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By 

Mohammad Reza Zamani Kouhpanji 

M.S., Electrical Engineering, University of New Mexico, 2017 

 

Abstract 

Study and prediction of classical/non-classical mechanical properties of GaN is 

crucial due to the potential application of GaN nanowires (NWs) in piezoelectric, probe-

based nanometrology, and nanolithography areas. GaN is mainly grown on sapphire 

substrates whose lattice constant and thermal expansion coefficient are significantly 

different from GaN. These discrepancies cause mechanical defects and high residual 

stresses and strains in GaN, which reduce its quantum efficiency. 

Specifically, for nanoscale applications, the mechanical properties of materials 

differ significantly compared to the bulk properties due to size-effects. Therefore, it is 

essential to investigate the mechanical properties of GaN NWs using the non-classical solid 

mechanic theories, modified couple stress theory (MCST) and modified strain gradient 

theory (MSGT). 

Experimentally the GaN NWs were prepared by using top-down approach to etch 

c-plane GaN layer grown in Metal Organic Chemical Vapor Deposition (MOCVD) 

chamber to achieve high aspect ratio NWs with high uniformity. An Atomic Force 

Microscope (AFM) was used to apply an infinitesimal deflection on the top of clamped-

free NWs while monitoring the lateral and normal forces. 

According to the MCST, the Young’s modulus, shear modulus and length scale 

were measured to be 323 GPa, 133 GPa and 13 nm, respectively, and according to the 

MSGT, they were measured to be 319 GPa, 132 GPa and 8 nm, respectively. Furthermore, 

a quantum mechanics based approached was conducted to estimate the classical/non-

classical mechanical properties of the GaN NWs as well. 
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Chapter 1: literature Review 

 

1- Introduction 

In This chapter, a brief review about the GaN NWs applications, the importance of 

determining the mechanical properties of GaN NWs and the size-effects of mechanical 

properties of GaN NWs are presented. The next sections consist of the available 

experimental techniques for measuring the mechanical properties of NWs and the progress 

in non-classical theories in solid mechanics have been provided as well. 

 

2- GaN NWs 

GaN as a wide bandgap semiconductor has attracted many attentions in electronics 

and photonics areas because of its chemical stability in high temperatures and high 

frequencies. It also presents high mobility of electrons at the interfaces of semiconductor 

heterostructures which makes it appropriate for blue-green and UV light emitting diodes, 

laser diodes, active and passive parts in nanosensors and high- power/temperature 

transistors [1-6]. It is noteworthy to be mentioned that the application of the GaN is not 

restricted only to electronic and photonic devices. It has been shown that they are an 

exceptional candidate for other applications, such as probe-based nanometrology, 

nanolithography and piezoelectric applications [7-8]. 

Extensive progress on GaN in recent years made it possible to fabricate various 

geometries such as NWs [9-10], nanotubes (NTs) [11] and single walls nanostructures 

(SWN) [12] applicable for many applications such as actuators and sensors. Regarding to 

the superior quantum confinement effects of GaN NWs [13], fabrication and 
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characterization of optical properties, electrical properties and mechanical properties, of 

GaN-based NWs devices became one of the most important and active research areas in 

different engineering fields and science. So far, investigations and developments of GaN-

based NWs devices have mainly focused on the synthesis, physical properties and chemical 

properties of these devices [14]. Comparing to the numerous studies of optical and 

electrical properties of GaN-based NWs devices, their mechanical properties have been 

less investigated because of the difficulty of mechanical testing of nanodevices. However, 

the mechanical properties of, not only GaN-based NWs devices, but also all 

semiconductor-based devices, have a crucial factor in performance of these devices in 

different operation conditions. That is why GaN NWs are mainly grown on sapphire 

substrates whose lattice constant and thermal expansion coefficient are significantly 

different from GaN. These incompatibilities cause mechanical defects and high residual 

strains/stresses in GaN NWs. The mechanical defects drastically decrease the device 

performance by reducing the mobility of the carriers and inducing inhomogeneous 

distributions of the carriers in the active region [15-16].  

It has been theoretically and experimentally shown that material dimensions have 

significant effects on the mechanical behaviors of materials, particularly when the 

dimensions are reduced to the nanometer regimes where many semiconductor-based 

devices exhibit unusual mechanical properties that significantly different from those of 

bulk semiconductors. Taking advantages from this size-effects, the physical properties of 

semiconductor devices can be tuned by applying appropriate mechanical strains/stresses 

[17]. Consequently, before GaN NWs, or even any semiconductor materials, can be 
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successfully incorporated into devices, it is important to gain a better understanding of their 

mechanical behaviors and try to manipulate them to achieve high performance devices. 

Extensive theoretical calculation/simulations and experimental measurements have 

been developed to estimate the mechanical properties and mechanical behaviors of GaN-

based NWs devices. Two major approaches of the theoretical calculations/simulations are 

molecular dynamics simulations and first-principles calculations. These two approaches 

are powerful tools in investigation of the mechanical behavior of GaN-based NWs devices 

because they enable the real-time observation of the deformation at the atomic scale, and 

at the same time, in addition they provide stress-strain curves [18]. Consequently, these 

theoretical methods have been developed to investigate the mechanical properties of GaN 

NWs, SWNs and NTs under tension, torsional and bending loads [19-22]. 

However, the theoretical calculations/simulations require several parameters and 

imperial functions that they must be accurately determined before being implemented in 

simulations to predict the mechanical properties of GaN NWs. Moreover, it is noteworthy 

to be mentioned that the theoretical approaches have unavoidable limitations associated 

with time-consuming computations. Due to computational limitations, theoretical 

calculations have been used to study semiconductor-based devices with relatively small 

diameters, usually below 20 nm. Furthermore, the strain rates applied in simulations are 

very high, several orders larger than the strain rate of applied strain rate in experiments 

[18]. Therefore, it is critical to conduct well-design experiments to measure the 

deformation behaviors of GaN NWs and associate them with the theoretical methods to 

confirm the computational results. 
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Since the related experimental methods proved that the preparation methods, 

nanostructures sizes and measurement techniques suggest different quantities, this is 

crucial to determine the mechanical properties of GaN NWs based on a well-designed 

measurement technique to avoid any possible failure of the GaN-based NWs devices. Some 

of experimental methods have been developed including uniaxial tensile test [23] or 

uniaxial compressive test [24], In Situ TEM/SEM resonance [25-28], three-point bending 

[29-30] and nanoindentation [31] of GaN NWs. However, due to the small dimensions of 

GaN NWs and uncertainties of these experiment methods, the mechanical properties of 

these devices are still challenging and suffering from dispersive values. 

Table 1-1 shows the results of the earlier studies in determining the Young’s 

modulus and the Poisson’s ratio of GaN NWs. As it can be seen, the reported values are 

very dispersing. This inconsistency can be explained by scrutinizing the experiments and 

theoretical analysis used to extract the mechanical properties of GaN NWs. From the 

experiments aspect, for example, in the uniaxial compression tests, the tensile tests, the 

three point-bending tests, and nanoindentation tests, the nanostructures are in contact with 

elastic substrates whose deformations cannot be ignored in some extends [40-42]. The 

deformations of the substrates change the boundary conditions resulting to overestimate 

the true value of the nanostructures deformations.  Furthermore, in these experiments, 

regardless of the difficulties of preparing the samples, the GaN NWs need being transferred 

and welded on a MEMS-/NEMS-based device or a trench, that can change the mechanical 

properties of GaN NWs due to contaminations and partial fractures of GaN NWs during 

preparation processes [43]. 
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Table 1-1: experimental and theoretical available mechanical properties of GaN NWs. 

 Property Method Max. Min. Ref. 
E

x
p
er

im
en

ta
ll

y
 

Young's 

modulus 

(Gpa) 

Three-point bending 400 194 [30] 

Electromechanical resonator 305 227 [27] 

Nanoindentation 292 298 [31] 

Laser Doppler vibrometry 321 201 [32] 

Uniaxial tensile test 250 210 [23] 

Uniaxial compression test 484 223 [24] 

in situ TEM 
319 280 [26] 

404 258 [33] 

Poisson ratio 

X-ray diffraction 0.18 0.186 [34] 

Brillouin scattering 0.152 0.252 [35] 

Raman spectroscopy 0.211 0.213 [36] 

T
h
eo

re
ti

ca
ll

y
 

Young's 

modulus 

(Gpa) 

First principle 444 [37] 

Electron backscatter diffraction 479 [38] 

Molecular dynamic simulation 290 166 [21] 

Poisson ratio 
Linear muffin-tin orbital 0.12 [16] 

First principle 0.212 [39] 

 

From the analysis aspect, in all these studies the Classical Continuum Theory 

(CCT), also named classical beam theory, was used to extract the mechanical properties of 

GaN NWs from the experimental data. It is experimentally proved that the CCT is unable 

either to demonstrate the size-dependency of mechanical behaviors of GaN NWs or to 

estimate the self-stiffness of GaN NWs [44]. That is why the CCT only considers the 

displacement components of nanostructures deformation without considering the effects of 

micro-rotations components, associated with the strain gradients, on the total deformation 

of the nanostructures [44-45], it will be explained in the following sections with more 
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details. To take these micro-rotations into account, the non-classical continuum mechanics 

theories, like modified couple stress theory (MCST) and modified strain gradient theory 

(MSGT), have been introduced and developed by several researchers [46-48]. In these 

theories beside the classical materials constants, related to the displacement components, 

additional material parameters, related to the micro-rotation components, are appearing 

which enable the theory to demonstrate the size-dependency behaviors of nanostructures. 

 

3- Experimental techniques 

Techniques used to estimate the mechanical properties of GaN nanostructures differ 

from each other based on the desired mechanical properties and the platforms used for the 

characterization. Due to the small dimensions of nanostructures, all characterization 

techniques were conducted in one of the following types of microscopes: Atomic Force 

Microscope (AFM), Scanning Electron Microscope (SEM), and Transmission Electron 

Microscope (TEM). Here, we categorize and review the existing techniques for 

characterization of mechanical properties of nanostructures from the literatures based on 

their loading modes and the required equipment. 

 

3-1- Bending 

The most common tools for conducting the bending tests are TEM, SEM and AFM. 

Any bending test requires the NWs to be prepared either as cantilever, one free end and 

one fixed end, then applying a lateral force on the free end, or as clamped-clamped NWs, 

then applying a bending force at any point along the nanostructure. Bending of a cantilever 

NW is more popular test because of its simplicity; however, it carries a vast amount of 
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attentions. Nanostructures that epitaxially grown/etched down are perpendicular to the 

substrate, one end of the NWs has been fixed at the substrate, the experiment can be easily 

conducted through applying a lateral force perpendicular to the nanostructure axis at the 

free end of the nanostructure using an AFM/indenter probe [43, 49]. The bending tests can 

also be conducted in TEM and SEM using special sample holders equipped with AFM 

indenter systems. 

TEM and SEM provide the real-time high-resolution images enabling direct 

observation of the nanostructure deformation process to understand the deformation 

mechanisms of nanostructures, in addition to providing the force-displacement curve 

usable for predicting the mechanical properties of NWs. Noted, the TEM has more 

advantages over the SEM method because of the higher resolution images; however, TEM 

needs ultrahigh vacuum that may damage the surface of nanostructures. Furthermore, some 

bending tests using SEM do not provide any force-displacement curve but the quantitative 

strength and strain values of nanostructure at fracture can still be calculated. 

 

3-2- In Situ Resonance 

The resonance method was first used to characterize the mechanical properties of 

multi-walled carbon nanotubes and has been applied to other semiconductors 

nanostructures. In the resonance method, a single cantilever NW is excited by alternating 

current, AC current. The AC current forces the cantilever NW to resonate at its natural 

frequency. The method can be used either in TEM or SEM with a specific conductive 

TEM/SEM specimen holder that delivers the electrical current signals between the tip, to 
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which the NWs are mounted, and a counter electrode to generate a fluctuating electrical 

field applying an electrodynamic force to the NW [50]. 

A sharp tip, usually tungsten tip, is swept against NWs so that some nanostructures 

from the substrate stick to the tip. The tip is then loaded onto the especial TEM/SEM 

specimen holder with electrical connection to the tip and a counter electrode and moved 

precisely to position an individual NW very close to the counter electrode. Applying a 

tunable AC current across the tungsten tip, where the NW is stuck, and the counter 

electrode will drive the NW to vibrate mechanically, from which the natural resonant 

frequency is measured. Noted, the frequency–amplitude relationship determines the 

resonance frequency. That is why the frequency of the driving voltage is equal to the 

resonant frequency, at which the NW resonates with the largest amplitude. According to 

the solid mechanic theories, the resonance frequency of the NW depends on the elastic 

modulus of the nanostructure. It is worthy to be mentioned that the in situ TEM electric-

field-induced resonance method can be easily used to investigate the fatigue behavior of 

NWs as well [51]. 

 

3-3- Uniaxial loading 

Characterization of the mechanical properties of NWs can also be accomplished by 

uniaxial tension or compression loading of a single NW in either TEM or SEM. Tensile 

tests in SEM requires a NW to be clamped on the tungsten tip of a nanomanipulator at one 

end and the other end to be fixed on an AFM cantilever using different techniques, such as 

electron-beam-induced deposition (EBID) or focused ion beam (FIB) implementation. The 

AFM cantilever works as the load sensor during the measurement while a tensile force is 
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applied to the NW through the precision movement of the nanomanipulator. The results of 

this measurement are stress–strain curves, from which the Young’s modulus, fracture 

strength, elastic strain, yield strength and ductility of individual NWs can be predicted. 

Similar to the uniaxial tensile test, the same experimental setup can be utilized for 

compression tests of individual NWs in SEM while the nanomanipulator moves precisely 

toward the AFM cantilever in the opposite direction to apply compressive load to the NWs. 

However, the uniaxial compression tests are mainly done using a nano-indenter to 

compress the NWs. The uniaxial compression test cannot be performed for high aspect 

ratios, length to diameter ratio, NWs because of high chance of buckling. However, this 

method makes it possible to measure critical buckling load of the NW as well [52-53]. 

Deforming an NW in SEM using an AFM probe or nanomanipulator enables direct 

real-time observation of the structural changes during the entire process of the NW 

deformation. The large chamber size in SEM makes it easy to manipulate the NW 

deformation processes. However, it is difficult to reveal the deformation mechanisms of 

NWs during In Situ testing in SEM because of the poor structural resolution of SEM. This 

problem can be overcome by conducting In Situ experiments in TEM. 

 

3-4- Nanoindentation 

     One of the most popular methods for the investigation of mechanical properties of 

nanomaterials, especially thin films, is nanoindentation. In this method, an indenter, whose 

tip radius is few nanometers, is pushed into a nanostructure. The results are the applied 

force vs. the penetration depth which can be easily used to estimate the Young’s modulus 

and hardness, the resistance to permanent or plastic deformation, of the nanostructures. For 
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nanoindentation of individual NWs, it is necessary to firmly fix the NW to avoid any 

movements. To do so, an NW is lying flat on the substrate, and both ends of the NW are 

fixed on the substrate usually by EBID. Nanoindentation can be done either using an AFM 

tip or an especial indentation tools to perform indentation. The indenter must be much 

stiffer than the nanostructure, both substrate and thin film or NW, to prevent any possible 

errors due to local deformation of the indenter. Cares must be taken especially in the case 

of nanoindentation of NWs with a conical indenter. That is why the indenters are likely to 

slip and apply friction between the indenter tip and the NW surface during the indentation 

because the indenter rarely can be perpendicular to the surface of circular-shaped NWs. 

This issue can be solved by utilizing a Berkovich (three-sided pyramidal diamond) indenter 

to perform the imaging and indentations [54].  

 

4- Solid mechanic theories 

The CCT provided a fundamental basis for analysis and understanding the mechanical 

behavior of materials on macro scale for two centuries by the initial work of Poisson and 

Cauchy in 1820s.  The CCT uses only displacement components of the nanostructure 

deformation without considering the independent rotational components of the 

nanostructures. The displacement components of nanostructure deformation, which also 

known classical stresses, are related to the external forces using Lame constants, also 

named classical parameters. While, the independent rotational components of 

nanostructure deformation, which also known as non-classical stresses or couple stresses, 

are related to the external forces using length scale, also named non-classical parameter. 

Simply said, the CCT is not adequate in capturing any size effect or self-stiffness of 
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nanostructures, since it possesses no characteristic length in the governing equations. 

Therefore, it is necessary to resort to higher order continuum theories, such as MCST or 

MSGT, which consider the effect of microstructure by including explicit material length 

scales in their governing equations. Furthermore, these non-classical solid mechanic 

theories can provide a more suitable connection to atomistic models and the fundamental 

base for developing size-dependent multi-physics formulations, such as those involving 

electromechanical coupling.  

A review of the early literature reveals that classical continuum mechanics was based 

initially upon an atomistic representation of materials having only central forces within 

particles.  Equivalently, classical stress and strain components induced by the external 

forces, describe the internal forces in the continuum model [55]. However, in a more 

realistic representation of materials, it is essential the introduction of non-central forces, 

especially when the dimensions are in order of nanometers, in the underlying atomistic 

models.  This was a motivation for many researchers to consider also the effects of the 

gradients of strains, inducing couple-stresses, in the corresponding continuum 

representation of the materials.  

 

4-1- Cosserat theory 

The Cosserat brothers [45] proposed and formulated different theories for 

structural elements in one-dimensional space, such as beams, and two-dimensional space, 

such as shells, embedded in three-dimensional space. In these theories, besides the three 

independent displacement components, three independent rotational components were 

considered to fully determine the deformations of materials, six degrees-of-freedom, at 
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each point.  Based upon these successes, the Cosserats then extended this idea of 

independent rotational degrees-of-freedoms to the case of a full three-dimensional elastic 

medium. 

Nowadays, these formulations are referred to as micropolar theories, which attempt 

to capture the effect of discontinuous microstructure by considering a continuous 

microrotation in addition to the translational degrees-of-freedom. The concept of 

independent rotational degrees-of-freedom may also originate from the discrete model of 

material in molecular point of view.  In molecular view, because we are only dealing with 

one particle, the lumped part of matter can be modeled as rigid bodies, which is the basis 

of molecular dynamic simulations. In this point of view, the motion of each part can be 

described by motion of its center of mass and its rotation.  In rigid body dynamics, this 

rotation is independent of the motion of the center of mass [56]. 

Therefore, describing the translation and rotation of individual particles, such as 

atoms, molecules and grains, requires discrete point functions. However, in a continuum 

representation of mechanical behavior of materials, it is assumed that material is 

continuously distributed in space.  As a result, the deformation of the body is represented 

by the continuous displacement field without considering the discontinuous microstructure 

of material and motion of individual particles, which has been shown to be inconsistent 

with experimental works. 

 

4-2- Couple stress theory (MTK model) 

Some researchers, such as Mindlin and Tiersten [57], and Koiter [58], believed that 

the continuous displacement field components are the basis to determine the kinematical 
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quantities and measures of deformation. Therefore, they speculated that in a consistent 

continuum theory, the deformation is completely specified by the continuous displacement 

field. It should be mentioned, in Mindlin-Tiersten-Koiter (MTK) theory, the rigid body 

motion of the infinitesimal element of material at each point of the continuum is described 

by six degrees of freedom (i.e., three translational and three rotational).  As a result, energy 

considerations show that higher order measures of deformation must be related to the 

rotation field. 

The main problem in this development is the inconsistency of the boundary 

condition for the normal component of the moment traction.  That is why the right-hand 

side of the principle virtual work shows that the boundary conditions on the surface of the 

body can be either displacement vector or rotation vector as essential (geometrical) 

boundary conditions, or stress and couple stress components as natural boundary 

conditions [56]. This apparently makes a total number of six boundary values for either 

case. Consequently, there is no other possible type of boundary condition in size-dependent 

couple stress continuum mechanics. 

However, this contrasts with the number of geometric boundary conditions that can 

be imposed [58]. This shows that a material in couple stress theory does not support 

independent distributions of normal surface moment (or twisting) traction, and the number 

of mechanical boundary conditions also is five.  This result was first established by [58] 

although his couple stress theory does not satisfy this requirement. 
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4-3- Modified couple stress theory (YCLT model) 

After development of MTK theory, some researchers, such as Yang et al. [59], 

managed to develop a model of couple stress that results in a symmetric couple stress 

tensor. To do so, they considered an additional equilibrium equation for the moment of 

couple stresses associated with the two equilibrium equations of the classical continuum. 

Application of this equilibrium equation leads the curvature tensor to be deviatoric, and 

thus is specified only by five independent components. Therefore, in this model, which 

called MCST, all the inconsistencies in MTK theory, such as the indeterminacy in the 

couple-stress tensor, remain intact. 

Interestingly, the stress-strain tensor and the final governing equilibrium equations 

are similar to those in MTK theory for isotropic material. Regardless of this fact that the 

MCST inherits all inconsistencies from indeterminate MTK theory, it has been widely 

attracted attentions in many literatures, because the appearance of only one length scale 

parameter for isotropic material makes the MCST more desirable from an experimental 

and analytical view [56].  As a result, this theory has been extensively used in many 

problems, such as bending, buckling and post-buckling, and vibration in recent years to 

investigate the mechanical behaviors of the nanostructures [60-61]. It is noteworthy to be 

mentioned that the MCST cannot be taken as a special case of indeterminate MTK theory. 

This is obvious by noticing that this similarity is only valid for isotropic material, and there 

is no simple analogy for general anisotropic and bi-anisotropic cases. 
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4-4- Modified strain gradient theories 

In 1965, Mindlin [62] proposed a higher-order gradient theory for elastic materials 

by considering the higher derivatives of the strain tensor, from first up to third derivatives, 

in definition of energy. [62-64] used Mindlin’s formulations by considering only the first 

derivative of the strain tensor and called it the strain gradient theory. In comparison with 

the couple stress theory, the strain gradient theory contains some additional higher-order 

stress components beside the classical and couple stresses. Indeed, the couple stress theory 

is a special case of the strain gradient theory. 

In a similar way utilized by Yang et al. [59] for the MCST, Lam et al. [65] 

introduced a MSGT, which reduces in a special case to the MCST. Henceforth, when the 

strain gradient theory is used in the text, it denotes the version of the theory presented by 

Lam et al. [65]. The strain gradient theory is employed to formulate the static and dynamic 

behaviors of linear and nonlinear elastic beams, both the Euler-Bernoulli and the 

Timoshenko models, shells and bars under torsional loading. In addition, the size-

dependent functionally graded beam models have been developed by Kahrobaiyan, 

Asghari, Rahaeifard, and Ahmadian [66] based on the strain gradient theory. Furthermore, 

this non-classical theory is utilized by Akgoz and Civalek [67] to study the buckling of 

microbeams under uniaxial compression loadings.  
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Chapter 2: Modified Couple Stress Theory 

 

1- Introduction 

In this chapter, a rigorous method for deriving the MCST’s governing equations for 

GaN NWs is provided. The MCST governing equations can be derived based on either 

energy principle or equilibrium method [46, 48, 59-60]. The procedure presented here is a 

simplified version of earlier works [48, 59], where they derived the MCST’s governing 

equations based on the energy principal theory. After rederivation of the MCST’s 

governing equations, the governing equations were solved according to the loading and 

boundary conditions of the GaN NWs to derive the relationship between the deflection and 

applied force for each individual the GaN NWs. 

 

2- The MCST for elasticity 

The modified couple stress theory was presented by Yang et al. [59], in which the 

both strain tensor (conjugated with classical stresses) and curvature tensor (conjugated with 

couple stresses or non-classical stresses) were considered in the total strain energy density 

function. Therefore, the total strain energy, U , for a deformed isotropic linear elastic body 

occupying region  is given by 

   


 3,2,1,
2

1
jidvmU ijijijij   

(1) 

with the stress tensor, ij , strain tensor, ij , deviatoric part of the couple stress tensor, ijm

, and symmetric curvature tensor, ij , are, respectively, defined by 
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  ijijij Itr  2  (2) 

  T

iiij uu 
2

1
  

(3) 

ijij lm 22  (4) 

  T

iiij  
2

1
 

(5) 

where   and   being Lame’s constants, l  a material length scale parameter, iu  the 

components of displacement vector and i  the components of rotation vector given by 

)(
2

1
ii ucurl  

(6) 

Obviously, both ij  and ijm , as respectively defined in Eqs. (2) and (4), are 

symmetric, with 
T

ijij    and 
T

ijij mm   due to the symmetry of strain tensor and curvature 

tensor, ij  and ij , given in Eqs. (3) and (5), respectively. The additional parameter l  is 

regarded as a material property characterizing the effect of couple stresses initiated due to 

the micro-rotations. 

 

3- Structural and Dynamical models of NWs based on MCST 

The Cartesian axes for plane NW analysis are established, as shown in figure 2-1. 

The origin is placed at the bottom section. The total length of the NW was assumed to be 

L . As it will be shown in the following chapters, chapter 4, the GaN NWs have high aspect 

ratios, length to diameter ratio. Thus, the GaN NWs can be considered as Bernoulli-Euler 

beams. 
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Figure 2-1: schematic picture of deformed GaN NWs under a general loading. 

According to the basic hypotheses of the Bernoulli-Euler beams and the one-dimensional 

beam theory, the displacement field at each point of the GaN NWs can be written as 

where u ,  , w  are the x , y , and z components of the displacement vector, and 

)(x  is the rotation angle of the centroidal axis of the NWs. For infinitesimal 

deformations, the rotation angle of the NWs can be approximated by 

x

txw
x






),(
)(  

(8) 

From Eqs. (3), (7) and (8), one can obtain 

2

2 ),(

x

txw
zxx




  (9) 

  ),(0, txwwtxzu    (7) 

z 

x 

q(x) 

L 

0 

2r 

Cross-section 
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0 zxyzxyzzyy   

And from Eqs. (6) to (8), it follows that 

0
),(





 zxy

x

txw
  

(10) 

The substituting Eq. (10) into Eq. (5) results in 

0
),(

2

1
2

2





 yzxzzzyyxxxy

x

txw
  

(11) 

For a slender NW with a large aspect ratio, the Poisson’s effect can be ignored to 

simplify the formulation of beam theory for the NW. Therefore, inserting Ep. (9) into Eq. 

(2), yields 

where E , v  are respectively Young’s modulus and the Poisson’s ratio of the GaN NW. 

Similarly, the substitution of Eq. (11) into Eq. (4) leads to 

0
2

2
2 



 xzyzzzyyxxxy mmmmm

x

w
lm   

(13) 

where   is the shear modulus defined as 
 v

E




12
 . Using Eqs. (9), (11), (12) and (13) 

in Eq. (1) gives 

where I  is the second moment of the cross-sectional and A  is the area of the cross-

sectional of the GaN NW. On the other hand, the work done by the external forces in the 

most general form of loading ),( txq , as shown in figure 2-1, is 

0
2

2





 xyxzyzzzyyxx

x

w
Ez   

(12) 

  













L

dx
x

w
AlEIU

0

2

2

2
2

2

1
  (14) 
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On the other hand, the kinetic energy can be defined as 

 













L

dx
t

txw
xAxT

0

2
),(

)()(
2

1
  

(16) 

 where )(x  is the density of the GaN NWs. At this point, the Hamilton’s principle can be 

used to determine the dynamic governing equations of GaN NWs in the scope of MCST as 

well as all possible boundary conditions as follows 

Inserting Eqs. (14)- (16) into Eq. (17) gives 

     0
2

1

2

12

1 0

222









 

t

t

L

dxdtqwwAlEIwA    
(18) 

Where the Lagrange’s function is 

where 

2

2 ),(),(),(

x

txw
w

x

txw
w

t

txw
w














  

(20) 

Implementing the calculus of variations, Eq. (18) can be expanded as 


L

dxtxwtxqV
0

),(),(  
(15) 

   0
2

1


t

t
dtUVT  

(17) 

     qwwAlEIwAF 
222

2

1

2

1
   

(19) 
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 (21) 

Substituting Eq. (19) into Eq. (21), the variational equation (21) takes the form 

where 

2

2

3

3
)3(

4

4
)4(

t

w
w

x

w
w

x

w
w














   

(23) 

In view of the Eq. (22), the dynamic governing equation of the NW in terms of ),( txw  is 

given by 

the initial conditions as 

0),(),(),(),( 1122  txwtxwtxwtxw    (25) 

and the equations 

prescribed at 0x  and Lx   as the boundary conditions. 

     
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qwAlEIwwA  )4(2)4(    (24) 
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It can be seen from Eq. (24) that the governing equation of the NWs has two parts: 

one related to A  and EI  as in CCT and the other related to 
2Al . Moreover, it should 

be emphasized that the MCST contains only one additional material constants besides two 

classical material parameters. Nevertheless, the presence of l  enables the incorporation of 

the GaN size features in the MCST and renders it possible to explain the size-effects of 

GaN NWs by taking into account the micro-rotations, couple stresses. It must be noted, 

letting 0l , the MCST will reduce to the CCT. 

 

4- Analysis of the GaN NWs using MCST 

  During the experiment, I applied a lateral infinitesimal deflection on the free end of 

the GaN NWs using AFM’s tip while I was monitoring the normal deflection of the AFM’s 

tip during loading and unloading cycles. Figure 2-2 shows the loading condition on each 

GaN NW in contact with the AFM’s tip. 

 

 

 

 

 

 

Figure 2-2: GaN NWs under loading. 

 



23 

 

The AFM’s tip applies an axial force and a lateral force on the free end of the GaN NW. 

The moment equilibrium condition at any cross-section along the GaN NW can be written 

as 

)()()(0 0 wwNxLFxMM   (27) 

where 0w , F , N  and L  are the maximum deflection at the free end of the GaN NW, 

0ww
Lx



, the lateral force, the normal force and the length of the nanowire, respectively. 

The total moment at each cross-section can be related to the deflection of the GaN NW as 

It should be emphasized that the distributed force, )(xq , is zero in this case because the 

AFM tip only touches the free end of each GaN NW. Furthermore, all partial derivatives 

respect to time are zero because the loading is stationary. Therefore, it gives 

  )(02

2
2 xLFNwNw

dx

wd
AlEI    

(29) 

Here, I have second-order nonhomogeneous linear differential equation. Therefore, 

the solution of this equation is summation of its both solutions, general solution, gw , and 

particular solution, pw . The general solution can be easily defined by considering the right-

hand side of the above equation equal zero as follows 

And the particular solution will be obtained as 

)(0 xL
N

F
wwp   

(31) 

 
2

2
2

dx

wd
AlEIM   

(28) 

)cos()sin( kxbkxawg   (30) 
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Therefore, 

where k is the square root of the normal force to the rigidity of the nanowire ratio, 

 2AlEI
Nk


 . 

The unknown coefficients, a , b and 0w , can be determined using the boundary 

conditions. I assumed clamped boundary conditions, at the fixed end since the contact 

between the GaN NWs and the substrate is covalent type GaN-GaN bonds. Consequently, 

the NWs and the substrate are perfectly lattice matched, and there are not any stress 

concentrations at the fixed end. Furthermore, the SEM images were taken from a GaN NW 

while a nanomanipulator, also called omniprobe, was bending the GaN NW, figure 2-3. 

Figure 2-3 shows a strong connection between the substrate and the GaN NWs in the which 

validates the clamped boundary condition.  

 

 

 

 

 

 

 

Figure 2-3: validating the clamped boundary conditions of the GaN NWs. 

)()cos()sin()( 0 xL
N

F
wkxbkxawwxw pg   

(32) 

Nanomanipulator 

GaN NWs 
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Therefore, the clamped boundary conditions at the fixed end are 

0

0

0

0









x

x

dx

dw

w

 (34) 

Furthermore, since we assumed 0w  to be the maximum deflection at the free end of GaN 

NWs, therefore 

0ww
Lx



 (35) 

Applying the above boundary conditions to the solution of the governing equation and 

simplifying the result is 

In the above equation, we have the lateral force and normal force exerting on the 

nanowires while the AFM gives us only the normal force, equivalently, the normal 

deflection of the AFM’s tip. However, one can easily find this ratio by considering the 

equilibrium conditions for the AFM’s tip during the loading and unloading, for more 

information see chapter 5. 
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Chapter 3: Strain Gradient Theory 

 

1- Introduction 

In this chapter, a rigorous method for deriving the governing equations of the 

MSGT based on energy principle theory is presented. More details about the procedure for 

deriving the governing equations can be found in [65, 68-69]. After the rederiving the 

governing equations for MSGT, I solved the governing equation for the case of GaN NWs 

to derive the relationship between the deflection and force for each individual GaN NWs. 

 

2- The MSGT for elasticity 

     A new version of the MSGT was proposed by Lam et al. [65], in which a new 

additional equilibrium equation to predict the behavior of higher-order stresses, the 

equilibrium of moments of couples, are introduced in additional to the classical equilibrium 

equations of forces and moments of forces [68]. In the governing equations of this theory, 

there are three independent higher-order materials length scale parameters associated with 

the higher strain gradients in addition to two classical material parameters for isotropic 

linear elastic materials. Then the total strain energy, U , of a deformable isotropic linear 

elastic material occupying region   is given by 

where the classical strain tensor and the higher gradients of the strain tensor are defined as 

follows, 

 


  dmpU s

ij

s

ijijkijkiiijij

)1()1(

2

1
 

(1) 
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 ijjiij uu   (2) 

mmiiimm  ,   (3) 

   
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(4) 

 
qipjpqqjpipq
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ij ee  
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1
 

(5) 

where i  is differential operator, iu  is the displacement vector, ij  is the classical strain 

tensor, imm,  is the dilatation gradient vector, 
)1(

ijk  is the deviatoric stretch gradient tensor, 

s

ij  is the symmetric rotation gradient tensor, ij  and ijke  are the Knocker delta and the 

alternate tensor. It should be mentioned, in the above and in subsequent equations, the 

index notation will be used with repeated indices rendering summation from 1 to 3. 

Moreover, the corresponding classical and non-classical stress tensors are defined as 

follows 

ijmmijij k   2  (6) 

ii lp  2

02  (7) 

)1(2

1

)1( 2 ijkijk l    (8) 

s

ij

s

ij lm  2

22  (9) 

where ij   is deviatoric strain tensor introduced as 

ijmmijij 
3

1
  

(10) 
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where k  and   are bulk and shear module, respectively, and 0l , 1l , 2l  are additional 

independent material parameters associated with dilatation gradients, deviatoric stretch 

gradients and rotation gradient for the GaN NWs, respectively. 

 

3- Structural and dynamical models of NWs based on MSGT 

According to the energy principle theory, the governing equation of a NW under 

any general form of loading as well as all boundary conditions can be determined with the 

aid of a variational principle [46] 

where U  is the total strain energy and W  is the total work done by external forces and   

indicates variation. Figure 3-1 shows an uniform GaN NW, which is subjected to a general 

loading distribution, )(xq , along its longitudinal axis x . Hence, the loading plane 

coincides with the xz  plane, and the cross-section of the beam parallel to the yz  plane. 

 

 

 

 

 

 

Figure 3-1: a NW under general form of lateral force. 
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Similar to the previous section, because the aspect ratios, length to diameter ratio, 

of GaN NWs are large, we can model them as Bernoulli-Euler beam. According to the 

Bernoulli-Euler hypothesis and the one-dimensional beam theory, the displacement field 

of a GaN NW in bending can be written as 

where u , v , w , are the x , y , and z components of the displacement vector, 

respectively. Inserting Eq. (12) into Eq. (2), then the classical strain tensor can be 

determined, where the only non-zero strain component is 
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And from Eqs. (2) and (3) it follows that 

By using Eq. (2) in Eq. (5) gives the stretch gradient tensor, where the only non-zero stretch 

gradients, 
s

ij , components are 
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By substituting Eq. (2) into Eq. (4), the non-zero dilatation gradients, 
)1(

ijk , can be found as 

It can be concluded from Eq. (10) and (13) that 

xxzzyyxxxx 
3

1

3

2
  

(17) 

 For a slender beam with a large aspect ratio, the Poisson effect is secondary and 

may be neglected to facilitate the formulation of a simple beam theory. By considering 

0 , as was done in CCT, inserting Eqs. (13) and (17) into Eq. (6) then gives the non-

zero classical stresses ij  as  
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The use of Eq. (14) in Eq. (7) gives 
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and by inserting Eq. (15) into Eq. (9), the only non-zero higher-order stress 
s

ijm  is 
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Similarly, from Eqs. (16) and (8), the non-zero higher-order stresses 
)1(

ijk  are 

Substituting Eqs. (13) - (15), (16), (19), (21) into Eq. (1), the following expression can be 

achieved for the total strain energy U  
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where  

and I  is the inertia moment of the cross-section and A  is the area of the cross section of 

the GaN NW. 

Taking the first variation of Eq. (22) results in, together with Eq. (23) 
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where, the Lagrangian function, F , is 

Eqs. (24) and (25) can be utilized to represent the variation of the total strain energy of the 

GaN NWs as 
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where 

On the other hand, the variation of the work done by the external forces, )(xq , the 

boundary shear force, V , and the boundary classical and non-classical bending moments, 

M  and hM , respectively, reads 
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In view of Eqs. (26) and (28), the variational form of Eq. (11) takes the form 

The above variational equation implies that each term must be equal to zeros. Hence, the 

governing equation of the GaN NWs in bending is given by 
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For boundary conditions, if one assumes the four classical boundary conditions to 

be )0(w , )(Lw , )0(w  and )(Lw  prescribed and the corresponding non-classical ones to 

be )0(w   and )(Lw   prescribed, then 0)()0(  Lww  , 0)()0(  Lww  , 

0)()0(  Lww   and Eq. (31) are all satisfied. In virtue of Eq. (31), one can get that, 

when dealing with the classical boundary conditions, either the deflection w  or the 

boundary shear forces 
)3()5( SwKwV   and the strain, w , or the boundary classical 

bending moments 
)4(KwwSM   at the boundaries of the beam must be specified. For 

the case of the non-classical boundary conditions, one must specify either the boundary 

strain gradient, w  , or the non-classical boundary moments as 
)3(KwM h  . 

It should be mentioned, when the higher-order material parameters 0l  and 1l equal 

to zero, then the constitutive relation reduces to that of the MCST and the corresponding 

governing equation reads 

There results conform to solutions based on the MCST [48]. Moreover, when all three 

higher-order material parameters, e.g. 0l , 1l , 2l , equal to zero, then the constitutive relation 

reduces to that of the CCT. 
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4- Solution for the GaN NWs using MSGT 

Before defining the solution of the above equations, we need to determine our 

assumptions. Figure 3-2 shows the nanowire under loading during the experiment. The 

center of the Cartesian coordinate system is fixed at the clamped end, where the nanowires 

are connected to the substrate. 

 

 

 

 

 

 

 

Figure 3-2: schematically showing the deformation of the GaN NWs under loading. 

 

To solve the governing equation of the MSGT, the first assumptions are the steady 

state process, static process, therefore, the time derivatives are zero. Furthermore, there is 

not any distributed lateral loading,   0xq . Writing the equilibrium condition for the total 

moment at any point along the NW reads 

 

)()()(0 0 wwNxLFxMM   (33) 
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The total moment at any point is related to the external distributed load as 

 
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(34) 

which is related to the deflection of the beam as follows 

Substituting Eq. (35) into Eq. (30) and rearranging leads to 
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Eq. (36) is a second-order, linear and nonhomogeneous differential equation, which 

its solution is summation of the general solution, gw , and the particular solution, pw . To 

find the general solution, one must consider its homogenous form to determine the 

characteristic equation of the differential equation. To do so, since all coefficients are 

constants, then I consider the solution as an exponential equation, )exp( x , therefore the 

characteristic equation will be found 

where J  and P  are constants equal to 
S

KJ   and 
S

NP  . Noted that both J  and P  

are positive, which leads in four solutions, two pure real solutions and two pure imaginary 
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Therefore, the general solution for Eq. (36) will be 

Considering the Eq. (36), the particular solution can be demonstrated as 
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Finally, the solution for Eq. (36) determined by summation of Eqs. (39) and (40) solutions 
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The classical and non-classical boundary conditions are 

Applying the boundary conditions to the solution equation, the coefficients can be found 

as 
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Substituting Eqs. (43) into Eq. (41), on can achieve 

In Eq. (42), the first three boundary conditions are the classical boundary conditions 

demonstrating the clamped boundary condition at the fixed end of the GaN NWs. The proof 

of the clamped boundary condition of the GaN NWs was provided in figure 2-3 of chapter 

2.
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Chapter 4: Theoretical Simulation Using Quantum 

Mechanics 

 

1- Introduction 

 In this chapter, a theoretical method based on quantum mechanics theories for 

calculating the lattice dynamic matrix, or phonon band structure, has been provided to 

predict the mechanical properties of GaN NWs theoretically. In the first section, I explained 

the method for deriving the lattice dynamic matrix based on the solid mechanics 

framework, more details for this part can be found at [70-71]. Then, a brief explanation of 

deriving the dynamic matrix based on quantum mechanics theories is provided, more 

details for this part can be found at [71-72]. 

 

2- Lattice dynamic matrix based on solid mechanics 

 According to the linearized theory of a homogeneous elastic medium and 

considering the gradients of strains, a general form of the Lagrangian density,  , for a 

solid can be written as follows [71] 

...
2

1

2

1
,

2

,,

1

,,  lmnkijijklmnmnljkiijklmnlmkjiijklmklijijklii uFuuFuuDCuu    (1) 

where   is the density, the ratio of the mass to volume, of the GaN, u  is the displacement 

vector, the dot on top of displacement components stands for differentiation with respect 

to time and the comma stands for differentiation with respect to the spatial variables in the 

reference coordinate. The first term in the expression of the potential energy is due to the 
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long-wavelength elastic excitations of the solid, equivalently, the lowest-order description 

of sound wave propagation in the medium, which is GaN here. 

 Therefore, ijklC  is the stiffness matrix defined in the CCT. In the bulk scales, the 

long-wavelength elastic excitations of the solid are the dominant terms in the potential 

energy while the higher-order strain gradients represented by non-classical terms, D , 1F  

and 2F , have a negligible contribution on the potential energy. However, in the nanoscales, 

where the strain gradients are comparable with dimensions of the nanostructure, the non-

classical terms have significant effects. Lastly, ε is the strain tensor obtained using 

  T
uuε 

2

1
 (2) 

 It is noteworthy to be mentioned that the Lagrangian density consists of the total 

kinetic energy and the potential energy, the first term shows the kinetic energy and the 

remaining terms are the potential energy. The potential energy density is invariant in the 

Euclidean group transforming. That is why the internal energy density only depends on the 

first- and higher-order derivatives of the displacement, not only on the displacement 

components. Invariance condition under the rigid rotations disregard the contribution of 

the asymmetric part of the strains and strain gradients on the internal energy density [71]. 

 In order to derive the dynamical matrix of the GaN, one can use the variational 

analysis as demonstrated in [70]. Therefore, applying the variational principle leads to 
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Implementing the integral by part technique onto Eq. (3), the dynamic governing equation 

can be obtained as 
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To derive Eq. (4) from Eq. (3), the following constrains were applied. 
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where sym  and asym  symbols represent the symmetric and asymmetric parts of the elastic 

constant tensors respect to the indices mentioned as subscripts. 

 It should be emphasized that the fifth-order tensor d  in Eq. (5) demonstrates an 

interesting phenomenon in the solid, named Acoustic Activity. The acoustic activities 

inside a solid are the same as the well-known phenomenon of optical activities which 

describe the effect of spatial dispersion on the propagation of an electromagnetic wave. 

The optical activities mainly contribute to first-order dispersive contributions to the 

dielectric constant tensor which is usually a function of the frequency only without 

dependency on the wave-vector [70]. In the optical activities, the dispersive effects can be 

fully explained by considering an invoking non-local dependence of the electric 

displacement vector D  in an electric field, E . The same concept is also valid for the 
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acoustic activity in a solid. The fifth-order elastic tensor d  in this description, is similar to 

the gyroscopic tensor in the optical activity, that it provides a first-order wave-vector 

dependence to the elastic tensor. 

 Eventually, to derive the lattice dynamic matrix, one can consider propagation of a 

plane-wave in the medium, with solution of the form of  k.ritiuu ii  exp0 , which 

results in 

  002 ... knmljijklmnmljijklmljijkli ukkkkfkkkidkkcu   (6) 

where the dynamic matrix, )(kR , is defined as 

...)(  nmljijklmnmljijklmljijkl kkkkfkkkidkkckR  (7) 

Using the lattice dynamic matrix, one can easily calculate the phonon dispersion relations, 

which express the acoustic and optical frequencies in terms of wave-vector, for GaN. To 

do so, the eigenvalues of the equation must be calculated. 

 It is noteworthy to be mentioned that Eq. (7) renders the general form of the lattice 

dynamic matrix for a linear body. If one neglects the non-classical terms, the lattice 

dynamical matrix reduces to the CCT definition of the lattice dynamic matrix which is 

ljijkl kkc . Furthermore, to derive the non-classical properties of the GaN NWs according to 

the MCST or MSGT, the appropriate non-classical mechanical properties of the GaN must 

be considered and the remaining must be ignored. 

 



42 

 

3- Lattice dynamic matrix based on quantum mechanics 

 Several approaches for demonstrating the lattice dynamic matrix in the framework 

of the quantum mechanics have been proposed over the years, such as density functional 

perturbation, density functional theory, ab initio first principle, rigid valence shell model, 

rigid ion model, polarizable bond charges model and deformable ion model. Furthermore, 

there are some strong software available, such as Quantum ESPRESSO [73] or Atomic 

Tool Kit Virtual Nano-Lab (ATK-VNL) [74], that can be used to calculate the lattice 

dynamic matrix. In this thesis, I used the ATK-VNL to calculate the lattice dynamic matrix 

and phonon band structure of the GaN NWs. Therefore, I focus on linking the lattice 

dynamic matrix in the pure framework of the solid mechanics to the lattice dynamic matrix 

calculated in the pure quantum mechanics framework. 

 Comparing with the solid mechanics approach, from the microscopic lattice-

dynamic viewpoint, the lattice dynamic matrix of a crystalline solid including more than 

one atom in its unit cell can be defined as [75] 

     
p

pqqp

ikik iK
MM

R 



 
XXkk .exp

 

(8) 

where M  and M  are the masses of the  -th and  -th atoms, respectively. Furthermore, 

qp

ikK  , qX  and pX  are the atomic force constant matrixes, the position of the atom   in 

q -th unit cell and the position of the atom   in p -th unit cell, respectively. The long-

wavelength limit ( 0k ) of Eq. (8) can be obtained by expanding )(kR  in powers of k  

until the first non-vanishing term to appear as 



43 

 

ljijkl kkcR )(k  (9) 

where the tensor c  can be found as 

    



n

b

mn

a

mnmn

ikijkl Kc XXXX
02

1
 (10) 

The constants ijklc  have the same symmetry as the elastic constants ijklc  of Eq. (5). 

Consequently, they are similar tensors. Regarding to this fact, the solid mechanics is 

sometimes referred to as a long-wavelength approximation of lattice-dynamical theory. 

Similarly, to identify microscopic material constants which resemble the elastic constants 

d  and f  of Eq. (7), one can easily approximate the equation to higher-orders of k . 

However, the identification between the discrete and continuum nature of the 

material is not so readily apparent when the crystal lattice ceases to be a Bravais lattice. 

Eq. (7) derived in the framework of the solid mechanics includes three governing equations 

for demonstrating the mechanical behaviors of a nanostructure in three dimensional spaces. 

On the other hand, Eq. (8) derived from a lattice-dynamical point of view includes N3  

governing equations, where N is the number of atoms per unit cell. Three solutions to this 

eigenvalue problem posed by Eq. (10) correspond to acoustic phonons while the remaining 

 13 N  modes are the optical phonon modes.  

 

4- Block diagonalizing the lattice dynamic matrix 

The last step after calculating the lattice dynamic matrix using one of the quantum 

mechanics theories is to block diagonalize the lattice dynamic matrix. That is why the 

acoustic and optical phonons modes in the dynamic matrix are coupled, which they must 
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be decoupled. More details regarding to the block diagonalizing the lattice dynamic matrix 

can be found in [70]. 

At )0,0,0(k , also named Gamma point, a unitary transformation, U , can be 

implemented in order to block diagonalize the lattice dynamical matrix. Applying this 

unitary transformation matrix at the Gamma point results in 


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where matrices aD 33  and oD 33  are the low frequencies, called acoustic modes, and high 

frequencies, called optical modes, respectively, contributions to the lattice dynamical 

matrix. The aD 33 is the dynamical matrix derived using the solid mechanics theory. 

However, for the case of 0k , applying the same unitary transformation matrix will not 

results in a full decoupled transformed matrix, there are acousto-optical coupling modes 

which must be decoupled. 
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This form of the lattice dynamical matrix is only valid if the used quantum mechanics 

model is analytical near the Gamma point. This constrain is not valid for the polar crystals 

whose Coulombic terms contributing to the lattice dynamical matrix have a macroscopic 

field term of the form 2k

kk  . However, for a slightly semi-polar and non-polar materials, 

the effect of the non-analyticity could be ignored [76]. Therefore, regarding to the 

analyticity of the lattice dynamic matrix, it is possible to find an orthogonal transformation 

in order to fully decouple the optical and acoustic modes. This well-known orthogonal 

transformation is Hermitian matrix. Thus, 
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Similar to [70], a perturbative approach can be employed to find H . Moreover, the 

transformed lattice dynamic matrix can be approximated using a Taylor series as 
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Chapter 5: Fabrication and Measurement Methods 

 

1- Introduction 

This chapter is designated for explaining the experiment procedures, fabrication 

process and measurement method. Three different approaches used to prepare the GaN 

NWs were briefly explained; however, the final measurements were done on the last 

approach of preparing the GaN NWs. Then the procedure for collecting the data, 

characterization of the mechanical properties of the GaN NWs and characterizing the 

friction coefficient are meticulously explained. 

 

2- Fabrication methods 

Three different approaches were used to prepare the GaN NWs. The first approach was 

a top-down approach using Au-nanoparticles, gold nanoparticles, mask followed by 

etching processes, a combination of dry and wet etches. The second approach was a 

bottom-up selective-area epitaxial growth using metal organic chemical vapor deposition 

(MOCVD) followed by etching processes, a combination of dry and wet etches. The third 

approach was a top-down approach using nickel (Ni) mask patterned by Interferometer 

Laser (IL) method followed by etching processes, a combination of dry and wet etches. For 

all the bottom-up and top-down fabricated the GaN NWs were c-plane {0001} and vertical 

non-polar {11̅00} m-plane sidewalls. 
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2-1- Top-down approach using nanoparticles mask 

The fabrication flowchart for the top-down GaN NWs using nanoparticle mask is 

presented in figure 6-1-a. First, a planar c-plane n-GaN (Si doped, ~2 μm thickness) were 

epitaxially grown on c-plane sapphire. Second, gold (Au) nanoparticles with ~100 nm 

diameter were spin coated on the c-plane planar GaN template. It should be emphasized 

that the speed of the spin coat can be adjusted to control the density of the GaN NWs at the 

end of the process. Then an Inductively Coupled Plasma (ICP) was used to etch the planar 

GaN template (DC voltage 145 V and Plasma RF 500 W) for 10-15 minutes. The etchant 

was chlorine, 2Cl , accompanied by Argon, Ar , as noble gas to accelerate the etch rate and 

provide an isotropic etching process. The chlorine flow was set on 20 sccm, and the argon 

flow was set on 5 sccm. More details are provided in [77]. 

 

 

 

 

 

Figure 5-1: fabrication flowchart for top-down GaN NWs using Au nanoparticles mask [77]. 

 

Figure 5-1-b indicates an SEM image of the GaN NWs achieved immediately after the 

ICP dry etch. The GaN NWs fabricated in this way contain a cone-shape base, which tapers 

to straight walls (~1 μm) near the middle and upper sections of the GaN NWs. That is why 

the flow of gases becomes more turbulent at vicinity of the substrate in addition to the 

lower densities of the etchant particles due to higher densities of the etch byproducts at the 

vicinity of the substrate. 

(a) 
(b) 
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The head diameter of the GaN NWs varies from ~60 nm to 100 nm depending upon 

the variation in Au nanoparticle diameter used for the dry etch and the degree of dry etch 

damage from the process. The diameter of the base cone is typically in the range of ~200-

400 nm. The GaN NWs obtained using this approach contain damage on sidewalls due to 

the dry etch process. The results of this approach were not favorable for measuring the 

mechanical properties of GaN NWs due to variation of the GaN NWs diameters and the 

nonuniformity of the GaN NWs diameter along their length. 

 

2-2- Bottom-up approach 

The procedure for fabricating the bottom-up GaN NWs is the same selective-area 

epitaxy procedure reported in [78-79]. The process flowchart is illustrated schematically 

in figure 5-2-a.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: fabrication flowchart for bottom-up GaN NWs [77]. 

(a) 
(b) 

(c) 
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The sample structure consisted of an ~800 nm thick SiNx growth-mask layer and a 

planar MOCVD GaN thin film. The SiNx mask that was deposited by plasma enhanced 

chemical vapor deposition had a ~800 nm thickness. The planar GaN that was grown on a 

6H-SiC substrate had a ~600 nm thickness. The thickness of the SiNx film was measured 

using spectrometer. Using IL, the resist was patterned to form hexagonal array of circular 

openings. After pattering the photoresist, a ~100 nm thick Ni layer was e-beam deposited 

before removing the photoresist using a spray lift-off process. The pattern was transferred 

from the Ni film into the silicon nitride layer using Reactive Ion Etching (RIE). Following 

patterning and just prior to growth, the samples were cleaned in piranha solution for ~5 

min followed by rinsing in the distilled water. Lastly, the sample was placed in the 

MOCVD chamber to grow the GaN NWs. 

Semi-polar planes {101̅1̅} were observed as extra sidewalls on the top of the GaN NWs 

as seen in figure 5-2-b. To achieve a GaN NW with perfectly straight sidewalls suitable for 

AFM measurement, the semi-polar planes should be eliminated. Therefore, GaN NWs 

were immersed in AZ-400K (1:4) at 150oF for 60 minutes. The KOH-based solution is 

known to be an effective chemical to selectively etch GaN planes, such that the semi-polar 

planes are removed with a fast etch rate while the c-plane remains unaffected by the 

solution [80-81] resulting in GaN NWs with smooth sidewalls, figure 5-2-c. 

After too many try and errors, this method again could not lead into the favorable GaN 

NWs for mechanical properties measurement. That is why the minimum diameter of the 

GaN NWs at the end of wet etch process was 250 nm - 300 nm resulting in small aspect 

ratios, usually around ~6, while I was interested in measuring the mechanical properties of 

high aspect ratio GaN NWs with diameters less than 100 nm. The GaN NWs grown using 
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this method are limited to relatively large diameters since growing high-aspect-ratio 

nanowire with small diameter (<100 nm) is a challenging due to lateral overgrowth in 

MOCVD chamber. 

 

2-3- top-down approach using IL patterning 

The fabrication flowchart for the top-down GaN NWs is presented in figure 5-3. First, 

a planar c-plane n-GaN (Si doped, ~2 μm thickness) were epitaxially grown on c-plane 

sapphire. Second, after spin coating the photoresist on the planar GaN NWs, the IL method 

was used to fabricate 2D circular patterns with specific pitch sizes and diameters. Third, a 

thin layer of nickel (Ni) was sputtered using evaporator followed by lift-off process to 

remove the extra photoresist and the metal. The last step, which was a combination of dry 

and wet etches, was done the same as explain in section 2-1 of this chapter. During this 

process the aspect ratio of the GaN NWs is controlled by adjustment of etching time, wet 

etch solution concentration, solution temperature, and pitch size of the lithography process. 

The main difference between this approach and the first approach, section 2-1, is that 

here the diameter of the metal nanoparticles and the pitch size are precisely controlled and 

all the metallic nanoparticles have the same diameter. This uniformity results in GaN NWs 

with extremely uniform distributions over the sample with controlled diameters and aspect 

ratios appropriate for mechanical properties measurement. 
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Figure 5-3: fabricated GaN NWs using top-down approach and interferometer laser methods. 

 

 

Figure 5-4: final GaN NWs provided for mechanical properties measurement. 

 

Figure 5-4 shows the SEM images of the GaN NWs fabricated using this method 

for providing high uniform GaN NWs with different aspect ratios from ~12 to ~36.  
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Figure 5-5: (a) NWs fabricated in top-down approach with different aspect ratio. (b) TEM image of 

fabricated NWs. (c) Laser emission spectrum of NWs pumped at 266 nm. 

 

Sidewall quality of the fabricated GaN NWs were inspected by using TEM, and 

optical pumping of the GaN NWs. Figure 5-5-b illustrates TEM image of the top-down 

GaN NWs at the end of fabrication process and figure 5-5-c is the laser emission spectrum 

of the same GaN NWs. As it can be seen, both TEM and laser emission spectrum results 

confirm that the quality of the GaN NWs achieved via this process is satisfactory for 

mechanical properties measurement. 

 

3- Measurement method 

The elastic measurements were performed by an AFM (MFP-3D-BIO) instrument. 

The Silicon-based tips used in this experiment were prepared from Nanoscience Company. 

(a) (b) 

(c) 
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The tips models were Conical Force Modulation (CFM R+). These tips have a conical tip 

with total cone angle of 30 degrees. The AFM tips have normal spring constant between 3 

to 5 nN/nm with rectangular cantilever. Prior to the measurement, I took a very high 

resolution topography image over an area including couple of GaN NWs, usually including 

nine GaN NWs per each scanning area. Using the topography image, I set the AFM tip on 

top of a GaN NW and very close to the GaN NW edge. The AFM tip was set in such a way 

the axial axis of the AFM sharp tip was parallel to the axial axis of the GaN NW and their 

common perpendicular, a fictitious line perpendicular to the both GaN NW’s axial axis and 

AFM tip axial axis, was perpendicular to the AFM cantilever as well, see figure 5-6. In this 

way, I managed to minimize the errors due to the misalignments. It should be emphasized 

that this misalignment only affects the lateral deflection and torsion of the AFM cantilever 

that I considered them into the model as it will be explained section 3-2 of this chapter. 

Furthermore, the results are based on the normal deflection of the AFM cantilever, not 

lateral or torsional deflections. Thus, the mechanical properties measured in this method 

are immune from any possible misalignments. 

 

 

 

 

 

 

 

 

Figure 5-6: initial position of the AFM tip with the GaN NW. 
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Lastly, I determined a very small vertical displacement for the AFM tip while it is 

recording the normal and lateral displacements of the AFM tip. Before the tip touches the 

GaN NW, the normal and lateral displacements of the AFM tip versus the vertical distance 

was constant, no increases in the normal and lateral displacements. When the tip meets the 

GaN NW, loading cycle, the normal and lateral displacements of the AFM tip increase 

almost linearly as the GaN NW is elastically bent from its equilibrium position. During 

unloading cycle, the normal and lateral displacements drop suddenly at where the AFM tip 

loses its contact with the GaN NW and reaches its ordinary condition, equilibrium 

condition. Figure 5-7 shows the acquired plot for loading and unloading cycles.  

 

Figure 5-7: collected data using AFM during loading cycle (red dots) and unloading cycle (blue dots). 

 

I noticed that loading and unloading plots were started and ended at the same point. 

This behavior explains that the GaN NWs are acting completely linear elastic for small 

deformations [27, 82]. Considering the size of the GaN NW, the thermal vibration of the 

GaN NW at room temperature can be ignored [83]. 
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 4- Friction Coefficient characterization 

The friction between GaN NW and the AFM tip is one of the most important 

parameter during the experiment that needs to be taken into consideration and 

characterized. The friction can be defined as a product of a friction coefficient and the 

normal force applying onto the conical shape of the AFM tip, nf , as can be seen in figure 

5-8. The friction coefficient can be defined as the ratio of the lateral force to the normal 

force applying onto the AFM tip as well. The friction coefficient is a function of the quality 

of the AFM tip and the GaN NWs surfaces, the angle of the AFM tip and electrostatic 

forces between the AFM tip and the GaN NWs.  

   

 

Figure 5-8: applied forces on the AFM’s tip during loading, (a), and unloading, (b), 

and the total deflection of the AFM’s tip (c). 

 

When the AFM tip is very close to a GaN NW, the electrostatic force has the highest 

effects, applying either attractive force or repulsive force. However, the effects of 

electrostatic forces disappear once the AFM tip is far away from the GaN NW or in contact 

with the GaN NW. Therefore, the effects of the electrostatic force are negligible. Regarding 

to this fact, the quality of the AFM tip surface and GaN NW edge is the only source of 
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friction. In order to characterize the effects of the friction, I monitored the normal deflection 

of the AFM tip in both loading and unloading cycles. Collecting the normal force in both 

loading and unloading results in two sets of data for measuring the values of the friction 

and the mechanical properties of the GaN NW. In order to consider the effects of friction 

in formula, I wrote the equilibrium equations for the AFM tip during loading and unloading 

cycles. It should be emphasized, during the loading and unloading, the both normal and 

lateral forces exerting on the GaN NWs have the same directions while only the direction 

of the friction between the AFM’s tip and the GaN NWs changes. According to figure 5-

8, writing the equilibrium equations in x  and y direction for loading cycle give 

    0sincos0   fnnx ffFf  (1) 

    0sincos0   nfny ffNf  (2) 

Dividing the Eq. (1) by Eq. (2) and simplifying the result, it gives 
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(3) 

In the above equation, f  is the friction coefficient between the AFM’s tip and the GaN 

NW which is defined as )tan( f . Utilizing the same procedure for unloading cycle, it 

leads to 

    0sincos0   fnnx ffFf  (4) 

    0sincos0   nfny ffNf  (5) 

Finally, 
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(6) 

Substituting the above relationships into the solution of the governing equation, one has a 

system of two nonlinear equations that can be solved for   and k , for the case of the 

MCST, using the Newton-Raphson method. 

 

5- Normal, Lateral and torsional deflections of AFM tip 

The vertical distance traveled by the AFM’s tip can be related to the maximum 

deflection of the GaN NW and the deflection of the AFM tip as follows 

   tan0 hw AFM  (7) 

where AFM  is the total deflection of the AFM’s tip which is a summation of the normal, 

N , lateral, L , and torsional, T , deflections of the AFM’s tip as 

  TLNAFM   tan . Also h  is the distance traveled by the AFM’s tip after 

touching the GaN NWs, where the normal force increases as the AFM’s tip moves 

downward. In Eq. (7),   is the rotation angle of the AFM’s tip, in which  RT  . The 

normal deflection is measured by the AFM gives the normal and lateral forces, Eq. (3) and 

Eq. (6). In order to find the lateral stiffness, Lk , and torsional stiffness, Tk , I used the 

normal stiffness of the AFM cantilever estimated by AFM and the geometrical dimensions 

of the AFM cantilever. The lateral stiffness and the torsional stiffness for a rectangular 

cross-section are [84] 
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(9) 

where t , b  and AFML are the AFM’s cantilever thickness, width and length, respectively. 

In addition, the 
AFMv  is the AFM’s Poisson ratio, the AFM’s cantilever was silicon. In Eq. 

(9), T is the total torsion applied on the AFM’s tip determined using torsion equilibrium 

condition at the point O  in figure 5-8. Since the normal and the friction forces intersect at 

this point, they do not contribute anything to calculation of the torsion. Moreover, since I 

placed the AFM’s tip very close to the GaN NWs edge, the torsion due to nf  is negligible 

comparing to the torsion due to the lateral force, F . That is why the length of the AFM 

tips, R , is several micrometers, for these tips it is m1512 , while the distance between 

the point O  and nf  is in order of nanometer. Therefore, the total exerted torsion on the 

AFM’s tip with a good approximation is RFT  , which is equivalent to 

)tan(  
 RNT . 
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Chapter 6: Results and Discussions 

 

1- Introduction 

The experimental results are presented in this chapter. First, I used the MCST 

formula to evaluate the mechanical properties of the GaN NWs, the Young’s modulus and 

the length scale. Second, I used the MSGT formula to evaluate the mechanical properties 

of the GaN NWs as well. Then I compare the results of these theories with the results 

obtained using the CCT. Lastly, I explain the inconsistency between the previous literatures 

and compare their results with this result. 

 

2- Mechanical properties of GaN NWs based on the MCST 

By substituting Eq. (3) from chapter 5 into Eq. (36) from chapter 2 for loading and 

Eq. (6) from chapter 5 into Eq. (36) from chapter 2 for unloading, we have two nonlinear 

equations that they can be solved using the Newton-Raphson method for the unknown 

parameters, the friction coefficient and the rigidity of the GaN NWs. The rigidity of the 

GaN NWs is a function of dimensions and the mechanical properties of the GaN NWs. 

Interpreting the results for rigidity using the MCST, considering the micro-rotations, 

resulted in very uniform values for the Young’s modulus and the length scale of the GaN 

NWs. In contrast, the CCT predicts very scatter values for the Young’s modulus. I found 

the results are almost insensitive to the small variations of the Poisson ratio,  , so that I 

considered the Poisson ratio 0.211, as reported by both experimental and theoretical works 

[36, 39], to relate the Young’s modulus to the shear modulus through  



12

E . 
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In figure 6-1, I fitted the experimental results for the rigidity, considering
2AlEI   

based on the MCST and IECCT  based on the CCT. I added the subscript CCT to the 

Young’s modulus to distinguish between the measured values based on the CCT and the 

MSCT. The MCST covers all the data points very well for the whole range of radii offering 

323 GPa for the Young’s modulus and 13 nm for the length scale. In contrast, the CCT 

results significantly depend on the radii. Figures 6-1 and 6-2 show how the CCT 

divergences from the experimental data for both small and large radii. 

In figure 6-1-a, I fitted the CCT for radii with less than 38 nm, where the Young’s 

modulus was estimated to be 409 GPa, while its value is 344 GPa for the radii larger than 

65 nm shown in figure 6-1-b. The large difference in the Young’s moduli shows the CCT 

is unable to capture the size-dependency of the GaN NWs. Indeed, the CCT results are 

highly dependent on the radii since the CCT does not take into account the micro-rotations. 

On the other hand, because the MCST considers the micro-rotations with defining 

the length scale into the governing equation, it predicts the rigidity of the GaN NWs very 

precisely for all range of radii. Equivalently, the CCT is applicable only for short ranges of 

aspect ratio and it always overestimates the Young’s modulus due to ignoring the micro-

rotation effects which is a crucial fact in determining size-dependency of the mechanical 

properties of the GaN NWs, and all nanostructures.  
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(a) 

 

 

(b) 
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(c) 

Figure 6-1: fitted results of CCT for (a) radius < 38 nm, (b) radius > 65 nm, and (c) 50 nm < radius < 60 

nm. 

 MCST covers all data points very well, error is 0.2%, while CCT cannot cover all data points. 

 

 

 
Figure 6-2: Zoomed in on different radii. The experimental data were fitted using the CCT for radii within 

50 nm to 65 nm with considering the Young’s modulus of 363 Gpa. 
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3- Mechanical properties of GaN NWs based on the MSGT 

By substituting Eq. (3) from chapter 5 into Eq. (44) from chapter 3 for loading and 

Eq. (6) from chapter 5 into Eq. (44) from chapter 3 for unloading, we again have two 

nonlinear equations that they can be solved using the Newton-Raphson method for the 

unknown parameters. Interpreting the experimental data using the MSGT, considering the 

higher-order strain gradients, resulted in very uniform values for the Young’s modulus and 

the length scale of the GaN NWs. In contrast, the CCT predicts very scatter values for the 

Young’s modulus. Here, the Poisson’s ratio assumed to be 0.211 as explained the in section 

2. 

I firstly used the CCT to predicted the Young’s modulus based on CCT and the 

friction between the surfaces. Since the friction only depends on the conditions of surfaces, 

I implemented the measured values for friction into the MSGT. Noted the results for the 

Young’s modulus based on the CCT are the same as section 2, thus I avoided repeating 

CCT’s results here again. For simplicity, I consider all the length scales equal, si ll  [65]. 

Then, I utilized the measured J  to predict the length scale as follows 

Using J  and P , the S  and K  can be easily determined, which they can be used to estimate 

the Young’s modulus of the GaN NWs.  

The results for S  and 2

sl
K  are plotted in figures 6-3 and 6-4, respectively. The best 

fit for the 2

sl
K  gives 132 Gpa as the shear modulus. Considering the Poisson ratio 0.211, 

the best fit for S  results in 319 Gpa for the Young’s modulus and 8 nm for the length scale. 

 
AJI

IJv
ls

359315

1225




  

(8) 
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Figure 6-3: measured S  experimentally for each GaN NWs (circles) and MSGT fitting (solid line). 

 

 

Figure 6-4: 2

sl
K measured experimentally based on MSGT. 

 

In a professional point of view, no one can compare the MSGT with the CCT or 

even the MCST together because the natures of their governing equations are different. 
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The governing equation based on MSGT is a 6th order differential equations while the 

governing equation based on the CCT, even the MCST, is a 4th order differential equation. 

Regarding to this difference, the concepts of rigidity in these two theories are different. 

However, it is possible to define an equivalent Young’s modulus according to the MCST 

and the MSGT usable to comparison these three theories with each other. In the next 

section, these three theories are compared to each other using the equivalent Young’s 

modulus definition. 

 

4- Comparing the results with previous studies 

Figure 6-6 shows the equivalent Young’s modulus of the GaN NWs defined based 

on the CCT, the MSGT and the MCST. I provided figure 6-6 to illustrate the effects of 

micro-rotations and higher strain gradients on the mechanical behaviors of GaN NWs and 

the size-dependency of the mechanical properties of GaN NWs. That is why some studies 

show that the Young’s modulus of the GaN NWs decreases as the GaN NWs radius 

decreases [25, 85], while other studies show that the Young’s modulus increases as the 

radius decreases, for example [23, 26-27]. To understand this discrepancy, first I must 

define the equivalent Young’s modulus. To do so, I found the relationship of the maximum 

deflection of a cantilever GaN NWs, fixed-free boundary condition as shows in figure 6-5, 

based on the MCST, the MSGT and the CCT, under a concentrated force, 

),,( MSGTMSCTCCTiGi  . Then utilizing these relationships, I figured out the 

equivalent Young’s modulus, iEqE  ( MSGTMSCTCCTi ,, ). 
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
 

Figure 6-5: a cantilever GaN NW under a concentrated force at its free end. 

 

After finding iEqE   based on each theory, I plugged the Young’s modulus and the 

length scale predicted in sections 2 and 3 of this chapter into MCSTEqE   and MSGTEqE   

relationships, then I plotted them vs. radius in figure 6-6. 

In figure 6-6 shows the normalized BulkE , CCTE , MCSTE  and MSGTE  with respect to 

the Young’s modulus of bulk GaN [86], the values of the Young’s modulus for each 

individual GaN NWs using the CCT, the MCST and the MSGT, respectively. 

 

Figure 6-6: Experimentally measured Young’s modulus as a function of radius of GaN NWs and then 

normalized respect to the Young’s modulus of the bulk GaN. The dots and stars are the experimental 

results for each GaN NW. The slid lines are the equivalent Young’s modulus, and the dashed line is the 

Young’s modulus of bulk GaN. 

 

F 
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According to figure 6-6, the Young’s moduli predicted by all theories converge to 

each other as the radius increases. According to the Cosserats theory [45], as the 

dimensions of the nanostructures increases toward the bulk values, the effects of strain 

gradients on the rigidity decreases. Indeed, the both theories are the same for bulk 

dimensions, and the size-dependency of mechanical properties of materials vanishes at 

bulk dimensions. However, reducing the radius of the GaN NWs to less than ~50 nm 

significantly increases the size-dependency of the GaN NWs. It should be emphasized that 

the results of the MCST and the MSGT are slightly different at small radii. That is why the 

MCST only considers only the 2st order strain gradient in its governing equation while the 

MSGT considers up to 3rd order strain gradients in its governing equations. 

Table 6-1 provides a comprehensive comparison of the Young’s modulus of GaN 

NWs estimated with different experimental and theoretical techniques. As it can be seen, 

the MCST and the MSGT suggest only a single value for the Young’s modulus of GaN 

NWs while the CCT, which used in all earlier literatures and even this results, suggest a 

wide domain the Young’s modulus. 

 

Table 6-1: experimental and theoretical on the Young’s modulus of GaN. 

 
Method 

Young’s modulus (GPa) Length 

Scale (nm) 
Ref. 

 Max. Min. 

E
x
p
er

im
en

ta
ll

y
 

Present Work (MSGT) 319 8 - 

Present Work (MCST) 323 13 - 

Present Work (CCT) 409 344 - - 

Three-point bending 400 194 - [30] 

Electromechanical resonator 305 227 - [27] 

Nanoindentation 292 298 - [31] 
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Laser Doppler vibrometry 321 201 - [32] 

Uniaxial tensile test 250 210 - [23] 

Uniaxial compression test 484 223 - [24] 

in situ TEM 
319 280 - [26] 

404 258 - [33] 

T
h
eo

re
ti

ca
ll

y
 First principle 444 - [37] 

Electron backscatter diffraction 479 - [38] 

Molecular dynamic simulation 290 166 
- 

[21] 

 

It is worthy to be mentioned, the Young’s modulus of the present GaN NWs based 

on the CCT are a little larger than the reported in some literatures, see table 6-1, which can 

be attributed to the nature of the experiment. I implemented measurements on the GaN 

NWs directly after their fabrication, without any manipulation of the GaN NWs which is 

never the case for any other methods. For example, the GaN NWs are cut and transferred 

on a trench, for three-point bending [30], or a MEMS device, for tensile test [23], and then 

welded on the new substrate. These processes cause partial fracture of GaN NWs and 

contaminations, which drastically affect the mechanical properties of GaN NWs [43]. 

Furthermore, because of the strong bonding between the GaN NWs and the 

substrate, GaN-GaN, in the present experiment, there were neither any elastic deformations 

nor violation of the boundary conditions at the fixed end of the GaN NWs, which their 

existences cause misleading in predicting the mechanical properties of nanostructures [40-

42]. 
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Conclusion 

In this thesis, the classical, the Young’s modulus and shear modulus, and non-classical, 

the length scale parameter, mechanical properties of GaN NWs were measured using the 

CCT, the MCST and MSGT. The MCST estimates the Young’s modulus, the shear 

modulus and the length scale to be 323 GPa, 133 GPa and 13 nm, respectively. And the 

MSGT estimated the Young’s modulus, the shear modulus and the length scale to be 319 

GPa, 132 GPa and 8 nm, respectively. Comparing the results of the MCST and the MSGT, 

it cannot be easily concluded that the MCST predicts the GaN NWs stiffer than the MSGT 

because of slightly higher values of the both classical and non-classical properties of the 

GaN NWs. For a precise comparison, the equivalent Young’s modulus should be 

considered. That is why the theories governing equations are completely different which 

results in different concepts of rigidity and stiffness. Furthermore, the CCT was used to 

estimate the Young’s modulus of the GaN NWs. The CCT estimates the Young’s modulus 

of the GaN NWs varies from 409 GPa to 344 GPa as the radius increases. Comparing the 

results of the MSGT, the MCST and the CCT, the inconsistencies appearing in earlier 

publication on mechanical properties of GaN NWs were clearly explained.  

 

Future works 

The future works on the GaN-based NWs is going toward smaller and smaller 

dimensions which requires a comprehensive development of non-classical properties of 

GaN NWs. Consequently, it is crucial to measure the mechanical properties of GaN NWs 

in smaller dimensions. In smaller dimensions, the non-classical theories need to be 

modified to consider the effects of defects, such as vacancies, interstitial impurities, on 
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covalent bonds in the form of higher strain gradients. Therefore, one of the future work is 

to develop a modified non-classical theory including the effects of covalent bonding in its 

governing equation and to validate them using experimental measurements. 

Moreover, because the GaN NWs are mainly doped in nano-devices, such as LEDs and 

piezoelectric devices, it is essential to study the classical and non-classical properties of 

GaN NWs with different levels of doping. One way is to dope the GaN template before 

starting the fabrication process. It should be emphasized that the level of doping a critical 

parameter for preparing the GaN NWs and performance of the GaN NWs. 

Furthermore, regarding to the piezoelectric applications of the GaN NWs, it is essential 

to study the dynamical behavior of the GaN NWs especially at high frequencies. That is 

why the piezoelectric coefficients, which relates the mechanical strains to the electrical 

current, are the critical parameters for determining the piezoelectric behavior of the GaN 

NWs. Therefore, they must be estimated under precisely demonstrated mechanical 

deformations/strains. 
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