

University of North Dakota UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

January 2014

# Synthesis, Selection, And Optimization Of Doped Zeolite Catalyst For The Nonbiological Production Of Lactic Acid Derivatives From Biomass Derived Carbohydrates

Clancy Raymond Rick Kadrmas

Follow this and additional works at: https://commons.und.edu/theses

#### **Recommended** Citation

Kadrmas, Clancy Raymond Rick, "Synthesis, Selection, And Optimization Of Doped Zeolite Catalyst For The Nonbiological Production Of Lactic Acid Derivatives From Biomass Derived Carbohydrates" (2014). *Theses and Dissertations*. 1552. https://commons.und.edu/theses/1552

This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact zeinebyousif@library.und.edu.

# SYNTHESIS, SELECTION, AND OPTIMIZATION OF DOPED ZEOLITE CATALYST FOR THE NONBIOLOGICAL PRODUCTION OF LACTIC ACID DERIVATIVES FROM BIOMASS DERIVED CARBOHYDRATES

by

Clancy Raymond Rick Kadrmas Bachelor of Science, University of North Dakota, 2006 Master of Science, Purdue University, 2010

> A Dissertation Submitted to the Graduate Faculty

> > of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Grand Forks, North Dakota May 2014

Copyright 2014 Clancy Kadrmas

This dissertation, submitted by Clancy Kadrmas in partial fulfillment of the requirements for the Degree of Doctor of Philosophy from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved.

Dr. Wayne Séames, Chairperson

AC

Dr. Robert Wills, Committee Member

1

Dr. Yun Ji, Committee Member

Dr. Alena Kubatova, Committee Member

Dr. Evguenii Kozliak, Member-at-Large

This dissertation meets the standards for appearance, conforms to the style and format requirements of the Graduate School of the University of North Dakota, and is hereby approved.

Payne S. Sriche Dean of the Graduate School May 7, 2014

Date

## PERMISSION

- Title Synthesis, Selection, and Optimization of Doped Zeolite Catalyst for the Nonbiological Production of Lactic Acid Derivatives from Biomass Derived Carbohydrates
- Department Chemical Engineering
- Degree Doctor of Philosophy

In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in his absence, by the chairperson of the department or the dean of the Graduate School. It is understood that any copying or publication or other use of this dissertation or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my dissertation.

Signature <u>Clancy Kadrmas</u>

Date \_\_\_\_\_ April 30th, 2014

| TABLE OF CONTENTS                           |
|---------------------------------------------|
| LIST OF FIGURES vii                         |
| LIST OF TABLES ix                           |
| ACKNOWLEDGEMENTS xi                         |
| ABSTRACTxii                                 |
| CHAPTER                                     |
| I. INTRODUCTION1                            |
| II. LACTIC/LEVULINIC ACID                   |
| Lactic Acid Literature Review               |
| Levulinic Acid Production Literature Review |
| Catalyst Selection10                        |
| Experimental Setup11                        |
| Reactants, Standards and Catalysts11        |
| Catalyst Doping11                           |
| Autoclave Reactor                           |
| Experimental Reaction14                     |
| GC-MS Analysis 14                           |
| Experimental Methods15                      |
| Design of Experiments – Screening Study 15  |
|                                             |

| Screening Study Results Based on Chemical Analysis 18               |
|---------------------------------------------------------------------|
| Statistical Analysis of Screening Study 21                          |
| Temperature Bounding Studies                                        |
| Triplicate Results Under Optimized Conditions 34                    |
| Lactic Acid and Levulinic Production<br>Recommendations40           |
| Methyl Lactate or Methyl Levulinate Production<br>Recommendations42 |
| III. CONCLUSIONS 44                                                 |
| APPENDIX A: ZEOLITE DOPING 46                                       |
| APPENDIX B: AUTOCLAVE EXPERIMENT SETUP 47                           |
| APPENDIX C: GC-MS ANALYSIS 49                                       |
| APPENDIX D: GC-MS DATA PROCESSING 70                                |
| APPENDIX E: ALL DATA                                                |
| APPENDIX F: MINITAB PLOTS110                                        |
| REFERENCES                                                          |

# LIST OF FIGURES

| Page                                                                                                   |
|--------------------------------------------------------------------------------------------------------|
| Declining crude oil reserves shown by historical oil discovery, consumption, and forecasted production |
| Petroleum and other liquid fuel history and projections including tight oil production 4               |
| Simplified schematic of autoclave reactor used for all experiments                                     |
| Experiment 2-7 showing the typical trend of product yields over time                                   |
| Screening study Pareto chart for glucose conversion                                                    |
| Screening study main effects plot for glucose conversion                                               |
| Screening study Pareto chart for methyl lactate production                                             |
| Screening study main effects plot for methyl lactate production                                        |
| Screening study Pareto chart for lactic acid production                                                |
| Screening study main effects plot for lactic acid production                                           |
| Screening study Pareto chart for methyl levulinate production                                          |
| Screening study main effects plot for methyl levulinate production                                     |
| Screening study Pareto chart for levulinic acid production                                             |
| Screening study main effects plot for levulinic acid production                                        |
| Temperature experiments in pure water solvent using Sn <sup>+4</sup> -doped beta zeolite               |
| Temperature experiments in pure water solvent using Sn <sup>+2</sup> -doped beta zeolite               |
| Results from triplicate experiments at 200 °C using Sn <sup>+4</sup> beta zeolite in pure water 35     |
|                                                                                                        |

| 18. | Results from triplicate experiments at 200 °C using Sn <sup>+2</sup> -doped beta zeolite in pure water                                          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 19. | Results from triplicate experiments at 200 °C using Sn <sup>+4</sup> -doped beta zeolite in methanol                                            |
| 20. | Grouped results from triplicate experiments at 200 °C using Sn <sup>+4</sup> -doped beta zeolite<br>in methanol                                 |
| 21. | Results from triplicate experiments at 200 °C using Sn <sup>+4</sup> -doped beta zeolite in pure water with increased catalyst-to-glucose ratio |
| 22. | Chromatogram example from derivatized samples                                                                                                   |
| 23. | Chromatogram example from underivatized samples                                                                                                 |
| 24. | Calibration curve example showing relationship with known concentrations of analytes with GC-MS response                                        |

# LIST OF TABLES

| Table | Page                                                                                                                         |
|-------|------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Global warming effects of common greenhouse gases                                                                            |
| 2.    | A summary of published results for lactic acid and methyl lactate production from sugars with various catalysts and solvents |
| 3.    | Summary of our best results for lactic acid and methyl lactate production from glucose with various catalysts and solvents   |
| 4.    | Methyl lactate and methyl levulinate results from catalyst screening experiments 10                                          |
| 5.    | Low and high values for eleven factors tested in the screening study 15                                                      |
| 6.    | Design of experiments screening study run order showing high and low values of each of the eleven factors tested             |
| 7.    | Averaged analytical results of products from screening study 20                                                              |
| 8.    | Summary of total products, unreacted glucose, and unaccounted products from screening study                                  |
| 9.    | Significant factors discovered in the Plackett-Burman screening study                                                        |
| 10.   | Example of GC-MS analysis sequence                                                                                           |
| 11.   | Analyte target ions and retention time                                                                                       |
| 12.   | GC-MS triplicate results from 20140325                                                                                       |
| 13.   | GC-MS results from 20140324                                                                                                  |
| 14.   | GC-MS results from 20140213 79                                                                                               |
| 15.   | GC-MS results from 20140128                                                                                                  |
| 16.   | GC-MS results from 20140103                                                                                                  |

| 17. | GC-MS results from 20131220                  | 84    |
|-----|----------------------------------------------|-------|
| 18. | GC-MS results from 20131210                  | 85    |
| 19. | GC-MS results from 20131203                  | 86    |
| 20. | GC-MS results from 20131018                  | 87    |
| 21. | GC-MS results from 20131014                  | 89    |
| 22. | GC-MS results for 20131001                   | 92    |
| 23. | GC-MS derivatized results from DOE block 2   | 95    |
| 24. | GC-MS underivatized results from DOE block 2 | 98    |
| 25. | GC-MS derivatized results for DOE block 1    | . 101 |
| 26. | GC-MS underivatized results for DOE block 1  | . 105 |

#### ACKNOWLEDGEMENTS

I would first like to thank my family and friends for all their support over the years. Especially my supportive wife, Lisa, who has always given her all so I may do the same. Also a special thanks to the Department of Chemical Engineering of UND for giving me this exciting opportunity. As a native of North Dakota and having spent my undergraduate years at UND, it is a real honor to achieve this lifetime goal at UND with this exceptional faculty. Additionally, I must thank my advisory committee for their encouragement, knowledge, resources, and opportunity to work on this challenging research. Finally, I need to thank my advisor, Dr. Wayne Seames, for his continuous support and understanding who has helped guide me to become an independent scholar. I will always be grateful for this life changing experience as I continue to strive to appreciate and comprehend what has yet to be known.

#### ABSTRACT

The objective of the overall project is to chemically synthesize fatty acids, hydrocarbons, other fuel constituents, or high value chemicals directly from biomass-derived carbohydrates (e.g. sugars generated using processes developed for the cellulosic ethanol industry). This work will look specifically at synthesizing lactic acid and its derivatives for later use to build chemically identical fuel components or high value chemicals.

We have built upon recent advancements in the literature using Sn-doped beta zeolite catalysts. Previous work has demonstrated that glucose can be chemically transformed into fructose then reduced to methyl lactate in a methanol solution. Since these reactions are not biochemical, increased reaction rates can be realized by increasing temperatures above those tolerated by biological entities. This should result in substantial savings in time and resources required to achieve the final end product. These savings can translate into more cost effective pathways to renewable fuels and chemicals.

The literature's reported best results focused on sucrose substrate with a methanol solvent and achieved overall methyl lactate yields of 64%, with >99% conversion of the feedstock. The challenge this research undertook was to maximize selective conversion of glucose substrate, the main product from the breakdown of biomass, in a water solvent as an economical and "green" universal solvent. An important part of this work was to carefully characterize side reaction constituents so that we can identify ways to transform these constituents into valuable coproducts in the future.

xii

When operating conditions were optimized roughly 80% of all products were determined utilizing GC-MS analysis technique, greatly increasing the known product yields reported in the literature. Lactic acid was maximized at 47% using Sn<sup>+4</sup>-doped beta zeolite in pure water. Levulinic acid was maximized at 53% recovered using Sn<sup>+2</sup>-doped beta zeolite in pure water. Methyl lactate, 22%, and methyl levulinate, 49%, were produced using Sn<sup>+4</sup>-doped beta zeolite in methanol. These results are a key step in the overall project to produce fuel components and value chemicals from cellulosic biomass.

# CHAPTER I INTRODUCTION

Energy and food demands are projected to increase significantly with the steady increase in population and quality of life worldwide [1-5]. Taking into account the limited supply of fossil fuels and their associated environmental concerns, the demand for renewable resources for fuels and chemicals is greatly increasing [2]. With a finite availability of landmass and water supply, production of renewable raw materials may impinge upon food production.

The efficient conversion of lignocellulosic biomass to fuel and high value chemicals would be useful to address the emerging food versus fuel/chemical dilemma for an ever increasing global population while minimizing environmental degradation [5]. Greater than one billion dry tons of non-food based biomass can be sustainably produced annually in the US [6]. These current untapped renewable resourses will provide an ecomoical feedstock for the production of renewable fuel componants and value chemicals. This dissertation concentrates on utilizing glucose, which is the main product from the breakdown of biomass.

Most notably, biomass is a carbon neutral process. By contrast, crude oil consumption has harmful effects, mainly the increase emission of greenhouse gases, specifically CO2. Increased CO2 in the atmosphere is the leading cause of global climate change [7]. Climate change and other environmental health concerns related to burning fossil fuels have also become prevalent in today's society [8-10]. The earth's surface temperature has been increasing due to trapped radiant heat caused by increased concentrations of carbon dioxide, methane, nitrous oxide, ozone, halons, peroxyacetylnitrate, and CFCs [11, 12]. Table 1 shows the increase in greenhouse gas concentration attributed to industrialization [12, 13]. Total emissions have grown 65% since 1971 [14]. Surface temperatures have already increased by 0.4-0.8 °C over the last century, causing an annual sea rise of 1-2mm, and 40% thinning of arctic ice since the 1950's [15].

| Substance        | Ability to retain<br>infrared radiations<br>compared to CO <sub>2</sub> | Pre industrial concentration | Present concentration | Present concentration Annual growth rate (%) |    | Share in the greenhouse<br>increase due to human<br>activity (%) |
|------------------|-------------------------------------------------------------------------|------------------------------|-----------------------|----------------------------------------------|----|------------------------------------------------------------------|
| CO <sub>2</sub>  | 1                                                                       | 275                          | 346                   | 0.4                                          | 71 | 50 ± 5                                                           |
| CH <sub>4</sub>  | 25                                                                      | 0.75                         | 1.65                  | 1.0                                          | 8  | $15\pm5$                                                         |
| N <sub>2</sub> O | 250                                                                     | 0.25                         | 0.35                  | 0.2                                          | 18 | $9\pm2$                                                          |
| R-11             | 17,500                                                                  | 0                            | 0.00023               | 5.0                                          | 1  | $13\pm3$                                                         |
| R-12             | 20,000                                                                  | 0                            | 0.00040               | 5.0                                          | 2  | $13\pm3$                                                         |

Table 1: Global warming effects of common greenhouse gases

It is important to look at economically maximizing all products and byproducts from renewable resources to create cost-effective alternatives to fossil fuels. Fossil fuels have been driving economic growth through fuel for trade and manufactured goods since the beginning of the industrial era [16]. However, concerns about environmental effects and limited reserve capacity grow as demand continues to surge and population increases [17-21]. Available data suggest that current oil production techniques have a finite capacity to supply the growing demand, and unconventional sources will need to be implemented to avoid negative economic and environmental consequences [22]. Figure 1 shows the reduced frequency of new oil field discoveries along with the projected increase in demand, with an expected depletion within the century [23]. With the implementation of fracking techniques to access tight oil there is controversial data on when "peak oil" or crude oil depletion will actually occur [24]. Figure 2 shows the expected increase of fracked oil, but only roughly matching traditional crude oil production. The crude oil supply is finite and one day will be unable to economically meet our increasing demand and the era of low cost petroleum will come to an end [17-27]. Although access to fracked oil helps relieve oil demand, it does amplify the amount of carbon released into the atmosphere. This is of interest for our work as lactic acid and levulinic acid have functional groups that will facilitate the building carbon neutral fuel components.



Figure 1. Declining crude oil reserves shown by historical oil discovery, consumption, and forecasted production



Figure 2: Petroleum and other liquid fuel history and projections including tight oil production

Researching and utilizing renewable technologies can help to mitigate the damaging effects from greenhouse emissions by developing carbon neutral technologies to minimize current fossil fuel uses; conversion of biomass to fuel and high value chemicals is one such technology [28]. Developing renewable transportation fuels is attractive because 85% of all crude oil consumed is for production of transportation fuels [29].

Additionally, lactic acid and levulinic acid have multiple functional groups that can be utilized for synthesis of polymers, solvents, and other value chemicals. These uses are also important, as 10% of crude oil is used for the production of industrial chemicals which are inherently more valuable than fuel [29, 30]. Historically, little attention has been given to

biomass based industrial chemicals [31]. Innovative developments are providing an argument that renewable feedstocks can be optimal for the chemical industry [32]. Renewable feedstocks are typically highly functionalized molecules, unlike fossil fuels, creating the challenge to develop a new set of tools to economically produce biomass based industrial chemicals [33,34].

This body of work concentrated on the production of lactic acid/derivatives and levulinic acid/derivatives from biomass derived glucose. Lactic acid and levulinic acid were optimized from glucose using Sn-doped beta zeolite type catalysts. Economic versatility can be achieved through selectivity of the glucose towards either lactic or levulinic products, conversion of lactic or levulinic products toward fuel components, and/or conversion of levulinic products towards high value chemicals. The combination of uses for fuel or value chemicals makes this research an important economic step in reducing fossil fuel consumption. Implementation of these technologies would decrease greenhouse emissions and reduce crude oil demand.

## CHAPTER II LACTIC/LEVULINIC ACID

#### 1.1 Lactic Acid Literature Review

Lactic acid was first discovered in 1780 in sour milk and was produced commercially by 1881 [35]. Lactic acid is still largely used as a buffering agent, acidic flavoring agent, acidulant, and bacterial growth inhibitor within the food industry [36, 37]. The majority of the world's production of lactic acid is from batch bacterial fermentations of carbohydrates [38]. Lactobacilli can convert more than 90% of glucose to lactic acid, however there are multiple limitations to this biological reaction that limit its efficiency. The reaction requires low to neutral pH, temperatures near 40 °C, low oxygen concentrations and large amounts of water [39]. In addition to specific carbohydrate feedstocks, the living organisms require complex nutrients, amino acids, and nucleotides [40]. Commercial fermentation is usually completed in three to six day batches with feedstock of up to only 10% saccharides, requiring a relatively large reaction vessel. High lactic acid concentrations are desired for efficiency but lead to toxicity and growth inhibition of the lactobacilli [41].

Recent discoveries have demonstrated non-biological pathways to produce lactic acid which may increase process efficiency by removing the limitations of living organisms such as low concentration of products, long fermentation times, requirements for nutrients, and moderate temperatures [42]. In 2005, Bicker et al. reported the thermal degradation of saccharides to produce 40% lactic acid when metal ions such as cobalt, nickel, copper and zinc were used as catalysts [43]. Five years later Homl and coworkers reported using metal doped zeolites to convert triose saccharides to methyl lactate in a methanol solvent [44,45]. Further work from the Holm group showed that tin doped beta zeolites facilitated isomerization from glucose to fructose at 100 °C [46]. When reaction times were increased to 16 hours and temperature increased to 160 °C, the saccharides in a methanol solution would produce methyl lactate at a 52% concentration from glucose and 64% from sucrose [42, 47, 48]. Yang and Liu found that three hours of microwave irradiation with zinc powder produced 40% lactic acid from an aqueous solution [49].

Most recent publications show that equal additions of alkaline compounds converted glucose to 50% lactic acid with the best results from barium hydroxide under supercritical conditions [50]. Recent patents describe methods to produce 23% molar yield of lactic acid from cellulose using Al/Sn catalyst and 50% methyl lactate yield from fructose using tin containing compounds [51, 52].

While the literature documents partial selectivity toward lactic acid derivatives there is still an information gap regarding ideal conditions for conversion of glucose to lactic acid in an aqueous solvent. With the overall project goal to convert cellulosic biomass to valuable chemicals, the biomass glucose feedstock will be in an aqueous solution and it would be costly to transfer to methanol. The best published results for a water solvent show only 27% lactic acid from sucrose, while the same substrate produced 64% methyl lactate in methanol [47]. Table 2 shows the results Holm et al. published using sucrose and glucose with various catalysts to produce lactic acid or methyl lactate [42, 47, 53]. In our work we endeavor to optimize glucose to lactic acid conversion within an aqueous solvent. Table 3 shows our best results for comparison to the current literature.

7

| Feed/<br>Solvent/<br>Catalyst                   | Unreacted | Lactic acid<br>or methyl<br>lactate | Other | Coke | Unaccounted product | Ref. |
|-------------------------------------------------|-----------|-------------------------------------|-------|------|---------------------|------|
| Sucrose/<br>Methanol/<br>None                   | 46%       | 6%                                  | n/a   | n/a  | 48%                 | [42] |
| Sucrose/<br>Methanol/<br>Si-Beta                | 37%       | 6%                                  | n/a   | n/a  | 57%                 | [42] |
| Sucrose/<br>Methanol/<br>Sn <sup>+4</sup> -Beta | <1%       | 64%                                 | 10%   | 1.3% | 24%                 | [53] |
| Sucrose/<br>Methanol/<br>SnCl <sub>4</sub>      | 1%        | 31%                                 | n/a   | n/a  | 68%                 | [42] |
| Sucrose/<br>Methanol/<br>SnCl <sub>2</sub>      | 19%       | 4%                                  | n/a   | n/a  | 77%                 | [42] |
| Sucrose/<br>Water/<br>Sn <sup>+4</sup> -Beta    | <1%       | 27%                                 | 7%    | 7%   | 58%                 | [53] |
| Glucose/<br>Methanol/<br>None                   | 47%       | 5%                                  | n/a   | n/a  | 48%                 | [42] |
| Glucose/<br>Methanol/<br>Si-Beta                | 39%       | 5%                                  | n/a   | n/a  | 56%                 | [42] |
| Glucose/<br>Methanol/<br>Sn <sup>+4</sup> -Beta | 2%        | 51%                                 | 12%   | n/a  | 35%                 | [47] |

Table 2: A summary of published results for lactic acid and methyl lactate production from sugars with various catalysts and solvents

| Feed/<br>Solvent/<br>Catalyst                   | Unreacted | Lactic acid<br>or methyl<br>lactate | Levulinic acid or<br>methyl levulinate | Other | Coke  | Unaccounted product |
|-------------------------------------------------|-----------|-------------------------------------|----------------------------------------|-------|-------|---------------------|
| Glucose/<br>Methanol/<br>Sn <sup>+4</sup> -Beta | 4.4%      | 22%                                 | 49.2%                                  | 2.4%  | 2.7%  | 16.2%               |
| Glucose/<br>Water/<br>Sn <sup>+4</sup> -Beta    | 2.3%      | 47.8%                               | 0%                                     | 0%    | 24.2% | 25.8%               |
| Glucose/<br>Methanol/<br>Sn <sup>+2</sup> -Beta | 1.8%      | 4.4%                                | 52.8%                                  | 0%    | 13.7% | 27.3%               |

Table 3: Summary of our best results for lactic acid and methyl lactate production from glucose with various catalysts and solvents

#### **1.2** Levulinic Acid Production Literature Review

Levulinic acid has been identified by the National Renewable Energy Laboratory (NREL) as one of the top ten molecules for the production of value-added chemicals and liquid transportation fuels from renewable sources [54]. Levulinic acid has several applications as a value chemical, including polymers, lubricants, adsorbents, coatings, batteries, drug delivery, corrosion inhibitors and many others [55-71]. The most common process for the production of levulinic acid from biomass used LZY zeolite catalyst or micro-porous acidic clay [72-74]. Currently, the majority of commercial quantity production of renewable levulinic acid is from Biofine Corporation's pilot plant at 1 ton/day. The plant converts >60% hexoses to levulinic acid with minimal side products [75-76].

Our work shows high percentages of levulinic acid production from glucose, dependent on reaction conditions. This is of great interest as it allows for the selectivity of either valuable product to produce, levulinic or lactic acid, within the same system depending on the current demand. The following sections will show the optimization of lactic and levulinic acid production with the same equipment using slightly different catalysts.

## **1.3** Catalyst Selection

The literature shows that Sn-beta zeolite has the highest selectivity towards lactic acid in methanol [42]. In our study, several readily available commercial catalysts were screened to confirm published results. Table 4 shows the results of catalyst screening conducted for glucose at 140 °C in methanol, matching the ideal conditions in the literature. While some of the results were better than no catalyst, the results did not come near to published results for methyl lactate and further efforts were spent towards production of Sn-doped beta zeolite for the degradation of glucose.

| Catalyst                      | Methyl Lactate | Methyl Levulinate |
|-------------------------------|----------------|-------------------|
| No Catalyst                   | 4%             | 2%                |
| Sn(II)Cl 5·H2O                | 23%            | 10%               |
| Sn(IV) Acetate                | 5%             | 5%                |
| Zinc Acetate                  | 14%            | 4%                |
| Montmorillonite               | 8%             | 7%                |
| Boron Tribromide              | 20%            | 24%               |
| Ag(II) Oxide                  | 4%             | 2%                |
| Zr(IV)Hydroxide               | 4%             | 2%                |
| Titanium on Alumina           | 8%             | 2%                |
| Palladium on Activated Carbon | 2%             | 2%                |
| Ni 55/5 commercial catalyst   | 10%            | 2%                |

Table 4: Methyl lactate and methyl levulinate results from catalyst screening experiments

The best catalyst from the literature, results shown in Table 2, is tin beta zeolite and was produced from tetraethyl orthoxilacted, tetraethyl ammonium, tin (IV) chloride, hydrogen fluoride, and dealuminated beta seeds [53]. The procedure requires up to forty days for completion. We were able to take advantage of recent zeolite doping procedures that allowed us to purchase beta zeolite and dope the zeolite with our desired metal ion, allowing catalyst production in under 48 hours [77, 78]. This work expands on previously published results for

doping HZSM-5 zeolites to beta zeolites doped with tin. The optimization of this procedure is a previously undocumented advancement over any other published results dealing with this given metal dopant and zeolite.

#### 1.4 Experimental Setup

#### 1.4.1 Reactants, Standards and Catalysts

Glucose (99.5% purity), methanol (99.8% purity), tin(II) chloride (98% purity), tin(IV) pentahydrate (98% purity), lactic acid (98% purity), methyl lactate (98% purity), levulinic acid (98% purity), methyl lactate (98% purity), furfural (99% purity), and 5-(hydroxymethyl)furfural (99% purity) were purchased from Sigma-Aldrich. Beta zeolites with SiO2/Al2O3 ratios of 25, 38, and 300 were purchased from Zeolyst International. Ion free water was obtained from an inhouse ultra milli-Q filter system. Compressed nitrogen gas (99.99% purity) and hydrogen (99.95% purity) were purchased from Praxair.

#### 1.4.2 Catalyst Doping

The purchased beta zeolite was calcined in a 600 °C oven for 8 hours to remove any possible settlement on the catalyst from shipping and storage. The calcined beta zeolite was then dispersed in an aqueous solution of ultrapure water and mixed with the required amount of tin ion. The solution was then sonicated overnight at 60 °C. The doped zeolite was separated from the water with a gravity filter and placed in an oven at 150 °C to dry, followed by another calcine stage for 8 hours. The calcined, doped zeolite was stored in sealed containers or used immediately in an experiment. A detailed procedure is presented in Appendix A.

11

## 1.4.3 Autoclave Reactor

All experiments were conducted in a 500 ml, high temperature, high pressure batch reactor (Parr 4575 series HP/HT reactor, manufacturing code: 4575A-G-GP-SS-115-VS.25-5000-4857-TDM-MCM-PDM-HTMA1925E2-SVM) [79]. This code fully explains the reactor configuration and is explained as follows: 4575A is the base model number. G is the material of gasket used to seal the vessel to the head and is the code for graphite which is a compressed flexible gasket that can withstand up to 500 °C. GP indicates a general purpose magnetic stirrer drive. The material of construction of the head and the vessel is SS 316 and is indicated by SS. The system runs at 115 V and was indicated by the code 115. VS.25 specifies that the magnetic motor drive is a 190 watt (0.25 hp) motor. The reactor has a pressure gauge with a range of 0 -34.5 MPa (5000 psig) indicated by the code 5000. The controller code is a model 4857 and is equipped with a tachometer display module (TDM), motor control module (MCM), pressure display module (PDM), high temperature cut off module (HTM), and a solenoid valve module (SVM). The overall setup includes the reactor, a controller, a condenser, and a collection cylinder. Figure 3 shows a schematic of the 500 ml Parr autoclave used for all experiments.



Figure 3: Simplified schematic of autoclave reactor used for all experiments

Agitation was provided by a variable speed electric DC motor using a magnetic drive. It was capable of mixing at 600 RPM. This magnetic drive is connected to the head of the reactor by a threaded pipe connection. The magnetic stirring drive has two o-rings which seal the sleeve onto the stem of the drive housing preventing leaks at high pressure. Because the autoclave ran at high temperatures (>100 °C) for all the reaction runs, it was necessary to have cooling water flow continuously to the jacket between the two o-rings to ensure proper operation of the magnetic drive. The pressure transducer was also subjected to high temperatures and was equipped with a cooling jacket around it to ensure proper functioning.

A 4843 Parr controller was used to display and control the temperature and stirring rate and to display the pressure transducer output. The controller also had a cut off module which worked as a safety feature to terminate power to the heater if it exceeded a set temperature. A safety cut-off feature also offered protection against accidental over-pressure by allowing the user to set a maximum pressure which, if reached, activates the high limit relay and turns the heater off.

#### 1.4.4 Experimental Reaction

The specified amount of powdered beta zeolite catalyst was added to the reaction vessel, followed by the required amount of reactant glucose, and then dispersed in the specified volume of solvent. Depending on the variables being tested, the exact quantity of catalyst, glucose, methanol, and water were varied and are specified for each experiment discussed in the experimental methods section. Once the vessel was charged it was sealed in the Parr reactor and purged 5 times with nitrogen gas. After passing an initial pressure test the heater was turned on and set to the specified temperature and the stirrer was turned on.

Once the required reaction time was completed the heater was removed and cooling water was turned on to rapidly cool the mixture to room temperature. The mixture was gravity filtered to separate the catalyst from solution. All the coked catalyst was carefully collected from the agitator blades, cooling coil, thermocouple thermowell, all other internal parts of the reactor, and the reactor vessel. The difference in the weight of the catalyst before and after the reaction was measured to calculate the amount of coke produced. Coke was the general term used for all organic solids on the catalyst and may be deposited carbon or insoluble byproducts. The product solution was collected for future GC-MS analysis. All parts of the reactor were cleaned and prepared for the next experiment. A detailed procedure is presented in Appendix B.

#### 1.4.5 GC-MS Analysis

GC-MS analyses were performed following the method developed by Kubatova and coworkers [80, 81]. This method uses GC separation and an MS detector (Agilent 6890GC-MS)

equipped with an autosampler (7386B series) and a split/splitless injector. Separation was accomplished using a 30-m long DB-5 capillary column, 0.25mm internal diameter (I.D.) and 0.25µm film thickness with a constant helium flow rate. Analysis of acids was accomplished after derivation with BTSFA in pyridine solvent. Detailed procedures for analysis and data processing are presented in Appendix C and Appendix D, respectively.

#### **1.5** Experimental Methods

#### 1.5.1 Design of Experiments – Screening Study

A twelve run Plackett-Burman design was employed to test for any significant effects from eleven factors. As this project's catalyst synthesis was different from the published literature, seven of these factors were associated with the doping of the beta zeolite catalyst. The other four factors optimized reaction conditions.

Table 5 lists the low and high values for all eleven factors examined in the Plackett-Burman screening study.

| Factor                   | Low (-)          | High (+)           |
|--------------------------|------------------|--------------------|
| SiO2/Al2O3 Ratio         | 25               | 300                |
| Calcine New Zeolite      | 0 °C             | 600 °C             |
| Intermediate H-doping    | No               | Yes                |
| Calcine H Doped Zeolite  | 0 °C             | 600 °C             |
| Tin Charge               | Sn <sup>+2</sup> | $\mathrm{Sn}^{+4}$ |
| Tin Added Mol Ratio      | 150%             | 300%               |
| Calcine Sn Doped Zeolite | 400 °C           | 600 °C             |
| Water-to-Methanol Ratio  | 25%              | 75%                |
| Sn-beta zeolite          | 3 grams          | 6 grams            |
| Glucose                  | 5 grams          | 10 grams           |
| Temperature              | 135 °C           | 165 °C             |

Table 5: Low and high values for eleven factors tested in the screening study

Factor one studied the effect of the SiO2/Al2O3 ratio of commercially available beta zeolites. The 25 SiO2/Al2O3 ratio chosen will be slightly more hydrophobic than the 300, which will be more hydrophilic. Both have similar surface areas of 680 and 620 m2/g. respectively. The second factor looked at the need for precalcining of the purchased catalyst. The catalyst was submersed in a doping fluid and would remove any absorbed water or other contaminates and a precalcine at 600 °C may be unnecessary. The third factor considered the effect of an intermediate H-doping step using ammonium nitrate. This intermediate step has shown a favorable effect on other zeolite doping performed in our labs for the production of Zn-ZSM-5 and Ga-ZSM-5 [82]. The fourth factor concerned calcining the intermediate H-beta catalyst at 600 °C for the same reason as factor two. Factor five studied the effect of the tin charge, Sn<sup>+2</sup> verses Sn<sup>+4</sup>. Studies of Sn<sup>+2</sup>-doped beta zeolite have not been reported in the literature. Factor six looked at the effect of adding different amounts of tin to the catalyst. Both 150% and 300% were evaluated to determine if there were any equilibrium effects occurring when displacing the sodium ions. The seventh factor addressed the final calcine temperature of the Sn-doped beta zeolite. Temperatures of 400 °C and 600 °C were tested to see if any thermal effects changed the novel Sn-doped beta zeolite.

The other four factors were used to explore the operating conditions for the catalytic degradation of glucose to levulinic and lactic acids. The eighth factor looked at the effect of water-to-methanol ratio. Ratios of 25% and 75% were tested to study the effect of each solvent on the production of levulinic and lactic acids or their ester derivatives. The ninth and tenth factors studied the effect of the catalyst-to-glucose ratio, as well as the effect of the concentration of reactants in the solution. Factor nine varied between 3 to 6 grams of Sn-doped beta zeolite

and factor ten varied between 5 to 10 grams of glucose. The last factor looked at the reaction temperature. The literature has shown the highest conversion of sucrose at ~140 °C and preliminary experiments with glucose were performed to determine the temperature range. The parameter range of 135 °C to 165 °C was selected based on these preliminary experiments.

The twelve run Plackett-Burman design was studied in two blocks, with the twelve runs randomized in each block to screen for significant factors and begin optimization. Six samples were taken from each of the 24 runs. Three samples were taken near the beginning of the reaction at zero, one, and two hours to observe early reaction products. Three samples were taken towards the end at 20, 21, and 22 hours to verify that the reaction had reached completion and to observe any potential product degradation. Table 6 shows the run order and low/high factors studied in each run.

| Standard<br>order | Experimental order | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 |
|-------------------|--------------------|----|----|----|----|----|----|----|----|----|-----|-----|
| 1-1               | 1                  | +  | +  | -  | +  | +  | +  | -  | -  | +  | +   | +   |
| 1-2               | 7                  | +  | -  | +  | +  | +  | -  | -  | +  | -  | +   | +   |
| 1-3               | 10                 | -  | +  | +  | +  | -  | -  | -  | -  | -  | -   | -   |
| 1-4               | 11                 | +  | +  | +  | -  | -  | -  | +  | -  | -  | +   | -   |
| 1-5               | 2                  | +  | +  | -  | -  | -  | +  | -  | +  | +  | -   | -   |
| 1-6               | 6                  | +  | -  | -  | -  | +  | -  | +  | +  | +  | -   | +   |
| 1-7               | 4                  | -  | -  | -  | +  | -  | +  | +  | -  | +  | -   | +   |
| 1-8               | 8                  | -  | -  | +  | -  | +  | +  | -  | +  | -  | +   | +   |
| 1-9               | 5                  | -  | +  | -  | +  | +  | -  | +  | -  | +  | +   | I   |
| 1-10              | 9                  | +  | -  | +  | +  | -  | +  | +  | +  | +  | +   | I   |
| 1-11              | 12                 | -  | +  | +  | -  | +  | +  | +  | +  | -  | -   | -   |
| 1-12              | 3                  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | +   |
| 2-1               | 23                 | +  | +  | -  | +  | +  | +  | -  | -  | +  | +   | +   |
| 2-2               | 13                 | +  | -  | +  | +  | +  | -  | -  | +  | -  | +   | +   |
| 2-3               | 21                 | -  | +  | +  | +  | -  | -  | -  | -  | -  | -   | I   |
| 2-4               | 18                 | +  | +  | +  | -  | -  | -  | +  | -  | -  | +   | I   |
| 2-5               | 14                 | +  | +  | -  | -  | -  | +  | -  | +  | +  | -   | -   |
| 2-6               | 16                 | +  | -  | -  | -  | +  | -  | +  | +  | +  | -   | +   |
| 2-7               | 24                 | -  | -  | -  | +  | -  | +  | +  | -  | +  | -   | +   |
| 2-8               | 20                 | -  | -  | +  | -  | +  | +  | -  | +  | -  | +   | +   |
| 2-9               | 22                 | -  | +  | -  | +  | +  | -  | +  | -  | +  | +   | -   |
| 2-10              | 15                 | +  | -  | +  | +  | -  | +  | +  | +  | +  | +   | _   |
| 2-11              | 19                 | -  | +  | +  | -  | +  | +  | +  | +  | -  | -   | -   |
| 2-12              | 17                 | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | +   |

Table 6: Design of experiments screening study run order showing high and low values of each of the eleven factors tested

# 1.6 Screening Study Results Based on Chemical Analysis

The reaction begins slowly with little or no reaction during the first two hours. Levulinic acid was typically the first product to form. In over half the runs there was no sign of any products during the early stages. The reaction was complete by hour twenty with no signs of loss

of product over the next two hours until the experiment was halted. Figure 4 shows the time results for experiment 2-7 as it had the highest results for all target products.



Figure 4: Experiment 2-7 showing the typical trend of product yields over time

The last three samples, results at hours 20, 21, and 22 were averaged to represent the amount of product converted for that given run. This was done to compensate for any possible variation in GC-MS analysis between injections. The two repeat runs from each DOE block were averaged and the standard deviation was added to show repeatability. Table 7 and Table 8 show the analytical results of each product and congregated results, respectively. Appendix E

shows the results from all experiments related to the degradation of glucose and Appendix F shoes all the data from the DOE statistical analysis.

| Combined | Methyl       |              | Methyl       |              | Levulinic    |
|----------|--------------|--------------|--------------|--------------|--------------|
| Run      | Lactate      | Furfural     | Levulinate   | Lactic Acid  | Acid         |
|          | 3.34%        | 1.68%        | 22.51%       | 2.43%        | 47.88%       |
| 1        | $\pm 0.59\%$ | $\pm 0.75\%$ | $\pm 0.57\%$ | $\pm 0.11\%$ | $\pm 2.59\%$ |
|          | 0%           | 0.55%        | 1.56%        | 0.61%        | 16.50%       |
| 2        | $\pm 0\%$    | $\pm 0.78\%$ | $\pm 0.82\%$ | $\pm 0.86\%$ | $\pm 8.76\%$ |
|          | 0%           | 0%           | 0%           | 0%           | 5.95%        |
| 3        | $\pm 0\%$    | $\pm 0\%$    | $\pm 0\%$    | $\pm 0\%$    | $\pm 2.02\%$ |
|          | 0%           | 0.38%        | 0%           | 0%           | 5.59%        |
| 4        | $\pm 0\%$    | $\pm 0.54\%$ | $\pm 0\%$    | $\pm 0\%$    | $\pm 2.46\%$ |
|          | 0%           | 0%           | 0%           | 0%           | 6.72%        |
| 5        | $\pm 0\%$    | $\pm 0\%$    | $\pm 0\%$    | $\pm 0\%$    | $\pm 0.96\%$ |
|          | 1.96%        | 0.89%        | 4.76%        | 12.01%       | 8.46%        |
| 6        | $\pm 2.78\%$ | $\pm 1.25\%$ | $\pm 0.43\%$ | $\pm 4.48\%$ | $\pm 1.31\%$ |
|          | 3.58%        | 2.18%        | 22.07%       | 2.51%        | 44.00%       |
| 7        | $\pm 1.18\%$ | $\pm 0.63\%$ | $\pm 0.59\%$ | $\pm 0.23\%$ | $\pm 4.83\%$ |
|          | 0%           | 0.85%        | 2.75%        | 0%           | 43.38%       |
| 8        | $\pm 0\%$    | $\pm 0.28\%$ | $\pm 0.41\%$ | $\pm 0\%$    | $\pm 3.41\%$ |
|          | 0%           | 0%           | 0.56%        | 0%           | 6.84%        |
| 9        | $\pm 0\%$    | $\pm 0\%$    | $\pm 0.8\%$  | $\pm 0\%$    | $\pm 4.53\%$ |
|          | 0%           | 0.37%        | 0%           | 1.47%        | 9.92%        |
| 10       | $\pm 0\%$    | $\pm 0.52\%$ | $\pm 0\%$    | $\pm 0.74\%$ | $\pm 3.38\%$ |
|          | 0%           | 0%           | 0%           | 0%           | 5.42%        |
| 11       | $\pm 0\%$    | $\pm 0\%$    | $\pm 0\%$    | $\pm 0\%$    | $\pm 1.00\%$ |
|          | 0.71%        | 0.94%        | 11.77%       | 0.9%         | 29.46%       |
| 12       | $\pm 1.01\%$ | $\pm 1.33\%$ | $\pm 2.73\%$ | $\pm 1.27\%$ | $\pm 5.29\%$ |

Table 7: Averaged analytical results of products from screening study

| Combined | Total        |              | Total        | Unreacted    | Unaccounted  |
|----------|--------------|--------------|--------------|--------------|--------------|
| Run      | Non-Acids    | Total Acids  | Products     | Glucose      | product      |
|          | 27.53%       | 50.31%       | 77.84%       | 4.85%        | 17.31%       |
| 1        | $\pm 0.73\%$ | $\pm 2.7\%$  | $\pm 3.43\%$ | $\pm 0.03\%$ | $\pm 3.40\%$ |
|          | 2.12%        | 17.11%       | 19.22%       | 26.99%       | 53.78%       |
| 2        | $\pm 1.60\%$ | $\pm 7.89\%$ | $\pm 9.50\%$ | $\pm 4.65\%$ | $\pm 4.84\%$ |
|          | 0%           | 5.95%        | 5.95%        | 43.1%        | 50.95%       |
| 3        | $\pm 0\%$    | $\pm 2.02\%$ | $\pm 2.02\%$ | $\pm 1.24\%$ | $\pm 3.25\%$ |
|          | 0.38%        | 5.59%        | 5.98%        | 57.46%       | 36.56%       |
| 4        | $\pm 0.54\%$ | $\pm 2.46\%$ | $\pm 1.92\%$ | $\pm 1.28\%$ | $\pm 3.20\%$ |
|          | 0%           | 6.72%        | 6.72%        | 53.53%       | 39.75%       |
| 5        | $\pm 0\%$    | $\pm 0.96\%$ | $\pm 0.96\%$ | $\pm 0.25\%$ | $\pm 0.71\%$ |
|          | 7.61%        | 20.47%       | 28.08%       | 6.56%        | 65.35%       |
| 6        | $\pm 1.09\%$ | $\pm 3.17\%$ | $\pm 2.08\%$ | $\pm 1.82\%$ | $\pm 0.26\%$ |
|          | 27.83%       | 46.51%       | 74.34%       | 12.45%       | 13.21%       |
| 7        | $\pm 1.14\%$ | $\pm 5.06\%$ | $\pm 3.92\%$ | $\pm 7.61\%$ | $\pm 3.69\%$ |
|          | 3.60%        | 43.38%       | 46.98%       | 23.79%       | 29.23%       |
| 8        | $\pm 0.13\%$ | $\pm 3.41\%$ | $\pm 3.54\%$ | $\pm 3.04\%$ | $\pm 0.50\%$ |
|          | 0.56%        | 6.84%        | 7.40%        | 53.01%       | 39.59%       |
| 9        | $\pm 0.80\%$ | $\pm 4.53\%$ | $\pm 5.33\%$ | $\pm 0.76\%$ | $\pm 6.08\%$ |
|          | 0.37%        | 11.39%       | 11.76%       | 57.19%       | 31.05%       |
| 10       | $\pm 0.52\%$ | $\pm 4.11\%$ | $\pm 4.63\%$ | $\pm 0.60\%$ | $\pm 4.03\%$ |
|          | 0%           | 5.42%        | 5.42%        | 82.44%       | 12.14%       |
| 11       | $\pm 0\%$    | $\pm 1.00\%$ | $\pm 1.00\%$ | $\pm 3.75\%$ | $\pm 4.75\%$ |
|          | 13.42%       | 30.36%       | 43.79%       | 8.29%        | 47.92%       |
| 12       | $\pm 3.06\%$ | $\pm 6.56\%$ | $\pm 3.5\%$  | $\pm 0.37\%$ | $\pm 3.87\%$ |

Table 8: Summary of total products, unreacted glucose, and unaccounted products from screening study

#### 1.6.1 Statistical Analysis of Screening Study

Glucose conversion increased with higher temperatures, increased catalyst-to-reactant ratio, and decreased water-to-methanol ratio. Higher temperatures are known to increase reaction rates so this effect was expected. The increased presence of catalyst helped facilitate the breakdown of glucose to target products. The reduced amount of initial glucose apparently allowed a higher percentage of available glucose to react before possible coking or deactivation of the catalyst. The increased conversion with higher methanol percentage supports literature findings that more coking was observed in aqueous solvents compared to methanol [48]. Figure 5 and Figure 6 show the glucose conversion Pareto chart with 90% confidence for the evaluated factors and the main effects plot, respectively.



Figure 5: Screening study Pareto chart for glucose conversion


Figure 6: Screening study main effects plot for glucose conversion

Methyl lactate production was aided by decreased water-to-methanol ratio, higher temperature, and small glucose amount. The increase of available methanol content in the solvent promotes the ester formation over the acid which uses the available water. The increased production of methyl lactate with higher temperature suggests a higher activity of the catalyst at higher temperatures. The preference for reduced glucose concentration may suggest more coking or deactivation at higher concentrations. Figure 7 and Figure 8 show the methyl lactate production Pareto chart with 90% confidence for the evaluated factors and the main effects plot, respectively.



Figure 7: Screening study Pareto chart for methyl lactate production



Figure 8: Screening study main effects plot for methyl lactate production

Lactic acid production was increased with higher catalyst-to-glucose ratio, higher temperature, increased water solvent percentage, no H-doped beta intermediate, and use of increased Sn<sup>+4</sup> for doping. The higher temperature and increased catalyst-to-glucose ratio shows the selectivity of the catalyst for lactic acid. A higher percentage of water allows for more acid production as compared to methyl esters. The H-doped beta intermediate appeared to prevent full doping with tin. Lewis acids have demonstrated selectivity for lactic acids [40]. Sn<sup>+4</sup> is an oxidant and a slightly stronger Lewis acid than Sn<sup>+2</sup>; this may be essential for reactivity. The higher SiO2/Al2O3 ratio will be more hydrophilic, promoting the reaction with water instead of methanol. Figure 9 and Figure 10 show the lactic acid production Pareto chart with 90% confidence for the evaluated factors and the main effects plot, respectively.



Figure 9: Screening study Pareto chart for lactic acid production



Figure 10: Screening study main effects plot for lactic acid production

Methyl levulinate was produced in most of the experiments and was significantly affected by all the factors studied. Higher temperatures, increased methanol, higher catalyst-to-glucose ratio, and no H-doped beta intermediate caused the higher production for the same reasons as stated earlier. The preference for increased methyl levulinate production with Sn<sup>+2</sup> can be explained by Sn<sup>+2</sup> not being an oxidant; as noted above, Sn<sup>+4</sup> preferred methyl lactate production. Methyl levulinate can also be formed from a non-catalytic reaction. The results show that this is a process competing with the formation of methyl lactate. If methyl lactate is not formed, methyl levulinate is. The increased production with a lower SiO2/Al2O3 ratio, which is relatively more hydrophobic, is most likely a combined effect with the increased methanol solvent promoting methyl esters. Figure 11 and Figure 12 show the methyl levulinate production Pareto chart with





Figure 11: Screening study Pareto chart for methyl levulinate production



Figure 12: Screening study main effects plot for methyl levulinate production

Levulinic acid production was only increased with higher temperatures. This is interesting in that increased water percentage did not have an effect and suggests that water solvent promotes production of lactic acid over levulinic acid when Sn<sup>+4</sup> is present. Figure 13 and Figure 14 show the levulinic acid production Pareto chart with 90% confidence for the evaluated factors and the main effects plot, respectively.



Figure 13: Screening study Pareto chart for levulinic acid production



Figure 14: Screening study main effects plot for levulinic acid production

As this was a screening study, interactions between factors were not analyzed as the high number of tested factors and relatively low number of runs would cause heavy convolution of all interactions. The main goal of this project was to produce lactic acid and valuable byproducts, and further explorations to bound significant factors were conducted at higher temperatures, higher water content, and increased catalyst-to-glucose ratio. Table 9 shows the summary of the significant factors for each product analyzed.

|            | Methanol | Temp. | Glucose | Catalyst | Н     | Sn+2/            | 25/300 | Tin  |
|------------|----------|-------|---------|----------|-------|------------------|--------|------|
|            |          | _     |         | _        | Doped | Sn <sup>+4</sup> | Beta   | wt.% |
| Glucose    | +        | +     | -       | +        |       |                  |        |      |
| Methyl     | +        | +     | -       |          |       |                  |        |      |
| Lactate    |          |       |         |          |       |                  |        |      |
| Lactic     | -        | +     | -       | +        | -     | +                | +      |      |
| Acid       |          |       |         |          |       |                  |        |      |
| Methyl     | +        | +     | -       | +        | -     | -                | -      | +    |
| Levulinate |          |       |         |          |       |                  |        |      |
| Levulinic  |          | +     |         |          |       |                  |        |      |
| Acid       |          |       |         |          |       |                  |        |      |

Table 9: Significant factors discovered in the Plackett-Burman screening study

"+" indicates an increased effect on production "-" indicates a decreased effect on production

Increased temperature, increased catalyst-to-glucose ratio, and pure solvents favored target products. Further studies were then performed for higher temperatures and with an increased catalyst-to-glucose ratio. Pure methanol was used to target methyl lactate and methyl levulinate. Pure water was used to target lactic acid using  $Sn^{+4}$ -doped beta zeolite.

#### 1.6.2 Temperature Bounding Studies

Increased temperatures were found to favor production of all target products therefore a one-variable-at-a-time set of experiments was conducted. All operating conditions, except for temperature, were set identically to the screening study experiments. Lactic acid production was increased with higher temperature, increased water solvent percentage, and use of increased Sn<sup>+4</sup> for doping on the zeolite with a 300 SiO2/Al2O3 ratio. Figure 15 shows the temperature bounding experiments for maximum lactic acid production at 200 °C. Moderate amounts of levulinic acid and lactic acid were still reported above 200 °C, however the amounts of unaccounted products grow substantially. This signifies unwanted thermal degradation of target products past 200 °C, they would not be present during analysis, like unreacted glucose.



Figure 15: Temperature experiments in pure water solvent using Sn<sup>+4</sup>-doped beta zeolite

Levulinic acid production was only increased with higher temperatures. Further temperature studies were performed on Sn<sup>+2</sup>-doped beta zeolite. Figure 16 shows the temperature bounding experiments for maximum levulinic acid with moderate lactic acid production at 200 °C. The upper limit of 200 °C was chosen as the previous study showed significant thermal degradation of the glucose feedstock.



Figure 16: Temperature experiments in pure water solvent using Sn<sup>+2</sup>-doped beta zeolite

#### 1.6.3 Triplicate Results Under Optimized Conditions

Lactic acid production was maximized at 200 °C using Sn<sup>+4</sup>-doped beta zeolite in pure water. Three identical experiments were conducted using the procedure previously described. Of the five grams of glucose added, 26.7% and 37.2% successfully converted to lactic acid and levulinic acid, respectively. Under these operating conditions glucose also undergoes isomerization to fructose and mannose. As these three monosaccharides are known isomers at elevated temperatures they are grouped together to account for 11.2% unreacted feed. Visible blackening and increased weight of the collected catalyst is assumed coke, which accounted for 9.2% of the reacted feed. 15.8% of the glucose is still unaccounted for and assumed to be random caramelized products that are soluble but not eluted during GC-MS analysis. Figure 17 shows the target products, unreacted feed, coke, and combined analysis results with standard deviation for the three runs.



Figure 17: Results from triplicate experiments at 200 °C using Sn<sup>+4</sup> beta zeolite in pure water

Levulinic acid production was maximized at 200 °C using  $Sn^{+2}$ -doped beta zeolite in pure water. Triplicate runs showed an increase of ~15% levulinic acid for a total production of 52.8%. The increase in levulinic acid yields came at the expense of lactic acid production with only 4.4% selectivity toward lactic acid. The competition for reactant favors levulinic acid

without the presence of  $Sn^{+4}$ . Coke production was slightly increased which may be due to the almost complete consumption of glucose leading to lower selectivity. The yield of unaccounted products were also increased, which may also be caused by the high glucose consumption. A portion of the unaccounted products should also be formic acid, a known co-product of levulinic acid. Based on molecular weight comparison of formic acid and levulinic acid, there could be up to 10% weight production of formic acid. However, due to the drying process that was needed to derivatize the samples for GC-MS analysis, formic acid was absent. Even the formic acid placed in the calibration standards was not observed in the calibration analysis. Figure 18 shows the full recoverable analyte results along with standard deviations for the three runs with Sn<sup>+2</sup>-doped beta zeolite in pure water.



Figure 18: Results from triplicate experiments at 200  $^{\circ}\text{C}$  using Sn^+2-doped beta zeolite in pure water

Methyl lactate and methyl levulinate were maximized at 200 °C using Sn<sup>+4</sup>-doped beta zeolite in methanol. Triplicate results showed 49.2% methyl levulinate, 22.0% methyl lactate, and 2.4% methyl vinyl glycolate. It is important to note that these results are based on weight of corresponding atoms from glucose. The methyl group was contributed from the methanol solvent, so its weight was subtracted as to not skew the results of feed converted. Although most of the glucose was consumed, use of the methanol solvent resulted in significantly less coking. The less polar solvent may be able to remove any formed precursors of coke and keep the catalyst active for a longer period of time. Figure 19 and Figure 20 show the analyte results and

grouped products from triplicate experiments at 200 °C using Sn<sup>+4</sup>-doped beta zeolite in methanol.



Figure 19: Results from triplicate experiments at 200 °C using  $Sn^{+4}$ -doped beta zeolite in methanol



Figure 20: Grouped results from triplicate experiments at 200  $^{\circ}$ C using Sn<sup>+4</sup>-doped beta zeolite in methanol

With the main goal of lactic acid production, one more set of triplicates was performed with Sn<sup>+4</sup>-doped beta zeolite in pure water. For these reactions, the amount of glucose was reduced from five grams to only two grams with only 200 ml of water. This was done to increase the catalyst-to-glucose ratio and keep the overall concentration similar to prior experiments. The increased catalyst amount had a great effect on lactic acid production, with 47.8% selectivity. Surprisingly, there was no levulinic acid measured in these runs, however unaccounted products also increased to 25.8%. A similar total amount of coke was recovered in both the two and five gram experiments, which represents a higher percentage of coke formed

due to the smaller initial feed weight. Apparently, higher catalyst amounts, while increasing reactivity also decrease the selectivity of the catalytic process. Figure 21 shows the lactic acid production, unreacted feed, coke, and combined analysis results along with standard deviation for the three runs.



Figure 21: Results from triplicate experiments at 200 °C using Sn<sup>+4</sup>-doped beta zeolite in pure water with increased catalyst-to-glucose ratio

#### 1.7 Lactic Acid and Levulinic Production Recommendations

Lactic acid was maximized with Sn<sup>+4</sup>-doped beta zeolite in pure water. Since glucose is readily soluble in water, increased conversion or processing efficiency could be implemented with a continuous process. Future work should look at setting up a bench scale packed bed reactor. Feed flow rate, glucose concentration, temperature, and pressure can be optimized with the new reactor. Sampling at specified time intervals will provide kinetic information as well as information about catalyst deactivation. Once optimized with a glucose solution, the reactor should be tested on glucose solutions made from biomass degradation. This step will determine whether any purification processing would be needed to protect the catalyst.

Commercial processing for conversion of biomass to fuel components would start with production of glucose from the biomass feedstock. This could be accomplished using technology that is currently in place for glucose production in cellulosic ethanol plants, or preferentially utilizing current UND research on maximizing glucose production from biomass. The biomass degradation product stream would then be fed to a purification system if needed. The purified stream could then be fed into a packed bed reactor with Sn<sup>+4</sup>-doped beta zeolite for lactic acid or Sn<sup>+2</sup>-doped beta zeolite for levulinic acid. The lactic acid or levulinic acid solution would then be separated, most likely a distillation tower. The concentrated lactic acid or levulinic acid stream would be fed into another catalytic reactor to utilize their functional groups to make fuel components or value chemicals.

Depending on market demand, the Sn-doped beta zeolite reactor can be switched between  $Sn^{+4}$ -doped beta zeolite for lactic acid or  $Sn^{+2}$ -doped for levulinic acid. The conversion of the acids to fuel components or value chemicals can also be selected for maximum profit. Assuming high conversion of glucose from the biomass and high conversion of lactic acid or levulinic acid to fuel components or value chemicals, up to 50% of renewable biomass could be converted into valuable products using Sn-doped beta zeolite catalyst that was maximized with this research.

#### 1.8 Methyl Lactate or Methyl Levulinate Production Recommendations

The catalyst to glucose ratio should be explored in greater detail. Future experiments would focus on increasing the added catalyst amount instead of decreasing the substrate. Reducing the overall solvent amount is another area of interest, by increasing the substrate concentration above lactobacilli limitations will demonstrate one of the main advantages over biological processes.

Overall conversion of glucose was maximized with Sn<sup>+4</sup>-doped beta zeolite in pure methanol, producing 22% methyl lactate and 49% methyl levulinate. However, as glucose solubility in methanol is only 0.037 M, a continuous stir fed reactor (CSTR) would be more efficient. A bench scale CSTR system could be set up with catalyst and glucose charged in the CSTR, and pure methanol would be introduced. As methyl lactate and methyl levulinate are readily soluble in methanol, the product stream from the CSTR would contain the target compounds. Initial glucose concentration, temperature, and pressure can be optimized with the CSTR. Sampling at specified time intervals will provide kinetic information as well as information about catalyst deactivation.

Commercial processing for conversion of biomass to fuel components would start with the same technique as above to maximize glucose from biomass. However since methanol will be the new solvent, there will need to be a separation process to crystalize the glucose and transfer it to the CSTR. Once the CSTR is charged with biomass derived glucose and Sn<sup>+4</sup>doped beta zeolite, the reactor would be filled with methanol and heated to reaction temperature. The product stream containing both methyl lactate and methyl levulinate would then be separated, most likely in a distillation tower. The separated methyl lactate and methyl levulinate

42

streams would be fed into their respective catalytic reactors to utilize their functional groups to make fuel components or value chemicals.

There may be a cost prohibitive step of transferring the biomass derived glucose to methanol. In addition, this setup does not have the same versatility to target methyl levulinate or methyl lactate, although it has a higher overall conversion of glucose and less coke formation. Assuming high conversion of glucose from the biomass and high conversion methyl lactate and methyl levulinate to fuel components or value chemicals, up to 70% of renewable biomass could be converted into valuable products.

# CHAPTER III CONCLUSIONS

Lactic acid and levulinic acids along with their methyl ester derivatives were selectively produced using a novel Sn-doped beta zeolite. A twelve run Plackett-Burman design of experiments study was implemented to study catalyst synthesis as well as operating conditions. The DOE for catalyst synthesis showed Sn<sup>+4</sup> was selective towards lactic acid and its derivatives while the Sn<sup>+2</sup> was selective towards levulinic acid and its derivatives. The intermediate step of H-beta showed a negative effect on total Sn doping and was removed from all future synthesis.

The solvent factor from the DOE showed simultaneous production of both the acids and methyl esters. However, preference for the related products was dependent on which solvent, water or methanol, was dominant. For example higher methanol solvent promoted methyl lactate over lactic acid. As there was no increase on overall conversion with the mixed solvents all future runs were conducted in pure methanol or water solvent.

The DOE on operating conditions also showed that increased temperature promoted production of target products and the next set of experiments concentrated on bounding the temperature limit. There was an increase of target products up to 200 °C. After 200 °C there was a moderate decrease in target products but a significant increase in unaccounted products. All future experiments were conducted at the optimal 200 °C.

Triplicate runs were conducted under the experimental conditions that maximized target product yields. When using Sn<sup>+4</sup>-doped beta zeolite in pure water with a high catalyst-to-glucose ratio 47% lactic acid was produced with 26% unaccounted product. Levulinic acid yield was

maximized with 53% selectivity and 27% unaccounted product using Sn<sup>+2</sup>-doped beta zeolite. Methyl lactate, 22%, and methyl levulinate, 49%, were produced using Sn<sup>+4</sup>-doped beta zeolite in methanol, with only 16% unaccounted product. All triplicate results were successful in defining a large majority of the products. The experiments also showed that the yield of each targeted product could be maximized by changing the dopant or solvent.

Current UND research is focused on maximizing glucose recovery from biomass degradation and future research will look at utilizing lactic acid, levulinic acid, methyl lactate, and methyl levulinate for conversion to fuel components or value products. While this body of work shows just one step in the process, it was significant in showing that up to 50% lactic acid or levulinic acid can be recovered from an aqueous system, where previous publications only produced 27%. Utilizing glucose in an aqueous system will provide substantial cost savings in preprocessing the biomass derived glucose. If the methanol solvent route is preferred, our work showed an increase of recovered products to 70% including the unreported methyl levulinate. This is a 20% increase compared to literature results for glucose conversion in a methanol solution. Our research fills an information gap in the literature as well as provides essential information for continuing research to allow further processing towards either fuels or value chemicals from renewable biomass.

45

# APPENDIX A ZEOLITE DOPING

The procedure for doping was identical whether using the 25 or 300 SiO2/Al2O3 ratio beta zeolite. Thirty grams of the purchased zeolite was calcined at 600 °C for 8 hours. When the zeolite was cooled to room temperature it was dispersed in a doping solution and stirred until well dispersed. The doping solution was prepared with 1 gram SnCl4·5H2O or 0.5 grams SnCl2 in 50 ml of 1 mol HCl to help dissolve the salt. Parafilm was placed over the opening of the glass container and the container was then place in a sonicator. It was sonicated overnight; note that the sonicator fluid warms to about 60 °C from normal operation without the need to turn on the heater. The next day a funnel with filter paper was set up to collect the doped zeolite. The sonicated solution was carefully poured into the filter paper and let set overnight. When the contents of the filter paper was a thick paste all contents were scraped off the filter paper into a ceramic dish and calcined at 400 °C for 8 hours. When the Sn-doped zeolite was cooled it was sealed in a glass container for future use.

# APPENDIX B AUTOCLAVE EXPERIMENT SETUP

Using a mass balance and weigh dish ten grams of Sn-doped beta zeolite were measured and all contents of the weigh dish were placed into the clean reactor vessel. Five grams of glucose were measured and placed in the reactor vessel. 300 ml ultra-pure water from the millipore purifying system was measured in a clean graduated cylinder then slowly added to the reactor vessel. A thin layer of vacuum grease was placed on the reactor vessel lip to ensure a complete seal was formed and to protect the high pressure gasket from sticking to the vessel.

The reaction vessel was then ready to be connected to the rest of the Parr reactor. Both halves of the reactor vessel clamp were placed and the safety clasps were connected to hold the reactor in place. The eight bolts sealing the vessel were tightened with a torque wrench set to 20 foot-pounds to protect the gasket from over tightening. Bolts were tightened, alternating between opposite sides to prevent over tightening of one side and to ensure an even sealing of the reactor. Once all bolts were tightened to 20 foot-pounds, the torque wrench was set to 35 foot-pounds and the alternating tightening procedure was repeated. The 35 foot-pounds tightening sequence was done twice to ensure all the bolts were correctly tightened and a proper seal was formed.

Once the reactor was sealed, the gas phase needed to be purged to remove atmospheric gasses. The nitrogen input line was slowly opened to increase the pressure of the reactor to 300 psig. Then the vent was slowly opened to relieve the built up pressure. This procedure was used

47

to purge the reactor with nitrogen five times. After purging the vessel the reactor was charged one last time with nitrogen to 300 psi and all inlet valves on the reactor were closed.

Once the reactor was sealed and charged the Parr heater was raised and locked into place around the reactor vessel. The cooling water line was opened and the bypass line was closed, to ensure the cooling water was only used for temperature control. The heater was turned on and set to 200 °C. If the temperature raised above 200 °C the cooling water bypass valve was opened shortly until 200 °C was achieved. The temperature was maintained at 200±1 °C. The stirring motor was set to 400 RPMs and signified the start of the reaction.

After 20 hours the reaction was considered complete and the heater was turned off and lowered, the cooling water bypass valve was opened, and a small fan was placed to blow over the reactor vessel. When the reactor was cooled to room temperature the gas vent was slowly opened, bringing the reaction mixture back to atmospheric pressure.

The bolts on the seal clamp were loosened in the same order as they were tightened. The clasps on the clamp were opened and the vessel was removed from the rest of the Parr reactor. Using a 2 ml syringe a small volume of the reactor fluid was removed, filtered through a micron, and collected in a small container for later analysis. A funnel with filter paper was set up to separate the solids from the liquid reactor solution. The reactor fluid was carefully poured into the filter paper to collect the used catalyst. All solids were removed from the agitator blades, cooling coil, thermocouple thermowell, all other internal parts of the reactor, and the reactor vessel and placed in the filter paper. When all the fluid had drained the liquid was placed in a large storage vessel. The filter paper with the collected used catalyst was set aside to let dry. When completely dry and the used catalyst was again in powder form it was weighed to calculate the amount of coke formed.

48

# APPENDIX C GC-MS ANALYSIS

Exactly 20  $\mu$ l of the micron filtered collected sample from the completed reaction was placed in a new two ml autosampler vial. The vial was placed under a slow nitrogen flow to dry the sample. When the sample was dry 60  $\mu$ l pyridine and 60  $\mu$ l BTSFA derivatizing solution were added. The autosampler vial was capped using a crimping tool. The sample was vortexed and placed in a 70 °C oven overnight. The next day the autosampler vial was opened and one ml of dilute internal standard solution was added and resealed. The internal standard solution was made with 4 mg of o-terphenyl in 100 ml of DCM.

Calibration samples were prepared using purchased stock chemicals. Calibration solution was prepared by accurately measuring approximately ten mg of stock chemicals which were then dissolved in 1ml of methanol. Exactly 40  $\mu$ l of the calibration sample were placed in an autosampler vial and dried with a nitrogen flow. When the sample was dry 300  $\mu$ l pyridine and 300  $\mu$ l BTSFA derivatizing solution were added. The calibration vial was capped using a crimping tool. The calibration sample was vortexed and placed in a 70 °C oven overnight. The next day the calibration vial was opened and half of its contents, 300  $\mu$ l, were transferred to a new autosampler vial that contained 300  $\mu$ l DCM. Again half of its contents, 300  $\mu$ l, were transferred to a new autosampler vial that contained 300  $\mu$ l DCM. This was done seven times creating eight serial dilution calibration samples where each new vial was half the concentration of the previous. 300  $\mu$ l of the last dilution was discarded leaving eight samples all with 300 ml

of calibration standards. One ml of dilute internal standard solution was added to all the calibration vials and the vials were sealed.

All sample vials and calibration vials were placed in the Agilent 6890GC-MS autosampler tray. The run order was started with a neat DCM vial to ensure a flat baseline was observed and the instrument was not contaminated. Three runs of a test mix, provided by Dr. Kubatova's group, was then analyzed to ensure the detector's measurements were accurate and repeatable. Another neat DCM blank was injected to flush the column and check again for possible carryover of analytes. The eight calibration runs, starting with the most dilute were injected with another DCM blank after the first four. Then the reactor samples were injected with a DCM blank after every three or four injections. After all the reactor samples were injected the eight calibration runs were injected again with another DCM blank. If the sequence lasted more than a day, intermediate calibrations were inserted to ensure everything was working correctly. Table 10 shows an example of the GC-MS analysis used on a multiday sequence used for during the DOE study.

| 13-0813_E | I_CK   |                  |                      |              |                              |
|-----------|--------|------------------|----------------------|--------------|------------------------------|
| DB-5ms 28 | Sm Col | umn, Splitless v | w/o Glass Wool, 50 r | nL/min split |                              |
|           |        |                  |                      |              |                              |
| Туре      | Vial   | Sample           | Method               | Data File    | Notes                        |
| Blank     | 1      | DCM blank        | TM01_EI              | 001_Blank    |                              |
| Sample    | 2      | Testmix low      | TM01 EI              | 002 MC59-2D  | Test Mix                     |
| Sample    | 2      | Testmix_low      | TM01_EI              | 003_MC59-2D  | Test Mix                     |
| Sample    | 2      | Testmix_low      | TM01_EI              | 004_MC59-2D  | Test Mix                     |
| Blank     | 1      | DCM blank        | CK_TEST03_EI         | 005_Blank    |                              |
| Sample    | 3      | CK23_01          | CK_TEST03_EI         | 006_CK23_01  | Underivatized<br>Calibration |
| Sample    | 4      | CK23_02          | CK_TEST03_EI         | 007_CK23_02  | Underivatized<br>Calibration |
| Sample    | 5      | CK23_03          | CK_TEST03_EI         | 008_CK23_03  | Underivatized<br>Calibration |
| Sample    | 6      | CK23_04          | CK_TEST03_EI         | 009_CK23_04  | Underivatized<br>Calibration |
| Blank     | 1      | DCM blank        | TM01_EI              | 010_Blank    |                              |
| Sample    | 7      | CK23_05          | CK_TEST03_EI         | 011_CK23_05  | Underivatized<br>Calibration |
| Sample    | 8      | CK23_06          | CK_TEST03_EI         | 012_CK23_06  | Underivatized<br>Calibration |
| Sample    | 9      | CK23_07          | CK_TEST03_EI         | 013_CK23_07  | Underivatized<br>Calibration |
| Sample    | 10     | CK23_08          | CK_TEST03_EI         | 014_CK23_08  | Underivatized<br>Calibration |
| Blank     | 1      | DCM blank        | TM01_EI              | 015_Blank    |                              |
| Sample    | 11     | CK23_098         | CK_TEST03_EI         | 016_CK23_098 | Underivatized<br>Sample      |
| Sample    | 12     | CK23_099         | CK_TEST03_EI         | 017_CK23_099 | Underivatized<br>Sample      |
| Sample    | 13     | CK23_100         | CK_TEST03_EI         | 018_CK23_100 | Underivatized<br>Sample      |
| Blank     | 1      | DCM blank        | TM01_EI              | 019_Blank    |                              |
| Sample    | 14     | CK23_101         | CK_TEST03_EI         | 020_CK23_101 | Underivatized<br>Sample      |
| Sample    | 15     | CK23_102         | CK_TEST03_EI         | 021_CK23_102 | Underivatized<br>Sample      |
| Sample    | 16     | CK23_103         | CK_TEST03_EI         | 022_CK23_103 | Underivatized<br>Sample      |
| Blank     | 1      | DCM blank        | TM01_EI              | 023_Blank    |                              |

Table 10: Example of GC-MS analysis sequence

| Table 10 C  | Table 10 Continued |           |              |                      |               |  |  |
|-------------|--------------------|-----------|--------------|----------------------|---------------|--|--|
| Sample      | 17                 | CK23 106  | CK TEST03 EI | 024 CK23 106         | Underivatized |  |  |
| 1           |                    | _         |              |                      | Sample        |  |  |
| Sample      | 18                 | CK23_107  | CK_TEST03_EI | 025_CK23_107         | Underivatized |  |  |
|             |                    |           |              |                      | Sample        |  |  |
| Sample      | 19                 | CK23_108  | CK_TEST03_EI | 026_CK23_108         | Underivatized |  |  |
|             |                    |           |              |                      | Sample        |  |  |
| Blank       | 1                  | DCM blank | TM01_EI      | 027_Blank            |               |  |  |
| Sample      | 20                 | CK23_109  | CK_TEST03_EI | 028_CK23_109         | Underivatized |  |  |
| ~ 1         |                    | G1100 110 |              |                      | Sample        |  |  |
| Sample      | 21                 | CK23_110  | CK_TEST03_EI | 029_CK23_110         | Underivatized |  |  |
| Coursel o   | 22                 | CK22 111  | CV TEGTO2 EL | 020 CK22 111         | Sample        |  |  |
| Sample      | 22                 | СК25_111  | CK_IESI03_EI | 030_CK23_111         | Underivatized |  |  |
| Blank       | 1                  | DCM blank | TM01 EI      | 031 Blank            | Sample        |  |  |
| Sampla      | 7                  |           | CK TESTO2 EL | 031_Dialik           | Underivatized |  |  |
| Sample      | /                  | CK25_05   | CK_IESIUS_EI | 052_CK25_05          | Check         |  |  |
| Blank       | 1                  | DCM blank | TM01 FI      | 033 Blank            | CIICCK        |  |  |
| Sampla      | 22                 | CK22 114  | CK TESTO2 EL | $035_{\text{Dlank}}$ | Underivatized |  |  |
| Sample      | 23                 | CK25_114  |              | 034_CK23_114         | Sample        |  |  |
| Sample      | 24                 | СК23 115  | CK TEST03 EL | 035 CK23 115         | Underivatized |  |  |
| Sumple      | 21                 | 01125_115 |              | 055_0125_115         | Sample        |  |  |
| Sample      | 25                 | CK23 116  | CK TEST03 EI | 036 CK23 116         | Underivatized |  |  |
| 1           |                    | _         |              |                      | Sample        |  |  |
| Blank       | 1                  | DCM blank | TM01_EI      | 037_Blank            |               |  |  |
| Sample      | 26                 | CK23 117  | CK TEST03 EI | 038 CK23 117         | Underivatized |  |  |
| -           |                    | _         |              |                      | Sample        |  |  |
| Sample      | 27                 | CK23_118  | CK_TEST03_EI | 039_CK23_118         | Underivatized |  |  |
|             |                    |           |              |                      | Sample        |  |  |
| Sample      | 28                 | CK23_119  | CK_TEST03_EI | 040_CK23_119         | Underivatized |  |  |
| <b>D1 1</b> | -                  |           |              |                      | Sample        |  |  |
| Blank       | 1                  | DCM blank | TM01_EI      | 041_Blank            |               |  |  |
| Sample      | 29                 | CK23_122  | CK_TEST03_EI | 042_CK23_122         | Underivatized |  |  |
| C 1         | 20                 | GK02 102  |              | 0.42 (1/22, 1/22)    | Sample        |  |  |
| Sample      | 30                 | CK23_123  | CK_IESI03_EI | 043_CK23_123         | Underivatized |  |  |
| Sampla      | 21                 | CV22 124  | CV TESTO2 EL | 044 CK22 124         | Underivatized |  |  |
| Sample      | 51                 | CK25_124  |              | 044_CK25_124         | Sample        |  |  |
| Blank       | 1                  | DCM blank | TM01 EI      | 045 Blank            | Sample        |  |  |
| Sample      | 32                 | CK23 125  | CK TESTO3 EI | 046 CK23 125         | Underivatized |  |  |
| Sample      | 54                 |           |              |                      | Sample        |  |  |
| Sample      | 33                 | CK23 126  | CK TEST03 EI | 047 CK23 126         | Underivatized |  |  |
| 2 minpro    | 20                 |           |              |                      | Sample        |  |  |

| Table 10 Continued |    |           |              |              |                              |  |
|--------------------|----|-----------|--------------|--------------|------------------------------|--|
| Sample             | 34 | CK23_127  | CK_TEST03_EI | 048_CK23_127 | Underivatized                |  |
|                    | _  |           |              |              | Sample                       |  |
| Blank              | 1  | DCM blank | TM01_EI      | 049_Blank    |                              |  |
| Sample             | 7  | CK23_05   | CK_TEST03_EI | 050_CK23_05  | Underivatized<br>Check       |  |
| Blank              | 1  | DCM blank | TM01_EI      | 051_Blank    |                              |  |
| Sample             | 35 | CK23_130  | CK_TEST03_EI | 052_CK23_130 | Underivatized<br>Sample      |  |
| Sample             | 36 | CK23_131  | CK_TEST03_EI | 053_CK23_131 | Underivatized<br>Sample      |  |
| Sample             | 37 | CK23_132  | CK_TEST03_EI | 054_CK23_132 | Underivatized<br>Sample      |  |
| Blank              | 1  | DCM blank | TM01_EI      | 055_Blank    |                              |  |
| Sample             | 38 | CK23_133  | CK_TEST03_EI | 056_CK23_133 | Underivatized<br>Sample      |  |
| Sample             | 39 | CK23_134  | CK_TEST03_EI | 057_CK23_134 | Underivatized<br>Sample      |  |
| Sample             | 40 | CK23_135  | CK_TEST03_EI | 058_CK23_135 | Underivatized<br>Sample      |  |
| Blank              | 1  | DCM blank | TM01_EI      | 059_Blank    |                              |  |
| Sample             | 41 | CK23_138  | CK_TEST03_EI | 060_CK23_138 | Underivatized<br>Sample      |  |
| Sample             | 42 | CK23_139  | CK_TEST03_EI | 061_CK23_139 | Underivatized<br>Sample      |  |
| Sample             | 43 | CK23_140  | CK_TEST03_EI | 062_CK23_140 | Underivatized<br>Sample      |  |
| Blank              | 1  | DCM blank | TM01_EI      | 063_Blank    | •                            |  |
| Sample             | 44 | CK23_141  | CK_TEST03_EI | 064_CK23_141 | Underivatized<br>Sample      |  |
| Sample             | 45 | CK23_142  | CK_TEST03_EI | 065_CK23_142 | Underivatized<br>Sample      |  |
| Sample             | 46 | CK23_143  | CK_TEST03_EI | 066_CK23_143 | Underivatized<br>Sample      |  |
| Blank              | 1  | DCM blank | TM01_EI      | 067_Blank    |                              |  |
| Sample             | 3  | CK23_01   | CK_TEST03_EI | 068_CK23_01  | Underivatized<br>Calibration |  |
| Sample             | 4  | CK23_02   | CK_TEST03_EI | 069_CK23_02  | Underivatized<br>Calibration |  |
| Sample             | 5  | CK23_03   | CK_TEST03_EI | 070_CK23_03  | Underivatized<br>Calibration |  |
| Sample             | 6  | CK23_04   | CK_TEST03_EI | 071_CK23_04  | Underivatized<br>Calibration |  |

| Table 10 Continued |    |           |              |              |                              |  |
|--------------------|----|-----------|--------------|--------------|------------------------------|--|
| Blank              | 1  | DCM blank | TM01_EI      | 072_Blank    |                              |  |
| Sample             | 7  | CK23_05   | CK_TEST03_EI | 073_CK23_05  | Underivatized<br>Calibration |  |
| Sample             | 8  | CK23_06   | CK_TEST03_EI | 074_CK23_06  | Underivatized<br>Calibration |  |
| Sample             | 9  | CK23_07   | CK_TEST03_EI | 075_CK23_07  | Underivatized<br>Calibration |  |
| Sample             | 10 | CK23_08   | CK_TEST03_EI | 076_CK23_08  | Underivatized<br>Calibration |  |
| Blank              | 1  | DCM blank | TM01_EI      | 077_Blank    |                              |  |
| Sample             | 47 | CK23_146  | CK_TEST03_EI | 078_CK23_146 | Underivatized<br>Sample      |  |
| Sample             | 48 | CK23_147  | CK_TEST03_EI | 079_CK23_147 | Underivatized<br>Sample      |  |
| Sample             | 49 | CK23_148  | CK_TEST03_EI | 080_CK23_148 | Underivatized<br>Sample      |  |
| Blank              | 1  | DCM blank | TM01_EI      | 081_Blank    |                              |  |
| Sample             | 50 | CK23_149  | CK_TEST03_EI | 082_CK23_149 | Underivatized<br>Sample      |  |
| Sample             | 51 | CK23_150  | CK_TEST03_EI | 083_CK23_150 | Underivatized<br>Sample      |  |
| Sample             | 52 | CK23_151  | CK_TEST03_EI | 084_CK23_151 | Underivatized<br>Sample      |  |
| Blank              | 1  | DCM blank | TM01_EI      | 085_Blank    |                              |  |
| Sample             | 53 | CK23_154  | CK_TEST03_EI | 086_CK23_154 | Underivatized<br>Sample      |  |
| Sample             | 54 | CK23_155  | CK_TEST03_EI | 087_CK23_155 | Underivatized<br>Sample      |  |
| Sample             | 55 | CK23_156  | CK_TEST03_EI | 088_CK23_156 | Underivatized<br>Sample      |  |
| Blank              | 1  | DCM blank | TM01_EI      | 089_Blank    |                              |  |
| Sample             | 56 | CK23_157  | CK_TEST03_EI | 090_CK23_157 | Underivatized<br>Sample      |  |
| Sample             | 57 | CK23_158  | CK_TEST03_EI | 091_CK23_158 | Underivatized<br>Sample      |  |
| Sample             | 58 | CK23_159  | CK_TEST03_EI | 092_CK23_159 | Underivatized<br>Sample      |  |
| Blank              | 1  | DCM blank | TM01_EI      | 093_Blank    | _                            |  |
| Sample             | 7  | CK23_05   | CK_TEST03_EI | 094_CK23_05  | Underivatized<br>Check       |  |
| Blank              | 1  | DCM blank | TM01_EI      | 095_Blank    |                              |  |

| Table 10 Continued |    |                                   |              |                      |                     |  |
|--------------------|----|-----------------------------------|--------------|----------------------|---------------------|--|
| Sample             | 59 | CK23 162                          | CK TEST03 EI | 096 CK23 162         | Underivatized       |  |
| 1                  |    | _                                 |              |                      | Sample              |  |
| Sample             | 60 | CK23_163                          | CK_TEST03_EI | 097_CK23_163         | Underivatized       |  |
|                    |    |                                   |              |                      | Sample              |  |
| Sample             | 61 | CK23_164                          | CK_TEST03_EI | 098_CK23_164         | Underivatized       |  |
|                    |    |                                   |              |                      | Sample              |  |
| Blank              | 1  | DCM blank                         | TM01_EI      | 099_Blank            |                     |  |
| Sample             | 62 | CK23_165                          | CK_TEST03_EI | 100_CK23_165         | Underivatized       |  |
|                    |    |                                   |              |                      | Sample              |  |
| Sample             | 63 | CK23_166                          | CK_TEST03_EI | 101_CK23_166         | Underivatized       |  |
|                    |    |                                   |              |                      | Sample              |  |
| Sample             | 64 | CK23_167                          | CK_TEST03_EI | 102_CK23_167         | Underivatized       |  |
|                    |    |                                   |              |                      | Sample              |  |
| Blank              | 1  | DCM blank                         | TM01_EI      | 103_Blank            |                     |  |
| Sample             | 65 | CK23_170                          | CK_TEST03_EI | 104_CK23_170         | Underivatized       |  |
|                    |    |                                   |              |                      | Sample              |  |
| Sample             | 66 | CK23_171                          | CK_TEST03_EI | 105_CK23_171         | Underivatized       |  |
| ~ .                |    | ~~~~                              |              |                      | Sample              |  |
| Sample             | 67 | CK23_172                          | CK_TEST03_EI | 106_CK23_172         | Underivatized       |  |
| D1 1               | 1  |                                   |              | 107 D1 1             | Sample              |  |
| Blank              | I  | DCM blank                         | TM01_EI      | 107_Blank            |                     |  |
| Sample             | 68 | CK23_173                          | CK_TEST03_EI | 108_CK23_173         | Underivatized       |  |
|                    | 60 |                                   |              |                      | Sample              |  |
| Sample             | 69 | CK23_174                          | CK_TEST03_EI | 109_CK23_174         | Underivatized       |  |
| 0 1                | 70 | CK02 175                          |              | 110 01/02 175        | Sample              |  |
| Sample             | /0 | $CK23_1/5$                        | CK_IESI03_EI | 110_CK23_1/5         | Underivatized       |  |
| Dlanlr             | 1  | DCM blank                         | TM01 EI      | 111 Dlank            | Sample              |  |
| Blank              | 1  | DCM blank                         | IMUI_EI      | III_Blank            | <b>XX 1 1 1</b>     |  |
| Sample             | 1  | CK23_05                           | CK_TEST03_EI | 112_CK23_05          | Underivatized       |  |
| Dlaula             | 1  | DCM hlaula                        |              | 112 Dl               | Спеск               |  |
| Blank              | 1  | DCM blank                         | IMUI_EI      | 113_Blank            | <b>XX 1 1 1</b>     |  |
| Sample             | 71 | CK23_178                          | CK_TEST03_EI | 114_CK23_178         | Underivatized       |  |
| <u> </u>           | 70 | CK22 170                          |              | 115 OK22 170         | Sample              |  |
| Sample             | 12 | CK23_1/9                          | CK_IESI03_EI | 115_CK25_179         | Underivatized       |  |
| Same la            | 72 | CV22 190                          | CV TESTO2 EL | 116 CK22 190         | Sample              |  |
| Sample             | /3 | CK23_180                          | CK_IESIUS_EI | 110_CK23_180         | Sample              |  |
| Blank              | 1  | DCM blank                         | TM01 EI      | 117 Blank            | Sample              |  |
| Dialik             | 1  |                                   | CK TESTO2 EL | $\frac{117}{DtallK}$ | I la domizzationa d |  |
| Sample             | /4 | UK23_181                          | CK_IESIU3_EI | 118_CK23_181         | Somple              |  |
| Sampla             | 75 | CK22 192                          | CK TESTO2 EI | 110 CK22 192         | Underivatized       |  |
| Sample             | 15 | $\left  \frac{CK23}{102} \right $ | CK_ILSIUS_EI | 117_UK23_102         | Sample              |  |
|                    | 1  | 1                                 |              |                      | Sample              |  |

| Table 10 Co | Table 10 Continued |             |                  |                  |                              |  |  |
|-------------|--------------------|-------------|------------------|------------------|------------------------------|--|--|
| Sample      | 76                 | CK23_183    | CK_TEST03_EI     | 120_CK23_183     | Underivatized                |  |  |
| Blank       | 1                  | DCM blank   | TM01 EI          | 121 Blank        | Sample                       |  |  |
| Sample      | 77                 | CK23_186    | <br>CK_TEST03_EI | <br>122_CK23_186 | Underivatized<br>Sample      |  |  |
| Sample      | 78                 | CK23_187    | CK_TEST03_EI     | 123_CK23_187     | Underivatized<br>Sample      |  |  |
| Sample      | 79                 | CK23_188    | CK_TEST03_EI     | 124_CK23_188     | Underivatized<br>Sample      |  |  |
| Blank       | 1                  | DCM blank   | TM01_EI          | 125_Blank        |                              |  |  |
| Sample      | 80                 | CK23_189    | CK_TEST03_EI     | 126_CK23_189     | Underivatized<br>Sample      |  |  |
| Sample      | 81                 | CK23_190    | CK_TEST03_EI     | 127_CK23_190     | Underivatized<br>Sample      |  |  |
| Sample      | 82                 | CK23_191    | CK_TEST03_EI     | 128_CK23_191     | Underivatized<br>Sample      |  |  |
| Blank       | 1                  | DCM blank   | TM01_EI          | 129_Blank        |                              |  |  |
| Sample      | 3                  | CK23_01     | CK_TEST03_EI     | 130_CK23_01      | Underivatized<br>Calibration |  |  |
| Sample      | 4                  | CK23_02     | CK_TEST03_EI     | 131_CK23_02      | Underivatized<br>Calibration |  |  |
| Sample      | 5                  | CK23_03     | CK_TEST03_EI     | 132_CK23_03      | Underivatized<br>Calibration |  |  |
| Sample      | 6                  | CK23_04     | CK_TEST03_EI     | 133_CK23_04      | Underivatized<br>Calibration |  |  |
| Blank       | 1                  | DCM blank   | TM01_EI          | 134_Blank        |                              |  |  |
| Sample      | 7                  | CK23_05     | CK_TEST03_EI     | 135_CK23_05      | Underivatized<br>Calibration |  |  |
| Sample      | 8                  | CK23_06     | CK_TEST03_EI     | 136_CK23_06      | Underivatized<br>Calibration |  |  |
| Sample      | 9                  | CK23_07     | CK_TEST03_EI     | 137_CK23_07      | Underivatized<br>Calibration |  |  |
| Sample      | 10                 | CK23_08     | CK_TEST03_EI     | 138_CK23_08      | Underivatized<br>Calibration |  |  |
| Blank       | 1                  | DCM blank   | TM01_EI          | 139_Blank        |                              |  |  |
| Sample      | 2                  | Testmix_low | TM01_EI          | 140_MC59-2D      | Test Mix                     |  |  |
| Sample      | 2                  | Testmix_low | TM01_EI          | 141_MC59-2D      | Test Mix                     |  |  |
| Sample      | 2                  | Testmix_low | TM01_EI          | 142_MC59-2D      | Test Mix                     |  |  |
| Blank       | 1                  | DCM blank   | TM01_EI          | 143_Blank        |                              |  |  |
| Sample      | 11                 | CK19_09d    | JR_BSTFA_06_EI   | 144_CK19-09d     | Derivatized<br>Calibration   |  |  |

| Table 10 C | Table 10 Continued |           |                |              |                            |  |  |
|------------|--------------------|-----------|----------------|--------------|----------------------------|--|--|
| Sample     | 12                 | CK19_10d  | JR_BSTFA_06_EI | 145_CK19-10d | Derivatized<br>Calibration |  |  |
| Sample     | 13                 | CK19_11d  | JR_BSTFA_06_EI | 146_CK19-11d | Derivatized<br>Calibration |  |  |
| Sample     | 14                 | CK19_12d  | JR_BSTFA_06_EI | 147_CK19-12d | Derivatized<br>Calibration |  |  |
| Blank      | 1                  | DCM blank | TM01_EI        | 148_Blank    |                            |  |  |
| Sample     | 15                 | CK19_13d  | JR_BSTFA_06_EI | 149_CK19-13d | Derivatized<br>Calibration |  |  |
| Sample     | 16                 | CK19_14d  | JR_BSTFA_06_EI | 150_CK19-14d | Derivatized<br>Calibration |  |  |
| Sample     | 17                 | CK19_15d  | JR_BSTFA_06_EI | 151_CK19-15d | Derivatized<br>Calibration |  |  |
| Sample     | 18                 | CK19_16d  | JR_BSTFA_06_EI | 152_CK19-16d | Derivatized<br>Calibration |  |  |
| Blank      | 1                  | DCM blank | TM01_EI        | 153_Blank    |                            |  |  |
| Sample     | 19                 | CK19_96d  | JR_BSTFA_06_EI | 154_CK19-96d | Derivatized<br>Sample      |  |  |
| Sample     | 20                 | CK19_97d  | JR_BSTFA_06_EI | 155_CK19-97d | Derivatized<br>Sample      |  |  |
| Sample     | 21                 | CK19_98d  | JR_BSTFA_06_EI | 156_CK19-98d | Derivatized<br>Sample      |  |  |
| Sample     | 22                 | CK19_99d  | JR_BSTFA_06_EI | 157_CK19-99d | Derivatized<br>Sample      |  |  |
| Blank      | 1                  | DCM blank | TM01_EI        | 158_Blank    |                            |  |  |
| Sample     | 15                 | CK19_13d  | JR_BSTFA_06_EI | 159_CK19-13d | Derivatized<br>Check       |  |  |
| Blank      | 1                  | DCM blank | TM01_EI        | 160_Blank    |                            |  |  |
| Sample     | 23                 | CK20_02d  | JR_BSTFA_06_EI | 161_CK20-02d | Derivatized<br>Sample      |  |  |
| Sample     | 24                 | CK20_03d  | JR_BSTFA_06_EI | 162_CK20-03d | Derivatized<br>Sample      |  |  |
| Sample     | 25                 | CK20_04d  | JR_BSTFA_06_EI | 163_CK20-04d | Derivatized<br>Sample      |  |  |
| Blank      | 1                  | DCM blank | TM01_EI        | 164_Blank    |                            |  |  |
| Sample     | 26                 | CK20_05d  | JR_BSTFA_06_EI | 165_CK20-05d | Derivatized<br>Sample      |  |  |
| Sample     | 27                 | CK20_06d  | JR_BSTFA_06_EI | 166_CK20-06d | Derivatized<br>Sample      |  |  |
| Sample     | 28                 | CK20_07d  | JR_BSTFA_06_EI | 167_CK20-07d | Derivatized<br>Sample      |  |  |
| Blank      | 1                  | DCM blank | TM01_EI        | 168_Blank    |                            |  |  |

| Table 10 C | Table 10 Continued |           |                |              |                       |  |  |
|------------|--------------------|-----------|----------------|--------------|-----------------------|--|--|
| Sample     | 29                 | CK20_10d  | JR_BSTFA_06_EI | 169_CK20-10d | Derivatized<br>Sample |  |  |
| Sample     | 30                 | CK20_11d  | JR_BSTFA_06_EI | 170_CK20-11d | Derivatized<br>Sample |  |  |
| Sample     | 31                 | CK20_12d  | JR_BSTFA_06_EI | 171_CK20-12d | Derivatized<br>Sample |  |  |
| Blank      | 1                  | DCM blank | TM01_EI        | 172_Blank    | 1                     |  |  |
| Sample     | 32                 | CK20_13d  | JR_BSTFA_06_EI | 173_CK20-13d | Derivatized<br>Sample |  |  |
| Sample     | 33                 | CK20_14d  | JR_BSTFA_06_EI | 174_CK20-14d | Derivatized<br>Sample |  |  |
| Sample     | 34                 | CK20_15d  | JR_BSTFA_06_EI | 175_CK20-15d | Derivatized<br>Sample |  |  |
| Blank      | 1                  | DCM blank | TM01_EI        | 176_Blank    |                       |  |  |
| Sample     | 15                 | CK19_13d  | JR_BSTFA_06_EI | 177_CK19-13d | Derivatized<br>Check  |  |  |
| Blank      | 1                  | DCM blank | TM01_EI        | 178_Blank    |                       |  |  |
| Sample     | 35                 | CK20_18d  | JR_BSTFA_06_EI | 179_CK20-18d | Derivatized<br>Sample |  |  |
| Sample     | 36                 | CK20_19d  | JR_BSTFA_06_EI | 180_CK20-19d | Derivatized<br>Sample |  |  |
| Sample     | 37                 | CK20_20d  | JR_BSTFA_06_EI | 181_CK20-20d | Derivatized<br>Sample |  |  |
| Blank      | 1                  | DCM blank | TM01_EI        | 182_Blank    |                       |  |  |
| Sample     | 38                 | CK20_21d  | JR_BSTFA_06_EI | 183_CK20-21d | Derivatized<br>Sample |  |  |
| Sample     | 39                 | CK20_22d  | JR_BSTFA_06_EI | 184_CK20-22d | Derivatized<br>Sample |  |  |
| Sample     | 40                 | CK20_23d  | JR_BSTFA_06_EI | 185_CK20-23d | Derivatized<br>Sample |  |  |
| Blank      | 1                  | DCM blank | TM01_EI        | 186_Blank    |                       |  |  |
| Sample     | 41                 | CK20_26d  | JR_BSTFA_06_EI | 187_CK20-26d | Derivatized<br>Sample |  |  |
| Sample     | 42                 | CK20_27d  | JR_BSTFA_06_EI | 188_CK20-27d | Derivatized<br>Sample |  |  |
| Sample     | 43                 | CK20_28d  | JR_BSTFA_06_EI | 189_CK20-28d | Derivatized<br>Sample |  |  |
| Blank      | 1                  | DCM blank | TM01_EI        | 190_Blank    |                       |  |  |
| Sample     | 44                 | CK20_29d  | JR_BSTFA_06_EI | 191_CK20-29d | Derivatized<br>Sample |  |  |
| Sample     | 45                 | CK20_30d  | JR_BSTFA_06_EI | 192_CK20-30d | Derivatized<br>Sample |  |  |
| Table 10 C  | ontinue | ed         |                |                       |                       |
|-------------|---------|------------|----------------|-----------------------|-----------------------|
| Sample      | 46      | CK20 31d   | JR BSTFA 06 EI | 193 CK20-31d          | Derivatized           |
| -           |         | _          |                | —                     | Sample                |
| Blank       | 1       | DCM blank  | TM01_EI        | 194_Blank             |                       |
| Sample      | 15      | CK19_13d   | JR_BSTFA_06_EI | 195_CK19-13d          | Derivatized<br>Check  |
| Blank       | 1       | DCM blank  | TM01_EI        | 196_Blank             |                       |
| Sample      | 47      | CK20 34d   | JR BSTFA 06 EI | 167 CK20-34d          | Derivatized           |
| -           |         | _          |                | —                     | Sample                |
| Sample      | 48      | CK20_35d   | JR_BSTFA_06_EI | 198_CK20-35d          | Derivatized           |
|             |         |            |                |                       | Sample                |
| Sample      | 49      | CK20_36d   | JR_BSTFA_06_EI | 199_CK20-36d          | Derivatized           |
| <b>D1 1</b> |         |            |                | <b>2</b> 00 D1 1      | Sample                |
| Blank       | 1       | DCM blank  | TM01_EI        | 200_Blank             |                       |
| Sample      | 50      | CK20_37d   | JR_BSTFA_06_EI | 201_CK20-37d          | Derivatized<br>Sample |
| Sample      | 51      | CK20_38d   | JR_BSTFA_06_EI | 202_CK20-38d          | Derivatized           |
|             |         |            |                |                       | Sample                |
| Sample      | 52      | CK20_39d   | JR_BSTFA_06_EI | 203_CK20-39d          | Derivatized           |
|             | -       |            |                |                       | Sample                |
| Blank       | 1       | DCM blank  | TM01_EI        | 204_Blank             |                       |
| Sample      | 53      | CK20_42d   | JR_BSTFA_06_EI | 205_CK20-42d          | Derivatized<br>Sample |
| Sample      | 54      | CK20_43d   | JR_BSTFA_06_EI | 206_CK20-43d          | Derivatized           |
|             |         |            |                |                       | Sample                |
| Sample      | 55      | CK20_44d   | JR_BSTFA_06_EI | 207_CK20-44d          | Derivatized           |
|             |         |            |                |                       | Sample                |
| Blank       | 1       | DCM blank  | TM01_EI        | 208_Blank             |                       |
| Sample      | 56      | CK20_45d   | JR_BSTFA_06_EI | 209_CK20-45d          | Derivatized           |
|             |         |            |                |                       | Sample                |
| Sample      | 57      | CK20_46d   | JR_BSTFA_06_EI | 210_CK20-46d          | Derivatized           |
|             |         | GU 00 45 1 |                | <u>211</u> (1720) 451 | Sample                |
| Sample      | 58      | CK20_47d   | JR_BSTFA_06_EI | 211_CK20-47d          | Derivatized           |
| Dlamlr      | 00      | DCM blaply | TM01 EI        | 212 Dlamlr            | Sample                |
|             | 90      | DCM DIalik |                | 212_Blank             |                       |
| Sample      | 11      | CK19_09d   | JR_BSIFA_06_EI | 213_CK19-09d          | Derivatized           |
| Sampla      | 12      | CK10_104   | ID DETEN OG EL | 214 CV 10 104         | Derivatized           |
| Sample      | 12      | CK19_100   | JK_DSIFA_00_EI | 214_CK19-100          | Calibration           |
| Sample      | 13      | CK19 11d   | IR BSTFA 06 FI | 215 CK19-11d          | Derivatized           |
| Sumple      | 15      |            |                |                       | Calibration           |
| Sample      | 14      | CK19 12d   | JR BSTFA 06 EI | 216 CK19-12d          | Derivatized           |
| r·•         |         |            |                |                       | Calibration           |

| Table 10 Continued |    |           |                |              |                            |  |  |
|--------------------|----|-----------|----------------|--------------|----------------------------|--|--|
| Blank              | 98 | DCM blank | TM01_EI        | 217_Blank    |                            |  |  |
| Sample             | 15 | CK19_13d  | JR_BSTFA_06_EI | 218_CK19-13d | Derivatized<br>Calibration |  |  |
| Sample             | 16 | CK19_14d  | JR_BSTFA_06_EI | 219_CK19-14d | Derivatized<br>Calibration |  |  |
| Sample             | 17 | CK19_15d  | JR_BSTFA_06_EI | 220_CK19-15d | Derivatized<br>Calibration |  |  |
| Sample             | 18 | CK19_16d  | JR_BSTFA_06_EI | 221_CK19-16d | Derivatized<br>Calibration |  |  |
| Blank              | 98 | DCM blank | TM01_EI        | 222_Blank    |                            |  |  |
| Sample             | 59 | CK20_50d  | JR_BSTFA_06_EI | 223_CK20-50d | Derivatized<br>Sample      |  |  |
| Sample             | 60 | CK20_51d  | JR_BSTFA_06_EI | 224_CK20-51d | Derivatized<br>Sample      |  |  |
| Sample             | 61 | CK20_52d  | JR_BSTFA_06_EI | 225_CK20-52d | Derivatized<br>Sample      |  |  |
| Blank              | 98 | DCM blank | TM01_EI        | 226_Blank    |                            |  |  |
| Sample             | 62 | CK20_53d  | JR_BSTFA_06_EI | 227_CK20-53d | Derivatized<br>Sample      |  |  |
| Sample             | 63 | CK20_54d  | JR_BSTFA_06_EI | 228_CK20-54d | Derivatized<br>Sample      |  |  |
| Sample             | 64 | CK20_55d  | JR_BSTFA_06_EI | 229_CK20-55d | Derivatized<br>Sample      |  |  |
| Blank              | 98 | DCM blank | TM01_EI        | 230_Blank    |                            |  |  |
| Sample             | 65 | CK20_58d  | JR_BSTFA_06_EI | 231_CK20-58d | Derivatized<br>Sample      |  |  |
| Sample             | 66 | CK20_59d  | JR_BSTFA_06_EI | 232_CK20-59d | Derivatized<br>Sample      |  |  |
| Sample             | 67 | CK20_60d  | JR_BSTFA_06_EI | 233_CK20-60d | Derivatized<br>Sample      |  |  |
| Blank              | 98 | DCM blank | TM01_EI        | 234_Blank    |                            |  |  |
| Sample             | 68 | CK20_61d  | JR_BSTFA_06_EI | 235_CK20-61d | Derivatized<br>Sample      |  |  |
| Sample             | 69 | CK20_62d  | JR_BSTFA_06_EI | 236_CK20-62d | Derivatized<br>Sample      |  |  |
| Sample             | 70 | CK20_63d  | JR_BSTFA_06_EI | 237_CK20-63d | Derivatized<br>Sample      |  |  |
| Blank              | 98 | DCM blank | TM01_EI        | 238_Blank    |                            |  |  |
| Sample             | 15 | CK19_13d  | JR_BSTFA_06_EI | 239_CK19-13d | Underivatized<br>Check     |  |  |
| Blank              | 98 | DCM blank | TM01_EI        | 240_Blank    |                            |  |  |

| Table 10 C | ontinue | ed        |                |              |                       |
|------------|---------|-----------|----------------|--------------|-----------------------|
| Sample     | 71      | CK20_66d  | JR_BSTFA_06_EI | 241_CK20-66d | Derivatized<br>Sample |
| Sample     | 72      | CK20_67d  | JR_BSTFA_06_EI | 242_CK20-67d | Derivatized<br>Sample |
| Sample     | 73      | CK20_68d  | JR_BSTFA_06_EI | 243_CK20-68d | Derivatized<br>Sample |
| Blank      | 98      | DCM blank | TM01_EI        | 244_Blank    | ±                     |
| Sample     | 74      | CK20_69d  | JR_BSTFA_06_EI | 245_CK20-69d | Derivatized<br>Sample |
| Sample     | 75      | CK20_70d  | JR_BSTFA_06_EI | 246_CK20-70d | Derivatized<br>Sample |
| Sample     | 76      | CK20_71d  | JR_BSTFA_06_EI | 247_CK20-71d | Derivatized<br>Sample |
| Blank      | 98      | DCM blank | TM01_EI        | 248_Blank    | 1                     |
| Sample     | 77      | CK20_74d  | JR_BSTFA_06_EI | 249_CK20-74d | Derivatized<br>Sample |
| Sample     | 78      | CK20_75d  | JR_BSTFA_06_EI | 250_CK20-75d | Derivatized<br>Sample |
| Sample     | 79      | CK20_76d  | JR_BSTFA_06_EI | 251_CK20-76d | Derivatized<br>Sample |
| Blank      | 98      | DCM blank | TM01_EI        | 252_Blank    | ±                     |
| Sample     | 80      | CK20_77d  | JR_BSTFA_06_EI | 253_CK20-77d | Derivatized<br>Sample |
| Sample     | 81      | CK20_78d  | JR_BSTFA_06_EI | 254_CK20-78d | Derivatized<br>Sample |
| Sample     | 82      | CK20_79d  | JR_BSTFA_06_EI | 255_CK20-79d | Derivatized<br>Sample |
| Blank      | 98      | DCM blank | TM01_EI        | 256_Blank    |                       |
| Sample     | 15      | CK19_13d  | JR_BSTFA_06_EI | 257_CK19-13d | Derivatized<br>Check  |
| Blank      | 98      | DCM blank | TM01_EI        | 258_Blank    |                       |
| Sample     | 83      | CK20_82d  | JR_BSTFA_06_EI | 259_CK20-82d | Derivatized<br>Sample |
| Sample     | 84      | CK20_83d  | JR_BSTFA_06_EI | 260_CK20-83d | Derivatized<br>Sample |
| Sample     | 85      | CK20_84d  | JR_BSTFA_06_EI | 261_CK20-84d | Derivatized<br>Sample |
| Blank      | 98      | DCM blank | TM01_EI        | 262_Blank    |                       |
| Sample     | 86      | CK20_85d  | JR_BSTFA_06_EI | 263_CK20-85d | Derivatized<br>Sample |
| Sample     | 87      | CK20_86d  | JR_BSTFA_06_EI | 264_CK20-86d | Derivatized<br>Sample |

| Table 10 Co | ontinue | ed          |                |                           |             |
|-------------|---------|-------------|----------------|---------------------------|-------------|
| Sample      | 88      | CK20 87d    | JR BSTFA 06 EI | 265 CK20-87d              | Derivatized |
| 1           |         | —           |                | —                         | Sample      |
| Blank       | 98      | DCM blank   | TM01_EI        | 266_Blank                 |             |
| Sample      | 89      | CK20_90d    | JR_BSTFA_06_EI | 267_CK20-90d              | Derivatized |
|             |         |             |                |                           | Sample      |
| Sample      | 90      | CK20_91d    | JR_BSTFA_06_EI | 268_CK20-91d              | Derivatized |
| Q 1         | 01      | CK20, 02 1  |                | 2(0, 0)/20, 02 1          | Sample      |
| Sample      | 91      | CK20_920    | JK_BSIFA_00_EI | 269_CK20-920              | Derivatized |
| Blank       | 98      | DCM blank   | TM01 FI        | 270 Blank                 | Sample      |
| Sampla      | 02      | CK20 02d    | ID DSTEA 06 EL | 270_DIalik                | Dorivatized |
| Sample      | 92      | CK20_950    | JK_DSIFA_00_EI | 2/1_CK20-950              | Sample      |
| Sample      | 93      | CK20 94d    | IR BSTFA 06 EL | 272 CK20-94d              | Derivatized |
| Sumple      | 15      | 01120_714   |                | 272_0120 9 10             | Sample      |
| Sample      | 94      | CK20 95d    | JR BSTFA 06 EI | 273 CK20-95d              | Derivatized |
| Ĩ           |         | —           |                | —                         | Sample      |
| Blank       | 98      | DCM blank   | TM01_EI        | 274_Blank                 |             |
| Sample      | 11      | CK19_09d    | JR_BSTFA_06_EI | 275_CK19-09d              | Derivatized |
|             |         |             |                |                           | Calibration |
| Sample      | 12      | CK19_10d    | JR_BSTFA_06_EI | 276_CK19-10d              | Derivatized |
|             |         |             |                |                           | Calibration |
| Sample      | 13      | CK19_11d    | JR_BSTFA_06_EI | 277_CK19-11d              | Derivatized |
| Community.  | 1.4     | CV10 124    | ID DETEN OF EL | 279 CV 10 121             | Calibration |
| Sample      | 14      | CK19_120    | JK_BSIFA_00_EI | 2/8_CK19-120              | Calibration |
| Blank       | 98      | DCM blank   | TM01 EI        | 279 Blank                 | Canoration  |
| Sample      | 15      | CK10_13d    | IR BSTEA 06 EL | 279_Diank<br>280_CK10_13d | Derivatized |
| Sample      | 15      |             | JK_DSTIK_00_EI | 200_CR17-150              | Calibration |
| Sample      | 16      | CK19 14d    | JR BSTFA 06 EI | 281 CK19-14d              | Derivatized |
| ~           |         |             |                |                           | Calibration |
| Sample      | 17      | CK19_15d    | JR_BSTFA_06_EI | 282_CK19-15d              | Derivatized |
| -           |         | —           |                | —                         | Calibration |
| Sample      | 18      | CK19_16d    | JR_BSTFA_06_EI | 283_CK19-16d              | Derivatized |
|             |         |             |                |                           | Calibration |
| Blank       | 98      | DCM blank   | TM01_EI        | 284_Blank                 |             |
| Sample      | 2       | Testmix_low | TM01_EI        | 285_MC59-2D               | Test Mix    |
| Sample      | 2       | Testmix_low | TM01_EI        | 286_MC59-2D               | Test Mix    |
| Sample      | 2       | Testmix_low | TM01_EI        | 287_MC59-2D               | Test Mix    |
| Blank       | 98      | DCM blank   | TM01_EI        | 288_Blank                 |             |
| Sample      | 19      | CK19_96d    | JR_BSTFA_06_EI | 289_CK19-96d              | Derivatized |
|             |         |             |                |                           | Calibration |
|             |         |             |                |                           |             |

| Table 10 Co | ontinue | ed        |                |                             |                            |
|-------------|---------|-----------|----------------|-----------------------------|----------------------------|
| Sample      | 20      | CK19_97d  | JR_BSTFA_06_EI | 290_CK19-97d                | Derivatized<br>Calibration |
| Sample      | 21      | CK19_98d  | JR_BSTFA_06_EI | JR_BSTFA_06_EI 291_CK19-98d |                            |
| Sample      | 22      | CK19_99d  | JR_BSTFA_06_EI | 292_CK19-99d                | Derivatized<br>Calibration |
| Blank       | 1       | DCM blank | TM01_EI        | 293_Blank                   |                            |
| Sample      | 11      | CK19_09d  | JR_BSTFA_06_EI | 294_CK19-09d                | Derivatized<br>Calibration |
| Sample      | 12      | CK19_10d  | JR_BSTFA_06_EI | 295_CK19-10d                | Derivatized<br>Calibration |
| Sample      | 13      | CK19_11d  | JR_BSTFA_06_EI | 296_CK19-11d                | Derivatized<br>Calibration |
| Sample      | 14      | CK19_12d  | JR_BSTFA_06_EI | 297_CK19-12d                | Derivatized<br>Calibration |
| Blank       | 1       | DCM blank | TM01_EI        | 298_Blank                   |                            |
| Sample      | 15      | CK19_13d  | JR_BSTFA_06_EI | 299_CK19-13d                | Derivatized<br>Calibration |
| Sample      | 16      | CK19_14d  | JR_BSTFA_06_EI | 300_CK19-14d                | Derivatized<br>Calibration |
| Sample      | 17      | CK19_15d  | JR_BSTFA_06_EI | 301_CK19-15d                | Derivatized<br>Calibration |
| Sample      | 18      | CK19_16d  | JR_BSTFA_06_EI | 302_CK19-16d                | Derivatized<br>Calibration |
| Blank       | 1       | DCM blank | TM01 EI        | 303 Blank                   |                            |
| Sample      | 3       | CK23_01d  | JR_BSTFA_06_EI |                             | Derivatized<br>Calibration |
| Sample      | 4       | CK23_02d  | JR_BSTFA_06_EI | 305_CK23_02d                | Derivatized<br>Calibration |
| Sample      | 5       | CK23_03d  | JR_BSTFA_06_EI | 306_CK23_03d                | Derivatized<br>Calibration |
| Sample      | 6       | CK23_04d  | JR_BSTFA_06_EI | 307_CK23_04d                | Derivatized<br>Calibration |
| Blank       | 1       | DCM blank | TM01 EI        | 308 Blank                   |                            |
| Sample      | 7       | CK23_05d  | JR_BSTFA_06_EI |                             | Derivatized<br>Calibration |
| Sample      | 8       | CK23_06d  | JR_BSTFA_06_EI | 310_CK23_06d                | Derivatized<br>Calibration |
| Sample      | 9       | CK23_07d  | JR_BSTFA_06_EI | 311_CK23_07d                | Derivatized<br>Calibration |
| Sample      | 10      | CK23_08d  | JR_BSTFA_06_EI | 312_CK23_08d                | Derivatized<br>Calibration |

| Table 10 Continued |    |           |                |                                |                       |  |
|--------------------|----|-----------|----------------|--------------------------------|-----------------------|--|
| Blank              | 1  | DCM blank | TM01_EI        | 312a_Blank                     |                       |  |
| Sample             | 11 | CK23_098d | JR_BSTFA_06_EI | JR_BSTFA_06_EI 313_CK23_098d   |                       |  |
| Sample             | 12 | CK23_099d | JR_BSTFA_06_EI | JR_BSTFA_06_EI 314_CK23_099d 1 |                       |  |
| Sample             | 13 | CK23_100d | JR_BSTFA_06_EI | 315_CK23_100d                  | Derivatized<br>Sample |  |
| Blank              | 1  | DCM blank | TM01_EI        | 316_Blank                      |                       |  |
| Sample             | 14 | CK23_101d | JR_BSTFA_06_EI | 317_CK23_101d                  | Derivatized<br>Sample |  |
| Sample             | 15 | CK23_102d | JR_BSTFA_06_EI | 318_CK23_102d                  | Derivatized<br>Sample |  |
| Sample             | 16 | CK23_103d | JR_BSTFA_06_EI | 319_CK23_103d                  | Derivatized<br>Sample |  |
| Blank              | 1  | DCM blank | TM01_EI        | 320_Blank                      |                       |  |
| Sample             | 17 | CK23_106d | JR_BSTFA_06_EI | 321_CK23_106d                  | Derivatized<br>Sample |  |
| Sample             | 18 | CK23_107d | JR_BSTFA_06_EI | 322_CK23_107d                  | Derivatized<br>Sample |  |
| Sample             | 19 | CK23_108d | JR_BSTFA_06_EI | 323_CK23_108d                  | Derivatized<br>Sample |  |
| Blank              | 1  | DCM blank | TM01_EI        | 324_Blank                      |                       |  |
| Sample             | 20 | CK23_109d | JR_BSTFA_06_EI | 325_CK23_109d                  | Derivatized<br>Sample |  |
| Sample             | 21 | CK23_110d | JR_BSTFA_06_EI | 326_CK23_110d                  | Derivatized<br>Sample |  |
| Sample             | 22 | CK23_111d | JR_BSTFA_06_EI | 327_CK23_111d                  | Derivatized<br>Sample |  |
| Blank              | 1  | DCM blank | TM01_EI        | 328_Blank                      |                       |  |
| Sample             | 87 | CK19_13d  | JR_BSTFA_06_EI | 329_CK19-13d                   | Derivatized<br>Check  |  |
| Blank              | 1  | DCM blank | TM01_EI        | 330_Blank                      |                       |  |
| Sample             | 23 | CK23_114d | JR_BSTFA_06_EI | 331_CK23_114d                  | Derivatized<br>Sample |  |
| Sample             | 24 | CK23_115d | JR_BSTFA_06_EI | 332_CK23_115d                  | Derivatized<br>Sample |  |
| Sample             | 25 | CK23_116d | JR_BSTFA_06_EI | 333_CK23_116d                  | Derivatized<br>Sample |  |
| Blank              | 1  | DCM blank | TM01_EI        | 334_Blank                      |                       |  |
| Sample             | 26 | CK23_117d | JR_BSTFA_06_EI | 335_CK23_117d                  | Derivatized<br>Sample |  |

| Table 10 Co | ontinue | ed          |                |               |             |
|-------------|---------|-------------|----------------|---------------|-------------|
| Sample      | 27      | CK23 118d   | JR BSTFA 06 EI | 336 CK23 118d | Derivatized |
| -           |         | —           |                |               | Sample      |
| Sample      | 28      | CK23_119d   | JR_BSTFA_06_EI | 337_CK23_119d | Derivatized |
|             |         |             |                |               | Sample      |
| Blank       | 1       | DCM blank   | TM01_EI        | 338_Blank     |             |
| Sample      | 29      | CK23_122d   | JR_BSTFA_06_EI | 339_CK23_122d | Derivatized |
| -           |         |             |                |               | Sample      |
| Sample      | 30      | CK23_123d   | JR_BSTFA_06_EI | 340_CK23_123d | Derivatized |
| 0 1         | 21      | GV22 1241   |                | 241 6822 1241 | Sample      |
| Sample      | 31      | CK23_124d   | JR_BSTFA_06_EI | 341_CK23_124d | Derivatized |
| Dlaplr      | 1       | DCM bloply  | TM01 EI        | 242 Dlople    | Sample      |
| Біанк       | 1       | DCM DIalik  |                | 342_DIalik    |             |
| Sample      | 32      | CK23_125d   | JR_BSTFA_06_EI | 343_CK23_125d | Derivatized |
| Sampla      | 22      | CK22 1264   | ID DETEN OG EL | 244 CK22 1264 | Dorivotized |
| Sample      | 33      | CK25_1200   | JK_DSIFA_00_EI | 344_CK25_1200 | Sample      |
| Sample      | 34      | CK23 127d   | IR BSTEA 06 EL | 345 CK23 127d | Derivatized |
| Sample      | 54      | CR25_1274   |                | J4J_CK2J_127d | Sample      |
| Blank       | 1       | DCM blank   | TM01 EI        | 346 Blank     | Sumple      |
| Sample      | 87      | CK19_13d    | IR BSTFA 06 FL | 347 CK19-13d  | Derivatized |
| Sample      | 07      | CR17_15d    |                | 547_CR19-15d  | Check       |
| Blank       | 1       | DCM blank   | TM01 EI        | 348 Blank     |             |
| Sample      | 35      | CK23 130d   | JR BSTFA 06 EI | 349 CK23 130d | Derivatized |
| 1           |         | _           |                |               | Sample      |
| Sample      | 36      | CK23_131d   | JR_BSTFA_06_EI | 350_CK23_131d | Derivatized |
|             |         |             |                |               | Sample      |
| Sample      | 37      | CK23_132d   | JR_BSTFA_06_EI | 351_CK23_132d | Derivatized |
|             |         |             |                |               | Sample      |
| Blank       | 1       | DCM blank   | TM01_EI        | 352_Blank     |             |
| Sample      | 38      | CK23_133d   | JR_BSTFA_06_EI | 353_CK23_133d | Derivatized |
| -           |         |             |                |               | Sample      |
| Sample      | 39      | CK23_134d   | JR_BSTFA_06_EI | 354_CK23_134d | Derivatized |
| G 1         | 40      | GV22 1251   |                | 255 GV22 1251 | Sample      |
| Sample      | 40      | CK23_135d   | JR_BSTFA_06_EI | 355_CK23_135d | Derivatized |
| D11-        | 1       | DCM111-1-   |                | 256 Dlaula    | Sample      |
| Blank       | 1       | DUM DIANK   |                | 330_Blank     |             |
| Sample      | 41      | CK23_138d   | JK_BSTFA_06_EI | 55/_CK23_138d | Derivatized |
| Some la     | 40      | CK22 1204   | ID DOTEA OF EL | 250 CV22 1204 | Sample      |
| Sample      | 42      | CK23_1390   | JK_B21FA_00_EI | 338_CK23_139d | Sample      |
| Sampla      | 12      | CK23 1404   | ID BSTEA OG EI | 350 CK22 1404 | Derivatized |
| Sample      | 45      | $CK23_1400$ | JK_DSTFA_00_EI | 557_CK25_1400 | Sample      |
|             | 1       |             |                | 1             | Sample      |

| Table 10 Continued |    |           |                |               |                            |  |  |
|--------------------|----|-----------|----------------|---------------|----------------------------|--|--|
| Blank              | 1  | DCM blank | TM01 EI        | 360 Blank     |                            |  |  |
| Sample             | 44 | CK23_141d | JR_BSTFA_06_EI | 361_CK23_141d | Derivatized<br>Sample      |  |  |
| Sample             | 45 | CK23_142d | JR_BSTFA_06_EI | 362_CK23_142d | Derivatized<br>Sample      |  |  |
| Sample             | 46 | CK23_143d | JR_BSTFA_06_EI | 363_CK23_143d | Derivatized<br>Sample      |  |  |
| Blank              | 1  | DCM blank | TM01_EI        | 364_Blank     |                            |  |  |
| Sample             | 83 | CK19_09d  | JR_BSTFA_06_EI | 365_CK19-09d  | Derivatized<br>Calibration |  |  |
| Sample             | 84 | CK19_10d  | JR_BSTFA_06_EI | 366_CK19-10d  | Derivatized<br>Calibration |  |  |
| Sample             | 85 | CK19_11d  | JR_BSTFA_06_EI | 367_CK19-11d  | Derivatized<br>Calibration |  |  |
| Sample             | 86 | CK19_12d  | JR_BSTFA_06_EI | 368_CK19-12d  | Derivatized<br>Calibration |  |  |
| Blank              | 1  | DCM blank | TM01_EI        | 369_Blank     |                            |  |  |
| Sample             | 87 | CK19_13d  | JR_BSTFA_06_EI | 370_CK19-13d  | Derivatized<br>Calibration |  |  |
| Sample             | 88 | CK19_14d  | JR_BSTFA_06_EI | 371_CK19-14d  | Derivatized<br>Calibration |  |  |
| Sample             | 89 | CK19_15d  | JR_BSTFA_06_EI | 372_CK19-15d  | Derivatized<br>Calibration |  |  |
| Sample             | 90 | CK19_16d  | JR_BSTFA_06_EI | 373_CK19-16d  | Derivatized<br>Calibration |  |  |
| Blank              | 1  | DCM blank | TM01_EI        | 374_Blank     |                            |  |  |
| Sample             | 47 | CK23_146d | JR_BSTFA_06_EI | 375_CK23_146d | Derivatized<br>Sample      |  |  |
| Sample             | 48 | CK23_147d | JR_BSTFA_06_EI | 376_CK23_147d | Derivatized<br>Sample      |  |  |
| Sample             | 49 | CK23_148d | JR_BSTFA_06_EI | 377_CK23_148d | Derivatized<br>Sample      |  |  |
| Blank              | 1  | DCM blank | TM01_EI        | 378_Blank     |                            |  |  |
| Sample             | 50 | CK23_149d | JR_BSTFA_06_EI | 379_CK23_149d | Derivatized<br>Sample      |  |  |
| Sample             | 51 | CK23_150d | JR_BSTFA_06_EI | 380_CK23_150d | Derivatized<br>Sample      |  |  |
| Sample             | 52 | CK23_151d | JR_BSTFA_06_EI | 381_CK23_151d | Derivatized<br>Sample      |  |  |
| Blank              | 1  | DCM blank | TM01_EI        | 382_Blank     |                            |  |  |
| Sample             | 53 | CK23_154d | JR_BSTFA_06_EI | 383_CK23_154d | Derivatized<br>Sample      |  |  |

| Table 10 Co | ontinue | ed        |                |                              |                       |
|-------------|---------|-----------|----------------|------------------------------|-----------------------|
| Sample      | 54      | CK23_155d | JR_BSTFA_06_EI | 384_CK23_155d                | Derivatized<br>Sample |
| Sample      | 55      | CK23_156d | JR_BSTFA_06_EI | JR_BSTFA_06_EI 385_CK23_156d |                       |
| Blank       | 1       | DCM blank | TM01_EI        | 386_Blank                    | Sumple                |
| Sample      | 56      | CK23_157d | JR_BSTFA_06_EI | 387_CK23_157d                | Derivatized<br>Sample |
| Sample      | 57      | CK23_158d | JR_BSTFA_06_EI | 388_CK23_158d                | Derivatized<br>Sample |
| Sample      | 58      | CK23_159d | JR_BSTFA_06_EI | 389_CK23_159d                | Derivatized<br>Sample |
| Blank       | 1       | DCM blank | TM01_EI        | 390_Blank                    |                       |
| Sample      | 87      | CK23_05d  | JR_BSTFA_06_EI | 391_CK23_05d                 | Derivatized<br>Check  |
| Blank       | 1       | DCM blank | TM01_EI        | 392_Blank                    |                       |
| Sample      | 59      | CK23_162d | JR_BSTFA_06_EI | 393_CK23_162d                | Derivatized<br>Sample |
| Sample      | 60      | CK23_163d | JR_BSTFA_06_EI | 394_CK23_163d                | Derivatized<br>Sample |
| Sample      | 61      | CK23_164d | JR_BSTFA_06_EI | 395_CK23_164d                | Derivatized<br>Sample |
| Blank       | 1       | DCM blank | TM01_EI        | 396_Blank                    |                       |
| Sample      | 62      | CK23_165d | JR_BSTFA_06_EI | 397_CK23_165d                | Derivatized<br>Sample |
| Sample      | 63      | CK23_166d | JR_BSTFA_06_EI | 398_CK23_166d                | Derivatized<br>Sample |
| Sample      | 64      | CK23_167d | JR_BSTFA_06_EI | 399_CK23_167d                | Derivatized<br>Sample |
| Blank       | 1       | DCM blank | TM01_EI        | 400_Blank                    |                       |
| Sample      | 65      | CK23_170d | JR_BSTFA_06_EI | 401_CK23_170d                | Derivatized<br>Sample |
| Sample      | 66      | CK23_171d | JR_BSTFA_06_EI | 402_CK23_171d                | Derivatized<br>Sample |
| Sample      | 67      | CK23_172d | JR_BSTFA_06_EI | 403_CK23_172d                | Derivatized<br>Sample |
| Blank       | 1       | DCM blank | TM01_EI        | 404_Blank                    | •                     |
| Sample      | 68      | CK23_173d | JR_BSTFA_06_EI | 405_CK23_173d                | Derivatized<br>Sample |
| Sample      | 69      | CK23_174d | JR_BSTFA_06_EI | 406_CK23_174d                | Derivatized<br>Sample |
| Sample      | 70      | CK23_175d | JR_BSTFA_06_EI | 407_CK23_175d                | Derivatized<br>Sample |

| Table 10 Continued |    |           |                |               |                            |  |
|--------------------|----|-----------|----------------|---------------|----------------------------|--|
| Blank              | 1  | DCM blank | TM01_EI        | 408_Blank     |                            |  |
| Sample             | 87 | CK19_13d  | JR_BSTFA_06_EI | 409_CK19-13d  | Derivatized<br>Check       |  |
| Blank              | 1  | DCM blank | TM01_EI        | 410_Blank     |                            |  |
| Sample             | 71 | CK23_178d | JR_BSTFA_06_EI | 411_CK23_178d | Derivatized<br>Sample      |  |
| Sample             | 72 | CK23_179d | JR_BSTFA_06_EI | 412_CK23_179d | Derivatized<br>Sample      |  |
| Sample             | 73 | CK23_180d | JR_BSTFA_06_EI | 413_CK23_180d | Derivatized<br>Sample      |  |
| Blank              | 1  | DCM blank | TM01_EI        | 414_Blank     |                            |  |
| Sample             | 74 | CK23_181d | JR_BSTFA_06_EI | 415_CK23_181d | Derivatized<br>Sample      |  |
| Sample             | 75 | CK23_182d | JR_BSTFA_06_EI | 416_CK23_182d | Derivatized<br>Sample      |  |
| Sample             | 76 | CK23_183d | JR_BSTFA_06_EI | 417_CK23_183d | Derivatized<br>Sample      |  |
| Blank              | 1  | DCM blank | TM01_EI        | 418_Blank     |                            |  |
| Sample             | 77 | CK23_186d | JR_BSTFA_06_EI | 419_CK23_186d | Derivatized<br>Sample      |  |
| Sample             | 78 | CK23_187d | JR_BSTFA_06_EI | 420_CK23_187d | Derivatized<br>Sample      |  |
| Sample             | 79 | CK23_188d | JR_BSTFA_06_EI | 421_CK23_188d | Derivatized<br>Sample      |  |
| Blank              | 1  | DCM blank | TM01_EI        | 422_Blank     | •                          |  |
| Sample             | 80 | CK23_189d | JR_BSTFA_06_EI | 423_CK23_189d | Derivatized<br>Sample      |  |
| Sample             | 81 | CK23_190d | JR_BSTFA_06_EI | 424_CK23_190d | Derivatized<br>Sample      |  |
| Sample             | 82 | CK23_191d | JR_BSTFA_06_EI | 425_CK23_191d | Derivatized<br>Sample      |  |
| Blank              | 1  | DCM blank | TM01_EI        | 426_Blank     |                            |  |
| Sample             | 83 | CK19_09d  | JR_BSTFA_06_EI | 427_CK19-09d  | Derivatized<br>Calibration |  |
| Sample             | 84 | CK19_10d  | JR_BSTFA_06_EI | 428_CK19-10d  | Derivatized<br>Calibration |  |
| Sample             | 85 | CK19_11d  | JR_BSTFA_06_EI | 429_CK19-11d  | Derivatized<br>Calibration |  |
| Sample             | 86 | CK19_12d  | JR_BSTFA_06_EI | 430_CK19-12d  | Derivatized<br>Calibration |  |
| Blank              | 1  | DCM blank | TM01_EI        | 431_Blank     |                            |  |

| Table 10 Continued |    |             |                |              |                            |  |  |  |
|--------------------|----|-------------|----------------|--------------|----------------------------|--|--|--|
| Sample             | 87 | CK19_13d    | JR_BSTFA_06_EI | 432_CK19-13d | Derivatized<br>Calibration |  |  |  |
| Sample             | 88 | CK19_14d    | JR_BSTFA_06_EI | 433_CK19-14d | Derivatized<br>Calibration |  |  |  |
| Sample             | 89 | CK19_15d    | JR_BSTFA_06_EI | 434_CK19-15d | Derivatized<br>Calibration |  |  |  |
| Sample             | 90 | CK19_16d    | JR_BSTFA_06_EI | 435_CK19-16d | Derivatized<br>Calibration |  |  |  |
| Blank              | 1  | DCM blank   | TM01_EI        | 436_Blank    |                            |  |  |  |
| Sample             | 2  | Testmix_low | TM01_EI        | 437_MC59-2D  | Test Mix                   |  |  |  |
| Sample             | 2  | Testmix_low | TM01_EI        | 438_MC59-2D  | Test Mix                   |  |  |  |
| Sample             | 2  | Testmix_low | TM01_EI        | 439_MC59-2D  | Test Mix                   |  |  |  |
| Blank              | 1  | DCM blank   | TM01_EI        | 440_Blank    |                            |  |  |  |

## APPENDIX D GC-MS DATA PROCESSING

The areas of analyte peaks were calculated using Agilent ChemStation software based on target ions unique for each analyte. Table 11 shows each analyte with its respective retention times and target ions. Figure 22 shows the chromatogram form a derivatized sample, the large peak at the beginning is end of the DCM solvent peak, the large peak at four minutes is from the derivatizing agent and the large peak near 8 minutes is pyridine. Each analyte peak area was divided by the internal standard peak area to remove any error from varying injection volume amounts. The calibration standards responses were paired with its known concentration to construct a calibration curve. Figure 24 shows an example of the constructed calibration curve. The least squared curve is shown for the fructose analyte to show the equation used to calculate the concentrations in reactor samples. During data processing this equation was calculated with the LINEST function in MS Excel so the cell could be linked for further calculations.

| Analyte            | Retention | Target | Target | Target | Target | Target |
|--------------------|-----------|--------|--------|--------|--------|--------|
|                    | Time      | Ion 1  | Ion 2  | Ion 3  | Ion 4  | Ion 5  |
| Methyl Lactate     | 4.0       | 45     | 61     | 89     | -      | -      |
|                    | Minutes   | (100%) | (10%)  | (10%)  |        |        |
| Methyl Vinyl       | 6.7       | 57     | 84     | 29     | -      | -      |
| Glycolate          | Minutes   | (100%) | (30%)  | (20%)  |        |        |
| Methyl Levulinate  | 10.5      | 43     | 55     | 99     | 115    | -      |
|                    | Minutes   | (100%) | (20%)  | (20%)  | (20%)  |        |
| Derivatized Lactic | 11.9      | 73     | 147    | 117    | 191    | 45     |
| Acid               | Minutes   | (100%) | (100%) | (80%)  | (25%)  | (25%)  |
| Derivatized        | 13.2      | 75     | 43     | 145    | 145    | -      |
| Levulinic Acid     | Minutes   | (100%) | (35%)  | (35%)  | (35%)  |        |
| Derivatized        | 21.8      | 73     | 217    | 147    | 437    | -      |
| Fructose           | Minutes   | (100%) | (90%)  | (25%)  | (25%)  |        |
| Derivatized        | 22.7      | 204    | 73     | 147    | -      | -      |
| Mannose            | Minutes   | (100%) | (60%)  | (20%)  |        |        |
| Derivatized        | 23.5      | 204    | 73     | 147    | -      | -      |
| Glucose            | Minutes   | (100%) | (60%)  | (20%)  |        |        |
| o-Terphenyl        | 22.8      | 230    | 215    | 101    | 114    | 202    |
|                    | Minutes   | (100%) | (30%)  | (10%)  | (10%)  | (10%)  |

Table 11: Analyte target ions and retention time



Figure 22: Chromatogram example from derivatized samples



Figure 23: Chromatogram example from underivatized samples



Figure 24: Calibration curve example showing relationship with known concentrations of analytes with GC-MS response

The Y=mX + b equation created from the calibration samples can be transformed into Equation 1.

Where:

X = Sample concentration (mg/ml)

Y = Analyte area/internal standard area response

b = Intercept from calibration experiments

m = Slope from calibration experiments

Since both 20  $\mu$ l of reactor sample and 20  $\mu$ l of calibration solution were used in the highest calibration sample, a direct one-to-one comparison can be used to determine unknown concentrations. Once the concentration of the analyte is known it is divided by the known concentration of glucose in the starting reactor solution. This provides the weight percent of recovered products.

## APPENDIX E ALL DATA

| Notes         | Lactic Acid | Levulinic<br>acid | Fructose    | Mannose     | Glucose     |
|---------------|-------------|-------------------|-------------|-------------|-------------|
|               | Target/ISTD | Target/ISTD       | Target/ISTD | Target/ISTD | Target/ISTD |
|               |             |                   |             |             |             |
| Acid          | 0.000991    | 0.000535          | 0.000182    | 0.000286    | 0.000305    |
| Calibration 1 |             |                   |             |             |             |
| Acid          | 0.001305    | 0.000756          | 0.000465    | 0.00044     | 0.000482    |
| Calibration 2 |             |                   |             |             |             |
| Acid          | 0.00289     | 0.002141          | 0.001106    | 0.00103     | 0.001177    |
| Calibration 3 |             |                   |             |             |             |
| Acid          | 0.006409    | 0.003791          | 0.002402    | 0.001826    | 0.002597    |
| Calibration 4 |             |                   |             |             |             |
| Acid          | 0.019611    | 0.01168           | 0.007108    | 0.001102    | 0.006583    |
| Calibration 5 |             |                   |             |             |             |
| Acid          | 0.045028    | 0.021992          | 0.012852    | 0.003101    | 0.013157    |
| Calibration 6 |             |                   |             |             |             |
| MeOH SnCl4    | 0.001091    | 0.000893          | 0.003873    | 0.001365    | 0.000134    |
| 5g glucose    |             |                   |             |             |             |
| MeOH SnCl4    | 0.001747    | 0.001321          | 0.007118    | 0.002167    | 0.000236    |
| 5g glucose    |             |                   |             |             |             |
| MeOH SnCl4    | 0.001581    | 0.001297          | 0.006154    | 0.002021    | 0.000152    |
| 5g glucose    |             |                   |             |             |             |
| H2O SnCl4 5g  | 0.072635    | 0.058761          | 0.012975    | 0.003681    | 0.012006    |
| glucose       |             |                   |             |             |             |
| H2O SnCl4 5g  | 0.081991    | 0.060984          | 0.00535     | 0.003054    | 0.004521    |
| glucose       |             |                   |             |             |             |
| H2O SnCl4 5g  | 0.07625     | 0.055052          | 0.003414    | 0.004907    | 0.003258    |
| glucose       |             |                   |             |             |             |
| H2O SnCl2 5g  | 0.009466    | 0.087913          | 0.00069     | 0.0008      | 0.000739    |
| glucose       |             |                   |             |             |             |
| H2O SnCl2 5g  | 0.009375    | 0.08522           | 0.001088    | 0.000617    | 0.001061    |
| glucose       |             |                   |             |             |             |
| H2O SnCl2 5g  | 0.01058     | 0.076696          | 0           | 0.001061    | 0.000667    |
| glucose       |             |                   |             |             |             |
|               |             |                   |             |             |             |

| Table 12 Continued      |          |          |          |          |          |  |  |
|-------------------------|----------|----------|----------|----------|----------|--|--|
| H2O SnCl4 2g<br>glucose | 0.08019  | 0.000104 | 0.000489 | 0.000927 | 0        |  |  |
| H2O SnCl4 2g<br>glucose | 0.086577 | 0.000154 | 0.000339 | 0.001162 | 0        |  |  |
| H2O SnCl4 2g<br>glucose | 0.081934 | 0.000125 | 0.00018  | 0.001127 | 0        |  |  |
| Acid<br>Calibration 1   | 0.000313 | 0.000304 | 0.000298 | 0        | 0.000214 |  |  |
| Acid<br>Calibration 2   | 0.000461 | 0.000479 | 0.000659 | 0.000418 | 0.000487 |  |  |
| Acid<br>Calibration 3   | 0.000803 | 0.001312 | 0.001103 | 0.000691 | 0.00111  |  |  |
| Acid<br>Calibration 4   | 0.006995 | 0.003938 | 0.002841 | 0.000918 | 0.002749 |  |  |
| Acid<br>Calibration 5   | 0.016216 | 0.009723 | 0.006389 | 0.000996 | 0.006104 |  |  |
| Acid<br>Calibration 6   | 0.049005 | 0.023686 | 0.015672 | 0.003843 | 0.014597 |  |  |

| Notes         | Methyl      | Methyl         | Furfural    | Methyl      | 5-HMF       |
|---------------|-------------|----------------|-------------|-------------|-------------|
|               | Lactate     | Vinylglycolate |             | Levulinate  |             |
|               | Target/ISTD | Target/ISTD    | Target/ISTD | Target/ISTD | Target/ISTD |
| NonAcid       | 0.000592    | 0.000328       | 0.000549    | 0.000455    | 0           |
| Calibration 1 |             |                |             |             |             |
| NonAcid       | 0           | 0.000607       | 0.001351    | 0.001199    | 0           |
| Calibration 2 |             |                |             |             |             |
| NonAcid       | 0           | 0              | 0.001522    | 0.002236    | 0           |
| Calibration 3 |             |                |             |             |             |
| NonAcid       | 0.001154    | 0.000795       | 0.003759    | 0.004383    | 0           |
| Calibration 4 |             |                |             |             |             |
| NonAcid       | 0.001866    | 0.004929       | 0.008754    | 0.00933     | 0           |
| Calibration 5 |             |                |             |             |             |
| NonAcid       | 0.010972    | 0.004584       | 0.00831     | 0.017186    | 0.001611    |
| Calibration 6 |             |                |             |             |             |
| NonAcid       | 0.030567    | 0.012688       | 0.052457    | 0.058777    | 0.005983    |
| Calibration 7 |             |                |             |             |             |
| NonAcid       | 0.036011    | 0.015344       | 0.059992    | 0.071805    | 0.007732    |
| Calibration 8 |             |                |             |             |             |
| 47-01 undiv   | 0.020103    | 0.00104        | 0.000468    | 0.101324    | 0           |
| 47-02 undiv   | 0.018444    | 0.001467       | 0           | 0.094026    | 0           |
| 47-03 undiv   | 0.018385    | 0.001406       | 0           | 0.09534     | 0           |
| NonAcid       | 0           | 0              | 0.000607    | 0.000412    | 0           |
| Calibration 1 |             |                |             |             |             |
| NonAcid       | 0           | 0.001332       | 0.002312    | 0.002484    | 0           |
| Calibration 2 |             |                |             |             |             |
| NonAcid       | 0           | 0.000582       | 0.00127     | 0.001864    | 0           |
| Calibration 3 |             |                |             |             |             |
| NonAcid       | 0.000591    | 0.001291       | 0.003447    | 0.00435     | 0           |
| Calibration 4 |             |                |             |             |             |
| NonAcid       | 0.006605    | 0.003043       | 0.0056      | 0.009331    | 0.000404    |
| Calibration 5 |             |                |             |             |             |
| NonAcid       | 0.010787    | 0.004006       | 0.007954    | 0.016324    | 0.001746    |
| Calibration 6 |             |                |             |             |             |
| NonAcid       | 0.018934    | 0.008212       | 0.013969    | 0.031288    | 0.003671    |
| Calibration 7 |             |                |             |             |             |
| NonAcid       | 0.034295    | 0.013977       | 0.05801     | 0.06779     | 0.008351    |
| Calibration 8 |             |                |             |             |             |

Table 13: GC-MS results from 20140324

| Notes         | Formic   | Lactic   | Levulinic | Fructose | Mannose  | Glucose  |
|---------------|----------|----------|-----------|----------|----------|----------|
|               | Acid     | Acid     | acid      |          |          |          |
|               | Target/  | Target/  | Target/   | Target/  | Target/  | Target/  |
|               | ISTD     | ISTD     | ISTD      | ISTD     | ISTD     | ISTD     |
| Acid          | 0        | 0.012478 | 0.009222  | 0.004978 | 0.002481 | 0.004988 |
| Calibration 1 |          |          |           |          |          |          |
| Acid          | 0        | 0.021046 | 0.017108  | 0.010232 | 0.005581 | 0.010827 |
| Calibration 2 |          |          |           |          |          |          |
| Acid          | 0        | 0.040215 | 0.035991  | 0.023128 | 0.012206 | 0.022925 |
| Calibration 3 |          |          |           |          |          |          |
| Acid          | 0        | 0.10183  | 0.075728  | 0.058621 | 0.030401 | 0.062139 |
| Calibration 4 |          |          |           |          |          |          |
| Acid          | 0        | 0.213013 | 0.159867  | 0.11815  | 0.059791 | 0.122108 |
| Calibration 5 |          |          |           |          |          |          |
| Acid          | 0        | 0.487855 | 0.356841  | 0.254223 | 0.134204 | 0.279449 |
| Calibration 6 |          |          |           |          |          |          |
| Acid          | 0        | 0.955609 | 0.708677  | 0.537354 | 0.264059 | 0.580581 |
| Calibration 7 |          |          |           |          |          |          |
| Acid          | 0.232373 | 2.060935 | 1.537002  | 1.166882 | 0.589341 | 1.191026 |
| Calibration 8 |          |          |           |          |          |          |
| Ba(OH)2       | 0.265351 | 0.032991 | 0         | 0.025334 | 0.007542 | 0.008658 |
| HCl 300 SnCl4 | 0        | 1.031071 | 0.005206  | 0.037032 | 0.013291 | 0        |
| 300psi        |          |          |           |          |          |          |
| HCl 300 SnCl4 | 0        | 0.429769 | 0.026459  | 0.046894 | 0.016559 | 0        |
| 0psi 2day     |          |          |           |          |          |          |
| HCl 300 SnCl4 | 0        | 0.460401 | 0.063365  | 0.039026 | 0.023269 | 0        |
| 0psi 4day     |          |          |           |          |          |          |
| HCl 300 SnCl4 | 0        | 0.486609 | 0.042425  | 0.026845 | 0.016109 | 0.003298 |
| 1000psi H2    |          |          |           |          |          |          |
| DCM Wash of   | 0        | 0        | 0.004225  | 0.001404 | 0        | 0        |
| 03&04         |          |          |           |          |          |          |
| Top aqueous   | 0        | 0.012478 | 0.009222  | 0.004978 | 0.002481 | 0.004988 |
| phase of 07   |          |          |           |          |          |          |
| Acid          | 0        | 0.004666 | 0.005174  | 0.003863 | 0.002544 | 0.002794 |
| Calibration 1 |          |          |           |          |          |          |
| Acid          | 0        | 0.006959 | 0.010563  | 0.007189 | 0.006332 | 0.009824 |
| Calibration 2 |          |          |           |          |          |          |
| Acid          | 0        | 0.018655 | 0.024066  | 0.01716  | 0.006115 | 0.022619 |
| Calibration 3 |          |          |           |          |          |          |
| Acid          | 0        | 0.094904 | 0.072616  | 0.049009 | 0.025703 | 0.052025 |
| Calibration 4 |          |          |           |          |          |          |
| Acid          | 0        | 0.213674 | 0.163048  | 0.1168   | 0.053224 | 0.125358 |
| Calibration 5 |          |          |           |          |          |          |

Table 14: GC-MS results from 20140213

| Table 14 Continued    |          |          |          |          |          |          |  |
|-----------------------|----------|----------|----------|----------|----------|----------|--|
| Acid<br>Calibration 6 | 0        | 0.484907 | 0.367243 | 0.273651 | 0.132304 | 0.306185 |  |
| Acid<br>Calibration 7 | 0        | 0.98076  | 0.722401 | 0.555163 | 0.267959 | 0.596823 |  |
| Acid<br>Calibration 8 | 0.313403 | 2.024146 | 1.473488 | 1.208262 | 0.59091  | 1.23336  |  |

| Notes                 | Formic   | Lactic   | Levulinic | Fructose | Mannose  | Glucose  |
|-----------------------|----------|----------|-----------|----------|----------|----------|
|                       | Acid     | Acid     | acid      |          |          |          |
|                       | Target/  | Target/  | Target/   | Target/  | Target/  | Target/  |
|                       | ISTD     | ISTD     | ISTD      | ISTD     | ISTD     | ISTD     |
| Acid                  | 0        | 0.012478 | 0.009222  | 0.004978 | 0.002481 | 0.004988 |
| Calibration 1         |          |          |           |          |          |          |
| Acid                  | 0        | 0.021046 | 0.017108  | 0.010232 | 0.005581 | 0.010827 |
| Calibration 2         |          |          |           |          |          |          |
| Acid                  | 0        | 0.040215 | 0.035991  | 0.023128 | 0.012206 | 0.022925 |
| Calibration 3         |          |          |           |          |          |          |
| Acid                  | 0        | 0.10183  | 0.075728  | 0.058621 | 0.030401 | 0.062139 |
| Calibration 4         |          |          |           |          |          |          |
| Acid                  | 0        | 0.213013 | 0.159867  | 0.11815  | 0.059791 | 0.122108 |
| Calibration 5         |          |          |           |          |          |          |
| Acid                  | 0        | 0.487855 | 0.356841  | 0.254223 | 0.134204 | 0.279449 |
| Calibration 6         |          |          |           |          |          |          |
| Acid                  | 0        | 0.955609 | 0.708677  | 0.537354 | 0.264059 | 0.580581 |
| Calibration 7         |          |          |           |          |          |          |
| Acid                  | 0.232373 | 2.060935 | 1.537002  | 1.166882 | 0.589341 | 1.191026 |
| Calibration 8         |          |          |           |          |          |          |
| Ba(OH)2               | 0.265351 | 0.032991 | 0         | 0.025334 | 0.007542 | 0.008658 |
| HCl 300 SnCl4         | 0        | 1.031071 | 0.005206  | 0.037032 | 0.013291 | 0        |
| 300psi                |          |          |           |          |          |          |
| HCl 300 SnCl4         | 0        | 0.429769 | 0.026459  | 0.046894 | 0.016559 | 0        |
| 0psi 2day             |          |          |           |          |          |          |
| HCl 300 SnCl4         | 0        | 0.460401 | 0.063365  | 0.039026 | 0.023269 | 0        |
| 0psi 4day             |          |          |           |          |          |          |
| HCl 300 SnCl4         | 0        | 0.486609 | 0.042425  | 0.026845 | 0.016109 | 0.003298 |
| 1000psi H2            |          |          |           |          |          |          |
| DCM Wash of           | 0        | 0        | 0.004225  | 0.001404 | 0        | 0        |
| 03&04                 | 0        | 0.010470 | 0.000000  | 0.004070 | 0.002401 | 0.004000 |
| Top aqueous           | 0        | 0.012478 | 0.009222  | 0.004978 | 0.002481 | 0.004988 |
| phase of 0/           | 0        | 0.004666 | 0.005174  | 0.0020(2 | 0.002544 | 0.000704 |
| Acid<br>Calibration 1 | 0        | 0.004666 | 0.005174  | 0.003863 | 0.002544 | 0.002/94 |
| Calibration 1         | 0        | 0.006050 | 0.010562  | 0.007190 | 0.006222 | 0.000924 |
| Acid<br>Calibration 2 | 0        | 0.000939 | 0.010303  | 0.007189 | 0.000332 | 0.009824 |
| A aid                 | 0        | 0.019655 | 0.024066  | 0.01716  | 0.006115 | 0.022610 |
| Calibration 3         |          | 0.010035 | 0.024000  | 0.01/10  | 0.000113 | 0.022019 |
| Acid                  | 0        | 0.00/00/ | 0.072616  | 0.0/0000 | 0.025703 | 0.052025 |
| Calibration 4         |          | 0.094904 | 0.072010  | 0.042002 | 0.023703 | 0.032023 |
| Acid                  | 0        | 0 213674 | 0 163048  | 0.1168   | 0.053224 | 0.125358 |
| Calibration 5         |          | 0.213071 | 5.105010  | 0.1100   | 0.00022  | 5.120000 |

Table 15: GC-MS results from 20140128

| Table 10 Continued    |          |          |          |          |          |          |  |
|-----------------------|----------|----------|----------|----------|----------|----------|--|
| Acid<br>Calibration 6 | 0        | 0.484907 | 0.367243 | 0.273651 | 0.132304 | 0.306185 |  |
| Acid<br>Calibration 7 | 0        | 0.98076  | 0.722401 | 0.555163 | 0.267959 | 0.596823 |  |
| Acid<br>Calibration 8 | 0.313403 | 2.024146 | 1.473488 | 1.208262 | 0.59091  | 1.23336  |  |

| Notes                 | Lactic Acid | Levulinic   | Unreacted   | Unreacted   | Glucose     |
|-----------------------|-------------|-------------|-------------|-------------|-------------|
|                       |             | acid        | Sugars 1    | Sugars 2    |             |
|                       | Target/ISTD | Target/ISTD | Target/ISTD | Target/ISTD | Target/ISTD |
| Acid                  | 0.0146      | 0.010134    | 0.015546    | 0.014281    | 0.014541    |
| Calibration 1         |             |             |             |             |             |
| Acid                  | 0.031931    | 0.023505    | 0.030535    | 0.031323    | 0.030455    |
| Calibration 2         |             |             |             |             |             |
| Acid                  | 0.07263     | 0.049576    | 0.064944    | 0.062607    | 0.063156    |
| Calibration 3         | 0.140405    | 0.104600    | 0.115051    | 0.105055    | 0.140056    |
| Acid                  | 0.142427    | 0.104608    | 0.115071    | 0.125975    | 0.142376    |
| Calibration 4         | 0.292561    | 0.204008    | 0.252202    | 0.255577    | 0.272207    |
| Acia<br>Calibration 5 | 0.282561    | 0.204008    | 0.252393    | 0.255577    | 0.272297    |
| Acid                  | 0.548410    | 0 381271    | 0.478429    | 0.400263    | 0 538728    |
| Calibration 6         | 0.346419    | 0.381271    | 0.4/0429    | 0.499203    | 0.556728    |
| Acid                  | 1 123932    | 0.841129    | 1 019469    | 1 047437    | 1 128403    |
| Calibration 7         | 1.125752    | 0.011129    | 1.017107    | 1.017137    | 1.120103    |
| Acid                  | 1.991749    | 1.422855    | 2.00897     | 3.964635    | 1.943376    |
| Calibration 8         |             |             |             |             |             |
| CK41-01               | 0.097026    | 0.453242    | 0.217753    | 0.013722    | 0.227754    |
| CK41-04               | 0.158357    | 0.452555    | 0.14772     | 0.012765    | 0.137816    |
| CK41-06               | 0.14192     | 0.52753     | 0.188531    | 0.012922    | 0.187039    |
| CK41-07               | 0.133552    | 0.511985    | 0.101794    | 0.01237     | 0.098559    |
| CK41-10               | 0.344402    | 0.298047    | 0.058267    | 0.012866    | 0.048461    |
| CK41-11               | 0.05063     | 0.529659    | 0.083951    | 0.012336    | 0.082058    |
| CK41-29               | 0.004085    | 0.035879    | 0           | 0           | 0           |
| CK41-41               | 0.8774      | 0.308508    | 0.029303    | 0.031179    | 0.022537    |
| CK41-42               | 0.64697     | 0.358606    | 0.01057     | 0.015509    | 0.009104    |
| CK41-43               | 0.593728    | 0.320634    | 0.003886    | 0.014581    | 0           |
| Acid                  | 0.007663    | 0.009657    | 0.016401    | 0.036845    | 0.014867    |
| Calibration 1         | 0.007002    | 0.009.027   | 0.010.01    | 0.020012    | 0.011007    |
| Acid                  | 0.019931    | 0.021887    | 0.027212    | 0.028238    | 0.032944    |
| Calibration 2         |             |             |             |             |             |
| Acid                  | 0.073525    | 0.047712    | 0.064245    | 0.05991     | 0.069903    |
| Calibration 3         |             |             |             |             |             |
| Acid                  | 0.141698    | 0.102087    | 0.130005    | 0.120811    | 0.141384    |
| Calibration 4         |             |             |             |             |             |
| Acid                  | 0.545022    | 0.389952    | 0.48461     | 0.501099    | 0.554546    |
| Calibration 6         |             |             |             |             |             |
| Acid                  | 1.143611    | 0.799187    | 1.05654     | 1.092728    | 1.169289    |
| Calibration 7         | 1.05(212    | 1.050561    | 0.0000.00   | 4.070061    | 1.00.400-   |
| Calibration 8         | 1.856318    | 1.359764    | 2.009369    | 4.07/0064   | 1.924087    |

Table 16: GC-MS results from 20140103

| Notes                 | Lactic Acid | Levulinic   | Unreacted   | Unreacted   | Glucose     |
|-----------------------|-------------|-------------|-------------|-------------|-------------|
|                       |             | acid        | Sugars 1    | Sugars 2    |             |
|                       | Target/ISTD | Target/ISTD | Target/ISTD | Target/ISTD | Target/ISTD |
| Acid                  | 0.013689    | 0.011166    | 0.010762    | 0.012152    | 0.01093     |
| Calibration 1         |             |             |             |             |             |
| Acid                  | 0.032264    | 0.026218    | 0.025319    | 0.023897    | 0.023777    |
| Calibration 2         |             |             |             |             |             |
| Acid                  | 0.067983    | 0.047834    | 0.060244    | 0.048914    | 0.057124    |
| Calibration 3         | 0.100051    | 0.102004    | 0.100105    | 0.100110    | 0.10000.0   |
| Acid                  | 0.129971    | 0.103084    | 0.129197    | 0.103113    | 0.128236    |
| Calibration 4         | 0.271020    | 0.210795    | 0.259922    | 0.220722    | 0.259729    |
| Acid<br>Calibration 5 | 0.2/1929    | 0.210785    | 0.258822    | 0.220733    | 0.258/28    |
| Acid                  | 0.517688    | 0.414624    | 0 51003     | 0.444505    | 0 538100    |
| Calibration 6         | 0.517000    | 0.414024    | 0.51775     | 0.444303    | 0.550177    |
| Acid                  | 1.017919    | 0.794573    | 0.976952    | 0.837399    | 1.008295    |
| Calibration 7         | 1001/212    |             | 0.000       | 0.00,033    | 1.0002/0    |
| Acid                  | 1.891923    | 1.541524    | 2.049504    | 1.666692    | 1.803176    |
| Calibration 8         |             |             |             |             |             |
| CK40-02               | 0.122365    | 0.442852    | 0.282128    | 0.019896    | 0.279994    |
| CK40-03               | 0.146744    | 0.447529    | 0.457974    | 0.041258    | 0.523869    |
| CK40-05               | 0.131305    | 0.548367    | 0.131786    | 0.00778     | 0.12527     |
| CK40-07               | 0.148508    | 0.541588    | 0.121206    | 0.0057      | 0.109586    |
| CK40-08               | 0.165999    | 0.478381    | 0.183714    | 0.012599    | 0.189711    |
| CK40-10               | 0.009043    | 0.084374    | 1.232091    | 0.016772    | 2.01026     |
| CK40-11               | 0.00645     | 0.024991    | 1.686143    | 0.041549    | 2.782208    |
| CK40-30               | 0.031943    | 0.434073    | 0.003504    | 0.005702    | 0.003858    |
| CK40-31               | 0.032998    | 0.762342    | 0           | 0.008951    | 0           |
| CK40-32               | 0.436953    | 0.485392    | 0.002601    | 0.008161    | 0.004358    |
| Acid                  | 0.005586    | 0.008756    | 0.010906    | 0.02665     | 0.012797    |
| Calibration 1         |             |             |             |             |             |
| Acid                  | 0.021655    | 0.022994    | 0.031169    | 0.024046    | 0.027074    |
| Calibration 2         |             |             |             |             |             |
| Acid                  | 0.064768    | 0.049648    | 0.064053    | 0.056589    | 0.06361     |
| Calibration 3         |             |             |             |             |             |
| Acid                  | 0.135101    | 0.102096    | 0.125847    | 0.106058    | 0.135456    |
| Calibration 4         |             |             |             |             |             |
| Acid                  | 0.265104    | 0.209296    | 0.257318    | 0.217373    | 0.258842    |
| Calibration 5         | 0.527022    | 0.40542     | 0.400020    | 0.420002    | 0.511520    |
| Calibration 6         | 0.52/023    | 0.40542     | 0.499039    | 0.439003    | 0.511528    |
| Calibration 7         | 1.040352    | 0.810884    | 1.048385    | 0.91312     | 1.049434    |
| Calibration 8         | 1.872402    | 1.535779    | 2.101289    | 1.67606     | 1.806155    |

Table 17: GC-MS results from 20131220

| Notes              | Furfural    | Lactic Acid | Levulinic   | Glucose     |
|--------------------|-------------|-------------|-------------|-------------|
|                    |             |             | acıd        |             |
|                    | Target/ISTD | Target/ISTD | Target/ISTD | Target/ISTD |
| Acid Calibration 1 | 0           | 0.015696    | 0.011509    | 0.017926    |
| Acid Calibration 2 | 0           | 0.035636    | 0.023186    | 0.04124     |
| Acid Calibration 3 | 0           | 0.07673     | 0.049917    | 0.083674    |
| Acid Calibration 4 | 0           | 0.1562      | 0.096109    | 0.177954    |
| Acid Calibration 5 | 0           | 0.286265    | 0.179015    | 0.332275    |
| Acid Calibration 6 | 0           | 0.593193    | 0.360603    | 0.690587    |
| Acid Calibration 7 | 0           | 1.1955      | 0.725267    | 1.367044    |
| Acid Calibration 8 | 0           | 2.183391    | 1.311895    | 2.620571    |
| 300/4 210          | 0           | 0.056592    | 0.560813    | 0.70135     |
| 300/4 210          | 0           | 0.059064    | 0.531048    | 0.49984     |
| 300/4 210          | 0           | 0.059046    | 0.527816    | 0.617933    |
| 300/4 200          | 0           | 0.059531    | 0.397788    | 1.663826    |
| 300/4 200          | 0           | 0.061124    | 0.447175    | 1.254806    |
| 300/4 200          | 0           | 0.066639    | 0.50301     | 0.483594    |
| Lactic Acid std    | 0           | 5.427643    | 0           | 0.004916    |
| Acid Calibration 1 | 0           | 0.012581    | 0.010604    | 0.018213    |
| Acid Calibration 2 | 0           | 0.037909    | 0.023154    | 0.040894    |
| Acid Calibration 3 | 0           | 0.080116    | 0.048581    | 0.086405    |
| Acid Calibration 4 | 0           | 0.158019    | 0.101999    | 0.185586    |
| Acid Calibration 5 | 0           | 0.280873    | 0.179599    | 0.335314    |
| Acid Calibration 6 | 0           | 0.593358    | 0.366586    | 0.720971    |
| Acid Calibration 7 | 0           | 1.156434    | 0.72898     | 1.356952    |

Table 18: GC-MS results from 20131210

| Notes         | Furfural | Lactic   | Levulinic | All       | Glucose  |
|---------------|----------|----------|-----------|-----------|----------|
|               |          | Acid     | acid      | Unreacted |          |
|               |          |          |           | Sugars    |          |
|               | Target/  | Target/  | Target/   | Target/   | Target/  |
|               | ISTD     | ISTD     | ISTD      | ISTD      | ISTD     |
| Acid          | 0        | 0.00858  | 0.003749  | 0.00784   | 0.006638 |
| Calibration 1 |          |          |           |           |          |
| Acid          | 0        | 0.012006 | 0.009031  | 0.013024  | 0.017339 |
| Calibration 2 |          |          |           |           |          |
| Acid          | 0        | 0.030803 | 0.022317  | 0.023565  | 0.038631 |
| Calibration 3 |          |          |           |           |          |
| Acid          | 0        | 0.059089 | 0.039409  | 0.053225  | 0.067055 |
| Calibration 4 |          |          |           |           |          |
| Acid          | 0        | 0.128467 | 0.076452  | 0.110036  | 0.149782 |
| Calibration 5 |          |          |           |           |          |
| Acid          | 0        | 0.242724 | 0.151179  | 0.198376  | 0.302929 |
| Calibration 6 |          |          |           |           |          |
| Acid          | 0        | 0.494428 | 0.315175  | 0.417088  | 0.618026 |
| Calibration 7 |          |          |           |           |          |
| Acid          | 0        | 0.923362 | 0.60472   | 0.160421  | 1.181008 |
| Calibration 8 |          |          |           |           |          |
| 300/4 210     | 0        | 1.012751 | 0.299777  | 0.031874  | 0.035848 |
| 300/4 220     | 0        | 0.741202 | 0.339672  | 0.011908  | 0.014199 |
| 300/4 230     | 0        | 0.732378 | 0.333545  | 0         | 0        |
| 300/noSn-210  | 0        | 0.028341 | 0.538188  | 0.114559  | 0.171543 |
| 300/noSn-220  | 0        | 0.097408 | 0.280417  | 0.130593  | 0.17767  |
| 300/noSn-230  | 0        | 0.021941 | 0.504031  | 0         | 0.001779 |
| 300/Ba-230    | 0        | 0.095974 | 0.26268   | 0.021232  | 0        |
| Acid          | 0        | 0.092913 | 0.069592  | 0.646542  | 0.012207 |
| Calibration 1 |          |          |           |           |          |
| Acid          | 0        | 0.009833 | 0.00703   | 1.878264  | 6.6777   |
| Calibration 2 |          |          |           |           |          |
| Acid          | 0        | 0.015135 | 1.017472  | 0         | 0.006579 |
| Calibration 3 |          |          |           |           |          |

Table 19: GC-MS results from 20131203

| Notes               | Furfural    | Lactic Acid | Levulinic   | Glucose     |
|---------------------|-------------|-------------|-------------|-------------|
|                     |             |             | acid        |             |
|                     | Target/ISTD | Target/ISTD | Target/ISTD | Target/ISTD |
| Acid Calibration 1  | 0           | 0.057475    | 0.057526    | 0.10171     |
| Acid Calibration 2  | 0           | 0.076801    | 0.11045     | 0.201355    |
| Acid Calibration 3  | 0.000206    | 0.113151    | 0.191047    | 0.442603    |
| Acid Calibration 4  | 0           | 0.343618    | 0.332254    | 0.867188    |
| Acid Calibration 5  | 0           | 1.31608     | 0.510205    | 1.788912    |
| Acid Calibration 6  | 0           | 3.034917    | 2.289052    | 4.088768    |
| Acid Calibration 7  | 0           | 5.901867    | 4.440931    | 7.80007     |
| Acid Calibration 8  | 0.148441    | 9.622384    | 7.470762    | 13.18508    |
| E/2-170             | 0.018344    | 0.098444    | 0.070178    | 0.069264    |
| 300/4-170           | 0.007503    | 0.027706    | 0.023457    | 0.034948    |
| 300/2-170           | 0.008018    | 0.042534    | 0.052723    | 0.013071    |
| E/4-170             | 0           | 0.03985     | 0.158105    | 0.050412    |
| 300/4-170           | 0           | 0.030559    | 0.039307    | 0.013443    |
| 300/4-180           | 0.002773    | 0.031491    | 0.029936    | 0.008858    |
| 300/4-170 sonicated | 0           | 0.040981    | 0.044801    | 0.004681    |
| 300/4-190           | 0.449575    | 0.070838    | 0.055132    | 0.007666    |
| 300/4-200           | 0           | 0.092913    | 0.069592    | 0.012207    |
| BaCl2 - 160         | 0           | 0.009833    | 0.00703     | 6.6777      |
| Me-Levulinate       | 0           | 0.015135    | 1.017472    | 0.006579    |
| 300/Ba2 200 ME      | 0.318627    | 0.021315    | 0.012729    | 0.074483    |
| 300/Ba2 160 ME      | 0           | 0.010394    | 0           | 1.252712    |
| 300/Ba2 200 H20     | 0           | 0.617447    | 0.211977    | 1.777112    |
| 300/Sn2 25%Me H1    | 0           | 0.013292    | 0           | 11.51432    |
| 300/Sn2 25%Me H2    | 0           | 0.126898    | 0.003457    | 1.638662    |
| 300/Sn2 25%Me H3    | 0           | 0.047646    | 0.006253    | 0.006095    |
| 300/Sn2 25%Me H20   | 0           | 0.214955    | 0.047512    | 0.054557    |
| 300/Sn2 25%Me H21   | 0           | 0.151546    | 0.032567    | 0.064868    |
| 300/Sn2 25%Me H22   | 0           | 0.148161    | 0.031636    | 0.071278    |
| 300/Sn2 25%Me H1    | 0           | 0.007098    | 0           | 10.43621    |
| 300/Sn2 25%Me H2    | 0           | 0.096204    | 0.004896    | 1.859244    |
| 300/Sn2 25%Me H3    | 0           | 0.139883    | 0.012911    | 0.939722    |
| 300/Sn2 25%Me H20   | 0           | 0.150428    | 0.030919    | 0.093676    |
| 300/Sn2 25%Me H21   | 0           | 0.133917    | 0.026983    | 0.101752    |
| 300/Sn2 25%Me H22   | 0           | 0.140636    | 0.030382    | 0.080374    |
| Acid Calibration 1  | 0           | 0.005069    | 0.036432    | 0.110506    |
| Acid Calibration 2  | 0           | 0.017545    | 0.042706    | 0.206449    |
| Acid Calibration 3  | 0           | 0.047469    | 0.079014    | 0.397019    |

Table 20: GC-MS results from 20131018

| Table 20 Continued |   |          |          |          |  |  |
|--------------------|---|----------|----------|----------|--|--|
| Acid Calibration 4 | 0 | 0.342633 | 0.22774  | 0.791729 |  |  |
| Acid Calibration 5 | 0 | 1.33356  | 0.613944 | 1.80244  |  |  |
| Acid Calibration 6 | 0 | 3.084693 | 2.184201 | 4.225819 |  |  |
| Acid Calibration 7 | 0 | 6.454687 | 4.546477 | 9.034488 |  |  |
| Acid Calibration 8 | 0 | 10.4089  | 7.083893 | 15.26826 |  |  |
| 300/Sn2 25%Me H1   | 0 | 0.009347 | 0        | 12.58148 |  |  |
| 300/Sn2 25%Me H2   | 0 | 0.093565 | 0        | 1.693166 |  |  |
| 300/Sn2 25%Me H3   | 0 | 0.112959 | 0.008254 | 1.178087 |  |  |
| 300/Sn2 25%Me H20  | 0 | 0.145797 | 0.032873 | 0.09918  |  |  |
| 300/Sn2 25%Me H21  | 0 | 0.172363 | 0.046994 | 0.091477 |  |  |
| 300/Sn2 25%Me H22  | 0 | 0.173853 | 0.059971 | 0.077173 |  |  |
| Acid Calibration 1 | 0 | 0        | 0.023031 | 0.109635 |  |  |
| Acid Calibration 2 | 0 | 0.011852 | 0.040174 | 0.206256 |  |  |
| Acid Calibration 3 | 0 | 0.034186 | 0.067561 | 0.375562 |  |  |
| Acid Calibration 4 | 0 | 0.181065 | 0.079779 | 0.715075 |  |  |
| Acid Calibration 5 | 0 | 1.349133 | 0.580912 | 1.861241 |  |  |
| Acid Calibration 6 | 0 | 3.189958 | 2.355852 | 4.323448 |  |  |
| Acid Calibration 7 | 0 | 6.845747 | 4.623579 | 9.028281 |  |  |
| Acid Calibration 8 | 0 | 11.15889 | 6.868133 | 15.71194 |  |  |

Notes Furfural Methyl Levulinic 5-HMF Methyl Methyl Lactate Vinyl-Levulinate acid glycolate Target/ Target/ Target/ Target/ Target/ Target/ ISTD ISTD ISTD ISTD ISTD ISTD Nonacid 0.048907 0.037575 0 0.0807 0 0 Calibration 1 0 Nonacid 0.01991 0.010032 0 0.055491 0 Calibration 2 Nonacid 0.040601 0.031386 0 0.132831 0 0.011364 Calibration 3 Nonacid 0.083234 0.087542 0.002042 0.202936 0 0.029472 Calibration 4 Nonacid 0.339236 0.149669 0.014783 0.503218 0 0.081137 Calibration 5 Nonacid 1.326224 0.555471 0.032279 1.186908 0 0.255594 Calibration 6 Nonacid 2.722615 1.165431 0.063073 2.375809 0 0.436131 Calibration 7 Nonacid 1.998771 0.107124 4.568039 3.962035 0 0.44525 Calibration 8 300/4-170 0.180758 0 0 1.909649 0 0 300/4-180 0.357786 0.026691 0 1.646245 0 0 300/4-170 0.392566 0.053681 0 1.560882 0 0 sonicated 300/4-190 0.565828 0.040171 2.025746 0 0 0 300/4-200 0.047951 0 0 0.505777 1.894392 0 BaCl2 - 160 0.009978 0 0 0.011896 0 0.020951 Me-0.010647 0 0 6.300652 0 0 Levulinate 300/Ba2 200 0.368746 0.126518 0.006659 0.010119 0 0 ME 300/Ba2 160 0.125274 0 0 0.011929 0.003745 0.020805 ME E/2-170 0.473787 0.02235 0 1.342034 0 0 300/4-170 0.242687 1.05442 0.046684 0 0 0 300/2-170 0.392687 1.778793 0 0.08625 0 0 E/4-170 0.171268 0.009528 0 2.771811 0 0 Nonacid 0.06349 0.043861 0 0.083723 0 0.012063 Calibration 1 Nonacid 0.024681 0.025193 0.060263 0 0 0 Calibration 2

Table 21: GC-MS results from 20131014

| Table 21 Continued              |               |          |          |           |          |          |  |
|---------------------------------|---------------|----------|----------|-----------|----------|----------|--|
| Nonacid<br>Calibration 3        | 0.087519      | 0.071345 | 0        | 0.140104  | 0        | 0.021556 |  |
| Nonacid                         | 0.003612      | 0.00/067 | 0        | 0.204763  | 0        | 0.044256 |  |
| Calibration 4                   | 0.075012      | 0.074007 | 0        | 0.204705  | U        | 0.044230 |  |
| Nonacid                         | 0.631798      | 0 253832 | 0.013605 | 0 517659  | 0        | 0 117067 |  |
| Calibration 5                   | 0.051770      | 0.233032 | 0.015005 | 0.017000  | U        | 0.117007 |  |
| Nonacid                         | 1 1 5 3 9 8 6 | 0 497239 | 0 027748 | 1 033839  | 0        | 0 292779 |  |
| Calibration 6                   | 11122300      | 01197209 | 0.0277.0 | 11022029  | 0        | 0.292779 |  |
| Nonacid                         | 2.569537      | 1.110072 | 0.052433 | 2.217216  | 0        | 0.621752 |  |
| Calibration 7                   |               |          |          |           | -        |          |  |
| Nonacid                         | 3.951054      | 1.717075 | 0.077461 | 3.432621  | 0.002764 | 0.890238 |  |
| Calibration 8                   |               |          |          |           |          |          |  |
| 300/Sn2                         | 0.016345      | 0        | 0        | 0         | 0        | 0        |  |
| 25%Me H1                        |               |          |          |           |          |          |  |
| 300/Sn2                         | 0.143396      | 0.01624  | 0        | 0.00958   | 0        | 0.030729 |  |
| 25%Me H2                        |               |          |          |           |          |          |  |
| 300/Sn2                         | 0.191384      | 0.022978 | 0        | 0.022856  | 0        | 0.032463 |  |
| 25%Me H3                        |               |          |          |           |          |          |  |
| 300/Sn2                         | 0.261253      | 0.014619 | 0        | 0.243436  | 0        | 0        |  |
| 25%Me H20                       |               |          |          |           |          |          |  |
| 300/Sn2                         | 0.243285      | 0.030169 | 0        | 0.26309   | 0        | 0.002151 |  |
| 25%Me H21                       |               |          |          |           |          |          |  |
| 300/Sn2                         | 0.214703      | 0.032931 | 0.002191 | 0.249127  | 0        | 0        |  |
| 25%Me H22                       |               |          |          |           |          |          |  |
| 300/Sn2                         | 0.013552      | 0        | 0        | 0         | 0        | 0        |  |
| 25%Me H1                        |               |          |          |           |          |          |  |
| 300/Sn2                         | 0.132459      | 0.01406  | 0        | 0.009188  | 0        | 0.038179 |  |
| 25%Me H2                        | 0.14447       | <u>^</u> | <u>^</u> | 0.0000.40 |          | 0.005441 |  |
| 300/Sn2                         | 0.1666/1      | 0        | 0        | 0.022343  | 0        | 0.035441 |  |
| 25%Me H3                        | 0.010004      | 0.01001  | 0        | 0.041045  | 0        | 0.00204  |  |
| 300/Sn2                         | 0.212904      | 0.01091  | 0        | 0.241845  | 0        | 0.00384  |  |
| 25%Me H20                       | 0.00007       | 0.020022 | 0        | 0.241020  | 0        | 0        |  |
| 300/Sn2                         | 0.222087      | 0.030932 | 0        | 0.241029  | 0        | 0        |  |
| 23% Nie H21                     | 0.211509      | 0.027121 | 0        | 0.250495  | 0        | 0        |  |
| 250/5112                        | 0.211398      | 0.02/131 | 0        | 0.239483  | 0        | 0        |  |
| 23761  VIE   H 22               | 0.004121      | 0        | 0        | 0         | 0        | 0        |  |
| 25%Me H1                        | 0.004121      | U        | U        | U         | U        | V        |  |
| $\frac{2.5701101111}{300/Sn^2}$ | 0 121588      | 0.012025 | 0        | 0.008912  | 0        | 0.031    |  |
| 25%Me H2                        | 0.121300      | 0.012023 |          | 0.000712  |          | 0.031    |  |
| 300/Sn?                         | 0 150374      | 0.002881 | 0        | 0.018946  | 0        | 0.032926 |  |
| 25%Me H3                        | 0.120274      | 0.002001 |          | 0.010710  |          | 0.052720 |  |
|                                 |               |          |          |           |          |          |  |

| Table 21 Continued       |          |          |          |          |          |          |  |
|--------------------------|----------|----------|----------|----------|----------|----------|--|
| 300/Sn2<br>25%Me H20     | 0.220669 | 0.019513 | 0        | 0.232509 | 0        | 0        |  |
| 300/Sn2<br>25%Me H21     | 0.198703 | 0.017306 | 0        | 0.237501 | 0        | 0.004068 |  |
| 300/Sn2<br>25%Me H22     | 0.208964 | 0.023617 | 0.002594 | 0.259282 | 0        | 0.003138 |  |
| Nonacid<br>Calibration 1 | 0.042261 | 0.024181 | 0.002539 | 0.081534 | 0        | 0.007683 |  |
| Nonacid<br>Calibration 2 | 0.013047 | 0.024517 | 0        | 0.05104  | 0        | 0        |  |
| Nonacid<br>Calibration 3 | 0.081248 | 0.061704 | 0        | 0.120063 | 0        | 0.016814 |  |
| Nonacid<br>Calibration 4 | 0.089632 | 0.053634 | 0        | 0.199959 | 7.09E-05 | 0.038941 |  |
| Nonacid<br>Calibration 5 | 0.311581 | 0.230984 | 0.01444  | 0.47245  | 0        | 0.104144 |  |
| Nonacid<br>Calibration 6 | 1.295601 | 0.545691 | 0.030784 | 1.061783 | 0        | 0.302139 |  |
| Nonacid<br>Calibration 7 | 2.532195 | 1.088787 | 0.053411 | 2.168497 | 0        | 0.437348 |  |
| Nonacid<br>Calibration 8 | 1.6816   | 1.212069 | 0.091763 | 3.496525 | 0        | 0.390462 |  |

| Notes                 | Furfural | Lactic     | Levulinic  | Unreacted | Unreacted | Glucose   |
|-----------------------|----------|------------|------------|-----------|-----------|-----------|
|                       |          | Acid       | acid       | Sugars 1  | Sugars 2  |           |
|                       | Target/  | Target/    | Target/    | Target/   | Target/   | Target/   |
|                       | ISTD     | ISTD       | ISTD       | ISTD      | ISTD      | ISTD      |
| Acid                  | 0.000000 | 0.135331   | 0.164853   | 0.396895  | 0.135700  | 0.183524  |
| Calibration 1         |          |            |            |           |           |           |
| Acid                  | 0.000000 | 0.221286   | 0.333753   | 0.810194  | 0.257273  | 0.363882  |
| Calibration 2         |          |            | 0.6000.66  | 1 (22 100 |           |           |
| Acid                  | 0.000000 | 0.328547   | 0.630366   | 1.622480  | 0.520359  | 0.757105  |
| Calibration 3         | 0.00000  | 0.466100   | 1.1.4(220) | 2.122066  | 1.010400  | 1 402007  |
| Acid                  | 0.000000 | 0.466102   | 1.146228   | 3.123866  | 1.012499  | 1.493907  |
| Calibration 4         | 0.00000  | 1.50(224   | 2 250 401  | ( 221570  | 0 4(7500  | 2 207574  |
| Acid<br>Calibration 5 | 0.000000 | 1.506334   | 2.359491   | 6.3315/0  | 0.46/588  | 3.29/5/4  |
| Calibration 5         | 0.00000  | 2 540066   | 4 275127   | 0 880220  | 2 520065  | 5 602264  |
| Acid<br>Calibration 6 | 0.000000 | 3.340000   | 4.3/313/   | 9.880320  | 3.339003  | 3.092204  |
| A gid                 | 0.00000  | 0 787221   | 11 77/221  | 26 276227 | 11 120242 | 12 578014 |
| Calibration 7         | 0.000000 | 9.707221   | 11.774231  | 20.270337 | 11.129242 | 13.378914 |
| Acid                  | 0.000000 | 17 0170/8  | 21 31/031  | 51 346460 | 21 560331 | 27 666477 |
| Calibration 8         | 0.000000 | 17.917940  | 21.514051  | 51.540400 | 21.300331 | 27.000477 |
| Lactic Acid           | 0.000000 | 45 855836  | 0.010238   | 0.000000  | 0.011859  | 0.014336  |
| Std                   | 0.000000 | 10.0000000 | 0.010250   | 0.000000  | 0.011000  | 0.01 1550 |
| Levulinic             | 0.000000 | 0.037491   | 47.559793  | 0.000000  | 0.000000  | 0.000000  |
| Acid Std              |          |            |            |           |           |           |
| Glucose Std           | 0.000000 | 0.005345   | 0.028085   | 0.003958  | 21.086690 | 22.219406 |
| Fructose Std          | 0.000000 | 0.011461   | 0.017505   | 16.605824 | 15.284923 | 0.105506  |
| Mannose Std           | 0.000000 | 0.006580   | 0.009648   | 59.236142 | 29.835708 | 0.012637  |
| 300-Sn4               | 0.000000 | 2.286629   | 1.887496   | 0.274016  | 0.156307  | 0.258998  |
| 200C                  |          |            |            |           |           |           |
| 300-Sn4               | 0.000000 | 1.198152   | 2.237449   | 0.185831  | 0.547124  | 0.829278  |
| 190C                  |          |            |            |           |           |           |
| 300-Sn4               | 0.000000 | 1.049028   | 2.084620   | 0.151417  | 1.624270  | 2.510328  |
| 180C                  |          |            |            |           |           |           |
| 300-Sn4               | 0.000000 | 0.304913   | 1.555725   | 1.271615  | 5.852159  | 9.344453  |
| 170C                  |          |            |            |           |           |           |
| E-Sn2 180             | 0.000000 | 0.006665   | 0.008950   | 0.015034  | 14.864735 | 41.123474 |
| Initial               |          |            |            |           |           |           |
| E-Sn2 180 T-          | 0.000000 | 0.438048   | 2.049815   | 0.155378  | 3.149134  | 5.216391  |
| 60min                 |          |            |            |           |           |           |
| E-Sn2 180 T-          | 0.000000 | 0.482755   | 2.366509   | 0.149369  | 3.452206  | 5.051621  |
| 30min                 |          |            |            |           |           |           |
| E-Sn2 180 T           | 0.000000 | 0.436911   | 1.684635   | 0.144051  | 3.217476  | 4.586432  |
|                       |          |            |            |           |           |           |

Table 22: GC-MS results for 20131001

| Table 22 Conti        | nued     |           |               |            |           |            |
|-----------------------|----------|-----------|---------------|------------|-----------|------------|
| Acid                  | 0.000000 | 0.050887  | 0.140962      | 0.469838   | 0.142155  | 0.216665   |
| Calibration 1         |          |           |               |            |           |            |
| Acid                  | 0.000000 | 0.047129  | 0.247871      | 0.859409   | 0.310088  | 0.390176   |
| Calibration 2         |          |           |               |            |           |            |
| Acid                  | 0.000000 | 0.071592  | 0.415922      | 1.531925   | 0.510337  | 0.770638   |
| Calibration 3         |          |           |               |            |           |            |
| Acid                  | 0.000000 | 0.297535  | 0.933747      | 2.875099   | 1.035876  | 1.588455   |
| Calibration 4         |          |           |               |            |           |            |
| Acid                  | 0.000000 | 1.639541  | 2.173226      | 4.726713   | 1.989481  | 3.136829   |
| Calibration 5         |          |           |               |            |           |            |
| Acid                  | 0.000000 | 4.035709  | 4.709213      | 12.922811  | 0.904983  | 6.038466   |
| Calibration 6         |          |           |               |            |           |            |
| Acid                  | 0.000000 | 8.310515  | 10.381399     | 25.596771  | 10.535928 | 12.785988  |
| Calibration 7         |          |           |               |            |           |            |
| Acid                  | 0.000000 | 18.537616 | 21.129909     | 54.678058  | 21.944666 | 23.231511  |
| Calibration 8         |          |           |               |            |           |            |
| E-Sn2 170             | 0.000000 | 0.007408  | 0.024769      | 0.000000   | 16.837800 | 47.333991  |
| Initial               |          |           |               |            |           |            |
| E-Sn2 170 T-          | 0.000000 | 0.768709  | 1.470370      | 0.222424   | 2.995838  | 4.962434   |
| 60min                 |          |           |               |            |           |            |
| E-Sn2 170 T-          | 0.000000 | 0.326351  | 1.725646      | 1.171568   | 5.841825  | 9.928565   |
| 30min                 |          | 0.000.000 |               | 1 100 - 66 |           | 10.0100.00 |
| E-Sn2 170 T           | 0.000000 | 0.292646  | 1.305522      | 1.422766   | 0.377635  | 10.210958  |
| E-Sn2 200             | 0.000000 | 0.028497  | 0.029690      | 0.006140   | 15.907831 | 41.314262  |
| Initial               |          |           |               |            |           |            |
| E-Sn2 200 T-          | 0.000000 | 0.611727  | 3.001523      | 0.099298   | 0.190049  | 0.236332   |
| 60min                 | 0.000000 | 0.645000  | 2 22 40 77    | 0.100511   | 0.10(477  | 0.001000   |
| E-Sn2 200 T-          | 0.000000 | 0.647232  | 3.334877      | 0.103/11   | 0.196477  | 0.231022   |
| 30min                 | 0.00000  | 0.5(7012  | 1 (5924(      | 0.070401   | 0.00070   | 0.002415   |
| E-Sn2 200 I           | 0.000000 | 0.56/013  | 1.658246      | 0.078491   | 0.0669/8  | 0.093415   |
| E-Sn2 190             | 0.000000 | 0.000000  | 0.000000      | 0.000000   | 16.198174 | 42.428434  |
| Initial               | 0.000000 | 0.5(40.77 | 2 51 ( ( 50   | 0 111744   | 1 102050  | 1 440116   |
| E-Sn2 190 1-          | 0.000000 | 0.564877  | 2.516659      | 0.111/44   | 1.103058  | 1.440116   |
| 60min                 | 0.00000  | 0.00000   | 2 (0(240      | 0 117251   | 1.00((07  | 1 572004   |
| E-Sn2 190 1-          | 0.000000 | 0.602809  | 2.696248      | 0.11/351   | 1.086687  | 1.5/3984   |
| 30min                 | 0.00000  | 0.555505  | 2 1 1 2 9 5 2 | 0.105200   | 1.050270  | 1.510126   |
| E-Sn2 190 1           | 0.000000 | 0.555585  | 2.113852      | 0.105399   | 1.050278  | 1.519126   |
| Acid                  | 0.000000 | 0.026776  | 0.113025      | 0.467117   | 0.158662  | 0.209064   |
|                       | 0.00000  | 0.0100(2  | 0.100052      | 0.02(15)   | 0.201907  | 0.271526   |
| Acid<br>Califanti 2   | 0.000000 | 0.018863  | 0.180052      | 0.826156   | 0.291897  | 0.3/1526   |
| Calibration 2         | 0.00000  | 0.0(2970  | 0.250001      | 1 4910(2   | 0.559294  | 0.700251   |
| Acia<br>Calibratica 2 | 0.000000 | 0.0038/9  | 0.339881      | 1.481962   | 0.338284  | 0.780351   |
| Calibration 3         | 1        |           | 1             |            | 1         |            |

| Table 22 Continued |          |           |           |           |           |           |  |
|--------------------|----------|-----------|-----------|-----------|-----------|-----------|--|
|                    |          |           |           |           |           |           |  |
| Acid               | 0.000000 | 0.285101  | 0.731929  | 2.317099  | 0.990088  | 1.384147  |  |
| Calibration 4      |          |           |           |           |           |           |  |
| Acid               | 0.000000 | 1.689606  | 2.082672  | 4.354575  | 1.859182  | 2.695995  |  |
| Calibration 5      |          |           |           |           |           |           |  |
| Acid               | 0.000000 | 4.283538  | 4.979893  | 14.333925 | 0.855542  | 6.302699  |  |
| Calibration 6      |          |           |           |           |           |           |  |
| Acid               | 0.000000 | 9.730209  | 11.299224 | 31.748818 | 13.046900 | 15.633702 |  |
| Calibration 7      |          |           |           |           |           |           |  |
| Acid               | 0.000000 | 18.128993 | 20.526618 | 50.949701 | 1.903746  | 22.227810 |  |
| Calibration 8      |          |           |           |           |           |           |  |
| Notes                 | Lactic  | Levulinic | Unreacted | Unreacted | Glucose  |
|-----------------------|---------|-----------|-----------|-----------|----------|
|                       | Acid    | acid      | Sugar 1   | Sugar 2   |          |
|                       | Target/ | Target/   | Target/   | Target/   | Target/  |
|                       | ISTD    | ISTD      | ISTD      | ISTD      | ISTD     |
| Acid                  | 0.23538 | 0.01104   | 2.07366   | 1.68554   | 0.13715  |
| Calibration I         | 0.1(072 | 0.00700   | 0.44107   | 0.00(10   | 0.04070  |
| Acid<br>Calibration 2 | 0.168/3 | 0.00/98   | 0.44197   | 0.60610   | 0.04979  |
| Calibration 2         | 0 27147 | 0.01406   | 0.56400   | 0.28377   | 0.01680  |
| Calibration 3         | 0.3/14/ | 0.01490   | 0.30400   | 0.28377   | 0.01080  |
| Acid                  | 0 78195 | 0.02533   | 0 55402   | 0.21294   | 0 13513  |
| Calibration 4         | 0.70195 | 0.02000   | 0.00102   | 0.21291   | 0.15515  |
| Acid                  | 0.88570 | 0.02412   | 0.34931   | 0.10962   | 0.06907  |
| Calibration 5         |         |           |           |           |          |
| Acid                  | 2.11661 | 0.19311   | 0.57959   | 0.17976   | 0.03148  |
| Calibration 6         |         |           |           |           |          |
| Acid                  | 2.71001 | 1.38001   | 0.61542   | 0.13708   | 0.02534  |
| Calibration 7         |         |           |           |           |          |
| Acid                  | 5.14858 | 4.13219   | 0.62654   | 0.16292   | 0.02713  |
| Calibration 8         | 0.00702 | 0.00200   | 1.02501   | 22.44000  | 27.42500 |
| 06CK23-178            | 0.00703 | 0.00380   | 1.03581   | 33.44809  | 27.43508 |
| 06CK23-179            | 0.09183 | 0.01589   | 0.96188   | 11.07574  | 5.54053  |
| 06CK23-180            | 0.16085 | 0.04384   | 1.17645   | 9.57031   | 7.40402  |
| 06CK23-181            | 0.33062 | 0.47778   | 1.08272   | 2.39260   | 7.48070  |
| 06CK23-182            | 0.36034 | 0.48408   | 1.22788   | 2.44142   | 7.88916  |
| 06CK23-183            | 0.31595 | 0.47717   | 0.97837   | 2.34580   | 7.13644  |
| 10CK23-106            | 0.00648 | 0.00481   | 0.85243   | 14.91209  | 12.56474 |
| 10CK23-107            | 0.01441 | 0.00337   | 1.03253   | 14.99423  | 12.97064 |
| 10CK23-108            | 0.02089 | 0.00146   | 1.02865   | 14.49084  | 12.66357 |
| 10CK23-109            | 0.05782 | 0.01363   | 2.33507   | 25.11793  | 21.82001 |
| 10CK23-110            | 0.06925 | 0.01279   | 2.38104   | 25.73026  | 26.71188 |
| 10CK23-111            | 0.06077 | 0.01623   | 2.39444   | 25.12178  | 26.28376 |
| 17CK23-130            | 0.00782 | 0.00456   | 1.05484   | 17.09665  | 14.34981 |
| 17CK23-131            | 0.01097 | 0.00649   | 1.11261   | 13.03527  | 4.16202  |
| 17CK23-132            | 0.00923 | 0.01061   | 1.02543   | 11.07591  | 5.47676  |
| 17CK23-133            | 0.05107 | 0.10791   | 1.09151   | 2.12962   | 9.54717  |
| 17CK23-134            | 0.05279 | 0.10979   | 1.07446   | 1.92341   | 9.33575  |
| 17CK23-135            | 0.05098 | 0.11923   | 1.02478   | 2.11430   | 9.27452  |
| 12CK23-186            | 0.01030 | 0.00482   | 1.32519   | 21.30966  | 18.03465 |
| 12CK23-187            | 0.02808 | 0.00893   | 1.35972   | 13.20873  | 4.20587  |
| 12CK23-188            | 0.04901 | 0.01587   | 1.34972   | 9.80803   | 5.61589  |

Table 23: GC-MS derivatized results from DOE block 2

| Table 23 Continued |          |               |         |          |          |  |
|--------------------|----------|---------------|---------|----------|----------|--|
| 12CK23-189         | 0.23423  | 0.21634       | 1.18385 | 2.12830  | 8.49916  |  |
| 12CK23-190         | 0.20570  | 0.21837       | 1.02331 | 1.13617  | 7.76344  |  |
| 12CK23-191         | 0.23490  | 0.22665       | 1.20368 | 1.77211  | 8.33066  |  |
| 14CK23-170         | 0.00647  | 0.00382       | 1.16956 | 36.29476 | 32.49632 |  |
| 14CK23-171         | 0.00589  | 0.00703       | 1.16571 | 33.77056 | 27.31027 |  |
| 14CK23-172         | 0.00704  | 0.00735       | 1.18904 | 33.29003 | 30.48313 |  |
| 14CK23-173         | 0.02054  | 0.01997       | 4.60846 | 57.07528 | 58.53312 |  |
| 14CK23-174         | 0.01724  | 0.01864       | 4.69950 | 56.39351 | 57.72237 |  |
| 14CK23-175         | 0.01923  | 0.02236       | 4.34205 | 55.74944 | 59.01393 |  |
| 11CK23-122         | 0.02111  | 0.00430       | 1.21210 | 15.64482 | 13.50474 |  |
| 11CK23-123         | 0.30929  | 0.01339       | 0.97127 | 6.60791  | 6.07294  |  |
| 11CK23-124         | 0.42297  | 0.02854       | 1.06360 | 5.94769  | 5.79660  |  |
| 11CK23-125         | 0.77079  | 0.02435       | 1.21380 | 3.14301  | 0.99563  |  |
| 11CK23-126         | 0.79900  | 0.02088       | 1.25256 | 2.78307  | 1.06882  |  |
| 11CK23-127         | 0.87708  | 0.01963       | 0.86866 | 3.05792  | 1.14042  |  |
| Acid               | 0.09568  | 0.00482       | 0.85913 | 0.67669  | 0.05203  |  |
| Calibration 1      |          |               |         |          |          |  |
| Acid               | 0.13658  | 0.00720       | 0.38705 | 0.50134  | 0.03800  |  |
| Calibration 2      | 0.001.00 | 0.00005       | 0.055(1 | 0.15460  | 0.00701  |  |
| Acid               | 0.23168  | 0.00935       | 0.35561 | 0.17469  | 0.00721  |  |
| Calibration 3      | 0 50125  | 0.01763       | 0.40585 | 0.14676  | 0.12566  |  |
| Calibration 4      | 0.39133  | 0.01/05       | 0.40383 | 0.14070  | 0.12300  |  |
| Acid               | 1.07901  | 0.03501       | 0.44956 | 0.14436  | 0.14196  |  |
| Calibration 5      | 1107901  | 0.02201       | 0.11900 | 0.11100  | 0.11170  |  |
| Acid               | 1.93591  | 0.17511       | 0.53200 | 0.16193  | 0.15626  |  |
| Calibration 6      |          |               |         |          |          |  |
| Acid               | 2.09475  | 1.08639       | 0.51592 | 0.11228  | 0.01960  |  |
| Calibration 7      |          | • • • • • • • |         |          |          |  |
| Acid               | 3.51640  | 2.96646       | 0.42939 | 0.10936  | 0.06643  |  |
| Calibration 8      | 0.00944  | 0.00000       | 0.77052 | 29 50110 | 24 00054 |  |
| 0/CK23-98          | 0.00844  | 0.00000       | 0.77052 | 28.30119 | 24.90034 |  |
| 0/CK23-99          | 0.010/8  | 0.00629       | 0.73488 | 24.41082 | 21.04023 |  |
| 07CK23-100         | 0.02242  | 0.00702       | 0.70975 | 24.30032 | 20.80637 |  |
| 0/CK23-101         | 0.11/52  | 0.20068       | 0.84493 | 1/.04394 | 14.90314 |  |
| 07CK23-102         | 0.11493  | 0.21704       | 0.81662 | 10.85910 | 14.25431 |  |
| 0/CK23-103         | 0.15064  | 0.21313       | 0.94038 | 18.52434 | 22.4/834 |  |
| 13CK23-154         | 0.00/34  | 0.00456       | 1.14004 | 34.80031 | 28.0/0/0 |  |
| 13CK23-155         | 0.00947  | 0.00862       | 1.32832 | 39./1/55 | 35.23982 |  |
| 13CK23-156         | 0.01223  | 0.01350       | 1.35082 | 34.01746 | 32.94546 |  |
| 13CK23-157         | 0.10419  | 0.39605       | 1.17087 | 20.26935 | 16.32198 |  |

| Table 21 Continued    |          |         |         |          |          |  |
|-----------------------|----------|---------|---------|----------|----------|--|
| 13CK23-158            | 0.11807  | 0.38083 | 1.34145 | 22.47219 | 16.67692 |  |
| 13CK23-159            | 0.12415  | 0.40069 | 1.43722 | 21.93287 | 15.81677 |  |
| 15CK23-114            | 0.01446  | 0.00458 | 0.73036 | 28.35463 | 23.43163 |  |
| 15CK23-115            | 0.06914  | 0.00640 | 0.74821 | 20.97459 | 19.90827 |  |
| 15CK23-116            | 0.11813  | 0.01036 | 0.84734 | 21.62013 | 21.15703 |  |
| 15CK23-117            | 0.27916  | 0.10019 | 2.07735 | 39.42962 | 37.10871 |  |
| 15CK23-118            | 0.28194  | 0.09800 | 2.04348 | 39.30373 | 38.56429 |  |
| 15CK23-119            | 0.29745  | 0.12227 | 2.20181 | 48.01720 | 48.30913 |  |
| 08CK23-162            | 0.00633  | 0.00815 | 1.17831 | 23.94311 | 20.37833 |  |
| 08CK23-163            | 0.00630  | 0.00000 | 1.17136 | 19.85630 | 17.31439 |  |
| 08CK23-164            | 0.00712  | 0.00403 | 1.43917 | 22.70924 | 20.57608 |  |
| 08CK23-165            | 0.02674  | 0.00627 | 2.30202 | 33.95901 | 30.54060 |  |
| 08CK23-166            | 0.03047  | 0.00737 | 2.14958 | 31.40738 | 29.78543 |  |
| 08CK23-167            | 0.02627  | 0.00633 | 2.26712 | 33.38395 | 31.38673 |  |
| 09CK23-138            | 0.01214  | 0.00934 | 1.04456 | 35.62421 | 33.72376 |  |
| 09CK23-139            | 0.01393  | 0.00600 | 0.90686 | 28.72881 | 23.61827 |  |
| 09CK23-140            | 0.01729  | 0.00749 | 0.91713 | 26.67682 | 24.10229 |  |
| 09CK23-141            | 0.04921  | 0.02200 | 4.42414 | 61.04932 | 63.10822 |  |
| 09CK23-142            | 0.04894  | 0.01983 | 4.53419 | 58.94932 | 64.79646 |  |
| 09CK23-143            | 0.05592  | 0.02559 | 4.44389 | 61.13744 | 63.54302 |  |
| 16CK23-146            | 0.00578  | 0.00515 | 1.24750 | 19.16332 | 15.38849 |  |
| 16CK23-147            | 0.00734  | 0.00379 | 1.29559 | 19.02134 | 15.17702 |  |
| 16CK23-148            | 0.00794  | 0.00574 | 1.39699 | 18.63822 | 15.12035 |  |
| 16CK23-149            | 0.01140  | 0.00729 | 3.76100 | 37.22213 | 39.08304 |  |
| 16CK23-150            | 0.00766  | 0.00645 | 3.76585 | 35.96807 | 38.11844 |  |
| 16CK23-151            | 0.00965  | 0.00889 | 3.85022 | 31.65500 | 38.24551 |  |
| Acid                  | 0.20057  | 0.00821 | 1.84248 | 1.41863  | 1.41730  |  |
| Calibration 1         |          |         |         |          |          |  |
| Acid                  | 0.26444  | 0.01573 | 0.74127 | 0.98507  | 0.07042  |  |
| Calibration 2         | 0.40621  | 0.01770 | 0 (2242 | 0.20074  | 0.20680  |  |
| Acia<br>Calibration 3 | 0.40021  | 0.01//9 | 0.05545 | 0.309/4  | 0.29089  |  |
| Acid                  | 0 94124  | 0.03308 | 0 70632 | 0 24904  | 0.25043  |  |
| Calibration 4         | 0.9.1121 | 0.02200 | 0.70032 | 0.2.1901 | 0.20010  |  |
| Acid                  | 1.13121  | 0.02508 | 0.55730 | 0.17134  | 0.11668  |  |
| Calibration 5         |          |         |         |          |          |  |
| Acid                  | 2.66245  | 0.26710 | 0.75632 | 0.23703  | 0.20527  |  |
| Calibration 6         |          |         |         |          |          |  |
| Calibration 7         | 2.94811  | 1.63163 | 0.79733 | 0.18546  | 0.18206  |  |
| Calibration 8         | 7.18969  | 6.21404 | 0.99403 | 0.25894  | 0.25164  |  |

| Notes                     | Methyl      | Methyl         | Furfural    | Methyl      |
|---------------------------|-------------|----------------|-------------|-------------|
|                           | Lactate     | Vinylglycolate |             | Levulinate  |
|                           | Target/ISTD | Target/ISTD    | Target/ISTD | Target/ISTD |
| Nonacid                   | 0.028093    | 0.012586       | 0.01092     | 0.012444    |
| Calibrations 1            |             |                |             |             |
| Nonacid                   | 0.051825    | 0.018703       | 0.041112    | 0.057158    |
| Calibrations 2            |             |                |             |             |
| Nonacid                   | 0.117263    | 0.051474       | 0.073191    | 0.166415    |
| Calibrations 3            | 0.241221    | 0.1001(0       | 0.120764    | 0.241251    |
| Nonacia<br>Calibrations 4 | 0.241221    | 0.108169       | 0.138/64    | 0.341251    |
| Nonacid                   | 0.405311    | 0.200812       | 0.277560    | 0.708027    |
| Calibrations 5            | 0.4/3311    | 0.209012       | 0.277307    | 0.700727    |
| Nonacid                   | 0.936436    | 0.407366       | 0.498848    | 1.414353    |
| Calibrations 6            | 0.720.20    |                | 0.1300.10   |             |
| Nonacid                   | 1.810831    | 0.752086       | 1.593894    | 2.71374     |
| Calibrations 7            |             |                |             |             |
| Nonacid                   | 2.443509    | 1.298727       | 2.940571    | 4.958656    |
| Calibrations 8            |             |                |             |             |
| 06CK23-178                | 0           | 0              | 0           | 0           |
| 06CK23-179                | 0.056133    | 0.008514       | 0.010189    | 0.007541    |
| 06CK23-180                | 0.079579    | 0.008495       | 0.02558     | 0.046626    |
| 06CK23-181                | 0.164433    | 0.023848       | 0.066631    | 1.196924    |
| 06CK23-182                | 0.180271    | 0.02689        | 0.051188    | 1.273011    |
| 06CK23-183                | 0.194852    | 0.020102       | 0.084308    | 1.452822    |
| 10CK23-106                | 0           | 0              | 0           | 0           |
| 10CK23-107                | 0           | 0              | 0           | 0           |
| 10CK23-108                | 0           | 0              | 0           | 0           |
| 10CK23-109                | 0.002692    | 0              | 0           | 0           |
| 10CK23-110                | 0.002603    | 0              | 0           | 0           |
| 10CK23-111                | 0.002304    | 0              | 0.001615    | 0.001551    |
| 17CK23-130                | 0           | 0              | 0           | 0           |
| 17CK23-131                | 0           | 0              | 0           | 0           |
| 17CK23-132                | 0.002286    | 0              | 0           | 0.002971    |
| 17CK23-133                | 0.014963    | 0              | 0.018573    | 0.399548    |
| 17CK23-134                | 0.022391    | 0              | 0.020144    | 0.424206    |
| 17CK23-135                | 0.03187     | 0              | 0.019951    | 0.419376    |
| 12CK23-186                | 0           | 0              | 0           | 0           |
| 12CK23-187                | 0           | 0              | 0.003672    | 0.002667    |
| 12CK23-188                | 0.006177    | 0              | 0.000801    | 0.007454    |
| 12CK23-189                | 0.126343    | 0              | 0.030051    | 0.646198    |
| 120123-109                | 0.120343    | V              | 0.050051    | 0.040120    |

Table 24: GC-MS underivatized results from DOE block 2

| Table 24 Contir           | nued     |          |          |          |
|---------------------------|----------|----------|----------|----------|
| 12CK23-190                | 0.128292 | 0        | 0.034876 | 0.628897 |
| 12CK23-191                | 0.129965 | 0        | 0.035766 | 0.6312   |
| Nonacid                   | 0.023719 | 0.012403 | 0.015947 | 0.026065 |
| Calibrations 1            |          |          |          |          |
| Nonacid                   | 0.045939 | 0.027713 | 0.036025 | 0.057499 |
| Calibrations 2            |          |          |          |          |
| Nonacid                   | 0.094007 | 0.043147 | 0.081959 | 0.139717 |
| Calibrations 3            | 0.200105 | 0 101450 | 0.102200 | 0.202202 |
| Nonacid<br>Calibrations 4 | 0.209185 | 0.101458 | 0.183398 | 0.302292 |
| Nonacid                   | 0.445429 | 0 200711 | 0 390711 | 0.646086 |
| Calibrations 5            | 0.443427 | 0.200711 | 0.570711 | 0.040080 |
| Nonacid                   | 0.881789 | 0.395303 | 0.785735 | 1.310856 |
| Calibrations 6            |          |          |          |          |
| Nonacid                   | 1.487957 | 0.596307 | 1.450261 | 2.52536  |
| Calibrations 7            |          |          |          |          |
| Nonacid                   | 2.190925 | 1.169625 | 2.730268 | 4.497917 |
| Calibrations 8            | -        |          |          | _        |
| 14CK23-170                | 0        | 0        | 0        | 0        |
| 14CK23-171                | 0        | 0        | 0        | 0        |
| 14CK23-172                | 0        | 0        | 0        | 0        |
| 14CK23-173                | 0.00207  | 0        | 0.00249  | 0.020884 |
| 14CK23-174                | 0.006904 | 0        | 0.001435 | 0.02209  |
| 14CK23-175                | 0.00262  | 0        | 0.001651 | 0.024918 |
| 11CK23-122                | 0        | 0        | 0        | 0        |
| 11CK23-123                | 0.039948 | 0.006991 | 0.00372  | 0        |
| 11CK23-124                | 0.04345  | 0.006929 | 0.007097 | 0.001409 |
| 11CK23-125                | 0.075828 | 0.011075 | 0.019614 | 0.169651 |
| 11CK23-126                | 0.065138 | 0.01367  | 0.023612 | 0.170765 |
| 11CK23-127                | 0.073514 | 0.008773 | 0.009043 | 0.182964 |
| 07CK23-98                 | 0        | 0        | 0        | 0        |
| 07CK23-99                 | 0.002308 | 0        | 0        | 0        |
| 07CK23-100                | 0        | 0        | 0        | 0        |
| 07CK23-101                | 0.016445 | 0        | 0.028175 | 0.149762 |
| 07CK23-102                | 0.012922 | 0        | 0.029572 | 0.156007 |
| 07CK23-103                | 0.012364 | 0        | 0.019102 | 0.153093 |
| 13CK23-154                | 0        | 0        | 0        | 0        |
| 13CK23-155                | 0        | 0        | 0        | 0        |
| 13CK23-156                | 0        | 0        | 0        | 0        |
| 13CK23-157                | 0.003062 | 0        | 0.021505 | 0.16054  |
| 13CK23-158                | 0.00343  | 0        | 0.023839 | 0.16836  |

| Table 24 Contin | nued     |          |          |          |
|-----------------|----------|----------|----------|----------|
| 13CK23-159      | 0.002818 | 0        | 0.025699 | 0.181691 |
| 15CK23-114      | 0        | 0        | 0        | 0        |
| 15CK23-115      | 0.003507 | 0        | 0        | 0        |
| 15CK23-116      | 0.010897 | 0        | 0.002906 | 0        |
| 15CK23-117      | 0.010085 | 0.00337  | 0.009475 | 0.034664 |
| 15CK23-118      | 0.029672 | 0.002144 | 0.012411 | 0.047769 |
| 15CK23-119      | 0.032872 | 0.003006 | 0.013144 | 0.057157 |
| 08CK23-162      | 0        | 0        | 0        | 0        |
| 08CK23-163      | 0        | 0        | 0        | 0        |
| 08CK23-164      | 0        | 0        | 0.00047  | 0        |
| 08CK23-165      | 0.003876 | 0        | 0        | 0        |
| 08CK23-166      | 0.006529 | 0        | 0        | 0        |
| 08CK23-167      | 0.010345 | 0        | 0        | 0        |
| 09CK23-138      | 0        | 0        | 0.000336 | 0        |
| 09CK23-139      | 0        | 0        | 0        | 0        |
| 09CK23-140      | 0.002848 | 0        | 0        | 0        |
| 09CK23-141      | 0.024482 | 0.003009 | 0.005446 | 0.030562 |
| 09CK23-142      | 0.025105 | 0.002915 | 0.004882 | 0.032651 |
| 09CK23-143      | 0.027014 | 0.003017 | 0.013008 | 0.037275 |
| 16CK23-146      | 0        | 0        | 0        | 0        |
| 16CK23-147      | 0        | 0        | 0        | 0        |
| 16CK23-148      | 0        | 0        | 0        | 0        |
| 16CK23-149      | 0        | 0        | 0        | 0        |
| 16CK23-150      | 0        | 0        | 0.000392 | 0        |
| 16CK23-151      | 0        | 0        | 0        | 0        |
| Nonacid         | 0.019796 | 0.010579 | 0.015324 | 0.012233 |
| Calibrations 1  |          |          |          |          |
| Nonacid         | 0.042811 | 0.02181  | 0.029128 | 0.041103 |
| Calibrations 2  |          |          |          |          |
| Nonacid         | 0.093181 | 0.04287  | 0.073067 | 0.120509 |
| Calibrations 3  | 0 176995 | 0.074976 | 0.106061 | 0.2762   |
| Calibrations A  | 0.170885 | 0.074870 | 0.100901 | 0.2705   |
| Nonacid         | 0.408943 | 0 189667 | 0.262736 | 0 595575 |
| Calibrations 5  | 0.100915 | 0.109007 | 0.202750 | 0.090070 |
| Nonacid         | 0.7468   | 0.302527 | 0.782002 | 1.195661 |
| Calibrations 6  |          |          |          |          |
| Nonacid         | 1.358089 | 0.542797 | 1.406961 | 2.237869 |
| Calibrations 7  |          |          |          |          |
| Nonacid         | 2.865705 | 1.156127 | 2.77114  | 4.448039 |
| Calibrations 8  |          |          |          |          |

| Notes                 | Lactic  | Levulinic | Unreacted | Unreacted | Glucose  |
|-----------------------|---------|-----------|-----------|-----------|----------|
|                       | Acid    | acid      | sugars 1  | sugars 2  |          |
|                       | Target/ | Target/   | Target/   | Target/   | Target/  |
|                       | ISTD    | ISTD      | ISTD      | ISTD      | ISTD     |
| Acid                  | 0.12320 | 0.00423   | 0.82971   | 0.79828   | 0.03558  |
| Calibration I         | 0.42000 | 0.01015   | 1 20545   | 0.90715   | 0.01700  |
| Acid<br>Calibration 2 | 0.42900 | 0.01915   | 1.38343   | 0.80/13   | 0.01/99  |
| Acid                  | 0.78686 | 0.02298   | 0.48662   | 0.27924   | 0.00552  |
| Calibration 3         | 0.,0000 | 0.02290   | 0110002   | 0.27921   | 0.000002 |
| Acid                  | 1.68445 | 0.02831   | 0.36014   | 0.21833   | 0.00353  |
| Calibration 4         |         |           |           |           |          |
| Acid                  | 3.09850 | 0.08445   | 0.30628   | 0.19260   | 0.00000  |
| Calibration 5         |         |           |           |           |          |
| Acid                  | 4.72629 | 0.40591   | 0.29776   | 0.17801   | 0.00117  |
| Calibration 6         |         |           | 0.01000   | 0.100.00  | 0.00000  |
| Acid                  | 5.42697 | 2.83530   | 0.21283   | 0.12256   | 0.00000  |
| Calibration /         | 0.59406 | 0.10141   | 69 76024  | 68 72204  | 5.04276  |
| 155_CK19-90d          | 0.38400 | 0.10141   | 124 57060 | 129 22249 | 22 21780 |
| 155_CK19-97d          | 0.44302 | 0.18300   | 134.37009 | 130.33240 | 22.21/80 |
| 150_CK19-98d          | 0.10213 | 0.03036   | 30.98303  | 43.18937  | /.3/800  |
| 15/_CK19-99d          | 0.05152 | 0.07948   | 70.09910  | 0/.012/3  | 8.93321  |
| 159_CK19-13d          | 3.22320 | 0.10018   | 0.52804   | 0.03840   | 0.004/5  |
| 161_CK20-02d          | 0.12410 | 0.13933   | 106.11056 | 101.65269 | 20.07271 |
| 162_CK20-03d          | 0.1302/ | 0.13396   | 35.63399  | 34.21/62  | 2.86226  |
| 163_CK20-04d          | 0.40964 | 0.35194   | 46.58/88  | 12.94535  | 3.69481  |
| 165_CK20-05d          | 0.624/3 | 0.79998   | 9.13582   | 10.92431  | 0.5/86/  |
| 166_CK20-06d          | 0.70178 | 0.78699   | 8.28857   | 1.64642   | 0.79613  |
| 167_CK20-07d          | 0.75125 | 0.87153   | 8.23945   | 2.96172   | 0.57258  |
| 169_CK20-10d          | 0.23/33 | 0.05984   | 37.42560  | 33.29309  | 4.55103  |
| 170_CK20-11d          | 0.13600 | 0.09215   | 42.90373  | 36.73458  | 2.13408  |
| 171_CK20-12d          | 0.11920 | 0.05411   | 35.48301  | 31.65155  | 2.89861  |
| 173_CK20-13d          | 0.17056 | 0.03461   | 27.10860  | 24.89062  | 2.40477  |
| 174_CK20-14d          | 0.16858 | 0.03518   | 27.94786  | 25.38578  | 2.99837  |
| 175_CK20-15d          | 0.16679 | 0.04703   | 26.30720  | 23.42179  | 2.40255  |
| 179_CK20-18d          | 0.19139 | 0.13259   | 75.32223  | 73.91316  | 10.59005 |
| 180_CK20-19d          | 0.13992 | 0.04777   | 0.99671   | 0.84618   | 0.07176  |
| 181_CK20-20d          | 0.50445 | 0.35045   | 62.65600  | 55.11722  | 6.96734  |
| 183_CK20-21d          | 0.41444 | 0.26708   | 6.77076   | 36.70116  | 0.65065  |
| 184_CK20-22d          | 0.42058 | 0.27424   | 7.83997   | 28.28020  | 0.59025  |
| 185_CK20-23d          | 0.41348 | 0.28894   | 8.52291   | 31.88120  | 0.84701  |

Table 25: GC-MS derivatized results for DOE block 1

| Table 25 Continu      | ied     |         |           |          |          |
|-----------------------|---------|---------|-----------|----------|----------|
| 187 CK20-26d          | 0.09596 | 0.05747 | 52.25443  | 48.81962 | 6.69383  |
| 188 CK20-27d          | 0.07212 | 0.08805 | 47.55347  | 52.59076 | 6.36402  |
| 189 CK20-28d          | 0.11157 | 0.09805 | 38.72102  | 16.85310 | 3.61240  |
| 191 CK20-29d          | 0.38366 | 0.36288 | 3.19724   | 17.62298 | 0.42236  |
| 192 CK20-30d          | 0.46233 | 0.34402 | 2.85848   | 20.54487 | 0.44142  |
| 193_CK20-31d          | 0.55895 | 0.32753 | 5.02473   | 25.65502 | 0.47015  |
| 197_CK20-34d          | 0.14045 | 0.09385 | 64.91434  | 76.86721 | 22.26055 |
| 198_CK20-35d          | 0.09776 | 0.07544 | 56.82565  | 51.97228 | 14.52474 |
| 199_CK20-36d          | 0.12246 | 0.11013 | 80.71905  | 75.59070 | 12.09488 |
| 201_CK20-37d          | 0.13810 | 0.14412 | 66.32299  | 81.05262 | 10.90795 |
| 202_CK20-38d          | 0.14992 | 0.17434 | 65.35696  | 84.02227 | 10.32847 |
| 203_CK20-39d          | 0.13077 | 0.14894 | 81.49917  | 61.11110 | 13.44067 |
| 205_CK20-42d          | 0.06379 | 0.03214 | 29.06343  | 22.75756 | 4.50796  |
| 206_CK20-43d          | 0.88628 | 0.03980 | 23.20079  | 21.15995 | 1.73430  |
| 207_CK20-44d          | 0.79654 | 0.03136 | 10.64731  | 10.20848 | 0.65008  |
| 209_CK20-45d          | 1.07908 | 0.05405 | 5.19988   | 3.24253  | 0.24756  |
| 210_CK20-46d          | 1.15814 | 0.05729 | 4.44811   | 2.68069  | 0.22575  |
| 211_CK20-47d          | 1.01497 | 0.06032 | 4.66380   | 2.82680  | 0.42655  |
| Acid                  | 0.11736 | 0.00535 | 0.80848   | 0.46018  | 0.01409  |
| Calibration 1         |         |         |           |          |          |
| Acid                  | 0.38553 | 0.01994 | 1.40130   | 0.31549  | 0.02252  |
| Calibration 2         |         |         |           |          |          |
| Acid                  | 0.74476 | 0.02607 | 0.51790   | 0.09308  | 0.00922  |
| Calibration 3         | 1 52005 | 0.04450 | 0.26252   | 0.06240  | 0.00516  |
| Acid<br>Calibration 4 | 1.32993 | 0.04439 | 0.30232   | 0.00340  | 0.00310  |
| Acid                  | 2.69586 | 0.08895 | 0.33513   | 0.05821  | 0.00454  |
| Calibration 5         | 2.09200 | 0.00072 | 0.55515   | 0.02021  | 0.00151  |
| Acid                  | 4.05952 | 0.37732 | 0.29522   | 0.05503  | 0.00443  |
| Calibration 6         |         |         |           |          |          |
| Acid                  | 4.57750 | 2.34440 | 0.21681   | 0.03988  | 0.00343  |
| Calibration 7         |         |         |           |          |          |
| Acid                  | 9.08904 | 7.66220 | 0.24955   | 0.04446  | 0.00373  |
| Calibration 8         | 0.075(0 | 0.04520 | (0.000(0) | (0.12051 | 0.01765  |
| 223_CK20-50d          | 0.07569 | 0.04538 | 69.23368  | 60.13851 | 9.01765  |
| 224_CK20-51d          | 0.07510 | 0.05269 | 58.83650  | 53.70908 | 9.57592  |
| 225_CK20-52d          | 0.11656 | 0.04957 | 59.87388  | 56.69016 | 10.05151 |
| 227_CK20-53d          | 0.50376 | 0.15141 | 22.72517  | 24.92201 | 1.70647  |
| 228_CK20-54d          | 0.45920 | 0.13888 | 18.07640  | 19.51425 | 1.68417  |
| 229_CK20-55d          | 0.47006 | 0.19159 | 19.83161  | 22.43297 | 2.33966  |
| 231 CK20-58d          | 0.06273 | 0.04915 | 62.66787  | 54.78389 | 9.49832  |

| Table 25 Continued    |         |         |           |           |          |  |
|-----------------------|---------|---------|-----------|-----------|----------|--|
|                       |         |         |           |           |          |  |
| 232_CK20-59d          | 0.04953 | 0.08437 | 64.46727  | 61.87620  | 11.27294 |  |
| 233_CK20-60d          | 0.05578 | 0.05769 | 63.51344  | 59.58644  | 9.25039  |  |
| 235_CK20-61d          | 0.24145 | 0.85773 | 16.31986  | 11.74089  | 1.31643  |  |
| 236_CK20-62d          | 0.26853 | 0.80098 | 22.01048  | 11.77455  | 1.30596  |  |
| 237_CK20-63d          | 0.28366 | 0.78558 | 18.06270  | 11.11695  | 1.55547  |  |
| 241_CK20-66d          | 0.02285 | 0.03385 | 54.61886  | 53.06561  | 9.01141  |  |
| 242_CK20-67d          | 0.12015 | 0.03593 | 65.94870  | 47.16794  | 11.79284 |  |
| 243_CK20-68d          | 0.15392 | 0.04590 | 44.35531  | 40.81406  | 6.37732  |  |
| 245_CK20-69d          | 0.42846 | 0.10148 | 43.44536  | 40.99882  | 4.26627  |  |
| 246_CK20-70d          | 0.40388 | 0.12846 | 41.04013  | 33.04751  | 6.06348  |  |
| 247_CK20-71d          | 0.44332 | 0.09886 | 40.76607  | 38.88255  | 4.96582  |  |
| 249_CK20-74d          | 0.03377 | 0.02347 | 73.30025  | 65.90272  | 10.87990 |  |
| 250_CK20-75d          | 0.02439 | 0.02531 | 42.65838  | 44.02688  | 7.28777  |  |
| 251_CK20-76d          | 0.03174 | 0.04556 | 62.93925  | 62.04842  | 9.85548  |  |
| 253_CK20-77d          | 0.10714 | 0.03007 | 27.39794  | 32.19882  | 4.86813  |  |
| 254_CK20-78d          | 0.20805 | 0.04074 | 23.84363  | 34.66054  | 5.04566  |  |
| 255_CK20-79d          | 0.22018 | 0.04537 | 24.90101  | 30.73589  | 4.36294  |  |
| 259_CK20-82d          | 0.02999 | 0.04443 | 121.50569 | 120.84976 | 29.70852 |  |
| 260_CK20-83d          | 0.03140 | 0.04942 | 110.79805 | 103.27652 | 19.23918 |  |
| 261_CK20-84d          | 0.05993 | 0.05442 | 135.85663 | 114.32420 | 19.28740 |  |
| 263_CK20-85d          | 0.19352 | 0.10738 | 79.48780  | 87.25007  | 8.47654  |  |
| 264_CK20-86d          | 0.18957 | 0.09993 | 76.26285  | 81.86977  | 7.58653  |  |
| 265_CK20-87d          | 0.23578 | 0.11043 | 79.71203  | 88.33358  | 7.72947  |  |
| 267_CK20-90d          | 0.01132 | 0.02416 | 37.06121  | 32.14164  | 5.82717  |  |
| 268_CK20-91d          | 0.01231 | 0.01813 | 40.38426  | 35.94652  | 4.54028  |  |
| 269_CK20-92d          | 0.01297 | 0.01886 | 37.15254  | 33.42876  | 5.51886  |  |
| 271_CK20-93d          | 0.02441 | 0.04023 | 42.01154  | 39.40282  | 5.76396  |  |
| 272_CK20-94d          | 0.02205 | 0.01875 | 41.95146  | 38.68350  | 5.74677  |  |
| 273_CK20-95d          | 0.02082 | 0.02250 | 40.67284  | 39.19649  | 6.32934  |  |
| Acid                  | 0.11302 | 0.00537 | 0.81984   | 0.07110   | 0.01473  |  |
| Calibration 1         |         |         |           |           |          |  |
| Acid                  | 0.38051 | 0.02321 | 1.43267   | 0.31886   | 0.02865  |  |
| Calibration 2         |         |         |           |           |          |  |
| Acid                  | 0.68175 | 0.02614 | 0.51532   | 0.08563   | 0.00861  |  |
| Calibration 3         | 1 20252 | 0.04495 | 0.27052   | 0.06690   | 0.00712  |  |
| Acia<br>Calibration 4 | 1.39233 | 0.04483 | 0.5/933   | 0.00080   | 0.00/12  |  |
| Acid                  | 2 59219 | 0.07209 | 0 31586   | 0 21649   | 0.00282  |  |
| Calibration 5         | 2.37217 | 0.07207 | 0.01000   | 0.21077   | 0.00202  |  |
|                       |         |         |           |           |          |  |

| Table 25 Continued    |         |         |         |         |         |
|-----------------------|---------|---------|---------|---------|---------|
| Acid<br>Calibration 6 | 3.88773 | 0.35395 | 0.32620 | 0.05875 | 0.00678 |
| Acid<br>Calibration 7 | 4.27242 | 2.21194 | 0.23472 | 0.03909 | 0.00463 |
| Acid<br>Calibration 8 | 8.37149 | 6.52080 | 0.25557 | 0.04533 | 0.00517 |

| Notes         | Methyl      | Methyl         | Furfural       | Methyl      |
|---------------|-------------|----------------|----------------|-------------|
|               | Lactate     | Vinylglycolate |                | Levulinate  |
|               | Target/ISTD | Target/ISTD    | Target/ISTD    | Target/ISTD |
|               |             |                |                |             |
| Nonacid       | 0.029302658 | 0.016185504    | 0.023896838    | 0.037268564 |
| Calibration 1 |             |                |                |             |
| Nonacid       | 0.054778355 | 0.033524006    | 0.047624462    | 0.083232354 |
| Calibration 2 |             |                |                |             |
| Nonacid       | 0.117399301 | 0.07331718     | 0.107245176    | 0.177723738 |
| Calibration 3 |             |                |                |             |
| Nonacid       | 0.238905354 | 0.166233291    | 0.227408996    | 0.377780119 |
| Calibration 4 |             |                |                |             |
| Nonacid       | 0.512296304 | 0.377028221    | 0.505305199    | 0.812175456 |
| Calibration 5 |             |                |                |             |
| Nonacid       | 1.033348808 | 0.766279317    | 0.989007608    | 1.606467691 |
| Calibration 6 |             |                |                |             |
| Nonacid       | 1.682819079 | 1.624330043    | 2.019021986    | 3.187954261 |
| Calibration 7 |             |                |                |             |
| Nonacid       | 4.681943004 | 2.203292784    | 3.824256469    | 5.986609622 |
| Calibration 8 |             |                |                |             |
| Cat. CK13-    | 0           | 0              | 0              | 0.002449039 |
| 06 Hour 0     |             |                |                |             |
| Cat. CK13-    | 0.005874104 | 0              | 0.004462076    | 0.016196937 |
| 06 Hour 1     |             |                |                |             |
| Cat. CK13-    | 0.040113185 | 0              | 0.019459266    | 0.140673398 |
| 06 Hour 2     |             |                |                |             |
| Cat. CK13-    | 0.190857913 | 0.003397065    | 0.059984298    | 1.513821098 |
| 06 Hour 20    |             |                |                |             |
| Cat. CK13-    | 0.204831799 | 0.003559977    | 0.064548733    | 1.588227452 |
| 06 Hour 21    |             |                |                |             |
| Cat. CK13-    | 0.202534625 | 0.003649852    | 0.067554899    | 1.622581203 |
| 06 Hour 22    |             | 0.4000.460     | 1 00 100 500 1 | 1 (22000120 |
| Calibration   | 1.11661314  | 0.409759469    | 1.034095224    | 1.633898122 |
| Check         |             |                |                |             |
| Cat. CK13-    | 0           | 0              | 0              | 0           |
| 10 Hour 0     |             |                |                |             |
| Cat. CK13-    | 0           | 0              | 0              | 0           |
| 10 Hour 1     |             |                | 0              |             |
| Cat. CK13-    | 0           | U              | 0              | 0           |
| 10 Hour 2     | 0.005504605 |                | 0.000007001    | 0.007(41405 |
| Cat. CK13-    | 0.005/24687 | U              | 0.003337321    | 0.007641485 |
| 10 Hour 20    |             |                |                |             |
|               |             | 1              |                | 1           |

Table 26: GC-MS underivatized results for DOE block 1

| Table 26 Conti           | nued        |             |             |             |
|--------------------------|-------------|-------------|-------------|-------------|
| Cat. CK13-<br>10 Hour 21 | 0.004592707 | 0           | 0.004678018 | 0.008789056 |
| Cat. CK13-<br>10 Hour 22 | 0.004122196 | 0           | 0.002237992 | 0.010332316 |
| Calibration<br>Check     | 1.112721784 | 0.441677207 | 0.969342037 | 1.538318991 |
| Cat. CK13-<br>17 Hour 0  | 0           | 0           | 0           | 0           |
| Cat. CK13-<br>17 Hour 1  | 0           | 0           | 0.001657012 | 0.003118633 |
| Cat. CK13-<br>17 Hour 2  | 0           | 0           | 0.001657012 | 0.003118633 |
| Cat. CK13-<br>17 Hour 20 | 0.049310098 | 0           | 0.026759505 | 0.367563633 |
| Cat. CK13-<br>17 Hour 21 | 0.048791983 | 0           | 0.024072331 | 0.379082313 |
| Cat. CK13-<br>17 Hour 22 | 0.058316484 | 0           | 0.027701335 | 0.402089322 |
| Cat. CK13-<br>12 Hour 0  | 0           | 0           | 0           | 0           |
| Cat. CK13-<br>12 Hour 1  | 0           | 0           | 0.003803122 | 0.0074867   |
| Cat. CK13-<br>12 Hour 2  | 0.005534658 | 0           | 0.008307284 | 0.046083792 |
| Cat. CK13-<br>12 Hour 20 | 0.123257979 | 0           | 0.045177338 | 0.785830323 |
| Cat. CK13-<br>12 Hour 21 | 0.126742319 | 0           | 0.048786052 | 0.809809484 |
| Cat. CK13-<br>12 Hour 22 | 0.132505031 | 0           | 0.054204834 | 0.869037475 |
| Nonacid<br>Calibration 1 | 0.025538581 | 0.015488859 | 0.024431373 | 0.038934651 |
| Nonacid<br>Calibration 2 | 0.053614422 | 0.020609656 | 0.052080281 | 0.082067012 |
| Nonacid<br>Calibration 3 | 0.115703218 | 0.044856085 | 0.07176257  | 0.179585625 |
| Nonacid<br>Calibration 4 | 0.245514573 | 0.094867595 | 0.239902809 | 0.380112163 |
| Nonacid<br>Calibration 5 | 0.482197295 | 0.363757354 | 0.514842237 | 0.799031218 |
| Nonacid<br>Calibration 6 | 0.969994256 | 0.752922218 | 1.026943239 | 1.555933503 |

| Table 26 Continued                                |              |             |             |             |  |  |
|---------------------------------------------------|--------------|-------------|-------------|-------------|--|--|
| Nonacid                                           | 1.625451742  | 1.570377088 | 2.049506796 | 3.097384978 |  |  |
| Calibration 7                                     |              |             |             |             |  |  |
| Nonacid                                           | 7.102612336  | 3.097630769 | 3.964003972 | 5.601243124 |  |  |
| Calibration 8                                     |              |             |             |             |  |  |
| Cat. CK13-                                        | 0            | 0           | 0           | 0.00239999  |  |  |
| 14 Hour 0                                         |              |             |             |             |  |  |
| Cat. CK13-                                        | 0            | 0           | 0           | 0.001663443 |  |  |
| 14 Hour 1                                         |              |             |             |             |  |  |
| Cat. CK13-                                        | 0            | 0           | 0           | 0.003380545 |  |  |
| 14 Hour 2                                         | 0.00500000   |             | 0.00000100  | 0.040100015 |  |  |
| Cat. CK13-                                        | 0.005309065  | 0           | 0.009282133 | 0.048129815 |  |  |
| 14  Hour  20                                      | 0.000202252  | 0           | 0.01020502( | 0 110710417 |  |  |
| Cat. CK13-                                        | 0.008202352  | 0           | 0.019395026 | 0.119/1941/ |  |  |
| 14 Hour 21                                        | 0.002022957  | 0           | 0.01095219  | 0.060590251 |  |  |
| 14 Hour 22                                        | 0.003933837  | 0           | 0.01085518  | 0.060389231 |  |  |
| Calibration                                       | 0 880517005  | 0 758525852 | 1.006565299 | 1 536112651 |  |  |
| Check                                             | 0.889317003  | 0.756525652 | 1.000303299 | 1.550112051 |  |  |
| Cat. CK13-                                        | 0.001/1/1833 | 0           | 0           | 0           |  |  |
| 11 Hour 0                                         | 0.001+++033  | 0           | 0           | 0           |  |  |
| Cat CK13-                                         | 0.048615305  | 0.00973322  | 0.007391967 | 0.006208738 |  |  |
| 11 Hour 1                                         | 0.010012202  | 0.00973322  | 0.007551507 | 0.000200750 |  |  |
| Cat. CK13-                                        | 0.069010208  | 0.012188042 | 0.009723321 | 0.018938528 |  |  |
| 11 Hour 2                                         |              |             |             |             |  |  |
| Cat. CK13-                                        | 0.120468931  | 0.02078605  | 0.034281592 | 0.197393655 |  |  |
| 11 Hour 20                                        |              |             |             |             |  |  |
| Cat. CK13-                                        | 0.117338586  | 0.020170983 | 0.029432056 | 0.195340642 |  |  |
| 11 Hour 21                                        |              |             |             |             |  |  |
| Cat. CK13-                                        | 0.110932954  | 0.011335224 | 0.030138555 | 0.195806801 |  |  |
| 11 Hour 22                                        |              |             |             |             |  |  |
| Calibration                                       | 0.943755082  | 0.751441401 | 1.024971209 | 1.529148465 |  |  |
| Check                                             |              |             |             |             |  |  |
| Cat. CK13-                                        | 0            | 0           | 0           | 0.003675723 |  |  |
| 07 Hour 0                                         |              |             |             |             |  |  |
| Cat. CK13-                                        | 0            | 0           | 0           | 0           |  |  |
| 07 Hour I                                         | 0.001005067  |             | 0.000754001 | 0.007252256 |  |  |
| Cat. CK13-                                        | 0.001335967  | U           | 0.003754381 | 0.007353356 |  |  |
| 0 Hour 2                                          | 0.024922952  | 0           | 0.02172((57 | 0.112044(0) |  |  |
| Cat. CK13-                                        | 0.034822853  | U           | 0.021/2665/ | 0.112944696 |  |  |
| $\frac{07 \text{ Hour } 20}{\text{Cat. CV}^{12}}$ | 0.030662002  | 0           | 0.031200705 | 0 105172165 |  |  |
| 07 Hour 21                                        | 0.030003983  | U           | 0.031209/03 | 0.1031/3103 |  |  |
| 07 11001 21                                       |              |             |             |             |  |  |
| 1                                                 | 1            | 1           | 1           | 1           |  |  |

| Table 26 Continued |              |             |             |              |  |  |
|--------------------|--------------|-------------|-------------|--------------|--|--|
| Cat CK13-          | 0.033980849  | 0           | 0.017601845 | 0 111019084  |  |  |
| 07 Hour 22         | 0.055700047  | 0           | 0.017001045 | 0.111019004  |  |  |
| Cat CK13-          | 0            | 0           | 0.002376321 | 0.008057427  |  |  |
| 13 Hour 0          | 0            | 0           | 0.002370321 | 0.0000007127 |  |  |
| Cat CK13-          | 0            | 0           | 0           | 0.001698301  |  |  |
| 13 Hour 1          | 0            | 0           | Ū           | 0.001090501  |  |  |
| Cat CK13-          | 0            | 0           | 0.003876198 | 0.008459091  |  |  |
| 13 Hour 2          | 0            | 0           | 0.005070170 | 0.000459091  |  |  |
| Cat CK13-          | 0.005244057  | 0           | 0.030047067 | 0 22930378   |  |  |
| 13 Hour 20         | 0.003244037  | 0           | 0.030047007 | 0.22750570   |  |  |
| Cat. CK13-         | 0.007212778  | 0           | 0.038242492 | 0 265512643  |  |  |
| 13 Hour 21         | 0.007212770  | 0           | 0.030242472 | 0.203312043  |  |  |
| Cat. CK13-         | 0.005124895  | 0           | 0.033043977 | 0 262670761  |  |  |
| 13 Hour 22         | 0.003124075  | 0           | 0.055045777 | 0.202070701  |  |  |
| Calibration        | 1 824601828  | 0 752705831 | 1 028417234 | 1 541159779  |  |  |
| Check              | 1.024001020  | 0.752705051 | 1.02041/254 | 1.541157777  |  |  |
| Cat CK13-          | 0            | 0           | 0           | 0.005529208  |  |  |
| 15 Hour 0          | 0            | 0           | 0           | 0.003327200  |  |  |
| Cat. CK13-         | 0.005059108  | 0           | 0           | 0            |  |  |
| 15 Hour 1          | 0.005057108  | 0           | 0           | 0            |  |  |
| Cat. CK13-         | 0.006029682  | 0           | 0.003965451 | 0.003866679  |  |  |
| 15 Hour 2          | 0.000029002  | 0           | 0.005705451 | 0.005000075  |  |  |
| Cat CK13-          | 0.011643575  | 0.002157946 | 0.01650483  | 0.053028007  |  |  |
| 15 Hour 20         | 0.011013375  | 0.002157910 | 0.01020103  | 0.0220007    |  |  |
| Cat CK13-          | 0.026234965  | 0           | 0.017532708 | 0.051475373  |  |  |
| 15 Hour 21         | 0.02025 1905 | Ŭ           | 0.017252700 | 0.001170070  |  |  |
| Cat. CK13-         | 0.0109908    | 0.000917805 | 0.014556092 | 0.049447279  |  |  |
| 15 Hour 22         | 0.0109900    | 01000917002 | 0.01.020092 | 01019111219  |  |  |
| Cat. CK13-         | 0            | 0           | 0           | 0            |  |  |
| 08 Hour 0          | -            | -           | -           | -            |  |  |
| Cat. CK13-         | 0            | 0           | 0           | 0            |  |  |
| 08 Hour 1          | -            | -           | -           | -            |  |  |
| Cat. CK13-         | 0            | 0           | 0           | 0            |  |  |
| 08 Hour 2          | -            | -           | -           | -            |  |  |
| Cat. CK13-         | 0.033427505  | 0           | 0.002316928 | 0.005847554  |  |  |
| 08 Hour 20         |              |             |             |              |  |  |
| Cat. CK13-         | 0.035890414  | 0           | 0.002695794 | 0.00765836   |  |  |
| 08 Hour 21         |              |             |             |              |  |  |
| Cat. CK13-         | 0.041996247  | 0           | 0.00325466  | 0.009136181  |  |  |
| 08 Hour 22         |              |             |             |              |  |  |
| Cat. CK13-         | 0            | 0           | 0           | 0            |  |  |
| 09 Hour 0          |              |             |             |              |  |  |
|                    |              |             |             |              |  |  |

| Table 26 Continued |             |             |             |             |  |  |
|--------------------|-------------|-------------|-------------|-------------|--|--|
| Cat. CK13-         | 0           | 0           | 0           | 0           |  |  |
| 09 Hour 1          |             |             |             |             |  |  |
| Cat. CK13-         | 0           | 0           | 0           | 0           |  |  |
| 09 Hour 2          |             |             |             |             |  |  |
| Cat. CK13-         | 0.024557339 | 0           | 0.012491578 | 0.023301359 |  |  |
| 09 Hour 20         |             |             |             |             |  |  |
| Cat. CK13-         | 0.025966465 | 0           | 0.012860186 | 0.025771485 |  |  |
| 09 Hour 21         |             |             |             |             |  |  |
| Cat. CK13-         | 0.030872484 | 0           | 0.013743168 | 0.028242626 |  |  |
| 09 Hour 22         |             |             |             |             |  |  |
| Cat. CK13-         | 0           | 0           | 0           | 0           |  |  |
| 16 Hour 0          |             |             |             |             |  |  |
| Cat. CK13-         | 0           | 0           | 0           | 0           |  |  |
| 16 Hour 1          |             |             |             |             |  |  |
| Cat. CK13-         | 0           | 0           | 0           | 0           |  |  |
| 16 Hour 2          |             |             |             |             |  |  |
| Cat. CK13-         | 0           | 0           | 0           | 0.001763344 |  |  |
| 16 Hour 20         |             |             |             |             |  |  |
| Cat. CK13-         | 0           | 0           | 0           | 0           |  |  |
| 16 Hour 21         |             |             |             |             |  |  |
| Cat. CK13-         | 0           | 0           | 0           | 0.002490674 |  |  |
| 16 Hour 22         |             |             |             |             |  |  |
| Nonacid            | 0.026187567 | 0.010957753 | 0.02336974  | 0.03524348  |  |  |
| Calibration 1      |             |             |             |             |  |  |
| Nonacid            | 0.052926766 | 0.024849883 | 0.049672282 | 0.075546713 |  |  |
| Calibration 2      |             |             |             |             |  |  |
| Nonacid            | 0.112870814 | 0.062670795 | 0.113295764 | 0.177075059 |  |  |
| Calibration 3      |             |             |             |             |  |  |
| Nonacid            | 0.537991143 | 0.349253972 | 0.521348021 | 0.807855146 |  |  |
| Calibration 5      |             |             |             |             |  |  |
| Nonacid            | 1.929088584 | 1.552249623 | 2.116165468 | 3.188027624 |  |  |
| Calibration 7      |             |             |             |             |  |  |
| Nonacid            | 5.091292154 | 2.128117078 | 3.963437196 | 5.743984777 |  |  |
| Calibration 8      |             |             |             |             |  |  |

## APPENDIX F: MINITAB PLOTS

Versus fits, showing scatter, and normal probability plots, showing a roughly straight line, are used to verify no trends occurred as a result of the run order. Normal plots and half normal plots work similar to Pareto charts to determine which factors are significant. The following figures are individually labeled with chart title and respective target compound.









































































## REFERENCES

- [1] A. Muller, J. Schmidhuber, J. Hoogeveen and P. Steduto, "Some insights in the effect of growing bio-energy demand on global food security and natural resources," *Water Policy*, vol. 10, 2007.
- [2] "Water Security: The Water-Energy-Food-Climate Nexus," World Economic Forum, Washington DC, 2011.
- [3] O. Inderwildi and S. King, Energy, Transport, & the Environment, London: Spring-Verlag, 2012.
- [4] "Bioenergy and Food Securit," Food and Agriculture Organization of the United Nations, Rome, 2010.
- [5] P. Azadi, O. Inderwildi, R. Farnood and D. King, "Liquid fuels, hydrogen and chemicals from lignin: A critical review," *Renewable and Sustainable Energy Reviews*, vol. 21, pp. 506-523, 2013.
- [6] R. Perlack, L. Wright, A. Turhollow, R. Graham, B. Strokes and D. Erbach, "Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply," OAK RIDGE NATIONAL LAB TN, 2005.
- [7] R. Tol, T. Downing, O. Kuik and J. Smith, "Distributional aspects of climate change impacts," *Global Environmental Change Part A*, vol. 14, no. 3, pp. 259-272, 2004.

- [8] N. Ravindranath and D. Hall, Biomass, energy, and environment: a developing country perspective from India., Oxford, United Kingdrom: Oxfor Universy Press, 1995.
- [9] M. Tingem and M. Rivington, "Adaptation for crop agriculture to climate change," *Mitigation and Adaptation Strategies for Global Change*, vol. 14, pp. 153-168, 2009.
- [10] A. Haines, R. Kovats, D. Campbell-Lendrum and C. Corvalan, "Climate change and human health: impacts, vulnerability and public heath," *Public Health*, vol. 120, pp. 585-596, 2006.
- [11] I. Dincer, "Energy and environmental impacts: present and future perspectives," *Energy Sources, PartA: Recovery, Utilization, and Environmental Effects,* vol. 20, no. 4, pp. 427-453, 1998.
- [12] N. Panwar, S. Kauski and S. Kothari, "Role of renewable energy sources in environmental protection: A review," *Renewable and Sustainable Energy Reviews*, vol. 15, pp. 1513-1524, 2011.
- [13] B. Aebischer, B. Giovannini and D. Pain, "Scientific and technical arguments for the optimal use of energy," Internatinoal Energy Agency, Geneva, 19889.
- [14] E. Worell, L. Bernstein, J. Roy, L. Price and J. Harnisch, "Industrial enery efficiency and climate change mitigration," *Energy Efficiency*, vol. 2, pp. 109-123, 2009.
- [15] R. Sims, "Renewable energy: a response to climate change," *Solar Energy*, vol. 76, pp. 9-17, 2004.
- [16] A. O'Sullivan and S. Sheffrin, Economics: Principles and Tools Second Edition, New Jersey: Prentice Hall, 2003.
- [17] K. Alekkett, "Peak oil and the evolving strategies of oil importing and exporting countries: facing the hard truth about an import decline for the OECD countries," in *International Transport Forum, OECD/ITF*, 2007.
- [18] C. Campbell and J. Laherrere, "Preventing the next oil crunch," *Scientific American*, vol. 278, pp. 77-83, 1998.
- [19] J. Laherrere, "Oil peak or plateau?," in St. Andrews Economy Forum. , ASPO France, 2009.
- [20] F. Robelius, "Giant Oil Fields-The Highway to Oil," in *Giant Oil Filds and their Importance for Future Oil Production*, Uppsala, 2007.
- [21] D. Sperling, Two Billion Cars: Driving Towards Sustainability, New York: Oxford University Press, 2009.
- [22] Energy Information Administration, World proved reserves of oil and natural gas, most recent estimates., Washington: EIA, 2009.
- [23] U.S. Energy Information Administration, "Table 3a. International crude oil and liquid fuels supply, consumption and inventories," EIA, Washington, 2009.
- [24] U.S. Energy Information Administration, "International Energy Outlook 2013," U.S. Energy Information Administration, Washignton, DC, 2013.
- [25] N. Owen, O. Inderwildi and D. King, "The status of conventional world oil reserves -Hyper or cause for concern?," *Energy Policy*, vol. 38, no. 8, pp. 4743-4749, 2010.
- [26] International Energy Agency, "Worl Energy Outlook 2008," IEA, Paris, France, 2008.
- [27] United States Government Accountability Office, "Crude Oil: uncertainty about future oil supply makes it important to deveolp a strategy for addressing peak decline in oil production," USGAO, Washington DC, USA, 2007.

- [28] G. Lafforgue, B. Magne and M. Mareaux, "Energy substitutions, climate change and carbon sinks," *Ecological Economics*, vol. 67, pp. 589-597, 2008.
- [29] C. Christensen, J. Rass-Jansen, C. Marsden, E. Taarning and K. Egeblad, "The Renewable Chemicals Industry," *ChemSusChem*, vol. 1, pp. 283-289, 2008.
- [30] D. Dodds and R. Gross, "Chemical from Biomass," *Science*, vol. 318, pp. 1250-1251, 2007.
- [31] D. Klass, "Biomass for Renewable Energy, Fuels, and Chemicals," Academic Press, California, 1998.
- [32] B. Palsson, S. Fathi-Afshar, F. Rudd and E. Lightfoot, "Biomass as a Source of Chemical Feedstocks: An Econmica Evaluation," *Science*, vol. 213, pp. 513-517, 1981.
- [33] B. Kamm, "Production of Platform Chemicals and Synthesis Gas from Biomass," Angewandte Chemie International, vol. 46, no. 27, pp. 5056-5056, 2007.
- [34] F. Lichtenthaler, Biorefineries-Industiral Processes and Products, Wiley-VCH: Weinheeim, 2006.
- [35] H. Benninga, A History of Lactic Acid Making, Boston: Kluwer Academic Publishing, 1990.
- [36] J. Jan Ness, Encyclopedia of Chemical Technology, New York: John Wiley and Sons, 1981.
- [37] R. Datta, S. Tsai, P. Bonsignore, S. Moon and J. Frank, "Technological and economic potential of poly(lacic acid\_ and lactic acid derivatives," *FEMS Microbiology Reviews*, vol. 16, pp. 221-231, 1995.
- [38] M. Hartmann, Biopolymers from Reneable Resources, Berlin: Springer-Verlag, 1998.

- [39] G. Kharas, F. Sanchez-Riera and D. Severson, Platics From Microbes, Munich: Hanser-Gardner, 1994.
- [40] R. Conn, J. Kolstad, D. Bornezelleca, L. Dixler, B. Filer, B. LaDu and M. Pariza, "Safety assessment of polylactic for the use as a food-contact poymer," *Food and Chemical Toxicology*, vol. 33, no. 4, pp. 273-283, 1995.
- [41] D. Garlotta, "A literature Review of Poly(Lactic Acid)," Journal of Polymers and the Environment, vol. 9, pp. 63-84, 2002.
- [42] M. Holm, S. Saravanamurugan and E. Taarning, "Conversion of Sugars to Lactic Acid Derivatives Using Heterogeneous Zeotype Catalysts," *Science*, vol. 328, pp. 602-605, 2010.
- [43] M. Bicker, S. Endres, L. Ott and H. Vogal, "Catalytic conversion of carboydrates in subcrittical water: A new chemical process for lacti acid production," *Journal of moclecular catalysis*, vol. 239, pp. 151-157, 2005.
- [44] E. Taarning, S. Saravanmurugan, M. Holm, J. Xiong, R. West and C. Christensen, "Zeolite-Catalyzed Isomerization of Triose Sugars," *ChemSusChem*, vol. 2, no. 7, pp. 625-627, 2009.
- [45] R. West, M. Holm, S. Saravanamurugan, S. Xiong, Z. Beversdorf, E. \. Taarning and C. Christensen, "Zeolite H-USY for the production of lactic acid and methyl lactate from C3 surages," *Journal of Catalysis*, vol. 269, pp. 122-130, 2010.
- [46] M. Moliner, Y. Roman-Leshkov and M. Davis, "Tin-containing zeolites are highly active catalyst for the isomerization of glucose in water," *PNAS*, vol. 107, no. 14, pp. 6164-6168, 2010.

- [47] M. Holm, Y. Pagan-Torres, S. Saravanamurugan, A. Riisager, J. Dumisic and E. Taarning,
  "Sn-Beta catalysed conversion of hemicellulosic sugars," *Green Chemisrty*, Vols. 702-706, no. 14, p. 2012, 2012.
- [48] E. Taarning, S. Saravanamurugan and M. Holm, "Zeolite-catalyzed prepeation of alphahydroxy carboxylic acids and esters thereof". United States Patent 8,143,439, 27 March 2012.
- [49] X. Yang and L. Liu, "Improved preparation of lactide from lactic acid using microwave irradation," *Polmer Bulletin*, vol. 61, pp. 177-188, 2008.
- [50] D. Esposito and M. Antonietti, "Chemcial Conversion of Sugars to Lactic Acid by Alkaline Hydrothermal Processes," *ChemSusChem*, vol. 6, pp. 989-992, 2013.
- [51] F. Chambon, N. Essayem, F. Rataboul, C. Pinel, A. Cabiac and E. Guillon, "Process for converting cellulose or lignocellulosic biomass using stable non-zeolite solid lewis acid based on tin or antimony alone or as a mixture". United States Patent 2013/0291734 A1, 24 October 2013.
- [52] K. Tominaga, K. Satoh, A. Mori, S. Shimada, H. Tsuneki and Y. Hirana, "Method for productions lactic acids from carbohydrate-containting raw materials". United States Patent 2013/0204069 A1, 8 Aug 2013.
- [53] M. Holm, S. Saravanamurugan and E. Taaring, "Supporting online material for conversion of sugars to lacti acid derivative using heterogenious zeotype catalysts," *Science*, vol. 328, p. 602, 2010.
- [54] J. Bozell and G. Petersen, "A review on the production of levulinic acid and furances from sugars.," *Green Chemistry*, vol. 12, no. 4, pp. 539-554, 2010.

- [55] A. Meyers, M. Seefeld, B. Lefker, J. Blake and P. Williard, "Stereoselective alkylations in rigid systems," *Journal of American Chemistry Society*, vol. 120, pp. 7429-7438, 1998.
- [56] A. Bitonti, I. McDonald, F. Salituro, J. Whitten, E. Farvi and P. Wright, "Novel indole derivatives useful to treat estrogen-related newplasms and disorders". World patent Patent 9522524, 1995.
- [57] J. Jang and P. Rogers, "Effect of levulinic acid on cell growth and poly-betahydroxalkanoate production by Alcaligenes," *Biotechology Letters*, vol. 18, pp. 219-224, 1996.
- [58] H. Aert, M. Genderen, G. Steenpaal, L. Nelissen, E. Meiger and J. Liska, "Modified poly(2,6-dimethyl-1,4-phenylene) ethers prepared by redistribution," *Macromolecules*, vol. 30, pp. 6056-6066, 1997.
- [59] T. Taylor, W. Kielmeyer and C. Golino, "Emulsified furan resin-based binding compositions for glass fibers". World Patent Patent 9426677, 1995.
- [60] J. Lai, "Preparation of mixed symmetrical azonitrile polyerization initiators". United States Patent 5010179, 1991.
- [61] J. Bush, "Acylated nitrogen-based fouling conrol agents by reaction of amines with acylcarboxylic acids and alkenes". United States Patent 5851377, 1998.
- [62] J. Tsucha and K. Yochida, "Skin cosmetics containing levulinates, glycyrisates, and resorcinol or isopropylmethylphenol". Japan Patent 05320023, 1994.
- [63] P. Adams, R. Lange, R. Yodice, M. Baker and J. Kietz, "Intermediates useful for preparing dispersant-viscosity improvers for lubricating oils". Europe Patent 882745, 1998.

- [64] M. Raidel and F. Aschenbrenner, "Absorbent item". World Patent Patent 9843684, 1998.
- [65] K. Gundlach, L. Sanchez, C. Hanzlik, K. Brodsky, R. Colt and A. Montes, "Ink compositions for thermal ink-jet printing". United States Patent 5769929, 1998.
- [66] M. Nakozato and Y. Konishi, "Bakable composition for blackening metal surface". Japan Patent 06280041, 1995.
- [67] T. Oono, S. Saito, S. Shinohara and K. Takakuwa, "Fluxes for electric circuit board soldering and electic circuit boards". Japan Patent 08243787, 1996.
- [68] A. Shimizu, S. Nishio, Y. Wada and I. Metoki, "Photographic processing method for processing silver halide photograhic light-sensitive matial". Europe Patent 704756, 1996.
- [69] Y. Maekawa and Y. Miyaki, "Nonaueous secondary batteries with anodes containing amorphous chalcogen compounds or oxides". Japan Patent 09190820, 1997.
- [70] T. Hille, "Transdermal resorption of pharmaceuticals from cupercooled melts". German Patent 4446600, 1996.
- [71] W. Armstrong and E. Phillips, "Corrosion-inhibiting coatings compositions containing metal or amine salkts of ketoacids". Europe Patent 496555, 1993.
- [72] K. Lourvanig and G. Rorrer, "Dehydration of glucose to organic acids in micropouous pillared clay catalyst," *Applied Catalyst A*, vol. 109, pp. 147-165, 1994.
- [73] J. Jow, G. Rorrer, M. Hawley and D. Lamport, "Dehydration of D-fructose to levulinic acid over LZY zeolite catalyst," *Biomass*, vol. 14, pp. 185-194, 1987.
- [74] J. Dahlmann, "Preparation of levulinic acid," Chem. Ber., vol. 101, pp. 4251-4253, 1964.

- [75] S. Fitzpatrick, "Manufacture of furfual and levulinic acid by acid degradation of legnocellulosic". World patent Patent 8910362, 1990.
- [76] S. Fitzpatrick, "Production of levulinic acid by the hydroysis of carbohydrate-containing materials". World patent Patent 9640609, 1997.
- [77] S. Saha and S. Sivasanker, "Influence of Zn- and Ga-doping on the conversion of ethanol to hydrocarbons over ZSM-5," *Catalysis Letters*, vol. 15, pp. 413-418, 1992.
- [78] K. Nahid and W. Seames, "Seperation and Purifciation of Aromatics from Cracke Crop Oils using Sulfolate," Univiersity of North Dakota, Grand Forks, ND, 2009.
- [79] M. Khambete and W. Seames, "Study of decarboxylation and alklation of catalyltically cracked soybean oil," University of North Dakota, Grand Forks, ND, 2005.
- [80] J. Šťávová, J. Beránek, E. Nelson, B. Diep and A. Kubátová, "Limits of detection for the determination of mono- and dicarboxylic acids using gas and liquid chromatographic methods coupled with mass spectrometry," *J. Chrom. B: Analytical Techologies in the Biomedical and Life Sciences*, no. 879, pp. 1429-1438, 2011.
- [81] J. Šťávová, D. Stahl, W. Seames and A. Kubatova, "Method Development for the Characterization of Biofuel Intermediate Products Using Gas Chromatography with Simultaneous Mass Spectrometric and Flame Ionization Detections," *J. Chrom. A*, no. 88, pp. 79-88, 2012.
- [82] S. Bithi, "Process for lead free avgas octane enhancers from crop oils," University of North Dakota, Grand Forks, 2008.

[83] K. Jamshidi, S. Hyon and Y. Ikada, "Thermal characterization of polylactides," *Polymer*, vol. 29, pp. 2229-2234, 1988.