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ABSTRACT 

The objective of the overall project is to chemically synthesize fatty acids, hydrocarbons, 

other fuel constituents, or high value chemicals directly from biomass-derived carbohydrates 

(e.g. sugars generated using processes developed for the cellulosic ethanol industry).  This work 

will look specifically at synthesizing lactic acid and its derivatives for later use to build 

chemically identical fuel components or high value chemicals.   

We have built upon recent advancements in the literature using Sn-doped beta zeolite 

catalysts.  Previous work has demonstrated that glucose can be chemically transformed into 

fructose then reduced to methyl lactate in a methanol solution.  Since these reactions are not 

biochemical, increased reaction rates can be realized by increasing temperatures above those 

tolerated by biological entities.  This should result in substantial savings in time and resources 

required to achieve the final end product.  These savings can translate into more cost effective 

pathways to renewable fuels and chemicals.   

The literature’s reported best results focused on sucrose substrate with a methanol solvent 

and achieved overall methyl lactate yields of 64%, with >99% conversion of the feedstock. The 

challenge this research undertook was to maximize selective conversion of glucose substrate, the 

main product from the breakdown of biomass, in a water solvent as an economical and “green” 

universal solvent.  An important part of this work was to carefully characterize side reaction 

constituents so that we can identify ways to transform these constituents into valuable co-

products in the future.  
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When operating conditions were optimized roughly 80% of all products were determined 

utilizing GC-MS analysis technique, greatly increasing the known product yields reported in the 

literature.  Lactic acid was maximized at 47% using Sn+4-doped beta zeolite in pure water.  

Levulinic acid was maximized at 53% recovered using Sn+2-doped beta zeolite in pure water.  

Methyl lactate, 22%, and methyl levulinate, 49%, were produced using Sn+4-doped beta zeolite 

in methanol.  These results are a key step in the overall project to produce fuel components and 

value chemicals from cellulosic biomass.  
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CHAPTER I  
INTRODUCTION 

Energy and food demands are projected to increase significantly with the steady increase 

in population and quality of life worldwide [1-5].  Taking into account the limited supply of 

fossil fuels and their associated enviromental concerns, the demand for renewable resources for 

fuels and chemicals is greatly increasing [2].  With a finite availability of landmass and water 

supply, production of renewable raw materials may impinge upon food production.   

The efficient conversion of lignocellulosic biomass to fuel and high value chemicals 

would be useful to address the emerging food versus fuel/chemical dilemma for an ever 

increasing global population while minimizing environmental degradation [5].  Greater than one 

billion dry tons of non-food based biomass can be sustainably produced annually in the US [6].  

These current untapped renewable resourses will provide an ecomoical feedstock for the 

production of renewable fuel componants and value chemicals.  This disseratation concentrates 

on utilizing glucose, which is the main product from the breakdown of biomass.  

Most notably, biomass is a carbon neutral process.  By contrast, crude oil consumption 

has harmful effects, mainly the increase emission of greenhouse gases, specifically CO2.  

Increased CO2 in the atmosphere is the leading cause of global climate change [7]. Climate 

change and other environmental health concerns related to burning fossil fuels have also become 

prevalent in today’s society [8-10].  The earth’s surface temperature has been increasing due to 

trapped radiant heat caused by increased concentrations of carbon dioxide, methane, nitrous 

oxide, ozone, halons, peroxyacetylnitrate, and CFCs [11, 12].  Table 1 shows the increase in 
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greenhouse gas concentration attributed to industrialization [12, 13].  Total emissions have 

grown 65% since 1971 [14].  Surface temperatures have already increased by 0.4-0.8 °C over the 

last century, causing an annual sea rise of 1-2mm, and 40% thinning of arctic ice since the 1950’s 

[15].   

 

Table 1: Global warming effects of common greenhouse gases  

 
 

It is important to look at economically maximizing all products and byproducts from 

renewable resources to create cost-effective alternatives to fossil fuels.  Fossil fuels have been 

driving economic growth through fuel for trade and manufactured goods since the beginning of 

the industrial era [16].  However, concerns about environmental effects and limited reserve 

capacity grow as demand continues to surge and population increases [17-21].  Available data 

suggest that current oil production techniques have a finite capacity to supply the growing 

demand, and unconventional sources will need to be implemented to avoid negative economic 

and environmental consequences [22].  Figure 1 shows the reduced frequency of new oil field 

discoveries along with the projected increase in demand, with an expected depletion within the 

century [23].  With the implementation of fracking techniques to access tight oil there is 

controversial data on when “peak oil” or crude oil depletion will actually occur [24].  Figure 2 

shows the expected increase of fracked oil, but only roughly matching traditional crude oil 
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production.  The crude oil supply is finite and one day will be unable to economically meet our 

increasing demand and the era of low cost petroleum will come to an end [17-27].  Although 

access to fracked oil helps relieve oil demand, it does amplify the amount of carbon released into 

the atmosphere. This is of interest for our work as lactic acid and levulinic acid have functional 

groups that will facilitate the building carbon neutral fuel components. 

 
Figure 1. Declining crude oil reserves shown by historical oil discovery, consumption, and 
forecasted production 
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Figure 2: Petroleum and other liquid fuel history and projections including tight oil production 

 

Researching and utilizing renewable technologies can help to mitigate the damaging 

effects from greenhouse emissions by developing carbon neutral technologies to minimize 

current fossil fuel uses; conversion of biomass to fuel and high value chemicals is one such 

technology [28].  Developing renewable transportation fuels is attractive because 85% of all 

crude oil consumed is for production of transportation fuels [29].   

Additionally, lactic acid and levulinic acid have multiple functional groups that can be 

utilized for synthesis of polymers, solvents, and other value chemicals.  These uses are also 

important, as 10% of crude oil is used for the production of industrial chemicals which are 

inherently more valuable than fuel [29, 30].  Historically, little attention has been given to 
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biomass based industrial chemicals [31].  Innovative developments are providing an argument 

that renewable feedstocks can be optimal for the chemical industry [32].  Renewable feedstocks 

are typically highly functionalized molecules, unlike fossil fuels, creating the challenge to 

develop a new set of tools to economically produce biomass based industrial chemicals [33,34]. 

This body of work concentrated on the production of lactic acid/derivatives and levulinic 

acid/derivatives from biomass derived glucose. Lactic acid and levulinic acid were optimized 

from glucose using Sn-doped beta zeolite type catalysts.  Economic versatility can be achieved 

through selectivity of the glucose towards either lactic or levulinic products, conversion of lactic 

or levulinic products toward fuel components, and/or conversion of levulinic products towards 

high value chemicals.  The combination of uses for fuel or value chemicals makes this research 

an important economic step in reducing fossil fuel consumption. Implementation of these 

technologies would decrease greenhouse emissions and reduce crude oil demand.  
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CHAPTER II 
LACTIC/LEVULINIC ACID 

1.1 Lactic Acid Literature Review 

Lactic acid was first discovered in 1780 in sour milk and was produced commercially by 

1881 [35].  Lactic acid is still largely used as a buffering agent, acidic flavoring agent, acidulant, 

and bacterial growth inhibitor within the food industry [36, 37].  The majority of the world’s 

production of lactic acid is from batch bacterial fermentations of carbohydrates [38].  

Lactobacilli can convert more than 90% of glucose to lactic acid, however there are multiple 

limitations to this biological reaction that limit its efficiency.  The reaction requires low to neutral 

pH, temperatures near 40 °C, low oxygen concentrations and large amounts of water [39].  In 

addition to specific carbohydrate feedstocks, the living organisms require complex nutrients, 

amino acids, and nucleotides [40].  Commercial fermentation is usually completed in three to six 

day batches with feedstock of up to only 10% saccharides, requiring a relatively large reaction 

vessel.  High lactic acid concentrations are desired for efficiency but lead to toxicity and growth 

inhibition of the lactobacilli [41].   

Recent discoveries have demonstrated non-biological pathways to produce lactic acid 

which may increase process efficiency by removing the limitations of living organisms such as 

low concentration of products, long fermentation times, requirements for nutrients, and moderate 

temperatures [42].  In 2005, Bicker et al. reported the thermal degradation of saccharides to 

produce 40% lactic acid when metal ions such as cobalt, nickel, copper and zinc were used as  

catalysts [43].  Five years later Homl and coworkers reported using metal doped zeolites to 
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convert triose saccharides to methyl lactate in a methanol solvent [44,45].  Further work from the 

Holm group showed that tin doped beta zeolites facilitated isomerization from glucose to 

fructose at 100 °C [46].  When reaction times were increased to 16 hours and temperature 

increased to 160 °C, the saccharides in a methanol solution would produce methyl lactate at a 

52% concentration from glucose and 64% from sucrose [42, 47, 48].  Yang and Liu found that 

three hours of microwave irradiation with zinc powder produced 40% lactic acid from an 

aqueous solution [49].   

Most recent publications show that equal additions of alkaline compounds converted 

glucose to 50% lactic acid with the best results from barium hydroxide under supercritical 

conditions [50].  Recent patents describe methods to produce 23% molar yield of lactic acid from 

cellulose using Al/Sn catalyst and 50% methyl lactate yield from fructose using tin containing 

compounds [51, 52].   

While the literature documents partial selectivity toward lactic acid derivatives there is 

still an information gap regarding ideal conditions for conversion of glucose to lactic acid in an 

aqueous solvent.  With the overall project goal to convert cellulosic biomass to valuable 

chemicals, the biomass glucose feedstock will be in an aqueous solution and it would be costly to 

transfer to methanol.  The best published results for a water solvent show only 27% lactic acid 

from sucrose, while the same substrate produced 64% methyl lactate in methanol [47].  Table 2 

shows the results Holm et al. published using sucrose and glucose with various catalysts to 

produce lactic acid or methyl lactate [42, 47, 53].  In our work we endeavor to optimize glucose 

to lactic acid conversion within an aqueous solvent.  Table 3 shows our best results for 

comparison to the current literature. 

 



8 

 

Table 2: A summary of published results for lactic acid and methyl lactate production from 
sugars with various catalysts and solvents  

Feed/ 
Solvent/ 
Catalyst 

Unreacted Lactic acid 

or methyl 
lactate 

Other Coke Unaccounted 
product 

Ref. 

Sucrose/ 
Methanol/ 
None 

46% 6% n/a n/a 48%  [42] 

Sucrose/ 
Methanol/ 
Si-Beta 

37% 6% n/a n/a 57%  [42] 

Sucrose/ 
Methanol/ 
Sn+4-Beta 

<1% 64% 10% 1.3% 24% [53] 

Sucrose/ 
Methanol/ 
SnCl4 

1% 31% n/a n/a 68%  [42] 

Sucrose/ 
Methanol/ 
SnCl2 

19% 4% n/a n/a 77%  [42] 

Sucrose/ 
Water/ 
Sn+4-Beta 

<1% 27% 7% 7% 58% [53] 

Glucose/ 
Methanol/ 
None 

47% 5% n/a n/a 48%  [42] 

Glucose/ 
Methanol/ 
Si-Beta 

39% 5% n/a n/a 56%  [42] 

Glucose/ 
Methanol/ 
Sn+4-Beta 

2% 51% 12% n/a 35%  [47] 
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Table 3: Summary of our best results for lactic acid and methyl lactate production from glucose 
with various catalysts and solvents 

Feed/ 
Solvent/ 
Catalyst 

Unreacted Lactic acid 

or methyl 
lactate 

Levulinic acid or 
methyl levulinate 

Other Coke Unaccounted 
product 

Glucose/ 
Methanol/ 
Sn+4-Beta 

4.4% 22% 49.2% 2.4% 2.7% 16.2% 

Glucose/ 
Water/ 
Sn+4-Beta 

2.3% 47.8% 0% 0% 24.2% 25.8% 

Glucose/ 
Methanol/ 
Sn+2-Beta 

1.8% 4.4% 52.8% 0% 13.7% 27.3% 

 

1.2 Levulinic Acid Production Literature Review 

Levulinic acid has been identified by the National Renewable Energy Laboratory (NREL) 

as one of the top ten molecules for the production of value-added chemicals and liquid 

transportation fuels from renewable sources [54].  Levulinic acid has several applications as a 

value chemical, including polymers, lubricants, adsorbents, coatings, batteries, drug delivery, 

corrosion inhibitors and many others [55-71].  The most common process for the production of 

levulinic acid from biomass used LZY zeolite catalyst or micro-porous acidic clay [72-74].  

Currently, the majority of commercial quantity production of renewable levulinic acid is from 

Biofine Corporation’s pilot plant at 1 ton/day. The plant converts >60% hexoses to levulinic acid 

with minimal side products [75-76].   

Our work shows high percentages of levulinic acid production from glucose, dependent 

on reaction conditions.  This is of great interest as it allows for the selectivity of either valuable 

product to produce, levulinic or lactic acid, within the same system depending on the current 

demand.  The following sections will show the optimization of lactic and levulinic acid 

production with the same equipment using slightly different catalysts.  
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1.3 Catalyst Selection 

The literature shows that Sn-beta zeolite has the highest selectivity towards lactic acid in 

methanol [42].  In our study, several readily available commercial catalysts were screened to 

confirm published results.  Table 4 shows the results of catalyst screening conducted for glucose 

at 140 °C in methanol, matching the ideal conditions in the literature.  While some of the results 

were better than no catalyst, the results did not come near to published results for methyl lactate 

and further efforts were spent towards production of Sn-doped beta zeolite for the degradation of 

glucose. 

 

Table 4: Methyl lactate and methyl levulinate results from catalyst screening experiments 

Catalyst Methyl Lactate Methyl Levulinate 

No Catalyst 4% 2% 

Sn(II)Cl 5·H2O 23% 10% 

Sn(IV) Acetate 5% 5% 

Zinc Acetate 14% 4% 

Montmorillonite 8% 7% 

Boron Tribromide 20% 24% 

Ag(II) Oxide 4% 2% 

Zr(IV)Hydroxide 4% 2% 

Titanium on Alumina 8% 2% 

Palladium on Activated Carbon 2% 2% 

Ni 55/5 commercial catalyst 10% 2% 

 

 

The best catalyst from the literature, results shown in Table 2, is tin beta zeolite and was 

produced from tetraethyl orthoxilacted, tetraethyl ammonium, tin (IV) chloride, hydrogen 

fluoride, and dealuminated beta seeds [53].  The procedure requires up to forty days for 

completion.  We were able to take advantage of recent zeolite doping procedures that allowed us 

to purchase beta zeolite and dope the zeolite with our desired metal ion, allowing catalyst 

production in under 48 hours [77, 78].  This work expands on previously published results for 
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doping HZSM-5 zeolites to beta zeolites doped with tin.  The optimization of this procedure is a 

previously undocumented advancement over any other published results dealing with this given 

metal dopant and zeolite. 

 

1.4 Experimental Setup 

1.4.1 Reactants, Standards and Catalysts 

Glucose (99.5% purity), methanol (99.8% purity), tin(II) chloride (98% purity), tin(IV) 

pentahydrate (98% purity), lactic acid (98% purity), methyl lactate (98% purity), levulinic acid 

(98% purity), methyl lactate (98% purity), furfural (99% purity), and 5-(hydroxymethyl)furfural 

(99% purity) were purchased from Sigma-Aldrich.  Beta zeolites with SiO2/Al2O3 ratios of 25, 

38, and 300 were purchased from Zeolyst International.  Ion free water was obtained from an in-

house ultra milli-Q filter system. Compressed nitrogen gas (99.99% purity) and hydrogen 

(99.95% purity) were purchased from Praxair. 

1.4.2 Catalyst Doping 

The purchased beta zeolite was calcined in a 600 °C oven for 8 hours to remove any 

possible settlement on the catalyst from shipping and storage.  The calcined beta zeolite was then 

dispersed in an aqueous solution of ultrapure water and mixed with the required amount of tin 

ion.  The solution was then sonicated overnight at 60 °C.  The doped zeolite was separated from 

the water with a gravity filter and placed in an oven at 150 °C to dry, followed by another calcine 

stage for 8 hours.  The calcined, doped zeolite was stored in sealed containers or used 

immediately in an experiment.  A detailed procedure is presented in Appendix A. 
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1.4.3 Autoclave Reactor 

All experiments were conducted in a 500 ml, high temperature, high pressure batch 

reactor (Parr 4575 series HP/HT reactor, manufacturing code: 4575A-G-GP-SS-115-VS.25-

5000-4857-TDM-MCM-PDM-HTMA1925E2-SVM) [79]. This code fully explains the reactor 

configuration and is explained as follows: 4575A is the base model number. G is the material of 

gasket used to seal the vessel to the head and is the code for graphite which is a compressed 

flexible gasket that can withstand up to 500 °C.  GP indicates a general purpose magnetic stirrer 

drive.  The material of construction of the head and the vessel is SS 316 and is indicated by SS.  

The system runs at 115 V and was indicated by the code 115. VS.25 specifies that the magnetic 

motor drive is a 190 watt (0.25 hp) motor.  The reactor has a pressure gauge with a range of 0 – 

34.5 MPa (5000 psig) indicated by the code 5000.  The controller code is a model 4857 and is 

equipped with a tachometer display module (TDM), motor control module (MCM), pressure 

display module (PDM), high temperature cut off module (HTM), and a solenoid valve module 

(SVM).  The overall setup includes the reactor, a controller, a condenser, and a collection 

cylinder.  Figure 3 shows a schematic of the 500 ml Parr autoclave used for all experiments.  
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Figure 3: Simplified schematic of autoclave reactor used for all experiments 

 

Agitation was provided by a variable speed electric DC motor using a magnetic drive.  It 

was capable of mixing at 600 RPM.  This magnetic drive is connected to the head of the reactor 

by a threaded pipe connection.  The magnetic stirring drive has two o-rings which seal the sleeve 

onto the stem of the drive housing preventing leaks at high pressure.  Because the autoclave ran 

at high temperatures (>100 °C) for all the reaction runs, it was necessary to have cooling water 

flow continuously to the jacket between the two o-rings to ensure proper operation of the 

magnetic drive.  The pressure transducer was also subjected to high temperatures and was 

equipped with a cooling jacket around it to ensure proper functioning.  

 A 4843 Parr controller was used to display and control the temperature and stirring rate 

and to display the pressure transducer output.  The controller also had a cut off module which 

worked as a safety feature to terminate power to the heater if it exceeded a set temperature.  A 
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safety cut-off feature also offered protection against accidental over-pressure by allowing the 

user to set a maximum pressure which, if reached, activates the high limit relay and turns the 

heater off.   

1.4.4 Experimental Reaction 

The specified amount of powdered beta zeolite catalyst was added to the reaction vessel, 

followed by the required amount of reactant glucose, and then dispersed in the specified volume 

of solvent.  Depending on the variables being tested, the exact quantity of catalyst, glucose, 

methanol, and water were varied and are specified for each experiment discussed in the 

experimental methods section.  Once the vessel was charged it was sealed in the Parr reactor and 

purged 5 times with nitrogen gas.  After passing an initial pressure test the heater was turned on 

and set to the specified temperature and the stirrer was turned on.   

Once the required reaction time was completed the heater was removed and cooling 

water was turned on to rapidly cool the mixture to room temperature.  The mixture was gravity 

filtered to separate the catalyst from solution.  All the coked catalyst was carefully collected from 

the agitator blades, cooling coil, thermocouple thermowell, all other internal parts of the reactor, 

and the reactor vessel. The difference in the weight of the catalyst before and after the reaction 

was measured to calculate the amount of coke produced.  Coke was the general term used for all 

organic solids on the catalyst and may be deposited carbon or insoluble byproducts.  The product 

solution was collected for future GC-MS analysis.  All parts of the reactor were cleaned and 

prepared for the next experiment.  A detailed procedure is presented in Appendix B. 

1.4.5 GC-MS Analysis 

GC-MS analyses were performed following the method developed by Kubatova and 

coworkers [80, 81].  This method uses GC separation and an MS detector (Agilent 6890GC-MS) 
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equipped with an autosampler (7386B series) and a split/splitless injector.  Separation was 

accomplished using a 30-m long DB-5 capillary column, 0.25mm internal diameter (I.D.) and 

0.25µm film thickness with a constant helium flow rate.  Analysis of acids was accomplished 

after derivation with BTSFA in pyridine solvent.  Detailed procedures for analysis and data 

processing are presented in Appendix C and Appendix D, respectively. 

 

1.5 Experimental Methods 

1.5.1 Design of Experiments – Screening Study 

A twelve run Plackett-Burman design was employed to test for any significant effects 

from eleven factors.  As this project’s catalyst synthesis was different from the published 

literature, seven of these factors were associated with the doping of the beta zeolite catalyst.  The 

other four factors optimized reaction conditions.   

Table 5 lists the low and high values for all eleven factors examined in the Plackett-

Burman screening study.   

 

Table 5:  Low and high values for eleven factors tested in the screening study 

Factor Low (-) High (+) 
SiO2/Al2O3 Ratio 25 300 

Calcine New Zeolite 0 °C 600 °C 

Intermediate H-doping No Yes 

Calcine H Doped Zeolite 0 °C 600 °C 

Tin Charge Sn+2 Sn+4 

Tin Added Mol Ratio 150% 300% 

Calcine Sn Doped Zeolite 400 °C 600 °C 

Water-to-Methanol Ratio 25% 75% 

Sn-beta zeolite 3 grams 6 grams 

Glucose 5 grams 10 grams 

Temperature 135 °C 165 °C 
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Factor one studied the effect of the SiO2/Al2O3 ratio of commercially available beta 

zeolites.  The 25 SiO2/Al2O3 ratio chosen will be slightly more hydrophobic than the 300, 

which will be more hydrophilic.  Both have similar surface areas of 680 and 620 m2/g, 

respectively.  The second factor looked at the need for precalcining of the purchased catalyst.  

The catalyst was submersed in a doping fluid and would remove any absorbed water or other 

contaminates and a precalcine at 600 °C may be unnecessary.  The third factor considered the 

effect of an intermediate H-doping step using ammonium nitrate.  This intermediate step has 

shown a favorable effect on other zeolite doping performed in our labs for the production of Zn-

ZSM-5 and Ga-ZSM-5 [82].  The fourth factor concerned calcining the intermediate H-beta 

catalyst at 600 °C for the same reason as factor two.  Factor five studied the effect of the tin 

charge, Sn+2 verses Sn+4.  Studies of Sn+2-doped beta zeolite have not been reported in the 

literature.  Factor six looked at the effect of adding different amounts of tin to the catalyst.  Both 

150% and 300% were evaluated to determine if there were any equilibrium effects occurring 

when displacing the sodium ions.  The seventh factor addressed the final calcine temperature of 

the Sn-doped beta zeolite.  Temperatures of 400 °C and 600 °C were tested to see if any thermal 

effects changed the novel Sn-doped beta zeolite. 

The other four factors were used to explore the operating conditions for the catalytic 

degradation of glucose to levulinic and lactic acids.  The eighth factor looked at the effect of 

water-to-methanol ratio.  Ratios of 25% and 75% were tested to study the effect of each solvent 

on the production of levulinic and lactic acids or their ester derivatives.  The ninth and tenth 

factors studied the effect of the catalyst-to-glucose ratio, as well as the effect of the concentration 

of reactants in the solution.  Factor nine varied between 3 to 6 grams of Sn-doped beta zeolite 



17 

 

and factor ten varied between 5 to 10 grams of glucose.  The last factor looked at the reaction 

temperature.  The literature has shown the highest conversion of sucrose at ~140 °C and 

preliminary experiments with glucose were performed to determine the temperature range.  The 

parameter range of 135 °C to 165 °C was selected based on these preliminary experiments. 

The twelve run Plackett-Burman design was studied in two blocks, with the twelve runs 

randomized in each block to screen for significant factors and begin optimization.  Six samples 

were taken from each of the 24 runs.  Three samples were taken near the beginning of the 

reaction at zero, one, and two hours to observe early reaction products.  Three samples were 

taken towards the end at 20, 21, and 22 hours to verify that the reaction had reached completion 

and to observe any potential product degradation.  Table 6 shows the run order and low/high 

factors studied in each run. 
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Table 6: Design of experiments screening study run order showing high and low values of each 
of the eleven factors tested 

Standard 

order 

Experimental 

order 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

1-1 1  +  + -  +  +  + - -  +  +  + 

1-2 7  + -  +  +  + - -  + -  +  + 

1-3 10 -  +  +  + - - - - - - - 

1-4 11  +  +  + - - -  + - -  + - 

1-5 2  +  + - - -  + -  +  + - - 

1-6 6  + - - -  + -  +  +  + -  + 

1-7 4 - - -  + -  +  + -  + -  + 

1-8 8 - -  + -  +  + -  + -  +  + 

1-9 5 -  + -  +  + -  + -  +  + - 

1-10 9  + -  +  + -  +  +  +  +  + - 

1-11 12 -  +  + -  +  +  +  + - - - 

1-12 3 - - - - - - - - - -  + 

2-1 23  +  + -  +  +  + - -  +  +  + 

2-2 13  + -  +  +  + - -  + -  +  + 

2-3 21 -  +  +  + - - - - - - - 

2-4 18  +  +  + - - -  + - -  + - 

2-5 14  +  + - - -  + -  +  + - - 

2-6 16  + - - -  + -  +  +  + -  + 

2-7 24 - - -  + -  +  + -  + -  + 

2-8 20 - -  + -  +  + -  + -  +  + 

2-9 22 -  + -  +  + -  + -  +  + - 

2-10 15  + -  +  + -  +  +  +  +  + - 

2-11 19 -  +  + -  +  +  +  + - - - 

2-12 17 - - - - - - - - - -  + 

 

1.6 Screening Study Results Based on Chemical Analysis 

The reaction begins slowly with little or no reaction during the first two hours.  Levulinic 

acid was typically the first product to form.  In over half the runs there was no sign of any 

products during the early stages.  The reaction was complete by hour twenty with no signs of loss 
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of product over the next two hours until the experiment was halted.  Figure 4 shows the time 

results for experiment 2-7 as it had the highest results for all target products.  

 

Figure 4: Experiment 2-7 showing the typical trend of product yields over time 

 

The last three samples, results at hours 20, 21, and 22 were averaged to represent the 

amount of product converted for that given run.  This was done to compensate for any possible 

variation in GC-MS analysis between injections.  The two repeat runs from each DOE block 

were averaged and the standard deviation was added to show repeatability.  Table 7 and Table 8 

show the analytical results of each product and congregated results, respectively.  Appendix E 
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shows the results from all experiments related to the degradation of glucose and Appendix F 

shoes all the data from the DOE statistical analysis. 

 

Table 7: Averaged analytical results of products from screening study 

Combined 

Run 

Methyl 

Lactate Furfural 

Methyl 

Levulinate Lactic Acid 

Levulinic  

Acid 

1 

3.34%  

± 0.59% 

1.68%  

± 0.75% 

22.51%  

± 0.57% 

2.43%  

± 0.11% 

47.88%  

± 2.59% 

2 

0%  

± 0% 

0.55%  

± 0.78% 

1.56%  

± 0.82% 

0.61%  

± 0.86% 

16.50%  

± 8.76% 

3 

0%  

± 0% 

0%  

± 0% 

0%  

± 0% 

0%  

± 0% 

5.95%  

± 2.02% 

4 

0%  

± 0% 

0.38%  

± 0.54% 

0%  

± 0% 

0%  

± 0% 

5.59% 

 ± 2.46% 

5 

0%  

± 0% 

0%  

± 0% 

0%  

± 0% 

0%  

± 0% 

6.72%  

± 0.96% 

6 

1.96%  

± 2.78% 

0.89%  

± 1.25% 

4.76%  

± 0.43% 

12.01%  

± 4.48% 

8.46%  

± 1.31% 

7 

3.58%  

± 1.18% 

2.18%  

± 0.63% 

22.07%  

± 0.59% 

2.51%  

± 0.23% 

44.00%  

± 4.83% 

8 

0%  

± 0% 

0.85%  

± 0.28% 

2.75%  

± 0.41% 

0%  

± 0% 

43.38%  

± 3.41% 

9 

0%  

± 0% 

0%  

± 0% 

0.56%  

± 0.8% 

0%  

± 0% 

6.84%  

± 4.53% 

10 

0%  

± 0% 

0.37%  

± 0.52% 

0%  

± 0% 

1.47%  

± 0.74% 

9.92%  

± 3.38% 

11 

0%  

± 0% 

0%  

± 0% 

0%  

± 0% 

0%  

± 0% 

5.42%  

± 1.00% 

12 

0.71%  

± 1.01% 

0.94%  

± 1.33% 

11.77%  

± 2.73% 

0.9%  

± 1.27% 

29.46%  

± 5.29% 
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Table 8: Summary of total products, unreacted glucose, and unaccounted products from 
screening study 

Combined 

Run 

Total  

Non-Acids Total Acids 

Total 

Products 

Unreacted 

Glucose 

Unaccounted 

product 

1 

27.53%  

± 0.73% 

50.31%  

± 2.7% 

77.84%  

± 3.43% 

4.85%  

± 0.03% 

17.31%  

± 3.40% 

2 

2.12%  

± 1.60% 

17.11%  

± 7.89% 

19.22%  

± 9.50% 

26.99%  

± 4.65% 

53.78%  

± 4.84% 

3 

0%  

± 0% 

5.95%  

± 2.02% 

5.95%  

± 2.02% 

43.1%  

± 1.24% 

50.95%  

± 3.25% 

4 

0.38%  

± 0.54% 

5.59%  

± 2.46% 

5.98%  

± 1.92% 

57.46%  

± 1.28% 

36.56%  

± 3.20% 

5 

0%  

± 0% 

6.72%  

± 0.96% 

6.72%  

± 0.96% 

53.53%  

± 0.25% 

39.75%  

± 0.71% 

6 

7.61%  

± 1.09% 

20.47%  

± 3.17% 

28.08%  

± 2.08% 

6.56%  

± 1.82% 

65.35%  

± 0.26% 

7 

27.83%  

± 1.14% 

46.51%  

± 5.06% 

74.34%  

± 3.92% 

12.45%  

± 7.61% 

13.21%  

± 3.69% 

8 

3.60%  

± 0.13% 

43.38%  

± 3.41% 

46.98%  

± 3.54% 

23.79%  

± 3.04% 

29.23%  

± 0.50% 

9 

0.56%  

± 0.80% 

6.84%  

± 4.53% 

7.40%  

± 5.33% 

53.01%  

± 0.76% 

39.59%  

± 6.08% 

10 

0.37%  

± 0.52% 

11.39%  

± 4.11% 

11.76%  

± 4.63% 

57.19%  

± 0.60% 

31.05%  

± 4.03% 

11 

0%  

± 0% 

5.42%  

± 1.00% 

5.42%  

± 1.00% 

82.44%  

± 3.75% 

12.14%  

± 4.75% 

12 

13.42%  

± 3.06% 

30.36%  

± 6.56% 

43.79%  

± 3.5% 

8.29%  

± 0.37% 

47.92%  

± 3.87% 

 

1.6.1 Statistical Analysis of Screening Study 

Glucose conversion increased with higher temperatures, increased catalyst-to-reactant 

ratio, and decreased water-to-methanol ratio.  Higher temperatures are known to increase 

reaction rates so this effect was expected.  The increased presence of catalyst helped facilitate the 

breakdown of glucose to target products.  The reduced amount of initial glucose apparently 

allowed a higher percentage of available glucose to react before possible coking or deactivation 

of the catalyst.  The increased conversion with higher methanol percentage supports literature 

findings that more coking was observed in aqueous solvents compared to methanol [48].  Figure 
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5 and Figure 6 show the glucose conversion Pareto chart with 90% confidence for the evaluated 

factors and the main effects plot, respectively. 

 

Figure 5: Screening study Pareto chart for glucose conversion 
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Figure 6: Screening study main effects plot for glucose conversion 

 

Methyl lactate production was aided by decreased water-to-methanol ratio, higher 

temperature, and small glucose amount.  The increase of available methanol content in the 

solvent promotes the ester formation over the acid which uses the available water.  The increased 

production of methyl lactate with higher temperature suggests a higher activity of the catalyst at 

higher temperatures.  The preference for reduced glucose concentration may suggest more 

coking or deactivation at higher concentrations.  Figure 7 and Figure 8 show the methyl lactate 

production Pareto chart with 90% confidence for the evaluated factors and the main effects plot, 

respectively. 
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Figure 7: Screening study Pareto chart for methyl lactate production 
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Figure 8: Screening study main effects plot for methyl lactate production 

 

Lactic acid production was increased with higher catalyst-to-glucose ratio, higher 

temperature, increased water solvent percentage, no H-doped beta intermediate, and use of 

increased Sn+4 for doping.  The higher temperature and increased catalyst-to-glucose ratio shows 

the selectivity of the catalyst for lactic acid.  A higher percentage of water allows for more acid 

production as compared to methyl esters.  The H-doped beta intermediate appeared to prevent 

full doping with tin.  Lewis acids have demonstrated selectivity for lactic acids [40]. Sn+4 is an 

oxidant and a slightly stronger Lewis acid than Sn+2; this may be essential for reactivity.  The 

higher SiO2/Al2O3 ratio will be more hydrophilic, promoting the reaction with water instead of 

methanol.  Figure 9 and Figure 10 show the lactic acid production Pareto chart with 90% 

confidence for the evaluated factors and the main effects plot, respectively. 
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Figure 9: Screening study Pareto chart for lactic acid production 
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Figure 10: Screening study main effects plot for lactic acid production 
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methyl esters.  Figure 11 and Figure 12 show the methyl levulinate production Pareto chart with 

90% confidence for the evaluated factors and the main effects plot, respectively. 

 

Figure 11: Screening study Pareto chart for methyl levulinate production 
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Figure 12: Screening study main effects plot for methyl levulinate production 

 

Levulinic acid production was only increased with higher temperatures.  This is 

interesting in that increased water percentage did not have an effect and suggests that water 

solvent promotes production of lactic acid over levulinic acid when Sn+4 is present.  Figure 13 

and Figure 14 show the levulinic acid production Pareto chart with 90% confidence for the 

evaluated factors and the main effects plot, respectively. 
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Figure 13: Screening study Pareto chart for levulinic acid production 
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Figure 14: Screening study main effects plot for levulinic acid production 

 

As this was a screening study, interactions between factors were not analyzed as the high 
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and further explorations to bound significant factors were conducted at higher temperatures, 
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significant factors for each product analyzed.   

 

 

 

 

1-1

0.3

0.2

0.1

1-1 1-1 1-1

1-1

0.3

0.2

0.1

1-1 1-1 1-1

1-1

0.3

0.2

0.1

1-1 1-1

E-300

M
e

a
n

0-600C  C alcine F resh Na-->H 0-600 C alcine H

Sn+2/+4 150-300% Sn/Beta 400-600C  SnBeta 25-75% H20/Me

3-6g C at. 5-10g Glucose 135-165 Rxn T

Main Effects Plot for Levulinic acid
Data Means



32 

 

Table 9: Significant factors discovered in the Plackett-Burman screening study 

 Methanol Temp. Glucose Catalyst H 
Doped 

Sn+2/
Sn+4 

25/300 
Beta 

Tin 
wt.% 

Glucose  +  +  -  +     

Methyl 
Lactate 

 +  +  -      

Lactic 
Acid 

 -  +  -  +  -  +  +  

Methyl 
Levulinate 

 +  +  -  +  -  -  -  + 

Levulinic 
Acid 

  +       

 “+” indicates an increased effect on production “-” indicates a decreased effect on production 

 

Increased temperature, increased catalyst-to-glucose ratio, and pure solvents favored 

target products.  Further studies were then performed for higher temperatures and with an 

increased catalyst-to-glucose ratio.  Pure methanol was used to target methyl lactate and methyl 

levulinate.  Pure water was used to target lactic acid using Sn+4-doped beta zeolite. 

1.6.2 Temperature Bounding Studies 

Increased temperatures were found to favor production of all target products therefore a 

one-variable-at-a-time set of experiments was conducted.  All operating conditions, except for 

temperature, were set identically to the screening study experiments.  Lactic acid production was 

increased with higher temperature, increased water solvent percentage, and use of increased Sn+4 

for doping on the zeolite with a 300 SiO2/Al2O3 ratio.  Figure 15 shows the temperature 

bounding experiments for maximum lactic acid production at 200 °C.  Moderate amounts of 

levulinic acid and lactic acid were still reported above 200 °C, however the amounts of 

unaccounted products grow substantially.  This signifies unwanted thermal degradation of 

glucose before any conversion to target products.  If there was thermal degradation of target 

products past 200 °C, they would not be present during analysis, like unreacted glucose. 



33 

 

 

Figure 15: Temperature experiments in pure water solvent using Sn+4-doped beta zeolite 

 

Levulinic acid production was only increased with higher temperatures.  Further 

temperature studies were performed on Sn+2-doped beta zeolite. Figure 16 shows the temperature 

bounding experiments for maximum levulinic acid with moderate lactic acid production at 

200 °C.  The upper limit of 200 °C was chosen as the previous study showed significant thermal 

degradation of the glucose feedstock. 
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Figure 16: Temperature experiments in pure water solvent using Sn+2-doped beta zeolite 

 

1.6.3 Triplicate Results Under Optimized Conditions 

Lactic acid production was maximized at 200 °C using Sn+4-doped beta zeolite in pure 

water.  Three identical experiments were conducted using the procedure previously described.  

Of the five grams of glucose added, 26.7% and 37.2% successfully converted to lactic acid and 

levulinic acid, respectively.  Under these operating conditions glucose also undergoes 

isomerization to fructose and mannose.  As these three monosaccharides are known isomers at 

elevated temperatures they are grouped together to account for 11.2% unreacted feed.  Visible 

blackening and increased weight of the collected catalyst is assumed coke, which accounted for 

9.2% of the reacted feed.  15.8% of the glucose is still unaccounted for and assumed to be 
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random caramelized products that are soluble but not eluted during GC-MS analysis.  Figure 17 

shows the target products, unreacted feed, coke, and combined analysis results with standard 

deviation for the three runs.

 

Figure 17: Results from triplicate experiments at 200 °C using Sn+4 beta zeolite in pure water 

 

Levulinic acid production was maximized at 200 °C using Sn+2-doped beta zeolite in pure 

water.  Triplicate runs showed an increase of ~15% levulinic acid for a total production of 

52.8%.  The increase in levulinic acid yields came at the expense of lactic acid production with 

only 4.4% selectivity toward lactic acid.  The competition for reactant favors levulinic acid 
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without the presence of Sn+4.  Coke production was slightly increased which may be due to the 

almost complete consumption of glucose leading to lower selectivity.  The yield of unaccounted 

products were also increased, which may also be caused by the high glucose consumption.  A 

portion of the unaccounted products should also be formic acid, a known co-product of levulinic 

acid.  Based on  molecular weight comparison of formic acid and levulinic acid, there could be 

up to 10% weight production of formic acid.   However, due to the drying process that was 

needed to derivatize the samples for GC-MS analysis, formic acid was absent.  Even the formic 

acid placed in the calibration standards was not observed in the calibration analysis.  Figure 18 

shows the full recoverable analyte results along with standard deviations for the three runs with 

Sn+2-doped beta zeolite in pure water. 
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Figure 18: Results from triplicate experiments at 200 °C using Sn+2-doped beta zeolite in pure 
water 

 

Methyl lactate and methyl levulinate were maximized at 200 °C using Sn+4-doped beta 

zeolite in methanol.  Triplicate results showed 49.2% methyl levulinate, 22.0% methyl lactate, 

and 2.4% methyl vinyl glycolate.  It is important to note that these results are based on weight of 

corresponding atoms from glucose.  The methyl group was contributed from the methanol 

solvent, so its weight was subtracted as to not skew the results of feed converted.  Although most 

of the glucose was consumed, use of the methanol solvent resulted in significantly less coking.  

The less polar solvent may be able to remove any formed precursors of coke and keep the 

catalyst active for a longer period of time.  Figure 19 and Figure 20 show the analyte results and 
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grouped products from triplicate experiments at 200 °C using Sn+4-doped beta zeolite in 

methanol. 

 

Figure 19: Results from triplicate experiments at 200 °C using Sn+4-doped beta zeolite in 
methanol 
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Figure 20: Grouped results from triplicate experiments at 200 °C using Sn+4-doped beta zeolite in 
methanol 

 

With the main goal of lactic acid production, one more set of triplicates was performed 

with Sn+4-doped beta zeolite in pure water.  For these reactions, the amount of glucose was 

reduced from five grams to only two grams with only 200 ml of water.  This was done to 

increase the catalyst-to-glucose ratio and keep the overall concentration similar to prior 

experiments. The increased catalyst amount had a great effect on lactic acid production, with 

47.8% selectivity.  Surprisingly, there was no levulinic acid measured in these runs, however 

unaccounted products also increased to 25.8%.  A similar total amount of coke was recovered in 

both the two and five gram experiments, which represents a higher percentage of coke formed 
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due to the smaller initial feed weight.  Apparently, higher catalyst amounts, while increasing 

reactivity also decrease the selectivity of the catalytic process.  Figure 21 shows the lactic acid 

production, unreacted feed, coke, and combined analysis results along with standard deviation 

for the three runs.

 

Figure 21: Results from triplicate experiments at 200 °C using Sn+4-doped beta zeolite in pure 
water with increased catalyst-to-glucose ratio 

 

1.7 Lactic Acid and Levulinic Production Recommendations 

Lactic acid was maximized with Sn+4-doped beta zeolite in pure water.  Since glucose is 

readily soluble in water, increased conversion or processing efficiency could be implemented 

with a continuous process.   Future work should look at setting up a bench scale packed bed 

reactor.  Feed flow rate, glucose concentration, temperature, and pressure can be optimized with 
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the new reactor.  Sampling at specified time intervals will provide kinetic information as well as 

information about catalyst deactivation.  Once optimized with a glucose solution, the reactor 

should be tested on glucose solutions made from biomass degradation.  This step will determine 

whether any purification processing would be needed to protect the catalyst. 

Commercial processing for conversion of biomass to fuel components would start with 

production of glucose from the biomass feedstock.  This could be accomplished using 

technology that is currently in place for glucose production in cellulosic ethanol plants, or 

preferentially utilizing current UND research on maximizing glucose production from biomass.  

The biomass degradation product stream would then be fed to a purification system if needed.  

The purified stream could then be fed into a packed bed reactor with Sn+4-doped beta zeolite for 

lactic acid or Sn+2-doped beta zeolite for levulinic acid.  The lactic acid or levulinic acid solution 

would then be separated, most likely a distillation tower.  The concentrated lactic acid or 

levulinic acid stream would be fed into another catalytic reactor to utilize their functional groups 

to make fuel components or value chemicals.   

Depending on market demand, the Sn-doped beta zeolite reactor can be switched between 

Sn+4-doped beta zeolite for lactic acid or Sn+2-doped for levulinic acid.  The conversion of the 

acids to fuel components or value chemicals can also be selected for maximum profit.  Assuming 

high conversion of glucose from the biomass and high conversion of lactic acid or levulinic acid 

to fuel components or value chemicals, up to 50% of renewable biomass could be converted into 

valuable products using Sn-doped beta zeolite catalyst that was maximized with this research.  
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1.8 Methyl Lactate or Methyl Levulinate Production Recommendations  

The catalyst to glucose ratio should be explored in greater detail.  Future experiments 

would focus on increasing the added catalyst amount instead of decreasing the substrate.  

Reducing the overall solvent amount is another area of interest, by increasing the substrate 

concentration above lactobacilli limitations will demonstrate one of the main advantages over 

biological processes.  

Overall conversion of glucose was maximized with Sn+4-doped beta zeolite in pure 

methanol, producing 22% methyl lactate and 49% methyl levulinate.   However, as glucose 

solubility in methanol is only 0.037 M, a continuous stir fed reactor (CSTR) would be more 

efficient.  A bench scale CSTR system could be set up with catalyst and glucose charged in the 

CSTR, and pure methanol would be introduced.  As methyl lactate and methyl levulinate are 

readily soluble in methanol, the product stream from the CSTR would contain the target 

compounds.   Initial glucose concentration, temperature, and pressure can be optimized with the 

CSTR.  Sampling at specified time intervals will provide kinetic information as well as 

information about catalyst deactivation. 

 Commercial processing for conversion of biomass to fuel components would start with 

the same technique as above to maximize glucose from biomass.  However since methanol will 

be the new solvent, there will need to be a separation process to crystalize the glucose and 

transfer it to the CSTR.   Once the CSTR is charged with biomass derived glucose and Sn+4-

doped beta zeolite, the reactor would be filled with methanol and heated to reaction temperature.  

The product stream containing both methyl lactate and methyl levulinate would then be 

separated, most likely in a distillation tower.  The separated methyl lactate and methyl levulinate 
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streams would be fed into their respective catalytic reactors to utilize their functional groups to 

make fuel components or value chemicals.   

There may be a cost prohibitive step of transferring the biomass derived glucose to 

methanol.  In addition, this setup does not have the same versatility to target methyl levulinate or 

methyl lactate, although it has a higher overall conversion of glucose and less coke formation.  

Assuming high conversion of glucose from the biomass and high conversion methyl lactate and 

methyl levulinate to fuel components or value chemicals, up to 70% of renewable biomass could 

be converted into valuable products.    
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CHAPTER III 
CONCLUSIONS 

Lactic acid and levulinic acids along with their methyl ester derivatives were selectively 

produced using a novel Sn-doped beta zeolite.  A twelve run Plackett-Burman design of 

experiments study was implemented to study catalyst synthesis as well as operating conditions.  

The DOE for catalyst synthesis showed Sn+4 was selective towards lactic acid and its derivatives 

while the Sn+2 was selective towards levulinic acid and its derivatives. The intermediate step of 

H-beta showed a negative effect on total Sn doping and was removed from all future synthesis.   

The solvent factor from the DOE showed simultaneous production of both the acids and 

methyl esters.  However, preference for the related products was dependent on which solvent, 

water or methanol, was dominant.  For example higher methanol solvent promoted methyl 

lactate over lactic acid.  As there was no increase on overall conversion with the mixed solvents 

all future runs were conducted in pure methanol or water solvent.   

The DOE on operating conditions also showed that increased temperature promoted 

production of target products and the next set of experiments concentrated on bounding the 

temperature limit.  There was an increase of target products up to 200 °C.  After 200 °C there 

was a moderate decrease in target products but a significant increase in unaccounted products.  

All future experiments were conducted at the optimal 200 °C. 

Triplicate runs were conducted under the experimental conditions that maximized target 

product yields.  When using Sn+4-doped beta zeolite in pure water with a high catalyst-to-glucose 

ratio 47% lactic acid was produced with 26% unaccounted product.  Levulinic acid yield was 
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maximized with 53% selectivity and 27% unaccounted product using Sn+2-doped beta zeolite.  

Methyl lactate, 22%, and methyl levulinate, 49%, were produced using Sn+4-doped beta zeolite 

in methanol, with only 16% unaccounted product.  All triplicate results were successful in 

defining a large majority of the products.  The experiments also showed that the yield of each 

targeted product could be maximized by changing the dopant or solvent.   

Current UND research is focused on maximizing glucose recovery from biomass 

degradation and future research will look at utilizing lactic acid, levulinic acid, methyl lactate, 

and methyl levulinate for conversion to fuel components or value products.  While this body of 

work shows just one step in the process, it was significant in showing that up to 50% lactic acid 

or levulinic acid can be recovered from an aqueous system, where previous publications only 

produced 27%.  Utilizing glucose in an aqueous system will provide substantial cost savings in 

preprocessing the biomass derived glucose.  If the methanol solvent route is preferred, our work 

showed an increase of recovered products to 70% including the unreported methyl levulinate.  

This is a 20% increase compared to literature results for glucose conversion in a methanol 

solution.  Our research fills an information gap in the literature as well as provides essential 

information for continuing research to allow further processing towards either fuels or value 

chemicals from renewable biomass.
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APPENDIX A 

ZEOLITE DOPING 

The procedure for doping was identical whether using the 25 or 300 SiO2/Al2O3 ratio 

beta zeolite.  Thirty grams of the purchased zeolite was calcined at 600 °C for 8 hours.  When the 

zeolite was cooled to room temperature it was dispersed in a doping solution and stirred until 

well dispersed.  The doping solution was prepared with 1 gram SnCl4·5H2O or 0.5 grams SnCl2 

in 50 ml of 1 mol HCl to help dissolve the salt.  Parafilm was placed over the opening of the 

glass container and the container was then place in a sonicator.  It was sonicated overnight; note 

that the sonicator fluid warms to about 60 °C from normal operation without the need to turn on 

the heater.  The next day a funnel with filter paper was set up to collect the doped zeolite.  The 

sonicated solution was carefully poured into the filter paper and let set overnight.  When the 

contents of the filter paper was a thick paste all contents were scraped off the filter paper into a 

ceramic dish and calcined at 400 °C for 8 hours.  When the Sn-doped zeolite was cooled it was 

sealed in a glass container for future use. 

 

 

 

 

 

 



47 

 

APPENDIX B 

AUTOCLAVE EXPERIMENT SETUP 

Using a mass balance and weigh dish ten grams of Sn-doped beta zeolite were measured 

and all contents of the weigh dish were placed into the clean reactor vessel.  Five grams of 

glucose were measured and placed in the reactor vessel.  300 ml ultra-pure water from the 

millipore purifying system was measured in a clean graduated cylinder then slowly added to the 

reactor vessel.  A thin layer of vacuum grease was placed on the reactor vessel lip to ensure a 

complete seal was formed and to protect the high pressure gasket from sticking to the vessel.  

The reaction vessel was then ready to be connected to the rest of the Parr reactor.  Both 

halves of the reactor vessel clamp were placed and the safety clasps were connected to hold the 

reactor in place.  The eight bolts sealing the vessel were tightened with a torque wrench set to 20 

foot-pounds to protect the gasket from over tightening.  Bolts were tightened, alternating 

between opposite sides to prevent over tightening of one side and to ensure an even sealing of 

the reactor.  Once all bolts were tightened to 20 foot-pounds, the torque wrench was set to 35 

foot-pounds and the alternating tightening procedure was repeated.  The 35 foot-pounds 

tightening sequence was done twice to ensure all the bolts were correctly tightened and a proper 

seal was formed.   

Once the reactor was sealed, the gas phase needed to be purged to remove atmospheric 

gasses.  The nitrogen input line was slowly opened to increase the pressure of the reactor to 300 

psig.  Then the vent was slowly opened to relieve the built up pressure.  This procedure was used 
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to purge the reactor with nitrogen five times.  After purging the vessel the reactor was charged 

one last time with nitrogen to 300 psi and all inlet valves on the reactor were closed.   

Once the reactor was sealed and charged the Parr heater was raised and locked into place 

around the reactor vessel.  The cooling water line was opened and the bypass line was closed, to 

ensure the cooling water was only used for temperature control.  The heater was turned on and 

set to 200 °C.  If the temperature raised above 200 °C the cooling water bypass valve was opened 

shortly until 200 °C was achieved.  The temperature was maintained at 200±1 °C.  The stirring 

motor was set to 400 RPMs and signified the start of the reaction.   

After 20 hours the reaction was considered complete and the heater was turned off and 

lowered, the cooling water bypass valve was opened, and a small fan was placed to blow over 

the reactor vessel.  When the reactor was cooled to room temperature the gas vent was slowly 

opened, bringing the reaction mixture back to atmospheric pressure.   

The bolts on the seal clamp were loosened in the same order as they were tightened.  The 

clasps on the clamp were opened and the vessel was removed from the rest of the Parr reactor.  

Using a 2 ml syringe a small volume of the reactor fluid was removed, filtered through a micron, 

and collected in a small container for later analysis.  A funnel with filter paper was set up to 

separate the solids from the liquid reactor solution.  The reactor fluid was carefully poured into 

the filter paper to collect the used catalyst.  All solids were removed from the agitator blades, 

cooling coil, thermocouple thermowell, all other internal parts of the reactor, and the reactor 

vessel and placed in the filter paper.  When all the fluid had drained the liquid was placed in a 

large storage vessel.  The filter paper with the collected used catalyst was set aside to let dry.  

When completely dry and the used catalyst was again in powder form it was weighed to calculate 

the amount of coke formed.  
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APPENDIX C 

GC-MS ANALYSIS 

Exactly 20 µl of the micron filtered collected sample from the completed reaction was 

placed in a new two ml autosampler vial.  The vial was placed under a slow nitrogen flow to dry 

the sample.  When the sample was dry 60 µl pyridine and 60 µl BTSFA derivatizing solution 

were added.  The autosampler vial was capped using a crimping tool.  The sample was vortexed 

and placed in a 70 °C oven overnight.  The next day the autosampler vial was opened and one ml 

of dilute internal standard solution was added and resealed.  The internal standard solution was 

made with 4 mg of o-terphenyl in 100 ml of DCM.   

 Calibration samples were prepared using purchased stock chemicals.  Calibration solution 

was prepared by accurately measuring approximately ten mg of stock chemicals which were then 

dissolved in 1ml of methanol.  Exactly 40 µl of the calibration sample were placed in an 

autosampler vial and dried with a nitrogen flow.  When the sample was dry 300 µl pyridine and 

300 µl BTSFA derivatizing solution were added.  The calibration vial was capped using a 

crimping tool.  The calibration sample was vortexed and placed in a 70 °C oven overnight.  The 

next day the calibration vial was opened and half of its contents, 300 µl, were transferred to a 

new autosampler vial that contained 300 µl DCM.  Again half of its contents, 300 µl, were 

transferred to a new autosampler vial that contained 300 µl DCM.  This was done seven times 

creating eight serial dilution calibration samples where each new vial was half the concentration 

of the previous.  300 µl of the last dilution was discarded leaving eight samples all with 300 ml 
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of calibration standards.   One ml of dilute internal standard solution was added to all the 

calibration vials and the vials were sealed. 

All sample vials and calibration vials were placed in the Agilent 6890GC-MS 

autosampler tray.  The run order was started with a neat DCM vial to ensure a flat baseline was 

observed and the instrument was not contaminated.  Three runs of a test mix, provided by Dr. 

Kubatova’s group, was then analyzed to ensure the detector’s measurements were accurate and 

repeatable.  Another neat DCM blank was injected to flush the column and check again for 

possible carryover of analytes.  The eight calibration runs, starting with the most dilute were 

injected with another DCM blank after the first four.  Then the reactor samples were injected 

with a DCM blank after every three or four injections.  After all the reactor samples were 

injected the eight calibration runs were injected again with another DCM blank after the first 

four.  The sequence was ended with another triplicate of the test mix and DCM blank.  If the 

sequence lasted more than a day, intermediate calibrations were inserted to ensure everything 

was working correctly.  Table 10 shows an example of the GC-MS analysis used on a multiday 

sequence used for during the DOE study. 
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Table 10: Example of GC-MS analysis sequence 

13-0813_EI_CK 

DB-5ms 28m Column, Splitless w/o Glass Wool, 50 mL/min split 
 

Type Vial Sample Method Data File Notes 

Blank 1 DCM blank TM01_EI 001_Blank  

Sample 2 Testmix_low TM01_EI 002_MC59-2D Test Mix 

Sample 2 Testmix_low TM01_EI 003_MC59-2D Test Mix 

Sample 2 Testmix_low TM01_EI 004_MC59-2D Test Mix 

Blank 1 DCM blank CK_TEST03_EI 005_Blank  

Sample 3 CK23_01 CK_TEST03_EI 006_CK23_01 Underivatized 
Calibration 

Sample 4 CK23_02 CK_TEST03_EI 007_CK23_02 Underivatized 
Calibration 

Sample 5 CK23_03 CK_TEST03_EI 008_CK23_03 Underivatized 
Calibration 

Sample 6 CK23_04 CK_TEST03_EI 009_CK23_04 Underivatized 
Calibration 

Blank 1 DCM blank TM01_EI 010_Blank  

Sample 7 CK23_05 CK_TEST03_EI 011_CK23_05 Underivatized 
Calibration 

Sample 8 CK23_06 CK_TEST03_EI 012_CK23_06 Underivatized 
Calibration 

Sample 9 CK23_07 CK_TEST03_EI 013_CK23_07 Underivatized 
Calibration 

Sample 10 CK23_08 CK_TEST03_EI 014_CK23_08 Underivatized 
Calibration 

Blank 1 DCM blank TM01_EI 015_Blank  

Sample 11 CK23_098 CK_TEST03_EI 016_CK23_098 Underivatized 
Sample 

Sample 12 CK23_099 CK_TEST03_EI 017_CK23_099 Underivatized 
Sample 

Sample 13 CK23_100 CK_TEST03_EI 018_CK23_100 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 019_Blank  

Sample 14 CK23_101 CK_TEST03_EI 020_CK23_101 Underivatized 
Sample 

Sample 15 CK23_102 CK_TEST03_EI 021_CK23_102 Underivatized 
Sample 

Sample 16 CK23_103 CK_TEST03_EI 022_CK23_103 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 023_Blank  
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Table 10 Continued 

 

Sample 17 CK23_106 CK_TEST03_EI 024_CK23_106 Underivatized 
Sample 

Sample 18 CK23_107 CK_TEST03_EI 025_CK23_107 Underivatized 
Sample 

Sample 19 CK23_108 CK_TEST03_EI 026_CK23_108 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 027_Blank  

Sample 20 CK23_109 CK_TEST03_EI 028_CK23_109 Underivatized 
Sample 

Sample 21 CK23_110 CK_TEST03_EI 029_CK23_110 Underivatized 
Sample 

Sample 22 CK23_111 CK_TEST03_EI 030_CK23_111 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 031_Blank  

Sample 7 CK23_05 CK_TEST03_EI 032_CK23_05 Underivatized 
Check 

Blank 1 DCM blank TM01_EI 033_Blank  

Sample 23 CK23_114 CK_TEST03_EI 034_CK23_114 Underivatized 
Sample 

Sample 24 CK23_115 CK_TEST03_EI 035_CK23_115 Underivatized 
Sample 

Sample 25 CK23_116 CK_TEST03_EI 036_CK23_116 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 037_Blank  

Sample 26 CK23_117 CK_TEST03_EI 038_CK23_117 Underivatized 
Sample 

Sample 27 CK23_118 CK_TEST03_EI 039_CK23_118 Underivatized 
Sample 

Sample 28 CK23_119 CK_TEST03_EI 040_CK23_119 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 041_Blank  

Sample 29 CK23_122 CK_TEST03_EI 042_CK23_122 Underivatized 
Sample 

Sample 30 CK23_123 CK_TEST03_EI 043_CK23_123 Underivatized 
Sample 

Sample 31 CK23_124 CK_TEST03_EI 044_CK23_124 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 045_Blank  

Sample 32 CK23_125 CK_TEST03_EI 046_CK23_125 Underivatized 
Sample 

Sample 33 CK23_126 CK_TEST03_EI 047_CK23_126 Underivatized 
Sample 
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Table 10 Continued 

 

Sample 34 CK23_127 CK_TEST03_EI 048_CK23_127 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 049_Blank  

Sample 7 CK23_05 CK_TEST03_EI 050_CK23_05 Underivatized 
Check 

Blank 1 DCM blank TM01_EI 051_Blank  

Sample 35 CK23_130 CK_TEST03_EI 052_CK23_130 Underivatized 
Sample 

Sample 36 CK23_131 CK_TEST03_EI 053_CK23_131 Underivatized 
Sample 

Sample 37 CK23_132 CK_TEST03_EI 054_CK23_132 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 055_Blank  

Sample 38 CK23_133 CK_TEST03_EI 056_CK23_133 Underivatized 
Sample 

Sample 39 CK23_134 CK_TEST03_EI 057_CK23_134 Underivatized 
Sample 

Sample 40 CK23_135 CK_TEST03_EI 058_CK23_135 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 059_Blank  

Sample 41 CK23_138 CK_TEST03_EI 060_CK23_138 Underivatized 
Sample 

Sample 42 CK23_139 CK_TEST03_EI 061_CK23_139 Underivatized 
Sample 

Sample 43 CK23_140 CK_TEST03_EI 062_CK23_140 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 063_Blank  

Sample 44 CK23_141 CK_TEST03_EI 064_CK23_141 Underivatized 
Sample 

Sample 45 CK23_142 CK_TEST03_EI 065_CK23_142 Underivatized 
Sample 

Sample 46 CK23_143 CK_TEST03_EI 066_CK23_143 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 067_Blank  

Sample 3 CK23_01 CK_TEST03_EI 068_CK23_01 Underivatized 
Calibration 

Sample 4 CK23_02 CK_TEST03_EI 069_CK23_02 Underivatized 
Calibration 

Sample 5 CK23_03 CK_TEST03_EI 070_CK23_03 Underivatized 
Calibration 

Sample 6 CK23_04 CK_TEST03_EI 071_CK23_04 Underivatized 
Calibration 
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Blank 1 DCM blank TM01_EI 072_Blank  

Sample 7 CK23_05 CK_TEST03_EI 073_CK23_05 Underivatized 
Calibration 

Sample 8 CK23_06 CK_TEST03_EI 074_CK23_06 Underivatized 
Calibration 

Sample 9 CK23_07 CK_TEST03_EI 075_CK23_07 Underivatized 
Calibration 

Sample 10 CK23_08 CK_TEST03_EI 076_CK23_08 Underivatized 
Calibration 

Blank 1 DCM blank TM01_EI 077_Blank  

Sample 47 CK23_146 CK_TEST03_EI 078_CK23_146 Underivatized 
Sample 

Sample 48 CK23_147 CK_TEST03_EI 079_CK23_147 Underivatized 
Sample 

Sample 49 CK23_148 CK_TEST03_EI 080_CK23_148 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 081_Blank  

Sample 50 CK23_149 CK_TEST03_EI 082_CK23_149 Underivatized 
Sample 

Sample 51 CK23_150 CK_TEST03_EI 083_CK23_150 Underivatized 
Sample 

Sample 52 CK23_151 CK_TEST03_EI 084_CK23_151 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 085_Blank  

Sample 53 CK23_154 CK_TEST03_EI 086_CK23_154 Underivatized 
Sample 

Sample 54 CK23_155 CK_TEST03_EI 087_CK23_155 Underivatized 
Sample 

Sample 55 CK23_156 CK_TEST03_EI 088_CK23_156 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 089_Blank  

Sample 56 CK23_157 CK_TEST03_EI 090_CK23_157 Underivatized 
Sample 

Sample 57 CK23_158 CK_TEST03_EI 091_CK23_158 Underivatized 
Sample 

Sample 58 CK23_159 CK_TEST03_EI 092_CK23_159 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 093_Blank  

Sample 7 CK23_05 CK_TEST03_EI 094_CK23_05 Underivatized 
Check 

Blank 

 

1 DCM blank TM01_EI 095_Blank  
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Sample 59 CK23_162 CK_TEST03_EI 096_CK23_162 Underivatized 
Sample 

Sample 60 CK23_163 CK_TEST03_EI 097_CK23_163 Underivatized 
Sample 

Sample 61 CK23_164 CK_TEST03_EI 098_CK23_164 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 099_Blank  

Sample 62 CK23_165 CK_TEST03_EI 100_CK23_165 Underivatized 
Sample 

Sample 63 CK23_166 CK_TEST03_EI 101_CK23_166 Underivatized 
Sample 

Sample 64 CK23_167 CK_TEST03_EI 102_CK23_167 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 103_Blank  

Sample 65 CK23_170 CK_TEST03_EI 104_CK23_170 Underivatized 
Sample 

Sample 66 CK23_171 CK_TEST03_EI 105_CK23_171 Underivatized 
Sample 

Sample 67 CK23_172 CK_TEST03_EI 106_CK23_172 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 107_Blank  

Sample 68 CK23_173 CK_TEST03_EI 108_CK23_173 Underivatized 
Sample 

Sample 69 CK23_174 CK_TEST03_EI 109_CK23_174 Underivatized 
Sample 

Sample 70 CK23_175 CK_TEST03_EI 110_CK23_175 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 111_Blank  

Sample 7 CK23_05 CK_TEST03_EI 112_CK23_05 Underivatized 
Check 

Blank 1 DCM blank TM01_EI 113_Blank  

Sample 71 CK23_178 CK_TEST03_EI 114_CK23_178 Underivatized 
Sample 

Sample 72 CK23_179 CK_TEST03_EI 115_CK23_179 Underivatized 
Sample 

Sample 73 CK23_180 CK_TEST03_EI 116_CK23_180 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 117_Blank  

Sample 74 CK23_181 CK_TEST03_EI 118_CK23_181 Underivatized 
Sample 

Sample 75 CK23_182 CK_TEST03_EI 119_CK23_182 Underivatized 
Sample 
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Sample 76 CK23_183 CK_TEST03_EI 120_CK23_183 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 121_Blank  

Sample 77 CK23_186 CK_TEST03_EI 122_CK23_186 Underivatized 
Sample 

Sample 78 CK23_187 CK_TEST03_EI 123_CK23_187 Underivatized 
Sample 

Sample 79 CK23_188 CK_TEST03_EI 124_CK23_188 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 125_Blank  

Sample 80 CK23_189 CK_TEST03_EI 126_CK23_189 Underivatized 
Sample 

Sample 81 CK23_190 CK_TEST03_EI 127_CK23_190 Underivatized 
Sample 

Sample 82 CK23_191 CK_TEST03_EI 128_CK23_191 Underivatized 
Sample 

Blank 1 DCM blank TM01_EI 129_Blank  

Sample 3 CK23_01 CK_TEST03_EI 130_CK23_01 Underivatized 
Calibration 

Sample 4 CK23_02 CK_TEST03_EI 131_CK23_02 Underivatized 
Calibration 

Sample 5 CK23_03 CK_TEST03_EI 132_CK23_03 Underivatized 
Calibration 

Sample 6 CK23_04 CK_TEST03_EI 133_CK23_04 Underivatized 
Calibration 

Blank 1 DCM blank TM01_EI 134_Blank  

Sample 7 CK23_05 CK_TEST03_EI 135_CK23_05 Underivatized 
Calibration 

Sample 8 CK23_06 CK_TEST03_EI 136_CK23_06 Underivatized 
Calibration 

Sample 9 CK23_07 CK_TEST03_EI 137_CK23_07 Underivatized 
Calibration 

Sample 10 CK23_08 CK_TEST03_EI 138_CK23_08 Underivatized 
Calibration 

Blank 1 DCM blank TM01_EI 139_Blank  

Sample 2 Testmix_low TM01_EI 140_MC59-2D Test Mix 

Sample 2 Testmix_low TM01_EI 141_MC59-2D Test Mix 

Sample 2 Testmix_low TM01_EI 142_MC59-2D Test Mix 

Blank 1 DCM blank TM01_EI 143_Blank  

Sample 

 

 

11 CK19_09d JR_BSTFA_06_EI 144_CK19-09d Derivatized 
Calibration 
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Sample 12 CK19_10d JR_BSTFA_06_EI 145_CK19-10d Derivatized 
Calibration 

Sample 13 CK19_11d JR_BSTFA_06_EI 146_CK19-11d Derivatized 
Calibration 

Sample 14 CK19_12d JR_BSTFA_06_EI 147_CK19-12d Derivatized 
Calibration 

Blank 1 DCM blank TM01_EI 148_Blank  

Sample 15 CK19_13d JR_BSTFA_06_EI 149_CK19-13d Derivatized 
Calibration 

Sample 16 CK19_14d JR_BSTFA_06_EI 150_CK19-14d Derivatized 
Calibration 

Sample 17 CK19_15d JR_BSTFA_06_EI 151_CK19-15d Derivatized 
Calibration 

Sample 18 CK19_16d JR_BSTFA_06_EI 152_CK19-16d Derivatized 
Calibration 

Blank 1 DCM blank TM01_EI 153_Blank  

Sample 19 CK19_96d JR_BSTFA_06_EI 154_CK19-96d Derivatized 
Sample 

Sample 20 CK19_97d JR_BSTFA_06_EI 155_CK19-97d Derivatized 
Sample 

Sample 21 CK19_98d JR_BSTFA_06_EI 156_CK19-98d Derivatized 
Sample 

Sample 22 CK19_99d JR_BSTFA_06_EI 157_CK19-99d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 158_Blank  

Sample 15 CK19_13d JR_BSTFA_06_EI 159_CK19-13d Derivatized 
Check 

Blank 1 DCM blank TM01_EI 160_Blank  

Sample 23 CK20_02d JR_BSTFA_06_EI 161_CK20-02d Derivatized 
Sample 

Sample 24 CK20_03d JR_BSTFA_06_EI 162_CK20-03d Derivatized 
Sample 

Sample 25 CK20_04d JR_BSTFA_06_EI 163_CK20-04d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 164_Blank  

Sample 26 CK20_05d JR_BSTFA_06_EI 165_CK20-05d Derivatized 
Sample 

Sample 27 CK20_06d JR_BSTFA_06_EI 166_CK20-06d Derivatized 
Sample 

Sample 28 CK20_07d JR_BSTFA_06_EI 167_CK20-07d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 168_Blank  
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Sample 29 CK20_10d JR_BSTFA_06_EI 169_CK20-10d Derivatized 
Sample 

Sample 30 CK20_11d JR_BSTFA_06_EI 170_CK20-11d Derivatized 
Sample 

Sample 31 CK20_12d JR_BSTFA_06_EI 171_CK20-12d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 172_Blank  

Sample 32 CK20_13d JR_BSTFA_06_EI 173_CK20-13d Derivatized 
Sample 

Sample 33 CK20_14d JR_BSTFA_06_EI 174_CK20-14d Derivatized 
Sample 

Sample 34 CK20_15d JR_BSTFA_06_EI 175_CK20-15d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 176_Blank  

Sample 15 CK19_13d JR_BSTFA_06_EI 177_CK19-13d Derivatized 
Check 

Blank 1 DCM blank TM01_EI 178_Blank  

Sample 35 CK20_18d JR_BSTFA_06_EI 179_CK20-18d Derivatized 
Sample 

Sample 36 CK20_19d JR_BSTFA_06_EI 180_CK20-19d Derivatized 
Sample 

Sample 37 CK20_20d JR_BSTFA_06_EI 181_CK20-20d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 182_Blank  

Sample 38 CK20_21d JR_BSTFA_06_EI 183_CK20-21d Derivatized 
Sample 

Sample 39 CK20_22d JR_BSTFA_06_EI 184_CK20-22d Derivatized 
Sample 

Sample 40 CK20_23d JR_BSTFA_06_EI 185_CK20-23d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 186_Blank  

Sample 41 CK20_26d JR_BSTFA_06_EI 187_CK20-26d Derivatized 
Sample 

Sample 42 CK20_27d JR_BSTFA_06_EI 188_CK20-27d Derivatized 
Sample 

Sample 43 CK20_28d JR_BSTFA_06_EI 189_CK20-28d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 190_Blank  

Sample 44 CK20_29d JR_BSTFA_06_EI 191_CK20-29d Derivatized 
Sample 

Sample 45 CK20_30d JR_BSTFA_06_EI 192_CK20-30d Derivatized 
Sample 
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Sample 46 CK20_31d JR_BSTFA_06_EI 193_CK20-31d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 194_Blank  

Sample 15 CK19_13d JR_BSTFA_06_EI 195_CK19-13d Derivatized 
Check 

Blank 1 DCM blank TM01_EI 196_Blank  

Sample 47 CK20_34d JR_BSTFA_06_EI 167_CK20-34d Derivatized 
Sample 

Sample 48 CK20_35d JR_BSTFA_06_EI 198_CK20-35d Derivatized 
Sample 

Sample 49 CK20_36d JR_BSTFA_06_EI 199_CK20-36d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 200_Blank  

Sample 50 CK20_37d JR_BSTFA_06_EI 201_CK20-37d Derivatized 
Sample 

Sample 51 CK20_38d JR_BSTFA_06_EI 202_CK20-38d Derivatized 
Sample 

Sample 52 CK20_39d JR_BSTFA_06_EI 203_CK20-39d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 204_Blank  

Sample 53 CK20_42d JR_BSTFA_06_EI 205_CK20-42d Derivatized 
Sample 

Sample 54 CK20_43d JR_BSTFA_06_EI 206_CK20-43d Derivatized 
Sample 

Sample 55 CK20_44d JR_BSTFA_06_EI 207_CK20-44d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 208_Blank  

Sample 56 CK20_45d JR_BSTFA_06_EI 209_CK20-45d Derivatized 
Sample 

Sample 57 CK20_46d JR_BSTFA_06_EI 210_CK20-46d Derivatized 
Sample 

Sample 58 CK20_47d JR_BSTFA_06_EI 211_CK20-47d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 212_Blank  

Sample 11 CK19_09d JR_BSTFA_06_EI 213_CK19-09d Derivatized 
Calibration 

Sample 12 CK19_10d JR_BSTFA_06_EI 214_CK19-10d Derivatized 
Calibration 

Sample 13 CK19_11d JR_BSTFA_06_EI 215_CK19-11d Derivatized 
Calibration 

Sample 14 CK19_12d JR_BSTFA_06_EI 216_CK19-12d Derivatized 
Calibration 
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Blank 98 DCM blank TM01_EI 217_Blank  

Sample 15 CK19_13d JR_BSTFA_06_EI 218_CK19-13d Derivatized 
Calibration 

Sample 16 CK19_14d JR_BSTFA_06_EI 219_CK19-14d Derivatized 
Calibration 

Sample 17 CK19_15d JR_BSTFA_06_EI 220_CK19-15d Derivatized 
Calibration 

Sample 18 CK19_16d JR_BSTFA_06_EI 221_CK19-16d Derivatized 
Calibration 

Blank 98 DCM blank TM01_EI 222_Blank  

Sample 59 CK20_50d JR_BSTFA_06_EI 223_CK20-50d Derivatized 
Sample 

Sample 60 CK20_51d JR_BSTFA_06_EI 224_CK20-51d Derivatized 
Sample 

Sample 61 CK20_52d JR_BSTFA_06_EI 225_CK20-52d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 226_Blank  

Sample 62 CK20_53d JR_BSTFA_06_EI 227_CK20-53d Derivatized 
Sample 

Sample 63 CK20_54d JR_BSTFA_06_EI 228_CK20-54d Derivatized 
Sample 

Sample 64 CK20_55d JR_BSTFA_06_EI 229_CK20-55d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 230_Blank  

Sample 65 CK20_58d JR_BSTFA_06_EI 231_CK20-58d Derivatized 
Sample 

Sample 66 CK20_59d JR_BSTFA_06_EI 232_CK20-59d Derivatized 
Sample 

Sample 67 CK20_60d JR_BSTFA_06_EI 233_CK20-60d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 234_Blank  

Sample 68 CK20_61d JR_BSTFA_06_EI 235_CK20-61d Derivatized 
Sample 

Sample 69 CK20_62d JR_BSTFA_06_EI 236_CK20-62d Derivatized 
Sample 

Sample 70 CK20_63d JR_BSTFA_06_EI 237_CK20-63d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 238_Blank  

Sample 15 CK19_13d JR_BSTFA_06_EI 239_CK19-13d Underivatized 
Check 

Blank 98 DCM blank TM01_EI 240_Blank 
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Sample 71 CK20_66d JR_BSTFA_06_EI 241_CK20-66d Derivatized 
Sample 

Sample 72 CK20_67d JR_BSTFA_06_EI 242_CK20-67d Derivatized 
Sample 

Sample 73 CK20_68d JR_BSTFA_06_EI 243_CK20-68d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 244_Blank  

Sample 74 CK20_69d JR_BSTFA_06_EI 245_CK20-69d Derivatized 
Sample 

Sample 75 CK20_70d JR_BSTFA_06_EI 246_CK20-70d Derivatized 
Sample 

Sample 76 CK20_71d JR_BSTFA_06_EI 247_CK20-71d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 248_Blank  

Sample 77 CK20_74d JR_BSTFA_06_EI 249_CK20-74d Derivatized 
Sample 

Sample 78 CK20_75d JR_BSTFA_06_EI 250_CK20-75d Derivatized 
Sample 

Sample 79 CK20_76d JR_BSTFA_06_EI 251_CK20-76d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 252_Blank  

Sample 80 CK20_77d JR_BSTFA_06_EI 253_CK20-77d Derivatized 
Sample 

Sample 81 CK20_78d JR_BSTFA_06_EI 254_CK20-78d Derivatized 
Sample 

Sample 82 CK20_79d JR_BSTFA_06_EI 255_CK20-79d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 256_Blank  

Sample 15 CK19_13d JR_BSTFA_06_EI 257_CK19-13d Derivatized 
Check 

Blank 98 DCM blank TM01_EI 258_Blank  

Sample 83 CK20_82d JR_BSTFA_06_EI 259_CK20-82d Derivatized 
Sample 

Sample 84 CK20_83d JR_BSTFA_06_EI 260_CK20-83d Derivatized 
Sample 

Sample 85 CK20_84d JR_BSTFA_06_EI 261_CK20-84d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 262_Blank  

Sample 86 CK20_85d JR_BSTFA_06_EI 263_CK20-85d Derivatized 
Sample 

Sample 87 CK20_86d JR_BSTFA_06_EI 264_CK20-86d Derivatized 
Sample 
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Sample 88 CK20_87d JR_BSTFA_06_EI 265_CK20-87d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 266_Blank  

Sample 89 CK20_90d JR_BSTFA_06_EI 267_CK20-90d Derivatized 
Sample 

Sample 90 CK20_91d JR_BSTFA_06_EI 268_CK20-91d Derivatized 
Sample 

Sample 91 CK20_92d JR_BSTFA_06_EI 269_CK20-92d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 270_Blank  

Sample 92 CK20_93d JR_BSTFA_06_EI 271_CK20-93d Derivatized 
Sample 

Sample 93 CK20_94d JR_BSTFA_06_EI 272_CK20-94d Derivatized 
Sample 

Sample 94 CK20_95d JR_BSTFA_06_EI 273_CK20-95d Derivatized 
Sample 

Blank 98 DCM blank TM01_EI 274_Blank  

Sample 11 CK19_09d JR_BSTFA_06_EI 275_CK19-09d Derivatized 
Calibration 

Sample 12 CK19_10d JR_BSTFA_06_EI 276_CK19-10d Derivatized 
Calibration 

Sample 13 CK19_11d JR_BSTFA_06_EI 277_CK19-11d Derivatized 
Calibration 

Sample 14 CK19_12d JR_BSTFA_06_EI 278_CK19-12d Derivatized 
Calibration 

Blank 98 DCM blank TM01_EI 279_Blank  

Sample 15 CK19_13d JR_BSTFA_06_EI 280_CK19-13d Derivatized 
Calibration 

Sample 16 CK19_14d JR_BSTFA_06_EI 281_CK19-14d Derivatized 
Calibration 

Sample 17 CK19_15d JR_BSTFA_06_EI 282_CK19-15d Derivatized 
Calibration 

Sample 18 CK19_16d JR_BSTFA_06_EI 283_CK19-16d Derivatized 
Calibration 

Blank 98 DCM blank TM01_EI 284_Blank  

Sample 2 Testmix_low TM01_EI 285_MC59-2D Test Mix 

Sample 2 Testmix_low TM01_EI 286_MC59-2D Test Mix 

Sample 2 Testmix_low TM01_EI 287_MC59-2D Test Mix 

Blank 98 DCM blank TM01_EI 288_Blank  

Sample 19 CK19_96d JR_BSTFA_06_EI 289_CK19-96d Derivatized 
Calibration 
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Sample 20 CK19_97d JR_BSTFA_06_EI 290_CK19-97d Derivatized 
Calibration 

Sample 21 CK19_98d JR_BSTFA_06_EI 291_CK19-98d Derivatized 
Calibration 

Sample 22 CK19_99d JR_BSTFA_06_EI 292_CK19-99d Derivatized 
Calibration 

Blank 1 DCM blank TM01_EI 293_Blank  

Sample 11 CK19_09d JR_BSTFA_06_EI 294_CK19-09d Derivatized 
Calibration 

Sample 12 CK19_10d JR_BSTFA_06_EI 295_CK19-10d Derivatized 
Calibration 

Sample 13 CK19_11d JR_BSTFA_06_EI 296_CK19-11d Derivatized 
Calibration 

Sample 14 CK19_12d JR_BSTFA_06_EI 297_CK19-12d Derivatized 
Calibration 

Blank 1 DCM blank TM01_EI 298_Blank  

Sample 15 CK19_13d JR_BSTFA_06_EI 299_CK19-13d Derivatized 
Calibration 

Sample 16 CK19_14d JR_BSTFA_06_EI 300_CK19-14d Derivatized 
Calibration 

Sample 17 CK19_15d JR_BSTFA_06_EI 301_CK19-15d Derivatized 
Calibration 

Sample 18 CK19_16d JR_BSTFA_06_EI 302_CK19-16d Derivatized 
Calibration 

Blank 1 DCM blank TM01_EI 303_Blank  

Sample 3 CK23_01d JR_BSTFA_06_EI 304_CK23_01d Derivatized 
Calibration 

Sample 4 CK23_02d JR_BSTFA_06_EI 305_CK23_02d Derivatized 
Calibration 

Sample 5 CK23_03d JR_BSTFA_06_EI 306_CK23_03d Derivatized 
Calibration 

Sample 6 CK23_04d JR_BSTFA_06_EI 307_CK23_04d Derivatized 
Calibration 

Blank 1 DCM blank TM01_EI 308_Blank  

Sample 7 CK23_05d JR_BSTFA_06_EI 309_CK23_05d Derivatized 
Calibration 

Sample 8 CK23_06d JR_BSTFA_06_EI 310_CK23_06d Derivatized 
Calibration 

Sample 9 CK23_07d JR_BSTFA_06_EI 311_CK23_07d Derivatized 
Calibration 

Sample 10 CK23_08d JR_BSTFA_06_EI 312_CK23_08d Derivatized 
Calibration 
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Blank 1 DCM blank TM01_EI 312a_Blank  

Sample 11 CK23_098d JR_BSTFA_06_EI 313_CK23_098d Derivatized 
Sample 

Sample 12 CK23_099d JR_BSTFA_06_EI 314_CK23_099d Derivatized 
Sample 

Sample 13 CK23_100d JR_BSTFA_06_EI 315_CK23_100d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 316_Blank  

Sample 14 CK23_101d JR_BSTFA_06_EI 317_CK23_101d Derivatized 
Sample 

Sample 15 CK23_102d JR_BSTFA_06_EI 318_CK23_102d Derivatized 
Sample 

Sample 16 CK23_103d JR_BSTFA_06_EI 319_CK23_103d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 320_Blank  

Sample 17 CK23_106d JR_BSTFA_06_EI 321_CK23_106d Derivatized 
Sample 

Sample 18 CK23_107d JR_BSTFA_06_EI 322_CK23_107d Derivatized 
Sample 

Sample 19 CK23_108d JR_BSTFA_06_EI 323_CK23_108d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 324_Blank  

Sample 20 CK23_109d JR_BSTFA_06_EI 325_CK23_109d Derivatized 
Sample 

Sample 21 CK23_110d JR_BSTFA_06_EI 326_CK23_110d Derivatized 
Sample 

Sample 22 CK23_111d JR_BSTFA_06_EI 327_CK23_111d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 328_Blank  

Sample 87 CK19_13d JR_BSTFA_06_EI 329_CK19-13d Derivatized 
Check 

Blank 1 DCM blank TM01_EI 330_Blank  

Sample 23 CK23_114d JR_BSTFA_06_EI 331_CK23_114d Derivatized 
Sample 

Sample 24 CK23_115d JR_BSTFA_06_EI 332_CK23_115d Derivatized 
Sample 

Sample 25 CK23_116d JR_BSTFA_06_EI 333_CK23_116d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 334_Blank  

Sample 26 CK23_117d JR_BSTFA_06_EI 335_CK23_117d Derivatized 
Sample 
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Sample 27 CK23_118d JR_BSTFA_06_EI 336_CK23_118d Derivatized 
Sample 

Sample 28 CK23_119d JR_BSTFA_06_EI 337_CK23_119d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 338_Blank  

Sample 29 CK23_122d JR_BSTFA_06_EI 339_CK23_122d Derivatized 
Sample 

Sample 30 CK23_123d JR_BSTFA_06_EI 340_CK23_123d Derivatized 
Sample 

Sample 31 CK23_124d JR_BSTFA_06_EI 341_CK23_124d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 342_Blank  

Sample 32 CK23_125d JR_BSTFA_06_EI 343_CK23_125d Derivatized 
Sample 

Sample 33 CK23_126d JR_BSTFA_06_EI 344_CK23_126d Derivatized 
Sample 

Sample 34 CK23_127d JR_BSTFA_06_EI 345_CK23_127d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 346_Blank  

Sample 87 CK19_13d JR_BSTFA_06_EI 347_CK19-13d Derivatized 
Check 

Blank 1 DCM blank TM01_EI 348_Blank  

Sample 35 CK23_130d JR_BSTFA_06_EI 349_CK23_130d Derivatized 
Sample 

Sample 36 CK23_131d JR_BSTFA_06_EI 350_CK23_131d Derivatized 
Sample 

Sample 37 CK23_132d JR_BSTFA_06_EI 351_CK23_132d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 352_Blank  

Sample 38 CK23_133d JR_BSTFA_06_EI 353_CK23_133d Derivatized 
Sample 

Sample 39 CK23_134d JR_BSTFA_06_EI 354_CK23_134d Derivatized 
Sample 

Sample 40 CK23_135d JR_BSTFA_06_EI 355_CK23_135d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 356_Blank  

Sample 41 CK23_138d JR_BSTFA_06_EI 357_CK23_138d Derivatized 
Sample 

Sample 42 CK23_139d JR_BSTFA_06_EI 358_CK23_139d Derivatized 
Sample 

Sample 43 CK23_140d JR_BSTFA_06_EI 359_CK23_140d Derivatized 
Sample 
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Table 10 Continued 

 

Blank 1 DCM blank TM01_EI 360_Blank  

Sample 44 CK23_141d JR_BSTFA_06_EI 361_CK23_141d Derivatized 
Sample 

Sample 45 CK23_142d JR_BSTFA_06_EI 362_CK23_142d Derivatized 
Sample 

Sample 46 CK23_143d JR_BSTFA_06_EI 363_CK23_143d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 364_Blank  

Sample 83 CK19_09d JR_BSTFA_06_EI 365_CK19-09d Derivatized 
Calibration 

Sample 84 CK19_10d JR_BSTFA_06_EI 366_CK19-10d Derivatized 
Calibration 

Sample 85 CK19_11d JR_BSTFA_06_EI 367_CK19-11d Derivatized 
Calibration 

Sample 86 CK19_12d JR_BSTFA_06_EI 368_CK19-12d Derivatized 
Calibration 

Blank 1 DCM blank TM01_EI 369_Blank  

Sample 87 CK19_13d JR_BSTFA_06_EI 370_CK19-13d Derivatized 
Calibration 

Sample 88 CK19_14d JR_BSTFA_06_EI 371_CK19-14d Derivatized 
Calibration 

Sample 89 CK19_15d JR_BSTFA_06_EI 372_CK19-15d Derivatized 
Calibration 

Sample 90 CK19_16d JR_BSTFA_06_EI 373_CK19-16d Derivatized 
Calibration 

Blank 1 DCM blank TM01_EI 374_Blank  

Sample 47 CK23_146d JR_BSTFA_06_EI 375_CK23_146d Derivatized 
Sample 

Sample 48 CK23_147d JR_BSTFA_06_EI 376_CK23_147d Derivatized 
Sample 

Sample 49 CK23_148d JR_BSTFA_06_EI 377_CK23_148d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 378_Blank  

Sample 50 CK23_149d JR_BSTFA_06_EI 379_CK23_149d Derivatized 
Sample 

Sample 51 CK23_150d JR_BSTFA_06_EI 380_CK23_150d Derivatized 
Sample 

Sample 52 CK23_151d JR_BSTFA_06_EI 381_CK23_151d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 382_Blank  

Sample 53 CK23_154d JR_BSTFA_06_EI 383_CK23_154d Derivatized 
Sample 
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Table 10 Continued 

 

Sample 54 CK23_155d JR_BSTFA_06_EI 384_CK23_155d Derivatized 
Sample 

Sample 55 CK23_156d JR_BSTFA_06_EI 385_CK23_156d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 386_Blank  

Sample 56 CK23_157d JR_BSTFA_06_EI 387_CK23_157d Derivatized 
Sample 

Sample 57 CK23_158d JR_BSTFA_06_EI 388_CK23_158d Derivatized 
Sample 

Sample 58 CK23_159d JR_BSTFA_06_EI 389_CK23_159d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 390_Blank  

Sample 87 CK23_05d JR_BSTFA_06_EI 391_CK23_05d Derivatized 
Check 

Blank 1 DCM blank TM01_EI 392_Blank  

Sample 59 CK23_162d JR_BSTFA_06_EI 393_CK23_162d Derivatized 
Sample 

Sample 60 CK23_163d JR_BSTFA_06_EI 394_CK23_163d Derivatized 
Sample 

Sample 61 CK23_164d JR_BSTFA_06_EI 395_CK23_164d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 396_Blank  

Sample 62 CK23_165d JR_BSTFA_06_EI 397_CK23_165d Derivatized 
Sample 

Sample 63 CK23_166d JR_BSTFA_06_EI 398_CK23_166d Derivatized 
Sample 

Sample 64 CK23_167d JR_BSTFA_06_EI 399_CK23_167d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 400_Blank  

Sample 65 CK23_170d JR_BSTFA_06_EI 401_CK23_170d Derivatized 
Sample 

Sample 66 CK23_171d JR_BSTFA_06_EI 402_CK23_171d Derivatized 
Sample 

Sample 67 CK23_172d JR_BSTFA_06_EI 403_CK23_172d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 404_Blank  

Sample 68 CK23_173d JR_BSTFA_06_EI 405_CK23_173d Derivatized 
Sample 

Sample 69 CK23_174d JR_BSTFA_06_EI 406_CK23_174d Derivatized 
Sample 

Sample 70 CK23_175d JR_BSTFA_06_EI 407_CK23_175d Derivatized 
Sample 
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Table 10 Continued 

 

Blank 1 DCM blank TM01_EI 408_Blank  

Sample 87 CK19_13d JR_BSTFA_06_EI 409_CK19-13d Derivatized 
Check 

Blank 1 DCM blank TM01_EI 410_Blank  

Sample 71 CK23_178d JR_BSTFA_06_EI 411_CK23_178d Derivatized 
Sample 

Sample 72 CK23_179d JR_BSTFA_06_EI 412_CK23_179d Derivatized 
Sample 

Sample 73 CK23_180d JR_BSTFA_06_EI 413_CK23_180d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 414_Blank  

Sample 74 CK23_181d JR_BSTFA_06_EI 415_CK23_181d Derivatized 
Sample 

Sample 75 CK23_182d JR_BSTFA_06_EI 416_CK23_182d Derivatized 
Sample 

Sample 76 CK23_183d JR_BSTFA_06_EI 417_CK23_183d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 418_Blank  

Sample 77 CK23_186d JR_BSTFA_06_EI 419_CK23_186d Derivatized 
Sample 

Sample 78 CK23_187d JR_BSTFA_06_EI 420_CK23_187d Derivatized 
Sample 

Sample 79 CK23_188d JR_BSTFA_06_EI 421_CK23_188d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 422_Blank  

Sample 80 CK23_189d JR_BSTFA_06_EI 423_CK23_189d Derivatized 
Sample 

Sample 81 CK23_190d JR_BSTFA_06_EI 424_CK23_190d Derivatized 
Sample 

Sample 82 CK23_191d JR_BSTFA_06_EI 425_CK23_191d Derivatized 
Sample 

Blank 1 DCM blank TM01_EI 426_Blank  

Sample 83 CK19_09d JR_BSTFA_06_EI 427_CK19-09d Derivatized 
Calibration 

Sample 84 CK19_10d JR_BSTFA_06_EI 428_CK19-10d Derivatized 
Calibration 

Sample 85 CK19_11d JR_BSTFA_06_EI 429_CK19-11d Derivatized 
Calibration 

Sample 86 CK19_12d JR_BSTFA_06_EI 430_CK19-12d Derivatized 
Calibration 

Blank 1 DCM blank TM01_EI 431_Blank 
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Table 10 Continued 

 

Sample 87 CK19_13d JR_BSTFA_06_EI 432_CK19-13d Derivatized 
Calibration 

Sample 88 CK19_14d JR_BSTFA_06_EI 433_CK19-14d Derivatized 
Calibration 

Sample 89 CK19_15d JR_BSTFA_06_EI 434_CK19-15d Derivatized 
Calibration 

Sample 90 CK19_16d JR_BSTFA_06_EI 435_CK19-16d Derivatized 
Calibration 

Blank 1 DCM blank TM01_EI 436_Blank  

Sample 2 Testmix_low TM01_EI 437_MC59-2D Test Mix 

Sample 2 Testmix_low TM01_EI 438_MC59-2D Test Mix 

Sample 2 Testmix_low TM01_EI 439_MC59-2D Test Mix 

Blank 1 DCM blank TM01_EI 440_Blank  
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APPENDIX D  
GC-MS DATA PROCESSING 

The areas of analyte peaks were calculated using Agilent ChemStation software based on 

target ions unique for each analyte.  Table 11 shows each analyte with its respective retention 

times and target ions.  Figure 22 shows the chromatogram form a derivatized sample, the large 

peak at the beginning is end of the DCM solvent peak, the large peak at four minutes is from the 

derivatizing agent and the large peak near 8 minutes is pyridine.  Each analyte peak area was 

divided by the internal standard peak area to remove any error from varying injection volume 

amounts.  The calibration standards responses were paired with its known concentration to 

construct a calibration curve.  Figure 24 shows an example of the constructed calibration curve.  

The least squared curve is shown for the fructose analyte to show the equation used to calculate 

the concentrations in reactor samples.  During data processing this equation was calculated with 

the LINEST function in MS Excel so the cell could be linked for further calculations.  
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Table 11: Analyte target ions and retention time 

Analyte  Retention  

Time 

Target  

Ion 1 

Target 

Ion 2 

Target 

Ion 3 

Target 

Ion 4 

Target 

Ion 5 

Methyl Lactate 4.0 

Minutes 

45 

(100%) 

61 

(10%) 

89 

(10%) 

- - 

Methyl Vinyl 

Glycolate 

6.7 

Minutes 

57 

(100%) 

84 

(30%) 

29 

(20%) 

- - 

Methyl Levulinate 10.5 

Minutes 

43 

(100%) 

55 

(20%) 

99 

(20%) 

115 

(20%) 

- 

Derivatized Lactic 

Acid 

11.9 

 Minutes 

73 

(100%) 

147 

(100%) 

117 

(80%) 

191 

(25%) 

45 

(25%) 

Derivatized 

Levulinic Acid 

13.2 

Minutes 

75 

(100%) 

43 

(35%) 

145 

(35%) 

145 

(35%) 

- 

Derivatized 

Fructose 

21.8 

Minutes 

73 

(100%) 

217 

(90%) 

147 

(25%) 

437 

(25%) 

- 

Derivatized 

Mannose 

22.7 

Minutes 

204 

(100%) 

73 

(60%) 

147 

(20%) 

- - 

Derivatized 

Glucose 

23.5 

Minutes 

204 

(100%) 

73 

(60%) 

147 

(20%) 

- - 

o-Terphenyl 22.8 

Minutes 

230 

(100%) 

215 

(30%) 

101 

(10%) 

114 

(10%) 

202 

(10%) 
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Figure 22: Chromatogram example from derivatized samples 
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Figure 23: Chromatogram example from underivatized samples 
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Figure 24: Calibration curve example showing relationship with known concentrations of 
analytes with GC-MS response 
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The Y=mX + b equation created from the calibration samples can be transformed into 

Equation 1.   

 

                                                X=(Y-b)/m                      Equation 1 

Where: 

X = Sample concentration (mg/ml) 

Y = Analyte area/internal standard area response 

b = Intercept from calibration experiments 

m = Slope from calibration experiments 

Since both 20 µl of reactor sample and 20 µl of calibration solution were used in the 

highest calibration sample, a direct one-to-one comparison can be used to determine unknown 

concentrations.  Once the concentration of the analyte is known it is divided by the known 

concentration of glucose in the starting reactor solution.  This provides the weight percent of 

recovered products. 
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APPENDIX E 

ALL DATA 

Table 12: GC-MS triplicate results from 20140325 

Notes Lactic Acid Levulinic 

acid 

Fructose Mannose Glucose 

 Target/ISTD Target/ISTD Target/ISTD Target/ISTD Target/ISTD 

      

Acid 

Calibration 1 

0.000991 0.000535 0.000182 0.000286 0.000305 

Acid 

Calibration 2 

0.001305 0.000756 0.000465 0.00044 0.000482 

Acid 

Calibration 3 

0.00289 0.002141 0.001106 0.00103 0.001177 

Acid 

Calibration 4 

0.006409 0.003791 0.002402 0.001826 0.002597 

Acid 

Calibration 5 

0.019611 0.01168 0.007108 0.001102 0.006583 

Acid 

Calibration 6 

0.045028 0.021992 0.012852 0.003101 0.013157 

MeOH SnCl4 

5g glucose 

0.001091 0.000893 0.003873 0.001365 0.000134 

MeOH SnCl4 

5g glucose 

0.001747 0.001321 0.007118 0.002167 0.000236 

MeOH SnCl4 

5g glucose 

0.001581 0.001297 0.006154 0.002021 0.000152 

H2O SnCl4 5g 

glucose 

0.072635 0.058761 0.012975 0.003681 0.012006 

H2O SnCl4 5g 

glucose 

0.081991 0.060984 0.00535 0.003054 0.004521 

H2O SnCl4 5g 

glucose 

0.07625 0.055052 0.003414 0.004907 0.003258 

H2O SnCl2 5g 

glucose 

0.009466 0.087913 0.00069 0.0008 0.000739 

H2O SnCl2 5g 

glucose 

0.009375 0.08522 0.001088 0.000617 0.001061 

H2O SnCl2 5g 

glucose 

 

0.01058 0.076696 0 0.001061 0.000667 
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Table 12 Continued 

 

H2O SnCl4 2g 

glucose  

0.08019 0.000104 0.000489 0.000927 0 

H2O SnCl4 2g 

glucose  

0.086577 0.000154 0.000339 0.001162 0 

H2O SnCl4 2g 

glucose  

0.081934 0.000125 0.00018 0.001127 0 

Acid 

Calibration 1 

0.000313 0.000304 0.000298 0 0.000214 

Acid 

Calibration 2 

0.000461 0.000479 0.000659 0.000418 0.000487 

Acid 

Calibration 3 

0.000803 0.001312 0.001103 0.000691 0.00111 

Acid 

Calibration 4 

0.006995 0.003938 0.002841 0.000918 0.002749 

Acid 

Calibration 5 

0.016216 0.009723 0.006389 0.000996 0.006104 

Acid 

Calibration 6 

0.049005 0.023686 0.015672 0.003843 0.014597 
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Table 13: GC-MS results from 20140324 

Notes Methyl 

Lactate 

Methyl 

Vinylglycolate 

Furfural Methyl 

Levulinate 

5-HMF 

 Target/ISTD Target/ISTD Target/ISTD Target/ISTD Target/ISTD 

NonAcid 

Calibration 1 

0.000592 0.000328 0.000549 0.000455 0 

NonAcid 

Calibration 2 

0 0.000607 0.001351 0.001199 0 

NonAcid 

Calibration 3 

0 0 0.001522 0.002236 0 

NonAcid 

Calibration 4 

0.001154 0.000795 0.003759 0.004383 0 

NonAcid 

Calibration 5 

0.001866 0.004929 0.008754 0.00933 0 

NonAcid 

Calibration 6 

0.010972 0.004584 0.00831 0.017186 0.001611 

NonAcid 

Calibration 7 

0.030567 0.012688 0.052457 0.058777 0.005983 

NonAcid 

Calibration 8 

0.036011 0.015344 0.059992 0.071805 0.007732 

47-01 undiv 0.020103 0.00104 0.000468 0.101324 0 

47-02 undiv 0.018444 0.001467 0 0.094026 0 

47-03 undiv 0.018385 0.001406 0 0.09534 0 

NonAcid 

Calibration 1 

0 0 0.000607 0.000412 0 

NonAcid 

Calibration 2 

0 0.001332 0.002312 0.002484 0 

NonAcid 

Calibration 3 

0 0.000582 0.00127 0.001864 0 

NonAcid 

Calibration 4 

0.000591 0.001291 0.003447 0.00435 0 

NonAcid 

Calibration 5 

0.006605 0.003043 0.0056 0.009331 0.000404 

NonAcid 

Calibration 6 

0.010787 0.004006 0.007954 0.016324 0.001746 

NonAcid 

Calibration 7 

0.018934 0.008212 0.013969 0.031288 0.003671 

NonAcid 

Calibration 8 

0.034295 0.013977 0.05801 0.06779 0.008351 
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Table 14: GC-MS results from 20140213 

Notes Formic 

Acid 

Lactic 

Acid 

Levulinic 

acid 

Fructose Mannose Glucose 

 Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Acid 

Calibration 1 

0 0.012478 0.009222 0.004978 0.002481 0.004988 

Acid 

Calibration 2 

0 0.021046 0.017108 0.010232 0.005581 0.010827 

Acid 

Calibration 3 

0 0.040215 0.035991 0.023128 0.012206 0.022925 

Acid 

Calibration 4 

0 0.10183 0.075728 0.058621 0.030401 0.062139 

Acid 

Calibration 5 

0 0.213013 0.159867 0.11815 0.059791 0.122108 

Acid 

Calibration 6 

0 0.487855 0.356841 0.254223 0.134204 0.279449 

Acid 

Calibration 7 

0 0.955609 0.708677 0.537354 0.264059 0.580581 

Acid 

Calibration 8 

0.232373 2.060935 1.537002 1.166882 0.589341 1.191026 

Ba(OH)2 0.265351 0.032991 0 0.025334 0.007542 0.008658 

HCl 300 SnCl4 

300psi 

0 1.031071 0.005206 0.037032 0.013291 0 

HCl 300 SnCl4 

0psi 2day 

0 0.429769 0.026459 0.046894 0.016559 0 

HCl 300 SnCl4 

0psi 4day 

0 0.460401 0.063365 0.039026 0.023269 0 

HCl 300 SnCl4 

1000psi H2 

0 0.486609 0.042425 0.026845 0.016109 0.003298 

DCM Wash of 

03&04 

0 0 0.004225 0.001404 0 0 

Top aqueous 

phase of 07 

0 0.012478 0.009222 0.004978 0.002481 0.004988 

Acid 

Calibration 1 

0 0.004666 0.005174 0.003863 0.002544 0.002794 

Acid 

Calibration 2 

0 0.006959 0.010563 0.007189 0.006332 0.009824 

Acid 

Calibration 3 

0 0.018655 0.024066 0.01716 0.006115 0.022619 

Acid 

Calibration 4 

0 0.094904 0.072616 0.049009 0.025703 0.052025 

Acid 

Calibration 5 

0 0.213674 0.163048 0.1168 0.053224 0.125358 
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Table 14 Continued 

 

Acid 

Calibration 6 

0 0.484907 0.367243 0.273651 0.132304 0.306185 

Acid 

Calibration 7 

0 0.98076 0.722401 0.555163 0.267959 0.596823 

Acid 

Calibration 8 

0.313403 2.024146 1.473488 1.208262 0.59091 1.23336 
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Table 15: GC-MS results from 20140128 

Notes Formic 

Acid 

Lactic 

Acid 

Levulinic 

acid 

Fructose Mannose Glucose 

 Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Acid 

Calibration 1 

0 0.012478 0.009222 0.004978 0.002481 0.004988 

Acid 

Calibration 2 

0 0.021046 0.017108 0.010232 0.005581 0.010827 

Acid 

Calibration 3 

0 0.040215 0.035991 0.023128 0.012206 0.022925 

Acid 

Calibration 4 

0 0.10183 0.075728 0.058621 0.030401 0.062139 

Acid 

Calibration 5 

0 0.213013 0.159867 0.11815 0.059791 0.122108 

Acid 

Calibration 6 

0 0.487855 0.356841 0.254223 0.134204 0.279449 

Acid 

Calibration 7 

0 0.955609 0.708677 0.537354 0.264059 0.580581 

Acid 

Calibration 8 

0.232373 2.060935 1.537002 1.166882 0.589341 1.191026 

Ba(OH)2 0.265351 0.032991 0 0.025334 0.007542 0.008658 

HCl 300 SnCl4 

300psi 

0 1.031071 0.005206 0.037032 0.013291 0 

HCl 300 SnCl4 

0psi 2day 

0 0.429769 0.026459 0.046894 0.016559 0 

HCl 300 SnCl4 

0psi 4day 

0 0.460401 0.063365 0.039026 0.023269 0 

HCl 300 SnCl4 

1000psi H2 

0 0.486609 0.042425 0.026845 0.016109 0.003298 

DCM Wash of 

03&04 

0 0 0.004225 0.001404 0 0 

Top aqueous 

phase of 07 

0 0.012478 0.009222 0.004978 0.002481 0.004988 

Acid 

Calibration 1 

0 0.004666 0.005174 0.003863 0.002544 0.002794 

Acid 

Calibration 2 

0 0.006959 0.010563 0.007189 0.006332 0.009824 

Acid 

Calibration 3 

0 0.018655 0.024066 0.01716 0.006115 0.022619 

Acid 

Calibration 4 

0 0.094904 0.072616 0.049009 0.025703 0.052025 

Acid 

Calibration 5 

0 0.213674 0.163048 0.1168 0.053224 0.125358 
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Table 10 Continued 

 

Acid 

Calibration 6 

0 0.484907 0.367243 0.273651 0.132304 0.306185 

Acid 

Calibration 7 

0 0.98076 0.722401 0.555163 0.267959 0.596823 

Acid 

Calibration 8 

0.313403 2.024146 1.473488 1.208262 0.59091 1.23336 
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Table 16: GC-MS results from 20140103 

Notes Lactic Acid Levulinic 

acid 

Unreacted 

Sugars 1 

Unreacted 

Sugars 2 

Glucose 

 Target/ISTD Target/ISTD Target/ISTD Target/ISTD Target/ISTD 

Acid 

Calibration 1 

0.0146 0.010134 0.015546 0.014281 0.014541 

Acid 

Calibration 2 

0.031931 0.023505 0.030535 0.031323 0.030455 

Acid 

Calibration 3 

0.07263 0.049576 0.064944 0.062607 0.063156 

Acid 

Calibration 4 

0.142427 0.104608 0.115071 0.125975 0.142376 

Acid 

Calibration 5 

0.282561 0.204008 0.252393 0.255577 0.272297 

Acid 

Calibration 6 

0.548419 0.381271 0.478429 0.499263 0.538728 

Acid 

Calibration 7 

1.123932 0.841129 1.019469 1.047437 1.128403 

Acid 

Calibration 8 

1.991749 1.422855 2.00897 3.964635 1.943376 

CK41-01 0.097026 0.453242 0.217753 0.013722 0.227754 

CK41-04 0.158357 0.452555 0.14772 0.012765 0.137816 

CK41-06 0.14192 0.52753 0.188531 0.012922 0.187039 

CK41-07 0.133552 0.511985 0.101794 0.01237 0.098559 

CK41-10 0.344402 0.298047 0.058267 0.012866 0.048461 

CK41-11 0.05063 0.529659 0.083951 0.012336 0.082058 

CK41-29 0.004085 0.035879 0 0 0 

CK41-41 0.8774 0.308508 0.029303 0.031179 0.022537 

CK41-42 0.64697 0.358606 0.01057 0.015509 0.009104 

CK41-43 0.593728 0.320634 0.003886 0.014581 0 

Acid 

Calibration 1 

0.007663 0.009657 0.016401 0.036845 0.014867 

Acid 

Calibration 2 

0.019931 0.021887 0.027212 0.028238 0.032944 

Acid 

Calibration 3 

0.073525 0.047712 0.064245 0.05991 0.069903 

Acid 

Calibration 4 

0.141698 0.102087 0.130005 0.120811 0.141384 

Acid 

Calibration 6 

0.545022 0.389952 0.48461 0.501099 0.554546 

Acid 

Calibration 7 

1.143611 0.799187 1.05654 1.092728 1.169289 

Calibration 8 1.856318 1.359764 2.009369 4.070064 1.924087 
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Table 17: GC-MS results from 20131220 

Notes Lactic Acid Levulinic 

acid 

Unreacted 

Sugars 1 

Unreacted 

Sugars 2 

Glucose 

 Target/ISTD Target/ISTD Target/ISTD Target/ISTD Target/ISTD 

Acid 

Calibration 1 

0.013689 0.011166 0.010762 0.012152 0.01093 

Acid 

Calibration 2 

0.032264 0.026218 0.025319 0.023897 0.023777 

Acid 

Calibration 3 

0.067983 0.047834 0.060244 0.048914 0.057124 

Acid 

Calibration 4 

0.129971 0.103084 0.129197 0.103113 0.128236 

Acid 

Calibration 5 

0.271929 0.210785 0.258822 0.220733 0.258728 

Acid 

Calibration 6 

0.517688 0.414624 0.51993 0.444505 0.538199 

Acid 

Calibration 7 

1.017919 0.794573 0.976952 0.837399 1.008295 

Acid 

Calibration 8 

1.891923 1.541524 2.049504 1.666692 1.803176 

CK40-02 0.122365 0.442852 0.282128 0.019896 0.279994 

CK40-03 0.146744 0.447529 0.457974 0.041258 0.523869 

CK40-05 0.131305 0.548367 0.131786 0.00778 0.12527 

CK40-07 0.148508 0.541588 0.121206 0.0057 0.109586 

CK40-08 0.165999 0.478381 0.183714 0.012599 0.189711 

CK40-10 0.009043 0.084374 1.232091 0.016772 2.01026 

CK40-11 0.00645 0.024991 1.686143 0.041549 2.782208 

CK40-30 0.031943 0.434073 0.003504 0.005702 0.003858 

CK40-31 0.032998 0.762342 0 0.008951 0 

CK40-32 0.436953 0.485392 0.002601 0.008161 0.004358 

Acid 

Calibration 1 

0.005586 0.008756 0.010906 0.02665 0.012797 

Acid 

Calibration 2 

0.021655 0.022994 0.031169 0.024046 0.027074 

Acid 

Calibration 3 

0.064768 0.049648 0.064053 0.056589 0.06361 

Acid 

Calibration 4 

0.135101 0.102096 0.125847 0.106058 0.135456 

Acid 

Calibration 5 

0.265104 0.209296 0.257318 0.217373 0.258842 

Calibration 6 0.527023 0.40542 0.499039 0.439003 0.511528 

Calibration 7 1.040352 0.810884 1.048385 0.91312 1.049434 

Calibration 8 1.872402 1.535779 2.101289 1.67606 1.806155 
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Table 18: GC-MS results from 20131210 

Notes Furfural Lactic Acid Levulinic 

acid 

Glucose 

 Target/ISTD Target/ISTD Target/ISTD Target/ISTD 

Acid Calibration 1 0 0.015696 0.011509 0.017926 

Acid Calibration 2 0 0.035636 0.023186 0.04124 

Acid Calibration 3 0 0.07673 0.049917 0.083674 

Acid Calibration 4 0 0.1562 0.096109 0.177954 

Acid Calibration 5 0 0.286265 0.179015 0.332275 

Acid Calibration 6 0 0.593193 0.360603 0.690587 

Acid Calibration 7 0 1.1955 0.725267 1.367044 

Acid Calibration 8 0 2.183391 1.311895 2.620571 

300/4 210 0 0.056592 0.560813 0.70135 

300/4 210 0 0.059064 0.531048 0.49984 

300/4 210 0 0.059046 0.527816 0.617933 

300/4 200 0 0.059531 0.397788 1.663826 

300/4 200 0 0.061124 0.447175 1.254806 

300/4 200 0 0.066639 0.50301 0.483594 

Lactic Acid std 0 5.427643 0 0.004916 

Acid Calibration 1 0 0.012581 0.010604 0.018213 

Acid Calibration 2 0 0.037909 0.023154 0.040894 

Acid Calibration 3 0 0.080116 0.048581 0.086405 

Acid Calibration 4 0 0.158019 0.101999 0.185586 

Acid Calibration 5 0 0.280873 0.179599 0.335314 

Acid Calibration 6 0 0.593358 0.366586 0.720971 

Acid Calibration 7 0 1.156434 0.72898 1.356952 
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Table 19: GC-MS results from 20131203 

Notes Furfural Lactic 

Acid 

Levulinic 

acid 

All 

Unreacted 

Sugars 

Glucose 

 Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Acid 

Calibration 1 

0 0.00858 0.003749 0.00784 0.006638 

Acid 

Calibration 2 

0 0.012006 0.009031 0.013024 0.017339 

Acid 

Calibration 3 

0 0.030803 0.022317 0.023565 0.038631 

Acid 

Calibration 4 

0 0.059089 0.039409 0.053225 0.067055 

Acid 

Calibration 5 

0 0.128467 0.076452 0.110036 0.149782 

Acid 

Calibration 6 

0 0.242724 0.151179 0.198376 0.302929 

Acid 

Calibration 7 

0 0.494428 0.315175 0.417088 0.618026 

Acid 

Calibration 8 

0 0.923362 0.60472 0.160421 1.181008 

300/4 210 0 1.012751 0.299777 0.031874 0.035848 

300/4 220 0 0.741202 0.339672 0.011908 0.014199 

300/4 230 0 0.732378 0.333545 0 0 

300/noSn-210 0 0.028341 0.538188 0.114559 0.171543 

300/noSn-220 0 0.097408 0.280417 0.130593 0.17767 

300/noSn-230 0 0.021941 0.504031 0 0.001779 

300/Ba-230 0 0.095974 0.26268 0.021232 0 

Acid 

Calibration 1 

0 0.092913 0.069592 0.646542 0.012207 

Acid 

Calibration 2 

0 0.009833 0.00703 1.878264 6.6777 

Acid 

Calibration 3 

0 0.015135 1.017472 0 0.006579 
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Table 20: GC-MS results from 20131018 

Notes Furfural Lactic Acid Levulinic 

acid 

Glucose 

 Target/ISTD Target/ISTD Target/ISTD Target/ISTD 

Acid Calibration 1 0 0.057475 0.057526 0.10171 

Acid Calibration 2 0 0.076801 0.11045 0.201355 

Acid Calibration 3 0.000206 0.113151 0.191047 0.442603 

Acid Calibration 4 0 0.343618 0.332254 0.867188 

Acid Calibration 5 0 1.31608 0.510205 1.788912 

Acid Calibration 6 0 3.034917 2.289052 4.088768 

Acid Calibration 7 0 5.901867 4.440931 7.80007 

Acid Calibration 8 0.148441 9.622384 7.470762 13.18508 

E/2-170 0.018344 0.098444 0.070178 0.069264 

300/4-170 0.007503 0.027706 0.023457 0.034948 

300/2-170 0.008018 0.042534 0.052723 0.013071 

E/4-170 0 0.03985 0.158105 0.050412 

300/4-170 0 0.030559 0.039307 0.013443 

300/4-180 0.002773 0.031491 0.029936 0.008858 

300/4-170 sonicated 0 0.040981 0.044801 0.004681 

300/4-190 0.449575 0.070838 0.055132 0.007666 

300/4-200 0 0.092913 0.069592 0.012207 

BaCl2 - 160 0 0.009833 0.00703 6.6777 

Me-Levulinate  0 0.015135 1.017472 0.006579 

300/Ba2 200 ME 0.318627 0.021315 0.012729 0.074483 

300/Ba2 160 ME 0 0.010394 0 1.252712 

300/Ba2 200 H20 0 0.617447 0.211977 1.777112 

300/Sn2 25%Me H1 0 0.013292 0 11.51432 

300/Sn2 25%Me H2 0 0.126898 0.003457 1.638662 

300/Sn2 25%Me H3 0 0.047646 0.006253 0.006095 

300/Sn2 25%Me H20 0 0.214955 0.047512 0.054557 

300/Sn2 25%Me H21 0 0.151546 0.032567 0.064868 

300/Sn2 25%Me H22 0 0.148161 0.031636 0.071278 

300/Sn2 25%Me H1 0 0.007098 0 10.43621 

300/Sn2 25%Me H2 0 0.096204 0.004896 1.859244 

300/Sn2 25%Me H3 0 0.139883 0.012911 0.939722 

300/Sn2 25%Me H20 0 0.150428 0.030919 0.093676 

300/Sn2 25%Me H21 0 0.133917 0.026983 0.101752 

300/Sn2 25%Me H22 0 0.140636 0.030382 0.080374 

Acid Calibration 1 0 0.005069 0.036432 0.110506 

Acid Calibration 2 0 0.017545 0.042706 0.206449 

Acid Calibration 3 0 0.047469 0.079014 0.397019 
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Table 20 Continued 

 

Acid Calibration 4 0 0.342633 0.22774 0.791729 

Acid Calibration 5 0 1.33356 0.613944 1.80244 

Acid Calibration 6 0 3.084693 2.184201 4.225819 

Acid Calibration 7 0 6.454687 4.546477 9.034488 

Acid Calibration 8 0 10.4089 7.083893 15.26826 

300/Sn2 25%Me H1 0 0.009347 0 12.58148 

300/Sn2 25%Me H2 0 0.093565 0 1.693166 

300/Sn2 25%Me H3 0 0.112959 0.008254 1.178087 

300/Sn2 25%Me H20 0 0.145797 0.032873 0.09918 

300/Sn2 25%Me H21 0 0.172363 0.046994 0.091477 

300/Sn2 25%Me H22 0 0.173853 0.059971 0.077173 

Acid Calibration 1 0 0 0.023031 0.109635 

Acid Calibration 2 0 0.011852 0.040174 0.206256 

Acid Calibration 3 0 0.034186 0.067561 0.375562 

Acid Calibration 4 0 0.181065 0.079779 0.715075 

Acid Calibration 5 0 1.349133 0.580912 1.861241 

Acid Calibration 6 0 3.189958 2.355852 4.323448 

Acid Calibration 7 0 6.845747 4.623579 9.028281 

Acid Calibration 8 0 11.15889 6.868133 15.71194 
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Table 21: GC-MS results from 20131014 

Notes Methyl 

Lactate 

Methyl 

Vinyl-

glycolate 

Furfural Methyl 

Levulinate 

Levulinic 

acid 

5-HMF 

 Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Nonacid 

Calibration 1 

0.048907 0.037575 0 0.0807 0 0 

Nonacid 

Calibration 2 

0.01991 0.010032 0 0.055491 0 0 

Nonacid 

Calibration 3 

0.040601 0.031386 0 0.132831 0 0.011364 

Nonacid 

Calibration 4 

0.083234 0.087542 0.002042 0.202936 0 0.029472 

Nonacid 

Calibration 5 

0.339236 0.149669 0.014783 0.503218 0 0.081137 

Nonacid 

Calibration 6 

1.326224 0.555471 0.032279 1.186908 0 0.255594 

Nonacid 

Calibration 7 

2.722615 1.165431 0.063073 2.375809 0 0.436131 

Nonacid 

Calibration 8 

4.568039 1.998771 0.107124 3.962035 0 0.44525 

300/4-170 0.180758 0 0 1.909649 0 0 

300/4-180 0.357786 0.026691 0 1.646245 0 0 

300/4-170 

sonicated 

0.392566 0.053681 0 1.560882 0 0 

300/4-190 0.565828 0.040171 0 2.025746 0 0 

300/4-200 0.505777 0.047951 0 1.894392 0 0 

BaCl2 - 160 0.009978 0 0 0.011896 0 0.020951 

Me-

Levulinate  

0.010647 0 0 6.300652 0 0 

300/Ba2 200 

ME 

0.368746 0 0 0.126518 0.006659 0.010119 

300/Ba2 160 

ME 

0.125274 0 0 0.011929 0.003745 0.020805 

E/2-170 0.473787 0.02235 0 1.342034 0 0 

300/4-170 0.242687 0.046684 0 1.05442 0 0 

300/2-170 0.392687 0.08625 0 1.778793 0 0 

E/4-170 0.171268 0.009528 0 2.771811 0 0 

Nonacid 

Calibration 1 

0.06349 0.043861 0 0.083723 0 0.012063 

Nonacid 

Calibration 2 

0.024681 0.025193 0 0.060263 0 0 
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Table 21 Continued 

 

Nonacid 

Calibration 3 

0.087519 0.071345 0 0.140104 0 0.021556 

Nonacid 

Calibration 4 

0.093612 0.094067 0 0.204763 0 0.044256 

Nonacid 

Calibration 5 

0.631798 0.253832 0.013605 0.517659 0 0.117067 

Nonacid 

Calibration 6 

1.153986 0.497239 0.027748 1.033839 0 0.292779 

Nonacid 

Calibration 7 

2.569537 1.110072 0.052433 2.217216 0 0.621752 

Nonacid 

Calibration 8 

3.951054 1.717075 0.077461 3.432621 0.002764 0.890238 

300/Sn2 

25%Me H1 

0.016345 0 0 0 0 0 

300/Sn2 

25%Me H2 

0.143396 0.01624 0 0.00958 0 0.030729 

300/Sn2 

25%Me H3 

0.191384 0.022978 0 0.022856 0 0.032463 

300/Sn2 

25%Me H20 

0.261253 0.014619 0 0.243436 0 0 

300/Sn2 

25%Me H21 

0.243285 0.030169 0 0.26309 0 0.002151 

300/Sn2 

25%Me H22 

0.214703 0.032931 0.002191 0.249127 0 0 

300/Sn2 

25%Me H1 

0.013552 0 0 0 0 0 

300/Sn2 

25%Me H2 

0.132459 0.01406 0 0.009188 0 0.038179 

300/Sn2 

25%Me H3 

0.166671 0 0 0.022343 0 0.035441 

300/Sn2 

25%Me H20 

0.212904 0.01091 0 0.241845 0 0.00384 

300/Sn2 

25%Me H21 

0.222087 0.030932 0 0.241029 0 0 

300/Sn2 

25%Me H22 

0.211598 0.027131 0 0.259485 0 0 

300/Sn2 

25%Me H1 

0.004121 0 0 0 0 0 

300/Sn2 

25%Me H2 

0.121588 0.012025 0 0.008912 0 0.031 

300/Sn2 

25%Me H3 

 

0.150374 0.002881 0 0.018946 0 0.032926 
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Table 21 Continued 

 

300/Sn2 

25%Me H20 

0.220669 0.019513 0 0.232509 0 0 

300/Sn2 

25%Me H21 

0.198703 0.017306 0 0.237501 0 0.004068 

300/Sn2 

25%Me H22 

0.208964 0.023617 0.002594 0.259282 0 0.003138 

Nonacid 

Calibration 1 

0.042261 0.024181 0.002539 0.081534 0 0.007683 

Nonacid 

Calibration 2 

0.013047 0.024517 0 0.05104 0 0 

Nonacid 

Calibration 3 

0.081248 0.061704 0 0.120063 0 0.016814 

Nonacid 

Calibration 4 

0.089632 0.053634 0 0.199959 7.09E-05 0.038941 

Nonacid 

Calibration 5 

0.311581 0.230984 0.01444 0.47245 0 0.104144 

Nonacid 

Calibration 6 

1.295601 0.545691 0.030784 1.061783 0 0.302139 

Nonacid 

Calibration 7 

2.532195 1.088787 0.053411 2.168497 0 0.437348 

Nonacid 

Calibration 8 

1.6816 1.212069 0.091763 3.496525 0 0.390462 
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Table 22: GC-MS results for 20131001 

Notes Furfural Lactic 

Acid 

Levulinic 

acid 

Unreacted 

Sugars 1 

Unreacted 

Sugars 2 

Glucose 

 Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Acid 

Calibration 1 

0.000000 0.135331 0.164853 0.396895 0.135700 0.183524 

Acid 

Calibration 2 

0.000000 0.221286 0.333753 0.810194 0.257273 0.363882 

Acid 

Calibration 3 

0.000000 0.328547 0.630366 1.622480 0.520359 0.757105 

Acid 

Calibration 4 

0.000000 0.466102 1.146228 3.123866 1.012499 1.493907 

Acid 

Calibration 5 

0.000000 1.506334 2.359491 6.331570 0.467588 3.297574 

Acid 

Calibration 6 

0.000000 3.540066 4.375137 9.880320 3.539065 5.692264 

Acid 

Calibration 7 

0.000000 9.787221 11.774231 26.276337 11.129242 13.578914 

Acid 

Calibration 8 

0.000000 17.917948 21.314031 51.346460 21.560331 27.666477 

Lactic Acid 

Std 

0.000000 45.855836 0.010238 0.000000 0.011859 0.014336 

Levulinic 

Acid Std 

0.000000 0.037491 47.559793 0.000000 0.000000 0.000000 

Glucose Std 0.000000 0.005345 0.028085 0.003958 21.086690 22.219406 

Fructose Std 0.000000 0.011461 0.017505 16.605824 15.284923 0.105506 

Mannose Std 0.000000 0.006580 0.009648 59.236142 29.835708 0.012637 

300-Sn4 

200C 

0.000000 2.286629 1.887496 0.274016 0.156307 0.258998 

300-Sn4 

190C 

0.000000 1.198152 2.237449 0.185831 0.547124 0.829278 

300-Sn4 

180C 

0.000000 1.049028 2.084620 0.151417 1.624270 2.510328 

300-Sn4 

170C 

0.000000 0.304913 1.555725 1.271615 5.852159 9.344453 

E-Sn2 180 

Initial 

0.000000 0.006665 0.008950 0.015034 14.864735 41.123474 

E-Sn2 180 T-

60min 

0.000000 0.438048 2.049815 0.155378 3.149134 5.216391 

E-Sn2 180 T-

30min 

0.000000 0.482755 2.366509 0.149369 3.452206 5.051621 

E-Sn2 180 T 

 

0.000000 0.436911 1.684635 0.144051 3.217476 4.586432 
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Acid 

Calibration 1 

0.000000 0.050887 0.140962 0.469838 0.142155 0.216665 

Acid 

Calibration 2 

0.000000 0.047129 0.247871 0.859409 0.310088 0.390176 

Acid 

Calibration 3 

0.000000 0.071592 0.415922 1.531925 0.510337 0.770638 

Acid 

Calibration 4 

0.000000 0.297535 0.933747 2.875099 1.035876 1.588455 

Acid 

Calibration 5 

0.000000 1.639541 2.173226 4.726713 1.989481 3.136829 

Acid 

Calibration 6 

0.000000 4.035709 4.709213 12.922811 0.904983 6.038466 

Acid 

Calibration 7 

0.000000 8.310515 10.381399 25.596771 10.535928 12.785988 

Acid 

Calibration 8 

0.000000 18.537616 21.129909 54.678058 21.944666 23.231511 

E-Sn2 170 

Initial 

0.000000 0.007408 0.024769 0.000000 16.837800 47.333991 

E-Sn2 170 T-

60min 

0.000000 0.768709 1.470370 0.222424 2.995838 4.962434 

E-Sn2 170 T-

30min 

0.000000 0.326351 1.725646 1.171568 5.841825 9.928565 

E-Sn2 170 T 0.000000 0.292646 1.305522 1.422766 0.377635 10.210958 

E-Sn2 200 

Initial 

0.000000 0.028497 0.029690 0.006140 15.907831 41.314262 

E-Sn2 200 T-

60min 

0.000000 0.611727 3.001523 0.099298 0.190049 0.236332 

E-Sn2 200 T-

30min 

0.000000 0.647232 3.334877 0.103711 0.196477 0.231022 

E-Sn2 200 T 0.000000 0.567013 1.658246 0.078491 0.066978 0.093415 

E-Sn2 190 

Initial 

0.000000 0.000000 0.000000 0.000000 16.198174 42.428434 

E-Sn2 190 T-

60min 

0.000000 0.564877 2.516659 0.111744 1.103058 1.440116 

E-Sn2 190 T-

30min 

0.000000 0.602809 2.696248 0.117351 1.086687 1.573984 

E-Sn2 190 T 0.000000 0.555585 2.113852 0.105399 1.050278 1.519126 

Acid 

Calibration 1 

0.000000 0.026776 0.113025 0.467117 0.158662 0.209064 

Acid 

Calibration 2 

0.000000 0.018863 0.180052 0.826156 0.291897 0.371526 

Acid 

Calibration 3 

0.000000 0.063879 0.359881 1.481962 0.558284 0.780351 
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Acid 

Calibration 4 

0.000000 0.285101 0.731929 2.317099 0.990088 1.384147 

Acid 

Calibration 5 

0.000000 1.689606 2.082672 4.354575 1.859182 2.695995 

Acid 

Calibration 6 

0.000000 4.283538 4.979893 14.333925 0.855542 6.302699 

Acid 

Calibration 7 

0.000000 9.730209 11.299224 31.748818 13.046900 15.633702 

Acid 

Calibration 8 

0.000000 18.128993 20.526618 50.949701 1.903746 22.227810 
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Table 23: GC-MS derivatized results from DOE block 2 

Notes Lactic 

Acid 

Levulinic 

acid 

Unreacted 

Sugar 1 

Unreacted 

Sugar 2 

Glucose 

 Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Acid 

Calibration 1 

0.23538 0.01104 2.07366 1.68554 0.13715 

Acid 

Calibration 2 

0.16873 0.00798 0.44197 0.60610 0.04979 

Acid 

Calibration 3 

0.37147 0.01496 0.56400 0.28377 0.01680 

Acid 

Calibration 4 

0.78195 0.02533 0.55402 0.21294 0.13513 

Acid 

Calibration 5 

0.88570 0.02412 0.34931 0.10962 0.06907 

Acid 

Calibration 6 

2.11661 0.19311 0.57959 0.17976 0.03148 

Acid 

Calibration 7 

2.71001 1.38001 0.61542 0.13708 0.02534 

Acid 

Calibration 8 

5.14858 4.13219 0.62654 0.16292 0.02713 

06CK23-178 0.00703 0.00380 1.03581 33.44809 27.43508 

06CK23-179 0.09183 0.01589 0.96188 11.07574 5.54053 

06CK23-180 0.16085 0.04384 1.17645 9.57031 7.40402 

06CK23-181 0.33062 0.47778 1.08272 2.39260 7.48070 

06CK23-182 0.36034 0.48408 1.22788 2.44142 7.88916 

06CK23-183 0.31595 0.47717 0.97837 2.34580 7.13644 

10CK23-106 0.00648 0.00481 0.85243 14.91209 12.56474 

10CK23-107 0.01441 0.00337 1.03253 14.99423 12.97064 

10CK23-108 0.02089 0.00146 1.02865 14.49084 12.66357 

10CK23-109 0.05782 0.01363 2.33507 25.11793 21.82001 

10CK23-110 0.06925 0.01279 2.38104 25.73026 26.71188 

10CK23-111 0.06077 0.01623 2.39444 25.12178 26.28376 

17CK23-130 0.00782 0.00456 1.05484 17.09665 14.34981 

17CK23-131 0.01097 0.00649 1.11261 13.03527 4.16202 

17CK23-132 0.00923 0.01061 1.02543 11.07591 5.47676 

17CK23-133 0.05107 0.10791 1.09151 2.12962 9.54717 

17CK23-134 0.05279 0.10979 1.07446 1.92341 9.33575 

17CK23-135 0.05098 0.11923 1.02478 2.11430 9.27452 

12CK23-186 0.01030 0.00482 1.32519 21.30966 18.03465 

12CK23-187 0.02808 0.00893 1.35972 13.20873 4.20587 

12CK23-188 0.04901 0.01587 1.34972 9.80803 5.61589 
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Table 23 Continued 

 

12CK23-189 0.23423 0.21634 1.18385 2.12830 8.49916 

12CK23-190 0.20570 0.21837 1.02331 1.13617 7.76344 

12CK23-191 0.23490 0.22665 1.20368 1.77211 8.33066 

14CK23-170 0.00647 0.00382 1.16956 36.29476 32.49632 

14CK23-171 0.00589 0.00703 1.16571 33.77056 27.31027 

14CK23-172 0.00704 0.00735 1.18904 33.29003 30.48313 

14CK23-173 0.02054 0.01997 4.60846 57.07528 58.53312 

14CK23-174 0.01724 0.01864 4.69950 56.39351 57.72237 

14CK23-175 0.01923 0.02236 4.34205 55.74944 59.01393 

11CK23-122 0.02111 0.00430 1.21210 15.64482 13.50474 

11CK23-123 0.30929 0.01339 0.97127 6.60791 6.07294 

11CK23-124 0.42297 0.02854 1.06360 5.94769 5.79660 

11CK23-125 0.77079 0.02435 1.21380 3.14301 0.99563 

11CK23-126 0.79900 0.02088 1.25256 2.78307 1.06882 

11CK23-127 0.87708 0.01963 0.86866 3.05792 1.14042 

Acid 

Calibration 1 

0.09568 0.00482 0.85913 0.67669 0.05203 

Acid 

Calibration 2 

0.13658 0.00720 0.38705 0.50134 0.03800 

Acid 

Calibration 3 

0.23168 0.00935 0.35561 0.17469 0.00721 

Acid 

Calibration 4 

0.59135 0.01763 0.40585 0.14676 0.12566 

Acid 

Calibration 5 

1.07901 0.03501 0.44956 0.14436 0.14196 

Acid 

Calibration 6 

1.93591 0.17511 0.53200 0.16193 0.15626 

Acid 

Calibration 7 

2.09475 1.08639 0.51592 0.11228 0.01960 

Acid 

Calibration 8 

3.51640 2.96646 0.42939 0.10936 0.06643 

07CK23-98 0.00844 0.00000 0.77052 28.50119 24.90054 

07CK23-99 0.01678 0.00629 0.73488 24.41682 21.04625 

07CK23-100 0.02242 0.00702 0.70975 24.56052 20.80657 

07CK23-101 0.11752 0.20068 0.84493 17.64594 14.96514 

07CK23-102 0.11493 0.21704 0.81662 16.85916 14.25431 

07CK23-103 0.15064 0.21313 0.94058 18.52434 22.47854 

13CK23-154 0.00734 0.00456 1.14004 34.80031 28.67670 

13CK23-155 0.00947 0.00862 1.32832 39.71755 35.23982 

13CK23-156 0.01223 0.01350 1.35082 34.01746 32.94546 

13CK23-157 0.10419 0.39605 1.17087 20.26935 16.32198 
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13CK23-158 0.11807 0.38083 1.34145 22.47219 16.67692 

13CK23-159 0.12415 0.40069 1.43722 21.93287 15.81677 

15CK23-114 0.01446 0.00458 0.73036 28.35463 23.43163 

15CK23-115 0.06914 0.00640 0.74821 20.97459 19.90827 

15CK23-116 0.11813 0.01036 0.84734 21.62013 21.15703 

15CK23-117 0.27916 0.10019 2.07735 39.42962 37.10871 

15CK23-118 0.28194 0.09800 2.04348 39.30373 38.56429 

15CK23-119 0.29745 0.12227 2.20181 48.01720 48.30913 

08CK23-162 0.00633 0.00815 1.17831 23.94311 20.37833 

08CK23-163 0.00630 0.00000 1.17136 19.85630 17.31439 

08CK23-164 0.00712 0.00403 1.43917 22.70924 20.57608 

08CK23-165 0.02674 0.00627 2.30202 33.95901 30.54060 

08CK23-166 0.03047 0.00737 2.14958 31.40738 29.78543 

08CK23-167 0.02627 0.00633 2.26712 33.38395 31.38673 

09CK23-138 0.01214 0.00934 1.04456 35.62421 33.72376 

09CK23-139 0.01393 0.00600 0.90686 28.72881 23.61827 

09CK23-140 0.01729 0.00749 0.91713 26.67682 24.10229 

09CK23-141 0.04921 0.02200 4.42414 61.04932 63.10822 

09CK23-142 0.04894 0.01983 4.53419 58.94932 64.79646 

09CK23-143 0.05592 0.02559 4.44389 61.13744 63.54302 

16CK23-146 0.00578 0.00515 1.24750 19.16332 15.38849 

16CK23-147 0.00734 0.00379 1.29559 19.02134 15.17702 

16CK23-148 0.00794 0.00574 1.39699 18.63822 15.12035 

16CK23-149 0.01140 0.00729 3.76100 37.22213 39.08304 

16CK23-150 0.00766 0.00645 3.76585 35.96807 38.11844 

16CK23-151 0.00965 0.00889 3.85022 31.65500 38.24551 

Acid 

Calibration 1 

0.20057 0.00821 1.84248 1.41863 1.41730 

Acid 

Calibration 2 

0.26444 0.01573 0.74127 0.98507 0.07042 

Acid 

Calibration 3 

0.40621 0.01779 0.63343 0.30974 0.29689 

Acid 

Calibration 4 

0.94124 0.03308 0.70632 0.24904 0.25043 

Acid 

Calibration 5 

1.13121 0.02508 0.55730 0.17134 0.11668 

Acid 

Calibration 6 

2.66245 0.26710 0.75632 0.23703 0.20527 

Calibration 7 2.94811 1.63163 0.79733 0.18546 0.18206 

Calibration 8 7.18969 6.21404 0.99403 0.25894 0.25164 
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Table 24: GC-MS underivatized results from DOE block 2 

Notes Methyl 

Lactate 

Methyl 

Vinylglycolate 

Furfural Methyl 

Levulinate 

 Target/ISTD Target/ISTD Target/ISTD Target/ISTD 

Nonacid 

Calibrations 1 

0.028093 0.012586 0.01092 0.012444 

Nonacid 

Calibrations 2 

0.051825 0.018703 0.041112 0.057158 

Nonacid 

Calibrations 3 

0.117263 0.051474 0.073191 0.166415 

Nonacid 

Calibrations 4 

0.241221 0.108169 0.138764 0.341251 

Nonacid 

Calibrations 5 

0.495311 0.209812 0.277569 0.708927 

Nonacid 

Calibrations 6 

0.936436 0.407366 0.498848 1.414353 

Nonacid 

Calibrations 7 

1.810831 0.752086 1.593894 2.71374 

Nonacid 

Calibrations 8 

2.443509 1.298727 2.940571 4.958656 

06CK23-178 0 0 0 0 

06CK23-179 0.056133 0.008514 0.010189 0.007541 

06CK23-180 0.079579 0.008495 0.02558 0.046626 

06CK23-181 0.164433 0.023848 0.066631 1.196924 

06CK23-182 0.180271 0.02689 0.051188 1.273011 

06CK23-183 0.194852 0.020102 0.084308 1.452822 

10CK23-106 0 0 0 0 

10CK23-107 0 0 0 0 

10CK23-108 0 0 0 0 

10CK23-109 0.002692 0 0 0 

10CK23-110 0.002603 0 0 0 

10CK23-111 0.002304 0 0.001615 0.001551 

17CK23-130 0 0 0 0 

17CK23-131 0 0 0 0 

17CK23-132 0.002286 0 0 0.002971 

17CK23-133 0.014963 0 0.018573 0.399548 

17CK23-134 0.022391 0 0.020144 0.424206 

17CK23-135 0.03187 0 0.019951 0.419376 

12CK23-186 0 0 0 0 

12CK23-187 0 0 0.003672 0.002667 

12CK23-188 0.006177 0 0.000801 0.007454 

12CK23-189 0.126343 0 0.030051 0.646198 
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12CK23-190 0.128292 0 0.034876 0.628897 

12CK23-191 0.129965 0 0.035766 0.6312 

Nonacid 

Calibrations 1 

0.023719 0.012403 0.015947 0.026065 

Nonacid 

Calibrations 2 

0.045939 0.027713 0.036025 0.057499 

Nonacid 

Calibrations 3 

0.094007 0.043147 0.081959 0.139717 

Nonacid 

Calibrations 4 

0.209185 0.101458 0.183398 0.302292 

Nonacid 

Calibrations 5 

0.445429 0.200711 0.390711 0.646086 

Nonacid 

Calibrations 6 

0.881789 0.395303 0.785735 1.310856 

Nonacid 

Calibrations 7 

1.487957 0.596307 1.450261 2.52536 

Nonacid 

Calibrations 8 

2.190925 1.169625 2.730268 4.497917 

14CK23-170 0 0 0 0 

14CK23-171 0 0 0 0 

14CK23-172 0 0 0 0 

14CK23-173 0.00207 0 0.00249 0.020884 

14CK23-174 0.006904 0 0.001435 0.02209 

14CK23-175 0.00262 0 0.001651 0.024918 

11CK23-122 0 0 0 0 

11CK23-123 0.039948 0.006991 0.00372 0 

11CK23-124 0.04345 0.006929 0.007097 0.001409 

11CK23-125 0.075828 0.011075 0.019614 0.169651 

11CK23-126 0.065138 0.01367 0.023612 0.170765 

11CK23-127 0.073514 0.008773 0.009043 0.182964 

07CK23-98 0 0 0 0 

07CK23-99 0.002308 0 0 0 

07CK23-100 0 0 0 0 

07CK23-101 0.016445 0 0.028175 0.149762 

07CK23-102 0.012922 0 0.029572 0.156007 

07CK23-103 0.012364 0 0.019102 0.153093 

13CK23-154 0 0 0 0 

13CK23-155 0 0 0 0 

13CK23-156 0 0 0 0 

13CK23-157 0.003062 0 0.021505 0.16054 

13CK23-158 0.00343 0 0.023839 0.16836 
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13CK23-159 0.002818 0 0.025699 0.181691 

15CK23-114 0 0 0 0 

15CK23-115 0.003507 0 0 0 

15CK23-116 0.010897 0 0.002906 0 

15CK23-117 0.010085 0.00337 0.009475 0.034664 

15CK23-118 0.029672 0.002144 0.012411 0.047769 

15CK23-119 0.032872 0.003006 0.013144 0.057157 

08CK23-162 0 0 0 0 

08CK23-163 0 0 0 0 

08CK23-164 0 0 0.00047 0 

08CK23-165 0.003876 0 0 0 

08CK23-166 0.006529 0 0 0 

08CK23-167 0.010345 0 0 0 

09CK23-138 0 0 0.000336 0 

09CK23-139 0 0 0 0 

09CK23-140 0.002848 0 0 0 

09CK23-141 0.024482 0.003009 0.005446 0.030562 

09CK23-142 0.025105 0.002915 0.004882 0.032651 

09CK23-143 0.027014 0.003017 0.013008 0.037275 

16CK23-146 0 0 0 0 

16CK23-147 0 0 0 0 

16CK23-148 0 0 0 0 

16CK23-149 0 0 0 0 

16CK23-150 0 0 0.000392 0 

16CK23-151 0 0 0 0 

Nonacid 

Calibrations 1 

0.019796 0.010579 0.015324 0.012233 

Nonacid 

Calibrations 2 

0.042811 0.02181 0.029128 0.041103 

Nonacid 

Calibrations 3 

0.093181 0.04287 0.073067 0.120509 

Nonacid 

Calibrations 4 

0.176885 0.074876 0.106961 0.2763 

Nonacid 

Calibrations 5 

0.408943 0.189667 0.262736 0.595575 

Nonacid 

Calibrations 6 

0.7468 0.302527 0.782002 1.195661 

Nonacid 

Calibrations 7 

1.358089 0.542797 1.406961 2.237869 

Nonacid 

Calibrations 8 

2.865705 1.156127 2.77114 4.448039 



101 

 

Table 25: GC-MS derivatized results for DOE block 1 

Notes Lactic 

Acid 

Levulinic 

acid 

Unreacted 

sugars 1 

Unreacted 

sugars 2 

Glucose 

 Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Target/ 

ISTD 

Acid 

Calibration 1 

0.12320 0.00423 0.82971 0.79828 0.03558 

Acid 

Calibration 2 

0.42900 0.01915 1.38545 0.80715 0.01799 

Acid 

Calibration 3 

0.78686 0.02298 0.48662 0.27924 0.00552 

Acid 

Calibration 4 

1.68445 0.02831 0.36014 0.21833 0.00353 

Acid 

Calibration 5 

3.09850 0.08445 0.30628 0.19260 0.00000 

Acid 

Calibration 6 

4.72629 0.40591 0.29776 0.17801 0.00117 

Acid 

Calibration 7 

5.42697 2.83530 0.21283 0.12256 0.00000 

154_CK19-96d 0.58406 0.10141 68.76024 68.72304 5.04276 

155_CK19-97d 0.44562 0.18300 134.57069 138.33248 22.21780 

156_CK19-98d 0.16215 0.05056 50.98503 43.18957 7.57866 

157_CK19-99d 0.05132 0.07948 70.09910 67.61275 8.93521 

159_CK19-13d 3.22526 0.10018 0.32804 0.05846 0.00475 

161_CK20-02d 0.12410 0.15953 106.11056 101.65269 20.07271 

162_CK20-03d 0.13027 0.13396 35.63399 34.21762 2.86226 

163_CK20-04d 0.40964 0.35194 46.58788 12.94535 3.69481 

165_CK20-05d 0.62473 0.79998 9.13582 10.92431 0.57867 

166_CK20-06d 0.70178 0.78699 8.28857 1.64642 0.79613 

167_CK20-07d 0.75125 0.87153 8.23945 2.96172 0.57258 

169_CK20-10d 0.23733 0.05984 37.42560 33.29309 4.55103 

170_CK20-11d 0.13600 0.09215 42.90373 36.73458 2.13408 

171_CK20-12d 0.11920 0.05411 35.48301 31.65155 2.89861 

173_CK20-13d 0.17056 0.03461 27.10860 24.89062 2.40477 

174_CK20-14d 0.16858 0.03518 27.94786 25.38578 2.99837 

175_CK20-15d 0.16679 0.04703 26.30720 23.42179 2.40255 

179_CK20-18d 0.19139 0.13259 75.32223 73.91316 10.59005 

180_CK20-19d 0.13992 0.04777 0.99671 0.84618 0.07176 

181_CK20-20d 0.50445 0.35045 62.65600 55.11722 6.96734 

183_CK20-21d 0.41444 0.26708 6.77076 36.70116 0.65065 

184_CK20-22d 0.42058 0.27424 7.83997 28.28020 0.59025 

185_CK20-23d 0.41348 0.28894 8.52291 31.88120 0.84701 
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187_CK20-26d 0.09596 0.05747 52.25443 48.81962 6.69383 

188_CK20-27d 0.07212 0.08805 47.55347 52.59076 6.36402 

189_CK20-28d 0.11157 0.09805 38.72102 16.85310 3.61240 

191_CK20-29d 0.38366 0.36288 3.19724 17.62298 0.42236 

192_CK20-30d 0.46233 0.34402 2.85848 20.54487 0.44142 

193_CK20-31d 0.55895 0.32753 5.02473 25.65502 0.47015 

197_CK20-34d 0.14045 0.09385 64.91434 76.86721 22.26055 

198_CK20-35d 0.09776 0.07544 56.82565 51.97228 14.52474 

199_CK20-36d 0.12246 0.11013 80.71905 75.59070 12.09488 

201_CK20-37d 0.13810 0.14412 66.32299 81.05262 10.90795 

202_CK20-38d 0.14992 0.17434 65.35696 84.02227 10.32847 

203_CK20-39d 0.13077 0.14894 81.49917 61.11110 13.44067 

205_CK20-42d 0.06379 0.03214 29.06343 22.75756 4.50796 

206_CK20-43d 0.88628 0.03980 23.20079 21.15995 1.73430 

207_CK20-44d 0.79654 0.03136 10.64731 10.20848 0.65008 

209_CK20-45d 1.07908 0.05405 5.19988 3.24253 0.24756 

210_CK20-46d 1.15814 0.05729 4.44811 2.68069 0.22575 

211_CK20-47d 1.01497 0.06032 4.66380 2.82680 0.42655 

Acid 

Calibration 1 

0.11736 0.00535 0.80848 0.46018 0.01409 

Acid 

Calibration 2 

0.38553 0.01994 1.40130 0.31549 0.02252 

Acid 

Calibration 3 

0.74476 0.02607 0.51790 0.09308 0.00922 

Acid 

Calibration 4 

1.52995 0.04459 0.36252 0.06340 0.00516 

Acid 

Calibration 5 

2.69586 0.08895 0.33513 0.05821 0.00454 

Acid 

Calibration 6 

4.05952 0.37732 0.29522 0.05503 0.00443 

Acid 

Calibration 7 

4.57750 2.34440 0.21681 0.03988 0.00343 

Acid 

Calibration 8 

9.08904 7.66220 0.24955 0.04446 0.00373 

223_CK20-50d 0.07569 0.04538 69.23368 60.13851 9.01765 

224_CK20-51d 0.07510 0.05269 58.83650 53.70908 9.57592 

225_CK20-52d 0.11656 0.04957 59.87388 56.69016 10.05151 

227_CK20-53d 0.50376 0.15141 22.72517 24.92201 1.70647 

228_CK20-54d 0.45920 0.13888 18.07640 19.51425 1.68417 

229_CK20-55d 0.47006 0.19159 19.83161 22.43297 2.33966 

231_CK20-58d 0.06273 0.04915 62.66787 54.78389 9.49832 
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232_CK20-59d 0.04953 0.08437 64.46727 61.87620 11.27294 

233_CK20-60d 0.05578 0.05769 63.51344 59.58644 9.25039 

235_CK20-61d 0.24145 0.85773 16.31986 11.74089 1.31643 

236_CK20-62d 0.26853 0.80098 22.01048 11.77455 1.30596 

237_CK20-63d 0.28366 0.78558 18.06270 11.11695 1.55547 

241_CK20-66d 0.02285 0.03385 54.61886 53.06561 9.01141 

242_CK20-67d 0.12015 0.03593 65.94870 47.16794 11.79284 

243_CK20-68d 0.15392 0.04590 44.35531 40.81406 6.37732 

245_CK20-69d 0.42846 0.10148 43.44536 40.99882 4.26627 

246_CK20-70d 0.40388 0.12846 41.04013 33.04751 6.06348 

247_CK20-71d 0.44332 0.09886 40.76607 38.88255 4.96582 

249_CK20-74d 0.03377 0.02347 73.30025 65.90272 10.87990 

250_CK20-75d 0.02439 0.02531 42.65838 44.02688 7.28777 

251_CK20-76d 0.03174 0.04556 62.93925 62.04842 9.85548 

253_CK20-77d 0.10714 0.03007 27.39794 32.19882 4.86813 

254_CK20-78d 0.20805 0.04074 23.84363 34.66054 5.04566 

255_CK20-79d 0.22018 0.04537 24.90101 30.73589 4.36294 

259_CK20-82d 0.02999 0.04443 121.50569 120.84976 29.70852 

260_CK20-83d 0.03140 0.04942 110.79805 103.27652 19.23918 

261_CK20-84d 0.05993 0.05442 135.85663 114.32420 19.28740 

263_CK20-85d 0.19352 0.10738 79.48780 87.25007 8.47654 

264_CK20-86d 0.18957 0.09993 76.26285 81.86977 7.58653 

265_CK20-87d 0.23578 0.11043 79.71203 88.33358 7.72947 

267_CK20-90d 0.01132 0.02416 37.06121 32.14164 5.82717 

268_CK20-91d 0.01231 0.01813 40.38426 35.94652 4.54028 

269_CK20-92d 0.01297 0.01886 37.15254 33.42876 5.51886 

271_CK20-93d 0.02441 0.04023 42.01154 39.40282 5.76396 

272_CK20-94d 0.02205 0.01875 41.95146 38.68350 5.74677 

273_CK20-95d 0.02082 0.02250 40.67284 39.19649 6.32934 

Acid 

Calibration 1 

0.11302 0.00537 0.81984 0.07110 0.01473 

Acid 

Calibration 2 

0.38051 0.02321 1.43267 0.31886 0.02865 

Acid 

Calibration 3 

0.68175 0.02614 0.51532 0.08563 0.00861 

Acid 

Calibration 4 

1.39253 0.04485 0.37953 0.06680 0.00712 

Acid 

Calibration 5 

 

2.59219 0.07209 0.31586 0.21649 0.00282 
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Acid 

Calibration 6 

3.88773 0.35395 0.32620 0.05875 0.00678 

Acid 

Calibration 7 

4.27242 2.21194 0.23472 0.03909 0.00463 

Acid 

Calibration 8 

8.37149 6.52080 0.25557 0.04533 0.00517 
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Table 26: GC-MS underivatized results for DOE block 1 

Notes Methyl 

Lactate 

Methyl 

Vinylglycolate 

Furfural Methyl 

Levulinate 

 Target/ISTD Target/ISTD Target/ISTD Target/ISTD 

     

Nonacid 

Calibration 1 

0.029302658 0.016185504 0.023896838 0.037268564 

Nonacid 

Calibration 2 

0.054778355 0.033524006 0.047624462 0.083232354 

Nonacid 

Calibration 3 

0.117399301 0.07331718 0.107245176 0.177723738 

Nonacid 

Calibration 4 

0.238905354 0.166233291 0.227408996 0.377780119 

Nonacid 

Calibration 5 

0.512296304 0.377028221 0.505305199 0.812175456 

Nonacid 

Calibration 6 

1.033348808 0.766279317 0.989007608 1.606467691 

Nonacid 

Calibration 7 

1.682819079 1.624330043 2.019021986 3.187954261 

Nonacid 

Calibration 8 

4.681943004 2.203292784 3.824256469 5.986609622 

Cat. CK13-

06 Hour 0 

0 0 0 0.002449039 

Cat. CK13-

06 Hour 1 

0.005874104 0 0.004462076 0.016196937 

Cat. CK13-

06 Hour 2 

0.040113185 0 0.019459266 0.140673398 

Cat. CK13-

06 Hour 20 

0.190857913 0.003397065 0.059984298 1.513821098 

Cat. CK13-

06 Hour 21 

0.204831799 0.003559977 0.064548733 1.588227452 

Cat. CK13-

06 Hour 22 

0.202534625 0.003649852 0.067554899 1.622581203 

Calibration 

Check 

1.11661314 0.409759469 1.034095224 1.633898122 

Cat. CK13-

10 Hour 0 

0 0 0 0 

Cat. CK13-

10 Hour 1 

0 0 0 0 

Cat. CK13-

10 Hour 2 

0 0 0 0 

Cat. CK13-

10 Hour 20 

 

0.005724687 0 0.003337321 0.007641485 
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Table 26 Continued 

 

Cat. CK13-

10 Hour 21 

0.004592707 0 0.004678018 0.008789056 

Cat. CK13-

10 Hour 22 

0.004122196 0 0.002237992 0.010332316 

Calibration 

Check 

1.112721784 0.441677207 0.969342037 1.538318991 

Cat. CK13-

17 Hour 0 

0 0 0 0 

Cat. CK13-

17 Hour 1 

0 0 0.001657012 0.003118633 

Cat. CK13-

17 Hour 2 

0 0 0.001657012 0.003118633 

Cat. CK13-

17 Hour 20 

0.049310098 0 0.026759505 0.367563633 

Cat. CK13-

17 Hour 21 

0.048791983 0 0.024072331 0.379082313 

Cat. CK13-

17 Hour 22 

0.058316484 0 0.027701335 0.402089322 

Cat. CK13-

12 Hour 0 

0 0 0 0 

Cat. CK13-

12 Hour 1 

0 0 0.003803122 0.0074867 

Cat. CK13-

12 Hour 2 

0.005534658 0 0.008307284 0.046083792 

Cat. CK13-

12 Hour 20 

0.123257979 0 0.045177338 0.785830323 

Cat. CK13-

12 Hour 21 

0.126742319 0 0.048786052 0.809809484 

Cat. CK13-

12 Hour 22 

0.132505031 0 0.054204834 0.869037475 

Nonacid 

Calibration 1 

0.025538581 0.015488859 0.024431373 0.038934651 

Nonacid 

Calibration 2 

0.053614422 0.020609656 0.052080281 0.082067012 

Nonacid 

Calibration 3 

0.115703218 0.044856085 0.07176257 0.179585625 

Nonacid 

Calibration 4 

0.245514573 0.094867595 0.239902809 0.380112163 

Nonacid 

Calibration 5 

0.482197295 0.363757354 0.514842237 0.799031218 

Nonacid 

Calibration 6 

 

0.969994256 0.752922218 1.026943239 1.555933503 
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Table 26 Continued 

 

Nonacid 

Calibration 7 

1.625451742 1.570377088 2.049506796 3.097384978 

Nonacid 

Calibration 8 

7.102612336 3.097630769 3.964003972 5.601243124 

Cat. CK13-

14 Hour 0 

0 0 0 0.00239999 

Cat. CK13-

14 Hour 1 

0 0 0 0.001663443 

Cat. CK13-

14 Hour 2 

0 0 0 0.003380545 

Cat. CK13-

14 Hour 20 

0.005309065 0 0.009282133 0.048129815 

Cat. CK13-

14 Hour 21 

0.008202352 0 0.019395026 0.119719417 

Cat. CK13-

14 Hour 22 

0.003933857 0 0.01085318 0.060589251 

Calibration 

Check 

0.889517005 0.758525852 1.006565299 1.536112651 

Cat. CK13-

11 Hour 0 

0.001444833 0 0 0 

Cat. CK13-

11 Hour 1 

0.048615305 0.00973322 0.007391967 0.006208738 

Cat. CK13-

11 Hour 2 

0.069010208 0.012188042 0.009723321 0.018938528 

Cat. CK13-

11 Hour 20 

0.120468931 0.02078605 0.034281592 0.197393655 

Cat. CK13-

11 Hour 21 

0.117338586 0.020170983 0.029432056 0.195340642 

Cat. CK13-

11 Hour 22 

0.110932954 0.011335224 0.030138555 0.195806801 

Calibration 

Check 

0.943755082 0.751441401 1.024971209 1.529148465 

Cat. CK13-

07 Hour 0 

0 0 0 0.003675723 

Cat. CK13-

07 Hour 1 

0 0 0 0 

Cat. CK13-

07 Hour 2 

0.001335967 0 0.003754381 0.007353356 

Cat. CK13-

07 Hour 20 

0.034822853 0 0.021726657 0.112944696 

Cat. CK13-

07 Hour 21 

 

0.030663983 0 0.031209705 0.105173165 
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Table 26 Continued 

 

Cat. CK13-

07 Hour 22 

0.033980849 0 0.017601845 0.111019084 

Cat. CK13-

13 Hour 0 

0 0 0.002376321 0.008057427 

Cat. CK13-

13 Hour 1 

0 0 0 0.001698301 

Cat. CK13-

13 Hour 2 

0 0 0.003876198 0.008459091 

Cat. CK13-

13 Hour 20 

0.005244057 0 0.030047067 0.22930378 

Cat. CK13-

13 Hour 21 

0.007212778 0 0.038242492 0.265512643 

Cat. CK13-

13 Hour 22 

0.005124895 0 0.033043977 0.262670761 

Calibration 

Check 

1.824601828 0.752705831 1.028417234 1.541159779 

Cat. CK13-

15 Hour 0 

0 0 0 0.005529208 

Cat. CK13-

15 Hour 1 

0.005059108 0 0 0 

Cat. CK13-

15 Hour 2 

0.006029682 0 0.003965451 0.003866679 

Cat. CK13-

15 Hour 20 

0.011643575 0.002157946 0.01650483 0.053028007 

Cat. CK13-

15 Hour 21 

0.026234965 0 0.017532708 0.051475373 

Cat. CK13-

15 Hour 22 

0.0109908 0.000917805 0.014556092 0.049447279 

Cat. CK13-

08 Hour 0 

0 0 0 0 

Cat. CK13-

08 Hour 1 

0 0 0 0 

Cat. CK13-

08 Hour 2 

0 0 0 0 

Cat. CK13-

08 Hour 20 

0.033427505 0 0.002316928 0.005847554 

Cat. CK13-

08 Hour 21 

0.035890414 0 0.002695794 0.00765836 

Cat. CK13-

08 Hour 22 

0.041996247 0 0.00325466 0.009136181 

Cat. CK13-

09 Hour 0 

 

0 0 0 0 
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Table 26 Continued 

 

Cat. CK13-

09 Hour 1 

0 0 0 0 

Cat. CK13-

09 Hour 2 

0 0 0 0 

Cat. CK13-

09 Hour 20 

0.024557339 0 0.012491578 0.023301359 

Cat. CK13-

09 Hour 21 

0.025966465 0 0.012860186 0.025771485 

Cat. CK13-

09 Hour 22 

0.030872484 0 0.013743168 0.028242626 

Cat. CK13-

16 Hour 0 

0 0 0 0 

Cat. CK13-

16 Hour 1 

0 0 0 0 

Cat. CK13-

16 Hour 2 

0 0 0 0 

Cat. CK13-

16 Hour 20 

0 0 0 0.001763344 

Cat. CK13-

16 Hour 21 

0 0 0 0 

Cat. CK13-

16 Hour 22 

0 0 0 0.002490674 

Nonacid 

Calibration 1 

0.026187567 0.010957753 0.02336974 0.03524348 

Nonacid 

Calibration 2 

0.052926766 0.024849883 0.049672282 0.075546713 

Nonacid 

Calibration 3 

0.112870814 0.062670795 0.113295764 0.177075059 

Nonacid 

Calibration 5 

0.537991143 0.349253972 0.521348021 0.807855146 

Nonacid 

Calibration 7 

1.929088584 1.552249623 2.116165468 3.188027624 

Nonacid 

Calibration 8 

5.091292154 2.128117078 3.963437196 5.743984777 
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APPENDIX F: 
 MINITAB PLOTS 

Versus fits, showing scatter, and normal probability plots, showing a roughly straight line, 

are used to verify no trends occurred as a result of the run order.  Normal plots and half normal 

plots work similar to Pareto charts to determine which factors are significant.  The following 

figures are individually labeled with chart title and respective target compound. 
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