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Chapter 1  
State of the Art and Perspective of Biologically Producing 2,3-BDO via 

Coal to Liquid (CTL) Fermentation Technology 
 

1.1 Introduction 

2,3-Butanediol (2,3-BDO) is a high-value, low-volume commodity chemical with 

extensive industrial applications that can be biologically produced via bacterial 

fermentation of synthesis gas (syngas) from coal gasification processes. Biological 

production of 2,3-BDO was initially discovered as a by-product from Klebseilla 

pneumonia, also known as Aerobacter aerogenes, in 1906 by Harden and Walpole[1]. 

Many other organisms since then have been shown to produce 2,3-BDO, but the primary 

industrially-relevant producers were K. pneumonia, K. oxytoca, Bacillus polymyxa 

(reclassified as Paenibacillus polymyxa)[2], Enterobacter aerogenes, and Serratia 

marcescens[3,4]. These organisms were capable of producing 150, 130, 36.9, 110, and 152 𝑔𝐿 of 2,3-BDO, respectively, on common sugar-containing substrates, such as glucose and 

sucrose[3]. P. polymyxa is a more versatile organism because it is actively diastatic; 

therefore, fermentation may be done from starchy raw materials such as corn and wheat as 

well as sugar-containing substrates[5]. These organisms require costly substrates and 

nitrogen sources such as yeast extract. Additionally, these organisms, except P. polymyxa, 

are all categorized by the World Health Organization (WHO) as hazard group 2 pathogenic 
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species[6]; hence, rendering their use problematic and costly, especially for commercial-

scale production. 

In 2011, K�̈�pke et al. gave evidence of three organisms from the nonpathogenic 

Clostridium genus; C. autoethanogenum, C. ljungdahlii, and C. ragsdalei, that produce 

2,3-BDO without yeast extract and on steel mill waste gas[7]. This development marked 

almost a new revival in the possibility of fermentative production of 2,3-BDO in 

commercial quantities.   

The objective of this work is to elucidate the viable significance and technological 

implications for the fermentative production of 2,3-BDO from syngas by researching the 

following: derivation of a novel bio-kinetic model with substrate inhibition, analyzing 

product formation with the use of syngas from coal, and conducting an experimental design 

for potential significant factors that affect product formation. A critical review and analysis 

of the state-of-the-art developments for gas to liquid (GTL) technologies and syngas 

formation from coal are provided. 

1.2 Syngas Fermentation 

1.2.a Advantages 

The primary advantage of fermentation via syngas from coal is the ability for 

certain microbes to produce a variety of fuels or saleable commodities; such as ethanol, 

2,3-BDO, butanol, acetate, and others, which are discussed in Section 1.5. Conventionally, 

the Fischer-Tropsch (FT) synthesis is used to convert bio-based syngas to biofuels by the 

use of metal catalysts such as nickel, cobalt, iron, and ruthenium which has a large 

distribution of products[8]. Possible products that may be formed are olefins, paraffins, 
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alcohols, aldehydes, acids, and ketones. This large array of product distribution makes the 

selectivity of biomass syngas fermentation highly advantageous. 

From a past literature review, the comparison between thermochemical synthesis 

and gas fermentation to ethanol showed that gas fermentation produced 220% more fuel, 

had a 39% higher carbon to fuel efficiency, and required 28% less energy[9]. Therefore, 

the gas fermentation process also produced less carbon dioxide than that of the 

thermochemical process. Microbial biomass that is separated from the liquid product 

stream can further be utilized as a feedstock to an anaerobic digestive system, whereby 

biogas can be produced and mixed with the syngas that is formed from coal[10]. Biogas is 

made up of carbon dioxide and methane and will further increase carbon efficiency. 

1.2.b State of the Art 

Research and development activities involving bulk biochemical production has been 

cyclical and closely, yet oppositely, follows the cycles of crude oil pricing. Interest and 

demand for developing alternative technologies that are both green and sustainable for 

producing chemicals that are conventionally petroleum-based always increase when crude 

oil prices reach unattractively high levels. Once crude prices start diminishing, so does 

interest in biochemical developments. This is simply because biochemical routes of 

producing bulk chemicals do not remain cost-effective when compared to conventional 

thermal cracking of crude oil. Nevertheless, recent advances in biotechnology and 

associated bioprocessing the past decade seem to have made it possible for biochemical 

developments to remain active and competitive regardless of crude oil prices.  

In the recent past, 2,3-BDO has been formed from a variety of substrates, such as 

carbon monoxide, fructose, and steel mill gas, which contains carbon monoxide, nitrogen, 
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carbon dioxide, and hydrogen. However, the concentration of 2,3-BDO is relatively low 

compared to the pathogenic bacteria discussed in Section 1.1[7,11,12,13]. 

As of today, the technology to produce high value chemicals (e.g. 2,3-BDO) exists and 

has been performed in many lab scale environments, but not much has been done to 

perform fermentation with syngas from coal. Commercializing 2,3-BDO fermentation is 

costly due to the capital investment and manufacturing costs required. The fixed capital 

investment and manufacturing cost, as of 2013, while using molasses as the substrate are 

$38.3 million and $11.2 million per year, respectively[14]. With these costs, the minimum 

selling price of 2,3-BDO would have to be between $7.70 and $9.90 per kilogram[14]. 

However, molasses is a relatively costly substrate compared to syngas from coal. 

Companies, including Coskata Inc., were leading the current efforts toward the 

commercialization of 2,3-BDO from syngas fermentation before closing and re-emerging 

as Synata Bio, Inc. [15]. 

So far, only a few companies and research groups have tried to improve and 

commercialize syngas fermentation for high value chemical products. LanzaTech Inc. USA 

has been able to produce liquid fuels (e.g. ethanol) and chemicals (e.g. 2,3-BDO) on an 

industrial scale using effluent waste gas from steel mills in Shanghai, China[17]. 

Additionally, LanzaTech’s research and development laboratories located in Auckland, 

New Zealand are currently in the process of developing other processes in which other high 

value chemicals can be produced via fermentation (e.g. butyrate, n-butanol, and i-

propanol)[18]. The SNYPOL project platform, a conglomeration of partners from 

academic institutions and industry, have produced polyhydroxyalkanoates, 

hydoxybutyrate, butanediol, and succinate from syngas fermentation within R&D 
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laboratories[18].  Finally, Coskata Inc., USA have been able to produce ethanol in a 

demonstration plant located in Madison, PA using natural gas, industrial gases, and syngas 

from coal[19]. Furthermore, Coskata Inc. has produced propanol, butanol, butanediol, 

hexanol, organic acids, and fatty acids on a lab scale at their facility in Warrenville, IL[18]. 

1.3 Future Direction 

Even though many optimization experiments, which are discussed in Section 1.8, have 

been conducted, still more remains to be done with the fermentation process. First and 

foremost, on the genetic and microbiology side of fermentation, research needs to be 

carried out in genetic modification. Much of the improvement in the fermentation process 

lies with genetic restructuring of the genes to produce desired, high-value chemicals. On 

the engineering side of fermentation, maximization of fermentation products can be studied 

by attempting to optimize the various fermentation operating process conditions. First, 

there have been experiments to show that gas-to-liquid (GTL) mass transfer is rate limiting 

during fermentation[20]. Therefore, a factorial experimental design assessing the effects of 

substrate concentration by changing syngas flow rates to the reactor, temperature at which 

fermentation is carried out, the agitation induced by the reactor’s impellers, and the reactor 

pressure can be conducted to make improvements to the GTL mass transfer rates. By 

increasing the GTL mass transfer rates, studies can be carried out to determine if carbon 

monoxide from coal can be used as the sole substrate for fermentation. One study by Gaddy 

et al. (2013) showed that products formed from C. ljungdahlii were mostly produced from 

fructose during dual substrate, CO and fructose, fermentation and was well supported by 

the low uptake efficiency of CO[21]. Secondly, varying constituents within the medium 

could be further studied for economic feasibility and the effects on growth and product 



 

6 

 

formation, where media cost is about 70% of the manufacturing cost[9]. Most studies 

currently are trying to improve product ratios. For example, one study showed that the 

addition of selenium and/or vitamins to the growth medium did not improve the 

ethanol/acetic acid ratio when compared to a control medium without such additions; 

furthermore, an enhanced 2,3-BDO/acetic acid ratio was obtained with the presence of 

tungsten, but not with selenium[12]. Another study showed that a maximum concentration 

of ethanol was obtained when higher L-cysteine∙HCl (a reducing agent) and lower yeast 

extract concentrations were used[23]. Although no studies have showed the effects of 

omitting constituents of the growth medium on the fermentation process, this is a subject 

that could be explored further. 

1.4 Syngas Production from Coal Gasification 

Syngas composition from coal can vary greatly depending on the feed to the reactor, 

the type of reactor used, and the energy supplied. There are many types of reactors for 

gasification but the most common types are fluidized bed, moving bed, and entrained flow 

reactors. A more detailed description of these type of reactors can be found in a review by 

Breault (2010)[24]. In these reactors, many different reactions can occur in the gasification 

process, such as combustion reactions as well as steam gasification, Boudouard, water-gas 

shift, methanation, hydro-gasification, and steam methane reforming reaction[25,26]. 

These reactions are summarized in Table 1-1. When gasifying coal, an energy and mass 

balance is required around the system to optimize the operating temperature and feed 

concentrations. If too much energy and oxygen are added then more carbon dioxide will 

be present in the syngas when it is desirable to have high concentrations of carbon 

monoxide and hydrogen. 
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Table 1-1: Organic reactions that occur within gasification[25,26]. 
 Reactions ΔH ( 𝐵𝑇𝑈𝑙𝑏−𝑚𝑜𝑙) 
Combustion 

C + O2 → CO2 

C + 
12 O2 → CO 

CO + 
12 O2 → CO2 

 

-16,900 

-47,600 

-121,700 

Steam Gasification C + H2O → CO + H2 

 
56,490 

Boudouard CO2 + C ↔ 2CO 
 

74,200 

Water Gas Shift CO + H2O ↔ CO2 + H2 

 
-17,700 

Methanation CO + 3H2 → CH4 + H2O 
 

-88,700 

Hydro-gasification 2H2 + C → CH4 
 

-32,200 

Steam Methane Reforming CH4 + H2O ↔ CO2 + H2 88,600 
 

There are also inorganic reactions that occur in gasification because coal is a blend 

of carbon, hydrogen, sulfur, nitrogen, oxygen, water, and metals. With limiting the 

presence of oxygen concentrations, the sulfur typically reacts into hydrogen sulfide and 

small amounts of carbonyl sulfide. Nitrogen fed into the system typically stays as nitrogen 

except for some ammonia formation and hydrogen cyanide[26]. The syngas produced from 

coal has many impurities that are not found in biogas or steel mill gas. Gasification 

reactions and the impurities within the coal are of importance to microbial growth because 

of thermodynamic limitations, discussed in Section 1.8, as well as the impurities may be 

toxic. 

1.5 Biochemistry of Gas Fermentation 

Understanding the metabolic pathways for product formation by a bacterium is 

crucial for enzymatic manipulation and metabolic shifts. The reaction pathway for this 
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microorganism is shown in Figure 1-1 and Figure 1-2[13,27]. Figure 1-1 details the 

metabolic pathway for carbohydrates with the use of C. autoethanogenum up to Acetyl-

CoA. The products after Acetlyl-CoA can be found in Figure 1-2. Figure 1-2 details the 

full Wood-Ljungdahlii pathway with gaseous substrates where 2,3-BDO, lactate, ethanol, 

and acetate are all by-products. Figure 1-1 is important to understand because it shows the 

different enzymatic steps and energy requirements by utilizing carbohydrates or GTL 

technology while Figure 1-2 focuses on the products formed by C. autoethanogenum after 

Acetyl CoA. In many previous studies, C. autoethanogenum has been shown to be able to 

utilize carbon dioxide and hydrogen as substrates through the carbonyl branch or with just 

carbon monoxide through the methyl branch[7,11,12,13].  

 

 

Figure 1-1: Reaction pathway from hexoses, pentoses, hydrogen and carbon dioxide, and 
carbon monoxide to Acetyl-CoA[27]. 
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Figure 1-2: Wood-Ljungdahlii pathway to produce 2,3-BDO, lactate, ethanol, and 
acetate[13]. 

1.6 Organisms and Products 

Many mesophilic and thermophilic microorganisms have been known to ferment a 

mixture of carbon monoxide and hydrogen (syngas) and these organisms have a range of 

products which are shown in Table 1-2[16].  
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Table 1-2: Mesophillic and Thermophillic microorganisms and their products from 
syngas[16]. 

Species Products 
Mesophillic Microorganisms  
Acetobacterium woodii Acetate 
Butyribacterium 
methylotropphicum 

Acetate, Ethanol, Butyrate, Butanol, 
Pyruvate 

Clostridium aceticum Acetate 
Clostridium autoethanogenum* Acetate, Ethanol, Lactate, 2,3-BDO 
Clostridium carboxidivorans Acetate, Ethanol, Butyrate, Butanol 
Clostridium leatocellum SG6 Acetate, Lactate, Ethanol 
Clostridium ljungdahlii* Acetate, Ethanol, Lactate, 2,3-BDO 
Clostridium ragsdalei* Acetate, Ethanol, Lactate, 2,3-BDO 
Eubacterium limosum Acetate 
Mesophilic Bacterium P7 Acetate, Ethanol, Butyrate, Butanol 
Oxabactor pfennigii Acetate, n-butyrate 
Peptostreptococcus productus 
 

Acetate 

Thermophillic Microorganisms  
Carboxydocella sporoproducens H2 
Clostridium thermocellum Acetate 
Desulfotomaculum 
thermobenzoicum subsp. 
Thermosyntrophicum 

Acetate, H2S 

Moorella thermoacetica 
(Clostridium thermoaceticum) 

Acetate 

Moorella thermoautotrophica Acetate 
* From K�̈�pke et al. (2011)[7]  

From Table 1-2 there are only three microorganisms, C. autoethanogenum, C. 

ljungdahlii, and C. ragsdahlii, known so far that can produce 2,3-BDO from syngas 

fermentation. To increase product formation and yield it may be useful to use a mixture 

of bacteria. 

1.7 Derivatives of 2,3-BDO 

2,3-BDO is a precursor to many different chemicals such as methyl ethyl ketone 

(MEK), butadiene, diacetyl, acetone 2,3-butanediol ketal, and 2,3-BDO diester. The 

versatility of 2,3-BDO is of importance to note because the chemicals mentioned are used 
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in everyday activities; therefore, cheaper production of 2,3-BDO is desired. Figure 1-3 

summarizes the overall reactions to convert biomass to the chemicals previously 

mentioned. The typical production methods and/or the common uses of these chemicals 

are briefly discussed.  

 

Figure 1-3: 2,3-BDO derivatives through dehydration, dehydrogenation, ketalization, 
and esterification[3]. 

2,3-BDO can be dehydrated into MEK and butadiene. MEK is typically produced with 

subcritical water and transitional metal sulfates such as CuSO4[28]. MEK has many 

applications, such as surface coatings, adhesives, printing inks, and as a solvent, and is 

expected to have a $4.01 billion market by 2024[29]. Butadiene is also formed through 

dehydration with transition metals but the most common one is γ‐Al2O3[30]. Butadiene is 

primarily used for synthetic rubber but is also used to make acrylonitrile butadiene styrene, 

styrene butadiene rubber, nitrile butadiene ruber, SB latex, and 

hexamethylenadiamine[31]. 
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Acetoin and diacetyl are produced by the dehydrogenation of 2,3-BDO and is used as 

flavoring. Diacetyl specifically is typically used as a butter flavoring; however, both are 

used in the manufacturing of caramel, butterscotch, pina colada, strawberry and many other 

flavors. There are also trace amounts of acetoin and diacetyl in electronic cigarettes as well 

which may cause severe respiratory diseases[32]. 

The ketalization and esterification process of 2,3-BDO results in a methyl tert-butyl 

ether (MTBE) and a diester, respectively. MTBE is used as a fuel additive and the 2,3-

BDO diester is a precursor used in the synthesis of cosmetics, drugs, and thermoplastic 

polymers[33]. 

1.8 Optimization 

Many optimization experiments, such as altering media substituents[19,34,35], 

changing process perameters[19], enzyme removal[13], and gas composition[35], have 

been carried to improve carbon monoxide fermentation in the hopes to produce desired 

chemicals. Such experiments and research seek to improve many aspects that pertain to the 

gasification, fermentation, and separation parts of the process. Most of the recent research, 

however, is focused on optimizing the fermentation process to produce sufficient amounts 

of ethanol. Of the factors that have been studied, the following factors appear to be the 

most significant: inhibitory compounds in syngas streams, GTL mass transfer, reactor type, 

temperature, pH of the growth media, constituents of growth media, and the types of 

microbes used in the fermentation process[4,16].  A detailed review of the inhibition factors 

that affect the anaerobic digestion process is described in a journal article called “Inhibition 

of anaerobic digestion process: A review” by Ye Chen et al. (2008)[36]. 
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Inhibitory compounds in the syngas such as tars, ash, nitric oxide, sulfur compounds, 

and others affect the efficiency of the fermentation process by shifts in metabolic pathways, 

cell dormancy, and inhibition of enzymatic activity which results in low cell growth and 

product yield[16]. Most often, tar reforming and scrubbing as well as a gas purification 

process will bring the syngas to the standards that must be met for clean syngas. 

Reactor type is strongly correlated to the mass transfer limitations of the gaseous 

substrate. The rate of mass transfer is compared experimentally by the mass transfer 

coefficient multiplied by the GTL interface surface area unit per volume, 𝑘𝐿𝛼, which has 

the units of inverse hours[37]. The mass transfer performance of different commercialized 

reactor types can be seen in Table 1-3. From Table 1-3, packed columns have the highest 

rate of mass transfer followed by spray columns then continuously stirred tank reactors 

(CSTRs); although, CSTRs are the most common type of bioreactors due to the price, 

versatility, and constructability[16,38]. 

Table 1-3: Rate of mass transfer for gas-liquid reactors[37]. 
Reactor Type 𝒌𝑳𝜶 (hr-1) 

Packed Countercurrent Column 1.4 – 250 
Packed Cocurrent Column 1.4 – 3,670 
Bubble Cap Plate Column 36 – 720 
Sieve Plate Column 36 – 1,400 
Horizontal and Coiled Tube Reactor 18 – 2,500 
Vertical Tube Reactor 72 – 3,600 
Spray Column 2.5 – 54 
Continuously Stirred Tank Reactor 11 – 2,900 

 
The temperature of the reactor has two major effects on syngas fermentation 

processes. One main effect is that temperature plays an important role on microbial 

growth (substrate utilization). The other effect is the solubility of the gaseous substrate 

within the medium[39]. Both effects can negatively and positively affect microbial 
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growth. Microbes have an optimum growth temperature and these temperatures can vary 

widely depending on the type of bacterium. The categories of bacteria range from 

psychrophiles (-15°C and lower) to hyperthermophiles (60°C and above); however, all 

categories of bacteria have an optimum temperature which can be visually seen in Figure 

1-4[40]. Temperature and gas solubility in liquids are inversely proportional; therefore, 

psychrophiles will be more suitable to consume gaseous substrates than 

hyperthermophiles. 

       Figure 1-4: Optimal temperature range for bacteria[40]. 
Furthermore, pH is an important parameter for the optimal activity of microbial 

catalysts. The optimum pH for syngas fermenting microbes varies between 5.5 and 7.5 

depending on the species. For example, C. ljungdahlii has an optimum pH of 5.8–6.0[16]. 

Shifting the pH during fermentation can strain enzymatic pathways to increase 

productivity[22,41]. 

The culture media in which the reaction takes place affects the fermentation process 

greatly. The growth media provides the microbes with all essential nutrients including 

minerals, trace elements, vitamins, and reducing agents for their maximal growth[16]. The 

growth media constituents vary greatly based on the selection of the fermenting microbe. 
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Many factorial experiments have analyzed optimal mineral, vitamin, and metal content for 

growth media for a variety of microbes[42,43].  

Finally, microbe selection is extremely important yet perplexing choice for syngas 

fermentation. Of the many syngas fermenting bacteria, the most common are strict 

mesophilic anaerobes such as C. ljungdahlii, C. aceticum, A. woodii, C. autoethanogenum, 

and C. carboxydeviron[16]. Additionally, on the microbiological scale, scientists are 

attempting to engineer microorganisms used in the fermentation process to selectively 

produce desired products by genetic engineering techniques. 

To optimize these parameters more research needs to be done for each bacterium or a 

mixture of bacteria until a suitable culture produces sufficient quantities. In general the 

medium for each bacterium is provided by the distributer, but by supplying nutrients in 

excess or scarce amounts will strain the bacterium and could retard or accelerate 

productivity. 

1.9 Product Recovery 

As of date, the single principal challenge to economically produce 2,3-BDO seems to 

be the separation and purification of the product from the fermentation broth in an efficient 

and cost-effective manner[44]. 

A promising candidate method is liquid-liquid extraction with n-butanol as the solvent 

with a polydimethylsiloxane (PDMS) membrane. Water and n-butanol are more permeable 

through the PDMS than 2,3-BDO which makes the concentration of 2,3-BDO more 

concentrated in the retentate with only the membrane. This system achieved a 

concentration solution of 2,3-BDO of 98+ weight percent with low energy usage but 

requires a substantial amount of solvent[45,46]. 
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Another method is using an aqueous two-phase extraction (ATPE) using an ethanol 

and ammonium sulfate system. The recovery of 2,3-BDO was 97% and the ATPE system 

effectively removed cells, glucose, and protein impurities simultaneously. This system 

requires large amounts of salts and loses about 3% of the salt during recycling[47]. 

The most recent type of separation for 2,3-BDO from fermentation broth is reactive 

distillation. Xiang et al. (2001) suggests that reactive distillation is the most effective way 

to separate a complicated system[48]. N-butylaldehyde (BA) has been used as a reactant 

with 2,3-BDO to form 2-propyl-4,5-dimethyl-1,3-dioxalane (PDD) which is immiscible 

with water[14,48]. This reaction is summarized in Figure 1-5[49].  

 

Figure 1-5: Reaction equation of n-butylaldehyde and 2,3-BDO[49]. 
The study done by Xiang et al. (2001) used a broth that was pretreated to remove biomass 

and proteins before separating the aqueous and organic phases. This treated broth enters a 

reactive extraction unit where the 2,3-BDO in the broth joined and reacted with recycled 

BA to form PDD. The dilute PDD stream enters a settler where the aqueous phase was 

removed and the organic phase was sent to a reactive distillation column. An acid solution 

was added to the reactive distillation column as a catalyst. The 2,3-BDO solution exits the 

bottom of the column where the BA and unreacted PDD was recycled to the reactive 

extraction unit. This process is summarized in Figure 1-6[49]. 
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Figure 1-6: Reaction distillation and separation process of 2,3-BDO[49]. 
Hydrochloric acid exhibited less loss of PDD, BA, and 2,3-BDO of the two catalytic acids, 

sulfuric and hydrochloric acid, used. This process had a yield rate and a purity of 2,3-BDO 

of more than 90% and 99%, respectively. The major downfall of this process is recycling 

of the acid solution so the author suggested that the acid solution should be neutralized 

after reactive-distillation[49]. 

1.10 Summary 

Fermentation processes that produce valuable chemicals are sustainable, but there 

are many hurdles that need to be explored at bench/pilot scale before commercialization. 

The primary hurdles are to optimize product formation that will counteract the costs 

associated with plant operations. Economic and plant designs need to be assessed for the 

use of non-pathogenic bacteria to make high-value chemicals with the optimized 

conditions, where pH, temperature, media composition, and mass transfer are the primary 

conditions that affect microbial productivity. An additional consideration with plant 
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operation is whether to use the biomass produced by the process for biogas, for animal 

feed, or for a combination of both. From the literature review the most efficient, up to 

date, way to separate 2,3-BDO from a fermentation broth is by reactive distillation with 

an aldehyde and an acid catalyst. 

 There are three major research topics related to C. autoethanogenum addressed 

within this thesis. The first topic is the kinetics with carbon monoxide and D-xylose. A 

novel inhibition model with D-xylose as the substrate and the derivation is included. The 

second topic researched the growth and product formation with the use of syngas derived 

from lignite coal. The last topic considered optimizing process conditions to increase 2,3-

BDO and ethanol productivity. 
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Chapter 2  
Biological Kinetics on Carbon Monoxide and D-xylose of a 2,3-

Butanediol Producing Bacterium: Clostridium autoethanogenum 
 

Abstract 

Clostridium autoethanogenum has recently emerged as a strong nonpathogenic potential 

candidate for producing 2,3-butanediol in significant quantities using carbon monoxide as 

the sole carbon substrate. Success of this bacterium, however, remains elusive due to lack 

of understanding of the kinetics of its growth and the effects of substrate inhibition. This 

study reports on experimental and theoretical study of the growth kinetics of C. 

autoethanogenum on single and dual substrates as well as their inhibitory effects. This 

was accomplished by growing the bacterium on a simple sugar, D-xylose, and a mixture 

of carbon monoxide and D-xylose. Key findings include specific growth rates at different 

substrate concentrations, maximum biomass, and relevant biokinetic parameters. The 

maximum growth rate while utilizing carbon monoxide, D-xylose, and dual substrate was 

0.45 ± 0.10 
𝑔𝐿. 0.42 ± 0.01 

𝑔𝐿, and 0.64 ± 0.08 hr-1, respectively, with a Monod constant of 

7.0 ± 0.79 
𝑚𝑔𝐿 . Additionally, a new simplified model is proposed that accounts D-xylose 

growth and inhibition. Non-linear regression of the proposed model with the 

experimental model was done to verify the precision of the model and was compared to 

previous models. The proposed model out performed many of the previous models with 

less parameters. 
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2.1 Introduction 

In recent years, growing attention has been drawn to a strict anaerobic bacterium 

from the Clostridium genus, C. autoethanogenum, due to its exquisite capability of 

utilizing carbon monoxide (CO) as the sole nutrient for fermentation[1,2,3]. Additional 

desirable attributes of this bacterium are that it is non-pathogenic and produces a high-

value, low-volume by-product, 2,3-butanediol (2,3-BDO), in the stationary phase along 

with ethanol, lactate, acetate, and an intermediate product, acetoin, through the Wood-

Ljungdahlii pathway[3,4,5,6,7,8]. 

A vast amount of research and resources have been devoted to maximizing the 

yield of ethanol to acetate ratios by manipulating various system and/or process 

parameters, while little has been done to maximize the more valuable 2,3-BDO product. 

Within the last ten years, many parameters such as gas flow rate, medium composition, 

pressure, pH, external electron donation, and enzyme inactivation have been manipulated 

by Cotter et al.[5,6], Guo et al.[9], Abubackar et al.[1,2,7], Krack et al.[10], Liew et 

al.[3], and Xu et al.[8] in an effort to increase ethanol production while suppressing all 

other by-products. Abrini et al. (1994) discovered various carbon sources that can be 

utilized by C. autoethanogenum which are: carbon monoxide, carbon dioxide and 

hydrogen, D-xylose, arabinose, D-fructose, rhamose, and L-glutamate[11]. The current 

prices of these carbohydrates per gram from SigmaAldrich (2017) are $0.40, $2.92, 

$0.36, $3.44, and $0.90, respectively. Economically, the carbohydrates of interests would 

be the carbohydrates with the lowest price, D-fructose and D-xylose. In this study D-

xylose was used as the substrate of choice for growth kinetics and for dual substrate 

growth with carbon monoxide. 
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Other researchers have been primarily interested in the microbiological aspects of 

the growth mechanism such as enzymatic functions, metabolic pathways, and metabolite 

formation such as Koepke et al.[4] and Mock et al.[12].  

There exists little to no information on the growth kinetics of the microorganism 

and the maximum biomass density that can be achieved. This information is vital to 

determine the economic feasibility of a commercial fermentation process, as well as for 

studies concerning process simulation, control, and optimization. 

This study aimed at investigating and quantifying the bacterial growth and 

biokinetics of substrate utilization by C. autoethanogenum, as well as, developing a novel 

rate kinetic law based on elementary reactions. The new and simplified developed model 

was experimentally verified and its performance was contrasted to existing literature 

models. In addition to the quantification of biokinetic parameters, a calibration curve was 

generated to convert optical density at 600 nm (OD600) to milligrams per liter.  

2.2 Materials, Methods, and Equipment 

2.2.a Microorganism 

Bacterial freeze-dried pellets of C. autoethanogenum, DSM 10061, were obtained 

from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, 

Braunschweig, Germany) and was revived in DSMZ medium 640 with 5.00 
𝑔𝐿 of D-

xylose. Medium 640 contains, per liter, 0.90 g NH4Cl, 0.90 g NaCl, 0.40 g MgCl2 x 6 

H2O, 0.75 g KH2PO4, 1.50 g K2HPO4, 2.00 g tripticase peptone, 0.75 g L-cysteine-HCl x 

H2O, 5.00 mg FeCl3 x 6 H2O, and 5.00 mL trace solution. The trace solution contains, per 

990 mL, 10.00 mL HCl (7.7M), 1.50 g FeCl2 x 4 H2O, 70.00 mg ZnCl2, 100.00 mg, 

MnCl2 x 4 H2O, 6.00 mg H3BO3, 190.00 mg CoCl2 x 6 H2O, 2.00 mg CuCl2 x 2 H2O, 
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24.00 mg NiCl2 x 6 H2O, and 36.00 mg Na2MoO4 x 2 H2O. A Coy vinyl Type A 

anaerobic chamber (Coy Lab Products, Grass Lake, MI, USA) with a palladium catalyst 

and an oxygen concentration in the parts per billion with the balance nitrogen was used 

for reviving, culturing, and plating the bacteria. A Tuttnaurer Ez10 autoclave was used to 

sterilize the media before inoculation. The medium was autoclaved at 250°F for the 

recommended length of time per mL of media by Iowa State University[13], and the 

initial pH of the medium was 6.4. To assure the sterility of the media, the media and all 

used glassware were subjected to UV-C light for approximately ten minutes within the 

anaerobic chamber before inoculation. 

2.2.b Inoculation and Growth Curve 

Freeze-dried pellets were thawed in the anaerobic chamber for 30 minutes, and 

0.5 mL of media was added to the pellets. Half of the bacterial solution was spread on an 

agar plate (medium 640 with 15 
𝑔𝐿 of agar) and the other half was added to a broth vial. 

Growth trials were conducted in butyl rubber sealed 10 mL borosilicate glass vials, where 

6 mL was occupied by the media. The growth vials were inoculated from a previous vial 

that was in the late exponential phase at 5.4𝑥108 𝐶𝐹𝑈 𝑜𝑓 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑚𝐿 𝑜𝑓 𝑀𝑒𝑑𝑖𝑎 . Experiments were 

conducted with concentrations of D-xylose ranging from 0.01 
𝑔𝐿 to 300 

𝑔𝐿 under 100% N2, 

and with D-xylose from 1 
𝑔𝐿 to 5 

𝑔𝐿 under N2 with approximately 1000 ppmv of carbon 

monoxide (dual substrate growth). Biomass growth was monitored by turbidity with a 

UV-Vis Evolution 600 light spectrophotometer at an optical density of 600 nm (OD600). 

All measurements were conducted in triplicates as a repeated measure to quantify 

instrumental error and experiments were replicated at least three times to account for 

overall experimental error. Due to the low initial cell concentration, it was assumed that 
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the initial absorbance was zero, and showed to be a viable assumption through an 

experimental measure of 0.017 ± 0.021 at an OD600. All vials were placed in an 

incubator/shaker (Benchmark incu-shaker 10L) at 120 rpm and 30°C. 

2.2.c Spectrophotometer Calibration Curve 

Due to different conversion factors reported in the literature for C. 

autoethanogenum, a calibration curve was constructed. The curve was produced using six 

samples at 100 mL of inoculated media with 5.00 
𝑔𝐿  of D-xylose, where each sample was 

removed at different times/OD600 readings and then filtered using a Whatman Grade 4 

filter paper. The filter paper was weighed before filtration and after six hours of drying in 

the shaker at 30°C. 

2.3 Theory and Calculation 

2.3.a Growth Kinetics 

The Monod equation, Equation 2.1, is typically used to model the specific growth 

rate as a function of substrate concentration. This equation is an empirical expression 

based on the Michaelis-Menten model and is normally associated with enzyme kinetics 

and/or gas absorption. An inherent disadvantage of the Monod equation is that it assumes 

growth is limited by a single dominant substrate with no inhibitory effects. It has, 

nevertheless, become customary to modify the Monod equation for substrate, cell, and/or 

product inhibition[14][15]. 

 𝜇𝑚 = 𝜇𝑚𝑎𝑥 𝑆𝐾𝑚+𝑆     (2.1) 

where 𝜇𝑚 is the Monod model growth rate, 𝜇𝑚𝑎𝑥 is the maximum specific growth rate, 𝑆 

is the concentration of the limiting substrate in the medium, D-xylose in 
𝑔𝐿, and K𝑚 is a 

system coefficient often referred to as the Monod constant in 
𝑔𝐿, and/or half-velocity 
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coefficient. The Monod constant is the concentration of substrate that yields a growth rate 

that is half of the maximum specific growth rate.  

Derivation of the novel model consisted of many iterated trials until a viable and 

less complicated model that accounts for substrate inhibition was developed. The 

iterations consisted of varying the reaction coefficients and approximating the kinetic 

inhibition equations. Typically, an empirical inhibition coefficient, kobs, is used with the 

Monod model for inhibition where the coefficient is shown in Equation 2.2[16]. This 

coefficient is also used in Hans and Levenspiel’s model[15]. 

 𝑘𝑜𝑏𝑠 = (1 − 𝑆𝑆𝑐)𝑛   (2.2) 

where Sc is the critical substrate concentration and n is an empirical constant. The critical 

substrate concentration is the assumed upper limit, above which cellular growth stops. 

Elementary reactions were used to develop a new rate law that accounts for substrate 

inhibition. The elementary reactions are shown in Equations 2.3 to 2.8 where Equations 

2.3 to 2.5 are for cellular division and Equations 2.6 to 2.8 account for substrate 

inhibition and cellular cannibalism, or cell-eat-cell phenomenon[17]. 

 
12 [𝑆] + [𝐶] 𝑘1→ (12 [𝑆][𝐶])∗  (2.3) 

 (12 [𝑆][𝐶])∗ 𝑘2→ 12 [𝑆] + [𝐶]  (2.4) 

 (12 [𝑆][𝐶])∗ 𝑘3→ 2[𝐶] + [𝑃]  (2.5) 

 
12 [𝑆] + [𝐶] 𝑘4→ [𝐶𝑖𝑚𝑚]∗   (2.6) 

 [𝑆] + [𝐶𝑖𝑚𝑚]∗ 𝑘5→ [𝐶𝑑]∗  (2.7) 

 [𝐶𝑑]∗ + [𝐶] 𝑘6→ 2[𝐶] + [𝑃]  (2.8) 
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where starred concentrations, [I]*, are for the inactive intermediates, [S] is substrate 

concentration, [C] is live cell concentration, [P] is product concentration, [Cimm] is 

immobilized cell concentrations, [Cd] is dead cell concentrations, and k1-k6 are the 

individual rate constants. By using the pseudo-steady state hypothesis (PSSH) the rate of 

cell generation and more importantly the specific growth rate can be determined for 

substrate inhibition with Equation 2.9. 

 𝜇𝐷,𝐼 = (1− 𝑆𝑆𝑐)𝜇𝑚𝑎𝑥√𝑆√𝐾𝑚+√𝑆    (2.9) 

where 𝜇𝐷,𝐼 is the predicted model growth rate with substrate inhibition, 𝜇𝑚𝑎𝑥 =
𝑘1𝑘3𝑘5𝑘2𝑘4+𝑘3𝑘4, 𝐾𝑚 = (𝑘2𝑘5+𝑘3𝑘5𝑘2𝑘4+𝑘3𝑘4)2, and 𝑆𝑐 = 𝑘6𝐶𝑡𝑜𝑡𝑘4  for Ctot is the total cell concentration 

measured. If substrate inhibition is not present then the elementary Equations 2.6 to 2.8 

are omitted, which leads to Equation 2.10. 

 𝜇𝐷 = 𝜇𝑚𝑎𝑥√𝑆√𝐾𝑚+√𝑆    (2.10) 

where 𝜇𝐷 is the predicted model growth rate without substrate inhibition, 𝜇𝑚𝑎𝑥 = 𝑘3 and 𝐶𝑚 = 𝑘2+𝑘3𝑘1 . 

To represent dual substrate growth, an empirical constant, µmix, is added to the 

rate equations to account for the growth from carbon monoxide which shifts the 

maximum specific growth rate by µmix. Dual substrate growth is represented by Equation 

2.11. 

 𝜇𝐷𝑆 = 𝜇𝑖 + µ𝑚𝑖𝑥   (2.11) 

where µ𝐷𝑆 is dual substrate growth rate without inhibition and µ𝑖 is either the Monod or 

the predicted model. 
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The experimental specific growth rate is determined by Equation 2.12 during the 

exponential phase. 

 𝜇 = ln(𝑂𝐷600,2)−ln (𝑂𝐷600,1)𝑇2−𝑇1   (2.12) 

2.3.b Statistical Treatment of Experimental Data 

Experimental results were compared using the t-value of the change in means to a 

critical t-value. The critical t-value was at 95% confidence for all data analysis. This 95% 

confidence interval accounts for the error among the replicate experiments and 

spectrophotometer readings. Non-linear regression was used to determine the rate 

constants for all models. Outlying data points for replicated data were assessed with box-

plots. Data that fell outside the upper or lower bounds were removed and more 

experiments were conducted. Other data that did not lie within the normal distribution 

curve were also replicated. 

2.4 Results and Analysis 

2.4.a Spectrophotometer Calibration Curve 

Figure 2-1 is a calibration curve of cell concentration in 
𝑚𝑔𝐿  vs OD600 with non-linear 

regression against the experimental data. The model in Figure 2-1 appears to fit well with 

a R2 value of 0.994. 
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Figure 2-1: Non-linear regression calibration curve of cell concentration versus OD600. 

The differences between the generated curve and literature values are unknown. 

Mock et al. (2015)[12] had 0.4 
𝑔 𝑜𝑓 𝑑𝑟𝑦 𝑐𝑒𝑙𝑙𝑠𝐿  and Cotter et al. (2009)[6] had 0.317 

𝑔 𝑜𝑓 𝑑𝑟𝑦 𝑐𝑒𝑙𝑙𝑠𝐿  at an OD600 of 1which is much greater than the predicted model. The 

corresponding OD600 from the model to achieve 0.4 and 0.317 
𝑔 𝑜𝑓 𝑑𝑟𝑦 𝑐𝑒𝑙𝑙𝑠𝐿  would be 1.26 

and 1.22, respectively. Currently, there are no other published literature that have a 

calibration curve for C. autoethanogenum that correlates cell concentration and optical 

density. 

2.4.b Growth Kinetics with D-xylose: No Inhibition 

Modeling elementary processes for cellular growth can lead to improved process 

control and provide reliable methods for interpreting process parameters such as product 

formation. Cell density is a function of time; consequently, the growth curves while 

utilizing D-xylose at concentrations ranging from 0.01 
𝑔𝐿 to 5.25 

𝑔𝐿 as a function of time 

are represented in Figures 2-2 through 2-4 at 95% confidence. 
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The decreasing concentration at 

extended growth times indicates that cellular 

cannibalism may be occurring or that the 

standard vials may not have been sterile 

during these trials which caused inaccurate 

readings. Either case would not affect the 

growth rate calculation because Equation 2.12 

was used at t1 = 1.3 hours and t2 = 6.3 hours. The specific growth rate with 95% 

confidence are shown in Figure 2-5, along with the Monod model and the predicted 

model.  

Figure 2-2: D-xylose growth curves of 
0.01 g/L(  ), 0.05 g/L (  ), and 0.10 g/L (  ). 

Figure 2-4: D-xylose growth curves of 
1.75 g/L (  ),  3.50 g/L  (  ), and 5.25 g/L 
(  ). 

Figure 2-3: D-xylose growth curves of 
0.50 g/L (  ), 0.90 g/L (  ), and 1.30 g/L (  ). 
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Figure 2-5: Specific growth rates from 0 g/L to 5.25 g/L of D-xylose with the Monod 
(dotted curve) and predicted (solid curve) model. 

Figure 2-5 reveals that there is not a significant statistical difference between the 

two models; consequently, either model would be sufficient when there is no inhibition. 

The Monod model parameters, µmax and Km, are 0.41 hr-1 and 4.4 
𝑚𝑔𝐿 , respectively, 

whereas, the predicted model has a µmax of 0.43 hr-1 and a Km of 1.7 
𝑚𝑔𝐿 . The experimental 

maximum specific growth rate is 0.42 ± 0.01 hr-1 with a Monod constant, Km, of 7.0 ± 1.0 𝑚𝑔𝐿  with 95% confidence. That is with the experimental Monod constant determined by 

linear interpolation. The experimental and modelled Monod constants are significantly 

different at the 95% confidence level. This discrepency is unknown, but the Monod 

model has a better representation for Km when substrate inhibition is not a factor; 

however, further experimets at these values should be conducted to verify the 

approximated Km. 
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2.4.c Dual Substrate Growth: D-xylose and Carbon Monoxide 

Dual substrate experiments were conducted to understand the impact on the 

growth rate when carbon monoxide and D-xylose, where utilized simultaneously. Figures 

2-6 and 2-7 show the growth curves with carbon monoxide in the headspace at 

concentrations approximately to 1000 ppmv and D-xylose concentrations from 0 
𝑔𝐿 to 5 

𝑔𝐿 
at 1 

𝑔𝐿 increments with 95% confidence. 

 

Equation 2.12 was used to compute the specific growth rates at each 

concentration of D-xylose with carbon monoxide. The dual substrate models, Equation 

2.11, with the same Monod constants as growth on D-xylose and the experimental data at 

95% confidence are represented in Figure 2-8. The dual substrate models with the 

parameters are shown in Table 2-1. 

Figure 2-7: Carbon monoxide growth 
curves with 3.00 g/L (  ), 4.00 g/L (  ), and 
5.00 g/L (  ) of D-xylose. 

Figure 2-6: Carbon monoxide growth 
curves with 0.00 g/L (  ), 1.00 g/L (  ), 
and 2.00 g/L (  ) of D-xylose. 
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Figure 2-8: Specific growth rates of carbon monoxide with 0.00 g/L to 5.00 g/L of D-
xylose with a modified Monod and predicted model. 

Table 2-1: Biokinetic inhibition models with constants for C. autoethanogenum. 
Model         Equation Constants 
Monod 𝜇 = 𝜇𝑚𝑎𝑥𝑆𝐾𝑚 + 𝑆 + 𝜇𝑚𝑖𝑥 

𝜇𝑚𝑎𝑥 = 0.19 hr-1 𝜇𝑚𝑖𝑥 = 0.45 hr-1 

Km = 4.36 
𝑚𝑔𝐿  

Predicted 𝜇 = 𝜇𝑚𝑎𝑥√𝑆√𝐾𝑚 + √𝑆 + 𝜇𝑚𝑖𝑥 
𝜇𝑚𝑎𝑥 = 0.20 hr-1 𝜇𝑚𝑖𝑥 = 0.45 hr-1 

Km = 1.58 
𝑚𝑔𝐿  

 
2.4.d Growth Kinetics with D-xylose: Inhibition  

The same process that was used in Section 2.4.b was used for the inhibition 

model. Experimental specific growth rates for concentrations from 0 
𝑔𝐿 to 300 

𝑔𝐿 are shown 

in Figure 2-9 with 95% confidence along with the predicted, Monod, Han and 

Levenspiel[18], and Webb[18] inhibition models. Table 2-2 shows the model equations 

with the inhibtion parameters. Other inhibtion models such as Tseng and Wayman[19], 

Haldane[20], Tessier[18], Yano[21], Aiba[22], and Andrews[23] were used, but these 

models did not fit the data as well. 



 

37 

 

Figure 2-9: Models fitted to the experimental data with. A) Predicted B) Monod C) 
Webb D) Levenspiel. 

Table 2-2: Biokinetic inhibition models with constants for C. autoethanogenum. 
Model Equation Constants 
Han and 
Levenspiel[18] 𝜇 = [(1 − 𝑆𝑆𝑐)𝑛] 𝜇𝑚𝑎𝑥𝑆𝑆 + 𝐾𝑚 (1 − 𝑆𝑆𝑐)𝑚 

µmax = 0.44 hr-1 

Km = 5.75 
𝑚𝑔𝐿  

Sc = 268 
𝑔𝐿 

n = 0.677 
m = 0.641 

Webb[18] 𝜇 = 𝜇𝑚𝑎𝑥𝑆 (1 + 𝐾𝑆𝐾𝑠 )𝑆 + 𝐾𝑚 + 𝑆2𝐾𝑠  

µmax = 0.44 hr-1 

Km = 6.62 
𝑚𝑔𝐿  

K = -306,000 
𝑔𝐿 

Ks = 95,770,000 
𝑔𝐿 

Monod 𝜇 = (1 − 𝑆𝑆𝑐)𝑛 𝜇𝑚𝑎𝑥𝑆𝐾𝑚 + 𝑆 
𝜇𝑚𝑎𝑥 = 0.44 hr-1 

Km = 6.00 
𝑚𝑔𝐿  

Sc = 265 
𝑔𝐿 

n = 0.649 
Predicted 𝜇 = (1 − 𝑆𝑆𝑐) 𝜇𝑚𝑎𝑥√𝑆√𝐾𝑚 + √𝑆 

𝜇𝑚𝑎𝑥 = 0.46 hr-1 

Km = 4.46 
𝑚𝑔𝐿  

Sc = 306 
𝑔𝐿 

 

B) A) 

C) D) 
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The Monod and Webb model half-velocity constant, Km, agreed within the 

experimental value of 7.0 ± 1.0 
𝑚𝑔𝐿 , whereas the predicted and Levenspiel models 

predicted lower values. However, all models overestimate the measured maximum 

growth rate of 0.42 ± 0.01 hr-1. The predicted model is a less complicated model because 

less variable parameters have to be fitted with the experimental data to achieve similar or 

superior results. 

2.5 Discussion 

The growth rates experienced during this research are much greater than previous 

literature values. K�̈�pke et al. (2011) had an approximate specific growth rate of 0.06 hr-1 

on steel mill gas[4]. Mock et al. (2015) experienced a specific growth rate of 0.021 hr-1, 

0.046 hr-1, and 0.14 hr-1 on a mixture of hydrogen and carbon dioxide, fructose, and steel 

mill gas, respectively[12]. Lastly, Kracke et al. (2016) had a specific growth rate of 0.053 

hr-1 on D-fructose[10]. 

These differences may be speculated to the type of medium used (nutrients 

supplied) and/or oxygen concentrations present. For the former, all three researchers 

mentioned used a different medium, ATCC 1754, which is a modified medium of DSMZ 

879. Medium DSMZ 879 is the suggested medium to cultivate C. ljungdahlii[24]. K�̈�pke 

et al. (2011)[4] and Mock et al. (2015)[12] did not use yeast extract in their media, 

whereas Kracke et al. (2016)[10] used double the recommended amount of yeast extract. 

As for the latter, the oxygen concentration for all literature values were not listed and a 

few acknowledged that there was a possibility of oxygen being present during the 

experiments[1,5,8]. For this research, the oxygen meter within the anaerobic chamber had 

a minimum value of 0 ppmv, and all experiments were conducted at this steady reading. 
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When substrate inhibition is not a factor the Monod model should be chosen 

because the Monod model fits the data slightly better and had a closer Monod constant to 

the experimental value. However, if substrate inhibition is a factor the proposed model is 

superior because the proposed model fits the data better, requires less parameters to 

model, and had a closer critical substrate constant compared to the experimental value. 

To verify the validity of the proposed model it is recommended for the model to be 

compared to other organisms that experienced substrate inhibition. 

From Figure 2-5 and 2-8 C. autoethanogenum appears to have a higher affinity 

for carbon monoxide over D-xylose. The specific growth rate with a 1000 ppmv of carbon 

monoxide, 𝜇𝑚𝑖𝑥, is greater than the maximum specific growth rate with D-xylose, 𝜇𝑚𝑎𝑥. 

A beneficial trait that C. autoethanogenum has is that there is not an inhibition carbon 

monoxide concentration. In fact, 2,3-BDO productivity favors higher carbon monoxide 

concentration at standard pressures[25]. 

2.6 Conclusions 

The following conclusions can be drawn from this work. C. autoethanogenum can 

utilize carbon monoxide and D-xylose simultaneously, which increases the overall 

maximum specific growth rate. This bacterium may prefer carbon monoxide over D-

xylose as indicated by a higher growth rate with carbon monoxide compared to D-xylose. 

The maximum experimental growth rates with D-xylose, carbon monoxide, and a mixture 

of both were 0.42 ± 0.01 hr-1, 0.45 ± 0.1 hr-1, and 0.64 ± 0.08 hr-1 with 95% confidence, 

respectively. Substrate inhibition for C. autoethanogenum can be modeled more precisely 

with less parameters by the proposed model. Lastly, the maximum biomass and growth 

rate on D-xylose can be reached at concentrations of 7 and 0.10 
𝑔𝐿, respectively. 
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Chapter 3  
Syngas Formation, Compression, and Products with C. 

autoethanogenum 
 

Abstract 

Fermentation of acetogenic bacteria have been shown to produce valuable products such 

as 2,3-butanediol from carbon monoxide. The carbon monoxide previously supplied was 

synthetic or from a steel mill which does not contain impurities such as NOx, H2S, and 

many others found in synthesis gas from coal. Here we demonstrate the use of synthesis 

gas from lignite coal to produce fermentation products, 2,3-butanediol and ethanol, with 

C. autoethanogenum at pilot scale. The productivity of 2,3-butanediol in the stationary 

phase and ethanol over 24 hours are 0.36 and 41.6 
𝑚𝑔𝐿−ℎ𝑟, respectively. 

3.1 Introduction 

 Many bacteria can generate fuels and chemicals from bio-based synthesis gas 

(syngas) such as Clostridium autoethanogenum, Butyribacterium methylotropphicum, 

and Mesophilic bacterium P7 to name a few[1]. Bio-based syngas can be formed by 

gasification of a variety of lignocellulosic sources like switchgrass[2], pine wood 

chips[3], willow[4], cacao shells[4], dairy biomass[5], bluegrass straw[6], and paper 

residue[4]. Certain organisms can utilize this bio-based syngas due to the metabolic 

pathway, acetyl-CoA, used and possess carbon monoxide dehydrogenase. It is suggested 

that anaerobic bacteria are the only type that can utilize the acetyl-CoA pathway[7]. Bio-

based syngas is a usable substrate for fuels, but a cheaper and well established feedstock 
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for the production of syngas is coal[8,9] However, coal has impurities like sulfur and 

mercury which may impact cellular growth and product formation. Currently the only 

coal fermentation known to the authors is the use of methane producing bacteria in 

enriched methanogenus mine water[10,11]. This study looked into how the impurities 

from coal affect product and cellular formation with an acetogenic bacterium C. 

autoethanogenum. 

3.2 Materials, Method, and Equipment 

3.2.a Overview of Whole Process 

The process to make syngas from coal and to ferment with this syngas is a 

cumbersome process. The primary processes are gasification of the coal, storage of the 

syngas, fermentation with the syngas, and analyzing products. The block flow diagram of 

this process is shown in Figure 3-1. 

Figure 3-1: Overall process to covert coal to saleable bio-products. 

3.2.b Overall Gasification System 

 The original design of the fluidized bed gasification system was done by Robert 

Mota (2013)[12], which had a coal feeder, an air pre-heater, a steam generator, a heated 

fluidized bed (fluidized with nitrogen and oxygen), a cyclone, two condensers, and a laser 

gas analyzer (LGA). The modified design now has two bag filters replacing the cyclone 

and a single condenser. To store the synthesis gas (syngas) formed from coal a 

compression system was designed after the condenser. A more detailed description of the 
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compression system can be found in Section 3.2.c. The original design can be seen in 

Figure 3-2 and the new design can be found in a process flow diagram shown in Figure 3-

3. 

 
     Figure 3-2: Original gasification design by Robert Mota[1]. 

 
Figure 3-3: New gasification design with compression system where J-101 is a screw 
feeder, R-101 is the fluidized bed reactor, F-101 are bag house filters, E-101 is a 
condenser, C-101 is a compressor, V-101 is an inflatable storage bag, and D-101 is a 
storage tank. 
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As shown in Figure 3-3, the bag filters, Part PEMFXL1.0P1S, are ran in parallel 

with one in operation. This redundancy is used to clean the filter without shutting down 

production. A pressure differential between the fluidized bed and the product stream is 

used to determine if the bag filter needs replacing. The bag house, unlike the cyclone, has 

dual roles; to filter the char from the gaseous stream and to remove tar that condenses at 

room temperature. Low pressure steam (LPS) is used for steam gasification which 

produces carbon monoxide and hydrogen. The reactions associated with gasification can 

be found in Section 1.4. 

3.1.b Gasification Operation 

 The fluidized bed gasifier was charged with two pounds of sand that was between 

20 and 40 mesh and 12.5 weight percent of limestone as the starting bed material. 

Limestone was added to remove sulfur components that are generated from the lignite 

coal. Lignite coal between 18-60 mesh was added at a rate of approximately 0.5 
𝑙𝑏𝑠ℎ𝑟  at the 

screw feeder (J-101). The ultimate analysis of the coal used is shown in Table 3-1. 

   Table 3-1: Ultimate analysis of lignite coal. 
 As Detected (%) As Received (%) Dry (%) Dry/Ash Free (%) 
Hydrogen 5.50 5.50 4.16 4.40 
Carbon 51.88 51.88 64.09 67.83 
Nitrogen 0.86 0.86 1.06 1.12 
Sulfur 0.54 0.54 0.67 0.71 
Oxygen 36.76 36.76 24.51 25.94 
Ash 4.46 4.46 5.51 N/A 
     �̂� (𝐵𝑡𝑢𝑙𝑏 ) 8628 8628 10658 11280 

 

By Table 3-1 the process requires 0.06 
𝑙𝑏𝑚𝑜𝑙 𝑂2𝑙𝑏−𝑐𝑜𝑎𝑙   to be added for complete combustion 

based on the reaction C + O2 → CO2; however, this was not the actual amount of oxygen 

used because it was desirable to achieve high concentrations of carbon monoxide and 
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hydrogen in the syngas to utilize the methyl and carbonyl branch. Consequently, water 

and oxygen were fluctuated during the process because steady state was never reached. 

Water, when added, was entered at 0.5 
𝑚𝐿𝑚𝑖𝑛 while oxygen varied greatly by the operator. 

The gasifier was operated at 750ºC with a gas pre-heater temperature of 400ºC. 

3.1.c Compression System 

 The compression system was designed for lab scale production. A three-gallon 

portable Fini air compressor from Menards, Model F3OL197N, was used as the in-line 

compressor. This compressor leaked around the piston head and partially pulled gas from 

the surrounding; therefore, a carbon dioxide blanket around the compressor was made by 

placing the compressor into a plastic storage container which was sealed with high 

temperature RTV silicone and slightly pressurized with carbon dioxide. This was done to 

maintain an oxygen concentration below 5 ppmv which was needed for the anaerobic 

bacterium, C. autoethanogenum, to survive. An inflatable bag, Part 78917, was used to 

collect syngas that satisfied operation specifications prior to compression. The inflatable 

bag was used as a short-term storage container because the syngas flow rate exiting the 

condenser is at nearly atmospheric conditions and the compressor had an inlet gas flow 

rate greater than the production of syngas. The compressed syngas then flowed through a 

packed bed reactor that contained palladium, Pt, to react the hydrogen and the remaining 

oxygen by Equation 3.1 before entering a 120-gallon tank that was purchased from 

compressor world, Model 302423. The storage tank was compressed to 120 psig for a 24 

hour experiment. 

     𝐻2 + 𝑂2 𝑃𝑡→ 𝐻2𝑂   (3.1) 



 

49 

 

3.1.d Medium Preparation, Bioreactor Set-up, and Inoculation 

Bacterial freeze-dried pellets of C. autoethanogenum, DSM 10061, were obtained 

from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, 

Braunschweig, Germany) and was revived in DSMZ medium 640 with D-xylose. 

Medium 640 contains, per liter, 0.90 g NH4Cl, 0.90 g NaCl, 0.40 g MgCl2 x 6 H2O, 0.75 

g KH2PO4, 1.50 g K2HPO4, 2.00 g tripticase peptone, 0.75 g L-cysteine-HCl x H2O, 5.00 

mg FeCl3 x 6 H2O, and 5.00 mL trace solution. The trace solution contains, per 990 mL, 

10.00 mL HCl (7.7M), 1.50 g FeCl2 x 4 H2O, 70.00 mg ZnCl2, 100.00 mg, MnCl2 x 4 

H2O, 6.00 mg H3BO3, 190.00 mg CoCl2 x 6 H2O, 2.00 mg CuCl2 x 2 H2O, 24.00 mg 

NiCl2 x 6 H2O, and 36.00 mg Na2MoO4 x 2 H2O. To revive the bacterium, a Coy vinyl 

anaerobic chamber with a palladium catalyst and an oxygen concentration in the parts per 

billion with the balance nitrogen was used. A Tuttnaurer Ez10 or Consolidated Mark II 

autoclave, depending on the volume required, was used to sterilize the media before 

inoculation. The medium was autoclaved at 250°F for the recommended length of time 

per mL of media by Iowa State University[13], and the initial pH of the medium was at 

6.4. 

A 14 L continuously stirred tank reactor (CSTR) from Eppendorf was utilized for 

growth and product formation by C. autoethanogenum. Temperature, dissolved oxygen 

(DO), agitation rate, gas flow rate, and pH were monitored throughout the experiment. A 

bioreactor schematic can be seen in Figure 3-4. 
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  Figure 3-4: Bioreactor schematic. 

The bioreactor contained 5L of DSMZ media 640 and was inoculated from a 

previous batch that was in the exponential phase at 5.4𝑥108 
𝐶𝐹𝑈 𝑜𝑓 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑚𝐿 𝑜𝑓 𝑀𝑒𝑑𝑖𝑎 . A peristaltic 

pump with a Covidien 30 gauge hypodermic needle, Model 1188830340, and a Cilran 

transfer tube, Part C006021, was used to inoculate the bioreactor to insure anaerobic 

conditions and sterility. 

3.1.e Growth Curve and Product Analysis 

 10 mL samples were removed periodically for a growth curve, whereas only a 

single 100 mL sample was removed after 24 hours for product analysis. 

 The turbidity of the 10 mL samples were monitored with a UV-Vis Evolution 600 

at an optical density of 600 nm (OD600). Due to low initial cell concentrations, it was 

assumed that the initial absorbance was zero, and showed to be a viable assumption 

through experiment with an OD600 reading of 0.017 ± 0.21 at 95% confidence. Cell 
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density conversion from OD600 to 
𝑚𝑔𝐿  was determined according to a previously obtained 

calibration curve shown in Figure 2-1. 

The single 100 mL sample was distilled through simple distillation until the low 

boiling point products (<100 ºC) were removed to separate products and the distillate 

volume was recorded. The remaining high boiling point products (>100 ºC) were 

collected and the volume was recorded. Metabolite concentrations of the two samples 

were determined using an Agilent 7890A gas chromatography (GC) machine equipped 

with a flame ionization detector (FID) and a fused-silica capillary column (SLB-5ms, 30 

m 𝑥 0.25 mm 𝑥 0.25 µm). Nitrogen was used as the carrier gas at constant pressure of 12 

psig with a split ratio of 1:10. Hydrogen, air, and makeup (helium) flow were 40, 400, and 

30 
𝑚𝐿𝑚𝑖𝑛, respectively. The injector and detector temperature were 250ºC and 280ºC, 

respectively. The initial oven temperature was 40ºC. For analyzing 2,3-BDO, the oven 

temperature was increased after 2 minutes at a rate of 10 
°C𝑚𝑖𝑛 until it reached 280ºC. For 

analyzing ethanol, the oven temperature was increased after 2 minutes at a rate of 10 
°C𝑚𝑖𝑛 

until it reached 100ºC. 

3.2 Results and Discussion 

3.2.a Syngas Production 

 Gasification products were produced at or near commercial grade syngas, but the 

carbon dioxide drastically increased after passing through the compression step due to the 

leaky piston. Table 3-2 shows the volume composition of the syngas entering the 

compressor and at the end of the operation. 
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Table 3-2: Volume composition of syngas before and after compression. 
 Before Compression After Compression 
Carbon Monoxide (%) 20 5.44 
Water (%) 4 3.82 
Hydrogen Sulfide (ppm) 1000 226 
Oxygen (ppm) 30 0 
Hydrogen (%) 8 2.00 
Carbon Dioxide (%) 20 63.35 
Methane (ppm) 14,000 4610 
Nitrogen (%) 50 23.38 

 
The rate of gas pulled from the surroundings compared to the rate of syngas is 

approximately 2:1. That was determined by conducting a mass balance around the system 

with the surrounding gas being 86% carbon dioxide, 11% nitrogen and the balance 

oxygen. The water vapor concentration increased due to the reaction between hydrogen 

and oxygen on the palladium catalyst before storage. 

 From Table 3-2 it is clear that an in-line compressor from the local hardware store 

is insufficient to maintain commercial grade syngas. An alternative compressor that 

would better suit this operation is a Powermate single stage inline-twin compressor with 

cast iron cylinders, Model 040-0425RP. However, the inlet flow rate of the suggested 

compressor is much greater than the production rate for this system so a larger bladder 

bag may be required. 

3.3.b C. autoethanogenum Growth Curve 

 The flow rate of syngas into the reactor was constant at 0.5 
𝑚𝐿𝑚𝑖𝑛 for 24 hours. Six 

samples were extracted at approximately four-hour intervals and the resulting growth 

curve is shown in Figure 3-4. C. autoethanogenum appeared to experience cellular 

cannibalism after 12 hours of growth which was not observed with steel mill gas[16]. 

This may be due to the use of a bioreactor with continuous substrate feed at atmospheric 

pressure or due to being in contact with hydrogen sulfide and other impurities. The 
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former is unlikely because the research conducted by Abubacker et al. (2016) was 

continuous fed batch as well and cellular cannibalism was not experienced to this 

extent[14]. The maximum biomass experienced is also lower than expected due to 

previous literature values. Cotter et al. (2009)[15], K�̈�pke et al. (2011)[16], and Xu et al. 

(2017)[17] achieved cell concentrations of 150 
𝑚𝑔𝐿 , 1.0 OD600, and 165 

𝑚𝑔𝐿 , respectively, 

on synthetic syngas or steel mill gas. The primary hypothesis for the large differences in 

cell density is the impurities within the syngas formed from coal. Initially the differences 

between cell density was contributed to being a fed batch system; however, Cotter et al. 

(2009) utilized a fed batch system as well[15].  

 
Figure 3-5: Growth curve of synthesis gas in bioreactor. 
3.3.c  2,3-BDO and Ethanol Rate of Formation Analyses 

 The formation of 2,3-BDO and ethanol that was experienced was 4.30 
𝑚𝑔𝐿  and 

1.00 
𝑔𝐿, respectively. The productivity of 2,3-BDO in the stationary phase was 0.36 

𝑚𝑔𝐿−ℎ𝑟; 
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whereas, the productivity of ethanol over the 24 hour period was 41.6 
𝑚𝑔𝐿−ℎ𝑟. 2,3-BDO 

productivity was calculated after the stationary phase was achieved because the analysis 

conducted by K�̈�pke et al. (2011) suggested that 2,3-BDO is not formed until the 

stationary phase[16]. The experimental data retrieved from the GC for 2,3-BDO and 

ethanol production at 24 hours are shown in Appendix A Figures A-37 and A-38, 

respectively. 

Cotter et al. (2009)[15] and Xu et al. (2017)[17] either did not observe or did not 

measure 2,3-BDO formation; however, the normalized production rate of 2,3-BDO 

experienced by K�̈�pke et al. (2011)[16] was 1.96 
𝑚𝑔𝐿−ℎ𝑟. The low production rate of 2,3-

BDO, biomass production, and high cellular cannibalism experienced may be due to the 

impurities within the synthesis gas. This is the first known experiment that uses raw 

syngas from coal for production of 2,3-BDO; therefore, more experiments have to be 

conducted to further determine the effects of the impurities hydrogen sulfide, methane, 

trace metals, and other impurities. 

Cotter et al (2009)[15], K�̈�pke et al. (2011)[16], and Xu et al. (2017)[17] 

experienced an ethanol production rate of 5.35, 5.04, and 0.44 
𝑚𝑔𝐿−ℎ𝑟, respectively. In this 

study there was a huge increase in ethanol productivity, 41.6 
𝑚𝑔𝐿−ℎ𝑟. This large increase 

could be complementary to as why 2,3-BDO productivity dropped, which suggests that 

the impurities in the syngas suppress pyruvate:ferredoxin oxidoreductase. Again, further 

studies on varying concentrations of impurities need to be conducted to verify this 

hypothesis. 
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3.4 Conclusion 

 C. autoethanogenum can sustain life with the use of syngas generated by coal, but 

the bacterium does not thrive in the environment as shown by the cell density achieved. 

This is believed to be from the sulfur and potentially the untraceable amount of metals 

such as mercury within the syngas produced. In future studies hydrogen sulfide 

concentrations can be manipulated to determine if this bacterium will thrive better in a 

low sulfur coal. However, ethanol production with syngas was substantially higher than 

any other tests previously conducted. This suggests that these impurities may strain the 

bacterium and shift the metabolic pathway to produce less 2,3-BDO and more ethanol. 

2,3-BDO was the original product of choice, but it may be useful to further study the 

production rates of ethanol at steady state operation for economic analysis.
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Chapter 4  
Product Formation with Design of Experimental Analysis 

 
Abstract 

A fractional factorial design was applied to determine which operating factors 

statistically affect 2,3-butanediol and ethanol formation by C. autoethanogenum with 

carbon monoxide as the primary substrate. 2,3-butanediol production is affected by two 

interaction terms: gas flow rate and D-xylose, and carbon monoxide and oxygen 

concentration. The optimal condition for 2,3-butanediol production is a pH of 5.75, a gas 

flow rate of 0.4 
𝐿𝑚𝑖𝑛, a carbon monoxide concentration of 60 volume percent, a dissolved 

oxygen concentration of 0 percent, a temperature of 35⁰C, and no D-xylose. On the other 

hand, ethanol production was statistically unaffected at the 95% confidence level. The 

productivity of 2,3-butanediol in the stationary phase at the optimal conditions and the 

average productivity of ethanol over 24 hours was 3.0 and 100 ± 80 
𝑚𝑔𝐿−ℎ𝑟. 

4.1 Introduction 

2,3-butanediol (2,3-BDO) is a valuable chemical and is used as a fuel additive, in 

certain gas chromatograph applications, and polymers. It is found naturally in sweet corn, 

fermented soybean curds, whole and ground grains, and rotten mussels[1]. 2,3-BDO is 

also produced through the hydrolysis of 2,3-epoxybutane[2]. It is desirable to find an 

economical and sustainable way to commercially produce this chemical with waste. 

Certain bacterial strains can synthesize this product and production of this 

chemical was found by researching pathogenic bacteria such as Klebsiella oxytoca, 
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Enterobacter aerogenes, and Bacillus lichinformis[3]. K. oxytoca can lead to nosocomial 

outbreaks[4], E. aerogenes is an opportunistic bacterium that causes disease to patients 

with weakened immune systems[5], and B. lichinformis can cause food poisoning[6]. The 

pathogenic traits of these bacteria make it unfeasible to utilize them as a major source to 

produce 2,3-BDO.  

In recent years, there has been discovery of non-pathogenic, strict anaerobic 

bacteria from the Clostridium family that can also synthesize 2,3-BDO. These bacteria 

are C. autoethanogenum, C. ljungdahlii, and C. ragsdahlii. All three strains have been 

shown to produce 2,3-BDO by utilizing carbon monoxide as the primary carbon 

source[7]. There has been a significant amount of research in optimizing the media and 

conditions to maximize the production of ethanol to acetate ratios while utilizing carbon 

monoxide as the primary substrate. 

With this there has been little to no research on what factors may affect 2,3-BDO 

formation in batch form. A few researchers, Kracke et al. (2016)[8], Liew et al.(2017[9], 

and Abubacker et al (2016a,b)[10,11], have looked at the effect of external electron 

supply, changing enzymatic functions, and pH shifts, respectively, on 2,3-BDO 

production, but more research needs to be conducted. The primary factors that affect 

product formation from gaseous substrates are pH, temperature, media type, mass 

transfer, and reactor type[12]. Of these, this study considered pH, temperature, carbon 

monoxide concentration, oxygen concentration, gas flow rate, and the use of dual 

substrate. 



 

60 

 

4.2 Materials, Method, and Equipment 

4.2.a Microorganism 

Bacterial freeze-dried pellets of C. autoethanogenum, DSM 10061, were obtained 

from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, 

Braunschweig, Germany) and was revived in DSMZ medium 640 with D-xylose. 

Medium 640 contains, per liter, 0.90 g NH4Cl, 0.90 g NaCl, 0.40 g MgCl2 x 6 H2O, 0.75 

g KH2PO4, 1.50 g K2HPO4, 2.00 g tripticase peptone, 0.75 g L-cysteine-HCl x H2O, 5.00 

mg FeCl3 x 6 H2O, and 5.00 mL trace solution. The trace solution contains, per 990 mL, 

10.00 mL HCl (7.7M), 1.50 g FeCl2 x 4 H2O, 70.00 mg ZnCl2, 100.00 mg, MnCl2 x 4 

H2O, 6.00 mg H3BO3, 190.00 mg CoCl2 x 6 H2O, 2.00 mg CuCl2 x 2 H2O, 24.00 mg 

NiCl2 x 6 H2O, and 36.00 mg Na2MoO4 x 2 H2O. To revive the bacterium, a Coy vinyl 

anaerobic chamber with a palladium catalyst and an oxygen concentration in the parts per 

billion with the balance nitrogen was used. A Tuttnaurer Ez10 autoclave or Consolidated 

Mark II autoclave, depending on the volume required, was used to sterilize the media 

before inoculation. The medium was autoclaved at 250°F for the recommended length of 

time per mL of media by Iowa State University[13], and the initial pH of the medium was 

at 6.4. D-xylose was sterilized by filtration with a 0.22 µm polyvinylidene fluoride 

(PVDF) filter, Model SLGV013SL. 

4.2.b Bioreactor Inoculation and Set-up 

 A 14 L continuously stirred tank reactor (CSTR) from Eppendorf was utilized for 

growth and product formation by C. autoethanogenum. Temperature, dissolved oxygen 

(DO), agitation rate, gas flow rate, and pH were monitored throughout the experiment. A 

bioreactor schematic can be seen in Figure 4-1. 
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  Figure 4-1: Bioreactor schematic. 

The bioreactor contained 5L of DSMZ media 640 and was inoculated from a 

previous batch that was in the exponential phase at 5.4𝑥108 
𝐶𝐹𝑈 𝑜𝑓 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑚𝐿 𝑜𝑓 𝑀𝑒𝑑𝑖𝑎 . A peristaltic 

pump with a Covidien 30 gauge hypodermic needle, Model 1188830340, and a Cilran 

transfer tube, Part C006021, was used to inoculate the bioreactor to insure anaerobic 

conditions and sterility. 

4.2.c Bioreactor Fractional Factorial Design 

A ¼ fractional factorial design was conducted to determine the most significant 

factors that affect the production of 2,3-BDO and ethanol. The agitation speed was 

constant at 40 rpm with an initial temperature of 30ºC. Six parameters were varied for 

this experiment for a total of 16 runs. The six parameters varied were flow rate, carbon 

monoxide concentration, dual substrate growth with D-xylose, temperature shift, pH 

shift, and dissolved oxygen (DO) shift. The coded and uncoded values for the parameters 

are shown in Table 1. 



 

62 

 

Table 4-1: Coded and uncoded parameter values. 
Parameter Coded Value Uncoded Value 

pH 
-1 4.5 
1 7 

Flow 
-1 0.4 Lpm 
1 2.0 Lpm 

[CO] 
-1 20 Vol. % 
1 100 Vol. % 

[O2] 
-1 0 DO % 
1 40 DO % 

Temperature 
-1 25°C 
1 45°C 

D-xylose 
-1 0.0 

𝑔𝐿 
1 0.1 

𝑔𝐿 
 
Flow rate, carbon monoxide concentration, and initial D-xylose concentration 

were unadjusted throughout the 24 hour experiment, whereas the temperature, pH, and 

DO were changed after six hours to the appropriate condition for the screening design. 

Temperature, pH, and DO were not shifted at the beginning of the fermentation to 

prevent premature inhibition. An additional experiment was conducted to validate a 

coded regression model provided by the fractional factorial design. This additional 

experiment was a 96 hour experiment where samples were removed every 24 hours to 

relate time to the productivity of the bacterium. Table 4-2 represents the non-randomized 

¼ fractional factorial design and the preliminary optimized experimental run. 
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Table 4-2: Non-randomized fractional factorial design with optimized experimental runs. 

Std. Run 
Order pH 

Flow 
Rate 

(Lpm) 

CO 
Conc. 

(Vol. %) 

O2 
Conc. 

(DO %) 
Temperature 

(ºC) D-xylose (𝑔𝐿) 
1 -1 -1 -1 -1 -1 -1 
2 1 -1 -1 -1 1 -1 
3 -1 1 -1 -1 1 1 
4 1 1 -1 -1 -1 1 
5 -1 -1 1 -1 1 1 
6 1 -1 1 -1 -1 1 
7 -1 1 1 -1 -1 -1 
8 1 1 1 -1 1 -1 
9 -1 -1 -1 1 -1 1 
10 1 -1 -1 1 1 1 
11 -1 1 -1 1 1 -1 
12 1 1 -1 1 -1 -1 
13 -1 -1 1 1 1 -1 
14 1 -1 1 1 -1 -1 
15 -1 1 1 1 -1 1 
16 1 1 1 1 1 1 

Optimum 0 -1 0 -1 0 -1 
 
 Temperature and flow rate affect the mass transfer rate, while pH, dual substrate 

growth, carbon monoxide concentration and DO concentration was believed to affect 

enzymatic function. The addition of D-xylose was believed to be an important parameter 

because dual substrate biomass concentrations were greater than using single 

substrate[14]. DO concentration, carbon monoxide concentration, and pH were believed 

to affect the metabolic production by straining the bacterium[15]. 

4.2.d Product Analytic Methods 

 Samples were removed from the bioreactor after 24 hours and distilled through 

simple distillation until the low boiling point products (<100 ºC) were removed and the 

distillate volume was recorded. The remaining high boiling point products (>100 ºC) 

were collected and the volume was recorded. Metabolite concentrations of the two 

samples were determined using an Agilent 7890A gas chromatography (GC) machine 
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equipped with a flame ionization detector (FID) and a fused-silica capillary column 

(SLB-5ms, 30 m 𝑥 0.25 mm 𝑥 0.25 µm). Nitrogen was used as the carrier gas at constant 

pressure of 12 psi with a split ratio of 1:10. Hydrogen, air, and makeup (helium) flow 

were 40, 400, and 30 
𝑚𝐿𝑚𝑖𝑛, respectively. The injector and detector temperature were 250ºC 

and 280ºC, respectively. The initial oven temperature was 40ºC. For analyzing 2,3-BDO, 

the oven increased after 2 minutes and increased at a rate of 10 
°C𝑚𝑖𝑛 until it reached 

280ºC. For analyzing ethanol, the oven increased after 2 minutes and increase at a rate of 

10 
°C𝑚𝑖𝑛 until it reached 100ºC. 

The high boiling point products used methanol as the internal standard due to the 

high boiling point products being extremely polar, whereas, the low boiling products used 

n-butanol as the internal standard. Both products were mixed with a 1:10 volume ratio of 

solvent to sample before injection into the GC. A blank run of dichloromethane (DCM) 

was injected between each GC run to flush the capillary column to prevent saturation. A 

single point internal standard method was used to determine the concentration of product 

within the sample[19]. The equation for this method is shown in Equation 4.1. 𝐶𝑆𝐶 = 𝑉𝐼𝑆∗𝜌𝐼𝑆 ∗𝐴𝑆𝐶∗𝐼𝑅𝐹𝑆𝐶∗𝑉𝑡𝑜𝑡,𝑃𝐴𝐼𝑆∗𝑉𝑚𝑒𝑑∗𝑉𝑆𝑎𝑚𝑝    (4.1) 

where CSC is the concentration of specific component in 
𝑚𝑔𝜇𝐿 , VIS is volume of internal 

standard in µL, ρIS is the density of the internal standard in 
𝑚𝑔𝜇𝐿 , ASC is the area of specific 

component,  AIS is the area of the internal standard, IRFSC is the internal response factor, 

Vtot,P is the total volume of low or high boiling point product in mL, Vmed is the total 

volume extracted from the reactor in mL, and Vsamp is the volume of the sample used for 

GC analysis in µL. With the internal standard and the sample constant at a 1:10 ratio then 
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𝑉𝐼𝑆𝑉𝑆𝑎𝑚𝑝 = 0.1. The internal response factor of a specific component (IRFSC) is determined 

by Equation 4.2. 𝐼𝑅𝐹𝑆𝐶 = 𝐴𝐼𝑆∗𝑉𝑆𝐶∗𝜌𝑆𝐶𝐴𝑆𝐶∗𝑉𝐼𝑆∗𝜌𝐼𝑆   (4.2) 

where ρSC is the density of the internal standard in 
𝑚𝑔𝜇𝐿 . 

4.3 Results and Discussion 

4.3.a Fractional Factorial Design 

 A ¼ fractional factorial design was adopted to screen potential important 

fermentation parameters for the production of 2,3-BDO and ethanol. To get the 

concentration of the specific components an IRF was needed for calibration. Equation 4.2 

was used with equal volumes of the internal standard and the specific component. The 

IRF for 2,3-BDO and ethanol are 1.72 and 1.78, respectively, and the GC IRF data can be 

found in Appendix A Figures A-1 and A-2, respectively. Raw GC data for each 

experimental run for 2,3-BDO can be found in Appendix A Figures A-3 to A-18 and raw 

GC data for each experimental run for ethanol can be found in Appendix A Figures A-19 

to A.34. The concentrations of 2,3-BDO and ethanol for each experiment was determined 

from Equation 4.1 and is shown in Table 4-3. 
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Table 4-3: Concentrations of 2,3-BDO and ethanol  
for a six factor fractional factorial design. 

Std. Run Order 2,3-BDO (𝑚𝑔𝐿 ) Ethanol (𝑔𝐿) 
1 2.80 3.30 
2 25.00 2.30 
3 1.30 4.80 
4 2.20 16.00 
5 7.70 1.50 
6 5.60 0.80 
7 10.00 0.95 
8 2.10 2.50 
9 2.50 2.60 
10 1.00 1.20 
11 15.00 0.70 
12 10.00 0.85 
13 6.30 0.97 
14 6.10 0.84 
15 4.00 0.82 
16 4.60 0.60 

 

Minitab was used to determine which factors primarily affect the formation of 

2,3-BDO and ethanol. A Pareto Chart at 95% confidence for 2,3-BDO and ethanol are 

shown in Figure 4-2 and 4-3, respectively. 
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Figure 4-2: Pareto Chart of parameters effect on the formation of 2,3-BDO. 

 
Figure 4-3: Pareto Chart of parameters effect on the formation of 2,3-BDO with 95% 
confidence. 
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None of the factors surpass the 95% confidence interval line on either Pareto 

Chart; however, if the confidence interval is lowered to 80% then D-xylose and the 

interaction reaction between flow and O2 concentration significantly affect the formation 

of 2,3-BDO. This is represented in Figure 4-4. Lowering the confidence interval 

increases the chance that there is a Type II error.  

 
Figure 4-4: Pareto Chart of parameters effect on the formation of 2,3-BDO with 80% 
confidence. 

Equation 4.3 is the coded regression model for the production of 2,3-BDO with 

D-xylose, flow, and O2 concentrations as significant factors. From Equation 4.3, a 

maximum of 13 
𝑚𝑔𝐿  of 2,3-BDO can be formed in a 24 hour batch system with a pH of 

5.75, a gas flow rate of 0.4  
𝑚𝐿𝑚𝑖𝑛, a carbon monoxide concentration of 60 volume percent, 

a temperature of 35°C, and no D-xylose. [2,3𝐵𝐷𝑂] = 6.60 - 0.462�̇�𝑔𝑎𝑠 – 0.4143[𝑂2] – 2.996*[𝑆] + 2.652�̇�𝑔𝑎𝑠[𝑂2]  (4.3) 
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where [2,3BDO] is 2,3-BDO concentration in 
𝑚𝑔𝐿 , �̇�𝑔𝑎𝑠 is the coded value for gas flow 

rate, [S] is the coded value for substrate concentration, and [O2] is the coded value for 

oxygen concentration. 

None of the factors effected the production of ethanol at the 80% level, therefore 

a regression model could not be used. The average ethanol concentration over the 16 

experimental runs is 2.6 ± 2.0 
𝑔𝐿 with 95% confidence. 

4.3.b Optimum Product Production 

 The operating conditions from the previous section was used to check the validity 

of the model created and a time-based experiment was conducted to see how productivity 

changes over a 96 hour period. An updated Pareto Chart with the extra data point at 95% 

confidence for 2,3-BDO and ethanol are represented in Figure 4-5 and Figure 4-6, 

respectively.  

 
Figure 4-5: Pareto Chart of parameters effect on the formation of 2,3-BDO. 
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Figure 4-6: Pareto Chart of parameters effect on the formation of ethanol. 

From Figure 4-5 there appears to be two interactions that affect 2,3-BDO 

formation: flow interacting with D-xylose, and carbon monoxide concentration 

interacting with oxygen concentration. It is believed that the effects are actually two way 

interactions because the effect from the two way interactions are much greater than the 

product of the one way effects. The updated coded regression model for 2,3-BDO from 

this data are shown in Equation 4.4. As expected with more data the updated model for 

2,3-BDO better represents the data with an adjusted R2 of 0.76, while the original ¼ 

fractional factorial design had an adjusted R2 of 0.44.  [2,3𝐵𝐷𝑂] = 6.60 - 0.462�̇�𝑔𝑎𝑠 – 0.8054[𝐶𝑂] – 0.4143[𝑂2] – 2.996[𝑆] + 

29.14�̇�𝑔𝑎𝑠[𝑆] – 29.27[𝐶𝑂][𝑂2]     (4.4) 
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 As with the base ¼ fractional factorial design there does not appear to be any 

significant factors that affect ethanol production at the 95% confidence level. The mean 

for ethanol production with the additional data point was updated to 2.4 ± 1.9 
𝑔𝐿. 

 The time-based study was conducted to determine whether the products 2,3-BDO 

and ethanol could be consumed and if there is a local maximum concentration. Figure 4-7 

shows the 2,3-BDO and ethanol production over time. 

 
          Figure 4-7: 2,3-BDO and ethanol production over 96 hours. 

It appears that 2,3-BDO increases for the first 48 hours, but then decreases; 

whereas, ethanol continually decreases with time. This suggests that 2,3-BDO 

concentration is greatest between 24 and 72 hours, and ethanol concentration is greatest 

between 0 and 24 hours. No other studies exhibited a decreased concentration in ethanol 

or 2,3-BDO. The product could be metabolized by C. autoethanogenum as there are 

certain types of bacteria that can metabolize ethanol and 2,3-BDO[16], but this should be 

further investigated to verify.  

There was a huge difference between product concentrations from what was 

originally predicted by Equation 4.3 and the experimental data. Ethanol concentration is 
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below the expected value; whereas, 2,3-BDO concentration is three times greater than 

provided by the regression model. This suggests that the range of some or all of the 

parameters are too broad which causes a parabolic representation.  

4.3.c 2,3-BDO Rate of Formation Analysis 

 The measured concentration of 2,3-BDO in the product is quite lower than 

previous literature values. Table 4-4 provides literature values with the measured value 

for the formation of 2,3-BDO in batch or semi-batch systems. 

Table 4-4: Production of 2,3-BDO from previous researchers. 
Author 2,3-BDO (𝑚𝑔𝐿 )   TAI (hrs)   Substrate 

K�̈�pke et al. (2011)[7] 180 192 Steel Mill Syngas 
Kracke et al. (2016)[8]* 66 ± 110 100 Fructose 
Liew et al. (2017)[9]* 631 ± 220 312 Carbon Monoxide 
Experimental 42 24 Carbon Monoxide 

* 95% confidence 

Previous literature values for the formation of 2,3-BDO appear to be higher than 

what was determined; however, the reaction times are quite different for each author. The 

productivity of 2,3-BDO in the stationary phase within this article was 3.0 
𝑚𝑔𝐿−ℎ𝑟 after 24 

hours where Kracke et al. (2016), K�̈�pke et al. (2011), and Liew et al. (2017) achieved 

1.32 ± 2.27, 1.96, and 3.75 ± 1.33 
𝑚𝑔𝐿−ℎ𝑟, respectively. 2,3-BDO productivity was 

determined after the stationary phase was achieved because the analysis in previous 

literature suggested that 2,3-BDO is not formed until the stationary phase[7,9]. All of the 

errors previously listed are with a 95% confidence interval.  

4.3.d Ethanol Rate of Formation Analysis 

 The measured concentration of ethanol in the product is comparable to that of 

literature values; although there is a significant amount of error due to large variations in 

the parameters. Table 4-5 provides literature values with the measured value for the 
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formation of ethanol in batch or semi-batch systems. Ethanol is produced throughout the 

fermentation process; therefore, the productivity of ethanol, RE, is also found in Table 4-

5. 

Table 4-5: Production of ethanol from previous researchers. 
Author Ethanol (𝑚𝑔𝐿 ) TAI 

(hrs) 
Substrate RE ( 𝑚𝑔𝐿−ℎ𝑟) 

Cotter et al. (2009)[16] 235 48 D-xylose 4.90 
Guo et al. (2010)[17] 254 60 D-xylose 4.23 
K�̈�pke et al. (2011)[7] 967 192 Steel Mill Syngas 5.04 
Kracke et al. (2016)[8]* 812 ± 1220 100 Fructose 8.12 ± 12.2 
Liew et al. (2017)[9]* 875 ± 57 312 Carbon Monoxide 2.80 ± 0.18 
Xu et al. (2017)[18] 3,380 ± 719 624 Carbon Monoxide 5.42 ± 1.15 
Xu et al. (2017)[18] 253 ± 719 624 Synthetic Syngas 0.35 ± 1.15 
Experimental* 2,400 ± 1900 24 Carbon Monoxide 100 ± 80 

* 95% confidence 

From Table 4-5 it appears that Xu et al. (2017) exceeded the production of 

ethanol compared to other researchers including what was conducted within this research; 

however, when the rate of ethanol formation is looked at then the ethanol production is 

consistent with previous researchers. The only literature value for ethanol productivity 

that is comparable to this study is Kracke et al. (2016)[8] and this may be due to the large 

error associated from adjusting six parameters.  

The dramatic increase in ethanol formation within this thesis is believed to be a 

result from the increased growth rate experienced. By the time based experiment it 

appears that the metabolic pathway shifts from the production of ethanol to the 

production of 2,3-BDO. Although, after 48 hours both metabolites decrease which 

suggests that the metabolites are being consumed by C. autoethanogenum. 

4.4 Conclusion 

 Multiple factors can be experimented with limited experimental runs, and 2,3-

BDO can be approximated with a regressed model from those experiments. It appears 
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that the range chosen for each factor may have been too broad. This broad range posed 

trouble in narrowing down the local maximum for product formation, especially for 

ethanol production. The rate of 2,3-BDO and ethanol production exceeded previously 

literature values with a 2,3-BDO and average ethanol production rate of 5.18 and 100 ± 

80 
𝑚𝑔𝐿−ℎ𝑟, respectively. 
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Chapter 5  
Conclusions and Prospects 

 
 The novel bio-kinetic inhibition model derived is comparable and potentially 

superior to previous models. This model requires less fitting parameters and thus less data 

points. The derived model needs to be compared to other bacteria to further justify the 

superiority. 

The production rate of 2,3-BDO can be increased with an experimental design 

while using carbon monoxide as the primary substrate. From the experimental design, gas 

flow rate, oxygen, carbon monoxide, and D-xylose concentrations affect the production 

of 2,3-BDO with 95% confidence; whereas, ethanol production was unaffected. 

Production of 2,3-BDO does not appear to be significant until the stationary phase 

according to previous researchers results whereas ethanol production occurs throughout 

the entire fermentation process. The ethanol productivity experienced was drastically 

higher than previous literature values with carbon monoxide and syngas derived from 

coal. 2,3-BDO productivity was comparable to previous literature values at the optimum 

operating conditions, but was inferior while using syngas derived from coal. 

To further study this microbe on real syngas generated from coal it would be 

desirable to receive bottled syngas from commercialized producers such as the Energy 

and Environment Research Center (EERC) of Grand Forks, ND or Dakota Gasification 

Company (DGC) of Beulah, ND.
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Appendix A 
Raw Data and Figures 

 

Figure A-1: Calibration run of 30% 2,3-BDO, 30% methanol, and 40% water by volume. 

Figure A-2: Calibration run of 30% ethanol, 30% butanol, and 40% water by volume.   
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Figure A-3: 2,3-BDO GC analysis standard run order #1. 

 
Figure A-4: 2,3-BDO GC analysis standard run order #2. 
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Figure A-5: 2,3-BDO GC analysis standard run order #3. 

 
Figure A-6: 2,3-BDO GC analysis standard run order #4. 
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Figure A-7: 2,3-BDO GC analysis standard run order #5. 

 
Figure A-8: 2,3-BDO GC analysis standard run order #6. 
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Figure A-9: 2,3-BDO GC analysis standard run order #7. 

 
Figure A-10: 2,3-BDO GC analysis standard run order #8. 
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Figure A-11: 2,3-BDO GC analysis standard run order #9. 

 
Figure A-12: 2,3-BDO GC analysis standard run order #10. 
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Figure A-13: 2,3-BDO GC analysis standard run order #11. 

 
Figure A-14: 2,3-BDO GC analysis standard run order #12. 
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Figure A-15: 2,3-BDO GC analysis standard run order #13. 

 
Figure A-16: 2,3-BDO GC analysis standard run order #14. 
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Figure A-17: 2,3-BDO GC analysis standard run order #15. 

 
Figure A-18: 2,3-BDO GC analysis standard run order #16. 
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Figure A-19: Ethanol GC analysis standard run order #1. 

 
Figure A-20: Ethanol GC analysis standard run order #2. 
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Figure A-21: Ethanol GC analysis standard run order #3. 

 
Figure A-22: Ethanol GC analysis standard run order #4. 
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Figure A-23: Ethanol GC analysis standard run order #5. 

 
Figure A-24: Ethanol GC analysis standard run order #6. 
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Figure A-25: Ethanol GC analysis standard run order #7. 

 
Figure A-26: Ethanol GC analysis standard run order #8. 
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Figure A-27: Ethanol GC analysis standard run order #9. 

 
Figure A-28: Ethanol GC analysis standard run order #10. 
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Figure A-29: Ethanol GC analysis standard run order #11. 

 
Figure A-30: Ethanol GC analysis standard run order #12. 
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Figure A-31: Ethanol GC analysis standard run order #13. 

 
Figure A-32: Ethanol GC analysis standard run order #14. 
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Figure A-33: Ethanol GC analysis standard run order #15. 

 
Figure A-34: Ethanol GC analysis standard run order #16. 
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Figure A-35: 2,3-BDO GC analysis from syngas at 24 hours. 

 
Figure A-36: Ethanol GC analysis from syngas at 24 hours. 
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