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ABSTRACT 

While in service, wind turbine blades experience various modes of loading. An example 

is impact loading in the form of hail or bird strikes, which might lead to localized damage 

or formation of cracks a few plies deep on the blade surface. One of the methods to 

conduct repairs on wind turbine blades that are damaged while in service is hand lay-up 

of the repair part after grinding out the damaged portion and some of its surrounding area. 

The resin used for such repairs usually differs from the parent plate resin in composition 

and properties such as gel time, viscosity, etc. As a result the properties of the repaired 

parts are not the same as that of the undamaged blades. Subsequent repetitive loading can 

be detrimental to weak repairs to such an extent so as to cause delamination at the parent-

repair bondline causing the repairs to eventually fall off the blade. Thus the strength and 

toughness of the repair are of critical importance.  

Initial part of this work consists of an effort to increase repair strength by identifying an 

optimum hand layup repair resin for fiberglass wind turbine blades currently being 

manufactured by a global company. As delamination of the repair from the parent blade 

is a major concern and unidirectional glass fibers along with a polymer resin are used to 

manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test 

Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced 

Polymer Matrix Composites) was followed to determine propagation fracture toughness 

values of the prospective vinyl ester repair resin candidates. These values were compared 

to those for a base polyester repair resin used by the company. Experimental procedure 
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and results obtained from the above mentioned testing using double cantilever beam 

(DCB) specimens are detailed. Three new repair resins were shortlisted through mode I 

testing. It was also found that variation in the depth of the ground top ply of the parent 

part affects the propagation fracture toughness values of the repair. Repairs conducted on 

surfaces with partially ground top plies possess higher fracture toughness values than 

those conducted on surfaces with complete top plies ground off.   

The three top repair resin candidates were then evaluated against the base repair resin 

under fatigue loading. The specimen configuration and testing method were chosen so as 

to be able to test hand layup repairs under tension – tension cyclic loading. It was 

observed that all three new repair resins perform better than the base repair resin. The 

selection of the optimum repair resin was based on results from mode I and fatigue 

testing. Global manufacturing regulations and standards were also of prime concern. The 

final new repair resin is being used by the company in all of its plants over the globe.     

The balance of this work involves study of the effect of mixed mode I – mode II loading 

on the strength of repairs conducted on fiber reinforced composite parts using hand lay-

up technique. The specimens for this part were similar to those manufactured for mode I 

testing but with different dimensions and layup. They were made and tested in 

accordance with ASTM D 6671 (Standard Test Method for Mixed Mode I – Mode II 

Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix 

Composites). Comparison was made between the fracture toughness of the above chosen 

optimum repair resin and the base repair resin. At least two levels of mode mixture GII/G 

(Mode II fracture toughness / Mode I and II fracture toughness) were examined. Also, 

two levels of grinding were considered (complete ply vs. partial ply ground off) in order 

xiii 
 



to establish the influence of varying top-ply grinding depths on the strength of hand layup 

repairs conducted on fiberglass composite structures. 

The results of this work have the potential to improve the repair process for current 

fiberglass wind turbine blades. 
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CHAPTER I 

INTRODUCTION 

Repair Methods for FRP Composites 

Fiber reinforced polymer (FRP) composites are not only lightweight, but also possess 

good mechanical and thermal properties [1]. Their resistance to corrosion and fatigue has 

made them suitable materials for aeronautical applications and also for alternate energy 

production such as in manufacturing of wind turbine blades. Despite their high level of 

performance, they are susceptible to impact damage during the time of their service. The 

damage may also be due to moisture or hydraulic fluids absorption [2]. Military 

aerospace vehicles made of composites may suffer damage in war whereas blades of 

wind turbines might show presence of cracks due to severe fatigue loads in extreme 

weather conditions. Whatever the case may be, it has become necessary for 

manufacturers to develop techniques for low cost and rapid repair of components made of 

composite materials. The repair method used depends not only on the extent of damage 

but also on the required properties such as thickness, strength and aerodynamic profile of 

the final repaired product [3]. To be effective, the structural repair should be capable of 

supporting the applied loads and transmitting the resultant stresses across the repaired 

area. The prevalent methods of repair of composites are patch repair, taper sanded (scarf) 

repair and step sanded repair [4]. 
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Patch Repairs 

Patch repairs involve the use of filler plies (Figure 1) to make up for the thickness of the 

original laminate and repair patches are either bonded adhesively or mechanically 

fastened to the laminate surface externally.  

 

Figure 1.1. Patch repair [4] 

Different types of lay-ups may be used for repairs in this case. Pre-preg plies may be used 

and cured simultaneously with the adhesive. Application of pre-cured plies alternating 

with epoxy based paste adhesive layers is another alternative. Parts may also be 

manufactured by preforming and later bonded to the repair area to fit the repair contour 

[5]. Repair contours possessing double curvatures may be repaired by wet lay-ups 

consisting of plies similar to parent laminate with two-part (resin and initiator) systems. 

Though patch repairs are practically very easy and require minimum preparation, the 

disadvantages are that the repaired laminate is heavier and thicker than the original and 

the surface has to be very carefully prepared for proper adhesion [5]. 

Scarf Repairs 

Scarf repairs are time-consuming and more difficult than patch repairs due to high skill 

and precision needed for accurate machining of the damaged structure. In this type of 

repair, the area of the damaged portion and that around it is sanded to expose each layer 
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of the laminate (Figure 2). Sometimes a filler ply may be added in addition to the repair 

plies to have a flatter surface. A wet lay-up is preferred as there might be fitting problems 

with the pre-cured ones. As in the case of patch repairs, the stacking sequence of the 

repair plies is the same as that of the parent laminate and an extra ply is added at the top 

of the repair plies to increase the overall strength and reduce creep as much as possible 

[3]. 

 

Figure 1.2. Scarf repair [4] 

Curing of the lay-up is carried out by keeping the repair portion at room temperature 

under atmospheric pressure or by vacuum bagging in an autoclave or simply vacuum 

bagging in the open [3]. The advantage over patch repair is that the laminate repaired by 

this technique is only a little thicker than the original and a straighter load path is 

produced as each ply overlaps the corresponding ply being repaired resulting in a uniform 

shear stress distribution. The amount of strength restored to the original part varies with 

changes in parameters such as scarf angles, material used and depth of repair, etc. 

Step Repairs 

In step repair, as the name suggests, the damaged plies are sanded such that a flat face of 

the ply is exposed giving the laminate a ‘stair-like’ appearance (Figure 3). The steps are 
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typically 25-50 mm per layer and the sanding increases the roughness of surface to be 

bonded thus increasing adhesion with the repair resin.  

 

Figure 1.3. Step repair [4] 

 

The resultant laminate is almost the same as that produced in scarf repairs as good bonds 

are achieved due to exposure of fibers to the resin but this method requires considerable 

skill. 

Testing of FRP Composite Repairs 

Testing of repaired composites is very necessary not only for evaluating the quality of the 

repair but also for quantitatively analyzing the differences introduced such as reduction in 

values of mechanical properties that reflect on the overall strength of the parent laminate. 

Thus, performing tests on repairs carried out on composites has become an integral part 

of analyzing repairs. The choice of the type of test to be conducted depends upon the 

property of the repair being tested. Repairs conducted on wind turbine blades are tested at 

many levels in order to be certified. These levels and testing modes are in accordance 

with certain standards [6 – 12] developed mainly in Europe [13] in the early 21st century. 

To test the fracture toughness of materials many mechanical test methods have been 

developed. Double cantilever beam (DCB) specimens are used for testing materials under 

pure mode I (opening mode) and mixed mode I – mode II loading. The end notched 
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flexure (ENF) test is currently under ASTM review [14] and is used for testing specimens 

under pure mode II (shearing mode) loading. Tests developed to test composite coupons 

under cyclic loading include the in-plane tension/tension fatigue test [15] for gathering 

stress-cycles (S-N) data and the fatigue crack growth/toughness test method [16] for 

obtaining delamination initiation toughness-cycles (G-N) data. Some common test 

methods used for evaluation of fracture toughness of FRP composites and composite 

repairs are discussed in the next few sections.        

Mode I Testing 

Damage in continuous fiber reinforced composites may occur as delamination, fiber 

failure, matrix failure or fiber matrix debonding [3]. Delamination or separation of 

different plies in a laminate is a common type of damage due to low velocity impacts and 

cyclic loading [17]. The strain energy release rate accompanied by delamination due to 

mode I loading is usually measured by conducting tests using a Double Cantilever Beam 

(DCB) specimen [18-21]. The testing method [18] that has been used to conduct work for 

this report will be described in detail in a subsequent chapter. Mode I testing has been in 

more focus as the energy required to initiate a crack under mode I loading is less than that 

under mode II loading [22]. Perrin et al [23] used DCB specimens to evaluate and 

compare mode I interlaminar fracture toughness values of unidirectional glass fiber 

polypropylene composites manufactured with varying molding temperatures and cooling 

rates. In a second part of the same study the test temperatures were also varied in order to 

study the effect of change in environmental temperature on crack propagation. Their 

results indicated a strong influence of molding conditions on the fracture toughness of 

composite laminates. Various studies involving mode I testing have been carried out to 
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improve interlaminar fracture toughness. Tzetzis & Hogg [24] studied the bondline 

fracture characteristics of composite repairs with mode I testing and proved that the 

introduction of carbon and polyester veils at the bondline improved the quality of the 

repairs significantly. Fracture toughness values of the repairs with and without the 

multidirectional fibers at the repair – parent plate bondline were measured and compared 

through R-curves. An R-curve is obtained by plotting the total energy dissipation rate 

against the crack size. Introduction of the veils consisting of multidirectional fibers leads 

to the phenomena of crack arrest and bridging that increase the strain energy release rate. 

Bader et al [25] used mode I testing to compare the fracture toughness of repairs 

conducted with one part adhesive, ethylcyanoacrylate (ECA), to the fracture toughness of 

repairs conducted with two part epoxy based system, diglycidyl ether of bisphenol A 

(DGEBA) cured with 4,4’-methylene-bis(aminocyclohexane) (PACM). In both cases, the 

repairs possessed higher fracture toughness values as compared to the original carbon 

fiber epoxy composite parts. As stated earlier, fracture toughness values of composites 

are governed by various factors such as ambient conditions (humidity, temperature, etc.) 

during manufacturing and also by void content and fiber volume/weight fraction in the 

composite. Chen et al [26] investigated the effect of fiber volume fraction on the fracture 

toughness values calculated by different fracture toughness calculation methods using 

data obtained through mode I testing. They observed that the fracture toughness values 

GIc(NL) (toughness values obtained by considering load and deflection values at the point 

where load-displacement curve deviates from linear response) and GIc(Prop) (stable crack 

propagation toughness values) decreased with increasing fiber volume fraction. Other 

fracture toughness values usually calculated from mode I testing are GIc(VIS) (fracture 
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toughness measured by considering load and deflection values at the point on the load-

displacement curve corresponding to time when delamination is visually observed) and 

GIc(5% max) (fracture toughness value corresponding to the point on the load-

displacement curve at which the compliance has increased by 5% or the load has reached 

the maximum value). No general trends were observed for these values with increasing 

fiber volume fraction for the tested unidirectional glass fiber reinforced polyamide 12 

composites.  

For a part of the work described in this report, mode I testing was used to compare the 

relative fracture toughness values GIc(NL) at crack initiation and GIc(Prop) during 

delamination propagation for repairs carried out using different repair resins. GIc(NL) 

values are typically lower than GIc(VIS) and GIc(5% max) and correspond to 

delamination initiation within the interior of the specimen [18]. GIc(Prop) values are 

plotted against delamination length to form a resistance curve (R – curve) in order to 

characterize propagation of delamination in case of unidirectional fiber composites. Thus, 

GIc(NL) and GIc(Prop) values provide fracture toughness information that can be used to 

create a delamination failure criterion suited for designing durable and damage tolerant 

repairs of unidirectional composite laminates.                                  

Fatigue Testing 

As composite structures are frequently subjected to cyclic loading, fatigue testing of 

composite repairs is an important aspect of designing repairs. It provides information 

about the service life of the repaired composite part. The process of designing and 

analyzing composite repairs began in Australia about four decades ago [27]. In the United 

States, the use of composite materials for repairs became prevalent three decades ago [28, 
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29] when Warner Robins Air Logistics Center and Lockheed Aeronautical Systems 

Company began applying boron/epoxy repairs to damaged primary metallic parts of 

airplanes. Since then, a lot of research and testing related to fatigue has been carried out 

in order to design and standardize composite repairs on aluminum and steel parts [30-45]. 

For example, Toudeshky et al [38] conducted finite element analysis (FEA) on the effects 

of different glass/epoxy repair lay-ups on cracked aluminum panels with stiffeners by 

using a previously developed finite element method (FEM) macro program to trace crack 

growth under mode I and mixed mode fatigue loading. Contemporary researchers [41, 

43] found that the fatigue life of cracked steel plates repaired with carbon/epoxy patches 

improved over two times than that of unpatched plates. In a different study [45], two 

aluminum alloy 5052-H32 parts were adhesively bonded at different angles to form a dog 

bone specimen and tested under tension – tension fatigue in order to establish a 

relationship between fatigue life and scarf angle in case of adhesively bonded scarf 

repairs.  

With the gradual transition from a complete metal to a complete composite fuselage in 

aircrafts, and due to the increased use of FRP composites in the defense, transport, energy 

and recreational sectors, the focus on improving composite repairs on FRP composite 

parts has increased over the past few years. Most of the research on fatigue behavior of 

bonded composites has been confined to that involving composite parts joined together 

by adhesives like epoxy [46-50]. Bernasconi et al [46] tested, under mode I fatigue 

loading, DCB specimens with adherends made of carbon/epoxy pre-preg parts and glued 

together by a two-part epoxy system. The data obtained was used to characterize tension-

tension fatigue crack propagation along the bondline of two composite parts adhesively 
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bonded together in a single lap joint. In both cases, the cracks initiated within the 

adhesive at starting points of the joints and then propagated into the plies adjacent to the 

adhesive bondline. Mattos et al [47] conducted a similar study to propose a damage 

model for single lap joint adhesively bonded composite specimens. Autoclave molded 

carbon/epoxy composite parts were bonded together with a two part epoxy adhesive and 

tested under tension – tension fatigue to establish a relationship between the overlap 

length and strength of the composite joint. In a series of studies [48-50], Fernandez et al 

characterized fatigue behavior of adhesively bonded composite joints under mode I, 

mode II and mixed mode I – mode II loading respectively. In the first case, DCB 

specimens were tested under mode I fatigue loading and a data reduction technique was 

proposed in order to get rid of the cumbersome and difficult process of monitoring crack 

growth propagation during testing. This data reduction technique based on specimen 

compliance and beam theory was later used to characterize composite bonded joints 

under fatigue End Notched Flexure (ENF) and Single-Leg Bending (SLB) tests for mode 

II and mixed mode I – mode II loads respectively.  

A considerable amount of research has been conducted on fatigue characterization of 

initially undamaged fiber reinforced composites [51 – 59], composite repairs on metal 

parts and adhesively bonded pre-formed composite parts. There is little published 

material related to fatigue analysis carried out on composites repaired with fiber 

reinforced composites using hand lay-up or other composite manufacturing techniques 

such as vacuum assisted resin transfer molding (VARTM), resin transfer molding (RTM) 

or autoclave manufacturing. However, there have been very recent studies such as by 

Caminero et al [60] involving static testing and health monitoring of fiber reinforced 
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composite scarf repairs using Lamb waves and modern techniques like 3-D digital image 

correlation. The second part of the work conducted for this treatise involves tension – 

tension fatigue testing carried out to finalize a new repair resin candidate out of those 

selected from screening by mode I testing.       

Mixed-Mode (Mode I & II) Testing 

Under realistic conditions, delamination in fiber reinforced composite structures may be 

due to a combination of mode I and mode II loads. Thus, it is necessary to test repairs 

carried out on composite parts under mixed mode I – mode II loading. In 2001, ASTM 

International developed the Standard Test Method for Mixed Mode I – Mode II 

Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix 

Composites (ASTM D 6671/D 6671M – 06)  [61] for evaluating the interlaminar fracture 

toughness of unidirectional fiber reinforced polymer matrix composites under mixed 

mode I – mode II loading. Though this method describes in detail the mixed-mode 

bending (MMB) test as applicable to use with unidirectional carbon fiber tape laminates 

[62-65] with brittle and tough single-phase polymer matrices, it has also been extensively 

used to test the toughness of both glass fiber reinforced composites and materials bonded 

with adhesive joints [66-72]. This test method is based on the criterion suggested by 

Benzeggagh et al [66] to represent the mode I and mode II interaction envelope. They 

also established that the MMB test allows the generation of the R – curve for 

delamination of fiber composites tested under any mode I – mode II ratio loading. In an 

initial study, Ducept et al [67] successfully established the reliability of the beam theory 

analysis of the MMB test and its applicability to test low modulus unidirectional glass 

fiber reinforced composites similar to those obtained by hand lay-up repairs. They also 
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found that the GIc(NL) crack initiation values obtained at insert tip are independent of the 

thickness of the specimens. On the other hand, GIc(5% max) values depend strongly on 

specimen geometry and lower mode II fracture toughness values are obtained in this case. 

They then validated that the beam theory and experimental compliance MMB 

partitioning methods predict the same mixed mode ratios [68]. Compliances for the 

partitioning methods were measured from DCB and ENF tests. The above mentioned 

validations for the MMB test were then applied to test adhesively bonded glass/epoxy 

composite joints and it was found that fracture toughness values for these are much 

higher [69] than those obtained from delamination of unidirectional glass fiber reinforced 

epoxy composites. Also, mixed mode I – mode II delamination of unidirectional 

glass/epoxy composites manufactured by hand lay-up follows linear elastic fracture 

mechanics (LEFM). The use of MMB test for low modulus fiber glass composites was 

further validated by Dharamawan et al [70] when they tested glass/vinylester composites 

used for marine applications. The limiting criteria were that the load opening 

displacement should not be large enough so as to violate the use of LEFM and that the 

specimen arms should not get damaged. ASTM International is still in the process of 

developing a method for characterizing delamination of composites under mode III 

loading. Round robin testing has been carried out using modifications of the edge crack 

torsion (ECT) method which was initially proposed by Lee [73]. Mendes et al [71] tested 

unidirectional glass/epoxy pre-preg composite specimens using DCB, ENF, MMB and 

ECT tests and fitted the results with numerical simulation of delamination under various 

modes. They verified that a 3D modification [74] of the mode I – mode II criterion 

suggested by Benzeggagh et al is applicable to delamination of composites under mixed 
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mode II – mode III and mixed mode I – mode III loading. Recent work by Blake et al 

[72] suggests successful applicability of the MMB test to heavily woven glass fabric 

composites with a rubber toughened vinyl ester polymer matrix. They observed that the 

crack growth was dependent on the type of weave but the fracture toughness 

characteristics and R – curves are similar to those as found with unidirectional glass fiber 

composites. For last part of the current work, mixed mode I – mode II testing was used to 

characterize glass fiber/polymer composite repairs conducted using hand lay-up 

technique on parent parts manufactured by vacuum assisted resin transfer molding 

(VARTM). Differences in some repair parameters were investigated.   

As mentioned above, a lot of research has been conducted on repairs of composite 

structures with critical and high value applications such as those in aerospace. There is 

very little literature available that pertains to repair of fiberglass/polymer composite 

structures that are being produced worldwide on a massive scale for marine, transport, 

energy and civil engineering infrastructure, etc. These industries are on a constant search 

for better repair possibilities in order to cut down their manufacturing cycle times and 

repair costs. Repairs may be required as a part of the manufacturing process or due to 

damage while in service. Such repairs, usually wet patch or scarf, are conducted in situ by 

hand layup techniques. The scope of this study is the mechanical component of an effort 

to enhance the performance of wet hand layup repairs for a wind turbine blade 

manufacturing company which also sponsored this work. Mechanical properties of hand 

layup repairs conducted with different repair resins and repair parameters were 

investigated under mode I, tension – tension fatigue and mixed – mode I mode II loading.  
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CHAPTER II 

EVALUATION OF GFRP REPAIRS BY MODE I TESTING 

Introduction 

This chapter contains details of mechanical testing of Double Cantilever Beam (DCB) 

composite specimens comprising a Vacuum Assisted Resin Transfer Molding (VARTM) 

infused parent plate and a hand laid-up upper plate simulating a typical blade repair. The 

testing was carried out as part of an effort to optimize a new repair resin for a wind 

turbine blade manufacturing company. To increase repair performance and in order to 

identify an optimum repair resin, many resin vendors were contacted for the current 

work. From more than fifteen candidate resins, nine resins were chosen for initial 

screening. After studying the literature obtained with these resins and information 

acquired from their respective vendors, six resins were found to suit the requirements of 

the sponsoring company. Unidirectional glass fibers and a polymer resin are currently 

used to manufacture the company’s blades. Because delamination of the repair from the 

parent blade is a major concern, the testing method detailed in ASTM D 5528 (Test 

Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced 

Polymer Matrix Composites) [18] was followed to determine fracture toughness values of 

the prospective repair resin candidates. 
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Resin Selection 

Resin additives such as rubber and styrene have a considerable effect on the mechanical 

properties of FRP composites. Diffusion of styrene from the repair resin into pre-cured 

resin of the parent plate can lead to stronger bonding of the repair resin with the parent 

plate [75]. Rubber additives increase ductility of the repair resin and thereby the fracture 

toughness of the repair [76]. The six repair resins chosen had varying formulations with 

different quantities of rubber and styrene. The compositions are given in Table 2.1.    

Table 2.1. Compositions of repair resins. 

Resin MB-B NRR1 NRR2 NRR3 NRR4 NRR5 NRR6 

Resin 

Type 

Polyester 

+ Styrene 

Vinyl ester 

+ Styrene + 

Rubber 

additives  

Vinyl 

ester + 

Styrene 

Vinyl 

ester + 

Low 

styrene 

Vinyl 

ester + 

High 

styrene 

Vinyl 

ester + 

Core 

shell 

rubber 

(100 nm)  

Vinyl 

ester + 

Core 

shell 

rubber 

(200 nm)  

 

Specimen Fabrication 

For repair resin screening, DCB specimens (Figure 2.1) were manufactured in accordance 

with ASTM D 5528 and consisted of two separate parts: the lower adherend or parent 

plate, representing the blade, and the upper adherend or repair plate, simulating the flat 

part of a one-sided scarf repair. Both adherends consisted of an even number of plies. A 

description of the lay-up and the materials used is given in Table 2.2. The company uses 

a different polyester resin (MB-B) for repairs currently than is used to fabricate the shell 

of the blade (MB-A).  The parent plates for the DCB specimens were made using the 

current blade shell resin. Simulated repairs were fabricated using each candidate repair 

resin. Simulated repairs using the current repair resin (MB-B) were tested to serve as a 

baseline for comparison. 
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Figure 2.1. DCB Specimen 

Table 2.2. Mode I test specimen lay-up, materials used and curing details 

Lay-up (top to bottom) Part Details 

2 x Biaxial plies (± 45o) 
Repaired Laminate: 

Hand Lay-up 

Repair Resin 

(Upper adherend) 

Curing: 

24 hrs. at room temperature 

Post curing: 

16 hrs. at 40o C 

8 x Unidirectional plies (0o 

with CSM – CSM facing 

downwards) 

Chopped strand mat (CSM) 

Insert (Crack Initiator) Polymer film Thickness ≤ 13 µm 

8 x Unidirectional plies (0o 

with CSM – CSM facing 

downwards) 

Parent Laminate: 

VARTM 

Main Blade Resin 

(Lower adherend) 

Curing: 

24 hrs. at room temperature 

Post curing: 

24 hrs. at 60o C 

3 hrs. at 95o C 
2 x Biaxial plies (± 45o) 

 

The parent plate representing the blade was manufactured using Vacuum Assisted Resin 

Transfer Molding (VARTM). A VARTM setup, before vacuum bagging and infusion of 

resin, is shown in Figure 2.2. After the gelling of the resin, the parent plates were cured at 

room temperature for 24 hours, and then further post-cured at 60oC for 24 hours and then 

at 95oC for 3 hours. This was done to fully cure the parent plates and also to have low 

residual styrene content by minimizing incomplete polymerization through high curing 

temperature. All parent plates were made continuously one after the other and each plate 

was then assigned to a repair resin candidate. Care was taken that the time lapse between 

P 

P 

Parent 

laminate 

Hand-laminated 

repair  

Piano Hinge 

Crack initiator 

ao 
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manufacture of a parent plate and conducting repair on it was almost the same for each 

case. 

 

Figure 2.2. VARTM set-up before infusion 

Each parent plate initially consisted of nine, 0.88 mm thick plies with unidirectional glass 

fibers and a chopped strand mat attached on one side (called Combi plies hereafter) and 

two biaxial plies (plies with glass fibers at ± 45o) at the bottom (Figure 2.3). Since the 

lay-up of the parent plate was not symmetric, some warp was observed in the parent 

plates perpendicular to the direction of the unidirectional fibers in the Combi plies. The 

extent of warp is depicted in Figures 2.4 and 2.5. The reading on the scale (depth of 

warp) in Figure 2.4 is 1.25 cm.  The total width of the plate was 60 cm.  As the specimens 

were to be cut along 1-direction (direction along fibers), it was decided that the warp 

would not have a significant effect on the test results.  

 

Figure 2.3. VARTM infusion package 
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plies 
Tacky 

tape 

To vacuum 

pump 
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Perforated 

release film 
Perforated 
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Figure 2.4. Straight rule along Combi plies’ 0° direction (1 – direction) 

 

Figure 2.5. Straight rule along Combi plies’ 90° direction 

Following post-curing of the parent plate, the top layer was completely ground off, 

resulting in an exposed layer of resin to serve as the repair surface. This exposed surface 

of the parent plate was first scrubbed with the repair resin using a hard brush and then the 

simulated repair, consisting of eight Combi plies, a chopped glass strand mat (CSM) and 

a polymer insert in the sequence given in Table 2.2, was applied by hand lay-up. The 

hand lay-up comprised of applying the repair resin with the help of a soft roller and then 

using a hard roller to smooth the plies and remove trapped air bubbles, if any. The repairs 

were then covered with peel ply and left to cure at room temperature. After a cure of 24 

hours at room temperature, the whole sample was then post – cured at 40oC for 16 hours. 

Certain parameters such as the gel time, peak exothermal temperature, time to peak 

exotherm and ambient conditions were recorded (Table 2.3) to facilitate calculations for 

the degree of cure of the new repair resin candidates. This was done to compare resin 

behavior during the actual manufacturing process with their behavior during laboratory 

testing of pure resin using rheology and differential scanning calorimetry.  In order to 
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obtain a specific desired quality of laminates, the post – curing conditions for resins 

having different compositions are not the same. Shore D hardness values were noted 

before and after post curing to verify that post curing at the above mentioned 

temperatures and time duration did not have any adverse effects on the quality of the 

repair adherends. The plates were then cut with a diamond saw to procure specimens 

nominally 35 cm length and 3 cm wide.  

Table 2.3. Recorded values for new repair resins. 

Resin MB-B NRR1 NRR2 NRR3 NRR4 NRR5 NRR6 

Gel time (min.) 66 52 60 62 120 120 65 

Peak   exothermal 

temperature (oC) 
38.4 35.4 45.0 35.4 30.2 36.6 53.4 

Peak time (min.) 172 147 103 159 300 176 107 

ShoreD hardness  

before post-curing 

(mean of 10 values) 

87.8 ± 

1.0 

86.4 ± 

1.5 

87.5 ± 

1.5 

87.9 ± 

1.0 

88.5 ± 

1.0 

86.6 ± 

1.5 

85.7 ± 

1.5 

ShoreD hardness 

after post-curing 

(mean of 10 values) 

88.1 ± 

0.5 

86.8 ± 

1.0 

88.0 ± 

1.0 

88.0 ± 

0.5 

88.8 ± 

1.5 

88.0 ± 

1.5 

86.2 ± 

1.5 

Room Temperature 

(oC) 
21.0 21.0 21.5 21.0 21.0 21.7 21.7 

% R. H. 44.0 15.0 11.5 44.0 15.0 12.0 12.0 

Initiator Type MEKP MEKP MEKP MEKP MEKP MEKP 
CHP - 

MEKP 

Fiber volume 

fraction (± 2.5%) 
56.2 60.0 58.3 59.6 60.6 59.0 55.0 

 

A polymer insert with a thickness less than 13μm was used to create a pre-crack of 

approximately 30 mm at the resin inlet side during the simulated repair. Piano hinges 

were glued with Araldite® to the surfaces of the cut specimens to facilitate pulling apart 

of the two adherends. The areas of the specimen surfaces where the hinges were to be 

glued were sanded lightly to get a strong bond between Araldite® and the composite 
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surface. The final DCB specimen dimensions were 350 mm in length and 30 mm in 

width. The parent laminate adherend had a thickness of 7.7±0.3 mm whereas the repair 

laminate was 10.2±0.7 mm thick. Both edges of the specimens were coated with a water-

based white typewriter fluid and thin lines were marked every 1 mm on either edge for a 

distance of 100 mm from the end point of the pre-crack.  The coating and markings were 

added to aid in the observation of crack propagation during testing. To compare the 

toughness of the repairs with that of the main blade, a batch of DCB specimens was made 

in which the main blade resin (MB-A) was used for both adherends. These specimens 

were manufactured with both adherends together under vacuum using VARTM followed 

by a room temperature cure for 24 hours, a post-cure at 60oC for 24 hours, and then a 

final cure at 95oC for 3 hours. The lay-up was the same as that of the DCB specimens 

made with repair resin candidates and the adherends had a thickness of 8.35±0.04 mm. 

Testing 

Testing of the DCB specimens was conducted on the Shimadzu AG-IS Universal Testing 

Machine under displacement control at a crosshead rate of 0.1 mm/min. Higher rates 

were tried but at those rates crack propagation was too fast for collection of adequate data 

for fracture toughness calculations. The specimens were aligned and centered with the 

help of a level when the hinges were being mounted in the load grips with the parent 

laminate down as shown in Figure 2.6. The end of each specimen, opposite to the end 

where the hinges were attached, was supported before loading. It was noticed that the 

supported end lifted (less than 1.0 mm) off the support as the load was applied. Crack 

propagation was monitored and recorded with the help of a Retiga 1300 camera (Figure 

2.6). 
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Figure 2.6. Experimental set-up for DCB testing 

Load data was recorded using TRAPEZIUM 2 control software linked to the universal 

testing machine and images of the loaded samples were captured and analyzed for 

displacements using Vic-Snap digital image and Vic 2D correlation software 

respectively. Initially, testing was conducted with the adherends of the specimen being 

pulled apart continuously. It was noticed that the crack growth was primarily run-arrest 

extension in which the delamination front jumped ahead abruptly rather than being a 

slow, stable extension [18]. In order to be able to monitor crack growth effectively, 

following each 15 mm crack growth increment, the load was reduced by 30% and then 

the specimens were reloaded to continue the test; this procedure was repeated at least five 

times for each specimen. In order to procure statistically significant data, five specimens 

were tested for each of the resin samples. 

Calculations 

The mode I critical strain energy release rate (interlaminar fracture toughness, GIc) for a 

built-in double cantilever beam can be calculated by using the load data obtained from 
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each sample, along with values for the opening displacement according to ASTM D5528 

as  

ba

P
GIc

2

3 δ
=               (2.1) 

where P = applied load, N, δ = load point deflection, mm, b = width of DCB specimen, 

mm, and a = delamination length, mm. This expression is expected to overestimate the 

actual value of the material property due to incorrect boundary conditions.  A corrected 

value, GIc', can be calculated [18] as 

)(2

3
'

∆+
=

ab

P
GIc

δ
             (2.2) 

where Δ corrects for beam rotation at the delamination front. The correction factor, Δ, is 

obtained from the least squares fit of a plot of the cube root of compliance of the DCB 

specimen as a function of the delamination length. The compliance of the beam can be 

calculated as the beam deflection at the point of applied load divided by the applied load, 

δ/P. This is a decreasing function of the crack length, a, measured from the point of 

applied load to the crack tip. Since the ratio of load point displacement to initial crack 

length, δ/ao, did not exceed 0.4, large deflection corrections were not required. It should 

be noted that ASTM D5528 does not strictly apply to this test geometry.  Despite the 

similar layup between the parent plate and the simulated repair, the hand lay-up process 

produces a significantly thicker top portion of the final plate.  The ratio of the parent plate 

thickness to the hand-layup thickness, h1/h2, is approximately 0.75 (averaged value).  As 

a result, the DCB specimens are not symmetric about the crack plane.  This is in addition 

to a slightly non-symmetric fiber lay-up. Specimen asymmetry leads to the presence of 

mode II (shear) loading at the crack front which is not present in a symmetric DCB 
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specimen. Multiple approaches for calculating the overall strain energy release rate, G, 

and the mode I and mode II components, GI and GII, exist [68, 77-80]. For example, the 

method of Hutchinson and Suo [80] requires that the applied loading on the specimen be 

separated into several component moments.  This requires either a modification to the 

experimental setup to measure additional loads or the use of complimentary numerical 

calculations.  However, Mollón and co-workers [77] present a relationship to calculate 

the mode mixity that they found to work well over a range of material properties, 

Equations 2.3 – 2.6. 

3

2

3

1

3

2

3

1

1

1

h

h

h

h

+

−
=α               (2.3) 

35.006.0 += αβ              (2.4) 

βαβ +−−= 21
G

GII              (2.5) 

G

G

G

G III −= 1               (2.6) 

Based on this analysis, GII/G is approximately 0.030 ± 0.012 for the geometry tested in 

this work.  Thus, the mode I analysis presented in [18] should lead to an acceptable level 

of accuracy. 

Results and Discussion 

The ratios of corrected values of interlaminar fracture toughness, GIc’, to the fracture 

toughness value for main blade resin at crack initiation, GIc0’, were calculated using 

Equation 2.2 for each increment in every batch of specimens tested and plotted against a, 

the crack length.  Figure 2.7 and Figure 2.8 show the resulting curves for the main blade 
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resin (MB-A) and the current repair resin (MB-B), respectively.  

 

Figure 2.7. GIc’/GIc0’ vs crack length for main blade resin, MB-A. 

 

Figure 2.8. GIc’/GIc0’ vs crack length for current repair resin, MB-B. 

These curves indicate the toughness of the main blade at a crack length of approximately 

105 mm to be four times more than that of the repairs made by the current repair resin. 

On examination of the surfaces of the specimens, it was noticed that, in the case of 
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specimens made completely with MB-A, the crack propagated through the CSM (Figure 

2.9) whereas in the case of the specimens repaired with MB-B, crack propagation was at 

the interface of the two adherends with the upper adherend (including the CSM) being 

completely removed from the lower one that represented the blade (adhesive failure). 

Significant fiber bridging was observed (Figure 2.10) when specimens fabricated 

completely of the main blade resin (MB-A) were being pulled apart. Little-to-no fiber 

bridging was observed in specimens made with the currently used repair resin (MB-B). 

This concurs with post-fracture surface observations. Reduced fiber bridging relative to 

the main blade specimens was observed during testing of all repair resin candidates. 

However, several resins exhibited more bridging than the current repair resin. It is 

evident from the experimental results that there exists a positive correlation between the 

fracture toughness values and fiber bridging.  

 

Figure 2.9. Surface morphologies after crack propagation 
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Figure 2.10. Fiber bridging in case of MB-A (main blade resin) 

While testing the set of specimens consisting of repairs carried out with repair resins 

NRR1, NRR4 and NRR5 it was observed that the fracture toughness values obtained 

were markedly high. Examination of the fractured specimens revealed that the top plies 

of the parent plates of these specimens had been ground to about half the depth (Figure 

2.11) instead of one complete top ply. The specimens for these three resins were 

manufactured again with the complete top plies ground off so as to get a correct 

comparison with the other repair resins.  

 
(a) Complete top ply ground off 

 
(b) Partial top ply ground off 

Figure 2.11. Grinding difference in case of NRR1, NRR4 and NRR5 resins 

GIc’/GIc0’ values were plotted against crack length for each of the new repair resin (NRR) 

0.88 mm 

0.55 mm 
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candidates (Figures 2.12 to 2.17) to compare with the baseline data obtained from the 

current repair resin. The profile of almost all the plots was as expected but there was an 

anomaly in the graph for two specimens of new repair resin candidate three (NRR3) 

(Figure 2.14). The surfaces of these specimens were examined and patches of dry glass 

were noticed in the CSM on the repair adherend (Figure 2.18); the positions of these 

patches corresponded to the spikes in fracture toughness values in the plot. The remaining 

three specimens also had similar patches though much smaller in size. It was not clear 

whether the patches were manufacturing defects or due to some property of the resin. 

However, due to the patches and the erratic nature of fracture toughness values obtained 

this resin (NRR3) was no longer considered to be a viable candidate even though it gave 

almost 1.5 times higher fracture toughness values than the current repair resin at crack 

length of approximately 105 mm. 

 

Figure 2.12. GIc’/GIc0’ vs crack length for candidate resin, NRR1 
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Figure 2.13. GIc’/GIc0’ vs crack length for candidate resin, NRR2 

 

Figure 2.14. GIc’/GIc0’ vs crack length for candidate resin, NRR3 
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Figure 2.15. GIc’/GIc0’ vs crack length for candidate resin, NRR4 

 

Figure 2.16. GIc’/GIc0’ vs crack length for candidate resin, NRR5 
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Figure 2.17. GIc’/GIc0’ vs crack length for candidate resin, NRR6 

 

Figure 2.18. Fractured surfaces of NRR3 specimens with dry patches in CSM 

Of the remaining five repair resin candidates, three resins (NRR1, NRR4 and NRR6) 

were identified as the top contenders for the new repair resin. These repair resins had 
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rubber additives and/or high styrene content which improved their fracture toughness. 

Out of these, NRR4 had twice the fracture toughness compared to MB-B (Table 2.4) and 

half the fracture toughness value compared to MB-A at a crack length of approximately 

105 mm. Fracture toughness values obtained from NRR1 and NRR6 were respectively 

1.6 and 1.5 times those obtained from MB-B. Though the formulation for repair resin 

NRR5 included core shell rubber particles, it had lower fracture toughness values. While 

conducting the hand lay-up repair with NRR5 it was noticed that there was foam 

formation when the methyl ethyl ketone peroxide (MEKP) initiator was mixed in it. After 

testing, it was visually confirmed that there were voids in the repair adherends of NRR5 

specimens. As seen in [81, 82] presence of voids does have an adverse effect on polymer 

fracture toughness.  Thus, repair resin NRR6 was mixed with a blend of cumene 

hydroperoxide – MEKP (CHP – MEKP) instead of MEKP initiator to avoid foam 

formation.  

Table 2.4. Consolidated mode I fracture testing results (top ply ground off completely) 

Resin MB-A MB-B NRR1 NRR2 NRR3 NRR4 NRR5 NRR6 

GIc’/GIc0’ 

at a ~ 

105 mm 

7.5 ± 

0.5 

1.7 ± 

0.3 

2.8 ± 

0.2 

2.3 ± 

0.3 

2.5 ± 

0.8 

3.4 ± 

0.2 

1.8 ± 

0.2 

2.5 ± 

0.4 

GIc’NRR / 

GIc’ MB-B 
  1.6 1.3 1.5 2.0 1.0 1.5 

 

Grinding Variation Study 

The specimens with the top plies partially ground off and repaired with repair resins 

NRR1, NRR4 and NRR5 were also tested to examine the fracture toughness difference 

due to grinding variation. The normalized fracture toughness values for these are plotted 

against crack length in Figure 2.19 to Figure 2.21. 
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Figure 2.19. GIc’/GIc0’ vs crack length for resin NRR1 with partial top ply ground off 

 

 

Figure 2.20. GIc’/GIc0’ vs crack length for resin NRR4 with partial top ply ground off 
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Figure 2.21. GIc’/GIc0’ vs crack length for resin NRR5 with partial top ply ground off 

 

In all of the specimens with the top plies partially ground off the fracture toughness 

values were much higher (Table 2.5) than those obtained from specimens made with 

same repair resins but with their top plies ground off completely. When the top plies are 

ground off completely, the resulting exposed surface on which the repairs are carried out 

comprises mainly main blade resin, MB-A. Whereas, when the top plies are ground off 

partially, the resulting surface has a mixture of exposed fibers and resin. These exposed 

fibers bond with the repair resin and this results in pronounced fiber bridging while the 

specimens are being tested, thus leading to high fracture toughness values. Figure 22 to 

Figure 24 depict a comparison of the normalized fracture toughness values obtained from 

specimens with top parent plies completely ground off (numbered NRR#-#) to those with 

the top parent plies partially ground off (numbered NRR#-#*). 
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Table 2.5. Consolidated mode I fracture testing results (top ply ground off partially) 

Resin MB-A MB-B NRR1* NRR4* NRR5* 

GIc’/GIc0’ at 

a ~ 105 mm 
7.5 ± 0.5 1.7 ± 0.3 3.8 ± 0.3 6.9 ± 0.9 5.5 ± 0.8 

GIc’NRR#* / 

GIc’MB-B   
2.2 4.0 3.2 

 

 

Figure 2.22. Comparison of fracture toughness values of NRR1 specimens with (i) whole 

top ply ground off (NRR1-#) (ii) partial top ply ground off (NRR1-#*)  
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Figure 2.23. Comparison of fracture toughness values of NRR4 specimens with (i) whole 

top ply ground off (NRR4-#) (ii) partial top ply ground off (NRR4-#*) 

 

 

Figure 2.24. Comparison of fracture toughness values of NRR5 specimens with (i) whole 

top ply ground off (NRR5-#) (ii) partial top ply ground off (NRR5-#*) 
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From the graphs plotted in Figures 2.22 to 2.24 it is evident that there is little variation in 

the fracture toughness values at first crack initiation at a = 30 mm for the two cases. A 

closer look reveals that the fracture toughness values, when the specimen first cracks 

open at the tip of the insert, are higher for the repairs carried out on parent plates with the 

complete top plies ground off (Figure 2.25). This might be due to the differences in the 

crack propagation paths in the two cases. For crack initiation at the end of the insert, the 

fracture toughness values primarily depend upon the bond morphology at the crack tip. 

The fiber bridging effect comes into play later as the crack propagates along the bondline 

between the two adherends. In the case of parent plates with the top plies partially ground 

off the surface at crack tip comprises partial exposed resin and exposed fibers. On the 

other hand the surface of parent plates with complete top plies ground off comprises 

mainly resin.  

 

Figure 2.25. Normalized fracture toughness values from crack initiation at a = 30 mm for 

(i) complete top ply ground off case, NRR# (ii) partial top ply ground off case, NRR#*  

 

NRR1*

NRR1

NRR4*

NRR4

NRR5*

NRR5

0.60

0.70

0.80

0.90

1.00

1.10

1.20

G
Ic

'/
G

Ic
0
'

35 

 



In all three cases, the specimens consisting of repairs carried out on parent plates with the 

top plies ground off completely, depicted higher crack initiation toughness values at the 

insert tip. For repair NRR1, a significant difference was not observed.   

Conclusions 

DCB specimens were manufactured and tested in accordance with ASTM D5528 to 

screen new repair resins for wind turbine blade applications. Out of the selected resins for 

screening, three were initially chosen after comparing their fracture toughness values 

with the current repair resin. The target of this study was to find a repair resin with at 

least three times the fracture toughness of the current resin. However, only two times 

higher fracture toughness was obtained. It was also observed that parent plates repaired 

with the top plies partially ground off have higher propagation fracture toughness values 

than those with the top plies ground off completely. This phenomenon is further 

investigated in mixed mode I – mode II testing of repairs. The final selection of the new 

resin was based on fatigue testing (described in the next chapter) and on full scale testing 

of repairs carried out on full length blades in Europe and India. Repair resin availability 

on a global basis and conformation to global safety and health standards were also 

important criteria.  
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CHAPTER III 

EVALUATION OF GFRP REPAIRS BY FATIGUE TESTING 

Introduction  

The top three new repair resin candidates NRR1, NRR4 and NRR6, selected from initial 

screening through mode I testing along with the base repair resin, MB-B, were tested 

under fatigue tensile loading to choose the final repair resin. Specimens for this part of 

the work were manufactured at UND but testing was carried out in Bangalore, India due 

to the insufficient load capacity of the fatigue testing machine at UND.  Previously, in the 

case of mode I testing it was observed that change in grinding depth of the top ply of the 

parent plate affects the fracture toughness of the repair. For fatigue testing, repairs on two 

kinds of parent plate surfaces were evaluated. In the first case repairs were carried out 

without any form of grinding on the surface of the parent plate. The second case 

consisted of grinding the surface of the parent plate to be repaired to a whole depth of the 

topmost ply on either side of the plate in the region of repair. 

Specimen Fabrication 

Specimens for fatigue tensile testing consisted of a parent laminate with a strip of repair 

on either side (Figure 3.1). Eight parent plates (60 cm X 60 cm) were manufactured 

following same manufacturing technique (VARTM) as used for mode I testing 

specimens. The sequence of lay-up, curing and post curing details are listed in Table 3.1. 

As the lay-up was symmetric for these parent plates, no warping was observed. 
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Following post curing, surfaces of four of the parent plates were ground off at the regions 

where the repair strips were to be laid before conducting the hand lay-up with MB-B and 

the three chosen candidate repair resins. The repair regions were ground to one ply depth 

in these plates.  Repairs on the other four parent plates were conducted without any 

grinding.  

 

Figure 3.1. Fatigue tensile test specimen configuration (side view, not to scale) 

Table 3.1. Fatigue specimen lay-up, curing and post curing details 

Lay-up (top to bottom) Part Details 

1 x Unidirectional ply (0o with 

CSM – CSM facing downwards)  
Repair: 

Hand Lay-up 

Repair Resin   

Curing: 

24 hours at room temperature 

Post curing: 

16 hrs. at 40o C  
1 x Chopped strand mat (CSM)   

4 x Unidirectional ply (0o with 

CSM – CSM facing downwards)  
Parent Laminate:  

VARTM  

Main blade resin  

Curing: 

24 hours at room temperature 

Post curing: 

16 hrs. at 40o C 
4 x Unidirectional ply (0o with 

CSM – CSM facing upwards)  

1 x Chopped strand mat (CSM) Repair: 

Hand Lay-up 

Repair Resin  

Curing: 

24 hours at room temperature 

Post curing: 

16 hrs. at 40o C  

1 x Unidirectional ply (0o with 

CSM – CSM facing upwards)  

 

 
For each case, repair was first conducted on one side of the parent plate and left to cure at 

room temperature until the repair resin hardened (time depending on gel time for each 

repair resin) and then repair was conducted on the other side. Care was taken to procure a 

complete wet-out of the CSM and unidirectional glass ply repair strips and also to have 

the two cut edges of the same, straight. The direction of the glass fibers in the repair strip 

225 mm 150 mm 125 mm 

Parent plate 

Repair 
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was parallel to those in the parent plate. During the lay-up process, it was noticed that 

repair resin NRR1 wet-out the best and the NRR6 resin made the repair strip slip on the 

parent plate. There was formation of bubbles in the case of both these resins when the 

initiators were mixed in them respectively but the foam subsided in about 4-5 minutes. 

Hand lay-up was carried out after no foam was visible. The repairs were left to cure at 

room temperature for 24 hours and then were post cured for 16 hours at 40o C. The post 

cured sample plates were then cut perpendicular to the repair strip into 25 cm wide 

specimens (Figure 3.2). 

 

Figure 3.2. Actual fatigue test specimen. 

Fatigue Calculations and Testing 

Tension – tension fatigue tests were carried out in accordance with the standard BS ISO 

13003:2003 (Fibre-reinforced plastics -- Determination of fatigue properties under cyclic 

loading conditions.) [83]. Nine to eleven specimens were tested for each resin candidate 

on two servo-hydraulic fatigue machines each with a capacity to test up to a maximum 

load of 100 kN. Before testing, the average thickness and width of the gage area of each 

specimen were recorded. Lines were marked at 50 mm distance from each of the four 

repair ply drops A, B, C and D as shown in Figure 3.3. A specimen was considered to 

have failed when an interface crack originating at any of the four ply drops reached the 

50 mm mark. It was assumed from observation of crack propagation in mode I testing 

that the crack would propagate at the repair – parent plate interface. Care was taken while 

mounting the specimens between the wedge grips that they were free from any bending 

Repair 
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or misalignment. Strains in the gage area, on both faces of the specimens, were recorded 

with help of two extensometers (Figure 3.3). The bending ratio was calculated as the ratio 

of the difference to the sum {(ε1 – ε2)/ (ε1 + ε2)} of strains recorded on the opposite faces 

of the specimen. Bending was considered to be acceptable if the bending ratio {(ε1 – ε2)/ 

(ε1 + ε2)} was less than 0.1 when measured at 0.25% of the strain. 

 

Figure 3.3. Experimental set-up of tension-tension fatigue testing (dimensions in mm) 

Each specimen was first loaded in tension at the rate of 2 mm/min (stroke control) until 

the strain reached 0.25% and then the test was stopped. Elastic modulus was measured 

from the values recorded between 0.05% and 0.25% strain as 𝐸𝐸 = 𝜎𝜎0.25−𝜎𝜎0.050.0025−0.0005              (3.1) 
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where σ0.25 and σ0.05 are the stresses at 0.25% strain and 0.05% strain respectively. For 

fatigue testing the specimens were loaded at a rate of 5 Hz with R = 0.1, where R is 

defined as the ratio of minimum fatigue strain to maximum fatigue strain. 

Results and Discussion 

In the first round of testing, specimens repaired with MB-B repair resin and with and 

without grinding were tested. The resulting Strain-Life (ε-N) and Stress-life (S-N) curves 

are presented in Figure 3.4 and Figure 3.5 respectively. 

 

Figure 3.4. Strain-Life plot for ground (MB-B ground) and unground (MB-B) specimens 
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Figure 3.5. Stress-Life plot for ground (MB-B ground) and unground (MB-B) specimens 

 

Though MB-B ground specimens do perform a little better under fatigue loads, these 

plots show that there is little difference in the fatigue properties of ground and unground 

specimens repaired by the same resin. When the region of repair on a parent plate is 

ground down to remove one complete ply as in the case of MB-B ground specimens, the 

layer of resin between the top and the second glass plies is exposed. The repair ply is then 

hand laminated on this freshly exposed resin layer. In the case where the top ply is not 

ground the repair ply is hand laminated on the resin layer present on the top surface of the 

parent plate. This similarity in the composition of the repair surfaces accounts for the 

similar fatigue characteristics in these two repair cases. Since, the ground and unground 

specimens did not behave very differently under fatigue, fatigue results of specimens 

repaired without grinding were only considered in order to avoid the effects of variation 

in grinding depths as those observed on fracture toughness values in mode I testing. 
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Strain-Life (ε-N) and Stress-life (S-N) curves for the repair resin candidates NRR1, 

NRR4 and NRR6 and their comparison with base repair resin MB-B are presented in 

Figure 3.6 and Figure 3.7 respectively. These depict that all three new repair resins 

shortlisted from mode I testing performed better than the base repair resin MB-B when 

loaded in tension-tension fatigue. The peak stress in NRR1 repairs at a life of about 

50,000 cycles was 147 MPa which was less than the peak stresses for NRR4 (167 MPa) 

and NRR6 (166 MPa) at a similar life.         

 

Figure 3.6. Strain –Life plot for unground specimens repaired with MB-B, NRR1, NRR4 

and NRR6 repair resins  
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Figure 3.7. Stress –Life plot for unground specimens repaired with MB-B, NRR1, NRR4 

and NRR6 repair resins 

  

From Mode I and tension-tension fatigue testing results NRR4 was selected as the final 

new repair resin as it is already being produced in accordance with global standards and 

safety regulations. NRR6 is being manufactured only in the US and does not possess 

European certifications. 
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CHAPTER IV 

STUDY OF REPAIR PARAMETERS BY MIXED MODE I – MODE II TESTING 

Specimen Manufacturing and Preparation   

Initial testing specimens 

Specimens for preliminary mixed mode I – mode II testing were similar in lay-up to those 

for mode I testing but with different dimensions. Parent plates were made using VARTM 

and were ground down to a depth of one ply and repairs were conducted on the exposed 

surface obtained. Repair resins MB-B, NRR4 and NRR6 were used to conduct repairs on 

the parent plates. A description of the lay-up and the materials used is given in Table 4.1. 

Table 4.1. Initial mixed mode I – mode II specimen lay-up, materials used and curing 

details 

Lay-up Part Details 

2 x Biaxial plies (± 45o) Repaired Laminate: 

Hand Lay-up 

MB-B, NRR4 & NRR6 

 (Upper adherend) 

Curing: 

24 hours at room temperature 

Post curing: 

16 hrs. at 40o C 

8 x Unidirectional plies (0o, 

E-glass with CSM) 

1 x Chopped strand mat 

Insert (Crack Initiator) Polymer film Thickness ≤ 13 µm 

8 x Unidirectional plies (0o, 

E-glass with CSM) 
Parent Laminate: 

VARTM 

MB-A 

 (Lower adherend) 

Curing: 

24 hours at room temperature 

Post curing: 

24 hrs. at 60o C 

3 hrs. at 95o C 
2 x Biaxial plies (± 45o) 
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Subsequent testing specimens 

For initial testing, specimens were made with the same materials and average thickness of 

h~9 mm (Figure 4.1) as the DCB specimens for mode I testing. Mixed-mode ratios 

(GII/Gc) of 0.2, 0.5 and 0.8 were used. It was found that the adhesive bond of the piano 

hinges with the specimen was not able to bear the loads (1.5 + 0.15 kN) incurred at 0.5 

and 0.8 values of GII/Gc. The range of the thickness h of each adherend (Figure 4.1) was 

recalculated for the required maximum load < 1.5 kN, keeping in consideration that the 

displacements were not so large as to cause geometric nonlinear errors [61]. The final 

specimen thickness obtained from the results of the initial mixed mode I – mode II testing 

and calculations from ASTM D 6671/D 6671M – 06 using estimated critical load and 

load point deflection values was h~5mm, a reduction of approximately 4 mm from the 

thickness of each adherend of a mode I testing specimen. 

 

 

Figure 4.1. Specimen details for mixed mode I – mode II test [61] 

The specimens for subsequent testing were manufactured using a different quality of 

glass fibers compared to that (E-glass) used to make specimens for mode I and fatigue 

testing. This glass, termed H-glass for the rest of this report, is currently being used by 

LM Windpower to manufacture wind turbine blades of length more than 50 meters. H-
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glass possesses better mechanical properties than the E-glass previously used. It does not 

have a chopped strand mat (CSM) as a backing material and is composed mainly of 

unidirectional glass fibers. The parent plates initially comprised of six plies with average 

thickness of 5.3 + 0.1 mm. They were manufactured using VARTM and a new main 

blade resin MB-A’ that is now being used by LM Windpower to manufacture wind 

turbine blades. The main blade resin MB-A’ is similar in chemical composition to MB-A 

but is manufactured by a different company. The parent plates were cured at room 

temperature for 24 hours and then post-cured in an oven at 60o C for 24 hours and then at 

95o C for 3 hours to ensure that the plates had the same degree of cure.  

In order to investigate the effect of variation in grinding on the mixed-mode fracture 

toughness of the repairs, complete top plies in one set of four parent plates and partial top 

plies in the other set of four parent plates were ground off. During specimen preparation 

for the mode I testing it was noticed that the gel time for NRR4 was around 120 minutes 

(Table 2.3). This amount of gel time is not conducive for hand repairs on vertical 

surfaces. In order to reduce the gel time, changes were made to the chemical composition 

of NRR4 to decrease the gel time to 35 minutes. Details of changes to chemical 

composition are not known due to proprietary reasons. Repairs for the later mixed mode I 

– mode II testing were carried out by using MB-B and the modified NRR4 repair resin 

(NRR4’). A polymer insert (thickness < 13 μm) similar to the one used in mode I 

specimens was used to create a pre-crack of 25 mm at the resin inlet during repair. The 

delaminated section of the specimen was 75 mm in length and the hinges were applied so 

as to have the load line at a distance of 25 mm from the pre-crack tip. Details of the 

configuration and materials used to make the specimens are given in Table 4.2. Figure 
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4.2 depicts, (a) the methods of manufacturing of the parent plates, (b & c) surface 

preparation for repairs and (d & e) repairs being conducted. The repairs were carried out 

in a similar fashion to that in the case of mode I testing and were allowed to cure at room 

temperature for 24 hours. Then, post-curing was carried out for 16 hours in the oven at 

40o C. After the parent plates had been repaired and cured, they were found to be slightly 

warped in a direction perpendicular to the unidirectional fibers. This was most probably 

due to the difference in the composition of the parent plate and repair resins and the 

shrinkage of the repair resin while in contact with the pre-cured parent plate resin. Again, 

as in the mode I testing, it was assumed that this warp would not have a significant effect 

on the test results since the specimens were to be cut in a direction along the 

unidirectional glass fibers.  

Table 4.2. Subsequent mixed mode I – mode II specimen lay-up, materials used and 

curing details          

Lay-up Part Details 

5 x Unidirectional plies 

(0o, H-glass) 

Repaired Laminate: 

Hand Lay-up 

MB-B & NRR4’ 

 (Upper adherend) 

Curing: 

24 hours at room temperature 

Post curing: 

16 hrs. at 40o C 1 x Chopped strand mat 

Insert (Crack Initiator) Polymer film Thickness ≤ 13 µm 

5 x Unidirectional plies 

(0o, H-glass) 

Parent Laminate: 

VARTM 

MB-A’ 

 (Lower adherend) 

Curing: 

24 hours at room temperature 

Post curing: 

24 hrs. at 60o C 

3 hrs. at 95o C 
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4.2 (a) VARTM 

 
4.2 (b) Grinding 

 
4.2 (c) Repair surface preparation 

 
4.2 (d) Resin application  
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4.2 (e) Removal of voids 

Figure 4.2. Mixed-mode specimen manufacturing 

The repaired plates were sectioned into 25 mm wide and 250 mm long specimens with 

premium grade carbide toothed saw. Plexus MA300 (methacrylate adhesive) was used to 

bond piano hinges to the specimens. The surface areas of the specimens where the hinges 

were to be glued were sanded lightly and then wiped clean with acetone in order to 

achieve a strong bond. The hinges were aligned parallel with the specimen and held in 

position with the help of clamps while the adhesive cured. The edges of the specimens 

were coated with a water-based white typewriter fluid and thin lines were marked every 1 

mm for a distance of 30 mm from the end point of the pre-crack. Along the load line a 

speckled pattern was created on the specimen. The mm markings were done in order to 

make it easier to monitor crack propagation. The speckled pattern was created on each 

specimen in order for Vic-2D Correlation Software to be able to correlate the pictures 

obtained to calculate the stroke displacement that occurred during each test.    

Testing and Calculations 

All mixed mode I – mode II testing was carried out in accordance with the Standard Test 

Method for Mixed Mode I – Mode II Interlaminar Fracture Toughness of Unidirectional 

Fiber Reinforced Polymer Matrix Composites (ASTM D 6671/D 6671M – 06) [61]. The 
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mixed mode I – mode II bending test apparatus shown in Figure 4.3 is used to pull apart 

the two adherends of the DCB specimens in order to calculate the mixed-mode 

delamination fracture toughness values at different ratios of mode I to mode II loading. 

The specimen is supported at the base by the hinge attachment at the delaminated section 

and by a roller at the other end. The roller attached to the lever arm bears on the top 

surface of the specimen at a distance midway between the base roller and the hinges. 

Loads are applied to the delaminated part of the specimens (that contains the pre-crack) 

by pulling at the hinges and also through rollers that bear against the specimen in the non-

delaminated section of the specimen. This setup results in application of mode I load at 

the hinges and mode II load at the fulcrum formed by the roller attached to the lever arm.  

 

Figure 4.3. Test fixture and parameters of mixed-mode test [61]  

Three specimens were tested at each mixed mode ratio for all cases. Specimens were 

mounted on the mixed mode I – mode II (ASTM D 6671/D 6671M – 06) test fixture and 

testing was carried out on the Shimadzu AG-IS Universal Testing Machine under 

displacement control at a crosshead rate of 0.5 mm/min. Loads were recorded using 

TRAPEZIUM 2 control software linked to the universal testing machine and images of 

the loaded samples were captured with a Retiga 1300 camera using the Vic-Snap 
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software. These images were analyzed for stroke displacements using Vic-2D Digital 

Image Correlation Software. A picture of a specimen being tested in the (ASTM D 

6671/D 6671M – 06) fixture is given in Figure 4.4. 

      

 

Figure 4.4. Mixed mode I – mode II test snapshot 

Before testing, the length, c (Figure 4.3), of the lever of the mixed mode I – mode II test 

fixture was calculated and set to produce the desired mode mixture ratio GII/G in 

accordance with Equation 4.1 as given in (ASTM D 6671/D 6671M – 06): 𝑐𝑐 = 12𝛽𝛽2+3𝛼𝛼+8𝛽𝛽√3𝛼𝛼36𝛽𝛽2−3𝛼𝛼 𝐿𝐿             (4.1)   

where  

𝛼𝛼 = 1−𝐺𝐺𝐼𝐼𝐼𝐼𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐺𝐺               (4.2) 

and 𝛽𝛽 = 𝑎𝑎+𝜒𝜒ℎ𝑎𝑎+0.42𝜒𝜒ℎ              (4.3) 

where a is the crack length. The crack length correction parameter χ is given by Equation 

4.4: 

Specimen 

Lever 

Base 
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𝜒𝜒 ≡ � 𝐸𝐸1111𝐺𝐺13 �3− 2 � Γ1+Γ�2�            (4.4) 

where Γ, the transverse modulus correction parameter, is calculated as 

Γ = 1.18
�𝐸𝐸11𝐸𝐸22𝐺𝐺13               (4.5) 

and E11 = longitudinal modulus of elasticity measured in tension (MPa), E22 = transverse 

modulus of elasticity (MPa) and G13 = shear modulus out of plane (MPa). The half-span 

length, L, (Figure 4.1) of the mixed mode I – mode II testing fixture was kept 50 mm for 

all mode mixity ratios. Thus, crack propagation was observed to a distance of 25 mm 

from the pre-crack tip i.e. to a distance of 50 mm from the load line. After testing had 

been conducted the flexural modulus was calculated as: 𝐸𝐸1𝑓𝑓 = 8(𝑎𝑎0+𝜒𝜒ℎ)3(3𝑐𝑐−𝐿𝐿)2+�6(𝑎𝑎0+0.42𝜒𝜒ℎ)3+4𝐿𝐿3�(𝑐𝑐+𝐿𝐿)216𝐿𝐿2𝑏𝑏ℎ3� 1𝑚𝑚−𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠�           (4.6) 

where a0 = the initial delamination length (mm), m = slope of load displacement curve 

(N/mm), b = width of specimen (mm), Csys = system compliance (mm/N), and L = half 

span length of the test apparatus (mm) (Figure 4.1). The fracture toughness and mode 

mixture were calculated using the equations given below: 𝐺𝐺𝐼𝐼 = 12𝑃𝑃2(3𝑐𝑐−𝐿𝐿)216𝑏𝑏2ℎ3𝐿𝐿2𝐸𝐸1𝑓𝑓 (𝑎𝑎 + 𝜒𝜒ℎ)2            (4.7) 

𝐺𝐺𝐼𝐼𝐼𝐼 = 9𝑃𝑃2(𝑐𝑐+𝐿𝐿)216𝑏𝑏2ℎ3𝐿𝐿2𝐸𝐸1𝑓𝑓 (𝑎𝑎 + 0.42𝜒𝜒ℎ)2           (4.8) 

𝐺𝐺 = 𝐺𝐺𝐼𝐼 + 𝐺𝐺𝐼𝐼𝐼𝐼              (4.9) 

𝐺𝐺𝐼𝐼𝐼𝐼𝐺𝐺 =
𝐺𝐺𝐼𝐼𝐼𝐼𝐺𝐺𝐼𝐼+𝐺𝐺𝐼𝐼𝐼𝐼            (4.10) 

where GI = mode I component of strain energy release rate (kJ/m2), GII = mode II 

component of strain energy release rate (kJ/m2) and G = total mixed-mode strain energy 

release rate (kJ/m2). In the case of calculations related to delamination growth, the strain 
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energy rate equals the fracture toughness when a critical load, Pc, is used instead of P, the 

applied load measured in N.  

Results and Discussion 

Initial Testing 

From the initial mixed-mode testing for mixed mode load ratio GII/G = 0.2, fracture 

toughness values of crack propagation for the repair resins MB-B and NRR4 were plotted 

against crack length (Figures 4.5 (a) – (b)). Preliminary results show that fracture 

toughness values obtained with delamination growth in accordance with ASTM D 

6671/D 6671M – 06 are higher for NRR4 as compared to MB-B. This corroborates with 

the results obtained from mode I and fatigue testing for these two repair resins.   

 

Figure 4.5. (a) Preliminary mixed mode I – mode II testing results for current blade repair 

resin MB-B 
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Figure 4.5. (b) Preliminary mixed mode I – mode II testing results for new repair resin 

candidate NRR4 

 

The fracture toughness values corresponding to their respective crack lengths for the two 

resins are tabulated in Table 4.3 and Table 4.4. At crack initiation, NRR4 has a much 

higher fracture toughness value (more than double) than that of MB-B. Other than the 

difference in the chemical compositions of the two resins (higher styrene content in 

NRR4) that result in a stronger bond in the case of NRR4, this higher value may also 

partially be attributed to the presence of fiber bridging that is evident in NRR4 starting 

right from the end of the pre crack (Figure 4.6). Though some fiber bridging begins later, 

at about 10 mm, from the crack tip in the case of MB-B, (Figure 4.6) it is not able to 

increase the subsequent fracture toughness values to an extent so as to be comparable to 

those of NRR4. 
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Table 4.3. Fracture toughness (GII/G = 0.2) values for MB-B 

a (mm) GI (kJ/m2) GII (kJ/m2) Gc (kJ/m2) 

25 + 0.5 0.070 + 0.007 0.017 + 0.003  0.087 + 0.010 

33.5 + 0.5 0.107  0.029  0.136  

38 + 0.5 0.108  0.030  0.138  

41 + 0.5 0.103  0.029  0.132  

43 + 0.5 0.110  0.032  0.141  

48 + 0.5 0.109  0.032  0.141  

 

Table 4.4. Fracture toughness (GII/G = 0.2) values for NRR4 

a (mm) GI (kJ/m2) GII (kJ/m2) Gc (kJ/m2) 

25 + 0.5 0.188 + 0.002 0.047 + 0.003 0.235 + 0.005 

29 + 0.5 0.192  0.050 0.242 

32 + 0.5 0.202  0.054 0.256 

35 + 0.5 0.216  0.059 0.275 

42 + 0.5 0.210  0.060 0.270 

46 + 0.5 0.202  0.059 0.261 

 

In the case of mixed mode I – mode II testing of specimens repaired with repair resin 

NRR6, the crack propagation was very fast and the camera was not able to capture the 

crack length values between the 25 mm and 50 mm marks. Thus it was not possible to 

record the propagation fracture toughness values for this resin. The reason for the fast 

crack growth can be the lack of fiber bridging as can be seen in Figure 4.6. NRR6 

showed better crack initiation fracture toughness values than the repair resin MB-B 

(Figure 4.7) but they were less than those for NRR4. 
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Figure 4.6. Fiber bridging in NRR6 (specimen A), NRR4 (specimen B) and MB-B 

(specimen C) in mixed mode I – mode II (GII/Gc = 0.2) test 

 

 

Figure 4.7. Fracture toughness values at crack initiation for MB-B, NRR4 and NRR6 
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Subsequent Testing 

Specimens consisting of parent plates manufactured with MB-A’ and H-glass and 

repaired with MB-B and NRR4’ repair resins were tested after the initial mixed mode I – 

mode II testing. The length of the lever arm, c, of the mixed mode I – mode II testing 

apparatus was varied for each of the mode mixtures (GII/G = 0.2, 0.5 and 0.8) before 

testing. Two levels of grinding of the top ply of the parent plate were evaluated. In mode 

I testing it was seen that difference in grinding depth of the top surface of the parent plate 

while preparing it for repairs does affect the fracture toughness values of the repairs. For 

this testing one set of plates was repaired with the top unidirectional glass-fiber ply 

completely ground off, thus exposing a surface comprising mainly of cured resin as 

shown in Figure 4.8 (a). The top unidirectional glass-fiber ply of the other set was 

partially ground off to expose a surface comprising of a mixture of glass fibers and cured 

resin (Figure 4.8 (b)).  

  

Figure 4.8. Parent plate with (a) complete top ply ground off (b) partial top ply ground off 

Delamination fracture toughness values, calculated from the critical loads obtained from 

testing, were plotted as a function of mode mixtures for the different resins and grinding 

levels. It was not possible to plot the delamination propagation fracture toughness values 

(a) (b) 
40 mm 

40 mm 
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as the crack growth was very fast in mixed-mode testing. A typical fracture toughness 

contour is shown in Figure 4.9 for the repair carried out using repair resin MB-B after 

grinding off the top ply of the parent plate completely. The delamination fracture 

toughness values increase with an increase in the percentage of mode II loading from 

20% to 80% as expected.  

The scatter in the toughness values does not bear a linear relation with the increase in 

mode II percentage. As shown in the plot, the mixed mode fracture toughness values 

obtained at different mode II ratios can be generally fitted by an exponential curve. 

Similar trend was found by Benzeggagh and Kenane [66] and further corroborated by 

other researchers like Dharamawan et al [70]. 

 

Figure 4.9. Delamination fracture toughness values for MB-B with whole top ply of 

parent plate ground off 

 

Similar fracture toughness contours are shown in Figures 4.10 – 4.12 for resin MB-B 

with partial top ply ground off, and resin NRR4’ with complete top ply ground off and 

resin NRR4’with partial top ply ground off, respectively.        
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Figure 4.10. Delamination fracture toughness values for MB-B with partial top ply of the 

parent plate ground off 

 

 

Figure 4.11. Delamination fracture toughness values for NRR4’ with whole top ply of 

parent plate ground off 
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Figure 4.12. Delamination fracture toughness values for NRR4’ with partial top ply of the 

parent plate ground off 

 

In all of these three cases (Figures 4.10 – 4.12)  the methacrylate adhesive used to bond 

the hinges to the composite specimens was not able to bear the high shear loads at mode 

mixity ratio GII/G = 0.8 and the hinges came off the specimens before crack initiation. 

The values of delamination fracture toughness for the mode mixity ratio GII/G = 0.8 for 

these specimens were not recorded. The loads at which the hinges came off were of the 

order of 1.55+ 0.15 kN. These loads were similar to the loads experienced by the initial 

mixed mode I – mode II testing specimens (with each adherend thickness ~ 9 mm) when 

they were tested at mode mixity ratio GII/G = 0.5. Equation 4.11 from ASTM D 6671/D 

6671M – 06 that was used to estimate the thickness of the specimens so that they would 

be able to bear the GII/G = 0.8 loads does not take into account the fracture toughness of 

the bond between the composites and the methacrylate adhesive. It takes into account 

only GC
est which is the estimated value of the composite total mixed mode fracture 

toughness. 
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𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 = � 43𝐺𝐺𝐶𝐶𝑒𝑒𝑠𝑠𝑒𝑒𝑏𝑏2𝐸𝐸11ℎ3𝐿𝐿2
(3𝑐𝑐−𝐿𝐿)2(𝑎𝑎+ℎ𝜒𝜒)2+34(𝑐𝑐+𝐿𝐿)2(𝑎𝑎+0.42ℎ𝜒𝜒)2        (4.11) 

A load of 0.752 kN (Table 4.5) was taken to accommodate for the fracture toughness of 

the methacrylate adhesive and accordingly adherend thickness h was chosen to be 5 mm. 

The new adherend thickness h ~ 5 mm was considered corresponding to a load that was 

half the critical load value of 1.5kN found out for the hinges during initial testing. Even 

then, it was not suitable for testing at mixed mode ratio GII/G = 0.8 for the specimens 

manufactured with H-glass and NRR4’ repair resin and the MB-B specimens with the 

partial top ply ground off. A smaller thickness of each adherend approximately 2~3 mm 

may be required for the hinges to be able to bear the high mode II loads.  

Table 4.5. Estimated load values calculated using Equation 4.11 for different values of h 

GII/G Pest (N) 

0.2 39.7 110.6 199.8 302.7 416.4 538.8 668.57 804.5 

0.5 61.0 169.9 307.0 465.1 639.7 827.8 1027.2 1236.1 

0.8 71.8 199.7 360.9 546.7 752.0 973.2 1207.6 1453.2 

h (mm) 1 2 3 4 5 6 7 8 

 

Results from the mixed mode GII/Gc ratios of 0.2 and 0.5 (Figure 4.13 and Figure 4.14) 

show that specimens repaired with NRR4’ exhibit higher delamination fracture toughness 

values in mixed mode I – mode II testing as compared to those repaired with MB-B. In 

case of both repair resins, specimens repaired with partial top plies of the parent plates 

ground off have better fracture toughness values than the repairs with the complete top 

plies of the parent plates ground off. Similar phenomenon was observed in the case of 

mode I testing. 
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Figure 4.13. Fracture toughness values for MB-B and NRR4’ at different grinding levels 

under mode II 20% loads (1 Ply ~ Complete top ply ground off, Part Ply ~ Partial top ply 

ground off) 

 

 

Figure 4.14. Fracture toughness values for MB-B and NRR4’ at different grinding levels 

under mode II 50% loads (1 Ply ~ Complete top ply ground off, Part Ply ~ Partial top ply 

ground off) 
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Images of the fractured surfaces of specimens tested under various mixed mode ratios are 

shown in Figure 4.15. The MB-B specimens that were tested with mixed mode ratio 

GII/G = 0.2, do not show significant signs of fiber bridging or effects of mode II load 

(Figure 4.15 (a) and (e)). In the case of MB-B specimens tested with mixed mode ratio 

GII/G = 0.5, there are some signs of plastic deformation of the repair resin (depicted by 

white regions) under shear loads (Figure 4.15 (b)). For mode II 80% loads the MB-B 

specimens have more pronounced signs of fiber bridging as well as deformation of the 

repair resin due to shear loads.    

 
(a) 1 ply MB-B GII/G=0.2 

 
(b) 1 ply NRR4’ GII/G=0.2 

  
(c) 1 ply MB-B GII/G=0.5 

 
(d) 1 ply NRR4’ GII/G=0.5 

Figure 4.15. Images of surfaces fractured under different mixed mode I – mode II 

loads   

 

 

 

25 mm 

crack tip mode II deformation white areas 
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Figure 4.15 cont. 

 
(e) Partial ply MB-B GII/G=0.2 

 
(f) Partial ply NRR4’ GII/G=0.2 

 
(g) Partial ply MB-B GII/G=0.5 

 
(h) Partial ply NRR4’ GII/G=0.5 

 
(i) 1 ply MB-B GII/G=0.8 

 

The fractured surfaces of all specimens repaired with NRR4’ resin show marked regions 

of fiber bridging and shear deformation of the repair resin under mode II loads. This is 

reflected in the higher fracture toughness values obtained for the NRR4’ repair resin. In 
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mode I testing the fibers in the bridging zone are mainly acted upon by tensile forces and 

they slow down crack growth. But in the case of high shear loads they break easily, thus 

letting cracks propagate fast at the bonded interface. Thus even though fiber bridging was 

present, propagation fracture toughness values could not be attained for mixed mode I – 

mode II testing.             

Conclusions 

For the specimen configuration and dimensions (h ~ 9 mm) similar to those of mode I 

testing specimens, NRR4 had better crack propagation fracture toughness values than 

MB-B and better crack initiation fracture toughness values than both MB-B and NRR6. 

The crack initiation fracture toughness values for NRR6 were more than those for MB-B. 

Crack propagation fracture toughness values for NRR6 could not be recorded. A higher 

resolution moving camera is required for that.  

For subsequent testing, fracture toughness values of NRR4’ (modified NRR4) were 

evaluated against those for MB-B with different specimen configuration and repair 

parameters. It was found that repairs carried out with NRR4’ are better than those 

conducted with repair resin MB-B.  

Furthermore, repairs done after grinding off the top ply of the parent composite part 

partially provide higher mixed mode I – mode II fracture toughness values as compared 

to those conducted after grinding off one complete top ply. Since repairs on wind turbine 

blades damaged while in service are carried out in the field with the blades still attached 

to the wind turbine main support, it is difficult to maintain a constant grinding depth. 

Visual signs, such as reaching the backing of a ply or encountering cross weave while 

grinding are recorded as markers for gaging the depth ground. Future work is proposed 
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that can involve finding a suitable grinding depth of the top parent ply to achieve 

optimum fracture toughness and some means to have the top ply ground to that depth 

consistently every time before repairs are carried out.        
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Chapter V 

CONCLUSIONS 

In the first part of this work, mechanical characterization was conducted to select a new 

repair resin for a global wind turbine blade manufacturing company. It was found that 

NRR4, the vinyl ester resin with a higher amount of styrene, performed better than the 

polyester and other vinyl ester options that were selected as new repair resin candidates. 

A typical vinyl ester molecule consists of a main epoxy chain with unsaturated carbon – 

carbon double bond groups connected to its two ends with the help of ester groups. Just 

as in the case of unsaturated polyesters, these carbon – carbon double bonds are potential 

sites for crosslinking. Initiators like methyl ethyl ketone peroxide (MEKP) provide free 

radicals during cross linking that react at the double bond site (Figure 5.1) to form a new   

 

Figure 5.1. Crosslinking in vinyl ester resins [84] 
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Figure 5.1 cont. 

 
 

free radical at that site. These free radicals further react with styrene molecules that are 

dispersed in the vinyl ester resin as shown in Step 3 in Figure 5.1. Depending on the 

relative concentration of styrene molecules in the resin, short or long chains consisting of 

styrene molecules are formed before they attach themselves to another vinyl ester 

molecule. The carbon – carbon double bond groups that have not yet reacted may join to 

other similar unsaturated parts of vinyl ester molecules through similar styrene bridges 

thus resulting in a large cross – linked system. The extent of cross linking depends upon 

the temperature at which the resin is cured. Usually, at room temperature after initial 

crosslinking, mobility of the polymer chains gets limited and the rate of crosslinking 

reduces. Some unsaturated (carbon – carbon double bond) groups that do not react at all 

are still left in the system. Post curing is carried out to fully cure the resin. The composite 

is generally post cured at a temperature that is higher than the glass transition temperature 

of the resin. As the polymer chains become more mobile, the rate of crosslinking 
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increases and this results in reduction in sites of unsaturation. This in turn increases the 

glass transition temperature of the resin and eventually the resin gets fully cured at a 

point when the glass transition temperature equals the post curing temperature. If the 

resin is heated further there is a degradation in the mechanical strength of the composite. 

When cured at room temperature, NRR4 was determined to have a degree of cure of 

54.4% through differential scanning calorimetry. To ensure that there was no degradation 

in the mechanical properties of the repair resin, NRR4 was post cured at a temperature 

that was below its glass transition temperature and thus it was not still fully cured after 

post curing.  

When an initiated repair resin similar to NRR4 containing styrene is applied to a pre – 

cured polymer surface, there is diffusion of styrene as well as resin into the cured 

polymer [75]. The amount of the diffusion depends on factors such as time of exposure, 

temperature, molecular weight, concentration, etc. Based on the difference in molecular 

weights, the coefficient of diffusion of styrene is about an order higher than that of the 

resin [75]. Though the exact amount of styrene in the repair resin NRR4 is not known due 

to proprietary reasons, it is known that the amount of styrene in NRR4 is greater than that 

in the other repair resin candidates. It may be safely assumed that since the diffusion of 

styrene into the parent plates is proportional to its content in the different resins, it 

diffuses more in the case of NRR4. The newly diffused styrene molecules have a 

tendency to form links with the unreacted double bonds in the parent plates and also with 

those in the repair resin thus creating a crosslink structure across the repair interface. 

More quantity of absorbed styrene molecules reflects a more complex crosslink structure. 

This leads to higher fracture toughness values as were recorded in the case of NRR4. 
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The fracture toughness testing of repairs conducted on surfaces with varying top ply 

grinding depths revealed some interesting results. It was found that the repairs acted 

better when conducted on a surface that consisted of a mixture of pre-cured resin and 

exposed fibers than when carried out on a surface with only pre-cured resin. Pronounced 

fiber bridging was observed in the former case as the exposed fibers got bonded to the 

repair resin and this resulted in the higher fracture toughness values observed. These 

exposed fibers that bonded to the repair resin also hindered crack propagation. When the 

repair surface consisted mainly of pre-cured resin, the repair resin bonded with it only 

and no or very little fibers were present at the bond-line. This resulted in almost no fiber 

bridging and the fracture toughness values thus obtained were lower. This phenomenon 

was observed in Mode I crack propagation fracture toughness testing and then again in 

Mixed Mode I – Mode II crack initiation fracture toughness tests.  

The commonly used method of conducting repairs on engineering composites (low 

modulus composites) involves grinding out the region with the damaged portion and then 

completely removing the top-most ply below the damaged portion through grinding. The 

repairs are then carried out on this surface. From the results of the varying grinding depth 

study it seems that in order to improve repair fracture toughness, it might be helpful not 

to grind the repair surface layer off completely. The repairs conducted this way showed 

an improvement in fracture toughness values when tested under Mode I and Mixed Mode 

I – Mode II loading. Fatigue characterization of such repairs would provide a further 

insight into their performance. It can further be investigated whether the depth to which 

the repair surface ply is ground down has any effect on the strength of repairs.  
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Reinforcement manufacturers coat the fibers with polymeric materials called sizings. 

These coatings have multiple purposes such as protecting the fibers from mechanical 

damage and environmental degradation, providing desirable fabric qualities and 

improving bond strength between matrix and reinforcement. The sizings used for 

fiberglass generally consist of polymeric molecules with a silicon group (glass friendly) 

at one end and an organic group compatible with the resin at the other. This arrangement 

helps in strengthening the bonds between the polymer matrix and fiberglass and in turn 

improving the overall strength and stiffness of the composite. When the composite 

surface top ply is partially ground down for repairs, the sizing may be partially or 

completely removed from the surface of the exposed fibers. When repairs are conducted 

over this surface the interfacial strength between these exposed fibers and the repair resin 

is less as compared to that between fibers and matrix in the parent plate. Due to reduction 

in the interfacial strength, the fibers peel off easily from the matrix rather than breaking. 

This results in an increase in fiber bridging during crack propagation and thus greater 

fracture toughness values are obtained. Feih et al [85] established that the fracture 

toughness of the composite improves substantially when the fiber reinforced composite is 

made with fibers with the sizing removed. Though there is an improvement in the 

fracture toughness values due to removal of sizing, this makes the fibers more susceptible 

to mechanical damage and environmental and chemical attacks. The strength and 

stiffness of the composite are also compromised. A deeper study of this phenomenon can 

involve determination of the extent of sizing removal due to grinding and the resulting 

decrease in the bond strength between the fibers and the matrix and the effect on fracture 
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toughness, stiffness and strength of repairs. The amount of degradation of fiber properties 

can also be evaluated.    

The studies proposed above would be conducive to the overall betterment of the repair 

process carried out by companies that manufacture parts with fiberglass composites. 
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