 

PSDDAT,6,1,1.0,80,1.0 
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PSDTYP,2 

PSDCAL,7,2 

PSDPRT 

PRVAR,2,7 

*GET,P,VARI,7,EXTREM,VMAX 

*STATUS,PARM 

/AXLAB,Y,PSD  (M^2/HZ) 

PLVAR,7 

*DIM,LABEL,CHAR,2,2 

*DIM,VALUE,,2,3 

LABEL(1,1) = 'f ','PSD ' 

LABEL(1,2) = 'Hz','SQmmS/Hz' 

*VFILL,VALUE(1,1),DATA,45.9,3.4018E-3 

*VFILL,VALUE(1,2),DATA,F,P 

*VFILL,VALUE(1,3),DATA,ABS(F/45.9),ABS(P/(3.4018E-3)) 

FINISH 

*END 

SOLVIT 

SAVE,TABLE_1 

/NOPR 

RESUME,TABLE_1 

/COM 

/OUT,vm203,vrt 



128 

 

/COM,------------------- VM203 RESULTS COMPARISON -------------- 

/COM, 

/COM,                 |   TARGET   |   ANSYS   |   RATIO 

/COM, 

/COM, SHELL281 

/COM, 

*VWRITE,LABEL(1,1),LABEL(1,2),VALUE(1,1),VALUE(1,2),VALUE(1,3) 

(1X,A8,A8,'   ',F11.6,'  ',F11.6,'   ',1F6.3) 

/COM, 

/COM, 

/COM,----------------------------------------------------------- 

/COM, 

/OUT 

FINISH 

*LIST,vm203,vrt 

/DELETE,MODEL 

/DELETE,SOLVIT,MAC 

/DELETE,TABLE_1 
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APPENDIX C 

ANSYS INPUT LOG FILE FOR SIMULATION OF BEAM 

 

FINISH 

/CLEAR,ALL 

/CONFIG, NRES, 15000 ! Maximum number of results sets(subsets) allowed on the 

results file. 

/CWD,'j:\BeamPSD Verify' 

/TITLE, Dynamic Analysis 

/PREP7 

 

! Define variables for problem: 

!------------------------------ 

! INCHES TO METRIC 

*set,L,12*2.54/100 

*set,H,1/8*2.54/100 

*set,B,2*2.54/100 

*set,MYFRQ,1600 

*set,MyLoadStep,500 

*set,MYFORCE,-600 

*set,NODES,251 

A=B*H 

Izz=B*H**3/12 

Iyy=H*B**3/12 

 

! Define elements and material properties: 

!----------------------------------------- 

ET,1,BEAM4                         ! DEFINE ELEMENT TYPE 

MP,EX,1,70E9                      ! DEFINE MATERIAL PROPERTIES 

MP,NUXY,1,0.33 

MP,DENS,1,2710 

R,1,A,Izz,Iyy,H,B,0            ! DEFINE REAL CONSTANTS 

 

! Geometry: 

!---------- 

N,1,0 

N,NODES,L 

FILL 

E,1,2 
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EGEN,NODES-1,1,1    !Generates elements from an existing pattern 

including pattern 

 

! BC and master nodes: 

!--------------------- 

D,1,ALL ! Constrain left end 

NSEL,S,,,1,NODES, ! select nodes 1 - LAST 

M,ALL,UY, , , ! Define Master DOFs 

NSEL,ALL ! Reselect all nodes 

FINISH 

   

/SOLU 

ANTYPE,MODAL                 ! DEFINE ANALYSIS TYPE AS MODAL VIBRATION 

MODOPT,REDUC 

MXPAND,6,,,YES 

NSEL,ALL 

SOLVE    

FINISH   

 

/POST1   

SET,LIST  !List mode frequencies  

 

/SOLU 

ANTYPE,SPECTR                 ! DEFINE ANALYSIS TYPE 

SPOPT,PSD,4,ON                ! USE FIRST 4 MODES, CALC ELEM. STRESSES 

PSDUNIT,1,FORCE               ! DEFINE TYPE OF PSD AS A FORCE SPECTRUM  

DMPRAT,0.02        ! DMPRAT, RATIO 

F,2,FY,MYFORCE 

PSDFRQ,1,1,1.0,MYFRQ 

PSDVAL,1,1.0,1.0              ! IN N**2/HZ 

LVSCALE,1                     ! USE AND SCALE THE LOAD VECTOR GENERATED 

AT MODAL ANALYSIS 

PFACT,1,NODE        ! Calculates participation factors 

PSDRES,DISP,REL 

PSDCOM 

SOLVE 

FINISH 

 

/POST1 

SET,3,1                       ! ONE SIGMA DISPLACEMENT SOLUTION RESULTS 

/VIEW,1,2,3,4 

PLNSOL,U,Y !Displays results as continuous contours. 

PRNSOL,U,Y !Prints the nodal solution results. 

FINISH 

 

/SOLUTION 
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ANTYPE,HARMIC       ! REDEFINE ANALYSIS TYPE AND SOLVE AGAIN  

HROPT,MSUP               ! USING MODE SUPERPOSITION HARMONIC ANALYSIS 

HROUT,ON,OFF           ! PRINT AMPLITUDE & PHASE, CLUSTER FREQUENCIES 

KBC,1 

HARFRQ,1,MYFRQ 

DMPRAT,0.02 

NSUBST,MyLOadStep 

SOLVE 

FINISH 

 

/POST26 

FILE,,rfrq 

PRCPLX,0 !Defines the output form for complex variables 

NSOL,2,NODES,U,Y 

PSDDAT,6,1,1.0,MYFRQ,1.0 

PSDTYP,2 

PSDCAL,7,2 

PSDPRT 

PRVAR,2,7 

*GET,P,VARI,7,EXTREM,VMAX 

*STATUS,PARM 

/AXLAB,Y,PSD  (M^2/HZ) 

PLVAR,7 

 

 
 

 

 

 

 

 



132 

 

APPENDIX D 

MATLAB CODE FOR BEAM 

FRFProc_01.m Matlab Code 

clc 

clear all 

close all 

%  

% Data 

LoadStep=500; 

Wy = fopen('FRFResult2.txt','r'); 

%junk1=fscanf(Wy,'%s',2651); 

for j=1:LoadStep;%LoadStep % Total displrecord 

    for i=1:102 % 102 line per record 

        WyTmp=fscanf(Wy,'%g',[1 5]); 

        Junk2=fscanf(Wy,'%s',2); 

        RawData(i,:,j)=WyTmp; 

    end 

    Junk3=fscanf(Wy,'%s',26); 

end 

% Extract frequency 

for i=1:LoadStep 
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Freq(i)=RawData(101,1,i); 

end 

  

% Extract UY with column per load  

for j=1:LoadStep 

    RawDataV1=RawData(1:100,:,j)'; 

    RawDataV(:,j)=RawDataV1(:); 

end 

% Extract UY  per load  

for j=1:LoadStep 

    k=0; 

    for i=1:2:499 

        k=k+1; 

        UyReal=RawDataV(i,j); 

        UyIm=RawDataV(i+1,j); 

        Uy(:,k,j)=[UyReal;UyIm]; 

    end 

end 

% Check 

for j=1:LoadStep 

    Uplot(:,j)=Uy(:,250,j); %Last node 250 

    UplotMag(j)=sqrt(Uplot(1,j)^2+Uplot(2,j)^2); 

end 
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% Create U of magnitude 

for j=1:500 

    for i=1:250 

        Um(1,i,j)=sqrt(Uy(1,i,j)^2+Uy(2,i,j)^2); 

    end 

end 

save DispData Uy Um Freq UplotMag 

plot(Freq,UplotMag) 

title('FRF Plot of Clamped-Free Beam') 

legend('Beam Displacement') 

xlabel('Frequency (Hz)') 

ylabel('Displacement (db/1mm)') 

 

DisplDerivative_02.m Matlab Code 

clc 

clear all 

% 

load DispData 

N=size(Uy); 

L=12*2.54/100; 

dx=L/250; 

x=0:dx:L;  

% 
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for j=1:N(3) 

    tmp1(1,2:251)=Um(1,:,j); 

    Dpp(1,:,j)=diff(tmp1,2,2)/dx; 

end 

% 

save DisplDerivative Dpp Freq UplotMag 

 

Film_Shape_03.m Matlab Code 

close all 

clear all 

clc 

% 

hb=1/8*2.54/100; 

hs=28e-6; 

e31=7.25; 

b=2*2.54/100; 

L=12*2.54/100; 

k=-b/(2*e31*(hb+hs)); 

dx=L/250; 

x=0:dx:L;  

N=length(x); 

  

Fones=ones(N,1); 
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F=Fones*b/2; 

%Fs=k*(x-L).^2;   

Fs=k*(x.^2-L*x); 

save FilmShape F Fs e31 hb hs  

plot(x,Fs,x,-Fs) 

title('Shaped Film for Beam') 

xlabel('Length (m)') 

ylabel('Width (m)') 

axis equal 

axis([0 L -b/2 b/2]) 

  

%plot(x,F,x,-F) 

%title('Generic Film Shape for Beam') 

xlabel('Length (m)') 

ylabel('Width (m)') 

axis equal 

axis([0 L -b/2 b/2]) 

 

SensorOutput_Generic_04 

close all 

clear all 

clc 

% 
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load DisplDerivative 

load FilmShape 

L=12*2.54/100; 

dx=L/250; 

x=0:dx:L;  

% 

N=size(Dpp); 

F=F(1:end-2); 

NewCoord=x(1:end-2); 

for j=1:500 

   Itmp=-e31*(hs+hb)*F'.*Dpp(1,:,j); 

   q(j)=trapz(Itmp,NewCoord); 

end 

% 

[ax,h1,h2]=plotyy(Freq,20*log10(UplotMag/1e-3),Freq,20*log10(1e1*q/1e-

3),'plot','plot'); 

set(h1,'color','red'); 

set(h2,'color','blue','linestyle','+'); 

set(get(ax(1), 'Ylabel'), 'String', 'Displacement (dB/1mm)'); 

set(get(ax(2), 'Ylabel'), 'String', 'Voltage (dBV)'); 

grid 

title('Frequency Response of Beam vs. Generic Sensor Output Charge') 

xlabel('Frequency (Hz)') 
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legend('Beam Frequency Response','Sensor Output Charge') 

axis square 

 

SensorOutput_Shaped_05.m Matlab Code 

close all 

clear all 

clc 

% 

load DisplDerivative 

load FilmShape 

L=12*2.54/100; 

dx=L/250; 

x=0:dx:L;  

% 

N=size(Dpp); 

Fs=Fs(1:end-2); 

%Fones=ones(249,1); 

NewCoord=x(1:end-2); 

for j=1:500 

   Itmp=-e31*(hs+hb)*Dpp(1,:,j);  

   %Itmp=-e31*(hs+hb)*Fs.*Dpp(1,:,j); 

   q(j)=trapz(Itmp,NewCoord); 

end 
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% 

[ax,h1,h2]=plotyy(Freq,20*log10(UplotMag/1e-3),Freq,20*log10(.22*q/1e-

3),'plot','plot'); 

set(h1,'color','red'); 

set(h2,'color','blue','linestyle','+'); 

set(get(ax(1), 'Ylabel'), 'String', 'Displacement (dB/1mm)'); 

set(get(ax(2), 'Ylabel'), 'String', 'Voltage (dBV)'); 

grid 

title('Frequency Response of Beam vs. Shaped Sensor Output Charge') 

xlabel('Frequency (Hz)') 

legend('Beam Frequency Response','Sensor Output Charge') 
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APPENDIX E 

ANSYS INPUT LOG FILE FOR SIMULATION OF PLATE 

FINISH 

/CLEAR,ALL 

/CONFIG, NRES, 15000 ! Maximum number of results sets(subsets) allowed on the 

results file. 

/CWD,'j:\PlatePSD Verify' 

/TITLE, Dynamic Analysis 

/PREP7 

 

! Define variables for problem: 

!------------------------------ 

*set,H,15*2.54/100 

*set,L,24*2.54/100 

*set,B,3/16*2.54/100 

*set,MYFRQ,250 

*set,MyLoadStep,500 

*set,MYFORCE,-50 

*set,NODES,400 

 

! Define elements and material properties: 

!----------------------------------------- 

ET,1,SHELL63   ! Element Type 

MP,EX,1,70E9    ! Young's Modulus 

MP,PRXY,1,0.33    ! Poisson's Ratio 

MP,DENS,1,2710    ! Density 

R,1,B,B,B,B,0,0,    ! Thickness 

 

! Geometry: 

!---------- 

N,1,0,0,0 

N,25,L,0,0 

FILL 

NGEN,16,25,1,25,1,,H/16 

EN,1,1,2,27,26 

EGEN,24,1,1 

EGEN,15,25,1,25 

 

! BC and master nodes: 
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!--------------------- 

D,1,ALL,,,376,25 ! Constrain left end 

NSEL,S,,,1,NODES, ! select nodes 1 - LAST 

M,ALL,UZ, , , ! Define Master DOFs 

NSEL,ALL ! Reselect all nodes 

FINISH 

 

/SOLU 

ANTYPE,MODAL                 ! DEFINE ANALYSIS TYPE AS MODAL VIBRATION 

MODOPT,REDUC 

MXPAND,6,,,YES 

NSEL,ALL 

SOLVE    

FINISH   

 

/POST1   

SET,LIST  !List mode frequencies  

 

/SOLU 

ANTYPE,SPECTR                 ! DEFINE ANALYSIS TYPE 

SPOPT,PSD,6,ON                ! USE FIRST 6 MODES, CALC ELEM. STRESSES 

PSDUNIT,1,FORCE               ! DEFINE TYPE OF PSD AS A FORCE SPECTRUM  

DMPRAT,0.02        ! DMPRAT, RATIO 

! 

F,200,FZ,MYFORCE 

! 

PSDFRQ,1,1,1.0,MYFRQ 

PSDVAL,1,1.0,1.0              ! IN N**2/HZ 

LVSCALE,1                     ! USE AND SCALE THE LOAD VECTOR GENERATED 

AT MODAL ANALYSIS 

PFACT,1,NODE        ! Calculates participation factors 

PSDRES,DISP,REL 

PSDCOM 

SOLVE 

FINISH 

 

/POST1 

SET,3,1                       ! ONE SIGMA DISPLACEMENT SOLUTION RESULTS 

/VIEW,1,2,3,4 

! 

PLNSOL,U,Z !Displays results as continuous contours. 

PRNSOL,U,Z !Prints the nodal solution results. 

! 

FINISH 

 

/SOLUTION 
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ANTYPE,HARMIC       ! REDEFINE ANALYSIS TYPE AND SOLVE AGAIN  

HROPT,MSUP               ! USING MODE SUPERPOSITION HARMONIC ANALYSIS 

HROUT,ON,OFF           ! PRINT AMPLITUDE & PHASE, CLUSTER FREQUENCIES 

KBC,1 

HARFRQ,1,MYFRQ 

DMPRAT,0.02 

NSUBST,MyLoadStep 

SOLVE 

FINISH 

 

/POST26 

FILE,,rfrq 

PRCPLX,0 !Defines the output form for complex variables 

! 

NSOL,2,110,U,Z 

! 

PSDDAT,6,1,1.0,MYFRQ,1.0 

PSDTYP,2 

PSDCAL,7,2 

PSDPRT 

PRVAR,2,7 

*GET,P,VARI,7,EXTREM,VMAX 

*STATUS,PARM 

/AXLAB,Y,PSD  (M^2/HZ) 

PLVAR,7 
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APPENDIX F 

MATLAB CODE FOR PLATE 

FRFProc_01.m Matlab Code 

clc 

clear all 

close all 

%  

% Data 

LoadStep=500; 

Wy = fopen('FRFResult.txt','r'); 

%junk1=fscanf(Wy,'%s',2651); 

for j=1:LoadStep;%LoadStep % Total displrecord 

    for i=1:155 % 303 line per record 

        WyTmp=fscanf(Wy,'%g',[1 5]); 

        Junk2=fscanf(Wy,'%s',2); 

        RawData(i,:,j)=WyTmp; 

    end 

    Junk3=fscanf(Wy,'%s',29); 

end 

% extract frequency 

for i=1:LoadStep 
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    Freq(i)=RawData(154,4,i); 

end 

% Extract UZ with column per load  

for j=1:LoadStep 

    RawDataV1=RawData(1:154,:,j)'; 

    RawDataV(:,j)=RawDataV1(:); 

end 

% Extract UZ  per load  

for j=1:LoadStep 

    k=0; 

    for i=1:2:768 

        k=k+1; 

        UzReal=RawDataV(i,j); 

        UzIm=RawDataV(i+1,j); 

        Uz(:,k,j)=[UzReal;UzIm]; 

    end 

end 

% Check 

for j=1:LoadStep 

    Uplot(:,j)=Uz(:,200,j); % at node 200 

    UplotMag(j)=sqrt(Uplot(1,j)^2+Uplot(2,j)^2); 

end 

% Create U of magnitude 
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for j=1:500 

    for i=1:384 

        Um(1,i,j)=sqrt(Uz(1,i,j)^2+Uz(2,i,j)^2); 

    end 

end 

% Place Um in Plate Coordinates 

Umt=zeros(16,24,500); %16 by 24 nodes, subtracted left end due to constraints 

j=16;k=24; 

 while j>=1 

       ii=1:500; 

       Umt(j,:,ii)=Um(:,k-23:k,ii); 

       k=k+24; 

       j=j-1; 

 end 

  

save DispData Uz Umt Freq UplotMag 

plot(Freq,UplotMag) 

title('FRF Plot of Plate') 

legend('Plate Displacement') 

xlabel('Frequency (Hz)') 

ylabel('Displacement (db/1mm)') 

 

DisplDerivative_02.m Matlab Code 
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close all 

clear all 

clc 

 % 

load DispData 

N=size(Umt); 

L=24*2.54/100; 

dx=L/24; 

x=0:dx:L;  

H=15*2.54/100; 

dy=H/15; 

y=0:dy:H; 

% 2nd Derivatives 

NewD=zeros(16,25,500); 

NewD(:,2:end,:)=Umt(:,:,:); % add constrained end of plate 

for j=1:N(3) 

[X,Y]=gradient(NewD(:,:,j)); 

[XX,Junk1]=gradient(X/dx); 

[Junk2,YY]=gradient(Y/dy); 

end 

save DisplDerivative XX YY NewD Freq UplotMag N X Y dx dy 
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PLATEreadcoord_02.m Matlab Code 

close all 

clear all 

clc 

 

% 

% Data 

NumberOfPoint=400;%From ANSYS file *DO LOOP ON  

%PARAMETER= ICOUNT FROM  0.0000     TO  400.00 

%Tf=20; %Must be bigger than the final time from ANSYS file 

Np=0; 

k=0; 

kk=1; 

jj=1; 

%  

Wy = fopen('NLIST.lis','r'); 

junk1=fscanf(Wy,'%s',16); 

while Np < NumberOfPoint  

    for j=1:20 

        if Np < NumberOfPoint  

            k=k+1; 

            CoTmp=fscanf(Wy,'%g',[1 4]); 

            Coord(k,:,kk)=CoTmp; 
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            Np=Coord(k,1); 

        end 

    end 

    junk2=fscanf(Wy,'%s',4);  

end 

fclose(Wy); 

% For Dxx 

NewCoordx=zeros(16,25); 

j=16;k=25; 

 while j>=1 

       NewCoordx(j,:)=Coord(k-24:k,2); 

       k=k+25; 

       j=j-1; 

 end 

% For Dyy  

NewCoordy=zeros(16,25); 

 j=1;k=25; 

 while j<=16 

       NewCoordy(j,:)=Coord(k-24:k,3); 

       k=k+25; 

       j=j+1; 

 end 

save PLATECoord NewCoordx NewCoordy Coord 
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Film_Shape_03.m Matlab Code 

close all 

clear all 

clc 

% 

load PLATECoord 

load DisplDerivative 

  

%Calculate Film Shape Outline 

hb=3/16*2.54/100; 

hs=50e-6; 

e31=9.65; 

L=24*2.54/100; 

b=15*2.54/100/2; 

k=-b/(2*e31*(hb+hs)); 

dx=L/24; 

x=0:dx:L; 

F=k*(x.^2-L*x); 

plot(x,F,x,-F) 

%title('Shaped Film for Plate') 

%xlabel('Length (m)') 

%ylabel('Width (m)') 
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%Create Film on Plate 

y=b:-b/7.5:-b; 

for i=1:25 

    Y(:,i)=y; 

end 

W=ones(16,25); 

for j=1:25 

    for k=1:16 

        if F(1,j)' < Y(k,j) 

            W(k,j)=0; 

        end 

        if -F(1,j)' > Y(k,j) 

            W(k,j)=0; 

        end 

    end 

end 

save FilmShape e31 hb hs F y Y W 

 % 

Fones=ones(25,1); 

F1=Fones*b; 

 % 

plot(x,F1,x,-F1) 

title('Generic Film Shape for Plate') 
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xlabel('Length (m)') 

ylabel('Width (m)') 

axis equal 

axis([0 L -b b]) 

 

SensorOutput_Generic_04 

close all 

clear all 

clc 

% 

load PLATECoord 

load DispData 

load DisplDerivative 

load FilmShape 

L=24*2.54/100; 

dx=L/24; 

x=0:dx:L;  

H=15*2.54/100; 

dy=H/15; 

y=0:H/24:H; % needs to be <1x24> to match dx 

% 

N=size(NewD); 

Xt=X'; Yt=Y; % Use with trapz 
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X=Xt(:,1); Y=Yt(1,:); % Use with trapz 

Fnew=ones(16,25); 

%Fnew or NewCoordy or else? 

for i=1:500 

    [X1,Y1]=gradient(NewD(:,:,i)); 

    [XX,Junk1]=gradient(X1/dx); 

    [Junk2,YY]=gradient(Y1/dy); 

    [Yn,Xn]=meshgrid(Y,X); 

    Itmp=-e31*(hs+hb)*Fnew'*(XX+YY); % XX = d^2F/dx^2 and YY = d^2F/dy^2 

    %Y2=[0 .005 .01 .015 .02 .025 .03 .035 .04 .045 .05 .055 .06 .065 .07 .075 .08 .085 .09 

.095 .1]; 

    X2=[0 .02 .04 .06 .08 .1 .12 .14 .16 .18 .2]; 

    %q(i)=trapz(Y2,trapz(X',Itmp.').'); % Y2 needs to be [1 x 21] vector 

    q(i)=trapz(y,trapz(NewCoordx(1,:),Itmp).'); 

end 

% 

[ax,h1,h2]=plotyy(Freq,20*log10(UplotMag/1e-3),Freq,20*log10(3*q/1e-3),'plot','plot'); 

set(h1,'color','red'); 

set(h2,'color','blue','linestyle','+'); 

set(get(ax(1), 'Ylabel'), 'String', 'Displacement (dB/1mm)'); 

set(get(ax(2), 'Ylabel'), 'String', 'Voltage (dBV)'); 

grid 

title('Frequency Response of Plate vs. Generic Sensor Output Charge') 
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xlabel('Frequency (Hz)') 

legend('Plate Frequency Response','Sensor Output Charge') 

 

SensorOutput_Shaped_05.m Matlab Code 

close all 

clear all 

clc 

% 

load PLATECoord 

load DispData 

load DisplDerivative 

load FilmShape 

L=24*2.54/100; 

H=15*2.54/100/2; 

dx=L/24; 

x=0:dx:L;  

dy=H/24; 

y=0:dy:H; 

% 

for i=1:500 

    [X1,Y1]=gradient(NewD(:,:,i)); 

    [XX,Junk1]=gradient(X1/dx); 

    [Junk2,YY]=gradient(Y1/dy); 
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    [Yn,Xn]=meshgrid(Y,X); 

    Itmp=-e31*(hs+hb)*W'*(XX+YY); % XX = d^2F/dx^2 and YY = d^2F/dy^2 

    q(i)=trapz(y,trapz(x,Itmp).'); 

end 

% 

[ax,h1,h2]=plotyy(Freq,20*log10(UplotMag/1e-3),Freq,20*log10(1e1*q/1e-

3),'plot','plot'); 

set(h1,'color','red'); 

set(h2,'color','blue','linestyle','+'); 

set(get(ax(1), 'Ylabel'), 'String', 'Displacement (dB/1mm)'); 

set(get(ax(2), 'Ylabel'), 'String', 'Voltage (dBV)'); 

grid 

title('Frequency Response of Plate vs. Shaped Sensor Output Charge') 

xlabel('Frequency (Hz)') 

legend('Plate Frequency Response','Sensor Output Charge') 
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APPENDIX G 

ANSYS INPUT LOG FILE FOR SIMULATION OF CYLINDER 

FINISH 

/CLEAR,ALL 

/CONFIG, NRES, 15000 ! Maximum number of results sets(subsets) allowed on the 

results file. 

/CWD,'f:\ShellPSD Verify2' 

/TITLE, Dynamic Analysis 

/PREP7 

 

! Define variables for problem: 

!------------------------------ 

! INCHES TO METERS 

*set,R,1.715/2*2.54/100 

*set,Z,12*2.54/100 

*set,B,0.035*2.54/100 

*set,MYFRQ,1600 

*set,MyLoadStep,250 

*set,MYFORCE,-200 

*set,NODES,861 

 

! Define elements and material properties: 

!----------------------------------------- 

ET,1,SHELL63   ! Element Type 

MP,EX,1,68.9E9    ! Young's Modulus 

MP,PRXY,1,0.33    ! Poisson's Ratio 

MP,DENS,1,2700    ! Density 

R,1,B,B,B,B,0,0,    ! Thickness 

 

! Geometry: 

!---------- 

CSYS,1 ! Cylindrical Coordinates 

N,1,R,0,0 

N,21,R,0,Z 

FILL 

NGEN,41,21,1,21,1,,90/10 

EN,1,1,2,23,22 

EGEN,20,1,1 

EGEN,40,21,1,21 
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! Boundary Conditions: 

!--------------------- 

D,1,ALL,,,841,21 ! Constrain left end 

NSEL,S,,,1,NODES, ! select nodes 1 - LAST 

NSEL,ALL ! Reselect all nodes 

 

NUMMRG,NODE 

FINISH 

 

/SOLU 

ANTYPE,MODAL                 ! DEFINE ANALYSIS TYPE AS MODAL VIBRATION 

MODOPT,LANB,1500,0,MYFRQ, ,OFF 

EQSLV,SPAR 

MXPAND,6,,,0 

LUMPM,0  

PSTRES,0 

!OUTRES,NSOL,ALL 

!MODOPT,LANB,6,0,750, ,OFF 

SOLVE    

FINISH   

 

/POST1   

SET,LIST  !List mode frequencies  

!rsys,1 

 

/SOLU 

ANTYPE,SPECTR                 ! DEFINE ANALYSIS TYPE 

SPOPT,PSD,6,ON               ! USE FIRST 6 MODES, CALC ELEM. STRESSES 

PSDUNIT,1,FORCE               ! DEFINE TYPE OF PSD AS A FORCE SPECTRUM  

DMPRAT,0.02        ! DMPRAT, RATIO 

F,231,FY,MYFORCE 

PSDFRQ,1,1,1.0,MYFRQ 

PSDVAL,1,1.0,1.0              ! IN N**2/HZ 

LVSCALE,1                     ! USE AND SCALE THE LOAD VECTOR GENERATED 

AT MODAL ANALYSIS 

PFACT,1,NODE        ! Calculates participation factors 

PSDRES,DISP,REL 

PSDCOM 

SOLVE 

FINISH 

 

/POST1 

SET,3,1                       ! ONE SIGMA DISPLACEMENT SOLUTION RESULTS 

/VIEW,1,2,3,4 

!rsys,1 

! 
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!PLNSOL,U,X !Displays results as continuous contours. 

!PRNSOL,U,X !Prints the nodal solution results. 

! 

PLNSOL,U,Y !Displays results as continuous contours. 

PRNSOL,U,Y !Prints the nodal solution results. 

! 

!PLNSOL,U,Z !Displays results as continuous contours. 

!PRNSOL,U,Z !Prints the nodal solution results. 

! 

FINISH 

 

/SOLUTION 

ANTYPE,HARMIC       ! REDEFINE ANALYSIS TYPE AND SOLVE AGAIN  

HROPT,MSUP              ! USING MODE SUPERPOSITION HARMONIC ANALYSIS 

HROUT,ON,OFF           ! PRINT AMPLITUDE & PHASE, CLUSTER FREQUENCIES 

KBC,1 

HARFRQ,1,MYFRQ 

DMPRAT,0.02 

NSUBST,MyLoadStep 

SOLVE 

FINISH 

 

/POST26 

FILE,,rfrq 

PRCPLX,0 !Defines the output form for complex variables 

! 

NSOL,2,410,U,Y !!!!!!!!!!!!!!!!!!X or Y, node number, 

! 

PSDDAT,6,1,1.0,MYFRQ,1.0 

PSDTYP,2 

PSDCAL,7,2 

PSDPRT 

PRVAR,2,7 

*GET,P,VARI,7,EXTREM,VMAX 

*STATUS,PARM 

/AXLAB,Y,PSD  (M^2/HZ) 

PLVAR,7 

/GROPT,VIEW,ON 
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APPENDIX H 

MATLAB CODE FOR CYLINDER 

FRFProc_01.m Matlab Code 

clc 

clear all 

close all 

%  

% Data 

LoadStep=250; 

NumberOfPoints=441; %Actually 861 nodes,  

                    %21 overlap @ 0 and 360 degrees 

Wy = fopen('FRFResult.txt','r'); 

for j=1:LoadStep;%LoadStep % Total displrecord 

    for i=1:2018 % 303 line per record 

        WyTmp=fscanf(Wy,'%g',[1 5]); 

        Junk2=fscanf(Wy,'%s',2); 

        RawData(i,:,j)=WyTmp; 

    end 

    Junk3=fscanf(Wy,'%s',8); 

end 

% Extract Frequency
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for i=1:LoadStep 

    Freq(i)=RawData(2017,4,i); 

end 

% Extract U with column per load  

for j=1:LoadStep 

    RawDataV1=RawData(1:2017,:,j)'; 

    RawDataV(:,j)=RawDataV1(:); 

end 

% Extract UX  per load 

for j=1:LoadStep 

    k=0; 

    for i=1:12:10084 

        k=k+1; 

        UxReal=RawDataV(i,j); 

        UxIm=RawDataV(i+1,j); 

        Ux(:,k,j)=[UxReal;UxIm]; 

    end 

end 

% Extract UY  per load 

for j=1:LoadStep 

    k=0; 

    for i=3:12:10084 

        k=k+1; 
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        UyReal=RawDataV(i,j); 

        UyIm=RawDataV(i+1,j); 

        Uy(:,k,j)=[UyReal;UyIm]; 

    end 

end 

% Extract UZ  per load 

for j=1:LoadStep 

    k=0; 

    for i=5:12:10084 

        k=k+1; 

        UzReal=RawDataV(i,j); 

        UzIm=RawDataV(i+1,j); 

        Uz(:,k,j)=[UzReal;UzIm]; 

    end 

end 

% Check UX 

for j=1:LoadStep 

    Uplotx(:,j)=Ux(:,410,j); % at node 410 

    UplotMagx(j)=sqrt(Uplotx(1,j)^2+Uplotx(2,j)^2); 

end 

% Check UY 

for j=1:LoadStep 

    Uploty(:,j)=Uy(:,410,j); % at node 410 
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    UplotMagy(j)=sqrt(Uploty(1,j)^2+Uploty(2,j)^2); 

end 

% Check UZ 

for j=1:LoadStep 

    Uplotz(:,j)=Uz(:,410,j); % at node 410 

    UplotMagz(j)=sqrt(Uplotz(1,j)^2+Uplotz(2,j)^2); 

end 

% Create UX of magnitude 

for j=1:LoadStep 

    for i=1:NumberOfPoints 

        Umx(1,i,j)=sqrt(Ux(1,i,j)^2+Ux(2,i,j)^2); 

    end 

end 

% Create UY of magnitude 

for j=1:LoadStep 

    for i=1:NumberOfPoints 

        Umy(1,i,j)=sqrt(Uy(1,i,j)^2+Uy(2,i,j)^2); 

    end 

end 

% Create UZ of magnitude 

for j=1:LoadStep 

    for i=1:NumberOfPoints 

        Umz(1,i,j)=sqrt(Uz(1,i,j)^2+Uz(2,i,j)^2); 
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    end 

end 

% Organize Cartesian 

Np=0; 

k=0; 

kk=1; 

jj=1; 

%  

Wy = fopen('NLIST.lis','r'); 

junk1=fscanf(Wy,'%s',16); 

while Np < NumberOfPoints 

    for j=1:20 

        if Np < NumberOfPoints  

            k=k+1; 

            CoTmp=fscanf(Wy,'%g',[1 4]); 

            Coord(k,:,kk)=CoTmp; 

            Np=Coord(k,1); 

        end 

    end 

    junk2=fscanf(Wy,'%s',4);  

end 

fclose(Wy); 

Cartesian=zeros(NumberOfPoints,6,LoadStep); % [X Y Z UX UY UZ] 
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for j=1:LoadStep 

    Cartesian(:,1:3,j)=Coord(:,2:4); 

    Cartesian(:,4,j)=Umx(1,:,j)'; 

    Cartesian(:,5,j)=Umy(1,:,j)'; 

    Cartesian(:,6,j)=Umz(1,:,j)'; 

end 

  

% Convert to Cylindrical Coordinates 

[Theta,R,Z]=cart2pol(Coord(:,2),Coord(:,3),Coord(:,4)); 

Cylindrical=zeros(NumberOfPoints,6,LoadStep); 

for j=1:LoadStep 

    for i=1:NumberOfPoints 

        A=[cos(Theta(i,1)) sin(Theta(i,1)) 0;-sin(Theta(i,1)) cos(Theta(i,1)) 0;0 0 1]; 

        B=[Umx(1,i,j);Umy(1,i,j);Umz(1,i,j)]; 

        C(:,i,j)=A*B; 

    end    

end 

  

for j=1:LoadStep 

    Cylindrical(:,1,j)=R(:,1); 

    Cylindrical(:,2,j)=Theta(:,1); 

    Cylindrical(:,3,j)=Z(:,1); 

    Cylindrical(:,4,j)=C(1,:,j)'; 
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    Cylindrical(:,5,j)=C(2,:,j)'; 

    Cylindrical(:,6,j)=C(3,:,j)'; 

end 

  

% Place into "Shell Coordinates" 

NewDr=zeros(21,21,LoadStep); 

i=1;k=21; 

while i<=21 

    j=1:LoadStep; 

    NewDr(i,1:21,j)=Cylindrical(k-20:k,4,j); %for UR 

    k=k+21; 

    i=i+1; 

end 

  

NewDt=zeros(21,21,LoadStep); 

i=1;k=21; 

while i<=21 

    j=1:LoadStep; 

    NewDt(i,1:21,j)=Cylindrical(k-20:k,5,j); %for UT 

    k=k+21; 

    i=i+1; 

end 
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NewDz=zeros(21,21,LoadStep); 

i=1;k=21; 

while i<=21 

    j=1:LoadStep; 

    NewDz(i,1:21,j)=Cylindrical(k-20:k,5,j); %for UZ 

    k=k+21; 

    i=i+1; 

end 

save DispData Cylindrical Cartesian NewDr NewDt NewDz Freq UplotMagx 

UplotMagy UplotMagz 

plot(Freq,UplotMagx,'r:',Freq,UplotMagy,'b',Freq,UplotMagz,'g--') 

grid 

Title('FRF Plot of the Cylindrical Shell ') 

xlabel('Frequency (Hz)') 

ylabel('Displacement (db/1mm)') 

legend('X Displacement','Y Displacement','Z Displacement') 

 

DisplDerivative_02.m Matlab Code 

clc 

clear all 

load DispData 

% 

N=size(NewDr); 
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L=12*2.54/100; 

dz=L/20; 

z=0:dz:L; 

T=pi; 

dtheta=T/20; 

theta=0:dtheta:T; 

% 2nd Derivatives 

for j=1:N(3) 

[Z,Theta]=gradient(NewDr(:,:,j)); % NewD in Cylindrical Coordinates 

[ZZ,Junk1]=gradient(Z/dz); 

[Junk2,ThetaTheta]=gradient(Theta/dtheta); 

end 

for j=1:N(3) 

[Zt,dUT]=gradient(NewDt(:,:,j)); % NewD in Cylindrical Coordinates 

end 

for j=1:N(3) 

[dUZ,Thetaz]=gradient(NewDz(:,:,j)); % NewD in Cylindrical Coordinates 

end 

save DisplDerivative ThetaTheta ZZ dUT dUZ NewDr NewDt NewDz N Theta Z dtheta 

dz 

 

Film_Shape_03.m Matlab Code 

close all 



167 

 

clear all 

clc 

% 

load DispData 

load DisplDerivative 

  

%Calculate Film Shape Outline 

hb=0.035*2.54/100; 

hs=50e-6; 

e31=12.367; 

L=12*2.54/100; 

r=1.75/2*2.54/100; 

b=pi*r/2; 

dx=L/20; 

x=0:dx:L; 

k=-b/(2*e31*(hb+hs)); 

F=k*(x.^2-L*x); 

plot(x,F,x,-F) 

title('Shaped Film for Cylindrical Shell') 

xlabel('Length (m)') 

ylabel('Width (m)') 

axis equal 

axis([0 L -b b]) 
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%Create Film on Plate 

y=b:-b/10:-b; 

for i=1:21 

    Y(:,i)=y; 

end 

W=ones(21,21); 

for j=1:21 

    for k=1:21 

        if F(1,j)' < Y(k,j) 

            W(j,k)=0; 

        end 

        if -F(1,j)' > Y(k,j) 

            W(j,k)=0; 

        end 

    end 

end 

  

%Matchup Coordinate #s 

save FilmShape e31 hb hs F y Y W 

Fones=ones(21,1); 

F1=Fones*b; 

  

%plot(x,F1,x,-F1) 
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%title('Generic Film Shape for Cylindrical Shell') 

xlabel('Length (m)') 

ylabel('Width (m)') 

axis equal 

axis([0 L -b b]) 

 

SensorOutput_Generic_04 

close all 

clear all 

clc 

% 

load DispData 

load DisplDerivative 

load FilmShape 

L=12*2.54/100; 

dz=L/20; 

z=0:dz:L;  

R=1.75/2*2.54/100; 

T=pi; 

dtheta=T/20; 

t=0:dtheta:T; 

% 

e33=0.06; 
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e32=0.06; 

Se=T*R*L; %effective sensor electrode surface 

rzs=R+hs/2+hb/4; %sensor location from neutral surface 

rts=rzs; 

%for trapz 

zcoord=Cylindrical(1:21,3,1); 

tcoord=zeros(1,21); 

%for cos(theta)^2 

k=1; 

for i=1:21 

Newtheta(i,:)=Cylindrical(k:k+20,2,1); 

k=k+21; 

end 

i=1;k=1; 

while i<=21 

    tcoord(1,i)=Cylindrical(k,2,1); 

    k=k+21; 

    i=i+1; 

end 

% 

for i=1:N(3) 

[Z,Theta]=gradient(NewDr(:,:,i)); % NewD in Cylindrical Coordinates 

[ZZ,Junk1]=gradient(Z/dz); 
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[Junk2,ThetaTheta]=gradient(Theta/dtheta);  

% 

[Zt,dUT]=gradient(NewDt(:,:,i)); % NewD in Cylindrical Coordinates 

% 

[dUZ,Thetaz]=gradient(NewDz(:,:,i)); % NewD in Cylindrical Coordinates 

% 

Itmp=-(e31*hs)/(e33*Se)*(e31*(dUZ-

rzs*ZZ)+e32*(dUT/R+NewDr(:,:,i)/R^2+rts*dUT/R^2-

rts*ThetaTheta/R^2))*(R^2*cos(Newtheta).^2); 

% NewDr=UR 

q(i)=trapz(tcoord,trapz(zcoord,Itmp.').'); 

end 

%q(z,t)=-(e31*hs)/(e33*Se)*INT{e31(dUz/dz-rzs*d^2Ur/dz^2) 

      % +e32(dUt/Rdt+UR/R^2+rts*dUt/R^2dt-rts*d^2Ur/R^2dt^2)}dSe 

  

[ax,h1,h2]=plotyy(Freq,20*log10((UplotMagy)/1e-3),Freq,20*log10(2*q/1e-

4),'plot','plot'); 

Title('Frequency Response of Shell vs. Generic Sensor Output Charge') 

xlabel('Frequency (Hz)') 

set(h1,'color','red'); 

set(h2,'color','blue','linestyle','+'); 

set(get(ax(1), 'Ylabel'), 'String', 'Displacement (dB/1mm)'); 

set(get(ax(2), 'Ylabel'), 'String', 'Voltage (dBV)'); 
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grid 

legend('Transverse Frequency Response','Sensor Output Charge') 

 

SensorOutput_Shaped_05.m Matlab Code 

close all 

clear all 

clc 

% 

load DispData 

load DisplDerivative 

load FilmShape 

L=12*2.54/100; 

dz=L/20; 

z=0:dz:L;  

R=1.75/2*2.54/100; 

T=2*pi; 

dtheta=T/20; 

% 

e33=0.06; 

e32=0.06; 

Se=T*R*L; %effective sensor electrode surface 

rzs=R+hs/2+hb/4; %sensor location from neutral surface 

rts=rzs; 
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%for trapz 

zcoord=Cylindrical(1:21,3,1); 

tcoord=zeros(1,21); 

%for cos(theta)^2 

k=1; 

for i=1:21 

Newtheta(i,:)=Cylindrical(k:k+20,2,1); 

k=k+21; 

end 

i=1;k=1; 

while i<=21 

    tcoord(1,i)=Cylindrical(k,2,1); 

    k=k+21; 

    i=i+1; 

end 

% 

for i=1:N(3) 

[Z,Theta]=gradient(NewDr(:,:,i)); % NewD in Cylindrical Coordinates 

[ZZ,Junk1]=gradient(Z/dz); 

[Junk2,ThetaTheta]=gradient(Theta/dtheta);  

% 

[Zt,dUT]=gradient(NewDt(:,:,i)); % NewD in Cylindrical Coordinates 

% 
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[dUZ,Thetaz]=gradient(NewDz(:,:,i)); % NewD in Cylindrical Coordinates 

% 

Itmp=-(e31*hs)/(e33*Se)*W*(e31*(dUZ-

rzs*ZZ)+e32*(dUT/R+NewDr(:,:,i)/R^2+rts*dUT/R^2-

rts*ThetaTheta/R^2))*(R^2*cos(Newtheta).^2); 

% NewDr=UR 

q(i)=trapz(tcoord,trapz(zcoord,Itmp.').'); 

end 

%q(z,t)=-(e31*hs)/(e33*Se)*INT{e31(dUz/dz-rzs*d^2Ur/dz^2) 

      % +e32(dUt/Rdt+UR/R^2+rts*dUt/R^2dt-rts*d^2Ur/R^2dt^2)}dSe 

  

[ax,h1,h2]=plotyy(Freq,20*log10((UplotMagy)/1e-3),Freq,20*log10(2.5*q/1e-

4),'plot','plot'); 

xlabel('Frequency (Hz)') 

set(h1,'color','red'); 

set(h2,'color','blue','linestyle','+'); 

set(get(ax(1), 'Ylabel'), 'String', 'Displacement (dB/1mm)'); 

set(get(ax(2), 'Ylabel'), 'String', 'Voltage (dBV)'); 

grid 

legend('Transverse Frequency Response','Sensor Output Charge') 

Title('Frequency Response of Shell vs. Shaped Sensor Output Charge') 
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APPENDIX I 

*.RFRQ BINARY FILE FORMAT 

 

SET 1: STANDARD ANSYS FILE HEADER 

Each of the ANSYS program's binary files contains a standard, 100-integer file header 

that describes the file contents. The header contains the items listed below, always in the 

order shown below. 

Item 1  The file number  

Item 2  
The file format. This item has a value of 0 if the file is internal, or 1 if the 

file is external.  

Item 3  The time, in compact form  

Item 4  The date, in compact form  

Item 5  

The units of measurement used. The value of this item is as follows:  

. 0 for user-defined units  

· 1 for SI units  

· 2 for CSG units  

· 3 for British units (feet)  

. 4 for British units (inches)  

Item 10  The ANSYS release level in integer form ("5.4" in character form)  

Item 11  The date of the ANSYS release  

Items 12-14  The machine identifier in integer form (three four-character strings)  

Items 15-16  The Jobname in integer form (two four-character strings)  

Items 17-18  The ANSYS product name in integer form (two four-character strings)  

Item 19  
The ANSYS special version label in integer form (one four-character 

string)  

Items 20-22  The user name in integer form (three four-character strings)  

Items 23-25  The machine identifier in integer form (three four-character strings)  

Item 26  The system record size  

Item 27  The maximum file length  

Item 28  The maximum record number  

Item 29  The number of processors assigned to this task  
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Items 41-60  The main analysis title in integer form (20 four-character strings)  

Items 61-80  The first subtitle in integer form (20 four-character strings)  

SET 2 - RFRQ FILE HEADER 

 Record ID: N/A  

 Type: Integer  

 Number of Records: 1  

 Record Length: 40  

fun10 nmrow nmatrx nmode numdof 

maxn wfmax lenbac 0 ncumit 

kan 0 0 0 0 

0 0 0 0 0 

ptrDOF ptrDNC ptrSTF ptrMAS ptrDMP 

ptrFRQ ptrDSP 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

where:  

 fun10 - unit number (rfrq file is 10)  

 nmrow - number of rows/columns in matrices  

 nmatrx - number of reduced matrices on file  

 nmode - number of modes extracted during modal analysis (or nmrow if reduced 

method)  

 numdof - number of dofs per node 

 maxn - maximum node number  

 wfmax - maximum wavefront  

 lenbac - number of nodes  

 0 - position not used  

 ncumit - total number of iterations done during analysis  

 kan - analysis type = 6 - reduced harmonic  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 position not used  

 0 - position not used  

 0 - position not used  

 ptrDOF - pointer to degree of freedom set used in model  

 ptrDNC - pointer to nodal constraints  

 ptrSTF - pointer to the reduced stiffness matrix  

 ptrMAS - pointer to the reduced mass matrix  

 ptrDMP - pointer to the reduced damping matrix or mode shapes  
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 ptrFRQ - pointer to the frequencies  

 ptrDSP - pointer to the calculated displacements  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 - position not used  

 0 - position not used  

SET 3 - ANALYSIS INFORMATION  

Group 1 - Degrees Of Freedom Per Node The following define the degree of freedom 

reference numbers:  

UX = 1 UY = 2 UZ = 3 ROTX= 4 

ROTY= 5 ROTZ= 6 AX = 7 AY = 8 

AZ = 9 VX =10 VY =11 VZ =12 

13-18 are spares PRES=19 TEMP=20 VOLT=21 

MAG =22 ENKE=23 ENDS=24 EMF =25 

CURR=26 27-32 are spares   

 

Group 2 - Nodal Equivalence Table  

 Record ID: N/A  

 Type: Integer  

 Number of Records: 1  

 Record Length: lenbac  

This table equates the actual node number to the number used for storage. (baclst 

(i),i=1,lenbac)  

Group 3 - Unused Record  

 Record ID: N/A  

 Type: Double-precision  

 Number of Records: 1  

 Record Length: 10  

The record contents are as follows:  

1.0  0.0  0.0  0.0  0.0  

0.0  0.0  0.0  0.0  0.0  

Group 4 - Degree Of Freedom Set Used  

 Record ID: DOF  

 Type: Integer  
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 Number of Records: 1  

 Record Length: nmrow  

The DOFs are calculated as (N-1)*numdof+DOF, where N is the position number of the 

node in the nodal equivalence table and DOF is the DOF reference number given above.  

If the analysis uses the reduced method, the original DOF order (see next record) is 

rearranged so that DOFs having nodal constraints are listed first.  

If the analysis uses the mode superposition method (using the reduced mode extraction 

technique), the DOF order is the same as the original order (see next record). 

(l(i),i=1,nmrow)  

Group 5 - Original Reduced Set Of Degrees Of Freedom Used  

 Record ID: N/A  

 Type: Integer  

 Number of Records: 1  

 Record Length: nmrow+1  

The DOFs are calculated as (N-1)*numdof+DOF, where N is the position number of the 

node in the nodal equivalence table and DOF is he DOF reference number given above.  

If the analysis uses the reduced method, the original DOF order, plus the number of nodal 

constraints (nbcdsp), is stored. If the analysis uses the mode superposition method (using 

the reduced mode extraction technique), this record matches the previous record. The 

nmrow+1 entry will be zero. (lorig(i),i=1,nmrow),nbcds  

 

Group 6 - DOF of Nodal Constraints  

 Record ID: DNC  

 Type: Integer  

 Number of Records: 1  

 Record Length: nbcdsp  

This record is present only if the analysis uses the reduced method and nbcdsp > 0 (see 

record at ptrDOF). These numbers are the positions in the previous record of dofs with a 

nodal constraint. These are nodal constraints only on nodes that also are masters. 

(na(i),i=1,nbcdsp)  

 

SET 4 - REDUCED MATRICES DATA  

Group 1 - Reduced Stiffness Matrix 

 Record ID: STF  

 Type: Double-precision  

 Number of Records: 1  

 Record Length: nbcdsp  

Each row of the matrix is stored as a record. The matrix is present only if nmatrx > 0 and 

analysis is not using mode superposition method (using the subspace mode extraction 

method). Row order is the same as the DOF order in record at ptrDOF. 

(ak(i,j),i=1,nmrow)  

Group 2 - Reduced Mass Matrix  
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 Record ID: MAS  

 Type: Double-precision  

 Number of Records: nmrow  

 Record Length: nmrow  

Each row of the matrix is stored as a record. The matrix is present only if nmatrx > 1 and 

analysis is not using mode superposition method (using the subspace extraction 

technique). Row order is the same as the DOF order in record at ptrDOF. 

(am(i,j),i=1,nmrow)  

 

Group 3 - Reduced Damping Matrix Or Mode Shapes  

 Record ID: DMP  

 Type: Double-precision  

 Number of Records: varies  

 Record Length: varies  

If the analysis uses the reduced method, each record will be nmrow items in length. The 

reduced damping matrix is present only if nmatrx > 2. There will be nmrow records of 

this type stored here. Row order is the same as the DOF order in record at ptrDOF.  

If the analysis uses the mode superposition method (using the reduced mode extraction 

technique), each record will be nmode items in length. These records contain mode 

shapes (eigenvectors) of the frequencies (eigenvalues) actually used in the harmonic 

analysis. There will be nmode records of this type stored here, with the first N records 

containing the mode shapes and the other records containing zeros, where N is the 

number of modes actually used in the harmonic analysis. Order corresponds to the DOF 

order given in record at ptrDOF. If the analysis uses the mode superposition method 

(using the subspace mode extraction technique), this record will not be present. 

(psi(i,j),i=1,nmrow) (or ac)  

 

Group 4 - Frequencies Extracted From Modal Analysis  

 Record ID: FRQ  

 Type: Double-precision  

 Number of Records: 1  

 Record Length: nmrow  

This record is present only for analyses using the mode superposition method (using the 

reduced mode extraction technique). (freq(i),i=1,nmrow)  

Set 5 - Calculated Displacements  

Located by the PTRDSP variable defined in Set 2.  

Set 5 is repeated NCUMIT times.  

Group 1 - Calculated Complex Displacements  

 Record ID: DSP  

 Type: cmp  

 Number of Records: ncumit  

 Record Length: nmrow+5  
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The first nmrow entries are the displacements in the same order as the original set of 

DOFs (see record AFTER ptrDOF). For the last five entries:  

Real part  Imaginary part  

1. frequency for these values  frequency increment  

2. load step number  substep number  

3. cumulative iteration number  zero  

4. zero  zero  

5. scale factor (zero if the analysis uses the reduced method)  zero  
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