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ABSTRACT 

 

 Mixed matrix membranes are one class of membrane material that are an especially 

promising separation media. By adding a particle phase to a matrix phase, multiple mechanistic 

pathways become available that are not present in pristine organic or inorganic membranes. 

These pathways can be exploited to better enhance separation performance for a variety of 

applications.  

 This research has focused on a specific mixed matrix membrane, which contains bio-

derived activated carbon particles in a polysulfone matrix. In proper selection of activating 

agent, this research has shown that the surface functional groups of the activated carbon are 

highly influenced. This can lead to better polymer filler interaction and fewer defects. This 

research has also provided evidence to support the idea that by changing various membrane 

formation parameters such as choice of solvent, nonsolvent, and additives, can influence many 

of the membrane’s thermal, physical, and separation properties.  

 This work has shown the viability of biochar and activated carbon derived from biochar 

are fillers that are worth investigating in mixed matrix membranes. The membranes produced 

were shown to have versatile applications with modifications to formation process. The 

applications studied include liquid phase: acid blue filtration and gas phase: CO2/N2, CO2/CH4, 

and N2/CH4. 
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CHAPTER I: INTRODUCTION 
 

In the past several decades, many research efforts have been made within the area of mixed 

matrix membranes. Because there are so many filler and matrix materials these membranes 

can be made from, and the number of methods available to fabricate them, there are many 

properties that can be tailored to specific separation application. While this versatility has 

opened avenues for research and development that have previously been unexploited, it has 

also aroused many unanswered questions. Many of those questions involve how filler/matrix 

interaction can be improved to produce membranes with negligible interfacial defects. As a 

result, the scope of applications for new filler/matrix combinations has not yet been realized.  

 This research is aimed at better understanding this filler/matrix interaction and potential 

applications for activated carbon/polysulfone mixed matrix membrane. Activated carbon as a 

filler has been largely neglected. However, it has great potential due to its high porosity, 

specific surface area, and surface functionality. It is hypothesized that the functional groups on 

the activated carbon can be influenced by chemical activation of biochar. By introducing the 

correct functional groups on the activated carbon, dipole intermolecular forces, and pi stacking 

can strongly interact with the polar and aromatic groups of polysulfone. To gain insight into 

this hypothesis, biochar and activated carbons derived from biochar were produced from 

sunflower hulls, and thoroughly investigated in mixed matrix membranes.
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Motivation 

 

It is accepted that the power requirement for separation processes puts a heavy financial burden 

on the chemical process industry. This is mainly due to most separation processes are 

equilibrium driven or require a phase change. In equilibrium based separations, achieving high 

degrees of separation become extremely difficult, or simply unrealistic in some cases. The 

phase change requires large heating supply, and thus great power consumption. Additionally, 

the high power consumption contributes to the carbon footprint of a facility.  

 Membranes, on the other hand, are a rate driven separation process. This eliminated the 

thermodynamic limits and phase change requirements. As a result, it is anticipated that 

membrane based separations can help alleviate the cost and carbon footprint of traditional 

separation processes. Unfortunately, most membranes are simply not good enough to meet the 

demands of most processes. This is in part due to poor module design and lack of knowledge 

on membrane integration into existing processes. More importantly, this is a limitation caused 

by membrane material. Thus, many efforts have been made to produce membrane materials 

that provide better separation with higher throughput. Mixed matrix membranes are one of 

these efforts that are especially promising.  

 Published literature has shown that mixed matrix membranes containing various 

polymer/filler combinations perform better than their constituent materials on their own. For 

instance, many of these types of membranes exceed the upperbounds of gas separation. That 

is, the permeability/selectivity tradeoff that is traditionally seen in polymers is overcome by 

mixed matrix membranes. Many reports have shown that liquid separation is also enhanced in 

terms of higher rejection of adsorbable solutes, with improved flux.  
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 One area which has not been extensively researched is activated carbon in mixed matrix 

membranes. Activated carbon is a highly porous material that can easily be processed into the 

desired size and with the desired functionality. This, along with its supposed low cost and 

abundance, makes it a promising candidate as a filler in mixed matrix membranes.  Thus, the 

aim of this work is on better understanding how activated carbon behaves as a constituent in 

mixed matrix membranes.  

Thesis Outline 

 

In this thesis, one review paper (Chapter II) [1] and three research papers (Chapter III, IV, and 

V) are included. Each of these papers was, or will be submitted for peer review according to 

the citations:  

(1) J. Lewis, M. Al-sayaghi, C. Buelke, A. Alshami. (2019) Activated carbon in mixed 

matrix membranes. Separation and Purification Reviews. in press.   

(2) J. Lewis, M. Miller, J. Crumb, M. Al-sayaghi, C. Buelke, A. Tesser, A. Alshami. 

(2019) Biochar as a filler in mixed matrix materials: synthesis, characterization, 

and applications. Journal of Applied Polymer Science. in press. 

(3) J. Lewis, A. Alshami. (2019) Factorial study on activated carbon mixed matrix 

membrane formation for aniline blue filtration. Manuscript in preparation.  

(4) J. Lewis, A. Alshami. (2019) Bio-derived activated carbon-polysulfone mixed 

matrix membrane for gas separation. Manuscript in preparation. 

 Chapter II introduces the subject of mixed matrix membranes and some general aspects 

of membranes. It also goes into detail on how activated carbon is prepared from biomass. A 

comprehensive literature review is presented which focuses specifically on activated carbon in 
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mixed matrix membranes and discusses their formation, properties, and wide array of 

applications. 

  Chapter III focuses on utilizing biochar derived from sunflower hulls in a polysulfone 

matrix. The emphasis was on characterizing the material in terms of glass transition 

temperature, morphology, and surface tension. The use of dilute ethanol solutions as the 

nonsolvent was conducted and the thermodynamic considerations contributing to 

biochar/polysulfone interactions were discussed.   

 Chapter IV presents a factorial design on the fabrication of activated carbon mixed 

matrix membranes. Three factors considered were amount of activated carbon (powered 18 

µm), concentration of polyethylene glycol additive, and solvent type. The response variables 

were water contact angle, agglomeration frequency, flux and aniline blue rejection. A novel 

method was proposed to study agglomeration frequency.  

 Chapter V shows the influence of activating agent on activated carbon functionality. 

Gas separation performance are shown with different activated carbons (micronized ~1µm) in 

a polysulfone matrix. The permselectivity of CO2/N2, CO2/CH4, and N2/CH4 are presented.  

 Chapter VI highlights the key findings and implications from this thesis. Suggestions 

for future research as also presented and outlined.  
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CHAPTER II: LITERATURE REVIEW 

 

Abbreviations 

ABS acetonitrile butadiene styrene PBT protein bound toxins 

AC activated carbon PCS p-cresylsulfate 

CAP cellulose acetate phthalate PDMS polydimethylsiloxane 

CMS carbon molecular sieves PEBAX 2533 polyether block amide 

CNF cellulose nanofiber PEG polyethylene glycol 

COD chemical oxygen demand PEI polyethylenimine 

CTA cellulose triacetate PES polyethersulfone 

E. coli Escherichia coli POMS poly(octylmethylsiloxane)  

FFV fractional free volume PPSU polyphenylsulfone 

GPG Gonzo-Parentis-Gottifred PSF polysulfone 

HA hippuric acid PVC polyvinyl chloride 

IS indoxyl sulfate PVP polyvinylpyrrolidone 

KH550 NH2(CH2)3Si(OC2H5)3  PWF pure water flux 

LMH Lm-2h-1 SEM scanning electron microscopy 

MMM mixed matrix membrane U uranium 

PAC  powdered activated carbon UV254 measured by UV-Vis at 254 nm 

PAE polyamide-amine-epichlorohydrin  YDH-171 CH2CH- Si(OCH3)3  

 

Abstract 

Mixed matrix membranes (MMMs) have emerged as strong contenders to conventional 

membranes for gas and liquid separations. Although numerous studies on filler/matrix 

combinations have been conducted and thoroughly reviewed, a review of activated carbon 

(AC) as a filler has thus far been minimal. This review intends to fill this gap via critically 

analyzing the state-of-the-art on AC as a filler in MMMs. Aspects of AC-MMM research, with 

emphasis on AC fabrication from biomass pyrolysis, AC-MMM fabrication and resulting 

properties, and influence of AC on MMM performance are thoroughly elucidated. 

Furthermore, the various applications that have been investigated with AC-MMM membranes,
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 and several predictive models that have been specifically utilized for AC-MMMs are also 

discussed.  

1. Introduction 

 

1.1. Motivation 

 

Membranes for liquid and gas phase separations have evolved considerably in the past few 

decades. One major breakthrough was the development of MMMs, which are a composite two-

phase membrane consisting of a polymeric continuous phase and a dispersed organic or 

inorganic filler. The continuous phase is commonly referred to as the matrix. MMMs have 

been the subject of extensive research studies and reviews involving a variety of organic and 

inorganic fillers, except for AC and biochar: two significant fillers with promising separation 

properties coupled with an abundance of low-cost raw material and processing techniques.  

 In recent years, AC has been gaining traction as a filler in MMMs. In this work, we 

present an up-to-date review of the literature and the state-of-the-art of research involving 

MMMs with the primary focus on AC and biochar as principal fillers. Special emphasis will 

be directed towards addressing AC-MMMs in terms of its formation, properties, applications, 

and predictive models that can be utilized for their performance.  

1.2. Background 

 

Starting as early as 1973, MMMs were studied by Paul and Kemp (1) and have grown into a 

field of their own. In some sense, the term “mixed matrix membrane” is a broad category of 

composite membranes that consist of adsorbent, nanocomposite, and hybrid membranes. 

During the late 1970s, MMMs were referred to as sorbent membranes, because adsorbent 

fillers were originally used and their adsorbent properties exploited (1). Recently, MMMs have 
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been cited as both nanocomposite membranes (2,3), especially when the filler is nanometers 

in diameter, and as hybrid membranes (4) which highlight the two species independently 

responsible for selectivity.  

 Nonetheless, MMMs remain attractive because by combining the properties of the 

matrix and filler, enhanced properties are achieved including improved separation performance 

in terms of selectivity and flux, as well as physiochemical properties such as hydrophilicity, 

porosity, surface charge, and mechanical strength.  

 Several different combinations of filler/matrix materials have been investigated. 

Commonly reported fillers include carbon nanotubes (5), metal organic frameworks (6), 

molecular sieve particles (7,8), and zeolites (9). A breadth of polymers have been studied in 

MMMs including polyimides (10,11), polysulfones (12,13,14), copolymers (15), and cellulose 

acetate (16) to name a few. Altogether, these combinations have been investigated for 

applications including water purification, pervaporation, gas separation, and proton exchange. 

 Many articles have been written reviewing the topic of MMMs in the last decade. 

Aroon et al. (17), Goh at al. (18), and Chung et al. (19) authored reviews focusing on gas phase 

separations.  Rezakazemi and Vinoba et al. focused specifically on carbon dioxide separation 

(20,21). Goh et al. (22) and Qadir et al. (23) published reviews focusing on water purification. 

Other reviews focused specifically on filler materials including zeolites (9,24), metal organic 

frameworks (6), nanoparticles (25), and 2D materials (26,27).  

 Considering the breadth of matrix and filler materials as well as applications that have 

been investigated, one point of confusion in the definition of MMMs is the classification of the 

filler. Most reports in the literature define the filler as inorganic, while still recognizing organic 
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type fillers as possibilities. For example, carbon nanotubes and graphene are two organic 

compounds (i.e. made of only C, H, N, O) that have been categorized as organic and inorganic. 

Thus, the confusion has arisen because of the somewhat arbitrary categorization of organic and 

inorganic materials, because polymers are typically referred to as organics, and due to filler 

materials behaving very differently than polymers.  

 A comparison of MMMs to different membranes is presented in Table 1. Note the 

different categories for polymeric and organic membranes. Categorizing membranes into these 

four classes helps alleviate some confusion, especially between organic, inorganic, and 

polymeric materials. Although it is not common practice to present the class of “organic 

membranes” to mean those such as graphene, it is the authors’ opinion this categorization is 

useful.  

Table 1: General comparison of different membranes in terms of their advantages/disadvantages in relation to the emerging 

class of MMMs. 

Membrane Advantages Disadvantages 

Polymeric Membranes 

(28,29) 

 

Ex: polysulfone, 

polyimide, 

polyethersulfone 

 Easy synthesis and fabrication 

 Low production cost 

 Good mechanical stability 

 Easy upscaling and modeule 

design 

 Separation mechanism: 

Solution diffusion 

 

 Low chemical and thermal 

stability 

 Plasticization  

 Pore size difficult to control 

 Permeability/selectivity trade 

off 

Inorganic Membranes 

(30) 

 

Ex: Titanium oxide, 

zeolite, metal organic 

frameworks 

 Superior chemical, 

mechanical, and thermal 

stability 

 Tunable pore size 

 Moderate 

permeability/selectivity trade 

off 

 Stable in harsh conditions 

 Separation mechanism is 

dependent on pore size 

 Brittle 

 Expensive 

 Difficult to scale up 
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Organic Membranes   

 

Ex: Carbon 

nanotubes(31), graphene 

(32)   

 

 Tunable functional groups 

 Tunable pore size 

 Exceptional rejection in liquid 

separations 

 Moderate 

permeability/selectivity 

tradeoff 

 Separation mechanism: 

molecular sieving 

 

 Difficult and expensive to 

make 

 Difficult to scale up 

 Can be frail 

Mixed matrix 

membranes 

 

Ex: Matrimid-AC (10), 

PES-Kaolin (33), PVA-

carboxyfullerene (34), 

PSF-MOF1 (35)   

 Enhanced mechanical and 

thermal stability 

 Reduced plasticization 

 Low energy requirements 

 Surpasses 

permeability/selectivity trade 

off 

 Reduced fouling 

 Separation mechanism 

determined by the combined 

polymeric and filler properties 

 Become brittle with high 

filler loadings 

 Poor interaction between 

matrix and filler results in 

unselective pores 

 Chemical and thermal 

stability depends on matrix 

material 

 

2. Production of Biochar and Activated Carbon 

 

Biochar primarily is the solid product of biomass pyrolysis and is commonly used as a 

precursor for AC, which is a unique material for various reasons. Variable particle sizes are 

achievable with simple mechanical grinding or crushing methods. AC is highly porous leading 

to excellent adsorptive capacity for various gaseous and aqueous species. They can also be 

functionalized by physical or chemical treatment, making them versatile for various 

applications.  

2.1. Pyrolysis 

 

AC is typically produced from carbonaceous materials such as biomass, sludge, and petroleum 

pitch via pyrolysis, a thermochemical decomposition of matter at a relatively moderate 
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temperature range of 200 to 700 °C. Currently, commercial AC is produced from coconut 

husks, wood saw dust, and coal (36). The first step in producing AC is the formation of char 

from these carbonaceous materials. 

 Depending on the pyrolysis conditions and end use, char takes on different names. 

Ahmad et al. conducted a thorough review including the definitions used for the pyrolyzed 

carbonaceous materials (37). In essence, char from a biomass feedstock has been labeled as 

biochar when it is produced in a dry environment and used as a soil amendment. Hydrochar is 

produced from biomass in an aqueous environment. On the other hand, charcoal is produced 

from coal and is meant to be used as a fuel. In recent years, the term biochar has been used to 

convey solid-pyrolyzed biomass, regardless of its end use. For simplicity, this paper defines 

biomass in its traditional sense, and AC is any biochar or other precursor that is activated as 

described in the following section. 

 Two types of pyrolysis are frequently studied: fast and slow pyrolysis, with the 

principle difference between them being the heating rate. In fast pyrolysis, the heating rate is 

on the order of hundreds of degrees centigrade per second, reaching its maximum temperature 

within seconds. The heating rate of slow pyrolysis, on the other hand, is on the order of tens of 

degrees centigrade per minute, reaching a peak temperature after several minutes, hours, or 

days (38).    

 Reactions taking place during the pyrolysis of biomass have proven to be extremely 

complicated. Depending on the feedstock, various products are formed based upon processing 

temperature and residence time (39). Regardless of the chemical species formed, it is clear that 

the result of pyrolysis is four unique product mixtures: 1) volatile gases, 2) bio-oils, 3) tars, 

and 4) solid char. Previous studies have focused on maximizing yield and characterizing bio-
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oils (40). Bio-oils are potentially low grade fuel sources or fuel additives, as their heating 

values are typically slightly lower than conventional fuels (41). Tars are typically an undesired 

by-product of pyrolysis (42); however, some research has been conducted on upgrading their 

by-products into more desirable compounds (43). There is also some potential in using the tar 

as a composite additive (44). The solid that remains post pyrolysis treatment is the biochar.  

2.2. Biochar 

 

Biochar produced in the aforementioned section has several beneficial physical properties. 

Most notably, various sized pores are formed that create a porous substructure with a large 

amount of surface area (45,46,47). Depending on the biomass feedstock and pyrolysis 

conditions, surface functional groups tend to form, influencing its hydrophobicity and 

wettability (48). Table 2 lists a wide range of biochar derived from various feedstock and their 

relevant resulting properties. For a detailed review on biochar formation mechanisms, 

properties, and how biochar functionalization occurs, see Liu et al. (49). 

 In general, there exists a tradeoff between surface area and functional group formation 

as pyrolysis temperature increases. At high pyrolysis temperatures, biomasses tend to break 

down into bulky aromatics and lose their oxygen containing functional groups, which leads to 

high surface area. At relatively low temperatures, biochars tend to retain their functional 

groups, but have lower surface area. At extremely high temperatures, thermal cracking of the 

biochar occurs, causing pores to collapse and decreasing surface area. Depending on the 

biomass, an optimal temperature can vary between 300-800°C.    
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2.3. Activated Carbon 

 

Once biochars are formed, they are subjected to activation treatments including physical, 

chemical, or combination activation. The term ‘activated’ is most often used to describe the 

state of enhanced physical and functional properties.  

Table 2: Properties of various biochars and their corresponding pyrolysis conditions. The pyrolysis type (fast/slow) is listed 

in the case exact heating rate was not listed. 

Biochar Feedstock Surface Functional Groups Surface 

Area (m2/g) 

Pyrolysis Temperature 

and Heating Rate 

Guinea Fowl Manure (50) Hydrogen bonded, aliphatic 

amines 

60.0 250°C – 2°C/min then 

500°C – 5°C/min 

Sugarcane Bagasse (51) phenolic acids, carboxylic 

acids, lactonic acids 

92.30 500°C, slow 

Orange Peels (51) phenolic acids, carboxylic 

acids, lactonic acids 

0.21 500°C, slow 

Sunflower seed hull (52) Alcohols, amines, aromatic 3.850 450°C, fast 

Bamboo (45) Hydroxyl, carbonyl 332.10 600°C , slow 

Date Palm (53) Carbonyl, carboxylic acids - 300-800°C, 5°C/min 

Sewage Sludge (54) Carbonyl, protonated 54.05 700°C , 25°C/min 

Rice Husk (55) Alcohols, phenol, carbonyl 27.8 350°C, 25°C/min 

Dairy manure (55) Hydroxyl, carbonyl, 

phosphate, aromatics  

5.61 350°C, 25°C/min 

Coconut coir (56) Carboxylic acids, phenolic 

acids, hydroxyl 

153 500, slow 

Peanut Shells (46) Carbonyl, aromatic, aromatic 

amines 

420 700°C, 7°C/min 

Soybean Stover (46) Carbonyl, aromatic, aromatic 

amines 

448 700°C, 7°C/min 

Maple Wood (57) Deprotonated carboxyl and 

phenolic acids 

225 500°C, 2.5°C/min 
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Eucalyptus saw dust (58) Carboxylic, hydroxyl 1.57 120°C, slow 

Swine Manure (59) Hydroxyl, carboxylic 3.46 400°C, 25°C/min 

Rice Straw (59) Carbonyl, hydroxyl 2.01 400°C, 25°C/min 

Corncob (60) Carbonyl, nitro, hydroxyl, 

methoxyl 

3.38 15°C/min , 550°C 

Potato Peel (61) Carbonyl, hydroxyl, 

aromatics 

2.29 700°C, 2°C/min 

Pine Needle (47) Hydroxyl, carbonyl, 

aromatics 

390.52 700°C, 7°C/min 

Almond Shell (62) Carbonyl, phenols, lactones 30.35 650°C, 10°C/min 

 

Physical activation involves high-temperature treatment of biochar with oxidizing gases, such 

as carbon dioxide (63), steam (64), and air (65). Often physical activation leads to enhanced 

surface area and pore density while oxidizing surface functional groups. The formation of C=O 

and O-H functional groups are typically apparent, whereas C-H and C-O functional groups 

usually disappear.  

 Chemical activation involves first impregnating the biochar with a chemical compound 

and then subjecting it to a high temperature treatment in an inert atmosphere or a vacuum. 

Typical activating chemicals are acids, bases, and oxidizing agents such as zinc chloride or 

hydrogen peroxide (66). An important parameter to consider during chemical activation is the 

impregnation ratio, or the ratio of the activating agent to the biochar. Upon impregnation, the 

biochar is subsequently treated at elevated temperatures in an inert atmosphere. This step is 

most often referred to as carbonization. Following carbonization, the AC is typically washed 

with a weak acid or base to remove the residual activating agent, and then washed with distilled 

or deionized water. Chemical activation can lead to an increased surface area, pore size and 
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volume, and tailored functional groups. Table 3 summarizes recent literature in terms of 

feedstock, activating methods, and resulting properties. 

 Chemical activation generally leads to the formation of carbonyl functional groups, 

such as ketones and carboxylic acids. The hydroxide functional group is also typically present, 

though in varying degrees depending on precursor biomass. Another noteworthy trend 

commonly seen is a maximum surface area achieved with respect to an optimal carbonization 

temperature. At relatively low temperatures, pore formation is restricted while at relatively 

high temperatures, functional groups tend to collapse and reduce pore size. 

Table 3: Chemically activated AC produced from biochar and their processing conditions and resulting properties. 

Feed Stock Activating 

Agent 

Impregnation 

Ratio (agent: 

biochar) 

Carbonization 

Temperature 

Surface 

Area 

(m2/g) 

Functional Groups 

Spruce 

Whitewood 

(67) 

KOH 3.5 : 1 475°C 

675°C 

875°C 

643 

1317 

2024 

Hydroxyl, 

aromatics  

Palm Date 

Seed (68) 

NaOH 3:1 600°C 1282.49 Carbonyl, ketones, 

ethers, nitro 

Coconut 

Shell (69) 

H2SO4 1.5 : 1 600°C - Hydroxyl, 

carbonyl, ethers, 

aromatics 

Grape 

Bagasse 

(70) 

H3PO4 3:1 400°C 

500°C 

600°C 

1021 

909 

629 

Carbonyl, esters, 

ketones, aliphatic 

acids 

Grape Stalk 

(71) 

ZnCl2 0.5: 1 

1:1 

1.5: 1  

700°C 482.22 

889.62 

1004.48 

Hydroxyl, 

aromatics 
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2:1 1411.75 

Rice Husk 

(72) 

KOH 5:1 750°C 

850°C 

950°C 

2121 

2696 

1592 

Hydroxyl, 

aromatics, ethers, 

esters 

Sugar Cane 

Bagasse 

(73) 

ZnCl2 2:1 500°C 2200 Hydroxyl, 

carbonyl, 

aromatics 

Sunflower 

Hulls (73) 

ZnCl2 2:1 600°C 1950 Hydroxyl, 

carbonyl, 

aromatics 

Poplar Saw 

Dust (74) 

KOH 1: 0.05 600°C 1506.2 Hydroxyl, 

carbonyl, 

carboxylic acids 

Paulownia 

Wood (75) 

H3PO4 4:1 400°C 2806 Carbonyl, 

aromatics, ketones, 

lactone, carboxyl, 

phosphates 

Pork Bones 

(76)  

H2SO4 2.8 : 1 800°C 110.7 Phosphates, 

carbonates 

 

 Both scenarios result in lower specific surface areas. It is also apparent that the higher the 

impregnating ratio, the higher the specific surface area becomes for any one activating 

chemical at a specified temperature. Other factors such as carbonization pretreatment and 

chemical washing of the AC tend to also influence the final properties.  

 Due to ACs having large surface areas, pore volume, and functionality, they adsorb 

species from both liquids and gases. Hence, regardless the type of fluid under investigation, 

liquid or gas, it is necessary to consider the adsorption of each species onto the AC to fully 

exploit and understand the separation capabilities of AC-MMMs.  
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2.4. Carbon Molecular Sieves 

 

CMS are a class of AC which are derived from polymeric precursors rather than biomass. 

Despite the difference in precursors, CMS are fabricated and activated in a manner very similar 

to that of AC. This is by controlled pyrolysis and further chemical or physical activation (77). 

There are a couple very important differences between CMS and AC. First is the resulting pore 

sizes after pyrolysis. CMS typically contain pore sizes in the micropore and ultramicropore 

range (77), while AC typically have a broad pore size distribution in the micro, meso, and 

macro pore region (78,79). Secondly, CMS can be directly prepared into membranes. For 

instance, a cast membrane can undergo pyrolysis and retain its shape, resulting in CMS 

membranes, or simply, carbon membranes (80). Although an interesting class of membrane, 

carbon membranes are not included in this review. Rather, CMS can be made into particles, by 

mechanical grinding, and used as a filler in MMMs (81). These types of materials are discussed 

where appropriate.      

3. AC Compatibility with Polymers and Solvents 

 

The interaction of AC with both the polymer phase and solvent play an important role in AC-

MMM development. One issue is sedimentation, whereby particles tend to settle in the casting 

solution rather than form a suspension. This is an occurrence that challenges the use of many 

fillers, and notably AC, in MMMs (82). Sedimentation causes undesired variability in particle 

loading, and skewed particle size distribution in the final membranes. To avoid separation from 

casting solutions, particle size should be closely controlled as small particles generally remain 

suspended in the solution longer (15). Another method is to ensure adequate mixing with 

sonication, albeit partial sedimentation may occur in some solvents (83).  
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 A secondary issue that usually arises from improper solvent selection is particle 

breakage, in which some solvents possess the capability of etching formed pores in AC (84). 

This causes breakage as depicted in Figure 1.  Although the breakage of AC in solvent is not 

frequently considered, the reduction in particle size and pore volume are two possible results 

that could cause unforeseen effects to AC-MMMs.  

 

Figure 1: Particle breakage due to solvent etching of formed pores post activation of a 15 micron AC, (a) before, and (b) 

after contact with dimethylformamide (84). Reprinted with permission from Elsevier. 

 The most prominent issue with MMMs, however, remains to be the poor polymer-filler 

interaction causing unselective void space and consequently unselective membranes 

(6,24,85,86). While there is generally a good understanding of how some particles, such as 

colloids (87), interact in various solutions, very little is thus far known about the exact AC-

polymer interaction. It has been suggested that the adsorption capacity of polymers by AC can 

be a good metric for compatibility (88); nevertheless, this has only been investigated for water 

soluble polymers in the liquid phase and not with interactions between two solid phases (88). 

Currently, photographic and thermomechanical observations serve as the best metric for 

AC/polymer compatibility.   
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Imaging is sometimes used to observe adhesion between AC particles and the polymer within 

the cross section of MMMs (89). Although not accurate, thin polymeric coatings surrounding 

AC particles can indicate good compatibility. In terms of mechanical properties, when a 

specific AC is compatible with the polymer matrix, mechanical properties tend to improve as 

measured by increases in tensile strength (90), fracture stress (91), or Young’s modulus (90). 

Thermal properties also tend to become enhanced, as measured by an increase in glass 

transition temperature (92,93).  

 Loading MMMs with AC of small particle size is one method to increase interaction 

(94). For example, AC with a particle size of 750 nm demonstrated good interaction in a CAP 

matrix as measured by an increase in fracture stress (91). Particles with sizes between 1.5 and 

3.5 micron showed good compatibility with a POMS matrix (89). However, it has been shown 

that, not only does the average size influence AC/polymer interaction, but the size distribution 

does as well. AC with a larger particle size distribution tend to disperse in a more 

inhomogeneous fashion and agglomerate more frequently (89). 

 Other methods to improve polymer-filler interaction include utilizing AC that has 

similar hydrophobicity or hydrophilicity as the polymer (95), which enables the binding of the 

polymer to the AC particles and increases the likelihood of strong interfacial compatibility 

(85).  

 The incorporation of ionic liquid additives into the MMM has also shown to improve 

the compatibility of filler/matrix (96). Ionic liquids act as a wetting agent between the particle 

and matrix, preventing the formation of interfacial defects. Moreover, the use of ionic liquid 

additives can prove versatile, as various anion/cation combinations are possible and can be 

tailored to specific membranes or applications (97). Surfactant and other salt additives also 
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serve to improve the filler/matrix interaction by maintaining a particle suspension, preventing 

particle agglomeration and subsequent sedimentation. Other low molecular weight additives 

can serve to physically fill the void space between filler and matrix, improving the MMM 

performance (98). 

 The influence of functional groups is one of the most important factors to consider. 

Poor intermolecular interactions between filler and matrix is the ultimate cause of interfacial 

defects. Thus, much worked has been performed in fabricating and modifying fillers to 

improve this interaction (98). Strong intermolecular forces like hydrogen bonding and dipole 

interactions are prime targets. However, pi-pi stacking of highly aromatic fillers or matrixes 

can also contribute to strong interaction (11). Various methods have been performed to achieve 

the desired functional groups on fillers in MMMs. Grafting of various molecules such as silane 

coupling agents is a well-accepted method, specifically for zeolites, silica, and carbonaceous 

fillers. Functional groups can also be directly incorporated onto fillers by surface 

modifications. Variations in synthesis conditions with additives is especially effective at 

creating multifunctional sites on metal organic frameworks. Ion exchange treatment can also 

be performed to alter ionic sites to the filler (98).     

 AC presents an interesting case for functional group led design of MMMs. As discussed 

earlier and shown in table 2 and 3, the functional groups present in AC is dependent on 

precursor and activating method. Thus it is important to carefully consider the AC precursor 

and the parameters that are chosen to create the AC, due to their influence on functional groups. 

Other, yet more involved, methods for adding functionality and improving interfacial 

compatibility of AC have been investigated. For example, Saranya et al. functionalized AC 

with alginate to form AC-alginate aggregates, and then further cross-linked the aggregates with 
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calcium as shown in Figure 2 (99). The alginate functionalized AC ensured active adsorption 

sites were available and prevented AC agglomeration.  

 Another method of modifying AC to enhance its interaction with polymers is by 

grafting silane coupling agents. Lan et al. grafted two different compounds, YDH-171 and 

KH550, to biochar (Fig. 3) (95). By grafting with hydrophobic or hydrophilic compounds, the 

overall hydrophobicity of the MMMs could be altered or enhanced. In this case, YDH-171 in 

a PDMS matrix resulted in MMMs with higher hydrophobicity than pristine PDMS (95). 

 

Figure 2: Schematic representation of AC functionalized with alginate by an ionic polymerization method and cross linked 

with calcium by the dissolution of calcium chloride in water  (99). Reprinted with permission from Wiley. 

 

Figure 3: Proposed reaction between grafted biochar with PDMS resulting in highly hydrophobic membranes. Biochars 

(BB) were grafted with either YDH-171 (hydrophobic) or KH550 (slightly hydrophilic) (95). Reprinted with permission 

from Wiley. 
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4. Fabrication of MMMs 

 

MMMs are fabricated into two primary configurations: flat sheets and hollow fibers. 

Depending upon the desired end application, membrane thicknesses can range between 10 – 

200 microns, and can have active layers less than 10 microns. Both flat sheets and hollow fiber 

membranes can be formed in a similar fashion: casting solution formation, casting, and then 

precipitation. Each step is detailed in the following sections.  

4.1. Formation of Casting Solution 

 

Several methods exist to formulate the casting solution (94). The simplest one is by 

simultaneously dissolving the polymer and the AC in the appropriate solvent. Although quick 

and simple, this method runs the risk of disrupting the polymeric chains and forming 

agglomerations. A slightly different, but more common method, involves first dissolving the 

polymer in the solvent, then adding the AC once the polymer is completely dissolved (15,90). 

While this reduces the risk of disrupting the polymer chains, AC agglomerations may still 

form. In order to further reduce the risk of possible agglomeration, some researchers have 

dissolved the polymer and AC in a solvent separately, then combined the two solutions 

(89,100,101). Another method to reduce the presence of agglomerations in the casting solution 

is to simply filter it using a fine mesh before casting (15,102). In doing so, the casting solution 

is separated from agglomerates with a larger size than the mesh utilized. For all methods, 

dispersion of the filler in the solvent and the polymer is facilitated by mechanical stirring. 

Although polymer solutions are viscous, sonication can further disperse the filler and eliminate 

trapped gases without degrading the polymer (103,104). 
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 The concentration of the polymer in the casting solution, as well as the choice of 

solvent, are critical parameters influencing pore size, thickness, free volume, d-spacing, and 

ultimately the separation properties of the formed membrane (105,106,107). One of the most 

crucial parameters for MMMs is the amount of filler added. That is, dilute amounts of filler 

can have negligible influences on membrane properties, and high concentrations of filler tend 

to cause void formation, agglomeration and surface ruptures.   

4.2. Membrane Casting 

 

Once the casting solution is made, it can then be formed into the desired shape. Most 

commonly, flat sheet membranes are cast using a casting knife or doctor blade on a proper 

supporting material made of glass or other rigid and inert materials (108). A moderate casting 

speed is usually utilized ranging from 2 cm/s to 5 cm/s. Although, this can be difficult to control 

unless automated techniques are utilized. In this way, the thickness of the membrane is 

controlled. With low viscosity solutions, it is sometimes necessary to fill a mold with casting 

solution rather than cast it (109).  

 The process used to create hollow fiber membranes is commonly referred to as 

spinning. The spinning process involves extruding a casting solution through an annular 

spinneret while a bore fluid flows through the annular center of the apparatus. The flow rate of 

casting solution and bore fluid are important parameters to consider and are typically set 

between 0.1 and 0.6 ml/min.  Several additional factors influence membrane morphology 

including the viscosity of the casting solution, the bore fluid properties, as well as spinning 

parameters (110).  
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 Using either casting or spinning, most single layer membranes can be fabricated. 

Similar techniques are used to create two layer membranes, but with special instrumentation. 

For example, a co-casting knife can be used to create two-layer flat sheet membranes with a 

combination of MMMs and pristine polymer layers (111). Likewise, hollow fiber spinnerets 

can be equipped with multiple nozzles to create a two-layer hollow fiber membrane (112,113). 

Both apparatuses are depicted in Figure 4. 

 

Figure 4: Schematic diagrams of multilayer casting apparatuses. Co-casting blade for (a) flat sheets (111) and multi-nozzle 

spinneret for (b) hollow fibers (113). Reprinted with permission from Elsevier. 

4.3. Phase Inversion  

 

Once the casting solution is cast, it is necessary to precipitate the membrane. This can be 

done using one of three methods: wet, dry, or combination wet/dry phase inversion. 

4.3.1. Wet Phase Inversion  

 

Wet phase inversion, sometimes called non-solvent induced phase inversion, can be used for 

polymer matrices that are insoluble in water or another non-solvent. Once cast, the solution is 

submerged into an appropriate non-solvent. Demixing of the solvent into the non-solvent 

occurs rapidly, and the polymer membrane precipitates, typically leaving behind a dense top 

layer with a porous supporting layer. It is understood that the kinetics of the demixing process 
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influence the type of porous supporting layer. The demixing process can be explained using a 

tertiary phase diagram shown in Figure 5 (108).  

 

Figure 5: Ternary phase diagram showing (a) instantaneous demixing and the resulting finger-like morphology (108,114) (b) 

delayed demixing and the resulting spongy morphology (108,115) (c) the influence of PEG additives on binodal position 

(116) (d) the influence of metal particle additives on binodal position (117). Reprinted with permission from (a,b) ACS and 

(c,d) Elsevier. 

 The binodal line represents the cloud point of the ternary system and is physically the 

point where demixing begins to occur and the polymer begins to precipitate. The position of 

the binodal as well as the composition path show interesting trends in terms of membrane 

morphology. That is, when the so called “instantaneous demixing” occurs, the composition 

path crosses the binodal line and a finger like structure dominates. When “delayed demixing” 

occurs, the composition path does not cross the binodal line, resulting in a spongy structure.  
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 The ternary system is strongly influenced by the solvent and non-solvent as the location 

of the binodal line changes for different components. A typical non-solvent is water since it is 

inexpensive and environmentally benign, however, other non-solvents such as methanol, 

hexane, acetone, and xylene have been reported (118,119). The binodal is also strongly 

influenced by the presence of additives in the casting solution. Water soluble polymers like 

PEG and PVP, as well as surfactants such as Triton-X, shift the binodal and influence 

membrane morphology (120,121,122). Interestingly, the presence of fillers also causes a shift 

in the binodal line. While this phenomenon has not been studied with AC, likely due to the 

difficulty in visualizing the cloud point in black casting solutions, it was seen with metal 

particles (117), and likely exhibits similar trends with AC. The shifts in the binodal line are the 

result of the strong affinity of the non-solvent toward the additives or fillers, preventing the 

exchange between solvent and non-solvent. 

 Wet phase inversion usually results in asymmetric membranes with a dense top layer, 

which is useful in gas phase separation applications. However, by adding pore forming agents 

or fillers to the casting solution, pores begin to form, creating a membrane suitable for liquid 

phase separations (99,120).  

 Adding filler particles to the casting solution tends to reduce the appearance of 

fingerlike structures and results in spongy cross sections with an ultrathin selective layer as a 

result of delayed demixing. However, combinations of pore forming agents, surfactants, and 

fillers can cause interesting morphologies. One example worth noting used a PSF matrix, PEG 

pore former, and Triton-X-100 non-ionic surfactant. AC was loaded into the MMM with 0.1, 

0.5, and 1 wt.% concentrations. The influence of AC loading on MMM morphology was 

investigated. The use of Triton-X created a fingerlike morphology which broke down with the 
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addition of 1 wt.% AC. The surface pore size also increased with AC loading as shown in 

Figure 6 (121). 

 

Figure 6: Triton-X results in finger like structure however, this finger like structure breaks down and surface becomes more 

porous with increasing amounts of AC from (a,e) 0 wt.%, (b,f) 0.1 wt.%, (c,g) 0.5 wt.%, and (d,h) 1 wt.%. (121). Reprinted 

with permission from Elsevier. 

 

 One interesting phenomena that has been documented during wet phase inversion with 

hydrophobic AC is the tendency of AC to settle near the top surface of the membrane depicted 

in Figure 7 (91,123). In this case, hydrophobic particles accumulate near the top of the 

membrane due to the instantaneous exchange of solvent with water at the top of the membrane, 

resulting in repulsion between AC and non-solvent near the bottom of the membrane causing 

migration of the AC to the top surface (13,91,123). Thus, increasing the exchange rate between 

solvent and non-solvent prevents this migration and particles remain randomly embedded.   
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Figure 7: Migration of hydrophobic AC to the top surface occurs during wet phase inversion. (a) Macroscopic view showing 

black AC more apparent on the top view. (b) SEM image showing AC dispersion and pores on the bottom side with (c) High 

concentrations of agglomerations on the top side (123). Reprinted with permission from Elsevier.  

 

4.3.2. Dry Phase Inversion 

 

Another method of precipitating the membrane out of solution is by dry phase inversion, often 

called precipitation by solvent evaporation. In this method, the solvent is removed from the 

casting solution by evaporation rather than liquid-liquid demixing. The rate of evaporation, 

and thus the environment, temperature, and pressure, are key variables that influence the 

membrane properties. Dry phase inversion is typically performed in a  vacuum or inert 

environment at elevated temperatures (15,124). Although, some research has been performed 

in humid environments where the relative humidity greater than 90% (125). Ambient 

environments are also utilized where the presence of oxygen and normal humidity levels of 

less than 60% are considered (90,92). High humidity levels tend to create areas of nonsolvent 

induced inversion, creating a slightly more porous surface which greatly influences 

performance (125). Otherwise, this method tends to produce dense membranes with a 
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nanoporous surface and a dense cross section (126). Increasing amounts of AC produce cross 

sections with less homogeneity as shown in Figure 8 (89). 

 

Figure 8: POMS membranes formed with AC loaded with (a) 10 wt.% (b) 20 wt.% (c) 40 wt.% showing the increase in 

inhomogeneity with increasing amounts of AC (89). Reprinted with permission from Wiley. 

 One major advantage to the dry phase inversion technique is the thermal treatment of 

the membrane to influence free volume and chain rigidity (127). Moreover, the addition of AC 

tends also to influence free volume and chain rigidity mainly due to the AC porosity and 

crosslinking ability (95). When precipitated under appropriate conditions, this method works 

complimentary with AC addition.  

4.3.3. Dry/Wet Phase Inversion 

 

The final method is a combination of the previous two methods. Typically, solvent in the 

casting solution is allowed some time to evaporate before being submerged in a non-solvent 

(10,128,129). The dry phase step is allowed to occur for seconds to minutes, then wet phase 

inversion completes the precipitation. It is important to note, if complete precipitation occurs 

during the dry phase step, the effects of the wet phase step are not evident. Hence, the dry 

phase step should be carefully controlled as to not allow complete solvent evaporation.   

 In this case, a variety of membrane structures can form. Frequently, the benefits of both 

methods are evident, creating asymmetric membranes with few surface defects (130). The 

dry/wet phase inversion method is typically followed for fabricating hollow fiber membranes. 
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Table 4: Comparative properties of membranes produced by different phase inversion methods. 

Inversion Method Surface Morphology Cross Sectional Morphology 

Wet Dense surface unless high filler content 

or pore forming agents are used. 

Asymmetric with dense top skin and 

porous supporting layer. Porous layer can 

appear spongy, finger-like, or a 

combination of the two depending on 

inversion conditions. 

 

Dry Dense unless the evaporation rate is 

rapid, then surface pores can form. 

Filler materials can also cause ruptures 

leading to porous surfaces.  

 

Dense and either homogeneous or 

asymmetric.    

Dry/Wet Dense or porous depending on the 

specific casting solution formation and 

conditions.  

Dense or porous and asymmetric 

depending on the dry and wet phase steps. 

If the dry step dominated, the cross section 

will be denser than if the wet step 

dominates.  

 

5. Relationship Between Surface Chemistry and Permeability 

 

One of the main advantages of using MMMs is the fillers’ influence on the surface chemistry 

and separation properties of the membrane materials. The use of AC in MMMs has a significant 

impact on the surface properties of MMMs. Their influence is greatly dictated by AC synthesis 

conditions such as the temperature of carbonization, temperature of activation and activating 

agents (131). Consequently, utilizing AC in MMM synthesis has an impact on some surface 

properties such as wettability, hydrophilicity, hydrophobicity, porosity, surface roughness, 

polarity and surface charge. 

 Wettability is a surface property that describes the ability of interaction between a solid 

and liquid phase, and it is greatly affected by the hydrophilicity and hydrophobicity of the solid 

phase (2). Wettability can be determined using the surface tension values obtained by 
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measuring the contact angle between the solid phase (the membrane) and the droplet of liquid 

on the surface. Hydrophilic surfaces tend to have high surface tension values and they are 

characterized by the existence of active functional groups that have the ability to form bonds 

with the fluid (2).  

 

Figure 9: Example of the relationship between contact angle, surface tension, and hydrophilicity of membrane surfaces. 

 On the other hand, hydrophobic surfaces have a tendency to have low surface tension 

values and are characterized by the lack of the active groups. As the contact angle decreases, 

the surface tension increases which leads to a more hydrophilic membrane (2). On the contrary, 

increasing the contact angle decreases the surface tension and hence results in a more 

hydrophobic membrane.  

 It is important to note that the hydrophilicity and hydrophobicity of AC, as well as 

additives, in a casting solution are the main factors that govern the wettability of a membrane. 

The introduction of hydrophilic AC tends to create more hydrophilic surfaces (122), whereas 

hydrophobic AC results in more hydrophobic surfaces (95). This is dictated by the functional 

groups present in the AC and their electrostatic interaction with the polymer matrix. Localized 

electrostatic interactions can cause a shift in electron distribution, creating a more or less polar 

surface (132). Another possible mechanism to this trend is the migration of AC to the surface, 

and ultimate rupture, can leave the AC surface exposed (123). The exposure results in high 

degrees of contact between working fluid and the AC. Thus, the wettability of the MMM 

surface is defined by the wettability of the AC. Furthermore, the use of surfactants in the 
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casting solution has shown to be the dominant factor, preventing shifts in contact angle 

regardless of AC loading, as demonstrated by Aghili et al. (121). This is likely due to the 

smoothing effects of surfactants, leaving behind a smooth surface, while preventing surface 

migration of AC, balancing any influence of AC (133,134).  

 Porosity is a surface physical property indicative of the void fraction in a material or 

on a materials surface. As the amount of AC increases in a synthesized MMM, the membrane 

becomes more porous which results in a higher flux (120,122). This effect can be potentially 

attributed to the fact that AC can locally break surface tension, which results in the creation of 

surface pores in its vicinity. By increasing the frequency of this phenomena through increasing 

the loading of AC, porosity can be greatly increased (121). This property could be beneficial 

in the separation of solutes from liquids due to increased wettability and pores available for 

liquid penetration. In gas separation, on the other hand, porosity if most closely resembled by 

the FFV, in which gas permeability is highly dependent. AC inherently adds FFV within the 

membrane due to the highly porous nature of AC. The particles tend to increase the gaps 

between entangled polymer chains, providing more space for diffusive transport. AC also tends 

to adsorb high affinity gases. This results in higher rates of diffusion and solubility, hence 

improved permeation, as was demonstrated by the study by Weigelt et al. (10).  

 Surface roughness is another physical property that is a function of the surface texture. 

Generally, there is a directly proportional relationship between the amount of AC loaded and 

the surface roughness. This typically results in higher fluxes as a result of increased specific 

area. This increase in surface roughness is attributed to higher surface pore density and uneven 

settling in the polymer phase caused by the presence of AC and particle agglomeration (121). 

AC with higher surface area can cause rougher surfaces compared to AC with lower surface 
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area as was shown by Anson et al. (15) and Marchese et al. (124). This is a result of solvent 

being removed from the pores of AC rather than the polymer. However, surface roughness is 

usually associated with fouling, an undesirable property that can be mitigated by use of 

additives. For instance, according to Hwang et al., the addition of PEG to AC-PPSU 

membranes resulted in lower surface roughness. In membranes with 0.25% AC, the surface 

roughness was 360.0 without PEG, 72.1 with 6% PEG, and 119.0 with 12% PEG (120). 

 Polarity is a significant property in membrane science for gas separation. It can be 

described as an uneven distribution of charge across a molecule where it is believe to govern 

the gas solubility and the membrane selectivity (131). For instance, the polarity of a surface 

tends to increase due to the presence of oxygen complexes on the surface of AC, which impacts 

the sorption properties of the surface (131). In order for a gas to permeate, the polarity of both 

the membrane and the gas should match. This means that MMMs with AC tend to permeate 

more polarizable gases or vice versa depending on the polarity of AC-MMM. 

 Surface charge generally originates from the dissociation of ionizable groups present 

at the surface (2). For example, small anions are negatively charged because they are more 

polarizable than cations and tend to adsorb on hydrophobic surfaces (2). Moreover, surface 

charge and electric potential are both pH dependent where they shift from negative to positive 

as the pH decreases from basic to acidic (2). The surface charge is an important property in 

membrane characterization because it usually correlates to the tendency of fouling or even the 

state of fouling on membranes (2). Therefore, the more positively charged the surface is, the 

higher the fouling is in the membrane. 
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6. Application of AC-MMMs 

 

Various separation applications have been investigated with AC-MMMs. Table 5 summarizes 

the most relevant recent studies, in terms of the membrane matrix, AC material, and the 

intended application. Significant findings are highlighted and detailed in following sections. 

Table 5: Summary of most recent separation applications using AC-MM membranes with particular emphasis on the type of 

matrix used, AC source, method used for activating the derived carbon, and whether AC was commercial or synthesized in-

house. 

Matrix AC Precursor Activating Method AC Vendor Application Ref. 

PSF Bagasse Biochar was not 

activated 

In house Cu2+ and Pb2+ 

removal from water 
(122) 

PSF Palm kernel 

shells 

Not listed Not listed Ag+, Pb2+, Cd2+, Cr3+ 

removal from water 
(135) 

PES Bamboo Not listed US Research 

Nanomaterials, Inc., 

Houston, USA 

Cu2+ and (SO4)2- 

removal from water (123) 

PES Polish 

subbituminous 

coal 

Steam activation In house Cu2+
 removal from 

water (136) 

CTA Not listed Not listed Carbochem, LQ1000 Uranium removal 

from water 
(137) 

CTA Not listed Not listed Norit NC-100 Uranium removal 

from water 
(138) 

PPSU Acacia fumosa 

seed 

HCl, functionalized 

with alginate 

In house Phenol removal from 

water 
(99) 

CAP Not listed Not listed Merck (India) Ltd. 

Mumbai, India 

Phenol removal from 

water 
(91) 

PSF Not listed Not listed Merck (India) Ltd., 

Mumbai, India 

Benzene, Toluene 

and Phenol, removal 

from water 

(13) 

PPSU Coconut shell Not listed China Activated Carbon 

Industries Ltd., Taiwan 

Humic acid removal 

from water 
(120) 

PSF Broom sorghum ZnCl2 In house Organic matter 

removal from cheese 

whey wastewater 

(121) 

CNF Olive stones KOH In house E. coli. removal from 

water 
(78) 
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PES Not listed Not listed Norit A Supra EUR, 

Norit Netherlands B.V., 

The Netherlands 

Removal of 

creatinine from blood 

plasma 

(111) 

PES Not listed Not listed Norit A Supra EUR, 

Norit Netherlands B.V., 

The Netherlands 

Removal of 

creatinine, HA, IS, 

and PCS from blood 

plasma 

(112) 

PDMS Not listed Not listed US1074 US-Nano 

Company 

SouthBend,IN,US 

Pervaporation of 

butanol (109) 

PDMS Tree biochar Grafted with KH-

550 and YDH-171 

In house Pervaporation of 

ethanol 
(95) 

ABS 

copolymer 

not listed Not listed Maxsorb, The Kansai 

Coke & Chemical Co. 

Ltd. (Japan),  

Merk (Germany) 

Separation of 

CO2/CH4 

(15) 

ABS Not listed Not listed Not listed Separation of 

CO2/CH4 
(124) 

PEBAX 

2533 

Not listed Not listed Permionics Membranes 

(Vadodara, India) 

Separation of 

CO2/CH4 
(139) 

PEI Not listed Not listed Maxsorb 3000, The 

Kansai 

Coke & Chemical Co. 

Ltd. (Japan) 

H2/CH4, H2/CO2, 

H2/O2, H2/N2, 

CO2/CH4, O2/N2 (90) 

PVC Not listed Not listed Maxsorb 3000, The 

Kansai 

Coke & Chemical Co. 

Ltd. (Japan) 

H2/CH4, H2/CO2, 

H2/O2, H2/N2, 

CO2/CH4 (102) 

Matrimid Not listed Not listed Blücher GmbH (Erkrath, 

Germany) 

Pairs of He, H2, O2, 

N2, CO2, CH4 
(10) 

PES Not listed Not listed Aldrich O2/N2 (92) 

POMS Not listed Not listed Blücher GmbH n-C4H10/CH4 (89) 

POMS Not listed Not listed Blücher GmbH CO2, C2H6, C3H8, n-

C4H10, n-C5H12/CH4 
(79) 

PES Not listed Not listed Envior Chemical® Japan CO2/CH4 (140) 

Matrimid Benzimidazole Chemical 

crosslinking 

In house CO2/N2 
(11) 

Matrimid Matrimid Not Activated In House CO2/CH4 (7) 
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O2/N2 

Nafion Polypyrrole KOH In house Methanol fuel cell (141) 

Nafion Not listed Post processed by 

acidification and 

PEG modification 

Osaka Gas Co. Ltd.  Methanol fuel cell 

(142,143) 

Nafion Glucose steam In house Methanol fuel cell (144) 

 

6.1. AC-MMM uses in Water Purification 

 

6.1.1. Rejection of Heavy Metal Ions 

 

Due to the excellent adsorption capacity of AC, many researchers have investigated AC-

MMMs for heavy metal ion rejection. In doing so, the selectivity of the matrix material, as well 

as the adsorption of the AC, are exploited to result in typically better rejection and permeation 

compared to the neat membrane or AC alone.  

 Jinsong et. al., reported 93.7-100% rejection of Cu2+ and 95.2-100% rejection of Pb2+ 

with a flux of near 33 LMH using a PSF hollow fiber membrane loaded with biochar (3-50 

microns from sugarcane bagasse) (122). They also reported a recovery rate of 140 Lm-2 of 

water from Cu2+ solution and 1500 Lm-2 from Pb2+ solution before the defined breakthrough 

point (122). In another study by Hosseini et. al., PEI matrix with nano size AC were tested for 

copper and sulfate ion rejection; where membranes with 0.5 wt.% AC rejected copper ions at 

96% and sulfate ions at 94% (123). Both studies observed an increase in flux compared to the 

pristine membranes with acceptable rejection of both Cu2+, Pb2+, and sulfate; completely 

attributed to adsorption onto the AC fillers. A different study by Hofman et al. detected 

differences between using biochar and AC from coal using a PES matrix due to acid functional 

groups in the AC (136). Biochar was more effective in removing Cu2+ at initial concentrations 
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below 10 mg/L, and the AC loaded membrane was more effective with initial concentrations 

greater than 15 mg/L (136).   

 PSF loaded with AC from palm kernel shells showed a permeability/rejection tradeoff 

for Ag+, Pb2+, Cd2+, and Cr3+. Pristine PSF membranes showed low flux, but near 100% 

rejection of all ions. Flux increased from about 10 LMH to 50 LMH as AC loading was 

increased from 0% to 0.9%, but major decrements in rejection for all species were observed 

(135). The optimal AC loading was suggested to be 0.3 wt.% in which rejection followed the 

order: Cd2+ >Cr3+ >Ag+ >Pb2. This is nearly consistent with the order of ionic radii, which 

would indicate size exclusion rejection. However, Cd2+ has the smallest ionic radius but had 

the highest rejection. This is likely because it could easily penetrate the matrix, but was 

chemisorbed by the AC. This along with higher rejection with increasing AC loading indicated 

that size exclusion and adsorption played an important role in the rejection of each ion (135). 

 With adsorption being the principal mechanism of heavy metal ion rejection, 

regeneration of the AC within the membrane becomes an issue. Chemical regeneration is 

required to remove metal ions from AC, but the matrix material must also be considered to 

prevent damage. He et al. showed that regenerating spent AC-MMMs with nitric acid resulted 

in acceptable performance, observing a decrease in rejection of Cu2+ from 93% to 87% and of 

Pb2+ from 95% to 86% after regeneration (122). Nevertheless, more studies are clearly still 

needed to better resolve the regeneration issue and comfortably proclaim that the hurdle has 

been cleared. 
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6.1.2. Rejection of Uranium 

 

While some conventional separation methods to remove U from water (absorption, ion 

exchange, precipitation) can be used, they typically only have high rejection when treating 

solutions with high U concentrations (on the order of ppm) (137,145). However, U typically 

exists in relatively low concentration in water (on the order of ppb), making it difficult to 

remove using these methods. MMMs have been demonstrated to capture U from water at these 

lower concentrations via a combination of size exclusion and adsorption.  

 Rodriguez et al. investigated a CTA membrane with micron sized commercial AC for 

dilute (0.7 ppm) U removal (4). Membranes with 3 wt.% AC loading achieved the highest U 

removal of 41% with a feed pH of 7. The flux across the membranes averaged 363 LMH/bar. 

The high flux and high rejection, despite agglomerates and apparent pH rejection dependence, 

indicate adsorption of U on the AC was the predominant mechanism of separation.  

 The same group was able to increase the U removal of dilute solutions to 50% by 

introducing iron into the uranyl feed solution or by incorporating iron into the AC by chemical 

impregnation (138). This effect also indicated that adsorption dominated rejection. 

Additionally, in using the MMM with iron doped AC, homogeneous dispersions of AC were 

achieved, which allowed for more efficient adsorption.  Although adsorption appeared 

dominant, the group noted complex rejection behavior for various species in the uranyl solution 

with varying pH, indicating size exclusion was also present.   
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6.1.3. Rejection of Aromatic Compounds 

 

Phenol is a high priority water pollutant that is commonly studied (146). The removal of phenol 

from water can be achieved with both ultrafiltration and adsorption using MMMs, making 

them an ideal class of membrane for this process.  

 Saranya et al. used a PPSU matrix with functionalized AC from acacia fumosa seeds 

for the removal of phenol from water (99). Functionalizing the AC aimed to prevent 

agglomerations in the casting solution and ultimately within the membrane and to increase 

rigidity to maintain active sites for adsorption. The pristine polymer had nano-sized surface 

pores when cast and precipitated by wet phase inversion, as has been documented before 

(147,148). The surface pore size increased to nearly one micron until the surface became dense 

with 1% loading of AC. This indicated that even with functionalized AC, agglomerations still 

formed at high loadings and pore blockage by AC become more apparent.  

 The phenol rejection efficiency by the MMMs was found to increase with AC loading. 

However, the amount of phenol adsorbed by the AC decreased with higher loadings (99). This 

indicated that active adsorption sites became less available, marking a shift between adsorption 

dominated rejection to a combination of adsorption and size exclusion. The flux first increased 

from 14.5 LMH in the pristine polymer to 26.9 LMH in the 0.25 wt.% functionalized AC 

loading and then decreased as the loading increased to 1 wt.% as a direct result of decreased 

porosity and fewer surface pores.  

 The use of nano sized (750 nm) AC seemed to prevent agglomeration in a CAP 

membrane, allowing for 25 wt.% loading (91). A flux of 64 LMH flux and 96% rejection for 

phenol was attributed to an increase in both specific surface area and hydrophilicity compared 
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to the pristine membrane due to the AC. These two properties appeared to maximize the flux 

and active sites available for adsorption as depicted in Figure 10.  

 

Figure 10: Influence of nano sized AC on (a)  contact angle, (b)  specific surface area, and (c) phenol rejection on an AC-

CAP MMM (91). TP is the total phenol concentration. The secondary y-axis in (c) demonstrates the raw feed TP, TP after 

microfiltration with unloaded membranes, and the permeate TP using various loadings of AC. The steep decline from 23 TP 

in raw feed to 21 TP after microfiltration to 7 TP in the 25 wt.% AC-MMMs demonstrate the improved rejection 

performance. Reprinted with permission from Wiley. 

Despite the high concentration of AC near the membrane surface, fouling was still present and 

10% reduction in flux was seen even after acid-alkali regeneration, indicating irreversible 

fouling (91).  

 The same group also investigated a 70 nm AC in a hollow fiber PSF matrix (13). 

Although surface pores were visible in the pristine and low loaded membranes, they noted a 

decrease in surface pore volume at AC loadings larger than 1 wt.% as a result of pore blockage 

(13). As noted before, the addition of AC lead to a more hydrophilic membrane, however, the 

PWF decreased with increasing AC loading. This signifies competition between pore blocking 
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and surface hydrophilicity on flux. In this case, the pore blockage was more dominant, 

restricting flux.  

 They also found that a membrane with 2 wt.% AC was optimal in terms of flux and 

adsorption of benzene, toluene, and phenol. The pH dependent rejection was attributed solely 

to adsorption by the AC, and was a maximum of 96% for benzene, 88% for toluene, and 80% 

for phenol at a pH of 4 (13). The influence of pH was shown to influence the zeta potential of 

the MMM surface. Acidic solutions resulted in higher zeta potentials. Thus, less polar 

molecules could more easily be adsorbed by the AC in the MMM. Hence, the lower rejection 

for phenol was primarily caused by its negative -OH functional group, limiting its adsorption. 

The –CH3 group on toluene is slightly less negative, promoting higher adsorption than phenol. 

The absence of negative functional groups on benzene was the reason for its high adsorption.  

 Another aromatic water pollutant that has been investigated by AC-MMMs is humic 

acid. The rejection of humic acid is commonly probed in membrane applications because it is 

a major source of fouling on many polymeric membrane materials (16,149,150). A study by 

Lin-Luen et al. used a PEI-PPSU polymer blend, which was loaded with 0.25wt.% AC from 

bamboo and 6 wt.% PEG as a pore forming agent, to achieve a removal efficiency of 84%, as 

shown in Figure 11 (120). The addition of PEG not only helped create a spongy cross section 

with surface pores, but additionally helped in reducing surface roughness caused by the 

addition of AC. In membranes with 0.25 wt.% AC, the surface roughness was 360.0 without 

PEG, 72.1 with 6 wt.% PEG, and 119.0 with 12 wt.% PEG (120). This is an interesting 

observation since rougher membranes typically lead to higher degrees of fouling. Hence, 

adding PEG can potentially mitigate fouling. Membrane porosity was also improved by the 

addition of AC as measured by PWF. As the AC loading increased from 0.25 wt.% to 1 wt.% 
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without the addition of PEG, the PWF increased from 271 to 535 LMH (120). The exception 

was in membranes with 0.50 wt.% AC, adding 12 wt.% PEG into the casting solution slightly 

increased the PWF from 428 to 452 LMH (120).  

 

Figure 11: (a) Crater-like morphology formed on the tope surface of PEI-PPSU blended AC-MMM and the resulting (b) 

cross section. The influence of AC on (c) PWF and humic acid removal efficiency and (d) contact angle. Membranes were 

formed with 35 wt.% PPSU and 5 wt.% PEI. PEG pore forming agent was not used in samples SA1-3, 6 wt.% was added to 

SA4-6, and 12 wt.% to SA7-9. Each series of samples contains 0.25, 0.5, and 1 wt.% AC (120). Reprinted with permissions 

from Elsevier.  

6.2. AC-MMM uses in Biological Solute Rejection 

 

6.2.1. Removal of organic Matter 

 

PSF matrix loaded and coated with powdered AC (<74 microns from sorghum) proved to be 

effective for the removal of organic matter from cheese whey wastewater (121). The rejection 

was quantified in terms of COD and UV254.  

 AC-loaded membranes showed improved rejection of COD and UV254 shown in Figure 

12a. The COD rejection increased from 38% in neat membranes to 44% in 0.5 wt.% AC-
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MMMs. Similarly, UV254 removal increased from 42% to 48%. A rejection decline in both was 

seen with 1 wt.% AC-MMMs. The waste water flux, shown in Figure 12b, was similar in 

membranes loaded with 0.1 and 0.5 wt.% AC, and was higher than both the neat membrane 

and the membrane loaded with 1 wt.% AC (121). Though, all membranes showed a decline in 

flux with time, indicating pore blockage and cake formation on the membranes.  

 

Figure 12: Influence of AC on (a) organic solute removal and (b) clean water flux over time. The influence on coated AC-

MMMs on (c) clean water flux over time, and (d) improved regeneration ability (121). Reprinted with permission from 

Elsevier. 

 To combat cake formation, AC was used to coat the 0.5% loaded membrane. When 

coated with 30 g/m2 AC, rejection increased to about 80% due to the additional sites for 

adsorption. In membranes coated with more than 30 g/m2, there was no increase in rejection 

due to AC agglomeration leading to fewer active sites (121). Surprisingly, the waste water flux 

increased proportional to the amount of coating despite the extra thickness caused by the added 
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layer. The coated membranes still showed a flux decline with time, indicating fouling was still 

present. However, after physically cleaning the surface, the waste water flux returned to near 

its original value before filtration. As shown in Figure 12, the flux of the coated membrane 

remained constant after cleaning, whereas the neat and uncoated membranes saw a flux decline 

after cleaning. This means the irreversible fouling was reduced by coating the MMMs with 

AC. 

6.2.2. E. Coli Removal 

 

Considering E. coli. is relatively large (0.5 microns wide by 2 microns long) and leaves 

membranes susceptible to bacterial growth over time, antimicrobial membranes with relatively 

large pores can be advantageous.  

 Hassan et al. investigated a novel MMM configuration made with two layers for the 

removal of E. coli.  (78). It consisted of oxidized CNF intertwined with AC deposited on a 

porous paper support covered in un-oxidized CNF and a PAE crosslinking agent. Two methods 

of formation were investigated. 1) direct drying and 2) rinsing with isopropyl alcohol prior to 

drying. Drying with isopropyl alcohol resulted in membranes with a more porous surface (78). 

The membrane with AC in the bottom layer was more porous than membranes without the AC 

in the bottom layer.  

 In the membranes formed by direct drying, adding the AC layer enhanced PWF, from 

55 LMH without AC to 158 LMH with AC, due to pore formation in the CNF layer even 

though the AC was not directly introduced into that layer. Increased PWF was observed with 

the isopropyl alcohol drying, and the membrane with AC showed relatively higher PWF as 

they saw an increase from 165 LMH to 425 LMH as a result of the AC. The flux with bacteria 
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suspensions was significantly lower, at 139 in CNF and 345 in CNF-AC, which was a result 

of pore blockage by the bacteria (78). The removal of E. coli. was slightly improved from 97% 

to 99% with the addition of AC, as a result of adsorption by the AC layer. They found that the 

CNF-AC membranes were antibacterial, showing no growth after 24 hrs. at 37°C (78).  

6.2.3. Blood Plasma Toxin Removal 

 

In purifying blood plasma, it is crucial to prevent contamination, thus AC presents some 

hazards as AC-MMMs pose the risk of particles breaking free and entering the passing fluids 

(151). One method to ensure this does not happen is by using a two-layer membrane with a 

pristine polymer on one side.  

 A two-layer PES-PES/AC membrane was investigated for the removal of creatinine 

from blood plasma by Tijink et. al. and is shown in Figure 13(a) (111). The particle free PES 

layer was used to ensure AC was not mixed with the retentate. This two-layer architecture was 

achieved using an adjustable co-casting knife. The cross sections were influenced by a PVP 

additive in the casting solution, and 60% NMP in the coagulation bath for the phase inversion. 

They showed that between 50-70% AC relative to the PES could be loaded while maintaining 

a spongy cross section (111). This architecture observed decreased water permeance from 1839 

LMH/bar in the single layer MMM to 350.7 LMH/bar in the dual layer. This is likely a result 

of the surface of the particle free layer adding resistance to flow. The particle free layer did not 

reduce creatinine concentrations, whereas the single layer MMM and dual layer particle free-

MMM reduced concentrations by about 80% (111). This was compared to creatinine 

adsorption on the AC alone, and was similar, indicating that the active sites on the AC in the 

MMMs were readily accessible (111). Both diffusion of creatinine through the membrane as 

well as adsorption by the AC was simultaneously responsible for the removal of creatinine 
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(111). It is important to note that this removal was accomplished without major changes in 

plasma osmolality, pH, or total protein concentration. Major changes in these values would be 

detrimental to dialysis patients.   

 

Figure 13: Two layer PES-PES/AC (a) flat sheet and (b) hollow fiber membranes (112). Reprinted with permission from 

Elsevier. 

 Tijink et al. also studied the removal of other toxins from plasma with a two layer 

hollow fiber membrane depicted in Figure 13(b) (112). This configuration was achieved using 

a triple layer spinneret. PES/PVP/AC membranes were fabricated by the dry-wet spinning 

method in air and further precipitated in PVP or NMP solutions. They observed good 

dispersion of AC with no macro void formation. Using a 5% PVP in water solution as the bore 

fluid resulted in a circular bore, whereas using only water resulted in irregular shapes (112). 

The membrane with the highest pure water permeance was made with the NMP containing 

bore fluid and was used throughout the study. The clean water permeance was 58.4 LMH/bar 

and it was shown that no delamination or AC losses occurred.  

 Creatinine was investigated as the water soluble toxin. HA, IS, and PCS were also 

investigated and represented PBTs (112). The creatinine adsorption by the hollow fiber 

membrane of 100 mg/g was higher than the flat sheet configuration at 29 mg/g for the same 

feed concentration. Creatinine, HA, IS, and PCS all showed similar adsorption capacities in 

the dual layer MMM as was also observed in the AC alone, indicating good accessibility. In 
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cross flow measurements, nearly 40 mg/g (creatinine/membrane) was removed after 4 hours. 

 The removal of PBTs in cross flow was mostly attributed to adsorption on the MMM. 

This is in contrary to creatinine rejection, which combines adsorption with diffusional effects. 

Removal, in mg PBT per gram of membrane, was about 14 for HA, 3.5 for IS, and 2.3 for PCS 

(112). It is important to note that albumin was able to pass through the membrane and 

osmolality decreased over time. However, no changes in pH or salt concentrations were 

detected.   

6.3. AC-MMM uses in Pervaporation 

Pervaporation has frequently been investigated for the dehydration of organic compounds, 

especially alcohols. This process offers a unique cross between liquid and gas phase separation 

because both phases are in contact with the membrane. Thus, the rejection of a polar liquid 

species on the surface and the diffusion of a less polar gaseous species in the free volume of a 

membrane is required. This provides an interesting challenge for AC-MMMs due to the AC 

influence on surface hydrophobicity and free volume. Moreover, as most AC-MMMs result in 

hydrophilic surfaces, modifications to the AC are required for enhanced properties.  

 Lan et al. investigated the modification of biochar created from lodgepole pine bark 

with KH-550 and YDH-171 (95). The nano-sized “grafted biochar” was loaded into a PDMS 

membrane and cast on a cellulose acetate support and allowed to precipitate in air for 24h. The 

grafting resulted in weaker –OH stretches in the biochar, and ultimately an increase in water 

contact angle and a decrease in ethanol contact angle in the MMMs. These changes indicated 

that the neat membranes became more hydrophobic with the addition of grafted biochar and 

has a stronger affinity toward ethanol (95). The hydrophilicity on the YDH-171 was stronger 
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than KH-550 due to the presence of a hydrophilic -NH2 in KH-550. Likewise, MMMs with 

YDH-171 showed stronger compatibility with ethanol.  

 Both biochars showed an increase in flux with an increase in loading up to 4 wt.% due 

to an increased free volume. However, the separation factor decreased in both cases after 3 

wt.% likely due to the formation of macrovoids within the membrane. An increase of ethanol 

in the feed solution resulted in lower flux but higher separation factors. MMMs loaded with 3 

wt.% biochar at 40°C and 10 wt.% ethanol feed concentration performed best. The YDH-171 

MMM performed relatively better with a separation factor and flux of 11.3 and 227 LMH. The 

KH-550 MMM had a 10.1 separation factor and a flux of 225 LMH (95). 

 Another AC that resulted in MMMs with stronger affinity toward the alcohol was nano 

sized (20-40nm) AC with higher specific surface area (1400 m2/g) (109). When fabricated by 

the dry phase inversion method, the addition of AC resulted in a rougher PDMS surface, 

increased degree of swelling, and an increase in water and butanol contact angle caused by the 

AC (109). A lower contact angle was seen with butanol than water, indicating higher affinity 

of butanol with the membranes. The permeability of both butanol and water increased when 

AC loading was increased from 0 to 6%, but then decreased slightly at 8% loading. However, 

the separation factor increased for the entire range of AC loadings (109). The decrease in 

permeability from 6 to 8% loadings was likely the result of agglomeration forming within the 

membrane, creating a longer path for diffusion. Optimal results were seen at 6% AC loading 

with a butanol permeability of 9.49x10-7 g cm/s cm2 bar. Separation factor increased with 

increasing temperatures within the range of 37-57°C.  
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6.4. AC-MMM uses in Gas Separation 

 

The use of MMMs has especially attracted attention for gas phase separations due to the 

permeability/selectivity limitations of polymeric and inorganic membranes. MMMs offer 

multiple mechanistic pathways (152) capable of exceeding the permeability and selectivity 

upper bounds suggested by Robeson (153). Moreover, Chuah et al. recently formulated a 

metric for MMM performance based on filler/matrix properties (154). They presented an “F-

index” which quantifies improvements in permeability and selectivity. AC and CMS MMMs 

consistently showed F-index values greater than 1 with many polymers, meaning they are 

likely to improve both permeability and selectivity in MMMs.  

 Although Robeson’s upperbounds were correlated specifically for membranes 

undergoing solution diffusion, AC-MMMs are often compared to this upperbound (10). 

However, the use of this comparison may not be accurate not only because of the mechanistic 

difference, but also because of the difficulty in establishing and measuring the active layer 

used in the permeability calculation. Nonetheless, AC-MMMs have shown promising results 

for two classes of gasses: small, low molecular weight, non-polar gas mixtures and higher 

hydrocarbons. 

6.4.1. Small, Low Molecular Weight, Non-Polar Binary Mixtures 

 

The gas pairs consisting of a combination of He, H2, O2, N2, CO2, CH4 present some of the 

most difficult, industrially relevant gases to separate due to their similar size, polarity, and low 

boiling points. The use of AC-MMMs has yet to be exceptionally successful in their separation, 

however, many important studies offer insight into their behavior.  
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 The influence of AC size was investigated in an ABS copolymer membrane for 

CO2/CH4 separation (15). Two AC of different particle size were utilized. The AC with lower 

surface area and larger size ultimately lead to better CO2/CH4 permselectivity. However, more 

filler was needed to achieve this. It was suggested that poor polymer filler interaction was 

improved by the butadiene-styrene block in the matrix. Both CO2 permeability and CO2/CH4 

selectivity was improved with the addition of AC particles. Higher loadings led to further 

increases in permselectivity up to 10 wt.% in the smaller AC, and 40 wt.% in the larger AC 

(15). Increases in permeability and selectivity were attributed to selective surface diffusion 

through the pores of the AC. This is reasonable considering CO2 is the more adsorbable of the 

two species. The use of dry phase inversion technique was critical to the increase in 

permeability, as nano-sized pores and surface roughness were enhanced with the addition of 

AC (15,124). Moreover, AC with higher surface area and pore volume resulted in increased 

roughness due to the solvent being eliminated from pores in the AC rather than from the 

polymer (124). This results in localized variation in mass transfer around the AC particles, 

creating a higher tendency for node and valley formation compared to pristine membranes 

(155).  

 The influence of particle surface area was opposite to this finding in a Matrimid-CMS 

MMM. Two different CMS nanoparticles (1079 and 538 m2/g BET) showed similar 

performance when used for CO2/N2 separation (11). In this case, the gas diffusion through the 

particle/matrix void space was more significant than the diffusion through the particle pores. 

None the less, membranes showed improved performance compared to pristine Matrimid, with 

a 14.9 barrer permeability and 38.9 ideal CO2/N2 selectivity (11).  
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 On the other hand, a PEBAX matrix loaded with 25 and 50 wt.% (relative to the 

polymer phase) AC saw a different trend (139). Similar CO2/CH4 selectivity was seen in the 

neat and 25 wt.% loaded membranes, but a large drop in selectivity was observed at 50 wt.% 

loading. CO2 permeance was the following order: neat PEBAX<25%<50%. The increase in 

permeability was attributed to diffusion through the pores of the AC as well as unselective void 

space in the 50 wt.% loaded membrane (139).  This is further evidence that there is an optimal 

loading before the formation of unselective void space. 

 Garcia at el. also studied AC loaded in a PEI matrix (90). Using optical microscopy, 

they were able to determine that 2% loading of AC resulted in homogeneous dispersion of AC 

in the PEI. At higher loadings, agglomerations were observed by measuring visible particle 

size and comparing it to the original particle size distribution. (90).  It was also shown that the 

d-spacing decreased with increasing AC loadings, likely the result of rigidification of the 

polymer structure. They also saw an increase in pure gas permeability in all pure gases tested 

with increased AC loading. A simultaneous increase in selectivity for H2/CH4, H2/CO2, and 

O2/N2 gas pairs was also observed, resulting from a decrease in the diffusion coefficient and 

an increase in solubility due to preferential sorption of O2, CO2, and CH4 in the AC particles 

(90).  

 The same group studied a PVC membrane cross-linked with a difunctional amine: 4,4’-

oxidianiline loaded with AC up to 60 wt.% (102). After creating the casting solution, AC 

agglomerations were filtered. They noted that the top and bottom surface of membranes loaded 

with 60% AC were similar and contained visible void spaces around the AC (102). Using a 

crosslinking agent favored the formation of a less permeable porous structure. X-ray diffraction 

revealed that cross linked membranes had a lower degree of crystallinity aided by AC loading. 
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Thermogravimetric analysis showed that as the AC content reached 60 wt.%, the thermal 

behavior was dominated by AC rather than matrix phase. Increasing amounts of cross linking 

and AC loading also influenced an increase in gas permeability as predicted due to void spaces 

in the membrane surface (102). Membranes loaded with 60% AC showed Knudsen selectivity 

as a result of that void formation. However, their selectivity was dissimilar to the Knudsen 

selectivity in cross-linked membranes with 23 wt.% AC. They suggested a combination of 

sorption-diffusion and Knudsen diffusion was observed (102).  

 Another study demonstrated that a reduction in surface defects was shown to occur by 

using a dry/wet phase inversion method on an AC loaded Matrimid matrix (10). Solvent and 

non-solvent were chloroform and methanol. Good polymer-AC interaction was verified by an 

increase in glass transition temperature with an increase in AC loading (10). Despite the AC 

causing a rougher surface than pristine membranes, the AC tended to accumulate near the 

bottom of the membrane due to settling during the dry phase inversion step.  

 For all gases, there was an increase in permeability with increased AC loading and very 

small changes in selectivity for most gas pairs. A significant difference between the measured 

selectivity and the predicted Knudsen selectivity showed that solution diffusion was the 

primary mechanism, attributing the increase in permeability as a result of adsorption and 

surface diffusion through the AC (10).  

 The formation of void spaces with high amounts of AC was also apparent in a PES 

matrix. With 10 wt.% AC, macrovoid formation was present as a result of poor compatibility 

(92). The O2 and N2 permeance was higher in the MMMs than pure PES, showing increased 

transport proportional to increased AC loading until 10%. A similar trend was seen in O2/N2 

selectivity, where an increase in selectivity was observed with membranes made with 1 and 5 
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wt.% AC followed by a decrease at 10 wt.%. Still, this decreased selectivity was higher than 

the pure PES (92).   

 Vu et al. showed that priming of CMS with small amounts of PSF before being placed 

in contact with dissolved Matrimid helped to decrease agglomeration and interfacial defects 

(7). Moreover, thermal annealing in combination with priming significantly reduced defects, 

enabling defect free membranes at loadings of 35 vol.%. Interestingly, this led to an increase 

in selectivity for CO2/CH4 and O2/N2 but overall lower permeabilities than the pristine 

polymer.    

 Facilitated transport of CO2 by alkanolamine embedded in dense PES-CMS 

membranes proved to be highly effective for CO2/CH4 separation (81,140). In this case, CMS 

and the alkanolamine components opened multiple pathways for gas transport through the 

membrane. Increased loading of the alkanolamine solution resulting in increases in CO2 

permeance while maintaining CH4 permeance. This resulted in a CO2 permeance of 117.32 

GPU and CO2/CH4 selectivity of 20.1 with a membrane made of 20 wt.% PES, 30 wt.% CMS, 

and 15 wt.% alkanolamine in NMP (81,140).  

 When compared to MMMs containing other common fillers, CMS and AC-MMMs 

perform average in the case of CO2/N2 and H2/CH4 separation. In the case of CO2/CH4, O2/N2, 

and H2/CO2, several of these membranes showed superior performance. This comparison is 

shown in Figure 14, where various MMMs were grouped by filler type. Plots were constructed 

from data listed in various review articles (17,18,20,21,24,82,94,152,156) as well as other 

recent literature. While the choice of matrix material is of crucial importance, these plots 

demonstrate the viability of using AC in MMMs. They also highlight the need for more studies, 

as there is no apparent trend seen in AC-MMMs for these applications.  
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6.4.2. Higher Hydrocarbons 

 

The separation of higher hydrocarbons (C3+) from methane is also a challenging task is which 

membranes can compete with existing technologies (157). 

 Mushardt et al. studied a POMS MMM loaded with AC at 1.5 and 3.5 microns particle 

size for the separation of n-C4H10 and CH4 (89). A silicon coating was applied to seal surface 

defects. Adsorption studies on the AC particles showed that the AC had a higher affinity toward 

n-C4H10 than CH4. As the amount of AC loading increased, membrane cross sections became 

less homogeneous and were more pronounced for smaller AC sizes. Defects were seen with 

40 wt.% (relative to polymer) loaded membranes despite silicon coating. Smaller particles 

tended to result in more frequent defects (89).  

 That same study also found that the addition of AC led to a reduction in the swelling 

effect commonly caused by n-C4H10 and a decrease in n-C4H10 permeance proportional to 

increased AC loading. MMMs with smaller particles showed higher permeance compared to 

the larger particles. However, membranes with 20 wt.% (relative to polymer) loading showed 

the highest n-C4H10/CH4 selectivity. They concluded that particle size had little influence on 

selectivity, indicating that pore size, not particle size, controlled permselectivity behavior in 

these membranes (89).   
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Figure 14: AC and CMS MMMs compared to other MMMs grouped by filler type for (a) CO2/CH4, (b) O2/N2, (c) 

CO2/N2, (d) H2/CH4, and (e) H2/CO2 gas pairs plotted against Robeson’s 2008 upperbounds. 
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 A follow-up from the same group studied the performance properties of mixed gases 

of higher hydrocarbons using the same POMS-AC MMM (79). They noted that swelling 

caused by n-C4H10 uptake played an important role in both permeability and selectivity. Using 

a mixture of 5 mol% n-C4H10 in CH4, they saw higher n-C4H10 permeance in the pure POMS 

membrane, but a higher selectivity in the MMM containing 20 wt.% AC. For feeds with less 

than 2% n-C4H10, the permeance of n-C4H10 was lower in the MMMs, and the selectivity was 

equal for both membranes (79). 

 They also tested a gas containing 19% of higher hydrocarbons consisting of CH4, CO2, 

C2H6, C3H8, n-C4H10, and n-C5H12. The permeance of each species followed the condensability, 

increasing proportionally with the number of carbons. Likewise, selectivity with respect to 

CH4 also increased with number of carbons (79). 

6.5. Proton Exchange AC-MMMs for a Direct Methanol Fuel Cell 

 

Important parameters in proton exchange membranes for a direct methanol fuel cell are proton 

conductivity, limited methanol permeability, and overall stability. AC-MMMs contend for this 

application because the polymer serves to provide flexibility and ion exchange capacity while 

the AC serves to enhance dimensional, thermal, and mechanical stability and enhance proton 

conductivity and water uptake (158).    

 Nafion is the most common membrane material for fuel cell applications. It is typically 

formed by tradition phase inversion or sol gel methods. AC can be introduced into the casting 

solution readily before inversion (142,143). Chai et al. utilized a unique method to produce 

and incorporate AC into a Nafion in a single step. A glucose solution was introduced to a 

swollen membrane and then hydrothermally reacted to carbonize the glucose (144).  
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 Hydrophilic AC can be used to improve the water uptake in proton exchange 

membranes. The increase of water in the membrane enhances proton conductivity, improving 

the performance of the membrane. Several studies have shown this increase. Guo et al. reported 

an increase from 28% to 48% water uptake with 1 wt.% nano AC (141). A similar increase 

was observed by Tsai at al., however 15 wt.% AC was need to achieve 65% water uptake (142). 

Chai et al. further demonstrated the water uptake potential, measuring 140% uptake with a 10 

wt.% AC loading (144). At low loadings, this variation with AC loading is the direct result of 

hydrophilic properties of the AC. At higher loadings, the AC may become agglomerated, 

reducing active sites available for water adsorption. In turn, the water uptake becomes limited 

with increasing AC loading. The increase in water uptake and electrostatic repulsion of AC to 

methanol resulted in an increase in proton conductivity and simultaneous decrease in methanol 

permeability (144). Importantly, the power density is also influenced by introducing AC. With 

3.6 wt.% AC, an increase from 25.2 mWcm-2 in pristine Nafion to 36.3 mWcm-2
 in one instance 

(144). However, with AC loading exceeds a certain concentration, increased resistance 

between the membrane and electrode can occur, resulting in a reduced power density. 

Likewise, too high loading resulted in particle agglomeration leading to poor mechanical 

performance, hindering the viability of AC-MMM use.  

7. Predictive Models 

 

Modeling is regularly needed and used to guide experiments, design specific unit operations, 

and optimize process. Because of this, many predictive models have been developed for 

MMMs. A thorough review of these models was conducted, presenting numerous models for 

MMMs in ref. (152). However, there are no apparent studies that have aimed to develop models 

specifically for AC-MMMs. This is likely due to the complexity of pore size distribution, 
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functionality, and irregular shapes of most AC, rendering general predictive behavior difficult 

to formulate (122). Nonetheless, existing models have shown some accuracy for AC-MMMs 

and are further discussed.   

 In liquid phase separation, the rejection of dissolved solutes can be predicted with 

adsorption isotherms. Several studies have highlighted the similarity between amount adsorbed 

on standalone AC, and AC-MMMs (4,13,78,122,123)  

 As AC has traditionally been used as an adsorbent, much research has been performed 

on isotherm type specifically for heavy metal ions including arsenic (V), cadmium (II), copper 

(II), mercury, nickel (II), lead (II), magnesium, and zinc (159,160). Typically, a Langmuir 

isotherm (monolayer coverage) describes the equilibrium adsorption well, although, the 

Freundlich isotherm (monolayer) is relatively common for high concentration solutions. The 

Langmuir isotherm also accurately depicts adsorption of larger molecules such as creatinine 

(112) and phenol (91). It is important to note that these isotherms depict the equilibrium 

adsorption capacity, making them accurate for cross flow filtration setups with recycled 

streams. Adsorption kinetics are required to accurately predict rejection with cross flow or 

dead end filtration systems without recycle streams. Some researchers have found diffusional 

effects to be slightly influential on predictability, for example with the removal of phenol from 

water (99) and creatinine from blood plasma (112). The common equilibrium isotherms that 

help predict liquid separation by AC-MMMs are shown in the following equations: 

Langmuir 𝑞𝑒 =  𝑄𝑚𝐾𝑎𝐶𝑒1 + 𝐾𝑎𝐶𝑒 

 

(1) 



58 

 

Freundlich 𝑞𝑒 =  𝐾𝐹𝐶𝑒1/𝑛𝑓
 

 

(2) 

Temkin 𝑞𝑒 = 𝑅𝑇𝑏𝑇 ln(𝐾𝑇𝐶𝑒) 

 

(3) 

where 𝑞𝑒 is the mass normalized equilibrium adsorption amount,  𝑄𝑚 is the maximum 

adsorption capacity of a solute on AC, 𝐶𝑒 is the equilibrium concentration of the permeate, R 

is the universal gas constant, T is temperature, 𝐾𝑎 is the Langmuir constant, 𝐾𝐹 and 𝑛𝑓 are 

Freundlich constants, and 𝐾𝑇, is the Temkin constant.  

 Kinetic isotherms can also be useful for AC-MMMs. With the known AC loading and 

an estimation of the time constant within the membrane, the permeate concentration can be 

estimated. Three common kinetic isotherms which have been applied extensively to AC 

adsorption are shown here in their linearized form:  

Pseudo 1st 

order 

log(𝑞𝑒 − 𝑞𝑡) = log 𝑞𝑒 − ( 𝑘12.303) 𝑡 

 

(4) 

Pseudo 2nd 

order 

𝑡𝑞𝑡 = ( 1𝑘2) + ( 1𝑞𝑒) 𝑡 

 

(5) 

Intra-particle 

Diffusion 

𝑞𝑡 =  𝑘𝑑𝑡1/2 

 

 

(6) 
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where 𝑞𝑡 is the mass normalized amount absorbed at a given time, t. 𝑘1, 𝑘2, and 𝑘𝑑are the rate 

constants associated with each model.  

 The study of gas adsorption on AC has also been studied. The adsorption of He, H2, 

O2, N2, CO, CO2, and H2O are typically modeled well by isotherms assuming monolayer 

coverage, specifically Langmuir and Freundlich isotherms. The adsorption of CO2 on AC has 

been the major recent application of study, which is more frequently modeled with the 

Freundlich isotherm (160).  

 Although isotherms predict equilibrium concentrations and the adsorption capacity of 

gases on AC, they are rarely used to predict the behavior of gases in MMMs because 

diffusional effects have a more pronounced effect on permeability and selectivity, and MMMs 

are rarely studied in transient states. Thus, the adsorption of gases on the AC plays no part in 

selectivity once saturated. One-dimension mass transfer in two phase systems can be used to 

model gas behavior, but a number of simplifications and assumptions must then be made 

regarding diffusion in both phases as well as in the interface between AC and matrix (89). 

Other models have been used to predict gases permeability in AC-MMMs including the 

Maxwell, Bruggeman, and GPG models. Although these models have not shown to be 

extremely accurate in AC-MMMs, they are simple to solve, and have shown acceptable results 

when compared to some experimental data.   

 The Maxwell model, which was originally developed to predict the electric 

conductivity of composite materials, was adopted for permeability of gases and is accurate for 

dilute particle loadings up to 20 vol.% (10). The Bruggeman model more accurately predicts 

the permeability of AC-MMMs with medium particle loadings between 0-40 vol.% (10). The 

GPG model is a modified form of the Maxwell model and is based on the model of a hard 
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sphere (161). It has been validated for both liquid and gas permeation for AC contents up to 

15 vol.% (152,162).  

Maxwell 

 

𝑃𝑒𝑓𝑓𝑃𝑐 = 𝑃𝑑 + 2𝑃𝑐 − 2𝜑𝑑(𝑃𝑐 − 𝑃𝑑)𝑃𝑑 + 2𝑃𝑐 + 𝜑𝑑(𝑃𝑐 − 𝑃𝑑)  

 

(7) 

Bruggeman 

𝑃𝑒𝑓𝑓𝑃𝑐 =  1(1 − 𝜑𝑑)3  (𝑃𝑒𝑓𝑓𝑃𝑐 − 𝑃𝑑𝑃𝑐1 − 𝑃𝑑𝑃𝑐 )3
 

 

(8) 

GPG 

 

 

𝑃𝑒𝑓𝑓𝑃𝑐 =  1 + 3𝛽𝜑𝑑 + 𝐾𝜑𝑑2  

(9) 

 In these models, 𝑃𝑒𝑓𝑓 is the effective permeability, 𝑃𝑑 and 𝑃𝑐 are the permeability in 

the dispersed (AC) and continuous (matrix) phase, 𝜑𝑑is the volume fraction of AC, and K is a 

correction factor defined in terms of 𝛽: 

 𝛽 = 𝑃𝑑 − 𝑃𝑐𝑃𝑑 + 2𝑃𝑐   
 

(9a) 

  

𝐾 = 𝑎 + 𝑏𝜑𝑑1.5 

 

(9b) 
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𝑎 =  −0.002254 − 0.123112 𝛽 + 2.93656 𝛽2 + 1.690  𝛽3 

 

(9c) 

  

𝑏 =  0.0039298 − 0.803494 𝛽 − 2.16207 𝛽2 + 6.48296  𝛽3 + 5.27196  𝛽4 

 

(9d) 

In this case, 𝛽 is bound by -0.5 ≤  𝛽 ≤ 1.  For 𝜑𝑑 ≪ 1, the GPG model simplifies to the Maxwell 

model (152).  

 Several more complex models have been developed for predicting behavior of MMMs. 

Although not extensively used to model AC-MMMs, many accurately predict the behavior of 

CMS-MMMs (8). Major differences between the simple models presented in Equations 7-9 

and the more complex models is a consideration for particle shape, maximum particle loading 

achievable, presence of a permeable layer between particle and matrix, or some combination. 

These are factors are essential to consider for general models where different fillers can have 

vastly different properties (163).   

 The Maxwell-Wagner-Sillar model takes into account the particle shape, estimating it 

as an ellipsoid (152). This is determined by the variable, n, which is bound 0 < 𝑛 <1/3  𝑎𝑛𝑑 1/3 < 𝑛 < 1. The model reduces to simple parallel/series resistance based models 

when n is an extreme.  Similarly, the Cussler model estimates the shape as a flake represented 

by the flake aspect ratio, 𝛼𝑓 (152). This model may find particular accuracy with some CMS-

MMM due to their potentially high aspect ratio.  

 Both the Lewis-Nielsen and Pal models include a shape factor, 𝛼, which can be used 

to fit experimental data, or taken as the inverse diameter when particles are modeled as tubes 
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(152). Each also considers a maximum packing volume fraction achievable in MMMs, 𝜑𝑚. 

For particles estimated as a sphere, this value is 0.64, but can by any fraction dependent on the 

particle size distribution, shape, and aggregation tendency. When 𝜑𝑚 approaches 1, the Lewis-

Nielsen model reduces to the Maxwell equation and the Pal model reduces to the Bruggeman 

equation.    

 The Felske model contains multiple parameters to account for a permeable layer 

between the particle and matrix (152). This type of filler is otherwise known as a core-shell. 

The particle is the core surrounded by some permeable shell. To account for permeability in 

this layer, the permeability of the species of interest in that interface layer, 𝑃𝐼, is required. To 

account for the thickness of the shell layer, a parameter 𝛿 is defined as the ratio of outer 

diameter shell to outer diameter of the core. This may find use in AC-MMMs where particles 

are grafted or interfacial polymerization is conducted at the particle/matrix interface.  

Maxwell-

Wagner-Sillar 

𝑃𝑒𝑓𝑓𝑃𝑐 =  𝑛𝑃𝑑 + (1 − 𝑛)𝑃𝑐 − (1 − 𝑛)𝜑𝑑(𝑃𝑐 − 𝑃𝑑)𝑛𝑃𝑑 + (1 − 𝑛)𝑃𝑐 + 𝑛𝜑𝑑(𝑃𝑐 − 𝑃𝑑)  

 

(10) 

Lewis-Nielsen 𝑃𝑒𝑓𝑓𝑃𝑐 =  1 + 2𝜑𝑑(𝛼 − 1)/(𝛼 + 2)1 − 𝜓𝜑𝑑(𝛼 − 1)/(𝛼 + 2) 

 

(11) 

 𝜓 = 1 + (1 − 𝜑𝑚𝜑𝑚2 ) 𝜑𝑑 

 

(11a) 

Pal 𝑃𝑒𝑓𝑓𝑃𝑐 ( 𝛼 − 1𝛼 − (𝑃𝑒𝑓𝑓𝑃𝑐 )) = (1 − 𝜑𝑑𝜑𝑚)−𝜑𝑚
 

(12) 
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Cussler 𝑃𝑒𝑓𝑓𝑃𝑐 =  11 − 𝜑𝑑 + 1𝑃𝑑𝜑𝑑𝑃𝑐 + 4 1 − 𝜑𝑑𝛼𝑓2𝜑𝑑2
 

 

(13) 

Felske 𝑃𝑒𝑓𝑓𝑃𝑐 =  2(1 − 𝜑𝑑) + (1 + 2𝜑𝑑)𝛽/𝜆(2 + 𝜑𝑑) + (1 − 𝜑𝑑)𝛽/𝜆  

 

(14) 

 𝛽 = (2 + 𝛿3) 𝑃𝑑𝑃𝑐 − 2(1 − 𝛿3) 𝑃𝐼𝑃𝑐  

 

(14a) 

 𝜆 =  (1 + 𝛿3) − (1 − 𝛿3) 𝑃𝑑𝑃𝐼  

 

(14b) 

All models predict an increasing permeability for increasing AC loading when 𝑃𝑑 > 𝑃𝑐. 

Considering AC is highly porous, this is a reasonable prediction and as such, an example of 

this situation is depicted in Figure 15. 
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Figure 15: Comparative example of models with Pc = 20 and Pd = 1000, corresponding to β = 0.94. Other reasonable 
assumptions used are: n = 0.2, α = 5, αf = 10,  φm= 0.5,  PI = 800, δ = 1.01. 

 When comparing experimental data to the models presented, three known variables are 

necessary, 𝑃𝑑, 𝑃𝑐, and  𝜑𝑑. There are a number of methods to measure 𝑃𝑑 and 𝑃𝑐, including 

constant pressure-variable volume apparatuses, or constant volume-variable pressure 

apparatuses. Similar techniques can be used to determine 𝑃𝐼 for use in the Felske model. Time 

lag measurements can also be taken to determine the diffusivity coefficient. Using pure 

continuous phase adsorption measurements and Henry’s law, the solubility coefficient can be 

calculated. Multiplying the two coefficients, the permeability can be calculated.  

 While the volume fraction of AC is defined in the formation of the casting solution, 

slight variances can occur between forming the casting solution and casting. For a better 

estimation of 𝜑𝑑 , Weigelt et al. (10) suggested using thermogravimetry by first finding the 

weight fraction of AC, 𝑤𝐴𝐶, using, 

  

𝑤𝐴𝐶 =  𝑚𝑀𝑀𝑀 − 𝑚𝑚𝑎𝑡𝑟𝑖𝑥𝑚𝐴𝐶 − 𝑚𝑚𝑎𝑡𝑟𝑖𝑥  

(15) 
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where 𝑚𝑀𝑀𝑀, 𝑚𝑚𝑎𝑡𝑟𝑖𝑥, and 𝑚𝐴𝐶 are the final mass of the MMM, matrix, and AC after 

degradation under inert conditions at 1000°C. The volume fraction of AC is then calculated 

based on the density of each component 𝜌: 

  

𝜑𝑑 =  11 + ( 𝜌𝐴𝐶𝜌𝑚𝑎𝑡𝑟𝑖𝑥) ∗ ( 1𝑤𝐴𝐶 − 1) 

 

(16) 

8. Suggestions for Future Work 

 

Although AC shows promise as a filler in MMMs, several fundamental studies are still required 

to fully realize their potential. Specifically, there is still not a fundamental understanding to 

how AC interaction with polymers can be probed before membrane formation. Classic methods 

for probing interaction in other cases involve comparing solubility parameters and analyzing 

functional groups. However, in the case of solid-liquid and solid-solid interactions involving 

AC, this becomes more complex, and determining solubility parameters becomes difficult. 

Therefore, fundamental studies are needed to expose the mechanism behind AC interactions 

with polymers, solvents, and other additives. This will involve the development of novel 

methods and perhaps the theoretical framework from colloid interactions in various media.   

 Another fundamental necessity that is thus far unclear is a relationship between AC 

properties and MMM performance. There is contradictory evidence between AC surface area, 

pore size, particle size and functionality on MMM performance. This lends to the conclusion 

there is ample interactions between each property that is not yet realized. Understanding this 
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would require studies with carefully controlled AC properties be pursued, which can be 

accomplished by investigating various biomass or polymer precursors, activating methods, and 

post treatments. This fundamental knowledge would provide some criteria and more insight 

into material selection of AC and polymer combinations.  

 In AC-MMM formation, still very little has been investigated relating phase inversion 

variables and MMM properties. Important variables include nonsolvent, additives, and 

temperature. Each is likely to cause a shift in the equilibrium between each phase in the casting 

solution. Binodal shifts in ternary phase diagrams can give insight into cross sectional structure 

and help guide experimentation, which has yet to be thoroughly examined. Detailed studies of 

dry phase inversion are also needed. It is not clear how various parameters can be manipulated 

to prevent unwanted sedimentation and surface ruptures. These studies are ultimately needed 

to determine if particle/filler interaction can be influenced by variables in the membrane 

formation process. Likewise, other membrane fabrication techniques should be investigated 

that may prove useful for some applications. For example, electrospinning of AC into fibrous 

membranes presents a plausible scenario (164), in which applications with surface pore size 

sensitivity may benefit.     

 In applications where adsorption is a major factor in separation performance, methods 

to sufficiently regenerate spent AC are still needed. This is a major issue because all active 

sites on the AC in MMMs may not be accessible by all fluids, which restricts the regenerating 

ability of some chemicals. Thus, a variety of regenerating methods needs to be investigated to 

give insight into how effective regenerating AC-MMMs are for various ions and molecules. 

This will allow realization of the extend of applications in which these membranes can be 

employed.    
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 Furthermore, the gas separation potential of AC-MMMs should be further pursued. 

This will also involve fine control of particle size distribution, pore size distribution, and 

surface area in AC and CMS. In doing so, AC-MMMs can be tailored to specific gas separation 

applications by enabling different flow regimes in the AC such as Knudsen diffusion, surface 

diffusion, and molecular sieving. Each may have advantages for different gas mixtures. 

Various other applications of AC-MMMs should also be investigated. One example is direct 

contact membrane distillation, which is influenced by membrane porosity, free volume, and 

thermal properties. Other applications involve proton exchange. While there have been some 

efforts to use AC-MMMs in proton exchange, their full potential has not been realized. Lastly, 

predictive models that take into consideration size distribution, pore size distribution, and 

shape distribution should be pursued. Currently no models consider variations in filler 

particles, but will be highly beneficial to AC-MMM due to the inevitable variability between 

particles. In all, these studies would benefit AC-MMMs greatly, but also provide insight into 

the entire class of MMMs.
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CHAPTER III: BIOCHAR AS A FILLER IN MIXED MATRIX MATERIALS: 

SYNTHESIS, CHARACTERIZATION, AND APPLICATIONS  

 

Abstract 

The use of mixed matrix materials (MMM) has become a major topic of research in recent 

years, due to unique properties achieved in these composites. In this work, biochar from 

sunflower seed hull (SSH) pyrolysis and biochar/polysulfone (PSF) MMMs were produced 

and characterized. The optimal pyrolysis temperature for biochar production was determined 

to be 500°C. The resulting biochar properties were an iodine number of 203 mg/g and pore 

volume of 0.595 mL/g. In MMM fabrication, the use 4% ethanol as nonsolvent in the wet phase 

inversion process increased the glass transition temperature by 8°C, indicating improved 

biochar/PSF interaction. The presence of biochar was shown to create pores in otherwise dense 

surfaces. The critical surface energy was also increased by the addition of biochar from 28.6 

mN/m in pristine PSF to 35.7 mN/m in biochar/PSF MMMs. We identified and discussed 

several potential applications based on the determined properties. 

1. Introduction 

 

 Mixed matrix materials (MMMs) are composites, often formed into thin films, 

consisting of a continuous phase (matrix) and a dispersed particle phase (filler). Over the past 

three decades, these materials have been investigated for various applications including 

membranes for separations [1-3], reinforced materials for structures [4,5], and as wound 

dressings [6] among others. By creating MMMs, properties of both the matrix and filler are
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exploited, and oftentimes enhanced, resulting in superior properties than either the 

matrix or filler alone. Despite the diversity of available filler materials and abundance of 

studies into their properties, one particular filler remains mildly researched; namely, biochar 

from biomass pyrolysis. Biochar exhibits distinctive properties and possess key features 

rendering it worthwhile to study in MMMs. 

The most important aspect of MMM development is material’s constituent’s selection. 

As a result, much research has been focused on fabrication and implementation of various 

matrix/filler combinations. The most common class of matrix materials are polymers, due to 

the number of polymers available, and the simple processability of polymers into MMMs. 

MMMs with glassy polymers [7], rubbery polymers [8], polymer blends [9], and copolymers 

[10,11] have all been investigated. Both inorganic and organic type fillers have been 

investigated. These include clay particles [12], metal organic frameworks [2], activated carbon 

[13], graphene [4,8], and metal oxides [14] to name a few. 

Although any polymer and filler can be combined into MMMs, their compatibility is 

critical and deterministic for the overall composite properties and function. Poor compatibility 

can result in poor matrix/filler interactions, causing void formation, reduced thermal and 

mechanical performance [15], and undesired permeation properties [16]. Researchers have 

investigated several methods to prevent or correct poor polymer/filler compatibility [17], 

including functionalization of the matrix or filler [18], interfacial polymerization of monomers 

containing fillers [19], matching polarity of the matrix/filler [20], and using nano sized fillers 

[21]. 

Biochar as a filler material in MMMs functional composites has been minimally 

investigated as an effective element in MMMs. Biochar particles, a solid product of biomass 
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pyrolysis, are porous, with high specific surface areas, and can be easily processed into sizes 

ranging from nanometers to millimeters. Due to the nature of biomass and biomass 

degradation, biochars tend to possess surface functional groups that are dependent on the 

biomass precursor and pyrolysis conditions [22]. Biochar particles’ functionality and porosity 

offer ample binding sites for the polymer matrix; thus, increasing the possibility of strong 

interfacial interactions [23]. Hence, owing to these key and significant features, in addition to 

the cost-effect production methods, biochars present an invaluable material to probe as a filler 

of MMM constructs. 

Another critical aspect of MMM development and performance is the method of 

fabrication and processing selection. One of the most common fabrication techniques for 

creating MMM films involve phase inversion of a dissolved polymer/filler solution [24]. The 

wet phase inversion technique is performed by casting a dissolved polymer solution, then 

introducing it to a nonsolvent. Liquid-liquid demixing occurs instantly, resulting in 

precipitation of a thin polymeric film. [25]. The two key parameters of wet phase inversion are 

the quaternary components of polymer/filler/solvent/nonsolvent system and temperature. The 

dry phase inversion method utilizes solvent evaporation for film precipitation [26]. In this case, 

a cast solution is heated for enough time to allow all the solvent to evaporate. The rate of 

evaporation, and thus the environmental conditions, play an important role. Combinations of 

these two techniques have also been thoroughly investigated, known as dry/wet phase 

inversion. Each method results in films with unique surface and cross sectional morphologies. 

Other fabrication methods have been used for MMM development, but usually involve a phase 

inversion step as one step in the process. For example, spin coating utilizes a spinning wheel 
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to spread a film, rather than a casting blade, then phase inversion is used to precipitate the film 

[27]. 

Despite a thorough understanding of phase inversion processes, there has been minimal 

emphasis on how polymer/filler interaction is influenced by fabrication technique. The phase 

inversion process can be highly influential in the polymer/filler interaction due to the complex 

demixing that occurs upon precipitation. Biochar is highly adsorptive, so it is anticipated that 

when used as a filler, it has complex interactions between each of solvent, nonsolvent, and 

polymer due to the adsorption capacity of the biochar to each of these components.  

In this work, we report on a study of filler-matrix interaction and influence of 

fabrication method on MMM films. In particular, we present characterization of MMM films 

consisting of a biochar filler embedded in a polysulfone (PSF) matrix. The biochar is 

synthesized from sunflower seed hulls (SSH), and the film is produced by the wet phase 

inversion method in ethanol solutions. We use this combination to investigate the viability of 

biochar as a filler in MMMs and to investigate the role of nonsolvent on the biochar/PSF 

interaction.  

2. Materials and Methods 

 

2.1. Materials 

 

 SSH were supplied by CHS Sunflower, Grandin, ND, USA. Polysulfone (35,000 Da 

PSF) and anhydrous dimethyl formamide (99.8% DMF) were purchased from Sigma Aldrich 

Co., USA. Compressed analytical-grade gases including argon (Ar 99.998%), nitrogen (N2 

99.998%) and air were purchased from Praxair Co., USA. PSF was dried in an oven at 105°C 

before use in an ambient atmosphere. DMF was used without further purification. Chemicals 
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used for iodine number determination (sodium thiosulfate (99%), iodine (>99.8%), potassium 

iodide (>99%, and potassium iodate (>98%)) were purchased from Sigma Aldrich Co., USA. 

Fuming hydrochloric acid was purchased from Fisher Scientific Co., USA. Butanol (99%) was 

used for pore volume estimation and was purchased from Fisher Scientific Co., USA. 

Polyethylene glycol (200 Da PEG) was used for surface energy calculations and was purchased 

from Sigma Aldrich Co., USA.  

2.2. Biochar Synthesis via Slow Pyrolysis Reaction 

 

 Between 50 and 70g of SSH were loaded into a Thermolyne 21100 tube furnace reactor 

with a heating rate controller and temperature indicator shown in Figure 16. A stainless steel 

tube reactor with flanges on both ends was used as the reaction vessel. Argon (Ar) was used 

as the inert gas to displace oxygen at a rate of 2 mL/min. The reactor was purged with Ar for 

at least five minutes before heating. The reactor was set to heat at a rate of 15°C/min to various 

temperatures then allowed to slowly cool to room temperature under continuous Ar flow. 

Produced oils and tar were condensed in a water bath upon exiting the reactor, and volatiles 

were allowed to vent. Once cooled, the biochar was collected from the furnace and washed 

several times with distilled water, then dried in an oven at 105°C for several hours.   
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Figure 16: (a) Pyrolysis reactor set-up schematic and (b) cross-sectional view of furnace. 

 Once dried, the weight of biochar was recorded and the yield was calculated according 

to Equation 1:  

 Yield % = Biochar WeightInitial Sample Weight ∗ 100% 
(1) 

   

The biochar was then ground to a fine powder and sieved with an ASTM #270 mesh (53 

microns) for one hour using a vibrating shaker.  

2.3. MMM Film Fabrication 

 

 PSF was dissolved in DMF for an overall composition of 20% by mass of polymer. It 

is worth noting, DMF was chosen based on the solubility of biochar in DMF shown in 

Appendix A. While the solubility in the polymer phase is highly important, the solubility in 

the solvent was considered here for optimal results. The solution was stirred for at least 12 

hours, or until completely dissolved, at room temperature with a mixing speed of 60 rpm. 

Biochar was then added at 1% by mass relative to the polymer phase, then mixed for at least 6 

hours at a rate of 60 rpm. The solution was cast using a casting knife, then precipitated at room 

temperature in a nonsolvent of distilled water or ethanol solutions. The films were rinsed 

thoroughly with distilled water and dried at room temperature before analysis.   
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2.4. Biochar Characterization 

 

2.4.1. Ultimate and Proximate Analysis 

 

 Ultimate analysis (CHN) was performed on raw SSH and biochar by Atlantic Microlab 

Inc., USA. Proximate analysis was performed using a thermogravimetric analyzer with 

differential scanning calorimetry (TGA/DSC) with a model SDT Q-600 analyzer. Samples 

were heated at a rate of 15°C/min in N2 or air from room temperature to 900°C. 

2.4.2. Surface Area and Pore Volume 

 

The biochar surface area was measured by means of iodine adsorption number according to 

ASTM standard 4607-94 [28]. In short, an iodine solution was put in contact with biochar. The 

residual was filtered and titrated with sodium thiosulfate to the endpoint. The iodine number 

is defined as the amount of iodine adsorbed per gram of biochar at a residual concentration of 

0.02 N. The total pore volume was estimated based on thermogravimetric methods developed 

by Pan et. al., (1996) [29] and Mercuri et. al. (2006) [30]. Biochars were mixed with butanol, 

and the butanol desorption rate was quantified from changes in TGA/DTG curves. The pore 

volume was calculated based on empirical correlations listed in the Appendix B. 

2.4.3. Scanning Electron Microscopy (SEM) 

 

The particle size distribution was measured by analyzing SEM images with the open source 

software Image J [31]. Images were taken using a Hitachi SU8010 field emission scanning 

electron microscope. The number frequency average was taken based on the largest diameter 

of each particle. Biochar pores and surface morphology were also investigated by SEM 

analysis. 
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2.4.4. Functional Groups 

 

Functional groups were analyzed using a ThermoNicolet NEXUS 460 FTIR equipped with a 

ZnSe crystal and DTGS detector. The spectra were tested in attenuated total reflection mode. 

2.5. MMM Film Characterization 

 

2.5.1. Differential Scanning Calorimetry (DSC) 

 

A PerkinElmer DSC was used to measure glass transition temperature (Tg) of MMMs. 

About 5mg of samples were tested in aluminum pans. The method consisted of three cycles of 

heating from 0 to 200°C at a rate of 20°C min-1, and were held isothermal at 0 and 200°C for 

two minutes to allow the sample to equilibrate.  

2.5.2. Thermogravimetric Analysis (TGA) 

 

TGA was performed on MMMs using the equipment described in section 2.4.1. About 10mg 

of film were analyzed. The degradation temperature (Td) was recorded based on the 

maximum of the differential thermogravimetric (DTG) curve. 

2.5.3. Scanning Electron Microscopy (SEM) 

 

MMM morphology was investigated using a Hitachi SU8010 field emission scanning 

electron microscope. MMMs were fractured with liquid nitrogen to expose the cross section, 

then sputter coated for 30 seconds with carbon.  

2.5.4. Contact Angle and Surface Energy 

 

The contact angle of MMM films was measured by a sessile drop method described by 

Costa et al. (2018) [32]. In short, an image was taken of a 20 µL drop from the top view. The 
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diameter was measured, and the contact angle was calculated assuming a spherical cap 

geometry. Further detail on this method is described in the Appendix C. The critical surface 

energy was calculated based on the contact angle of PEG solutions according to the Zisman 

method [33,34], as described in more detail in section 3.2.  

3. Results and Analysis 

 

3.1. Biochar Fabrication and Analysis 

 

 In order to determine a suitable pyrolysis temperature of SSH, the pyrolysis reaction 

was investigated by TGA, as it has been shown before that the optimal reaction temperature 

can be predicted in this fashion [35]. From the DTG curve in Figure 17a, it is apparent that 

weight loss occurs at two temperature ranges. The first peak near 100°C is attributed to 

moisture loss whereas the second peak occurs near 350°C and is a result of cellulose, 

hemicellulose, and lignin degradation. The degradation rate levels off at 450°C. Thus at 500°C, 

the major degradation is complete. To complement this, yield was taken after pyrolysis at 

several temperatures and is shown in Figure 17(b). As expected, the yield decreases as 

temperature increases until about 500°C where there is little change. It is worth noting that the 

theoretical yield of biochar based on the TGA curve does not always match the actual yield, 

primarily due to the residual uncharred biomass. Based on these two results, 500°C was chosen 

as the optimal pyrolysis temperature. In this case, the optimum temperature results in low yield 

but desirable physicochemical properties.   



77 

 

 

Figure 17: (a) TGA and DTG curves of the raw SSH and (b) biochar yield as a function of temperature after pyrolysis. 

 From the ultimate analysis results shown in Table 6, it is clear that biochar is richer in 

carbon and nitrogen compared to the raw SSH. Likewise, the presence of oxygen and hydrogen 

decreased after pyrolysis. This is to be expected; as pyrolysis occurs, oxygenated functional 

groups easily break apart and leave behind a graphite like structure, which is also concluded 

by the fixed carbon content of each species. The pore volume and iodine number demonstrate 

the formation of pores within the biochar, creating additional surface area for gas-solid and 

liquid-solid adsorption.   

Table 6: Ultimate and proximate analysis of raw SSH and biochar produced at 500°C, and physical properties of biochar. 

All percentages are by weight. 

Property Raw SSH Biochar 

C (%) 48.24 65.93 

H (%) 5.84 3.54 

N (%) 0.30 2.00 

O*(%) 41.16 17.25 

Moisture (%) 3.45 2.60 

Volatiles (%) 81.90 36.06 

Ash (%) 4.46 11.28 

Fixed Carbon* (%) 10.19 50.06 

Iodine Number (mg/g) - 203 

Pore Volume (mL/g) - 0.595 

*denotes calculation by difference. 
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 After sieving the biochar, the number average diameter was taken and organized into 

bin sizes of 2.5 microns. As shown in the histogram in Figure 18a, there was a higher 

percentage of smaller particles. Had aggregates been considered, the number average would 

have been highly skewed as a significant number of aggregates were observed as seen in Figure 

18b. However, some particles larger than the mesh size (55 microns) were measured. The 

appearance of particles larger than the mesh size can be explained by their variation in 

geometry: larger particles could pass if oriented on their smaller axis.   

 

Figure 18: (a) size distribution of biochar ignoring aggregates less than 2.5 microns. (b) SEM image depicting aggregate 

formation, (c) irregular shaped particles, and pore formation. 

 FTIR spectra of the biochar is shown in Figure 19. The baseline shift seen after 2000 

cm-1 is apparent and is common for carbonaceous materials due to strong absorption bands in 

that region. This causes a refractive index response very close to that of the ZnSe crystal, 

resulting in a noticeable shift. Regardless of this, the peaks are readily visible. Their position 
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and corresponding functional groups are summarized in Table 7. The spectra indicate the 

presence of oxygenated and nitrogenized functional groups with alkane, alkene, and alkyne 

linkages supported in aromatic structures. 

 

Figure 19: FTIR spectra of biochar created from pyrolysis of SSH at 500°C. 

Table 7: Summary of FTIR spectra of biochar. 

Peak Location 

(cm-1) 
Functional Group Molecular Motion 

3300 Alcohols -OH stretch 

2900-2850 Alkane CH3 stretch 

2350 Alkyne or Nitrile  C≡C stretch, C≡N stretch 

1740 Aldehyde or Ester C=O stretch 

1650 Amide or Carboxylate CO2 stretch 

1370 Aldehyde C-H bend 

1220 Ester C-C-O stretch 

1130 Ester O-C-C stretch 

<1000 

 

Aromatic 

 

C=C, NH2 wag, C-C stretch, C-O bend, N-O 

bend, N-H bend, O-H bend, C-H stretch 
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3.2. MMM Fabrication and Analysis 

 The wet phase inversion method can be described by a solvent/nonsolvent/polymer 

ternary phase diagram as shown in Figure 20. The binodal line represents the region in which 

liquid-liquid demixing begins and phase separation occurs. Experimentally, the binodal line is 

determined by titration with nonsolvent to the cloud point. It is apparent that there is a 

difference in binodal placement if pure water or pure ethanol are used as the nonsolvent. 

Various concentrations of ethanol in water are expected to lie within these two curves, so they 

were not recorded.  

 

Figure 20: Ternary phase diagram with experimentally determined binodal lines using pure water and pure ethanol as 

nonsolvent in DMF/PSF/Nonsolvent system. All fractions are by weight and the key in the top left demonstrates the 

relationship between each point and its corresponding grid lines 

 

MMM films loaded with 1% (relative to the polymer phase) of biochar were precipitated 

in various ethanol solutions containing between 0 and 20 vol.% ethanol. The Tg of each was 

measured since it is understood that the polymer/filler interaction in MMMs can be examined 

by measuring Tg of the composite [36, 37]. The Tg was taken as the inflection point from DSC 

thermograms as seen in Figure 21a. The extracted values shown in Figure 21b demonstrate 
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there is a linear trend until about 4 vol.% ethanol, then flattens off. This analysis revealed some 

interesting features of the biochar/PSF MMM.  

 

Figure 21: (a) DSC thermograms and (b) extracted Tg data as a function of vol.% ethanol in coagulation bath at 95% 

confidence. 

  

FTIR spectra of each film were taken to rule out the possibility of chemical reactions 

caused by ethanol, and to investigate possible migration of biochar to either surface of the film. 

Both top and bottom of the films were observed, but due to exact matches between sides, only 

the top is shown. The spectra shown in Figure 22 reveal that no chemical reactions took place 

during the phase inversion process, as all peaks are consistent between samples and match the 

spectra of pure PSF reported elsewhere [38]. The most important peaks and corresponding 

wavenumbers that identify PSF are aryl ethers (1270-1230 cm-1), aryl sulfones (1170-1135  

cm-1), and methyl groups (2970-2950 cm-1).  
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Figure 22: FTOR spectra of MMMs made with 1-20 vol.% ethanol in the coagulation bath. 

The cross section and surface morphology were investigated using SEM. No 

morphological differences were apparent between films made with and without ethanol in the 

coagulation bath as seen in Figures 23a and 23b. The surface appears dense and the cross 

section is asymmetric with a thin top skin and spongy support structure. While the presence of 

ethanol did not appear to have an effect on morphology, the influence of biochar loading 

significantly influenced the surface.  

 

Figure 23:  Cross sectional view of films made with (a) 0% and (b) 4% ethanol. Surface view showing (c) pore formation 

with 10% loading and (d) pore blockage at 40% biochar loading. 
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To demonstrate this, MMMs were loaded with 10 and 40 wt.% biochar relative to the 

polymer phase. The 10% loaded films showed surface pore formation on the order of 1 micron, 

shown in Figure 23c. At 40%, the pores appear larger, on the order of 10 microns. However, 

pore blockage was apparent as depicted in Figure 23d.  

 

The surface energy of MMMs is another important parameter that allows for the prediction 

of properties such as permeability and adsorption of fluids. One technique to measure this is 

the Zisman method, which is an empirical method that allows for the evaluation of the critical 

surface energy (𝛾𝑐). The procedure is commonly employed for quick estimations of solid 

surface energy. The procedure and derivation have been discussed elsewhere in detail [39, 40]. 

In short, the known liquid surface energy of several different liquids, 𝛾𝑙, is plotted verses cos (𝜃), where 𝜃 is the contact angle between the solid and liquid drop. The linear line is 

extrapolated to the point where  cos(𝜃) = 1. The value of surface energy at this point is 𝛾𝑐.  

Table 8: Measured contact angle on each surface, and liquid surface energy values used for analysis. The contact angles 

reported are the average of at least two measurements at a 95% confidence level. 

Liquid 𝛾𝑙 (mN/m) 

 
Contact angle (°) 

 

 
Pure PSF 

1% Loaded Biochar  

in 4% Ethanol  

 

Distilled Water 72.80 [49]  70.01 ± 2.0 72.56 ± 2.0  

15% PEG-200 60.79 [49]  64.14 ± 2.1 53.59 ± 0.5  

PEG-200 43.50 [50]  37.67 ± 1.5 33.08 ± 0.5  

PSF is readily dissolved in many common liquids with known 𝛾𝑙. This tremendously 

reduces the number of liquids available for analysis because drops will quickly dissolve films 

and not form a drop upon contact. In this case, three different liquids were examined: distilled 
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water, PEG-200, and a 15 vol.% PEG-200 in distilled water. The contact angle measurements 

and 𝛾𝑙 values are displayed in Table 8. 

 All contact angles are the average of at least three measurements. The contact angles 

of each liquid on the 1% loaded biochar films formed in 4 vol.% ethanol were compared to 

films prepared without biochar to gain a better understanding of the influence biochar has as 

the filler material. All values were recorded in Table 8 and were used to construct a Zisman 

plot (Figure 10).  

 

Figure 24: Zisman plot for each film showing extrapolated values for the 1% biochar (γc=35.7 mN/m, R2 = 0.9761) and pure 

PSF (γc=28.6 mN/m, R2 = 0.9519). 

 

4. Discussion 

 

 In fabricating biochar from SSH pyrolysis, yield, surface area (iodine number), pore 

volume, and functional groups are key parameters that are influenced by pyrolysis temperature. 

It was shown that the yield decreases with increasing pyrolysis temperature at a rate of between 

5%-10% per 100°C. Furthermore, it is well accepted that there exists a tradeoff between the 

yield and some of the physical properties. This is important to realize because at moderate 
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temperatures, a low yield typically indicates the point where surface area and pore volume are 

highest. This point is distinguishable in Figure 17. Thus if pyrolysis is performed at lower 

temperatures, the iodine number and pore volume will likely be lower, despite the higher yield. 

The same is true at higher temperatures. In this case, pores collapse, resulting in lower surface 

area and pore volume. This optimal pyrolysis phenomenon is commonly encountered [22].  

 There are several implications to potential applications based on the biochar 

characteristics. Firstly, the iodine number of 203 mg/g is reasonable compared to other 

biomasses [41]. Depending on the desired application, this iodine number could be sufficient. 

For example, if used as a conducting material, the surface area may not influence conductive 

properties. If used for separations, higher adsorption capacity may prove beneficial, so further 

treatment of the biochar may be necessary. The opposite is applicable for antimicrobial film 

applications where much of the antimicrobial properties are a result of microbe repulsion. 

Higher surface area allows more space for microbes to collect, thus reducing the antimicrobial 

properties [42].   

The particle size and size distribution are expected to have some significant effects. It 

was shown in Figure 18 that the average biochar particle size obtained was 18.1 ± 4.0 microns 

(at 95% confidence) with a median of 15.7 microns. Because the particles are relatively large, 

the MMM thickness is limited to the size of the largest particles. If thinner films are formed, 

there is a higher chance of surface ruptures. Considering small particles tend to perform better 

in MMMs, the presented size distribution lends itself to a mixture of interactions in the MMM. 

Some of which favor strong interactions, some favor weaker interactions. Since the size 

distribution is skewed toward smaller particles, those interactions may be dominant.  
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The functional groups seen in the biochar are more so important to polymer/filler 

interaction than the size distribution. The FTIR spectra in Figure 19 indicate the presence of 

oxygenated and nitrogenized functional groups with alkane, alkene, and alkyne linkages 

supported in aromatic structures. The positive ends of the polar oxygenated/nitrogenized 

functional groups can produce dipole interactions between them and the sulfone group in PSF.  

However, the coupling of biochar size, size distribution, pore volume, surface area, and 

functional groups actually showed poor interaction between the biochar and PSF when water 

was used as the nonsolvent. This is indicated by a Tg of 181°C ±1.5°at 95% confidence, which 

is lower than the 185°C Tg of pure PSF. Thus, the nonsolvent choice was shown to be 

significant. A shift in the ternary binodal line indicated that when using ethanol as the 

nonsolvent, the demixing process speeds up, resulting in faster demixing. Physically, this is 

significant because the solvent will quickly diffuse from the polymer rich region to the 

nonsolvent, causing a reduction in the hydrated layer surrounding the biochar [43]. This likely 

results in better adhesion between the biochar and PSF. This is supported by the increase in Tg 

with increasing amounts of ethanol in the nonsolvent described in Figure 21. The Tg at 4 vol.% 

ethanol of about 188°C ±1° at 95% confidence, is indicative of this improved interaction. 

Considering this, it is anticipated that other thermo-mechanical properties are also improved. 

The use of 4% ethanol in the coagulation bath offers a simple method to improve the interaction 

between biochar and PSF. It can possibly improve the interaction between other combinations 

of polymer/filler and should be investigated.  

Moreover, the absence of characteristic FTIR peaks of the biochar on the top and 

bottom surface of the MMMs indicated that there was no migration to either side of the film, 

and the biochar remained within the cross section. Considering the migration of fillers to the 
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surface of MMMs have been observed before [44], the concentration of biochar at the top 

surface may have been too dilute to measure its characteristic peaks by FTIR.    

Another important thermal property is the degradation temperature (Td), defined here 

as the temperature where the DTG curve is maximum. The Td, regardless of ethanol 

concentration in the coagulation bath was near 543 ±7°C at 95% confidence. However, this is 

lower than what is typically reported for PSF [38]. This is likely a result of thermal degradation 

of the biochar, Td of about 300°C, occurring before that of PSF. This has two pronoun effects 

on the overall Td. Firstly, the degradation of biochar leaves behind void spaces, resulting in a 

more unstable matrix. Secondly, the decrease in mass of the sample at lower temperatures 

causes a faster response in Td, which is a well-known occurrence in TGA [45]. Therefore, the 

thermal stability of the biochar ultimately limits that of the MMM, rather than acting as a 

thermal stabilizer. The implications are the combination of biochar/PSF MMMs cannot be used 

in high temperature applications that exceed 300°C, else the biochar would thermally degrade 

leaving behind an unstable MMM. Many applications involving films are often performed at 

temperatures much lower than 300°C, so this may not restrict the use of these MMMs.     

The cross sectional and top surface morphology of the MMMs shown in Figure 23 also 

give insight into the potential use. MMMs with dilute biochar showed dense top surfaces with 

spongy cross sections with a thin dense layer. This lends itself for use in separations where the 

dense surface of the PSF acts as the selective barrier. Being thin, this layer is expected to 

exhibit high flux to gases when subject to high pressures. When higher concentrations of 

biochar were added to the MMMs, surface pores formed. This along with adding pore forming 

agents could create suitable materials for liquid phase separation applications where surface 

pores are necessary. Furthermore, very high concentrations of biochar tend to cause surface 
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defects such as ruptures and pore blockage. These defects are undesired and result in materials 

that are unusable for most applications: poor mechanical stability, poor thermal stability, 

inhomogeneity in the surface. Clearly there is a limit in biochar loading, much like other filler 

materials.   

Lastly, it was apparent the critical surface energy of the biochar loaded film (35.7 

mN/m, regardless of ethanol concentration in nonsolvent) was higher than that of the pure PSF 

(28.6 mN/m). This analysis is depicted in Figure 24. While both surfaces are considered “low 

energy”, this indicated the surface of the biochar loaded film has a higher affinity to adsorb 

liquids. In turn, this leads to higher degrees of wetting for a larger array of liquids. Thus the 

biochar loaded MMMs are more versatile in regards to liquid phase separation applications 

where complete surface wetting is attributed to better separation performance.   

 Biochar/PSF MMMs can also be worthwhile to study in electronic applications where 

a moderate dielectric constant and thermal stability are required. Pure PSF has a dielectric 

constant near 3.1, depending on molecular weight. Considering biochar is electrically 

conductive [46], much like other carbonaceous materials, the dielectric constant of these 

MMMs is likely higher. The films would also have a tunable dielectric constant based on the 

biochar loading thus, would be ideal and versatile for the dielectric end of a monopole antenna. 

This, coupled with the wetting ability of many different liquids on the surface, can lead to a 

variety of liquid sensing capabilities. However, care must be taken as inhomogeneous loading 

could lead to anisotropic electrical properties [47]. Under low pressure conditions, these MMM 

characteristics also find useful traits in film packaging applications. Biochar tends to be 

antimicrobial, resulting in antimicrobial MMMs [48]. This, coupled with a dense top layer, 
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limits penetration of unwanted moisture or bacteria when subject to a range of temperatures at 

normal pressures, which is an ideal case for film packaging.  

5. Conclusion 

 

 We have shown that biochar made from SSH pyrolysis at 500°C is a feasible filler in a 

PSF matrix made by wet phase inversion. This work addressed and offered a solution to one 

of the most prioritized problems with MMMs, poor polymer/filler interaction. By using a 

solution of 4 vol.% ethanol in distilled water as the nonsolvent, the Tg was shown to increase, 

indicating better biochar/PSF interaction. This reaches far beyond the biochar/PSF 

combination, as it can potentially improve the interaction between other filler/matrix 

combinations. The presence of ethanol in the coagulation bath did not influence surface or 

cross sectional morphology or surface energy. However, the presence of biochar in the PSF 

did influence the surface morphology and surface energy compared to pristine PSF. Insight 

into potential applications were discussed. In future works, the further application of 

biochar/PSF MMMs can be investigated as they present promising characteristics. 
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CHAPTER IV: FACTORIAL STUDY ON ACTIVATED CARBON MIXED MATRIX 

MEMBRANE FORMATION FOR ANILINE BLUE FILTRATION 

 

Abstract 

Mixed matrix membranes (MMMs) have become an effective membrane material for various 

applications. Activated carbon (AC)-polysulfone (PSF) MMMs are suitable contender for dye 

filtration due to size exclusion by PSF surface and adsorption by AC. In this work, AC from 

sunflower hull pyrolysis in a PSF matrix was investigated. A replicated 23 full factorial 

statistical design was used to investigate the effects of activated carbon (AC), polyethylene 

glycol (PEG), and solvent type, used during MMM formation, on contact angle, agglomeration 

frequency, and aniline blue filtration.  We presented a novel method of studying agglomeration 

tendencies in MMMs.  Results of the factorial analysis revealed information about each factor. 

Specifically, solvent type and PEG/solvent interactions had significant effects on water contact 

angle. Agglomeration frequency was influenced by AC loading, PEG loading, and interactions 

between AC/PEG loading and AC/solvent. Flux was significantly affected by PEG loading and 

also an AC/solvent interaction. Lastly, aniline blue rejection was influenced by AC loading 

and a PEG/AC interaction. The adsorption kinetics of aniline blue on the AC was also 

investigated, and an optimal membrane was selected based on the factorial analysis. The results 

demonstrated useful feature that are easily extended to other MMMs for other organic 

macromolecular separations
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1. Introduction 

 

A large percentage of dyes used in the textile industry are disposed of as waste water effluent 

and can be recycled back into the local water supply. High concentrations of dye in water are 

colorful, and colored water negatively impacts the public perception of water quality [1]. Also, 

dyes cause damage to aquatic species by reducing oxygen concentrations and preventing light 

penetration into water bodies [2]. Thus, the removal of dyes from wastewater has become an 

important environmental concern. Furthermore, dyes are large organic molecules, similar in 

many regards to other macromolecules. From a separation standpoint, the rejection of dyes is 

often used as a model pollutant, and is easily expanded to include other macromolecules [3]. 

While many studies have experimented with the removal of reactive dyes, less attention has 

been given to acid dyes such as aniline blue. Aniline blue is used frequently in fluorescence 

microscopy, assay development, and plays various roles in textile dying [4]. Many of its 

toxicological properties are, as of yet, unknown, but it is evident there are some hazardous 

potentials upon exposure [5].   

 Of the various methods available for dye removal, adsorption and membrane separation 

are two prominent contenders [6,7]. Adsorption is effective for removing dye from water, but 

is limited in the sense that it is an equilibrium process, meaning, it would require frequent 

regeneration. Membrane separations, on the other hand, are a rate driven process. Various 

exclusion mechanisms are possible, but in the context of dye removal, size exclusion is the 

dominant mechanism. For these reasons, a class of membrane materials called, mixed matrix 

membranes (MMMs) are suitable contenders for this task. This composite membrane material 

contains a continuous polymer phase (matrix) with a dispersed particle filler. In using an 
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adsorbent filler, both size exclusion by the membrane surface, and adsorption by the filler 

within the membrane are possible [8].   

 MMMs are created by dissolving a polymer in an appropriate solvent, then mixing in 

particles and other pore forming agents or additives to form a dope. The dope solution is cast 

then phase inversion takes place. The most common phase inversion technique is nonsolvent 

induced (wet phase inversion). In this case, the solution is submerged in a nonsolvent then 

liquid-liquid demixing occurs rapidly and the membrane precipitates. It is well understood the 

thermodynamics and kinetics of this demixing process, and thus the choice of solvent, 

nonsolvent, and additives, play an important role in membrane formation [9,10]. Additives that 

are soluble in the nonsolvent not only influence the thermodynamic and kinetic properties of 

the phase inversion process, they also exit the membrane upon phase inversion. This leaves 

behind a porous surface suitable for dye filtration. Filler particles remain in the membrane post 

inversion. Interestingly, the addition of a particle phase also influences the thermodynamics 

and kinetics of the process [11]. Unique membrane morphologies and surface properties such 

as pores and wettability are highly influenced by the components of wet phase inversion [12].  

Although MMMs composed of a variety of polymer/filler combinations have found success in 

many applications [13-15], they are still limited by various factors including, agglomeration 

defects caused by poor particle/polymer interactions, particle ruptures, and pore blockage [16-

19]. All of which lead to undesired performance.  

 In order to understand how the choice of dope solution components effect some of these 

parameters and their relation to aniline removal from water, we utilized a replicated 23 full 

factorial randomized design. The MMM under study contains activated carbon (AC) dispersed 

in a polysulfone (PSF) matrix. AC is a well-established adsorbent for dye removal [20]. PSF 
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is a well-studied polymer that is easily cast by wet phase inversion [21] and is influenced by 

pore forming agents [22]. Two continuous factors chosen were concentration of polyethylene 

glycol (PEG) and concentration of AC in the dope solution. One categorical factor was the 

choice of solvent. The four responses were water contact angle, particle agglomerations, flux, 

and dye rejection.  

2. Materials and Methods 

 

2.1. Materials 

 

Sunflower hulls used for AC production was obtained from CHS Sunflower Grandin, ND. 

Sodium hydroxide (50%) was used as the chemical activating agent PSF (35,000 Da), was used 

as the continuous matrix, dimethyl formamide (DMF 99.8%), and n-methyl-2-pyrrolidone 

(NMP 99%) were used as solvent. PEG (200 Da) was used as the pore forming agent. Aniline 

blue (799.80 g/mol) was the dye investigated. 50% sodium hydroxide was used for AC 

synthesis. All components were purchased from Sigma. Distilled water was used as the 

nonsolvent in the phase inversion process and as the dye solvent. 

2.2. AC Production by Sunflower Hull Pyrolysis 

 

About 60g of sunflower hulls were pyrolyzed into biochar in a Thermolyne 21100 tube furnace 

displaced by argon. The heating rate was set to 15°C/min, and the temperature was maintained 

at 500°C for 20 minutes then allowed to slowly cool to room temperature.  The biochar was 

rinsed thoroughly with distilled water, dried, ground, and sieved with a No. 325 (55µm) tray. 

5g of biochar was then impregnated with sodium hydroxide at a ratio of 2:1 (dry sodium 

hydroxide:biochar) by mass. The impregnated biochar was then activated by heating at a rate 

of 15°C/min to 700°C, maintained for 20 min, then allowed to slowly cool to room 
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temperature. The AC was washed with, 0.1M HCl, then with distilled water to remove residual 

activating agent. The resulting properties are shown in table 9.  

Table 9: Properties of AC produced from sunflower hull pyrolysis and chemical activation of biochar impregnated with 

NaOH at a ratio of 2 NaOH : 1 biochar by mass, at 700°C. 

Property Value 

Average diameter 18.1 µm 

Diameter standard deviation 15.7 µm 

Maximum particle diameter 55 µm 

Iodine number 452 mg/g 

Pore volume 0.595 mL/g 

Moisture  3.45 % 

Volatiles  36.06 % 

Ash 11.28 % 

Fixed carbon 50.06 %  

 One of the main advantages to using a biomass based activated carbon is the abundance 

of functional groups present in its structure [23,24]. The FTIR spectra for the AC made in this 

study was taken using a Thermo Scientific Nicolet FTIR in attenuated total reflectance mode 

with a ZnSe crystal. The spectra is shown in figure 25. It is evident the AC is aromatic with an 

abundance of oxygenated functional groups.  

 

Figure 25: FTIR spectra of AC produced by NaOH activation of sunflower hull biochar. 
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2.3. Membrane Casting 

 

A constant 20 wt.% polymer in solvent solution was used throughout each experiment. PEG 

and AC concentrations were then added relative to the polymer, as a percent weight according 

to the experimental design parameters. AC-MMM dope solutions were mixed for at least 24 

hours with a magnetic stirrer at 60 rpm. The solutions were then spread on a Duran® glass 

plate, and cast with a casting blade. The membranes were then precipitated in distilled water, 

thoroughly rinsed, then submerged in distilled water for at least 12 hours to ensure complete 

solvent removal. They were allowed to dry in air at ambient conditions overnight before 

testing. The average membrane thickness was 70 +/- 3 µm.   

2.4. Contact Angle Measurements 

 

The contact angle of each membrane was measured based on the methodology presented by 

Costa et al.  [25]. In short, a 20 µL drop of colored water was placed on the surface of the 

membrane. An image was taken of the top view with a resolution of 255 pixels/mm. The 

diameter of the drop was measured using the open source software ImageJ [26]. The contact 

angle was then calculated based on a spherical cap geometry. Additional details for this method 

are described in Appendix C. At least two measurements were taken per membrane and the 

average value was used. 

2.5. Agglomeration Measurements 

 

In order to study agglomeration trends, an imaging method was developed. A high resolution 

optical microscope with a bright front light was used to image the top surface of the 

membranes. AC within the membranes was clearly visible as black dots scattered throughout. 

The images were processed by ImageJ into 8-bit, black a white images, then the built in particle 
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analyzer was used to locate and count particles that were greater than 55 µm. The largest single 

particle size after sieving was 55 µm, anything larger than 55 µm was considered a clump. The 

frequency of agglomeration was then determined as the number of clumps per square cm of 

membrane according to equation 1. Two difference locations per membrane were analyzed.  

 𝑓𝑎 = 𝑁𝑑𝑝55𝑐𝑚2  

 

(1) 

2.6. Dye Filtration and Rejection 

 

The feed solution was 0.1 g/L aniline blue with a pH of 6.0. A dead end filtration set up was 

used with an exposed membrane area of 17 mm. Membranes were supported by a coarse mesh 

and the exposed area was controlled with a Teflon washer. The solution was pressurized to 2 

bar with nitrogen. A nitrogen sweep gas was also used on the permeate side to prevent adhesion 

and minimize concentration polarization. The permeate was collected and the amount 

quantified gravimetrically. The concentration of dye in the permeate was quantified by a 

calibrated UV-Vis absorbance peak at 595 nm, according to Beer’s law. The correlation was 

linear with an R2 of 0.97. The rejection was calculated according to Eq. 2: 

 𝑅 = (1 − 𝐶𝑝𝑒𝑟𝑚𝐶𝑓𝑒𝑒𝑑 ) ∗ 100 

 

(2) 

Cperm is the concentration of the permeate and Cfeed is the initial feed concentration.  

 

2.7. Dye Adsorption on AC 

 

To understand the contribution of dye adsorption onto AC during filtration, batch adsorption 

studies were performed. A ratio of 2.5 mL dye to mg of AC was vigorously mixed for various 
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times and the residual concentration was measured. Kinetic isotherms were constructed using 

common models to determine the dye of adsorption. The concentration after adsorption was 

also found using UV-Vis.   

2.8. Scanning Electron Microscopy (SEM) 

 

SEM images of membranes were taken using a Hitachi SU8010 field emission scanning 

electron microscope. Membrane were sputter coated for 30 seconds with a gold/palladium 

coating before imaging. The cross section was exposed by cutting with a sharp blade.    

2.9. Experimental Design 

 

The full factorial design was chosen because it can help determine the response of each factor 

and the interactions between factors. Moreover, factorial designs are often used to narrow the 

important factors associated with membrane formation and performance [27,28] The 

randomized design was created using Minitab 18.  The following high and low values were 

chosen for each factor based on previous experimental observations. AC concentration higher 

than 10 wt.% (relative to the polymer) tend to result in surface ruptures. Concentrations of PEG 

higher than 20 wt.% (relative to the polymer) result in membranes too facile for testing at 2 

bar.   

Table 10: Factors and factor levels used for the experimental design. PEG and AC concentrations are on a per PSF basis (i.e. 

20% PEG corresponds to 0.2g PEG per 1 g PSF). 

Factor Coded Factor Type High Low 

PEG % A Continuous 20  3 

AC % B Continuous 10  0.5  

Solvent C Categorical DMF NMP 
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3. Results and Discussion 

 

Factorial analysis was performed by Minitab 18 according to standard statistical methods [29]. 

For all cases the coded factors are represented by: A = PEG%, B = AC%, and C = solvent. 

Two replicates were performed at each corner point, for a total of 16 experiments shown in 

table 11.  

Table 11: Randomized 23 experimental design with 2 replicates of each corner point 

Run 

order 

PEG% AC% Solvent Contact 

Angle (°) 

Agglomeration 

Frequency 

Flux 

(LMH) 

Rejection 

(%) 

1 3 0.5 DMF 58.6 70 2.37 89.70 

2 20 10.0 DMF 57.8 1284 27.89 98.40 

3 3 0.5 NMP 66.9 150 5.28 77.00 

4 20 0.5 NMP 46.9 146 51.67 82.86 

5 3 0.5 DMF 48.0 104 11.50 81.00 

6 20 0.5 DMF 75.9 108 48.12 70.76 

7 20 10.0 DMF 84.8 1210 119.00 97.89 

8 3 0.5 NMP 65.2 182 19.82 76.68 

9 20 10.0 NMP 51.6 1120 19.03 85.74 

10 3 10.0 DMF 51.2 1654 21.01 84.35 

11 20 0.5 NMP 52.7 118 77.56 58.77 

12 3 10.0 NMP 45.0 1442 4.23 90.30 

13 3 10.0 NMP 38.3 1250 5.10 61.03 

14 3 10.0 DMF 71.3 1574 16.78 99.29 

15 20 0.5 DMF 83.9 42 69.52 40.00 

16 20 10.0 NMP 50.8 1272 14.14 96.30 
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 The morphology of each membrane reveals much about the role of PEG and AC. Figure 

2 shows SEM images of selected membranes. The asymmetric structure consisting of a top 

skin and spongy support is evident regardless of casting solution composition. However, when 

DMF was used as the solvent, the spongy support appears more homogenous (figure 26a) 

whereas NMP results in some less spongy areas in the cross section (figure 26b). The presence 

of PEG results in surface pores on the order of 0.5µm. This is in the microfiltration regime, 

suitable for dye filtration. The pores size distribution is relatively narrow and is seen in figure 

26c. When More than 10% AC is used, particle ruptures occur as shown in figure 26d. These 

ruptures lead to larger surface pores and blockage. 

 

Figure 26: Cross section of membranes form run (a) 2 and (b) 9 showing a subtle difference between solvents. (c) Surface 

pores as a result of PEG diffusion from the membrane during inversion. (d) Example of AC surface ruptures with loading 

greater than 10%. 
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3.1. Effects on Water Contact Angle 

 

The water contact angle is widely regarded as a measure of membrane wettability. Contact 

angles measuring less than 90° indicate hydrophilic surfaces (low energy), and angles greater 

than 90° are representative of hydrophobic surfaces (high energy). For liquid phase separation, 

generally a relatively low contact angle is beneficial because the surface is able to become 

thoroughly wetted, maximizing the areas available for diffusion into the membrane surface. 

Generally, lower contact angles tend to represent higher flux in membranes. 

 

Figure 27 : (a) Pareto daigram, (b) main effects, and (c) interaction effects on water contact angle. Analysis was performed 

with a 90% confidence level. 
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 On the other hand, the contact angle is also used as a predictor to fouling. Depending on the 

type of foulant, either higher or lower contact angles can indicate higher attraction. In the case 

of aniline blue, lower contact angles (more hydrophilic) tend to indicate higher fouling 

potential [30]. Due to the moderate difficulty in accurately measuring the water contact angle 

with the method utilized, a confidence level of 90% was used for this analysis.  The effects are 

depicted in figure 27.  

 From this, it is evident the solvent choice was the only significant main effect, and there 

was a two level interaction between PEG concentration and solvent, and a three level 

interaction. Figure 27 depicts the main effect plots and significant interactions. The interaction 

plot shows that when DMF is the solvent, lower contact angles are observed when low 

concentrations of PEG are used. However, when NMP is the solvent, higher contact angles are 

observed when PEG concentrations are low. Although the AC concentration did not have a 

significant effect on contact angle, it was apparent that higher amounts of AC lead to lower 

angles. This is due to the hydrophilic nature of AC and possibly the increase in surface 

roughness. This phenomena has been well documented [8,31]. These results have several 

implications for potential fouling behavior. Since higher contact angles tend to result in less 

fouling, it seems the best membrane in terms of fouling resistance would be made with high 

PEG, low AC, and DMF as the solvent.    

3.2. Effects on Agglomeration Frequency 

 

Particle agglomeration is a negative result of poor polymer/filler interactions. Currently, the 

most common methods of speculating about agglomeration are through thermal and 

mechanical analysis [32]. Both of which yield qualitative observation. Here we present an 

imaging tool that can be used to quantitatively measure agglomeration frequency defined by 



102 

 

equation 1. This method proved useful for AC-PSF membranes because it could accurately 

image relatively large black particles in a white PSF matrix. If smaller particles are used, or if 

particles are not differentiable by optical microscopy, this method may not be useful. Other 

limitations to this method are failure to consider agglomerations less than 55µm. In order to 

do so, a comparison of the size distribution of AC before and after being introduced into PSF 

would be necessary. That qualitative comparison would not be useful for a statistical analysis. 

Also, this method does not consider the number of particles and does not normalize the number 

of agglomerations to the total particles present. If the total number of particles was considered, 

the analysis would be less accurate because of too low resolution to differentiate small particles 

from the matrix, thus an inaccurate count of total particles would result.  

 

Figure 28: (a) raw optical micrograph of AC-MMM transformed into (b) black and white image, then (c) inverted to show 

particles as black dotes. (c) ImageJ particle analyzer was used to locate and label particles larger than 55 µm. 

So, it is immediately expected that increasing the concentration of AC will increase the 

agglomeration frequency. None the less, this microscopy method allows for a quantitative 

determination and gives much insight into the agglomeration trends. Optical micrograms of 
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each sample was taken, processed and analyzed. An example of the output from this analysis 

is shown in figure 28.  

 The measurement of agglomerations was fully automated, so a 95% confidence level 

was used for the analysis. From figure 29a, it is readily apparent that the factor with the 

strongest effect on agglomeration frequency was the concentration of AC, as expected. The 

other main effect was PEG concentration, with weak PEG%-AC% and AC%-solvent 

interaction effects.  

 

Figure 29: (a) Pareto diagram, (b) main effects, and (c) interaction effects on agglomeration frequency performed at 95% 

confidence. 

 The main effects are shown in figure 29b. It is logical and frequently observed that 

increasing the filler concentration (AC) in the membrane increases agglomeration. As more 
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particles are introduced, the more likely they are to form a clump due to space limitations in 

the membrane and intermolecular attraction between AC particles. The decreasing trend with 

increase PEG concentration can prove beneficial. There are two likely causes to this trend. One 

could be the addition of PEG into the casting solution lowered the viscosity and allowed for 

better dispersion of AC in the casting solution. The other cause could be the result of improved 

AC-PSF interaction caused by a decrease in the demixing rate during phase inversion. This 

would allow for increased contact time between the AC particles and the dissolved polymer, 

promoting stabilization. It is also worth noting that there was also a tendency of the AC to 

migrate to the top dense layer of the membranes. Creating an AC rich top layer and a relatively 

PSF rich bottom layer.  

 The interaction plots in figure 29c also show insightful trends. It seems when NMP was 

used as a solvent, a higher agglomeration frequency was observed at low AC concentrations, 

but a lower frequency at high concentration.  Higher PEG concentrations seemed to reduce 

agglomerations more effectively when higher concentrations of AC were used.   

3.3. Effects on Flux 

 

Flus (measured in Lm-2hr-1 or simply LMH) is one of the most important parameters in 

membrane performance. High flux is more desirable than lower flux. However, membranes 

generally have a flux/rejection tradeoff. So these values should be optimized to find 

appreciable flux and high rejection. None the less, the analysis revealed the only PEG 

concentration had a significant effect on flux. Interestingly, AC concentration had the lowest 

effect. This is significant because it signifies no surface ruptures or pore blockage was caused 

by AC. This would have resulted in a significant increase in flux in the case of surface ruptures, 

or a significant decrease in flux for the case of pore blockage.  
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Figure 30: (a) Pareto diagram, (b) main effects, and (c) interaction effects on flux performed at 95% confidence. 

 Figure 30b shows a dramatic increase in flux with an increase in PEG concentration. 

This is likely due to pore formation, as PEG is water soluble and escapes from the membrane 

during the phase inversion process, leaving behind surface pores. It is interesting that the flux 

was higher when DMF was used as the solvent. This is consistent with the SEM images 

showing a more spongy cross section between figure 26a and 26b. This may also be a result of 

an increase in d-spacing when DMF is used, as was reported by Adewole, et al. [21]. Although 

not statistically significant, it is also worth noting the AC/solvent interaction shown in figure 
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60c. When DMF was used as the solvent, a higher flux was seen with 10% AC. On the other 

hand, when NMP was used as the solvent, higher flux was seen with 0.5% AC. This signifies 

the role of solvent on AC-PSF interaction during formation. It seems pore blockage occurred 

when NMP was used with 10% AC but not with 0.5% AC. Another plausible scenario is PSF 

clogging pores in the AC. A thorough investigation into the demixing kinetics during formation 

may help explain this observation. However accurately representing the complex AC-PEG-

solvent-water system would be challenging.  

3.4. Effects on Rejection 

 

Dye rejection is the other important performance parameter. The Pareto diagram in figure 31a 

shows AC is the only significant factor influencing dye rejection, followed closely by the two-

way interaction between AC and PEG concentration.  

 The main effect due to AC shown in Figure 31b depicts the average increase in dye 

rejection from 72% to 89%. This is likely a result of adsorption by the AC. At higher 

concentrations, there is an increased capacity for adsorption. This result is significant, because 

it means the active sites available for adsorption were not impeded by the number of AC 

particles in this concentration range. Although not stastically significant, it is interesting to 

note that the rejection was lower when NMP was used as the solvent. Because the same trend 

was seen in flux performance, this is likely a result of PSF clogging pores in the AC, reducing 

the number of active site available for adsorption in those instances. The interaction plot in 

figure 31c also shows interesting results. When 3% PEG was used, the rejection was almost 

the same despite the amount of AC. However, when 20% PEG was used, there was a large 

increase, from 63% to 95%, in rejection. This is indicative of decreased agglomeration defects 

creating more adsorption active sites. The insignificant PEG/solvent interaction is also worth 
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mentioning. In this case, the rejection/flux tradeof is somewhat apparent when DMF was used 

as the solvent. Membranes made with DMF saw higher rejection with 3% PEG compared to 

20% PEG. In the same way, the flux was much lower with3% PEG than 20% PEG. When 

NMP was used, there is no difinitive tradeoff seen.   

 

Figure 31: (a) Pareto diagram, (b) main effects, and (c) interaction effects on dye rejection performed at 95% confidence. 

3.5. Response Optimality 

 

The response optimizer in Minitab was used to determine the optimal conditions in terms of 

maximum flux, maximum rejection, and minimum agglomeration frequency and maximum 

contact angle. Maximizing flux and rejection are logical parameters. Minimum agglomeration 
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frequency resembles fewer defects. Maximum contact angle represents lower fouling potential. 

The data was shown to be optimal using 20% PEG, 5.2% AC, and DMF as the solvent. The 

intermediate results are shown in table 12.  

Table 12: Response optimization data using equal weights for each factor while maximizing dye rejection, maximizing flux, 

and minimizing agglomeration frequency. 

Response Outcome Desirability Optimal Predicted 

Value 

Composite 

Desirability 

Dye rejection Maximize 0.61640 76.55 

0.6398 
Flux Maximize 0.54607 66.06 

Agglomeration 

frequency 

Minimize 
0.61968 655 

Contact Angle Maximize 0.80321 75.7  

 

 Although the optimal results were found, it is likely a range of results is sufficient for 

some applications. To study this, overlaid contour plots were made holding the solvent constant 

(Figure 32). Dye rejection was taken as the more important response, so the range was assigned 

to be greater than 80%. Flux was more variable, but was chosen to be greater than 20 LMH. 

The plots indicate that when DMF is used as the solvent, moderate amounts of AC and a wide 

range of PEG concentrations achieve the defined bounds. If NMP is used as the solvent, a 

much narrower range of both AC and PEG are required.  
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Figure 32: Overlaid contour plots showing the range of rejection greater than 80% and flux greater than 20 LMH holding the 

solvent constant with (a) DMF and (b) NMP 

3.6. Adsorption Kinetics 

 

To better understand the role of adsorption on dye rejection, kinetic isotherms were constructed 

and fitted to three common models: 

Pseudo 1st order log(𝑞𝑒 − 𝑞𝑡) = log(𝑞𝑒) − ( 𝑘12.303) 𝑡 

 

(3) 

Pseudo 2st order 𝑡𝑞𝑡 = ( 1𝑘2𝑞𝑒2) + ( 1𝑞𝑒) 𝑡 

 

(4) 

Intra-particle 

diffusion 
𝑞𝑡 =  𝑘𝑖𝑑𝑡12 + 𝐶𝑠𝑡 

(5) 

 

 In these models, 𝑞𝑒 and 𝑞𝑡 and the equilibrium and time dependent dye adsorption per 

mass of AC, 𝑘 and 𝐶𝑠𝑡 are the respective constants, and 𝑡 is the contact time. Isotherms were 

taken at a dye concentration of 0.1 g/L and a pH of 6. Comparing the correlation coefficient of 

each linearized model listed in table 13 demonstrates the pseudo second order model most 
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accurately depicts the data. The model is graphed in figure 33 against the experimental data. 

This is indicative of chemisorption of dye by the AC.  

Table 13: Kinetic isotherm parameters 

Model R2 𝑞𝑒 (mg/g) 𝑘 𝐶𝑠𝑡 

Pseudo 1st order 0.9279 132 0.382 - 

Pseudo 2nd order 0.9976 238 0.0042 - 

Intra-particle diffusion 0.711 - 38.81 76.81 

 

 

Figure 33: Adsorption kinetic results fitted to a pseudo second order kinetic isotherm. 

  

 The transient adsorption capacity reveals that AC regeneration would be required after 

about 30 minutes of filtration. The short residence time within the membrane, and hence the 

short contact time between AC and dye as well as the trends mentioned previously, indicate 

adsorption could not have been the only mechanism responsible for rejection. A combination 

of size exclusion and adsorption was responsible.  
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4. Conclusion 

 

A replicated 23 full factorial design was used to screen the response of PEG concentration, AC 

concentration, and two solvents (DMF and NMP) on water contact angle, agglomeration 

frequency, flux and aniline blue rejection by an AC-PSF MMM. Solvent, PEG%/Solvent 

interactions, and a three-way interaction was shown to have a significant effect on water 

contact angle. Agglomeration frequency was strongly influenced by AC% and PEG%. 

Increased AC% resulted in higher agglomeration frequency, and increasing amounts of PEG% 

effectively reduced the agglomeration frequency. Weak two-way interaction between 

PEG%/AC% and AC%/Solvent also had a significant effect on agglomeration frequency. Flux 

was influenced by PEG% as a result of surface pore formation. Dye rejection was influenced 

by AC% as a result of increased adsorption capacity. Optimal values and operating ranges were 

also presented within the range of factor levels chosen. Kinetic adsorption isotherms were 

fitted to models which indicated chemisorption of aniline blue by the AC. 
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CHAPTER V: CHEMICALLY ACTIVATED BIO DERIVED CARBON/POLYSULFONE 

MIXED MATRIX GAS SEPARATION MEMBRANES 

 

Abstract 

In this paper, we present activated carbon (AC) mixed matrix membranes with a polysulfone 

matrix for separation of binary N2/CH4, CO2/CH4, and CO2/N2. The influence of chemical 

activating agent on AC surface functional groups was exploited to study how functional groups 

influence AC-MMM performance. Bio-based AC was used for its diverse composition of 

functional groups and these functional groups are influenced by chemical activation. It was 

observed that hydroxide groups on the AC resulted in the best performance due to strong 

compatibility with AC. Although slightly polar, ether groups on AC did not improve 

compatibility. As a result, sodium hydroxide and zinc chloride activating agents seem to result 

in strong AC-PSF compatibility.  

 

1. Introduction  

 

Mixed matrix membranes (MMMs) are a promising class of membrane to surpass the 

permeability/selectivity limitations of polymeric membranes. By introducing a particle phase 

into a polymer matrix, multiple mechanistic pathways are formed, and can be exploited for 

specific separation applications [1]. Specifically, gas diffusion through the pores of the filler 

tends to enhance its permeability. One of the most important aspects of MMM development is 

choice of polymer/filler combination. Their individual properties and their compatibility 

dictate the extent of performance. Poor compatibility will result in interfacial defects in the
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 vicinity of the filler particles, and will inevitably lead to unselective membranes [2]. This has 

been the ultimate challenge of MMM development, and thus much research has focused on 

methods to prevent or correct the poor compatibility. For example, particle size is highly 

influential. However, depending on the type of filler, either smaller or larger particles tend to 

produce fewer defects and perform better. Lainez et at. found that 150nm ZIF-8 particles 

performed better than 50 nm particles for H2/CO2 separation [3]. Contrarily, Ghalei et al. found 

that 20-30nm MOF particles tended to disperse better in the matrix preventing interfacial 

defects and performed better than 100-200nm particles [4]. Due to these discrepancies, it 

appears there are complex interacting effects between particle size, surface area, and particle 

functional groups on defect formation that is not well understood.  

 Other strategies to improve interaction is by priming particles with a polymer, 

effectively creating a three phase region consisting of the matrix/primer/filler [5]. This can 

increase the compatibility by lowering the surface tension between particle and matrix, 

reducing defects upon membrane formation. Thermal annealing above the matrix glass 

transition temperature has also shown to increase filler/matrix compatibility by relaxing the 

matrix chains, initiating intimate contact between polymer and filler [5-7]. Considering the 

formation of MMMs is highly dependent on the thermodynamics of the casting solution, some 

works have discovered this equilibrium can also influence defect formation and performance. 

For example, other than the choice of filler and matrix, the solvent, and nonsolvent for wet 

phase inversion membranes, also plays an important role in compatibility [8,9]. The solvent 

can potentially degrade the filler if not chosen properly [9], but more importantly, equilibrium 

conditions during formation can create local areas of concentrated solvent, nonsolvent, and 

polymer, preventing compatibility [8].         
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 Furthermore, function-led design has been recognized as the most influential aspect of 

influencing matrix/filler compatibility [10-12]. Introducing fillers to matrices with compatible 

functional groups increases the likelihood of strong interactions forming between them. This 

reduces the presence of interfacial defects. Depending on the type of filler, functionalization 

can be achieved by various methods. In engineered particles, using precursors that have the 

desired functional groups is an effective method. Various functional groups can also be 

attached chemically by grafting or physically through strong intermolecular bonds. One 

popular species used for grafting is silane. Various forms of silane are available with different 

functionality [11,13]. An example of physical grafting was shown by Saranya et al. in which 

particles were functionalized onto alginate aggregates [14]. Similarly, the polymer phase of 

the MMM can be functionalized with various functional groups to achieve compatibility [15].  

 Although not used as frequently as more advanced fillers such as MOFs and zeolites, 

AC has had minor success in separating gases and has given some insight into the field [17-

20]. Notable progress with AC-MMMs is improved permeability with maintained selectivity 

and rigidification of polymers by incorporating AC. None however, have investigated how the 

AC functional groups can be manipulated to achieve better performance. Some methods work 

well for some fillers and matrix combinations. In this work we utilized activated carbon (AC) 

derived from sunflower hulls as the filler in a polysulfone (PSF) matrix. AC is a versatile 

material which is porous, has high surface area, and most importantly, is full of functional 

groups that can be influenced by various means. Producing AC from biomass is one of the 

methods to achieve desired functional groups due to the complex structure of lignin, cellulose, 

and hemicellulose [16]. One process to convert biomass into AC is through pyrolysis of the 

biomass into biochar, then chemical activation in an inert atmosphere at elevated temperatures. 
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Depending on the activating agent, temperature, residence time, heating rate, and precursor 

biomass, various functional groups remain post processing. It is our hypothesis that this 

“functionalization” can be exploited to produce AC-MMMs for gas separation of CO2, N2, and 

CH4 gas pairs. Both the inherent properties of the AC, and the compatibility of AC with PSF 

are suspected to be contributing factors. Three activating agents were chosen based on their 

oxidizing features: NaOH, H2O2, and ZnCl2.  

2. Materials and Methods 

 

2.1. Materials 

 

Raw sunflower hulls were supplied by CHS Grandin, Grandin, North Dakota and were used 

as the AC precursor. Sodium hydroxide (NaOH) 50 wt.%, hydrogen peroxide (H2O2) 30 wt.%, 

and zinc chloride (ZnCl2) were purchased from sigma Aldrich and were used for chemical 

activation. Hydrochloric acid used for AC rinsing and purifying purchased from Fisher 

Scientific. N,N-Dimethylformamide (DMF 99.8%) and polysulfone (PSF 35,000 Da) used for 

membrane fabrication were purchased from Sigma Aldrich. Argon, nitrogen, carbon dioxide, 

and methane were purchased from Praxair in analytical grades.  

2.2. AC Production and Characterization 

 

About 50g of sunflower hulls were loaded into a one-liter Thermolyne 21100 fixed bed tube 

furnace reactor with temperature and heating rate control. Pyrolysis was achieved by purging 

the reactor with argon for about five minutes, then heating from room temperature to 500°C at 

a rate of 15°C/min under continuous argon flow. The reactor was held at 500°C for 20 minutes, 

then allowed to cool slowly back to room temperature. Volatiles, bio oils, and tars were 

continuously discharged into a water bath. Biochar was collected from the reactor.  
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 The biochar was washed thoroughly with distilled water until a clear filtrate was seen. 

Then, it was washed with 5 wt.% hydrochloric acid, at a ratio of 5mL to 5g char, to remove 

trace salts and residual bio-oils. It was then ground with a mortar and pestle and sieved with a 

#270 sieve tray for less than 55µm particle size. Varying amounts of activating agent (NaOH, 

H2O2, or ZnCl2) were then impregnated into ground biochar, by mixing then evaporating 

excess water. In the case of H2O2 activating agent, evaporation was not carried out due to its 

low boiling point. The impregnated biochar was loaded into the tube furnace and heated again 

at a rate of 15°C/min to a final temperature of 700°C under argon flow, held for 20 minutes at 

700°C, then allowed to slowly cool to room temperature.  

 The AC was recovered and rinsed with 5 wt.% hydrochloric acid to remove residual 

activating agent, then with water to remove residual acid. The AC was either ground or 

micronized in a micronizing mill, and the size distribution and pores were investigated using 

scanning electron microscopy. The surface area was determined by means of iodine number 

which was evaluated according to ASTM standard D4607 [21]. AC functional groups were 

investigated with a Thermo Nicolet FTIR with a ZnSe crystal in attenuated total reflectance 

mode. 

2.3. MMM Formation, Characterization, and Gas Permeance 

 

Appropriate amounts of AC were initially dissolved in DMF and mixed vigorously for at least 

24 hours to allow for degassing. PSF was added in three parts over 48 hours to the AC/DMF 

solution to prime the AC, and eventually create a 20 wt.% PSF in solvent with between 0.25% 

and 2% AC relative to PSF. Once all polymer was added, the solution was mixed with a 

magnetic stirrer at 60 rpm for at least 24 hours. Before casting, the solutions were removed 

from the stirrer and allowed to sit for several hours to remove bubbles that formed from stirring. 
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A 50 micron casting blade measuring 3 inches wide was used to cast the solution on a Duran® 

glass plate. About 10 cm of membrane was cast manually at a comfortable rate of about 5 

cm/sec. The membranes were then precipitated by wet phase inversion in distilled water to 

form asymmetric MMMs. To investigate the influence of thermal annealing on gas separation 

performance, MMMs were then heated at a rate of 5°C/min to 200°C for two hours, then 

allowed to slowly cool to room temperature.  

 Membranes were inspected visually with light microscopy for interfacial defects, and 

migration of AC to the dense skin by qualitatively viewing the top and bottom surfaces. SEM 

was used to view the MMM cross section and to check for particle ruptures through the surface. 

The permeance of pure CO2, N2, and CH4 through the MMMs were investigated using the 

constant pressure variable volume method. The MMMs were supported with a porous steel 

mesh. The pressure was monitored with a pressure gauge and the flow rate of each gas was 

measured with a soap bubble flow meter. The same membrane was used for each gas in the 

order of N2, CH4, then CO2, to limit the effects of potential plasticization due to CO2. Several 

data points were taken to ensure steady state.      

3. Results and Discussion 

 

3.1. AC Production and Characterization 

 

In order to produce AC with desirable properties, biochar was impregnated with three different 

activating agents and activated at various temperatures. NaOH was used as a model agent to 

determine the best temperature to perform the activation. As shown in Figure 34, the activating 

agent, impregnating ratio, and temperature all influenced the AC surface area as measured by 

iodine number. While the biochar properties would likely also influence these results, the 
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parameters used to create biochar was held constant according to our previous work.  A control 

was used to rule out temperature effects without any activating agent. It is apparent that without 

any activating agent, the AC iodine number was very similar to biochar, with a slight increase 

as temperature increased as expected. When NaOH was used, the iodine number followed a 

parabolic trend, which is commonly encountered. It peaked near 700°C, so this was the 

temperature used for the remaining AC. What is also apparent is an increase in iodine number 

when higher concentrations of activating agent were used.  

 

Figure 34: Iodine number for chemically activated biochars 

 The surface functional groups were also influenced by the activating agent. This is 

depicted by the FTIR spectra in Figure 35. Each AC shows aromatic functional groups at 

wavenumbers less than 1000 cm-1. Other similarities between the three includes a C=C peak 

around 2300 cm-1, carbonyl C=O  at about 1650 cm-1, and alkane and alkene CH stretching 

peaks between 1200 and 1400. Important differences are the OH stretch in AC-NaOH at 3500 

cm-1, and ether C-O-C stretch at 1120 and 1250 cm-1 in AC-H2O2. From this analysis is it 

apparent that the potential for strong intermolecular bonds between AC and PSF will likely be 



119 

 

greatest in AC-NaOH due to hydrogen bonding from the OH functional groups, then AC-H2O2 

from the ether linkages. AC-ZnCl2 appeared to have fewest oxide groups and is expected to 

form weaker intermolecular bonds with PSF. It is worth noting that the highly aromatic nature 

of AC will result in pi stacking between the rings in the AC and PSF, contributing to 

intermolecular bonding [22].  

 

Figure 35: FTIR spectra of each AC listed by activating agent. 

 From the SEM images in Figure 36a, a variety of pores are apparent in the powered 

AC. The pore size is on the order of 1µm. Because pore diffusion in MMMs through the AC 

is expected to occur, 1µm pores are not ideal because it would result in unselective flow 

through them. The pore size of micronized AC seen in Figure 36b is apparent, but is much 

smaller than 1µm. This yields the possibility of selective flow through the pores of the AC. 

 

Figure 36: SEM images of (a) powdered and (b) micronized AC 
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To investigate the influence of functional groups on AC-MMMs while reducing the effect of 

surface area, AC with similar iodine numbers were chosen for MMMs listed in Table 14. To 

understand the influence of large pore size AC, one powdered AC was also used. While particle 

size may have an impact, it is expected the difference in pore size will be the dominant factor. 

The particle size distribution of each AC is shown in Figure 37. 

 

Figure 37: Particle size distribution for AC1-AC4 used for MMM fabrication. 

 

Table 14: AC used for MMM fabrication. 

AC Activating Agent Impregnation Ratio 

(Agent:Biochar) 

Iodine Number 

(mg/g) 

Average  

Diameter (µm) 

AC1 NaOH 3:1 405.0 1.482 

AC2 H2O2 3:1 536.2 1.032 

AC3 ZnCl2 2:1 605.5 1.289 

AC4 NaOH 3:1 405.0 18.10 

 

3.2. MMM Characterization and Performance 

 

MMMs were made with each AC and thermally annealed. MMMs made with AC4 were not 

annealed due to poor performance. From optical micrographs in Figure 38a, it was apparent 

that there was some void space surrounding AC2, but not AC1, AC3, or AC4, forming a sieve 
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in a cage morphology. This was an interesting result because AC2 showed signs of ether groups 

and was expected to possess higher potential for intermolecular bonding that AC3. This could 

be a result of ether aromatics which could potentially weaken pi stacking, causing weaker 

interactions compared to AC3, which did not show signs of polar groups. Another possibility 

is the ether groups were sterically hindered in the AC structure, limiting its interaction with 

PSF.  

 SEM images revealed an asymmetric cross section in all AC-MMMs. A representative 

example is shown in Figure 38b. The selective layer was especially thin compared to those 

reported in pristine PSF membranes [23]. It is expected thermally annealed MMMs had a 

denser cross sectional based on the color change from white in the asymmetric to clear. It 

should be noted that AC tended to reside in the top layer rather than remained dispersed upon 

wet phase inversion. This is significant because for AC to influence permeability in 

asymmetric membranes, the dense layer must be penetrated slightly. It appears this was the 

case based on the top of the MMMs being darker in color than the bottom, which has also been 

reported previously [24].    

 

Figure 38: (a) Optical micrograph showing a shiny area surround AC2-MMM and (b) SEM image showing a representative 

cross section of all AC-MMMs. 

Each membrane was subject tested for N2, CH4, and CO2 permeance. The permeance was 

calculated according to equation 1 [25], 
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 𝑃 =  22,414  𝑝1𝐴 (𝑝2 − 𝑝1) 𝑅𝑇 𝑑𝑉𝑑𝑡  

 

(1) 

where p is pressure, A is membrane area, R is the gas constant, T is temperature, and dV/dt is 

the volumetric flow rate and is in units of cm3(STP)/(cm2scmHg). The permeance in units of 

GPU is equivalent to 1 x 10-6 cm3(STP)/(cm2scmHg) and is used instead of permeability 

(barrer) because of the difficulty and inaccuracy in measuring the active layer of the AC-

MMMs.  

 The permeation results are depicted in Figure 39. Generally, there was an increase in 

gas permeance with AC loading, as expected. It was also apparent that the permeance was 

lower in annealed membranes compared to non-annealed MMMs. This is likely due to an 

increase in active layer thickness with the thermal annealing causing more resistance to flow. 

AC1-MMMs seemed to perform best. Interesting, AC2-MMMs did not perform well, showing 

extremely high permeance in the Knudsen flow regime. This is most likely due to the poor 

interfacial interactions which caused void space surrounding the AC particles and allowed for 

unselective diffusion. Another interesting point is in AC3 annealed MMMs, there was an initial 

decrease in CO2 permeance compared to pristine PSF. This could be a result of pore blockage 

by PSF as a result of the thermal annealing. Another possibility is adsorption was a competing 

mechanism where the rate of adsorption was faster than diffusion for low AC loadings. 

However, this is slightly less likely because that trend was not seen in the un annealed MMMs.  

AC4-MMMs (not shown) showed Knudsen flow for the entire span of AC loading. This was 

expected due to the large pore sizes in AC4. 
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Figure 39: Gas permeation through (a) AC1-MMM, (b) AC1-annealed MMM, (c) AC2-MMM, (d) AC2 annealed MMM, 

(e) AC3-MMM, and (f) AC3 annealed MMM. 

The permselectivity of each AC-MMM was calculated according to equation 2: 

 𝛼𝐴𝐵 =  𝑃𝐴𝑃𝐵 
(2) 
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Although there was a significant increase in permeance with AC loading in all cases, the 

permselectivity tended to decrease until Knudsen selectivity was achieved. In the case of AC4, 

Knudsen selectivity was achieved immediately with dilute AC loading. These results are 

summarized shown in Figure 7.  

 

Figure 40: Ideal selectivities of each gas par for (a) AC1-MMMs, (b) AC1 annealed MMMs, (c) AC2-MMMs, (d) AC2 

annealed MMMs, (e) AC3-MMMs, and (d) AC3 annealed MMMs. 
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4. Conclusion 

 

In this we demonstrated the importance of functional groups on AC-MMMs. The presence of 

hydroxyl groups resulted in membranes with superior performance due to hydrogen bonding 

between AC and PSF. Interestingly, ether groups on the AC resulted in poor compatibility and 

sieve in a cage morphology. AC made with ZnCl2 as the activating agent resulted in fewest 

oxide groups. This was expected to result in poorest performance, but performed quite well, 

meaning there was likely some competing interactions. We also showed that larger pores in 

the AC resulted in unselective MMMs. This was a result of micron sized pores which allowed 

for unselective gas diffusion. Further experimentation is needed to confirm the permeability 

and selectivity trends shown here, but it is quite evident that AC-PSF MMMs are highly 

influenced by the type of AC used.     
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APPENDIX A: PARTICLE SOLUBILITY STUDIES 

 

The solubility of biochar was considered in solvent selection. As shown in the table, 2 mL of 

several solvents were placed in contact with 20 mg of biochar and mixed. The samples were 

either mixed and allowed to sit for 24 hours, or mixed and sonicated, then allowed to sit.  

Table 15: Solubility of biochar in various solvents, without sonication. 

 Acetone DCM DEG DMF DMSO EtOH MeOH NMP THF Tol. 

 

 

Initial 
          

 

Char 

after 

24 

hrs 
                 

Table 16: Solubility of biochar in various solvents after mixing and sonication. 

 Acetone DCM DEG DMF DMSO EtOH MeOH NMP THF Tol. 

 

 

Initial 

          

 

Char 

after 

24 

hrs 
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It is apparent there is some settling after time goes by with or without sonication. The brown 

shades above the sediment biochar are indicative of smaller particles remaining in solution. It 

is clear that DMF, DMSO, and NMP are the best candidate solvents. Sonication did improve 

the solubility for other solvents, but equally improved the three mentioned. Considering cost, 

DMF was chosen as the solvent for this study.  

 This study also allowed for a prediction of leaching behavior during the wet phase 

inversion process. The biochar is not highly soluble in ethanol, thus, leaching from the 

membrane into the ethanol nonsolvent is not likely to occur.  

 It is worth noting that acetone and toluene almost completely evaporated upon 

sonication. This is the reason those images are not present in the table 
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APPENDIX B: THERMOGRAVIMETRIC METHODS FOR CHARACTERIZING 

ACTIVATED CARBON 

 

Abstract 

The production, characterization, and application of activated carbon is of great interest in 

research and industrially. In this short review, we present thermogravimetric methods that have 

proven useful in studying activated carbon. Thermogravimetry is shown to be a tool in: 

predicting optimal charring and activating conditions, characterizing proximate analysis, 

thermal stability, surface area, pore volume, and gas sorption behavior. Comparisons to 

traditional methods and the advantages and limitations of the presented thermogravimetric 

methods are discussed where appropriate.  

1. Introduction 

 

Activated carbon (AC) is a porous, adsorptive material, that is made from carbonaceous 

precursors, and is used in applications such as water purification [1], catalysis [2, 3], and gas 

adsorption [4]. The general procedure to produce AC is as follows: thermal degradation of a 

precursor to produce a char then physical or chemical activation of the char at elevated 

temperatures. There are many important variables to this process. The precursor material is 

one of the most critical. In the early 1900s, popular precursors were wood dust. Later, coal and 

biomass feedstock such as coconut husks became industrially popular. Most recently, there has 

been research interest in using other biomass feedstock, mainly for economic advantages.
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 Another important factor is the charring conditions. Pyrolysis and gasification are the key 

processes that are utilized for char formation, and their influential factors include heating rate, 

residence time, and atmospheric conditions [5]. During the activation step, there are also a 

number of factors including activating agent used for chemical activation, impregnating ratio 

of activating agent to char, heating rate, residence time, and gas flow rate for physical 

activation.  

 Once produced, some characteristic properties are needed to compare ACs. Some of 

the main characteristics are surface area, pore volume, pore density, functionality, 

composition, thermal stability, adsorption characteristics, and morphology. The number of 

variables that can influence AC formation and properties, and the number of important 

properties, can make research and development of AC time consuming, expensive, and 

complicated by the required number of different instruments. However, one such technique 

that is underutilized in AC production is thermogravimetric analysis (TGA). While it is well 

understood that some properties, such as proximate analysis and thermal stability of AC can 

be investigated with TGA, various methods have been developed over time to cover much 

broader aspects of AC research and development, which are infrequently utilized. This review 

aims to describe how TGA can be utilized as a relatively fast and inexpensive method to 

investigate AC production conditions, select properties, and gas adsorption characteristics with 

minimal amounts of raw material requirements. The advantages and disadvantages of using 

TGA versus traditional techniques are also discussed.    

2. Reaction Conditions 

 

During AC formation, two key reaction processes are utilized. The pyrolysis of a precursor 

and the activation of the resulting char. In the case of pyrolysis, reactions taking place are due 
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to bond cleavage. During activation, activating agents can act as a catalyst to further promote 

bond cleavage of various functional groups, or react with the surface. There are two key 

reaction conditions that can be investigated using TGA: 1) conditions that pyrolysis or 

gasification occur in the charring stage, and 2) the activating temperature of the char into AC. 

Both conditions are represented well by TGA, but are most frequently studied on bench scale 

reactors, which use more material, and are more expensive to conduct.  

2.1. Charring Conditions 

 

The charring stage of AC production is the first step that can easily be studied using TGA. 

Pyrolysis is the thermal degradation in the absence of oxygen, and gasification is thermal 

degradation with controlled amounts of oxygen. Both processes are easily mimicked using 

either inert gases (i.e. N2 and Ar) in the case of pyrolysis, or a combination of inert gases and 

oxygen in the case of gasification. Key variables that can be studied are heating rate and 

residence time, as both are well controlled with TGA instruments. Yield is one response 

variable that can be measured. Yield is an important factor that can dictate whether or not a 

particular feedstock is commercially viable. TGA records weight as a function of temperature 

and time, thus yield can be recognized quite readily.  

 Some key advantages of measuring yield in this fashion are, small sample sizes. 

Depending on the reactor type, the difference between large samples and small sample sizes 

can skew yield results due to uncharred material. Small sample sizes also prevent heat transfer 

limitations that are typically present in larger reactors [6]. Also, when using bench scale or 

large reactors, physically removing the char can cause error as well. Some charred material 
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will be unaccounted for due to being left in the reactor, or being lost in transition from reactor 

to measuring device. 

 There is one disadvantage of using TGA to study yield. That is, pyrolysis and 

gasification often produce tars as a by-product. In standard reactors, this tar can either be 

continuously removed, or separated after reactions are complete. In TGA, tars are unable to 

escape sample crucibles, and thus, the char yield in TGA may include yield of tar as well. 

However, considering tar remains in the crucible, it also may thermally degrade, or even 

evaporate, soon after it is produced, minimizing its influence on char yield. 

2.2. Activation Temperature 

 

The chemical activation of char can also be studied to find the optimal activation temperature 

and heating rate. In the case of chemical activation, after char is impregnated with desired 

amounts of an activating agent, it is subjected to high temperatures in an inert atmosphere. 

Two or three characteristic degradation steps are likely to occur depending on the activating 

agent, one at a significantly lower temperature than the other two. The low temperature 

degradation is likely moisture loses from residue water from impregnation. The other 

degradations can be from evaporation of activating agent, or from reactions between activating 

agent and char (activation). If activating agents are carefully chosen, the evaporation curve 

may not be present. This leave only mass change due to chemical activation. The temperature 

at which the TGA curve levels indicates complete activation. Tsai et al. have shown that this 

temperature is the optimal activation temperature [7], yielding optimal properties. This is 

shown in figure 41. Thus, this experiment can, at the least, greatly narrow the number of 

activating temperatures investigated, as most researchers choose to investigate several 

temperatures, seemingly without evidence of a particular range. Similar analysis can be 
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conducted for the case of physical activation. In this case, reactive gases such as water vapor 

or carbon dioxide are fed into TGA rather than inert gases.  

 

Figure 41: TGA and DTG curves depicting the chemical activation of corn cob impregnated with ZnCl2. The optimal 

activating temperature was concluded to be 400°C, the point where the major mass loss concluded. Adopted from [7] and 

reprinted with permission from Springer. 

 While this analysis can narrow the temperature range chosen to study, it will likely not 

give the exact optimal activating temperature in real systems. In real reactors, heat and mass 

transfer become limiting conditions, as reactions between activating agent and char can vary 

down the length or radius of a reactor.  

3. Characterization 

Once AC is made, it is commonly characterized by various methods. There are five 

characteristics described here in which TGA would be most suitable to use; namely, proximate 

analysis, thermal stability, surface area, pore volume, and gas adsorption/desorption. Some of 

these characteristics are common in research and are frequently utilized, while others are not.   

3.1. Proximate Analysis  

 

Proximate analysis is the determination of moisture, volatiles, ash, and fixed carbon of a 

sample. This method is frequently, nearly exclusively, studied using TGA [8, 9]. First, a sample 
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is heated at a predetermined rate in an inert atmosphere, from room temperature to high 

temperatures (typically 900-1100°C). Two properties are determined from this curve. The 

weight loss between room temperature and 105°C is commonly attributed to moisture, and thus 

is the moisture content of the AC. The weight loss between 105°C and the temperature in which 

the TGA curve levels (or usually the final weight), is the volatile content of the AC. Next, a 

reactive gas is used to measure the ash content. A sample is either immediately exposed to 

oxygen after 900°C, or a new sample is subject to heat from room temperature to high 

temperatures in the presence of oxygen. The remaining weight after the TGA curve levels in 

this case, is known as the ash content, which consists incombustible compounds like metals. 

The fixed carbon content is taken as the difference between the moisture, volatile, and ash 

content from unity and is highly stable, aromatic networks. This process is represented 

schematically in figure 42.  

 

Figure 42: Proximate analysis schematic showing the region on the TGA curve in which each component is taken. 

3.2. Thermal Stability 

 

The other property almost exclusively studied by TGA is the thermal stability of the AC [10-

12]. The thermal stability is defined as the temperature at which major degradation occurs. It 
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is often taken as the inflection point on the TGA curve, or the peak of the differential curve 

(DTG). It is sometimes appropriate to report the initial and final temperature where major 

degradation occurs. Similar to pyrolysis, most of this degradation is caused by cleavage of 

loosely bonded oxygenated functional groups and single bonded carbon chains. The higher 

temperatures provide more energy to break double and triple bonded functional groups, leaving 

behind highly stable aromatics.  

 In the case of AC, depending on the intended application, a number of gaseous 

environments can be chosen. In most instances, the AC is subject to inert atmospheres at a 

predetermined heating rate. The thermal stability in reactive conditions can be investigated by 

using a reactive gas such as air, or even harsher gases like hydrogen sulfide [13], sulfur dioxide, 

and nitrous oxides [14]. The thermal degradation property is depicted in figure 43. In the case 

of reporting the inflection point as the degradation temperature, the DTG curve is often useful, 

as its peak is at the inflection point of the TGA curve.  

 

Figure 43: TGA/DTG curves depicting the thermal degradation point. 
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3.3. Surface Area 

 

Specific surface area of AC is one of the most important characteristics reported. Some 

methods to determine surface area include BET analysis. In this case, Argon or N2 adsorption 

isotherms are taken at 77 K then analyzed according to BET theory, to determine the so called 

BET surface area. In this case, degassing occurs for 24 hours. While this is the most widely 

used and accepted method, it is time consuming and the analysis is non-trivial. Another fairly 

common and accepted method to measure surface area is through the so called Iodine number 

[15]. In this case, an iodine solution of known concentration is allowed contact time with a 

predetermined amount of AC. The residual is then filtered and the concentration of the filtrate 

is determined by an end point titration with sodium thiosulfate. The iodine number is defined 

as the amount of iodine adsorbed per gram of AC when the residual concentration is 0.02N. 

Commercially, this is a common identifier of AC. In research, attempts have been made to 

correlate the iodine number to BET surface area [16, 17]. Although an acceptable method to 

report surface area, the iodine number test involves a minimum of three titrations per sample 

and several chemical solutions, making it a very consuming test in terms of supplies and time.  

 A TGA method was developed by Pan et al in 1996 [18]. Both BET surface area and 

pore volume were determined by this method. To perform this test, about 20mg of AC is heated 

by TGA to 200°C under N2 to degas. Once cooled to room temperature and allowed to 

equilibrate, either butanol or heptane is added to completely wet the AC. Butanol is chosen for 

polar (hydrophilic) AC, and heptane is chosen for nonpolar (hydrophobic) AC. The AC 

immersed in solution is then heated to 300°C at a rate of 5°C/min. Un-adsorbed 

butanol/heptane quickly evaporate, resulting in a steep weight loss curve with respect to time. 

It was hypothesized that the remaining liquid remains trapped within the pores of the AC, thus 
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as temperature is increased, the butanol/heptane more slowly evaporate from the pores until 

the TGA curve levels off. The amount of solution that escaped from the pores is visually clear 

from DTG curves of the first and second derivative, as was later suggested by Mercuri et al 

[19]. The values from these points shown in figure 44 are used to calculate the surface area 

based on empirical correlations using butanol or heptane: 

Butanol: 𝑆𝐴 = 2.64 ∗ 105 ∗  𝑎𝑠𝑎 + 77.6 

 

(1) 

Heptane: 𝑆𝐴 = 3.85 ∗ 105 ∗  𝑎𝑠𝑎 + 57.7 

 

(2) 

 𝑎𝑠𝑎 =  𝑀 − 𝑅𝑅 ∗ 𝑀𝑤 
(3) 

 

Figure 44: TGA/DTG curves representing liquid adsorption/desorption and key points in calculating specific surface area or 

pore volume. 

 This method has shown to yield surface area results exceptionally similar to AC 

containing mostly mesopores [20-22]. However, this method may find limitation to micro 

porous AC as neither butanol nor heptane can penetrate those pores completely. It is also 

limiting to AC with significant pore volume. In the case of low pore volume, the peak of the 
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1st and second derivative become indistinguishable due to the amount of desorbed solution 

being very small.  

3.4. Pore Volume 

 

The average pore volume is another AC characteristic that provides meaningful information. 

As described earlier, BET analysis can also be used to determine pore volume. Another method 

used to measure pore volume is porometry, which is performed with a porometer. While a 

number of types of porometry exist [23], they all essentially follow the same principle that an 

amount of desorbed gas or liquid from the pores of the AC can be used to determine pore size, 

then converted to a volume.  

 The TGA method described earlier for surface area [18] can also be used to estimate 

pore volume. In this case, the same procedure is applied. However, a different correlation was 

made to correspond with pore volume obtained from BET analysis. Thus, a different empirical 

equation is applied to the same data to obtain the pore volume with this method. The empirical 

correlations were determined to be: 

Butanol: 𝑉𝑝 = 102.8 ∗ 𝑎𝑣𝑝 + 0.0826 

 

(4) 

Heptane: 𝑉𝑝 = 154 ∗ 𝑎𝑣𝑝 + 0.0557 

 

(5) 

 𝑎𝑣𝑝 =  𝑇 − 𝑅𝑅 ∗ 𝑀𝑤 
(6) 

3.5. Surface Functionality 

 

While heptane and butanol desorption have been correlated to surface area and pore volume, 

the desorption isotherms of other compounds can give insight into the surface functionality. 
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This is a result of intermolecular bonding between the surface functional groups on the AC and 

the adsorbate. Polar bonds in AC will bond strongly with polar adsorbates and highly non polar 

functional groups will bond strongly to nonpolar adsorbates. This was clearly demonstrated by 

Pan and Jaroniec [24], where surface modified AC showed unique desorption isotherms for 

various adsorbates. Liquids adsorbents of various polarity such as butanol, water, and other 

hydrocarbons are adequate for this analysis because they can completely wet the AC and 

differences in desorption will be apparent. However, some studies have gained insight into 

surface functionality by investigating the desorption of particulates such as mercury [25] and 

ammonium nitrate prills [26].  

3.6. Gas Adsorption/Desorption 

 

One major application of AC is adsorption of gases. In most cases, the equilibrium amount 

adsorbed is of interest and reported as an isotherm. The kinetics of adsorption are also 

sometimes sought, making transient analysis necessary.  

 Gas adsorption can be studied using bench scale packed columns. In this method, 

measurements of flow rates of gas into the column, pressure drop, and flow rates exiting the 

column are required for meaningful data. The more common method is with lab scale gas 

sorption analyzers. Essentially, a gas is put in contact with AC and weighed to find the amount 

adsorbed. This technique is beneficial because it can easily measure equilibrium adsorption at 

varying pressures, thus obtaining an isotherm. While the complete isotherm cannot be obtained 

using TGA due to invariable pressure restrictions, the adsorption kinetics can be investigated. 

Through a process called isothermal-thermal analysis, the amount of gas adsorbed versus time 

at specified temperatures is easily measured. With isothermal-thermal analysis by TGA, it is 
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important the sample be initially heated under N2 to remove moisture and other physically 

adsorbed species. Once cooled or taken to the desired temperature, the gas of interested is 

introduced at a predetermined flow rate and is adsorbed onto the AC, and mass recorded versus 

time. The general procedure is represented in Figure 45. This method has proved to be 

beneficial in studying the adsorption kinetic parameters of CO2 on resin based [27] and agro 

based [28-30] AC. 

 

Figure 45: Schematic procedure for measuring gas adsorption by TGA. Rate of adsorption can be investigated in the adsorption 

and desorption regions. The temperature influence can also be investigated by setting any temperature in that region. 

4. Conclusions 

 

The thermogravimetric methods used to study AC are presented. The methods offer cost and time 

effective alternatives to traditional methods. We have shown that TGA can effectively be used to study 

the entire process of AC production from charring conditions to activating temperature. Methods to 

quantify several AC characteristics are presented and include proximate analysis, thermal stability, 

specific surface area, and pore volume. A method for the application of AC for gas sorption was also 

presented and can be useful in studying sorption kinetics. The methods shown are compared to 

traditional methods where appropriate, in which the advantages and limitations of each were discussed. 

The use of TGA can be an effective tool in AC research and development.
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APPENDIX C: TOP VIEW SESSILE DROP METHOD FOR MEASURING CONTACT 

ANGLES 

 

Abstract 

The water contact angle on a materials surface is an important characteristic giving insight into 

that materials wettability. Methods to perform this measurement are often difficult or involve 

expensive equipment. In this paper we present and validate a top view imaging method using 

a cell phone camera.  

1. Introduction 

 

Contact angle measurements are widely used, across multiple disciplines, as a quantitative 

measure of a material’s surface wettability. This is an important characteristic for 

understanding wetting phenomena in applications including membrane separation[1], coatings 

[2], printing [3], and adhesives [4] to name a few. Due to the widespread interest in measuring 

the contact angle, many methods have been developed to do so. Of the most popular are sessile 

drop goniometry, captive bubble, tilting plate, Wilhelmy balance, and capillary rise methods 

[5]. Various more advanced techniques have also been developed for specific applications. For 

example, Forward et al. developed an optical microscopy method to measure the contact angle 

on microparticles [6]. Nuriel et al. developed an imaging technique to measure the contact 

angle of carbon nanofibers [7]. Other novel methods utilized classic imaging techniques but 

focused on the surrounding conditions [8].
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 While precise and accurate, each of these methods possess some negative features. 

Most notably, imaging methods require costly imaging devices, such as optical or scanning 

electron microscopes. Non imaging methods, such as the capillary rise method, require 

knowledge of the liquid-gas surface tension, which is not always easy to gather.  

 Despite this, sessile drop goniometry is the most widely used method, owning to its 

accuracy, simplicity, and the abundance of software available for drop analysis. To make this 

method more cost effective, Costa et al. recently presented a method in which the angle was 

calculated based on a spherical cap geometry [9]. Rather than processing a goniometric side 

view image, the image of the drop was taken from the top view. The drop diameter was the 

measured variable, and the contact angle was calculated based on this diameter. This method 

was shown to reasonably measure water contact angles on calcite crystals.  

 In this work, we expand further on this method and introduce a simple smartphone 

camera rather than an optical microscope, for imaging. We utilized a statistical experimental 

design to screen three important variables for their potential impact on measurements. 

Importantly we compared contact angle results from this method to the traditional goniometric 

method, for a variety of materials, in order to present confidence in the method.   

2. Experimental Section 

 

2.1. Materials 

 

To assess the top view-spherical cap method for a variety of material types, several materials 

were tested. These consisted of various polymers, metals, ceramics, and glasses. It is important 

to note, that highly rough and porous materials were intentionally not utilized due to the 

impracticality of the sessile drop method on these surfaces [10,11]. All surfaces were cleaned 
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with either acetone or water, and allowed to dry before testing. A Samsung Galaxy S9 

smartphone was used for imaging the surface. Methyl blue was purchased from Sigma Aldrich 

and was dissolved with distilled water for a 1 wt.% dye solution.  

2.2. Goniometric measurements 

 

Side view measurements were taken for comparison purposes using an in-house built 

goniometer. The set up consisted of a syringe, level stage, a light, and a microscope camera. 

Images were analyzed using ImageJ editing software [12]. The angles reported are the average 

of the angle observed from both edges of at least two drops.  

2.3. Top view imaging set-up 

 

The phone camera was mounted to a ring stand and held perpendicular to the surface of the 

material being tested. This is shown schematically in Figure 46a. The zoom was set to 8x and 

was held constant throughout. A measured volume of either distilled water or 5 wt.% dye was 

pipetted onto the surface where a bead formed. Both the drop and a reference scale bar were 

imaged. The diameter of the drop was measured using ImageJ. Considering the geometry of 

the drop is the most important parameter, drops with irregular shapes (non-spherical), were 

preliminarily discarded. The average diameter was taken from two axes and was used for 

calculations. The contact angles reported are the average from at least three measurements. An 

example of an irregular and regular shaped drop is depicted in Figure 46b and 1c.   
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Figure 46: (a) experimental set-up and an example of (b) an irregular shaped drop and (c) a regular shaped drop. 

 A replicated 23 full factorial statistical design was used to screen and quantify the 

effects of three factors in this set up: the distance between the surface and camera, drop volume, 

and presence of methyl blue dye. This analysis was performed using Minitab 18 according to 

established statistical methods [13]. 

2.4. Contact angle calculations 

 

The water drop was estimated as a spherical cap shown in Figure 47 [14]. A series of 

calculations were performed to calculate the contact angle.  

 

Figure 47: Spherical cap geometry 

 The diameter, D, of the drop is readily measured when imaged from the top view. The 

radius and known volume are then used to calculate the cap height according to equation 1.  
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 πh3 + 3πr2h − 6V = 0 (1) 

 In this case, care must be taken to ensure unit consistency. All lengths (r and h) are in 

units of µm and the volume in terms of µm3. The calculation of h can be performed using any 

numerical technique. Then the radius of curvature, R, is calculated with equation 2.  

 R = r2 + h22h  (2) 

 The angle between the center of the projected sphere and the bottom of the cap, α, is 

then calculated according to equation 3. The outer contact angle θ’, and the inner contact angle 

traditionally reported, θ, are easily calculated with equations 4 and 5. All angles are calculated 

in units of radians.   

 α = sin−1 [R − hR ] (3) 

 θ′ = α + π2 
(4) 

 θ = π − θ′ (5) 

3. Results and Discussion 

 

3.1. 23 full factorial design on method parameters 

 

Like any other imaging technique, picture resolution is one of the most important aspects. 

surface being tested is also an important factor. For this reason, we chose the distance between 

camera and surface as an important variable related to image resolution. This relationship is 

depicted in Figure 48, where the further the camera is from the surface, the lower the image 

resolution.  
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Figure 48: Image resolution as a function of distance between the camera and surface. 

 To better visualize the edges of sessile drops, we investigated using a 5 wt.% methyl 

blue dye and compared it to using distilled water. Drop size is another factor that greatly 

contributes to accuracy. Larger drops cover a greater surface area, and can become more 

unstable as a result of this. Smaller drops on the other can be too sensitive to defects in the 

material. For this reason, two drop sizes were investigated, 20 µL and 80µL. For simplicity, 

all experiments in the factorial design were performed on acrylic glass due to its smooth surface 

and homogeneity. The randomized factorial design and raw data are shown in table 17. 

 A 95% confidence level was used for calculation. The coded factors are shown as 

dye/no dye (A), height (B), and drop size (C). The results in Figure 49 indicate that the three 

variables studied do not have significant effects on the contact angle measurement. This is 

concluded by the standard effects well below the 95% confidence level. The interaction plots 

in figure 4(d) reveal no significant interactions. However, it is worth noting that the interaction 

effects between dye*height, and height*drop size were substantially greater than dye*drop 

size. This indicates the loss in resolution and difficulty in differentiating the drop edges are the 

main contributors to error in measurements. This analysis also yields the approximate deviation 
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in the measurements. The averages between replicates are all between about 65° and 70°, so it 

is concluded the error of measurement is about ±2.5°. This is based on inaccuracies solely from 

setting up the apparatus and dispensing the drop, not from difficulties in sample preparation. 

It is important to note that the contact angle calculated here is reasonably the same as that 

reported elsewhere [15].  This result allows for choosing any of the factor levels studied for 

further investigation. For convenience and ease in analyzing the drops, we chose to use water 

with dye, at a height of 10 cm above the sample, and a 20 µL drop size.   

Table 17: Randomized two level factorial design with three factors and two replicates at each corner point. 

Standard 

Order 

Run 

Order 

Factors Response 

dye height (cm) drop size (µL) contact angle (°) 

13 1 No dye 10 80 70.80 

16 2 dye 20 80 67.78 

10 3 dye 10 20 69.67 

9 4 No dye 10 20 69.67 

12 5 dye 20 20 66.77 

2 6 dye 10 20 64.59 

3 7 No dye 20 20 66.21 

5 8 No dye 10 80 68.70 

11 9 No dye 20 20 78.34 

1 10 No dye 10 20 75.26 

15 11 No dye 20 80 71.90 

6 12 dye 10 80 65.34 

4 13 dye 20 20 71.04 

7 14 No dye 20 80 67.80 

14 15 dye 10 80 61.02 

8 16 dye 20 80 67.21 
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Figure 49: (a) Pareto diagram showing the standardized main effects and two level interaction effects. (b) Normal plot of the 

data showing normality. (c) main effect and (d) interaction plots. 

3.2. Side view/top view comparison 

 

A variety of seventeen materials were investigated. The contact angles measured by the top 

view and side view methods are shown in Table 18. It is difficult to compare the contact angle 

measurements from this work to other studies because sample preparation can greatly influence 

the measurements. None the less, a range of values are reported here based on those found in 

the literature. From this table, it is apparent the contact angles measured in this study correlate 

reasonably well with those found in the literature. The one exception is in the Parafilm® 

sample, where the difference between this study and literature is at least 10°. This is likely 

because the sample used in this study was commercially available Parafilm®. Since the contact 
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angle of this particular material is not readily available in the literature, another paraffin based 

material was used for comparison. The chemical makeup of each is likely different.   

Table 18: Contact angles measured for each material by the top view and side view compared to literature values. 

Material 
Contact Angle (°)  

Top view Side View Literature Ref 

Aluminum 87.43 79.61 75 [16] 

Duran®  Glass Plate 24.25 35.46 - - 

Millipore parchmentized paper 82.73 100.65 - - 

Ceramic tile 43.76 44.77 35-45 [17] 

Graphene-oxide membrane 50.94 53.15 45-60 [18] 

Holey graphene-oxide membrane 47.40 49.53   

Parafilm® 94.46 92.40 108-114 [19] 

Isopore™ membrane filter 59.03 59.91 49.9 [20] 

Clear polystyrene 80.14 82.60 80-86 [21] 

Opaque polystyrene 79.10 71.35 83 [22] 

Pyrex 71.44 80.76 40-80 [23] 

Silicon 104.05 104.02 90-120 [24] 

Stainless steel 71.34 71.29 70-75 [25] 

Teflon 98.34 98.82 90-110 [23] 

Polyvinyl chloride 64.01 53.09 60-87 [26,27] 

Acrylic glass 67.13 65.17 63-80 [15] 

Polysulfone 70.15 68.43 72-90 [28] 

 

 Most notable is the comparison between the top view and side view measurements. 

This is shown graphically in figure 50. The reference line y=x represents the same angle 

calculated from each method. Thus, points close to the reference line indicate compatibility 

between the top view and side view. Based on a correlation coefficient of 0.887 compared to 
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the reference line, the top view method matches reasonably well with the traditional side view 

method for the materials tested.  

 It is worth noting that, it was anticipated contact angles greater than 90° would not be 

distinguishable from those close to 90°. This was expected because the projected area of a 

sessile drop would mask the spherical cap diameter. However, four samples had contact angles 

between 90° and 105°. These were also reasonably measured with the top view method, 

indicating the shadowing effect of the projected area was not a major hindrance. However, it 

is still expected that highly hydrophobic materials still cannot be measured by top view images.    

 It is apparent that the error encountered within samples had a more significant effect 

on measurements than errors in setting up the apparatus. Only the error associated with the top 

view is shown, however the error associated with side view measurements were typically ±5° 

within a particular sample. The error within samples is fairly common in imaging methods, 

which is mainly attributed to inhomogeneity in the surface caused by surface defects, rough 

patches, scratches, and particulate contamination. None the less, the error within samples was 

typically less than ±8° except in slightly rough samples where inhomogeneity is suspect.   
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Figure 50: Comparison between the top view and side view methods with the y=x reference line representing an exact match 

between the two methods. R2 values is 0.887. 

 

4. Conclusions 

 

In this paper we validate a simple top view goniometric method for measuring the water contact 

angle of various materials. A phone camera was used to image water drops, and the contact 

angle was calculated based on a spherical cap geometry. The appropriate experimental set up 

was chosen based on a 23 factorial design investigating three factors: dye/no dye in water used 

to make drops, height between the camera and stage, and drop size. Contact angles using the 

top view method were reasonably similar to those of traditional side view methods. Thus, the 

top view method using a simple phone camera is an acceptable method for measuring water 

contact angles. 
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