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ABSTRACT 

 Membrane separation is an excellent potential method for purification of 

natural gas. Multiple polymers have been studied for use in natural gas 

separation, and two stand above the rest: polyimide and polybenzoxazole. It was 

found that the selection of monomer precursors could influence the separation 

properties and resistances of the resultant polyimide and polybenzoxazole 

membranes. Polybenzoxazole has even better separation properties than 

polyimide due to the size and distribution of its free volume elements. Methods to 

influence these properties are similar to those used with polyimides. The intent of 

this thesis was to compare different dianhydride precursors. My research 

attempted to compare the permeabilities and selectivities of polybenzoxazole 

membranes thermally rearranged from hydroxyl-polyimides formed from four 

dianhydride precursors. The hydroxyl-polyimides were formed by the azeotropic 

synthesis method, cast into membranes, thermally rearranged into 

polybenzoxazoles, and underwent permeation testing using a manifold 

constructed in-house. It was found that hydroxyl-polyimides were indeed formed, 

but not completely thermally rearranged, and the setup for permeation testing 

was insufficient to fulfill the goal of this thesis. Thus no conclusions on the effect 

of the dianhydride bridging group could be made.
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CHAPTER I 

INTRODUCTION 

 Every year, enormous volumes of natural gas are released along with oil 

during drilling across the United States and the rest of the world. More and more 

of this gas is being flared off due to being unusable. It is unusable because it is 

highly contaminated with gases such as nitrogen and carbon dioxide, which can’t 

be processed to create electricity or heat, thus decreasing the natural gas’ 

heating value1. When researchers began looking for alternatives to the overly 

large and expensive methods of natural gas purification, they turned to polymer 

membranes. 

 Eventually it was found that a form of the polymer polyimide, which is 

formed by the condensation reaction between diamine and dianhydride 

monomers, has excellent gas separation properties, especially with respect to 

natural gas purification. It was also found that by using different diamine and 

dianhydride precursors, researchers could influence the separation properties of 

the membranes. By picking diamines or dianhydrides with bulkier pendant groups 

or more rigid bridging groups, researchers could impact the polymer chain 

packing efficiency and the polymer chain rigidity of the polymer matrices2. 

 Recently researchers found that polyimides containing a hydroxyl group 

located ortho to the imide functional group, called hydroxyl-polyimides, could be 
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thermally rearranged into a new polymer, called polybenzoxazole. 

Polybenzoxazole has even better separation properties than polyimide. This is 

because the cavities within the polymer matrix of the polyimide tend to meld 

together during thermal rearrangement, which creates larger cavities with a 

bottleneck shape3. 

 Please see the literature review in the next chapter for extensive 

descriptions and discussions about polyimide and polybenzoxazole. 

Hypothesis 

 Despite an abundance of studies examining the effect of the structure of 

the diamine precursor on the resulting thermally rearranged polybenzoxazole, 

there is a surprising dearth of analogous studies dealing with the dianhydrides. 

 My thesis project attempts to determine, out of four candidate 

dianhydrides with varying bridging groups, which one will produce a 

polybenzoxazole with the best separation properties. The four candidate 

dianhydrides are: 

4,4’-oxydiphthalic anhydride (ODPA) 

 

3,3’,4,4’-benzophenone tetracarboxylic dianhydride (BTDA) 
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3,3’,4,4’-biphenyl tetracarboxylic dianhydride (BPDA) 

 

 

Benzene-1,2,4,5-tetracarboxylic dianhydride or pyromellitic dianhydride (PMDA) 

 

 

These dianhydrides will all be combined with the diamine 2,2’-bis(3-amino-4-

hydroxyphenyl) hexafluoropropane (bisAPAF), pictured below. 
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 My hypothesis is that the BPDA will produce the polybenzoxazole with the 

best separation properties, because it has a bridging group that will give the most 

polymer chain rigidity out of the four candidates. 

Outline of Thesis 

 This thesis consists of seven chapters. Chapter one is the introduction, 

which introduces the problem my research is focused on and my hypothesis. 

Chapter two is a literature review of polyimides and thermally rearranged 

polybenzoxazoles and their evolution with regards to separating nitrogen and 

other gases from natural gas, along with some general history of membrane 

separation. Chapter three consists of the synthesis and membrane formation 

portions of the research. Chapter four discusses more of the membrane 

formation, including thermal rearrangement, and the permeation testing. Chapter 

five contains detailed additional information regarding the synthesis and 

membrane formation covered in chapter three. Similarly to chapter five, chapter 

six has more detailed information than covered in chapter four. Chapter seven 

offers a general conclusion and provides the endcap for the thesis. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

 From February to July of 2015 alone, approximately 16 trillion cubic feet of 

natural gas was released from reservoirs due to oil drilling throughout the U.S.4. 

While the nitrogen content of this crude natural gas is usually no more than 8-

15%, most pipelines can transport natural gas only if it contains less than 4-6% 

nitrogen, so some nitrogen has to be removed5. This removal of nitrogen and 

other impurities from natural gas serves four purposes: 1) to increase the fuel 

heating value, 2) to reduce corrosion within the pipeline, 3) to decrease 

atmospheric pollution, and 4) to reduce the volume of gas that needs to be 

transported1. 

 One method of separating the nitrogen from natural gas is fractionation, 

which requires a large amount of energy and other resources. The gas stream 

has to be liquefied, which means that enough carbon dioxide and water vapor 

would have to have been previously removed to prevent freezing. The 

liquefaction consists of compression and expansion of the gas stream. Other 

methods include cryogenic separation and pressure swing adsorption. Cryogenic 

distillation involves distillation towers that cool the gases to liquefy the gas in the 

stream with the higher boiling point, and allowing them to be separated. Pressure 

swing adsorption uses molecular sieves that selectively adsorb nitrogen
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to remove it. Both of these processes, along with fractionation, are better 

suited for larger scale gas fields. Operators of smaller gas fields often cannot 

process their natural gas because they cannot afford these methods, and even 

for large scale fields they are very expensive. 

 Researchers began examining membrane separation as an alternative to 

these methods because of its high energy efficiency relative to earlier methods, 

operational simplicity, and small footprint. Membrane separation has no heating 

element, so much less energy is needed. Membranes are made of polymers that 

are usually inexpensive, especially when compared to the costs of the processes 

described above. Membrane separation also uses considerably less equipment 

overall. 

 Membrane processes have been studied since at least the 1750s6, and 

continued to be studied for hundreds of years until multiple breakthroughs in the 

1980s and 1990s. One of the most important breakthroughs was in 1994, when 

Paul et al. produced high flux asymmetric membranes, called Loeb-Sourirajan 

membranes, with nanoscale thicknesses. These membranes were limited due to 

various defects that formed during their production7. In the early 1990s new 

processes emerged that allowed the fabrication of various membrane macro-

geometries, such as hollow fiber and spiral wound, which were able to vastly 

increase the ratio of surface area to volume of membranes8. 

 Over the last two decades, studies researching gas separation 

membranes, specifically polyimide membranes, have increased greatly, with 

almost fivefold articles published in 2007 than in 1985. Polyimides emerged as 
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the forerunner due to their high permeability, selectivity, chemical and thermal 

resistance, and mechanical strength. Even before polyimides became popular 

research subjects, they were recognized as highly effective separation 

membranes by Du Pont Co. in the United States as far back as 1962, when Du 

Pont began testing polyimides for the separation of helium from natural gas6. 

 Over the years it has been found that the permeability and selectivity of 

polyimide membranes can be controlled by modifying their molecular structure2. 

In 2007, it was found that even further adjustments can be made to polyimide 

membranes to produce even more desirable properties. Specifically, they are 

thermally rearranged into polybenzoxazole, which has even higher permeability 

and selectivity than its progenitor polyimide9. This review will focus on the 

evolution of the polyimide as a gas separation membrane, its subsequent 

transformation into polybenzoxazole, and various studies done to optimize the 

separation ability of polybenzoxazole. 

Theory and Background 

 In 1866, Sir Thomas Graham presented his model for solution-diffusion, 

which is generally regarded as the foremost model of gas molecules being 

transported through polymeric membranes10. This model states that the transport 

of a gas molecule begins with its dissolution into the face of the membrane, then 

diffusion through the membrane itself, then desorption from the opposite face at 

a lower pressure. The rate-limiting step in this process is the diffusion step, which 
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is controlled by the movement of the individual polymer chains. As the chains 

shift, the gas molecules move through the open spaces between the chains11. 

Solution-Diffusion Model 

 Membrane separation is governed by the following equation for volumetric 

flux (ji)12: 

𝑗𝑖 = 𝑃𝑖(𝑝𝑖𝑜 − 𝑝𝑖𝑙)𝑙  

where ji is the steady state flux through the membrane in (cm3 of component 

i)/(cm2 s), Pi is the membrane permeability for component i, given in Barrer ((10-10 

cm3 cm)/(cm2 s cmHg)), pio is the partial pressure of component i on the entrance 

side of the membrane (cmHg), pil is the partial pressure of component i on the 

exit side of the membrane (cmHg), and 𝑙 is the thickness of the membrane (cm). 

The term Pi can be found by the following equation12: 𝑃𝑖 = 𝐷𝑖𝑆𝑖 
Where Di is the effective concentration-averaged diffusion coefficient (cm2/s), and 

Si is the gas solubility coefficient (cm3 of component i)/(cm3 of membrane cmHg). 

 The membrane selectivity for ideal gases i and j (αi/j) is given by the 

following equation12: 

∝𝑖𝑗= 𝑃𝑖𝑃𝑗 = 𝐷𝑖𝑆𝑖𝐷𝑗𝑆𝑗 

The term Di/Dj is the ratio of diffusivity of gases i and j, which reflects to the ratio 

of sizes of the molecules of gases i and j. This is because the diffusivity through 

the free volume elements of the membrane is determined by the size of the 

molecules, and the smaller molecules are favored. The term Si/Sj reflects the 
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ratio of condensabilities of the two gases in the polymer matrix and the relative 

affinity of the gases for the polymer matrix. This is because higher condensability 

generally causes higher gas sorption through a polymer membrane, so the gas 

with higher condensability will be favored12. 

 The Ki/Kj term for the mixture of nitrogen and methane (KN2/KCH4) 

generally ranges from 0.2 to 0.412, which means that it will change very little as 

the type of polymer used for the membrane changes. The diffusivity ratio 

DN2/DCH4, which can change greatly depending on the polymer used, generally 

ranges from 1 to 612. 

Fractional Free Volume 

 Gas molecules diffuse through a membrane by traveling through spaces 

between the moving polymer chains. The sum of these spaces is called the free 

volume, and the fractional free volume (FFV) is given by the equation: 

𝐹𝐹𝑉 = 𝑉 − 𝑉0𝑉  

where V is the total volume of the membrane and V0 is the volume occupied by 

polymer chains6. 

 Free volume is created by the constant vibration of the individual polymer 

chains and the tendency of the chains to tangle and untangle. Hence the 

diffusion of gas molecules is controlled by the size of the molecule, the amount 

and distribution of free volume in the membrane, and the mobility of the polymer 

chains1.  

 Positron annihilation spectroscopy (PALS) is utilized to measure the free 

volume. Orthopositronium (o-Ps) is inserted into the polymer matrix and the time 
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it takes for the o-Ps to decay is recorded. The decay of o-Ps occurs more quickly 

in the free spaces of the matrix, so the decay time is proportional to the amount 

of free volume in the matrix13. Although PALS provides fairly accurate insight into 

the free volume of a membrane, it is not as accurate as it could be. Since the 

introduction of gas molecules into the polymer matrix affects the positions of the 

polymer chains and therefore the amount and distribution of free volume, there is 

no way to produce an exact representation of what happens to the free volume 

during the actual diffusion process1. 

Limitations of Membrane Separation 

Permeability/Selectivity Trade-off 

 The ultimate goal is to produce membranes with both high selectivity and 

high permeability. A membrane with higher selectivity will produce a product 

stream with fewer impurities. A membrane with higher permeability will produce a 

larger product stream per area membrane. Both of these will decrease capital 

costs by using less of the polymer and create more revenue by creating more 

product with higher purity. 

 Although it is desirable to have both high selectivity and high permeability, 

there is a trade-off between the two. This trade-off is best described by the 

following equations14: 

∝𝑖𝑗= 𝛽𝑖𝑗(𝑃𝑖)𝜆𝑖𝑗 
and 
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ln (𝛼𝑖𝑗) = ln (𝛽𝑖𝑗) − 𝜆𝑖𝑗 ∗ ln(𝑃𝑖) 

where βi/j is an empirical parameter based on the condensability of the gas 

mixture, and is similar to the S terms previously discussed. The λi/j is an empirical 

parameter based on the sizes of the gases and is related to the diffusivity (D) 

terms discussed previously14. 

 A graph of αi/j vs Pi shows a negatively sloped curve that is an upper 

bound for the points indicating values for different types of polymers14. This 

relationship was shown by Robeson in 1991 with an update in 2008 for the 

CO2/CH4 gas pair in Figure 115. 

 

Figure 1: Experimental pure gas data for CO2/CH4 separation15 

 This trade-off can also be seen in the relationship between the 

permeability and selectivity of the polymer poly(1-trimethylsilyl-1-propyne) 

(PTSMP), which has the highest permeability of all known polymers9. It has very 

large pores, upwards of 0.6-0.7 nm9, and they are highly interconnected. These 

large and plentiful pores allow many molecules to pass through, granting high 

permeability but very low selectivity. This shows that the most important factor in 
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the permeability and selectivity of a polymer membrane is the free volume size 

and distribution 

Physical Aging 

 Polymer chains move in order to minimize free volume, which leads to an 

increase in density. This is antithetical to optimizing gas separation, which 

requires ample amounts of free volume. 

 There are currently two mechanisms that are regarded as the foremost 

method of physical aging in membranes. The first mechanism entails the 

diffusion of free volume to the surface of the membrane, where it is lost to the 

atmosphere16. This diffusion of free volume is dependent on the thickness of the 

membrane, with thinner membranes having more loss of free volume due to a 

smaller distance that it has to travel to leave the membrane. The second 

mechanism involves lattice contraction, in which the entire polymer matrix 

contracts and compresses the free volume elements within it. Unlike free volume 

diffusion, lattice contraction occurs at the same rate for different thicknesses of 

the membrane. Often the two mechanisms combine, with lattice contraction 

accelerating free volume diffusion out of the polymer by creating a pressure 

difference within the membrane17. 

 These mechanisms lead to the conclusion that membranes with more free 

volume and less efficient chain packing will lose free volume at a higher rate than 

membranes with better chain packing. This can be seen in a study by Kim et al. 

in 2006, in which they studied the loss of free volume in polyimide membranes. 

They found that the membranes with higher amounts of free volume underwent 
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faster physical aging18. Faster physical aging leads to a decrease in permeability 

and introduces time-dependent separation properties. This is one of the reasons 

these polymer membranes are not used more in industry, as the ability of the 

membrane to separate gas molecules will decrease over time1. 

 The thickness of the membrane film also affects its physical aging. A study 

by Wang et al. in 2014 found that thinner films had a higher rate of physical aging 

than thicker films, as can be observed by the decrease in permeability over time 

seen in Figure 2. The thick and thin films had a similar rate of plasticization with 

respect to CO2 exposure time for approximately one hour, after which the rate of 

plasticization of the thin films decreases greatly19. This trend is also shown in 

Figure 2. 

 

Figure 2: Physical aging of thick and thin membranes with respect to time and 

plasticization of thick and thin films with respect to CO2 exposure time19 

Plasticization 

 When a gas diffuses through a polymer membrane, gas molecules do not 

immediately exit through the other side of the polymer. They remain within the 

structure of the polymer for an amount of time. If the concentration of gas inside 

the membrane gets high enough, plasticization may occur. Plasticization is the 
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increase in free volume and chain motion within the polymer that results from 

excess molecules pushing the chains apart. Plasticization causes an increase in 

permeability for every type of molecule, and therefore the selectivity drastically 

decreases. Plasticization causes the permeability of a gas to increase as the 

upstream partial pressure of that gas increases. For CO2 and N2 separation from 

natural gas, specifically, plasticization occurs because the permeability of the 

membrane for CH4 increases at a faster rate than its permeability for CO2 or N2 

as the upstream pressure increases20. Plasticization can also be caused by 

impurities in the gas stream, especially if they have higher sorption than the 

desired gas molecules21. 

Polyimide Synthesis 

 There are two methods of fabricating polyimide membrane systems. The 

first is creating a pure polyimide by synthesizing various dianhydrides and 

diamines. The second is combining a polyimide system with another type of 

polymer, which will not be discussed in this review. There are also methods for 

improving desired properties by manipulating the finished polyimide, either by 

thermal annealing or by cross-linking. 

Design of Polyimide 

 The general monomer of a polyimide is shown in Figure 3. 
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Figure 3: General Structure of Polyimide1 

 This structure is created by the condensation reaction of a dianhydride 

with a diamine. The structure of the dianhydride will dictate the R1 group and the 

structure of the diamine will determine the R2 group in Figure 3. The properties of 

a polyimide can be altered by selecting different dianhydrides and diamines to 

use as precursors1. The properties of interest for membrane separation are inter-

chain spacing and chain mobility, which control the permeability of the 

membrane, and the chain rigidity, which controls the selectivity. Hence the three 

factors to examine are the type of pendant groups (polar or bulky), the type of 

spatial linkage (meta or para), and the type of bridging group, since these factors 

have the greatest effect on the aforementioned properties. 

 The polarity of a side group will affect interchain interactions and impact 

the chain rigidity and packing efficiency. Pendant groups with higher polarity 

increase chain rigidity and packing efficiency, which increases selectivity while 

decreasing permeability. This was confirmed by Tanaka et al. in 1995, when they 

showed that a polyimide with the more polar carbonyl group displayed higher 

selectivity and lower permeability than a polyimide with a methyl group in the 

same place22. The bulkiness of a side group has a similar effect because bulkier 
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side groups increase chain rigidity and packing efficiency. This was 

demonstrated by multiple teams, with Tanaka et al. showing that increasing 

pendant group bulk increased permeability and decreased selectivity. They 

showed this by comparing polyimides containing methylenedianiline (MDA, 

hydrogen as pendant), isopropylidenedianiline (IPDA, methyl as pendant), and 

2,2-bis(4-aminophenyl) hexafluoropropane (6FpDA, carbon trifluoride as 

pendant). The permeability followed the pattern MDA<IPDA<6FpDA and the 

selectivity followed the pattern 6FpDA<IPDA<MDA. These fit with the pattern of 

the size of the side groups, which is MDA<IPDA<6FpDA23. Another study, 

comparing polyimides made up of 3,6-diaminocarbazole, which has hydrogen as 

a pendant, and N-ethyl-3,6-diaminocarbazole, which has an ethyl pendant group, 

produced similar results as Tanaka et al.24. 

 The two previously mentioned studies also found that polyimides with 

meta- spatial linkage configurations had higher chain packing efficiency and 

more rigid chains, which led to higher selectivity and lower permeability in 

membranes23,24. This relationship was also studied by Coleman et al. by 

comparing 6FpDA and its meta counterpart, 2,2-bis(3-aminophenyl) 

hexafluoropropane (6FmDA). It was found that the 6FmDA version of the 

polyimide possessed higher selectivity for the gas pair CO2/CH4, with a selectivity 

coefficient of 63, while 6FpDA had a selectivity coefficient of 39.9. The 6FpDA 

had a much higher CO2 permeability, however, with a permeability coefficient of 

63.9, while the 6FmDA had a permeability coefficient of 5.125. 
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 Increasing the chain rigidity and packing efficiency of the polyimide 

membrane will increase its selectivity and decrease its permeability. These 

properties are also affected by the rotational energy of the bridging groups 

between aromatic parts of the polymer. Chains with lower rotational energy move 

more easily and therefore allow more free volume, thus increasing permeability 

and decreasing selectivity. In addition to examining the effect of different spatial 

linkage configurations, Coleman et al. (1990) also studied the effect of bridging 

groups with higher and lower rotational energies. They compared MDA, which 

contains CH2 as the bridging group between two phenyls, and 4,4’-oxydianiline 

(ODA), which contains an oxygen atom as the bridging group. Their results did 

not follow the expected paradigm, since the polyimide containing MDA had both 

a lower permeability and lower selectivity25. This was further studied by Xu et al. 

in 1997 who added a polyimide containing phenylene thioether (PPTI-1), which 

has a sulfur atom as a bridging group. This PPTI-1 produced higher selectivity 

than the ODA26. Comparing the results of these two studies shows that the 

selectivity of the membrane corresponds with the electronegativity of the bridging 

group, with higher electronegativity causing stronger interchain interactions and 

therefore higher selectivity. 

 To summarize, a membrane with optimal selectivity needs to have bulky 

and/or polar pendant groups, meta linkages, and bridging groups with high 

rotational energy barriers and electronegativity. 
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Thermal Annealing 

 Since polyimide membranes have time dependent separation properties 

due to physical aging, methods of mitigating physical aging have been tested. 

The first of these is thermal annealing, which involves heating the polymer to a 

high temperature and quickly quenching it. This would, in theory, cause a 

stiffening of the polymer chains, thereby rendering the free volume immobile and 

able to retain constant separation properties for a longer period of time. This idea 

was investigated by Fuhrman et al. in 2004 by creating polyimides out of 

hexafluoroisopropylidine-diphthalic anhydride (6FDA) and 6FmDA or 6FpDA, 

then heating and quenching them. These quenched polyimides showed much 

higher permeabilities than their unquenched counterparts, with the 6FDA-6FmDA 

having up to 90% more permeability. The quenched samples also retained their 

separation properties for much longer27. 

Cross-linking 

 Cross-linking of polyimides can be performed by many methods, the main 

four of which are ultraviolet radiation, ion beam radiation, thermal treatment, and 

chemical treatment. These treatments can have large impacts on the properties 

of the polyimide membrane. The most important of these impacts are increasing 

the stability of the membrane, attaining better gas separation abilities, and 

decreasing plasticization caused by CO2. 

 Kita et al. found in 1994 that an improvement in selectivity could be 

attained through periods of ultraviolet irradiation, although this increase was 

accompanied by a decrease in permeability. This was speculated to be due to 
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the polymer chains decreasing in mobility and the consequent increase of density 

of the polymer matrix. This difference in selectivity and permeability increased 

with increasing duration of exposure to the ultraviolet radiation28. In 2000, Won et 

al. found an analogous shift in selectivity and permeability with exposure to ion 

beam radiation, although this method was deemed disadvantageous for industrial 

utilization due to its high cost and the great inconvenience of irradiating entire 

sheets of membrane or hollow fiber membranes29. 

 Thermal annealing has also been shown to initiate cross-linking in 

polyimide membranes containing 6FDA30. It was ascertained that polyimides 

comprised of acetylene groups were able to undergo Diels-Alder cross-linking 

when thermally treated. This cross-linking increased selectivity while having a 

small decrease in permeability, and also greatly slowed CO2 plasticization31. 

Thermal treatment intended to induce cross-linking often occurs concurrently with 

chemical treatment. Chemical treatment is performed by combining the 

polyimides with oligomers or monomers that terminate in cross-linkable reactive 

groups. The majority of chemical treatments designed to cross-link polyimides 

take place at elevated temperatures. For example, Rezac et al. (1997) 

successfully cross-linked a polyimide comprised of 6FDA and IPDA with a 

diacetylene oligomer. This reaction was carried out at a temperature of 340oC 

and the cross-linking improved the selectivity and the permeability of the 

polyimide32. The impact of cross-linking is heavily dependent on the structure of 

the cross-linking agents and the temperature at which the reaction is performed. 

The above example is a special case, as usually cross-linking decreases 
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permeability in addition to increasing selectivity. However, cross-linking 

polyimides containing carboxylic groups with ethylene glycol can increase the 

permeability of the membrane without decreasing its selectivity1. In 1991, Hayes 

et al. discovered a method of cross-linking that incorporated creating a solution of 

polyimide with a diamine that did not require elevated temperature33. 

Summary of Polyimide Performance 

 Table 1 summarizes the performances, in permeability and selectivity, of 

the various designs of PI membranes from studies examined in this review. 

Table 1: Gas permeability and selectivity of PI membranes 

Diamine 
PCO2 
(barrer) 

PN2 
(barrer) 

CO2/CH4 
Selectivity 

N2/CH4 
Selectivity Ref 

MDA 19 - 45 -   23 
IPDA 30 - 43 -   23 
6FpDA 640 - 400 -   23 
6FmDA 5.1 - 63 -   25 
ODA 23 - 61 -   25 
PPTI-1 23 - 35 -   26 
Kapton 0.263 0.035 84 11.2   34 
bisAPAF-BTDA 10.10 0.45 45 2.00   35 
bisAPAF-ODPA 1.7 0.071 85 3.55   36 

 

Thermally Rearranged Polybenzoxazole 

Overview 

 First introduced by Hill et al. in 2007, polybenzoxazole (PBO) has become 

a staple of the field. PBO is formed by thermal rearrangement of aromatic 

polyimides with hydroxyl groups occupying the spot ortho- to the carbon-nitrogen 

bond of the imide ring. This thermal rearrangement occurs when the polyimide is 

subjected to a high temperature, generally 300-500oC, for an extended period of 

time. This method of thermal rearrangement also negates the high insolubility of 
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PBO by beginning with precursors that are workably soluble9. The general 

mechanism for this reaction is shown in Figure 4, and the entire mechanism is 

shown in Figure 5. 

 

Figure 4: General mechanism for thermal rearrangement of hydroxyl-polyimide 

(HPI) to PBO6 

 

Figure 5: Complete mechanism for thermal rearrangement of HPI to PBO37 

 The reaction starts with an attack by the lone pair of electrons on the 

ortho-hydroxy oxygen towards the near carbonyl carbon, which makes one of the 

bonds of the carbonyl reacts with the hydrogen from the ortho-hydroxyl. Then the 

lone pair from the nitrogen forms a double bond with the carbon that used to be 

the carbonyl carbon, and this separates the hydroxide. The wandering hydroxide 

is then attracted to the opposite carbonyl carbon, forcing the bond between the 

carbonyl carbon and the nitrogen to retreat as a lone pair to the nitrogen. The last 

step of the reaction consists of the rearrangement and departure of the chimera 
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molecule containing the original opposite carbonyl and the displaced hydroxyl 

group as carbon dioxide. 

 This rearrangement increases the fractional free volume, diminishes the 

free volume distribution, and leads to a more homogeneous membrane9. This 

change can be shown by PALS and small-angle X-ray scattering (SAXS), with an 

example shown in Figure 6. 

 

Figure 6: (A) Change of cavity radius (Å) distribution, measured by PALS as a 

function of treatment temperature, and (B) SAXS profiles for (a) PIOFG-1 

thermally rearranged at (b) 350oC, (c) 400oC, and (d) 450oC9 

 Figures 2-6A and 2-6B show the change in the distribution of different 

pore sizes as a polyimide is thermally rearranged. The curves for (a) are the 

original polyimide PIOFG-1, which was formed from 6FDA and 2,2’-bis(3-amino-

4-hydroxyphenyl) hexafluoropropane (bisAPAF). The curves for (b), (c), and (d) 

are PIOFG-1 after thermal rearrangement at 350oC, 400oC, and 450oC, 

respectively9. It can be ascertained from these results that the thermal 

rearrangement results in fewer but larger cavities, with the polymer formed at 

450oC having the fewest and largest cavities. Hill et al. (2007) theorizes that the 



 

 
23 

 

smaller cavities from the original PIOFG-1 meld together as heat is applied to 

them9. 

 This combination of larger but fewer cavities and the elevated rigidity of 

polymer chains are what gives PBO its exceptional ability to surpass the upper 

bound in both selectivity and permeability, as shown in Figure 7 for the gas pair 

CO2/CH4. As seen in Figure 7, PBO is currently the best separation tool for 

separating CO2 from CH4. In addition to high selectivity and permeability, PBO 

also has excellent resistance to plasticization and chemicals9. 

 

Figure 7: CO2/CH4 upper bound with separation properties for various TR-PBO 

(circles), perfluoropolymers (diamonds), PIMs (solid squares), polyimides 

(triangles), and PRTILS (empty squares)38 

Design of Polybenzoxazole 

 The gas transport properties of PBO depend on the network 

structures/cross-linking and rigidity of the polyimide precursors, the method of 

imidization of the polyimide precursor, the temperature of thermal treatment, the 

physical state of the polyimide, the glass transition temperature of the polyimide, 
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and the incorporation of non-thermally rearrangeable diamines into their 

structures. These factors also have an effect on the plasticization resistance of 

the membrane. 

 The flat aromatic units in the network structures of the polymers used in 

the formation of membranes pack very efficiently and thus reduce the amount of 

free-volume elements that may permit unwanted penetrants. The depressed 

structure also allows the molecules to arrange themselves in a columnar 

fashion9. The rigidity of these units prevents twisting of the polymer chains upon 

thermal rearrangement so they stay flat and well packed as desired9. 

 In 2013, Calle et al. added 3,5-diaminobenzene (DABA) to their precursor 

polyimides and were able to activate cross-linking of the resulting polyimide 

(HPIDABA) by adding a step after the azeotropic imidization in which the 

HPIDABA reacted with 1,4-butylene glycol. These cross-linked HPIDABA were 

then thermally rearranged in the normal manner39. 

 Polybenzoxazoles with 0%, 5% (XTR-PBO-5), 10% (XTR-PBO-10), 15% 

(XTR-PBO-15), and 20% (XTR-PBO-20) were synthesized and compared by 

Calle et al. in 2013. The PBOs showed the following trend of increasing 

permeability of CO2 and N2, respectively: TR-PBO<XTR-PBO-20<XTR-PBO-

15<XTR-PBO-5<XTR-PBO-10 and TR-PBO<XTR-PBO-20<XTR-PBO-5<XTR-

PBO-15<XTR-PBO-10. For nitrogen, the permeability of XTR-PBO-5 and XTR-

PBO-15 were very close, with values of 29.6 and 29.8, respectively. The 

following trend for increasing selectivity for the gas pair CO2/CH4 was found: 

XTR-PBO-10<XTR-PBO-15<TR-PBO<XTR-PBO-20<XTR-PBO-5, with all the 
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values fairly close, having a standard deviation of 2.88. For the gas pair N2/CH4, 

the selectivities of the five membranes were very close, with values from 1.5 to 

1.7, with TR-PBO having the highest value at 1.7. All of the cross-linked PBOs 

transcended the 2008 upper bound for the permeability/selectivity trade-off 

mentioned earlier. The group’s explanation for the excellent transport properties 

of the XTR-PBOs was that the cross-linking allowed an increase and setting of 

the free volume elements, which increased cavity size while retaining high 

rigidity39. 

 The effect of the imidization route on the properties of PBO was studied by 

Han et al. in 2010. The method of imidization influences the chemical structure of 

the polyimide, which in turn affects the structure of the PBO. The three types of 

imidization studied by Han et al. were thermal, chemical, and azeotropic. 

Thermal imidization occurs when the intermediate polyamic acid is kept at an 

elevated temperature (>200oC) and the solvent and water are evaporated out as 

the reaction continues. Azeotropic imidization involves dissolving the monomers 

in a polar aprotic solvent and adding organic solvents that form azeotropes with 

water, such as o-xylene. This mixture is then refluxed at slightly elevated 

temperatures (140-200oC). Chemical imidization could not form hydroxyl-

polyimides, instead substituting the hydroxyl group with an acetate group to form 

an acetic polyimide (AcPI)40. 

 The PBO formed from the thermally imidized HPI (tPBO) showed a 48% 

increase in FFV. The PBO formed from the azeotropically imidized HPI (aPBO) 

showed a 29% increase in FFV. The PBO formed from the chemically imidized 
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AcPI (cPBO) showed a very large 96% increase in FFV. The resulting PBOs had 

the following order of increasing permeability and selectivity,respectively for 

CO2/CH4 and N2/CH4: aPBO<tPBO<cPBO and cPBO<tPBO<aPBO. The 

differences between the aPBO and tPBO can be explained by the mechanism of 

their creation, since the tHPI undergoes cross-linking while it is heated, while the 

aHPI remains linear40. 

 It was also shown that the temperature at which the precursor was heated 

had an effect on the pore size and distribution, with membranes formed at a 

higher temperature having larger and fewer pores, while those formed at lower 

temperatures had smaller and more pores9. 

 Another study by Calle et al. in 2012 found that the state of the precursor 

before thermal rearrangement affected the amount of PBO formed. Precursors in 

powder form produced very low conversion, while those in film form produced 

high conversion, even near 100%. The reason provided was that the 

rearrangement kinetics are a lot slower for powder samples than for film 

samples. Another possibility provided was that the CO2 diffusion is rate-limiting41. 

 In 2012, Calle et al. studied the relationship between the glass transition 

temperature of the precursors and the thermal rearrangement temperature 

necessary to produce PBO. Thermal gravimetric analysis of polyimide precursor 

showed that the first of two weight loss peaks occurred between 300 – 500oC, as 

shown in Figure 8.  
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Figure 8: TGA (bottom curves) and DTG (top curves) of polyimides containing 

1,4-bis(4-amino-3-hydroxyphenoxy)2,5-di-tert-butylbenzene (TBAHPB)42 

 This indicated the loss of a CO2 molecule that is produced during the 

transition to PBO, as shown by mass spectrometry by a loss of weight 44 g/mol. 

The second peak is the decomposition of the main polymer chain, which occurs 

from 500 – 600oC, which is also shown in Figure 8. Precursor polymers with 

more rigid structures showed a higher glass transition temperature, as evidenced 

by DSC. The DSC results showed a glass transition within the range of 375 – 

475oC for all of the polymers tested, as shown in Figure 9. 
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Figure 9: DSC curves of HPI membranes, labeled by glass transition 

temperature42 

 Calle et al. showed that the thermal rearrangement temperature was 

proportional to the glass transition temperature42. 

 In 2013 Jo et al. studied the effect of network structure on the gas 

separation properties of PBO membranes. They tested ten PBO membranes 

formed from ten different polyimide precursors. These precursors were formed 

from eight non-thermally rearrangeable aromatic diamines, one dianhydride, and 

one thermally rearrangeable hydroxyl diamine, all with different structures. The 

structures of these diamines and dianhydrides are shown in Figure 10. 
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Figure 10: Chemical structures of monomers used in synthesis of HPIs to 

compare effects of diamine structure on gas separation properties43 

 The thermally rearrangeable hydroxyl amine and dianhydride formed 90% 

of the main structure of the polymide, with one of the eight non-thermally 

rearrangeable diamines comprising the other 10%43. Since these diamines do not 

undergo thermal rearrangement, they can be used in conjunction with other 

precursors that do in order to influence the separation properties of the resulting 

PBO. PBOs formed in this manner are referred to as polybenzoxazole-co-

polyimides (PBO-co-PIs). 

 The selectivities and permeabilities of the ten membranes were 

determined by Jo et al. using a constant volume, variable pressure time-lag 

method. The PBO membranes were split into the following three groups: those 
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with two benzenes connected by a methylene group (A), those with multiple 

benzene rings connected directly to each other (B), and those with relatively long 

structures with connections consisting of oxygen and/or isopropylidine molecules 

(C). Jo et al. also compared them to a PBO homopolymer43. 

 Jo et al. found the molecular weight distributions, glass transition 

temperatures, and other general properties of the ten polymers using various 

methods including GPC, TGA, and DSC. The results showed that none of the 

groups of polymers or the polymers themselves stood out, except for two of 

them, which had much higher number average molecular weights than the 

others43. A pattern arose within the glass transition temperature results, which 

showed that the more rigid polymers lacking flexible connecting groups tended to 

have higher glass transition temperatures than their more flexible counterparts43. 

Another pattern was that the polymers whose precursors contained bulky side 

groups had lower densities after thermal rearrangement, and therefore had a 

higher fractional free volume43. 

 Jo et al.’s experiments examining the gas transport properties of the 

various membranes resulted in clear patterns. As stated earlier, the polymers 

with more and bulkier side groups caused more inefficient packing, which in turn 

increased the FFV and permeabilities of those membranes. The reverse effect 

was seen for their selectivities. Jo et al. reiterated that flat and less sterically-

hindered structures had the most efficient packing and higher selectivities43. 

 Jo et al. compared the polymers in group C and showed that para-

linkages tended to result in higher permeabilities than meta-linkages, because 
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the para-linkages would allow more space within the structures. Meta-linked 

polymers also have lower rotational mobility, which decreases the spaces 

through which gas molecules can diffuse43. 

 Overall, the polymer with the highest permeability was 4,4’-methylene-bis-

(3-chloro-2,6-diethylaniline) (MCDEA)43, whose base structure is shown in Figure 

10. This follows the same pattern, since none of the other polymers have as 

many or as bulky side groups as MCDEA. MCDEA also had high selectivity due 

to its rigid structure43. 

 The thermally rearranged PBO from Jo et al. in 2013 was formed by 

heating a small amount of polyimide solution on a glass plate at 60oC for one 

hour, then 100oC for one hour, then 150oC for an hour, and so on until 250oC. It 

was then heated at 5oC/min to 300oC and held for an hour, then heated at the 

same rate to 400oC and held for two hours43. The majority of studies examined 

thus far39-43 have formed the polyimide in this same manner and performed 

thermal rearrangements to form PBO using the same method. This method was 

introduced by Doherty et al. in 201040, and is widely regarded as the most 

effective method of polyimidization and thermal rearrangement into PBO. This 

amount of heating and time caused approximately 90 – 99% conversion of the 

precursors into PBO. The conversion had little effect on the FFV or gas transport 

properties of the membranes43. 

 Various techniques have been developed to mitigate the effects of 

physical aging and plasticization. Cross-linking both the precursor polyimide31,32 

and the thermally rearranged polybenzoxazole39 enormously increase the 
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resistance of the membrane to physical aging and plasticization. The resistance 

of PBO-co-PIs to aging and plasticization can be increased by using non-

thermally rearrangeable diamines that are highly rigid and have aromatic 

structures43. The method of imidization also has an effect on the resistances to 

aging and plasticization, with polyimides formed by the azeotropic method 

showing the highest resistance40. 

Industrial Viability of Polybenzoxazole Membranes 

 Industrial use of polybenzoxazole membranes would involve processing it 

into usable forms, namely hollow fibers. According to a study by Kim et al. in 

2012, it is very easy to form the PBOs into different shapes. This is because the 

thermal rearrangement from polyimide to polybenzoxazole is done when the 

polyimide is already in its final membrane form. Since polyimides are highly 

soluble in organic solvents, this shaping of the precursor membrane is 

straightforward. The polyimide will be dissolved in a solvent then formed into its 

desired shape, such as hollow fibers via spinning, then the hollow fibers will be 

thermally rearranged while retaining their shape. These thermally rearranged 

hollow fibers performed similarly to previous TR-PBO membranes in terms of 

permeability and selectivity44. 

Summary of Polybenzoxazole Performance 

 Table 2 summarizes the performances, in permeability and selectivity, of 

the various designs of PBO membranes from studies examined in this review. 
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Table 2: Gas permeability and selectivity of PBO membranes 

Polymer Structure Permeability (barrer) Selectivity Ref 

    CO2 N2 CH4 CO2/CH4 N2/CH4   

tPBO 6FDA+bisAPAF 4201 284 151 28 1.88 40 

aPBO 6FDA+bisAPAF 398 19 12 33 1.58 40 

cPBO 6FDA+bisAPAF 5568 431 252 22 1.71 40 

TR-PBO 6FDA+bisAPAF 261 12.6 7.5 35 1.68 39 

XTR-PBO-5 6FDA+bisAPAF+DABA(5) 746 29.6 19.9 37 1.49 39 

XTR-PBO-10 6FDA+bisAPAF+DABA(10) 980 50.9 33 30 1.54 39 

XTR-PBO-15 6FDA+bisAPAF+DABA(15) 668 29.8 19.4 34 1.54 39 

XTR-PBO-20 6FDA+bisAPAF+DABA(20) 440 19.7 12.4 35 1.59 39 

PBO-MCDEA ODPA+bisAPAF(8)+MCDEA(2) 35.3 1.36 0.86 41 1.58 43 

PBO-MDA ODPA+bisAPAF(8)+MDA(2) 18 0.66 0.41 44 1.61 43 

PBO-DAM ODPA+bisAPAF(8)+DAM(2) 23.5 0.79 0.43 55 1.84 43 

PBO-OT ODPA+bisAPAF(8)+OT(2) 16.8 0.57 0.32 53 1.78 43 

PBO-BAP ODPA+bisAPAF(8)+BAP(2) 11.9 0.39 0.22 54 1.77 43 

PBO-BAPP ODPA+bisAPAF(8)+BAPP(2) 18.8 0.62 0.41 46 1.51 43 

PBO ODPA+bisAPAF 15.7 1.25 1.74 9.0 0.72 43 

 

Other High Performance Polymers 

 Along with polybenzoxazole, two other polymers have been recently 

identified as having exceptional gas separation properties, especially for the 

N2/CH4 pair. These are perfluoropolymers and polymers of intrinsic microporosity 

(PIMs). These alternative polymers will be discussed briefly. 

Perfluoropolymers 

 Perfluoropolymers employ the very powerful bond strength of carbon-

fluorine bonds to increase the stability, mechanical resistance, thermal 

resistance, and chemical resistance of polymers. The structure of a 

perfluoropolymer is very similar to that of a polyimide or polybenzoxazole but 

highly augmented with fluorine molecules6. Several research groups45-48 have 

shown that perfluoropolymers are highly capable of specifically separating 
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nitrogen from natural gas, second only to the thermally rearranged 

polybenzoxazole, as shown in Figure 116. 

 

Figure 11: N2/CH4 upper bound with separation properties for various TR-PBO 

(circles), perfluoropolymers (diamonds), and PIMs (squares)6 

 This high selectivity and permeability is due to the ability of fluorinated 

polymers to dissolve light gases while blocking hydrocarbons49. This trait also 

decreases susceptibility to hydrocarbon-induced plasticization6. 

Polymers of Intrinsic Microporosity (PIMs) 

 Breaking down the name of these polymers, microporosity refers to the 

size of the free volume elements throughout the membrane, which are very small 

compared to conventional membranes. The microporosity is created by 

extremely rigid, yet contorted, corkscrew structures, which interrupts their chain 

packing and results in high selectivity and permeability6. These micropores are 

intrinsic due to their independence from any thermal or mechanical modifications 

on the membrane. PIMs were first presented by Budd et al. in 2004 as a 

simulacrum of the structure of zeolites constructed of a combination of inorganic 

and organic compounds50. As shown in Figure 11, PIMs adequately separate 
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nitrogen from natural gas, although not as well as PBOs or perfluoropolymers. 

Budd et al.50 and others51-53 demonstrated this over the last decade. 

Future Outlook and Conclusions 

 Purification of natural gas via polymer membrane separation has vastly 

improved since its conception. The first generation of polyimides possessed good 

separation properties, which were improved by varying their monomers, 

implementing thermal annealing, or creating cross-linking. The selectivity and 

permeability of the polyimides are affected by the free volume elements and 

rigidity of the polymer chains. These two properties are governed by the size and 

polarity of side groups, the spatial configuration of linkages, and the type of 

bridging groups. The best values of selectivity and permeability were attained 

with large and/or polar pendant groups, meta linkages, and bridging groups with 

high rotational energy. The membranes are also resistant to plasticization and 

physical aging. 

 The polyimide membranes were improved via thermal rearrangement to 

polybenzoxazole. Polybenzoxazole has better gas transport properties than 

polyimide, which are determined by the same structural concepts. In general, 

PBO exhibits much better separation ability than polyimide, due to increased free 

volume and backbone rigidity, and decreased free volume distribution. Many 

studies were done to further improve the properties of PBO, including changing 

the monomers used in the structure of the precursor polyimide, utilizing different 

imidization routes, and instituting cross-linking. 
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 Thermally rearranged PBO, along with other emerging separation 

methods including perfluoropolymers and polymers of intrinsic microporosity 

have consistently exceeded the upper bound for the trade-off between selectivity 

and permeability, with PBO and PIMs showing the greatest values for both. 

Perfluoropolymers, while showing magnificent ability to separate nitrogen from 

natural gas, are outclassed by PBO. All these methods also have excellent 

resistance to plasticization and chemical and thermal degradation. 

 However, industrial processes still require great amounts of membranes to 

efficiently separate gases. Further studies will need to be done to continue to 

enhance the selectivity and permeability to make large-scale applications more 

economically feasible. 
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CHAPTER III 

POLYIMIDE SYNTHESIS AND MEMBRANE FORMATION 

Materials and Equipment 

 Materials were purchased from Sigma Aldrich Co. LLC (USA) except for 

bisAPAF, which was purchased from Matrix Scientific (USA). These materials are 

the candidate dianhydrides listed in Chapter I of the thesis, bisAPAF, N-methyl-2-

pyrrolidinone (NMP), and o-xylene (OX). All materials were of reagent grade and 

used without further purification or pretreatment. The oven used was a Ney 

Vulcan 3-550, shown in Figure 12. The reflux apparatus comprised of a hot plate, 

a 1 L beaker filled with approximately 700 mL of mineral oil (Sigma Aldrich Co. 

LLC (USA)), a 300 mL round-bottom flask, a dean stark trap, and a condenser 

column. All glassware was purchased from Fisher Scientific (USA). 

 

Figure 12: Ney Vulcan 3-550 oven 
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Synthesis 

Hydroxy-Polyamic Acid Synthesis 

 The procedure, adapted from Soo et al. from 201343, began with 

dissolving 10 mmol of bisAPAF in enough NMP to fully dissolve, then cooling the 

solution to below 3oC. Then 10 mmol of the selected dianhydride and enough 

NMP to dissolve it was added and the solution was left at below 10oC for 12 

hours. This solution had a viscous yellow appearance. 

Hydroxy-Polyimide (HPI) Synthesis 

 The solution was then transferred to a round-bottom flask, along with OX 

in an equal volumetric amount to the NMP, and set up with a dean stark trap with 

a water-circulated condenser and a thermometer. The flask was heated in an oil 

bath to between 160-180oC, held at about 165oC, while distilling off water formed 

by the condensation reaction. Once all the water was removed, the solution was 

left to react for 6 hours. The solution was then cooled and the HPI was 

precipitated with a 3:1 water:methanol solution then vacuum filtered (the vacuum 

filtration apparatus is shown in Figure 31 in Chapter V). The powder was washed 

in a 3:1 water:methanol solution for 12 hours, and then dried in the oven at 

110oC for 12 hours. 

Membrane Formation 

 After drying, the HPI powder was dissolved in NMP to make a 30wt% 

solution and cast on a glass plate wrapped in Teflon™ and levelled within the 

oven using aluminum foil and a bubble level. This plate was then heated in the 

oven at 1oC/min to 250oC, spending 1 hour each at 60, 100, 150, 200, and 
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250oC. It was then allowed to cool to room temperature and the dry membrane 

was peeled off. 

Thermal Rearrangement 

 To perform the thermal rearrangement, the membrane was placed 

between two ceramic plates to prevent curling of the membrane and heated in 

the oven at a rate of 5oC/min to 300oC and held there for an hour, then at a rate 

of 5oC/min to 400oC and held there for two hours. After thermal rearrangement, 

the membrane was cooled to room temperature. 

HPI Characterization 

 The HPI powders were characterized using attenuated total reflectance 

Fourier transform infrared spectroscopy (ATR-FTIR, referred to henceforth as 

FTIR) and thermal gravimetric analysis (TGA). The FTIR was a Nicolet IR200 

and the TGA was a Simultaneous DSC-TGA (SDT) Q600/2960 from Thermo 

Fisher Scientific. The temperature program run on the TGA matched that of the 

procedure for thermal rearrangement, with heating at 5oC/min to 300oC and 

holding for one hour, then heating at 5oC/min to 400oC and holding for two hours. 

The number average and weight average molecular weights of the HPIs were 

found using a Varian ProStar Gel Permeation Chromatograph (GPC). 

Results 

FTIR Data 

 All FTIR spectra for the HPI samples were similar, and the spectrum for 

sample 22 was chosen to represent all of the spectra, since it has the clearest 

peaks. Figure 13 shows the FTIR spectrum for sample 22. 
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Figure 13: FTIR data for HPI sample 22 

 The analysis tool included with the Nicolet IR200 software provided peak 

wavenumber measurements for each sample. The provided wavenumbers of 

important peaks varied slightly from sample to sample, so approximate averages 

were found by eye, so the values may not be exact. The wavenumbers of 

important peak locations from Figure 13 along with their corresponding bonds 

and/or functional groups are shown in Table 3. 

Table 3: Wavenumbers of important peaks and their corresponding bonds and/or 

functional groups for HPIs 

Location Absorption peak (cm-1) Type of bond54 
A 700 C-X 
B 860 para/meta-disubstituted benzene 
C 1000 fluoroalkane 
D 1100 trifluoromethyl 
E 1200 trifluoromethyl 
F 1250 C-N 
G 1370 aromatic nitro 
H 1450 aromatic C=C 
I 1520 aromatic C=C/C-N 
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Table 3 cont. 

J 1650 aromatic C=C/N-C=O 
K 1720 carbonyl 
L 1790 carbonyl 
M 2000-3700 alcohol/phenol 

 

TGA Data 

   The TGA data for the samples was similar. The TGA data for HPI sample 

3 (HPI-ODPA) is shown below in Figure 14. Sample 3 was chosen as a 

representative graph because the values of the weight percent are approximately 

at their average. 

 

Figure 14: TGA data for HPI sample 3 

   This TGA curve shows a gradual weight loss until approximately 160oC, 

where it starts decreasing more sharply. Then at 300oC, where the sample was 
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held for one hour, the weight decreased almost 10%. At 400oC the sample was 

held for two hours and the weight decreased another 10%, for a total of 32% 

weight loss. 

GPC Data 

   The GPC was used to find the number average molecular weights (Mn) 

and weight average molecular weights (Mw) of three HPI-ODPA, three HPI-

BTDA, and three HPI-PMDA samples. The averages of these values for each 

HPI, along with the average polydispersity index (PDI) for each HPI, are shown in 

Table 4. 

Table 4: Average Mn, Mw, and PDI for each HPI sample 

HPI Mw (g/mol) Mn (g/mol) PDI Mw StDev Mn StDev 
HPI-ODPA 55000 31000 1.8 2200 820 
HPI-BTDA 16000 7600 2.1 470 590 
HPI-PMDA 14000 5900 2.4 470 50 

 

Discussion 

FTIR Data: 

 The majority of the spectra show a peak at 2300-2400 cm-1, corresponding 

to CO2, which shows that the apparatus used was easily contaminated by CO2. 

 All of the bonds and functional groups in Table 3 show that the 

synthesized samples had characteristic structures of polyimides. Figure 15 

shows the structure for the HPI made from bisAPAF and ODPA 

(bisAPAF+ODPA), and it can be seen that all of the bonds listed in Table 3 are 

present in the structure. This is analogously the same for HPIs made from 

bisAPAF and BTDA and those made from bisAPAF and PMDA, as BTDA and 
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PMDA have no bonds or functional groups that are different from those in 

bisAPAF+ODPA. According to Guierrez-Wing et al., peaks at 1718 cm-1 and 

1788 cm-1 are indicative of symmetric and asymmetric C=O stretching, 

respectively. This shows that the hydroxyl-polyamic acid was imidized into 

hydroxyl-polyimide40,41,55,56. More peaks characteristic of polyimides are those at 

1649 cm-1 and 1538 cm-1, which indicate the presence of O=C-N and C-N bonds, 

respectively56,57. 

 

Figure 15: bisAPAF+ODPA structure43 

 In addition to the specific peak values, most of the FTIR spectra generally 

match part a of the following Figure 16, which shows the spectrum for a hydroxyl-

polyimide and its thermally rearranged polybenzoxazole58. 
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Figure 16: (a) FTIR spectrum for HPI, and (b) FTIR spectrum for thermally 

rearranged PBO from HPI in (a)58 

TGA Data 

   The TGA curves are generally consistent with that of the literature 

(example TGA curves for HPI are shown in Figures 17 and 18), indicating that all 

samples should undergo some degree of thermal rearrangement under similar 

conditions. The weight loss shown in the TGA curves corresponds to the loss of 

CO2, which is expected from thermal rearrangement according to the mechanism 

in Figure 19. This weight loss does not fully occur in many of the TGA curves, 

indicating that some of the HPIs synthesized may not have fully undergone 

thermal rearrangement. This is most likely due to the membranes being much 

thicker than those studied in literature. 
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Figure 17: TGA curve for HPI at 400oC for 2 hours with respect to time43 

 

 

Figure 18: TGA curve for HPI with respect to temperature43 

 

 

Figure 19: General mechanism for thermal rearrangement of HPI to PBO9 
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GPC Data 

 The Mn and Mw values for the HPI-BTDA and HPI-PMDA agreed with 

values obtained by Calle et al. in 2012 for HPIs made from bisAPAF and 6FDA 

using azeotropic imidization41. The molecular weight values for HPI-ODPA found 

in this study were close to those of the homopolymer, which was made from 

bisAPAF and ODPA, found by Soo et al.43. The HPI-ODPA had a higher 

molecular weight due to the ether oxygen present in its structure. This ether 

oxygen is highly electron donating and can share its unbonded electrons with the 

amine groups in the diamine structure59, thus facilitating bond creation between 

the diamine and dianhydride monomers. This means that there will be more 

monomers per polymer chain and therefore the HPI-ODPA will have a higher 

molecular weight. The HPI-BTDA, on the other hand, contains a bulkier pendant 

group in its carbonyl group. This bulkiness creates an obstacle that prevents 

other monomers from approaching close enough to the BTDA to bond with it. 

This will result in fewer monomers per polymer chain and thus a lower molecular 

weight.43. The carbonyl group in the BTDA is also moderately electron 

withdrawing, which also reduces reactivity of the dianhydride59. PMDA is the 

most reactive of the dianhydrides studied in this project, but it is also has the 

smallest molecular weight, so equivalent chain lengths have lower molecular 

weights60. The PDIs found in this study were very close to the normal PDI for 

polyimides, which is 2.060. 

Conclusion 
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 Following the azeotropic imidization method, HPIs containing the diamine 

biAPAF and one of four dianhydrides, which were ODPA, BTDA, BPDA, and 

PMDA, were synthesized. Judging by the FTIR and TGA data, hydroxyl-

polyimides were indeed created, and they should successfully thermally 

rearrange into polybenzoxazole. 

 Multiple samples of HPI were synthesized and cast into membranes to be 

thermally rearranged for use in permeation testing.



 

48 
 

CHAPTER IV 

THERMAL REARRANGEMENT AND PERMEATION TESTING 

Materials and Equipment 

 The materials used for this section of the project were the membranes 

cast previously described in Chapter 3. The oven used for thermal 

rearrangement was the Ney Vulcan 3-550 used in Chapter 3. The permeation 

test cell used was a PTC 700 1” Test Cell For Vapor Phase Testing purchased 

from Pesce Labs, Inc. (USA). The manifold was built in-house using off the shelf 

components. The gas sampling bags were Standard FlexFoil® Gas Sample Bags 

purchased from SKC, Inc. (USA). Gas chromatograph use was provided by the 

Energy and Environmental Research Center (EERC) in Grand Forks, ND. The 

gas chromatograph was an Agilent Technologies 7890A Refinery Gas Analyzer 

Gas Chromatograph. All gases were purchased from Praxair (USA). The ceramic 

plates were 6 in by 6 in Duran Laboratory Glass Ceramic Lab Protection Plate, 

purchased from Fisher Scientific (USA). 

Thermal Rearrangement 

 To perform the thermal rearrangement, the membrane was placed 

between two ceramic plates and heated in the oven at a rate of 5oC/min to 300oC 

and held for an hour, then at a rate of 5oC/min to 400oC and held for two hours43. 

After thermal rearrangement, the membrane was cooled to room temperature. 

The thermally rearranged membranes were characterized using 
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attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR, 

referred to henceforth as FTIR). 

Permeation Testing 

 Figure 20 shows a diagram of the manifold and its connections. 

 

Figure 20: Diagram of in-house constructed gas permeation manifold setup 

 Each half of the manifold consisted of a flowmeter to control the flow of 

gas, a pressure gauge to measure inlet pressure, connecting tubes going to and 

from the permeation test cell (shown in Figures 21 and 22), another pressure 

gauge to measure outlet pressure, a three-way valve to control the direction of 

gas flow (open, closed, and vent), and a two-way valve to control gas flow to the 

sample bag. The test gas, which was a mixture of 20.1% methane and 79.9% 
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nitrogen, flowed through one half of the manifold. Through the other half of the 

manifold flowed the carrier gas, which was helium. 

 

Figure 21: Top view of closed PTC 700 1” Test Cell for Vapor Phase Testing 

from Pesce Labs, Inc. 

 

Figure 22: Open PTC 700 1” Test Cell for Vapor Phase Testing from Pesce Labs, 

Inc. 
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 This manifold setup is standard for membrane flux quantification, and was 

constructed by the author of this thesis with assistance from a few people in the 

department. 

 A membrane was placed in the permeation test cell, which was then 

connected appropriately to the manifold. Each gas was turned on at a specified 

flow rate, both of which are listed in Table 13 in Chapter VI, and allowed to flow 

across opposite sides of the membrane for 5-10 minutes, while the three-way 

valve vented them to atmosphere, in order to reach steady state, then the three-

way and two-way valves were positioned to allow flow into the gas bags on the 

permeate and retentate sides. While the gas bags were filling, pressure readings 

were recorded for later use in the permeation equation. When the gas bags were 

full, they were closed and the flow was vented again. 

 A gas chromatograph was then used to analyze the permeate and 

retentate gases. 

Results 

 Twenty-one HPI membranes were partially thermally rearranged into 

polybenzoxazole (PBO) via the thermal rearrangement process outlined above. 

Seven HPI-ODPA, seven HPI-BTDA, and seven HPI-PMDA were partially 

thermally rearranged into PBOs. 

Polybenzoxazole Characterization 

 Three of each PBO-dianhydride (PBO-DA) were subjected to FTIR. All 

FTIR spectra for the PBO samples were similar. FTIR spectra for HPI samples 

have been overlaid on spectra for their respective PBOs in Figures 23 through 
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25. Figure 23 shows sample 20, which is an HPI-BTDA, and sample PBO-BTDA-

03, Figure 24 shows sample 26, which is an HPI-ODPA, and sample PBO-

ODPA-02, and Figure 25 shows sample 34, which is an HPI-PMDA, and sample 

PBO-PMDA-03. These pairs of spectra have been chosen because they give the 

clearest contrast between the HPIs and their respective PBOs and allow for the 

easiest comparison. The peaks that are most relevant to thermal rearrangement 

are marked on each spectra, and shown in Table 5. 

 

Figure 23: FTIR spectra for samples 20 (HPI-BTDA, lighter spectrum) and PBO-

BTDA-03 (darker spectrum) 
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Figure 24: FTIR spectra for samples 26 (HPI-ODPA, darker spectrum) and PBO-

ODPA-02 (lighter spectrum) 

 

Figure 25: FTIR spectra for samples 34 (HPI-PMDA, darker spectrum) and PBO-

PMDA-03 (lighter spectrum) 

 Table 5 shows the important peaks found by the Nicolet IR200 software 

and their corresponding functional groups. These peaks were found in the same 

manner as the peaks in Chapter III. Each PBO spectrum had similar, but not 
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exactly the same, peak locations, so a general average for each set of similar 

peak locations was found by eye. The peaks marked with letters in Figures 23-25 

are also denoted in Table 5. 

Table 5: Wavenumbers of important peaks and their corresponding bonds and/or 

functional groups for PBOs 

Location Absorption peak (cm-1) Type of bond54 
A 720 benzoxazole ring 

 860 para/meta-disubstituted benzene 

 1000 fluoroalkane 
B 1060 benzoxazole ring 

 1200 trifluoromethyl 

 1250 C-N 

 1370 aromatic nitro 

 1450 aromatic C=C 

 1500 aromatic C=C 
C 1600 benzoxazole ring 
D 1720 carbonyl 
E 1790 carbonyl 
F 2000-3700 alcohol/phenol 

 

Permeability Calculations 

 The flow rates for the gases were controlled with the regulators on the 

respective gas cylinders. The regulator for the helium cylinder directly measured 

the helium flow, so the value for the helium flow rate was used directly. The 

regulator for the test gas cylinder did not read the flow of the test gas directly, but 

it did show the flow of Argon, so the flow measurement for Argon was used and 

later converted into flow of the test gas. This was done using the following 

equation61: 𝑄2 = 𝑄1 ∗ √𝑆𝐺1/𝑆𝐺2 
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 Where Q2 is the converted flow rate of test gas, Q1 is the observed flow 

rate of Argon, SG1 is the specific gravity of Argon (1.379), and SG2 is the specific 

gravity of the test gas. The specific gravity of the test gas was found using the 

following equation: 𝑆𝐺2 = 𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 ∗ 𝑆𝐺𝑚𝑒𝑡ℎ𝑎𝑛𝑒 + 𝑥𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 ∗ 𝑆𝐺𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 

 Therefore, 𝑆𝐺2 = 0.201 ∗ 0.5537 + 0.799 ∗ 0.9669 = 0.8838 

 Substituting this into the flow rate conversion equation gives: 

𝑄2 = 𝑄1 ∗ √ 1.3790.8838 = 1.249𝑄1 

 The following equation62, was used for permeability calculation: 

𝑃𝑖 = 𝑙 ∗ 𝑥𝑝𝑒𝑟𝑚 𝑖 ∗ 273 𝐾 ∗ 𝑝𝑎𝑡𝑚𝐴 ∗ (𝑥𝑓𝑒𝑒𝑑 𝑖 ∗ 𝑝𝑓𝑒𝑒𝑑 − 𝑥𝑝𝑒𝑟𝑚 𝑖 ∗ 𝑝𝑝𝑒𝑟𝑚) ∗ 𝑇 ∗ 76 𝑐𝑚𝐻𝑔 ∗ 𝑑𝑉𝑑𝑡  

 Where Pi is the permeability of species i in (𝑐𝑚3(𝑆𝑇𝑃) ∗ 𝑐𝑚)/(𝑐𝑚2 ∗ 𝑠 ∗𝑐𝑚𝐻𝑔), 𝑙 is the thickness of the membrane in cm, xperm I is the molar 

concentration of species i in the permeate gas, patm is the atmospheric pressure 

in cmHg, A is the surface area of the membrane in cm2, xfeed I is the molar 

concentration of species i in the feed gas, pfeed is the pressure of the feed gas in 

cmHg, pperm is the pressure of the permeate gas in cmHg, T is the temperature of 

the system in K, and dV/dt is the flow rate of the feed gas in cm3/s. 

 Table 6 shows the calculated permeabilities and selectivities for the 

various runs of testing for each membrane, along with literature values for the 

permeabilities. The N2/CH4 selectivity (αN2/CH4) was found using the following 

equation: 
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∝𝑁2/𝐶𝐻4= 𝑃𝑁2𝑃𝐶𝐻4 

Table 6: Run number, type of membrane, calculated permeabilities and 

selectivities for various membranes, and literature values for permeabilities 

Run Membrane 
PCH4 
(barrer) 

PN2 
(barrer) 

N2/CH4 
Selectivity Lit. PCH4 (barrer) Lit. PN2 (barrer) 

1 Kapton 0 -10000000 - 0.0031334 0.03558 

2 Kapton 0 7000000 - 0.00313 0.035 
3 Kapton 0 3000000 - 0.00313 0.035 
4 Kapton 0 -4000000 - 0.00313 0.035 
5 Kapton 0 -5000000 - 0.00313 0.035 
6 Kapton -40000 -10000000 300 0.00313 0.035 
7 HPI-BTDA 0 -30000000 - 0.22635 0.4559 

8 HPI-BTDA 0 -20000000 - 0.226 0.45 
9 HPI-BTDA 0 -30000000 - 0.226 0.45 

10 HPI-ODPA 0 0 - 0.0236 0.07160 

11 HPI-ODPA 0 20000000 - 0.02 0.071 
12 PBO-BTDA 0 200000000 - 1558 1053 

13 PBO-BTDA 0 0 - 15 10 
14 PBO-ODPA 0 40000000 - 1.2543 1.7438 

15 PBO-ODPA 0 50000000 - 1.25 1.74 
 

 For a more detailed account of the steps taken to calculate permeabilities, 

please refer to Chapter VI. 

Discussion 

FTIR Data 

 Figures 23-25 show that the HPIs probably were not fully thermally 

rearranged, since they still have some important peaks from the HPI spectra. The 

most distinct of these peaks is that of the wavenumber pertaining to the presence 

of phenol/alcohol groups at 2000-3700 cm-1. This peak should be completely 

gone for the PBO, since the –OH group is the one that allows an HPI to thermally 
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rearrange by bonding with the nitrogen of the diamine portion of the HPI. This 

can be seen in Figure 26. 

 

Figure 26: General mechanism for thermal rearrangement of HPI to PBO9 

 More evidence that the HPIs were not thermally rearranged correctly is 

that the multiple peaks for carbonyl groups at 1720 cm-1 and 1790 cm-1 remained 

in the PBOs. These also should have disappeared during thermal 

rearrangement. Despite not thermally rearranging completely, all of the spectra 

for the PBOs contain peaks around 1600 cm-1 and 1060 cm-1, which are 

indicative of the benzoxazole ring39,41,56,57. This means that some degree of 

thermal rearrangement occurred. Another peak that is important to PBO 

formation is at 723 cm-1. This peak represents the imide ring deformation, which 

happens as the new benzoxazole ring is formed58,63.  

 There are a number of possible reasons for the HPIs not fully rearranging. 

The most likely is that the oven used for this project was not a vacuum oven and 

did not have options for alternative atmospheres to air, as did the oven used in 

the study upon which the procedure was based43. In a vacuum or inert 

atmosphere the transport of CO2 released during thermal rearrangement would 

have been better than in an air atmosphere, which would facilitate higher 

conversion. Another possible reason is that the membranes were too thick, and 

transport of CO2 out of the polymer matrix was hindered by the sheer number of 
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chains present in the membrane. A longer reaction time may have rectified this 

somewhat. 

Permeation Testing 

 As can be seen in images of casts using HPI-PMDA in Chapter V, such as 

in Figures 41-43 or Figures 48-51, the membranes created with HPI-PMDA had 

rather prominent ridges that formed during solvent evaporation. These ridges 

occurred for all membranes made from HPI-PMDA, and were due to the 

contraction of the polymer solution as the solvent evaporated. This caused the 

Teflon that the solution was cast upon to contract and fold slightly, and the 

solution followed it as the solvent evaporated and the membrane solidified. 

These ridges proved to be too thick and inconsistent that they prevented the 

permeation test cell from sealing. As with the HPI-PMDA membranes, the PBO-

PMDA membranes were too ridged to allow the permeation test cell to seal, and 

therefore both were excluded from permeation testing. 

 Polyimides have nitrogen permeations of 0.035-35 Barrer and methane 

permeabilities of 0.00313-24 Barrer6,12,34,35,44,64-66. As discussed in Chapter II, 

polybenzoxazoles tend to have nitrogen permeabilities of 0.024-431 Barrer and 

methane permeabilities of 0.03-463 Barrer3,37,40. Even the lowest of the 

permeabilities calculated in this work is orders of magnitude higher than those 

values from literature. This means that one of two things happened during the 

synthesis and/or thermal rearrangement processes of this project. The first 

possibility is that polyimide and polybenzoxazole membranes with extremely high 

nitrogen and methane permeabilities, and high N2/CH4 selectivities, have been 
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created. The second, and more likely, possibility is that the method of permeation 

testing or the capability of the GC used was incapable of accurately measuring 

the separation properties of the membranes created. 

 According to the operator of the GC, its lowest detection limit is 

approximately 0.003 mol%, which accounts for all but one of the PCH4 values 

being zero, as seen in Table 14 in Chapter VI. Even if small amounts of methane 

were permeating through the membranes, the GC was unable to detect it. In the 

one run in which the GC detected the methane, the methane content was just 

barely 0.003 mol%, so it was lucky that enough permeated through the 

membrane to register. 

 Additional reasons for the lack of permeation data could be due to the 

membranes themselves, or due to the method of testing their permeabilities. The 

membranes were rather thick, compared to those discussed in literature, which 

had thicknesses of about 1-15 μm19. The thicknesses of the membranes in this 

project were much higher, as can be seen in Table 13 in Chapter VI, with the 

lowest being 0.254 mm. This was the thickness of the Kapton® commercial 

membrane; the membranes created were even thicker. These large thicknesses 

may have rendered the membranes impermeable, or perhaps more time was 

required to allow the gases to permeate through them than was allowed. 

 The manifold used in permeation testing was checked for leaks initially 

and periodically, but some could have developed during use and gone 

undetected. This would have allowed nitrogen or methane on either side of the 

membrane to escape into the atmosphere, or allowed air from outside the 
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manifold to enter into the gas bags. If air entered the gas bags it would have 

been an amount that would have overwhelmed the already miniscule amount of 

methane in the bags, thus making it even more difficult for the GC to detect them. 

Conclusion 

 Multiple samples of HPIs were synthesized and cast into membranes for 

the previous section of this project. Thermal rearrangement was attempted in 

order to convert these HPIs into PBOs. According to FTIR data, this was partially 

attained. There were many peaks in the FTIR spectra of the PBOs that indicated 

thermal rearrangement, but there were also peaks that showed that there 

remained structure from the HPIs. 

 The HPI and PBO membranes underwent permeation testing using a 

manifold setup, but adequate permeation data was not obtained. There are a few 

possibilities as to why this happened. The membranes may have been 

impermeable, or they were too thick to allow permeation in the time allowed. 

Another issue was that the GC used for this project couldn’t detect the low 

concentrations of nitrogen and methane in the permeate gas. A third possibility is 

that the integrity of the manifold was not high enough to permit accurate 

collection of gas samples. 
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CHAPTER V 

ADDITIONAL INFORMATION FOR CHAPTER III 

Synthesis 

Hydroxy-Polyamic Acid Synthesis 

 The hydroxyl-polyamic acid synthesis generally went well for all of the 

samples. This synthesis began with measuring out 10 mmol of 2,2’-bis(3-amino-

4-hydroxyphenyl)-hexafluoropropane (APAF). The molecular weight of APAF is 

366.26 g/mol, so 10 mmol would be 3.66 g. This 3.66 g of APAF was dissolved in 

N-methyl-2-pyrrolidinone (NMP) and cooled below 10oC in a refrigerator. After it 

decreased to below 10oC, 10 mmol of the dianhydride (DA) was added, along 

with enough NMP to dissolve it. The molecular weight of 4,4’-oxydiphthalic 

anhydride (ODPA) is 310.21 g/mol, so 10 mmol is 3.10 g. The molecular weight 

of 3,3’,4,4’-benzophenone tetracarboxylic dianhydride (BTDA) is 322.23 g/mol, 

so 10 mmol is 3.22 g. The molecular weight of 3,3’,4,4’-biphenyl tetracarboxylic 

dianhydride (BPDA) is 294.22 g/mol, so 10 mmol is 2.94 g. After sample 17 was 

synthesized, it was decided that many more membranes would be needed, so 

samples 18-35 used 20 mmol of APAF and dianhydride instead of 10 mmol. This 

resulted in sample weights of 7.325 g for APAF, 6.445 g for BTDA, 5.884 g for 

BPDA, and 6.204 g for ODPA. The masses of APAF and dianhydride and volume 

of NMP used for each sample are listed in Table 7. Samples 1-7, 17, 26, and 27 

used ODPA, samples 8-11 and 18-22 used BTDA, samples 12-16 and 23-25 
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used BPDA, and samples 28-35 used PMDA (this addition will be discussed 

later). 

Table 7: Mass APAF, mass DA, and volume NMP for samples 

Sample Mass APAF (g) Mass DA (g) Vol NMP (mL) 
1 3.769 3.150 40 
2 3.718 3.111 35 
3 3.788 3.235 70 
4 3.724 3.135 45 
5 3.730 3.190 40 
6 3.758 3.180 40 
7 3.731 3.159 50 
8 3.677 3.274 50 
9 3.674 3.244 45 

10 3.665 3.226 45 
11 3.670 3.227 40 
12 3.663 2.946 60 
13 3.663 2.940 65 
14 3.667 2.942 70 
15 3.666 2.947 60 
16 3.665 2.942 70 
17 3.667 3.112 35 
18 7.327 6.449 70 
19 7.329 6.450 70 
20 7.329 6.449 60 
21 7.328 6.451 70 
22 7.330 6.450 75 
23 7.331 5.887 90 
24 7.328 5.886 80 
25 7.328 5.887 80 
26 7.330 6.208 50 
27 7.235 6.206 50 
28 7.329 4.367 70 
29 7.329 4.368 75 
30 7.239 4.367 75 
31 7.328 4.367 70 
32 7.328 4.367 70 
33 7.327 4.367 75 
34 7.329 4.366 75 
35 8.810 5.249 90 
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 After all the DA was dissolved, the solution was allowed to react below 

10oC for 12 hours. The solution turned yellow for samples using ODPA (HPI-

ODPA), BPDA (HPI-BPDA), and PMDA (HPI-PMDA) and brown for BTDA (HPI-

BTDA). 

Hydroxy-Polyimide (HPI) Synthesis 

 The solution was removed from the refrigerator and added to a 300 mL 

round-bottom flask. Then o-xylene (OX) was added to match the volume of NMP 

used. The volume of OX used for each sample is shown in Table 8. 

 

Table 8: Volume OX used for each sample 

Sample vol OX (mL) 
1 40 
2 35 
3 70 
4 45 
5 40 
6 40 
7 50 
8 50 
9 45 

10 45 
11 40 
12 60 
13 65 
14 70 
15 60 
16 70 
17 35 
18 70 
19 70 
20 60 
21 70 
22 75 
23 90 
24 80 
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Table 8 cont. 

25 80 
26 50 
27 50 
28 70 
29 75 
30 75 
31 70 
32 70 
33 75 
34 75 
35 90 

 

 The round bottom flask was submerged into a bath containing 700 mL 

mineral oil and attached to a Dean-Stark trap and a condenser. This reflux 

apparatus was then placed on a hot plate. A picture of the apparatus can be 

seen in Figure 27, and a clear diagram of the apparatus, without the hot plate 

and oil bath, can be seen in Figure 28. As can be observed from the picture of 

the apparatus, the Dean-Stark trap has an open bottom with a stopcock. 
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Figure 27: Reflux apparatus used in the synthesis of hydroxyl-polyimides, 

specifically in the conversion of hydroxyl-polyamic acid to hydroxyl-polyimide 

 

 

Figure 28: Diagram of reflux apparatus 
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 This reflux apparatus worked by heating the oil bath, which in turn heated 

the solution in the flask. The water released from the condensation reaction that 

forms the polyimide formed an azeotrope with the OX and the vapor traveled up 

the Dean-Stark trap. Once it reached the condenser, the water condensed and 

fell into the trap, while the OX returned to the flask. The water was removed from 

the trap via the stopcock. This sequence of events allowed the removal of the 

water formed without interrupting the reaction. 

 The hot plate was set to approximately 170oC (or 338oF, since it was a 

Fahrenheit hot plate). As water accumulated in the trap by the previously 

described process, it was removed from the trap. As soon as some OX appeared 

in the trap the solution was ready to begin refluxing. It was allowed to reflux for 

six hours, then it was removed from the heat source and cooled by the 

atmosphere. 

 When it had cooled to room temperature, the solution was transferred 

from the round-bottom flask to a beaker. Approximately 100 mL of 3:1 

water:methanol solution was added the HPI solution. This caused the HPI to 

precipitate as a solid. This solid was filtered by a vacuum filtration apparatus 

constructed from some tubing, a T-junction tube piece, a filter with a rubber 

stopper, and a vacuum flask. One side of the T-junction piece was connected to 

a water faucet and the faucet was turned on, and another end of the T-junction 

was connected via tubing to the flask. This created suction that was used to filter 

the water/NMP/methanol/OX waste from the precipitate. The waste was disposed 
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of and the precipitate was transferred to a beaker. A picture of the vacuum 

filtration apparatus can be seen in Figure 29. 

 

 

Figure 29: Picture of vacuum filtration apparatus 

 Another 100 mL of 3:1 water:methanol solution was added to the beaker 

and allowed to soak for two days. After two days, the beaker was refilled with 

more 3:1 water:methanol solution and placed on a stir plate. The precipitate was 

then washed using the stir plate for over twelve hours. After washing, the beaker 

sat until almost all of the water/methanol solution was evaporated. It was then 

broken up and dried in the oven for twelve hours at 110oC. 

 At this point one of the obstacles of the research was reached. The first 

sample synthesized was heated in the oven at 150oC before all of the 

water/methanol solution was allowed to evaporate. This caused the HPI to 

harden and stick to the beaker. To re-dissolve it, NMP was added. Once it was 

dissolved, it was precipitated once more and filtered, but in addition to the yellow 
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HPI solid there was also a fluffy white solid. This solid was most likely 

contamination from the second precipitation, and the sample had to be thrown 

out. This mistake was not made again, and the temperature of drying was 

lowered. 

 After the HPI samples were dried, they were broken up as needed, 

weighed, and placed in bottles. The weights of HPI samples 2 through 35 can be 

seen in Table 9. Note that samples 3, 4, 6, and 7, ended up hardening to the 

beaker, and their weights are estimated using the mass of empty beakers. This 

may have resulted in small errors, but these errors only affected the composition 

of the solution that was cast. Since all solvent is removed during casting, this 

error can be considered negligible. 

 

Table 9: Weights of HPI samples 

Sample Mass (g) 
1 - 
2 4.654 
3 9.028 
4 7.994 
5 6.510 
6 3.794 
7 4.326 
8 7.916 
9 8.351 

10 7.356 
11 8.046 
12 6.021 
13 7.777 
14 7.766 
15 6.744 
16 9.442 
17 8.584 
18 18.834 
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Table 9 cont. 

19 17.244 
20 19.481 
21 11.788 
22 19.042 
23 - 
24 - 
25 - 
26 17.104 
27 19.262 
28 15.656 
29 16.438 
30 9.189 
31 14.361 
32 - 
33 16.208 
34 16.294 
35 26.064 

 

 Samples 23-25 were not included in the previous table for reasons 

discussed below. 

 The samples were then subjected to FTIR and TGA measurements, the 

results of which can be found in the results section of this chapter. The samples 

that were hardened in the beaker, samples 3, 4, 6, and 7, were not subjected to 

FTIR as not enough powder could be gathered to use the instrument. 

Membrane Formation 

 The samples were dissolved in NMP to form 20wt%, 30wt%, and 20wt% 

solutions for HPI-ODPA, HPI-BTDA, and HPI-BPDA, respectively. Once the 

solution was dissolved, it was stored in the refrigerator overnight to remove any 

bubbles within the solution. A 4” x 4” glass plate was covered in Teflon®, and the 

solution was poured onto it until it formed an approximate circle that was slightly 

more than 2” in diameter. The plate and solution were placed in the oven and 
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heated for one hour each at 60, 100, 150, 200, and 250oC, with a ramp of 

1oC/min. 

 This step is where a few obstacles were encountered. The first was when 

the first solution was cast. After heating, the solution and polymer had completely 

disappeared. It was quickly apparent that the solution had slid off of the plate. 

This led to the use of a level and some aluminum foil to keep the plate level so 

the solution wouldn’t move. The second obstacle was when the HPI-BTDA 

solutions were originally dissolved in NMP to make a 20wt% solution. This 

resulted in only partial membranes formed, so the concentration was raised to 

30wt%. A third recurring obstacle was that sometimes the membranes simply 

wouldn’t turn out the required shape or size. It was found that these membranes 

couldn’t be re-dissolved, so they were disposed of. Some membranes were big 

enough, but not a viable shape. These membranes were simply cut to the 

required shape with a pair of scissors. 

 The largest obstacle experienced during the casting step was with the 

HPI-BPDA. The first sample of powdered HPI-BPDA wouldn’t dissolve, so more 

NMP was added until it did. It was then cast and the cast was unsuccessful due 

to too low of a concentration. The solution was left out to evaporate over the next 

few days and eventually enough NMP evaporated such that the solution was 

back to approximately a 20wt% solution. It was cast once more and failed again. 

All subsequent casts of HPI-BPDA failed, and when a second group of HPI-

BPDA samples were synthesized they became solid right after the HPI synthesis 
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step. This solid HPI-BPDA proved to be un-dissolvable, and thus samples 12-16 

and 23-25 were not included in any further measurements. 

 Since three dianhydrides were necessary to get significant results from 

this research, benzene-1,2,4,5-tetracarboxylic acid, also known as pyromellitic 

dianhydride (PMDA), was chosen as a replacement dianhydride. It was subjected 

to the exact same synthesis and casting procedures as the other three 

dianhydrides. PMDA has a molecular weight of 218.12 g/mol, so 20 mmol is 

4.362 g. 

 The masses of NMP used to dissolve each sample are shown in Table 10. 

Table 10: Mass of NMP used for casting solution 

Sample Mass NMP (g) 
2 17.776 
3 36.261 
4 32.061 
5 23.616 
6 15.153 
7 17.304 
8 28.784 
9 15.214 

10 15.005 
11 16.827 
12 17.241 
13 19.398 
14 - 
15 - 
16 34.275 
17 34.338 
18 44.009 
19 40.323 
20 45.376 
21 27.518 
22 44.454 
23 - 
24 - 
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Table 10 cont. 

25 - 
26 39.974 
27 44.924 
28 36.434 
29 38.265 
30 21.457 
31 57.527 
32 - 
33 37.893 
34 38.016 
35 60.576 

 

 Samples 14 and 15 ended up needing more than the initial amount of 

NMP to dissolve and it was added periodically and not measured, so the final 

amount of NMP for these two samples is not known. 

 Table 11 lists each membrane cast attempt, what sample was used, and 

whether or not it was successful. Figures 30 through 58 show pictures of 

successful casts, and Figures 59 through 61 show a few of the failed casts. 

 

Table 11: Successful and unsuccessful membrane casts and their parent 

sample(s) 

Cast Sample Successful? (Y/N) 
1 3 N 
2 3 N 
3 3,4 Y 
4 4 N 
5 4 Y 
6 4,6 Y 
7 6 N 
8 6,7 N 
9 7 Y 

10 8 N 
11 8 N 
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Table 11 cont. 

12 8 N 
13 5 Y 
14 9 Y 
15 9 N 
16 5 Y 
17 10 Y 
18 12 N 
19 12 N 
20 13 N 
21 13,12 N 
22 16 N 
23 13,12 N 
24 11,10 Y 
25 11 N 
26 2,5 Y 
27 2 Y 
28 17 N 
29 31 N 
30 31 N 
31 31 N 
32 17 N 
33 33 N 
34 18 N 
35 18 Y 
36 33 Y 
37 18 N 
38 31,33 Y 
39 31,33 Y 
40 18 Y 
41 18,19 Y 
42 19 Y 
43 19 Y 
44 28 Y 
45 28 Y 
46 28 Y 
47 28 Y 
48 29 N 
49 19 Y 
50 29 N 
51 20 Y 
52 29 N 
53 20 Y 
54 29 Y 
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Table 11 cont. 

55 26,17 Y 
56 34 Y 
57 34 Y 

 

 

Figure 30: Cast 3 
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Figure 31: Cast 5 

 

 

Figure 32: Cast 6 (slightly folded) 
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Figure 33: Cast 9 

 

 

Figure 34: Cast 13 
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Figure 35: Cast 16 (bubbled portion was removed) 

 

 

Figure 36: Cast 17 (cut to size) 
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Figure 37: Cast 24 (oddly shaped) 

 

 

Figure 38: Cast 26 (cut to size) 
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Figure 39: Cast 27 

 

Figure 40: Cast 35 (trimmed to fit 2” cell) 
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Figure 41: Cast 36 

 

Figure 42: Cast 38 
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Figure 43: Cast 39 

 

Figure 44: Cast 40 (trimmed to fit 2” cell) 
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Figure 45: Cast 41 (trimmed to fit 2” cell) 

 

Figure 46: Cast 42 
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Figure 47: Cast 43 

 

Figure 48: Cast 44 
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Figure 49: Cast 45 

 

Figure 50: Cast 46 

 

Figure 51: Cast 47 
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Figure 52: Cast 49 (cut to produce two pieces that fit 1” cell) 

 

Figure 53: Cast 51 (trimmed to fit 2” cell) 
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Figure 54: Cast 53 (trimmed to fit 2” cell) 

 

Figure 55: Cast 54 (trimmed to fit 1” cell) 



 

87 
 

 

Figure 56: Cast 55 (bubbled portion removed) 

 

Figure 57: Cast 56 
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Figure 58: Cast 57 

 

Figure 59: Cast 1 (still on plate) 
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Figure 60: Cast 4 

 

 

Figure 61: Cast 7 (really bubbly) 
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Thermal Rearrangement 

 The first thing done for this section was a test to see if the thermal 

rearrangement would work. A small piece of a failed membrane cast from each 

one of HPI-ODPA, HPI-BTDA, and HPI-BPDA were tested for thermal 

rearrangement. Each piece was pressed between two ceramic plates using only 

the weight of the plates for pressure, no clamps were used. The sandwiched 

membrane piece was then placed in the oven and heated at 5oC/min to 300oC 

and held there for one hour, then heated at 5oC/min to 400oC and held there for 

two hours. All three pieces blackened some, but otherwise retained their shape 

and structural integrity. 

Results 

HPI Characterization 

 The HPI powders were characterized using attenuated total reflectance 

Fourier transform infrared spectroscopy (ATR-FTIR, referred to from here as 

“FTIR”) and TGA. The FTIR was a Nicolet IR200 and the TGA was a 

Simultaneous DSC-TGA (SDT) Q600/2960 from Thermo Fisher Scientific. The 

temperature program run on the TGA matched that of the procedure for thermal 

rearrangement. 

FTIR Data 

 The FTIR data for HPI samples 2, 5, 8-22, and 26-35 are shown in Figures 

62 through 88: 
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Figure 62: FTIR data for sample 2 

 

Figure 63: FTIR data for sample 5 

 

Figure 64: FTIR data for sample 8 
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Figure 65: FTIR data for sample 9 

 

Figure 66: FTIR data for sample 10 

 

Figure 67: FTIR data for sample 11 
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Figure 68: FTIR data for sample 12 

 

Figure 69: FTIR data for sample 13 

 

Figure 70: FTIR data for sample 14 
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Figure 71: FTIR data for sample 15 

 

Figure 72: FTIR data for sample 16 

 

Figure 73: FTIR data for sample 17 
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Figure 74: FTIR data for sample 18 

 

Figure 75: FTIR data for sample 19 

 

Figure 76: FTIR data for sample 20 
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Figure 77: FTIR data for sample 21 

 

Figure 78: FTIR data for sample 22 

 

Figure 79: FTIR data for sample 26 
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Figure 80: FTIR data for sample 27 

 

Figure 81: FTIR data for sample 28 

 

Figure 82: FTIR data for sample 29 
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Figure 83: FTIR data for sample 30 

 

Figure 84: FTIR data for sample 31 

 

Figure 85: FTIR data for sample 32 
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Figure 86: FTIR data for sample 33 

 

Figure 87: FTIR data for sample 34 

 

Figure 88: FTIR data for sample 35 
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TGA Data 

 The TGA data for HPI samples 2-22 and 26-35 is shown in Figures 89 

through 119: 

 

Figure 89: TGA data for sample 2 

 

Figure 90: TGA data for sample 3 
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Figure 91: TGA data for sample 4 

 

Figure 92: TGA data for sample 5 
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Figure 93: TGA data for sample 6 

 

Figure 94: TGA data for sample 7 
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Figure 95: TGA data for sample 8 

 

Figure 96: TGA data for sample 9 
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Figure 97: TGA data for sample 10 

 

Figure 98: TGA data for sample 11 
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Figure 99: TGA data for sample 12 

 

Figure 100: TGA data for sample 13 
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Figure 101: TGA data for sample 14 

 

Figure 102: TGA data for sample 15 
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Figure 103: TGA data for sample 16 

 

Figure 104: TGA data for sample 17 
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Figure 105: TGA data for sample 18 

 

Figure 106: TGA data for sample 19 
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Figure 107: TGA data for sample 20 

 

Figure 108: TGA data for sample 21 
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Figure 109: TGA data for sample 22 

 

Figure 110: TGA data for sample 26 
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Figure 111: TGA data for sample 27 

 

Figure 112: TGA data for sample 28 
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Figure 113: TGA data for sample 29 

 

Figure 114: TGA data for sample 30 
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Figure 115: TGA data for sample 31 

 

Figure 116: TGA data for sample 32 



 

114 
 

 

Figure 117: TGA data for sample 33 

 

Figure 118: TGA data for sample 34 
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Figure 119: TGA data for sample 35 

GPC Data 

 The GPC used consists of four components and two software packages. 

The four components are the autosampler, which is a Varian ProStar Model 400, 

the solvent delivery module, which is from Varian ProStar, the RI detector, which 

is a Varian ProStar 355, and the mobile phase column, which is also from Varian 

ProStar. The GPC experimental software is the Galaxie Chromatography Data 

System. The analysis software is GPC Offline from Cirrus. 

 Table 12 lists the experimental number average molecular weights (Mn), 

weight average molecular weights (Mw), and polydispersity index (PDI) for three 

HPI-ODPA samples, three HPI-BTDA samples, and three HPI-PMDA samples. 

 



 

116 
 

Table 12: Mn, Mw, and PDI for nine HPI samples 

Sample Mw (g/mol) Mn (g/mol) PDI 
HPI-ODPA-01 57000 31000 1.8 
HPI-ODPA-02 56000 32000 1.8 
HPI-ODPA-03 52000 30000 1.7 
HPI-BTDA-01 15000 8400 1.8 
HPI-BTDA-02 16000 7200 2.2 
HPI-BTDA-03 16000 7100 2.3 
HPI-PMDA-01 14000 5900 2.4 
HPI-PMDA-02 14000 5900 2.4 
HPI-PMDA-03 15000 6000 2.5 
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CHAPTER VI 

ADDITIONAL INFORMATION FOR CHAPTER IV 

Thermal Rearrangement 

 The first thermal rearrangement attempt did not go well. One of the casts 

of HPI-ODPA was placed between two ceramic plates and placed in the oven. 

The oven was programmed to ramp at 5oC/min up to 300oC, where it was held 

for an hour, then to ramp at 5oC/min to 400oC, where it was held for two hours. 

The oven was set to cool back to room temperature at the end of the program. 

After the program ended and the oven cooled to room temperature the 

membrane and sandwiching plates were removed. The membrane was shattered 

and completely unusable. This was because the membrane was slightly ridged, 

and during thermal rearrangement the membrane’s structural integrity weakened 

and the ceramic plates crushed the membrane. This was remedied by placing 

folded pieces of aluminum foil between the plates along with the membrane so 

the plates wouldn’t crush the membrane all the way. Serendipitously, this actually 

helped the process because it allowed the weight of the plates to flatten some of 

the more ridged membranes, which made them more usable with the permeation 

test cell. 

 The majority of the thermal rearrangements performed after the first were 

successful. There were only a few that were broken due to the combination of the 

thermal rearrangement process making the membranes more brittle and human 
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error in mishandling them. Seven of each of HPI-ODPA, HPI-BTDA, and HPI-

PMDA were thermally rearranged, for a total of 21 polybenzoxazoles (PBOs). 

 Three PBO-ODPA membranes, three PBO-BTDA membranes, and three 

PBO-PMDA membranes were subjected to FTIR to characterize them. 

Permeation Testing 

 The first step of permeation testing was to find and purchase a permeation 

test cell. A test cell was purchased from Pesce Labs, Inc. A diagram of a similar 

test cell is shown in Figure 120. The left side of the test cell used in this project 

looks like the right side of the one in the figure, so both sides match the right side 

of the picture. A picture of the whole cell is shown in Figure 121, and a picture of 

the open cell is shown in Figure 122. 

 

Figure 120: Diagram of similar test cell 
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Figure 121: Top view of closed cell 

 

Figure 122: Open cell 

 Each half of the cell consists of two inlet tubes with valves that connect 

into a glass hemisphere. The hemisphere is held in place by an aluminum flange 

with three bolt holes, and in the center of the flange, between the flange and the 

outside edge of the hemisphere, is an insert that cushions the glass. In front of 

the flange, connected with matching bolt holes, is a Teflon gasket. This gasket 

has a hole in the middle to allow for gas to reach the membrane. The membrane 

is held between the Teflon gaskets of each half of the cell, and the halves are 
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tightened together with bolts. This tightening creates seals between the glass 

hemispheres and the Teflon and between the Teflon and the membrane. 

 The second step in permeation testing was to create a manifold that would 

control the flow rates to the permeate and retentate sides of the membrane, 

measure the pressure of all of the streams, and allow collection of the permeate 

and retentate gases. Figures 123 and 124 show the front and back of the 

manifold and Figure 125 shows a diagram of the manifold and its connections. 

 

Figure 123: Front of manifold 

 

Figure 124: Back of manifold 
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Figure 125: Manifold diagram 

 The test gas flows from its cylinder into a flowmeter, which begins the right 

half of the manifold. The gas then passes through a pressure gauge and into the 

membrane cell. The gas passes across the membrane in the cell, and the 

retentate travels through another pressure gauge. The gas the flows through two 

valves, the first of which is a three-way valve that can close the system, open it to 

the next valve, or vent it to the atmosphere. The second is a two-way valve that 

opens and closes the flow to the gas sample bags. The left side of the manifold 

mirrors the right, but controls the flow of the helium carrier gas and directs its flow 

across the opposite side of the membrane from the test gas. 

 At first the permeate and retentate gases were collected in mylar balloons, 

since they are a fraction of the price of gas sampling bags and do not allow 
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anything to permeate out of them. The first few runs and samples of the test gas 

and carrier gas were collected in some of the balloons, but upon testing with the 

gas chromatograph it was found that the gas in the balloons was mostly air. This 

was because, while the balloons didn’t allow any gas to permeate out of them, 

there wasn’t enough positive pressure within the balloons to prevent air from 

entering them. Also, the samples in the balloons had sat for an extended period 

of time. After it was discovered that the balloons would not work for the purposes 

of this project, aluminum gas sampling bags were purchased. 

 Another problem that was encountered was that when the flowmeters on 

the manifold, which had a scale of 0.05 to 0.4 SCFH, were used to control the 

flow of gases, there wasn’t enough pressure difference to get readings from the 

pressure gauges. This would not work, since the pressure readings were 

necessary to calculate the permeability of the membranes. The regulators on the 

gas cylinders were used instead to control the flow rates, while the flowmeters 

were simply opened all the way to completely allow flow through them. The 

regulator on the helium cylinder had a scale for reading the helium flow rate in 

SCFH, so the values from that regulator were used as stated. The regulator on 

the test gas cylinder, however, did not have a scale for the test gas. The reading 

for the scale for the flow rate of Argon was recorded and later converted via a 

conversion factor, which is discussed later in this section. 

 Another issue, which was discussed in Chapter III of this thesis, that 

occurred during permeation testing was that the membranes formed using the 

dianhydride PMDA developed ridges that caused them to be incompatible with 
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the permeation test cell. This meant that there were no permeation results for 

HPI-PMDA or PBO-PMDA membranes. 

Results 

Thermal Rearrangement 

 The thermally rearranged membranes look exactly like the original HPI 

membranes, only black. Therefore no pictures were taken. 

FTIR Data 

 Figures 126 through 134 show the FTIR spectra for the nine PBOs that 

were subjected to FTIR. 

 

Figure 126: FTIR data for PBO-BTDA-01 

 

Figure 127: FTIR data for PBO-BTDA-02 
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Figure 128: FTIR data for PBO-BTDA-03 

 

Figure 129: FTIR data for PBO-ODPA-01 

 

Figure 130: FTIR data for PBO-ODPA-02 
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Figure 131: FTIR data for PBO-ODPA-03 

 

Figure 132: FTIR data for PBO-PMDA-01 

 

Figure 133: FTIR data for PBO-PMDA-02 
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Figure 134: FTIR data for PBO-PMDA-03 

Experimental Data 

 Table 13 shows the data that was recorded for each run. This includes the 

type of membrane, the thickness of the membrane, the flow rates for the test gas 

and the carrier gas and their feed pressures, and the retentate and permeate 

pressures. 
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Table 13: Experimental data 

Run Membrane 
Thickness 
(cm) 

Test Gas 
Feed (ft3/h) 

Test Gas 
Pressure 
(psig) 

Retentate 
Pressure (psig) 

Carrier Gas 
Feed (ft3/h) 

Carrier 
Pressure 
(psig) 

Permeate 
Pressure 
(psig) 

1 Kapton 0.00254 5 1.7 1.9 20 3.3 3.3 
2 Kapton 0.00254 10 2.3 1.2 30 5 5.2 
3 Kapton 0.00254 15 5.6 3.6 40 5.1 5.2 
4 Kapton 0.00254 5 0.5 0.7 20 2.1 2.2 
5 Kapton 0.00254 5 0.5 0.7 30 4 4 
6 Kapton 0.00254 5 0.5 0.7 40 3.2 2.9 
7 HPI-BTDA 0.03700 5 0.2 0.6 20 2.6 2.9 
8 HPI-BTDA 0.03700 5 0.2 0.6 30 5.1 5.4 
9 HPI-BTDA 0.03700 5 0.2 0.6 40 5.5 5.8 

10 HPI-ODPA 0.02700 15 3.1 2.7 20 4.6 5 
11 HPI-ODPA 0.02700 25 6.2 4.7 30 5.5 6 
12 PBO-BTDA 0.03600 15 3.2 2.9 20 4.3 4.6 
13 PBO-BTDA 0.03600 25 5.2 4 30 3.5 3.7 
14 PBO-ODPA 0.02000 15 2.9 2.4 20 4.6 5 
15 PBO-ODPA 0.02000 25 5.5 4.4 30 5.3 5.8 
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Gas Chromatograph Data 

 The gas chromatograph used was an Agilent Technologies 7890A 

Refinery Gas Analyzer Gas Chromatograph. It utilizes a manually fed gas 

sampling loop and an air-actuated solenoid valve configuration. It contains 9 

columns, two capillary columns and seven packed columns, and the sample is 

split and routed through all the columns at different temperatures utilizing the 

solenoid valve configuration. It has two TCD detectors and one FID detector. The 

GC is calibrated for the following compounds: helium, hydrogen, carbon dioxide, 

propane, propylene, acetylene, iso-butane, carbonyl sulfide, n-butane, hydrogen 

sulfide, 1-butene, iso-butylene, t-2-butene, iso-pentane, c-2-butene, n-pentane, 

1,3-butadiene, ethylene, ethane, oxygen, argon, nitrogen, methane, and carbon 

monoxide. 

 Table 14 shows the GC data that was obtained for each run. This includes 

the molar concentrations of nitrogen, methane, and oxygen in the retentate 

samples, and the molar concentrations of nitrogen, methane, helium, and oxygen 

in the permeate samples. 
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Table 14: GC data 

Run  Retentate   Permeate  
mol% N2 mol% CH4 mol% O2 mol% N2 mol% CH4 mol% He mol% O2 

Test Gas 79.8767 19.5067 0.5772 - - - - 
Helium - - - 5.6132 0 92.851 1.5357 

1 79.848 19.6363 0.5157 2.9594 0 96.1285 0.9121 
2 79.8519 19.8829 0.2652 5.6489 0 92.7051 1.646 
3 79.8622 19.6623 0.4755 2.5652 0 96.6372 0.7977 
4 80.073 19.66 0.267 1.115 0 98.498 0.387 
5 80.0313 19.9687 0 1.3895 0 98.1519 0.4587 
6 79.8071 19.851 0.342 3.5444 0.0029336 96.4526 0 
7 79.9972 20.0283 0 1.2737 0 98.2965 0.4398 
8 79.9471 19.8545 0.1984 0.8034 0 98.8932 0.3003 
9 79.844 20.0038 0.1521 1.0813 0 98.5372 0.3815 

10 79.8957 19.8928 0.2114 0 0 100 0 
11 79.7688 20.0346 0.1966 1.0127 0 98.6373 0.35 
12 79.7763 20.0572 0.1665 1.9019 0 97.4753 0.6228 
13 79.7334 20.2191 0.0475 1.9171 0 97.5326 0.5503 
14 79.886 19.2228 0.8912 1.1999 0 98.3925 0.4076 
15 79.8076 19.5498 0.6427 1.9868 0 97.3866 0.6266 
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Permeability Calculations 

 The flow rates for the gases were measured with the regulators on the 

respective gas cylinders. The regulator for the helium cylinder directly measured 

the helium flow, so the value for the helium flow rate was used directly. The 

regulator for the test gas cylinder did not read the flow of the test gas directly, so 

the flow measurement for Argon was used and later converted into flow of the 

test gas. This was done using the following equation61: 𝑄2 = 𝑄1 ∗ √𝑆𝐺1/𝑆𝐺2 

 Where Q2 is the converted flow rate of test gas, Q1 is the observed flow 

rate of Argon, SG1 is the specific gravity of Argon (1.379), and SG2 is the specific 

gravity of the test gas. The specific gravity of the test gas was found using the 

following equation: 𝑆𝐺2 = 𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑒 ∗ 𝑆𝐺𝑚𝑒𝑡ℎ𝑎𝑛𝑒 + 𝑥𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 ∗ 𝑆𝐺𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 

 Therefore, 𝑆𝐺2 = 0.201 ∗ 0.5537 + 0.799 ∗ 0.9669 = 0.8838 

 Plugging this into the flow rate conversion equation gives: 

𝑄2 = 𝑄1 ∗ √ 1.3790.8838 = 1.249𝑄1 

 The following equation, from He et al.62, was used for permeability: 

𝑃𝑖 = 𝑙 ∗ 𝑥𝑝𝑒𝑟𝑚 𝑖 ∗ 273 𝐾 ∗ 𝑝𝑎𝑡𝑚𝐴 ∗ (𝑥𝑓𝑒𝑒𝑑 𝑖 ∗ 𝑝𝑓𝑒𝑒𝑑 − 𝑥𝑝𝑒𝑟𝑚 𝑖 ∗ 𝑝𝑝𝑒𝑟𝑚) ∗ 𝑇 ∗ 76 𝑐𝑚𝐻𝑔 ∗ 𝑑𝑉𝑑𝑡  

 Where Pi is the permeability of species i in (𝑐𝑚3(𝑆𝑇𝑃) ∗ 𝑐𝑚)/(𝑐𝑚2 ∗ 𝑠 ∗𝑐𝑚𝐻𝑔), l is the thickness of the membrane in cm, xperm I is the molar 
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concentration of species i in the permeate gas, patm is the atmospheric pressure 

in cmHg, A is the surface area of the membrane in cm2, xfeed I is the molar 

concentration of species i in the feed gas, pfeed is the pressure of the feed gas in 

cmHg, pperm is the pressure of the permeate gas in cmHg, T is the temperature of 

the system in K, and dV/dt is the flow rate of the feed gas in cm3/s. Since the 

hole in the middle of the test cell dictated the exposed surface area of the 

membrane, it was a constant A = 0.9 in2 = 4.1043 cm2. The temperature T and 

atmospheric pressure patm were assumed to be constant, with T = 298 K and patm 

= 76 cmHg. 

 Table 15 shows the applicable variables from the experimental data and 

GC data to be used in the permeability equation, and the calculated 

permeabilities for each run. The values from the experimental data and GC data 

tables have been converted to fit the units used in the permeability equation. 
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Table 15: Converted experimental and GC data for use in the permeability equation and calculated permeabilities 

Run 
Thickness 
(cm) Xperm CH4 Xperm N2 Xfeed CH4 Xfeed N2 

Pfeed 
(cmHg)g 

Pperm 
(cmHg)g 

Feed flow 
(cm3/s) PCH4 (barrer) PN2 (barrer) 

1 0.00254 0 0.02959 0.195067 0.798767 -1.0357 0.0000 49.16125 0.00 -9970377.21 
2 0.00254 0 0.05649 0.195067 0.798767 5.6964 1.0357 98.3225 0.00 7010670.93 
3 0.00254 0 0.02565 0.195067 0.798767 10.3570 0.5179 147.48375 0.00 2596858.73 
4 0.00254 0 0.01115 0.195067 0.798767 -1.0357 0.5179 49.16125 0.00 -3730458.00 
5 0.00254 0 0.0139 0.195067 0.798767 -1.0357 0.0000 49.16125 0.00 -4681299.97 
6 0.00254 2.934E-05 0.03544 0.195067 0.798767 -1.0357 -1.5536 49.16125 -40480.24 -12792760.82 
7 0.037 0 0.01274 0.195067 0.798767 -2.0714 1.5536 49.16125 0.00 -30885170.59 
8 0.037 0 0.00803 0.195067 0.798767 -2.0714 1.5536 49.16125 0.00 -19566536.29 
9 0.037 0 0.01081 0.195067 0.798767 -2.0714 1.5536 49.16125 0.00 -26266671.78 

10 0.027 0 0 0.195067 0.798767 2.0714 2.0714 147.48375 0.00 0.00 
11 0.027 0 0.01013 0.195067 0.798767 7.7678 2.5893 245.80625 0.00 24281011.69 
12 0.036 0 0.01902 0.195067 0.798767 1.5536 1.5536 147.48375 0.00 186063087.29 
13 0.036 0 0.01917 0.195067 0.798767 6.2142 1.0357 245.80625 0.00 0.00 
14 0.02 0 0.012 0.195067 0.798767 2.5893 2.0714 147.48375 0.00 38661727.53 
15 0.02 0 0.01987 0.195067 0.798767 5.6964 2.5893 245.80625 0.00 48462274.54 
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 Table 16 shows the calculated permeabilities and N2/CH4 selectivities for 

each run. The N2/CH4 selectivity (αN2/CH4) was found using the following equation: 

∝𝑁2/𝐶𝐻4= 𝑃𝑁2𝑃𝐶𝐻4 

Table 16: Permeabilities and selectivities for each run 

Run Membrane PCH4 (barrer) PN2 (barrer) N2/CH4 selectivity 
1 Kapton 0.00 -9970377.21 - 
2 Kapton 0.00 7010670.93 - 
3 Kapton 0.00 2596858.73 - 
4 Kapton 0.00 -3730458.00 - 
5 Kapton 0.00 -4681299.97 - 
6 Kapton -40480.24 -12792760.82 316.02 
7 HPI-BTDA 0.00 -30885170.59 - 
8 HPI-BTDA 0.00 -19566536.29 - 
9 HPI-BTDA 0.00 -26266671.78 - 

10 HPI-ODPA 0.00 0.00 - 
11 HPI-ODPA 0.00 24281011.69 - 
12 PBO-BTDA 0.00 186063087.29 - 
13 PBO-BTDA 0.00 0.00 - 
14 PBO-ODPA 0.00 38661727.53 - 
15 PBO-ODPA 0.00 48462274.54 - 
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CHAPTER VII 

CONCLUSION AND FUTURE STUDIES 

Conclusion 

 The intent of this thesis was to determine the effects of the dianhydride 

used to create hydroxyl-polyimide (HPI) membranes, which were then thermally 

rearranged into polybenzoxazole (PBO) membranes, on the permeabilities and 

selectivities of those membranes. The dianhydrides compared in this project 

were 4,4’-oxydiphthalic anhydride (ODPA), 3,3’,4,4’-benzophenone 

tetracarboxylic dianhydride (BTDA), 3,3’,4,4’-biphenyl tetracarboxylic dianhydride 

(BPDA), and Benzene-1,2,4,5-tetracarboxylic dianhydride (PMDA). The 

dianhydrides were all combined with the diamine 2,2’-bis(3-amino-4-

hydroxyphenyl) hexafluoropropane (bisAPAF) to create HPIs using the same 

synthesis procedure. The structures of these precursors are shown in Table 17 

below. The membranes were all cast in the same manner as well. 

Table 17: HPI precursors used in this project 

Precursor Structure 

 

ODPA 
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Table 17 cont. 

 

BTDA 

 

 

BPDA 

 

 

PMDA 

 

 

bisAPAF 
 

 

 The FTIR and TGA results show that HPIs were successfully synthesized, 

and should have undergone thermal rearrangement into PBOs. In practice, this 

was not the outcome. The HPIs, while somewhat thermally rearranging, did not 

completely thermally rearrange. The reasons for this were discussed in Chapter 

IV of this thesis. 

 The permeation testing was almost completely unsuccessful, the reasons 

for which are also discussed in Chapter IV. Since adequate permeation data was 

not obtained, the goal of comparing the separation properties of the PBOs made 

with the candidate dianhydrides was not able to be evaluated. 

Future Studies 
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 Future studies that could further the goal of this project include fixes to the 

project procedure itself, as well as studies that move past the goal of this project. 

Fixing this project would include using a different oven that can operate under an 

inert atmosphere or a vacuum. This would create higher degrees of conversion of 

the HPIs to PBOs. Another thing that would help is to make thinner membranes, 

whether it’s by use of a doctor blade to shear the thickness of the membrane 

down or by a spinner to increase the surface area of the casting solution, and 

therefore reducing the thickness of the membrane. A GC more appropriately 

suited to analyzing the composition of the permeate samples would provide 

better data for calculating permeabilities. The manifold probably wasn’t the 

biggest problem, but a manifold more resistant to leaks would still help. 

 Some ideas to further the work of this project, and the research on PBO 

separation in general, are to compare different combinations of diamines and 

dianhydrides that have not been tested before. 

 Another interesting direction that could be taken is to investigate cross-

linked PBOs, as begun by Calle et al. They tested PBOs that contained small 

moieties of 3,5-diaminobenzoic acid (DABA) instead of the diamine, and then 

added 1,4-butylene glycol to connect the DABAs within the polymer chains39. 

Changes to their procedure could include using different cross-linking agents, 

such as 1,5-pentylene glycol or 1,3-propylene glycol, to see what effect the 

length of the cross-linking agent has on the separation properties. Another 

investigation could compare the effect of the target of the cross-linking agent, by 
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changing DABA to another diamine acid, such as 4,4’-diaminobiphenyl-3,3’-

dicarboxylic acid.
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