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ABSTRACT 
 

This work describes the synthesis and characterization of novel bioplastic composites by 

using novel additive manufacturing (AM) approaches. As a background, global plastic 

consumption has become a problem with the accumulation of plastics in landfills and the ocean.  

Recently, bioplastics have emerged as a viable option to petrochemicals. Currently, there are some 

issues like biodegradability, property optimization with bioplastics etc. In thesis, novel methods 

and engineering of composition of bioplastics are being reported. In Chapter II, the addition of 

lignin to the PLA polymer matrix by using solvent mixing will be reported. During this study, 

liquid ink mixture was successfully printed by using modified “drop on demand” material 

extrusion approach. Uniaxial tensile tests showed that 3D printed lignin-PLA composites have 

similar tensile strength as solvent cast samples. In Chapter III, the MAX/MAB phases were mixed 

with PLA matrix by using dry ball milling. The mixed compositions were then melt processing 

into filaments by using extruders. The filaments of composites of MAX/MAB phase with PLA 

were then printed by Fused Deposition Modeling (FDM). Detailed microstructure and 

characterization of 3D printed compositions will be reported.    In this thesis, Ti3SiC2, Ti3AlC2, 

Cr2AlC, and MoAlB were studies.
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CHAPTER I 

INTRODUCTION 

1.1 Biopolymers 

Biopolymers are polymers that are derived from natural resources and crude oil. There are 

multiple ways that they can be categorized, two of the most common being by, (a) source, and (b) 

by base unit or repeated unit in the polymer chain [1-4]. In this study, a classification by source is 

being reported for comparison with our work. When categorized by source, there are four 

categories, namely: (A) direct extraction from the natural raw materials such as biomass. Some 

examples of biopolymers extracted are polysaccharides like starch and cellulose; proteins like 

gelatin, casein, and silk; and marine prokaryotes. (B) Production from bio-derived monomers via 

chemical synthesis such as lactic acid from biomass to produce polylactic acid (PLA). (C) 

Production of synthetic biopolymers by microorganisms or fermentation by genetically modified 

bacteria, for examples, polyhydroxyalkanoates (PHA), polyhydroxybutyrate (PHB), 

polyhydroxyvalerate (PHV), bacterial cellulose, xanthan, and pullan. (D)  Production from crude 

oil by conventional and chemical methods, for example, aliphatic and aromatic polyesters, 

polyvinyl alcohol (PVA), and modified polyolefins. [2, 3] 

Biopolymers have several important characteristics that make them an attractive alternative 

to fossil-fuel derived plastics. They are derived from a variety renewable resources, making them 

a sustainable material. They can replace conventional plastics in many single-use applications, 

such as plastic grocery bags, plastic cups, diapers, food containers, etc. They can be partially or 

fully biodegradable, which helps to decrease the amount of plastic accumulating in landfills 
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worldwide. They also have much less of an environmental impact than fossil-fuel derived plastics 

because the crops that they are derived from absorb CO2 to grow.  [4] 

1.1.1 Lignin 

Lignocellulose, or plant matter, is a copiously available variety of biomass. Lignocellulose 

consists mainly of lignin and the polysaccharides cellulose and hemicellulose. The polysaccharides 

make up about two-thirds of the biomass and can be used to produce ethanol, which can be used 

as a biofuel. [5, 6] Lignin makes up about 20-35% of dry lignocellulose weight, depending on the 

source of the biomass. [7] 

Lignin is the second most abundant natural polymer, behind cellulose. It is a mixture of 

complex polymeric compounds and is concentrated in the cell walls of wood, making up 25-35 

percent of the weight of softwoods and 20-25 percent of hardwoods. [7] Lignin is an aromatic 

compound that has a recalcitrant nature due to characteristics such as its cross-linked structure and 

composition. The properties of the lignin particulates such as chemical structure, molecular weight 

distribution, and the degree of crosslinking, are affected by lignin isolation methods. This leads to 

non-uniform and nonstandard quality lignin making it difficult to use. [8] 

Lignin, a byproduct from the paper and pulping industry, has the potential to be used as an 

environmentally friendly filler in the plastics industry [9, 10]. However, cost-effective, reliable 

methods for the conversion and application of lignin are technically challenging due to the 

recalcitrant nature of lignin [10]. There are several advantages of using lignin as an additive in a 

polymer matrix. Some of the advantages are improving toughness, acting as a free radical trap, 

improving flame resistance, modifying the biodegradability, improving photo resistance and 

thermal stability, expanding fatigue lifetime, and contributing to the green engineering of materials 

[10]. 
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Even though there are many advantages of using lignin as an environmentally friendly 

filler, raw unprocessed lignin poses several challenges. Some of these challenges are, (a) 

chemically heterogeneous nature of lignin, (b) incompatibility between lignin and polymer matrix 

due to chemical incompatibility, (c) difficulty in melt processing, and (d) deleterious effect of 

lignin on the mechanical properties of lignin [11]. 

Several methods are being explored to work around the challenges that arise when working 

with lignin. These methods seek to deconstruct the lignin matrix to utilize it more effectively. 

There are both chemical and biological pathways for modifying the lignin matrix. Some 

researchers are modifying their lignin by functionalizing the OH groups in the lignin polymer 

matrix to make them more compatible with various polymers matrices. Modification methods 

include esterification reactions, acetylation reactions, and silanization reactions [10, 12-14]. Others 

are degrading the lignin matrix via biological and thermochemical processes to make use of the 

lower molecular weight molecules obtained from depolymerization to generate value-added 

products [7, 15]. Some are also finding innovative ways to incorporate lignin into more valuable 

products, such as thermoplastics without modifying the lignin matrix. [16, 17]. 

1.1.2 Polylactic Acid 

Polylactic acid or PLA is a biodegradable thermoplastic polymer. It is derived from the 

monomer lactic acid. Latic acid can be produced by bacterial fermentation of cellulose or chemical 

synthesis from acetaldehyde. Fermentation is the more favorable production method due to 

limitations of chemical synthesis of lactic acid. Limitations of chemical synthesis methods include 

a dependence on a byproduct of another process, their inability to produce the L-lactic acid 

monomer exclusively and high manufacturing costs. One of the main sources of cellulose used in 



4 
 

the production of PLA is corn starch and is the exclusive raw material for the company 

NatureWorks, the largest manufacturer of PLA in the US.  [3, 18, 19] 

PLA has many commercial applications especially in single use items such as food 

containers, cold drink cups, blister packaging, cutlery, plates, outdoor novelties, packaging 

applications, grocery bags, diapers, etc. [3] It can also have applications in the medical field as it 

is able to degrade into non-toxic lactic acid. The medical applications of PLA are in medical 

implants such as screws, rods, pins, and mesh since they can completely break down in the human 

body in 6 months to 2 years and eliminate needing an additional removal by surgery. [18] 

Since PLA is a biodegradable plastic, it has a major advantage over traditional plastics. In 

the right conditions, it can biodegrade in less than a month’s time as compared to traditional 

plastics which take several hundreds of years to biodegrade in landfills. PLA is very recyclable 

since it is a thermoplastic. This means that previously used PLA can be melted and remolded to a 

new shape. In addition, the process to manufacture PLA is much more environmentally friendly 

than traditional plastics. PLA production emits less greenhouse gases and has a much less energy 

intensive process than conventional plastic production. It requires 25-55% less energy to produce 

than traditional plastics and can even be lowered in the future. [20] Since carbon dioxide is 

absorbed during the growing process of the cellulose, the net greenhouse gas emission for PLA 

production can even be considered negative. [18] There are several other advantages of PLA which 

include: 

 Excellent optical properties and high tensile strength [20] 

 Ability to recycle back to lactic acid by hydrolysis or alcoholysis  

 Capability of producing hybrid paper-plastic packaging that is compostable  

 Reduction of landfill volumes  
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 Improvement of the agricultural economy  

 Ability to tailor physical properties through material modifications  

 Classified as generally recognized as safe (GRAS) by the United States Food and Drug 

Administration (FDA) and is safe for all food packaging applications [3] 

PLA has several advantageous qualities, but there are some drawbacks of using it as well. 

Some issues with PLA include low deformation at break and low heat resistance but with high 

modulus. [21]. It is also considered inferior to polyethylene terephthalate (PET) for long-term food 

storage applications due to permeability issues which result in faster food spoilage. [18] 

Recently, many researchers have attempted to alter the brittle nature of PLA by reinforcing 

the polymer with various fibers. It has been shown that the addition of fibers to the polymer matrix 

improved the mechanical properties in some cases. For instance, Sujaritjun et. al. [22] reported 

improved tensile strength with the addition of bamboo fibers and coconut fibers. Similarly, Tian 

et al. [23] reported a 25% higher bending strength of PLA composites reinforced with carbon fiber. 

However, Scaffaro et. al [24] reported a decrease in both tensile and flexural strength with 

increased addition of Posidonia Oceanica, a Mediterranean Sea seagrass.  

1.2 MAX Phases  

MAX phases are a family of layered ternary carbides and nitrides with the chemical 

formula Mn+1AXn, where n= 1, 2, or 3, M is an early transition metal, A is an A-group element and 

X is either carbon and/or nitrogen. According to crystal structures, they are further classified into 

211, 312, and 413 phases with 211 being the most common. [25, 26].  Figure 1.1 shows the M, A, 

and X groups on the periodic table.  Figure 1.2 shows schematic of the crystal structures of 211, 

312, and 413 MAX phases. Table 1.1 lists different 211, 312, and 413 MAX phases known to date 

in both bulk and thin film form.  
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Figure 1.1 The MAX phases consist of an early transition metal M (red) in the periodic table, an 
element from the A group, usually IIIA and IVA (dark blue), and a third element, X, which is 
either nitrogen or carbon (black), in the composition Mn+1AXn, where n is 1, 2 or 3. [27] 

 

Figure 1.2 Crystal Structure of the 211, 312, and 413 MAX phases [27] 
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Table 1.1 A list of MAX phases known to date, in both bulk and thin film form [28, 29] 

211 Sc2AlC, Sc2GaC, Sc2InC, Sc2ATlC,  Ti2AlC, Ti2AlN, Ti2SiC, Ti2PC, Ti2SC, 
Ti2GaC, Ti2GaN, Ti2GeC, Ti2AsC, Ti2CdC, Ti2InC, Ti2InN, Ti2SnC, Ti2TlC, 
Ti2PbC, V2AlC, V2SiC, V2PC, V2GaC, V2GaN, V2GeC, V2AsC, Cr2AlC, 
Cr2GaC, Cr2GaN, Cr2GeC, Zr2AlC, Zr2AlN, Zr2SC, Zr2InC, Zr2InN, Zr2SnC, 
Zr2TlC, Zr2TlN, Zr2PbC, Nb2AlC, Nb2PC, Nb2SC, Nb2GaC, Nb2InC, 
Nb2SnC, Nb2AsC, Mo2GaC, Hf2AlC, Hf2AlN, Hf2SC, Hf2InC, Hf2SnC, 
Hf2SnN, Hf2TlC, Hf2PbC, Ta2AlC, Ta2GaC,  

312 Ti3AlC2, Ti3GaC2, Ti3InC2, V3AlC2, Ti3SiC2, Ti3GeC2, Ti3SnC2, Ta3AlC2, 
Zr3AlC2, V3SiC2, Nb3SiC2 

413 Ti4AlN3, V4AlC3, Ti4GaC3, Ti4SiC3, Ti4GeC3, Nb4AlC3, Ta4AlC3 

 

These solids are bestowed with exciting properties, for example, they are elastically stiff, 

exceptional thermally and electrical conductors, oxidation resistant, resistant to chemical attack, 

and have relatively low thermal expansion coefficients. In addition, they are machinable and are 

highly damage tolerant [25, 26]. 

Due to their unique combination of properties, MAX phases can have a wide variety of 

applications. Some of the potential applications are:  

 Replacement of graphite for high temperature applications, for example MAX phases such 

as Ti2AlC have several advantages over graphite such as better wear and oxidation 

resistance. In addition, it also has high strengths, moduli and thermal conductivities which 

can be considered further positive attributes. 

 Heating elements as MAX phases form stable and protective oxide. These heating elements 

in air, argon, hydrogen, or vacuum. 
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 High temperature foil bearings and other tribological applications because of the self-

lubricating nature of the material. 

 Gas burner nozzles as they form protective passivating layer. In addition, as compared to 

traditional ceramics they can be easily joined. Furthermore, they can be readily threaded 

and can potentially replace metallic nozzles.  

 Tools for dry drilling of concrete where diamonds can be embedded in a Ti3SiC2 matrix.  

 Ti3SiC2 can be used as glove and condom formers. 

 Nonstick coating for cookware as they are durable, stick and stain resistant, thermal shock 

resistant, and dishwasher safe for use in cookware, cutlery, and other cooking utensils. 

 Ti3AlC2 and Ti3SiC2 are quite resistant to radiation damage. They can be coated on Zircaloy 

tubes so that they can form a thin cohesive and adhesive alumina layer to protect the tubes 

in case of accident due to loss of coolant. Also, Ti3SiC2 doesn’t react with molten Pb or 

Pb-Bi alloys so it could be a good material for ladle containing molten Pb or Pb-Bi alloys 

in nuclear reactors. 

 Conductive element in spark plugs and other ignition devices. 

 Sputtering targets for the deposition of electrical contacts. 

 Electrical contact for SiC-based devices where they can be used harsh environments. 

 Substrates for ruthenium oxide and sulfide-based catalysts for different electrochemical 

applications [25, 26]. 

1.3 MAB Phases 

“MAB” phases are Boron containing ternary [30, 31]. Kota et al. [31] synthesized and 

characterized bulk polycrystalline MoAlB ceramics by using a single step reactive hot-pressing 

technique. They observed that MoAlB forms dense and adherent alumina scales during static 
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oxidation up to at least 1300°C. They also showed that these solids have high thermal conductivity 

and its thermal expansion coefficient (9.5 x 10-6 K-1) makes it compatible with many engineering 

alloys. It had high compressive strength and relatively low hardness. All of these properties show 

that MoAlB ceramics can have applications in high temperature materials and coatings [31].  

Recently, Benamor et al. [32] investigated the dry sliding friction and wear behavior of 

fully dense, single-phase MoAlB against alumina and 100Cr6 steel counterparts. Their group 

observed that friction coefficient was load sensitive during testing against alumina. Detailed SEM 

studies showed that the abrasion was the dominant wear mechanism. Against steel, they found that 

the friction coefficient decreased with increasing load and the wear rates were low under all applied 

loads. This study clearly shows the excellent wear properties of the MoAlB.  

1.4 Additive Manufacturing 

Additive manufacturing (AM) is a manufacturing process that uses computer-aided-design 

(CAD) software or 3D object scanners to communicate with a machine that deposits material, layer 

upon layer, into highly precise geometric shapes. The name additive manufacture comes from the 

fact that the process is accomplished by adding the material layer by layer to create the desired 

object. In contrast to traditional methods, where excess material has to be removed through milling, 

machining, carving, shaping etc.  [33] 

Several different types of materials can be used in the AM process including metal 

powders, thermoplastics, ceramics, composites, glass, and even edibles such as chocolate. The AM 

process first starts with the creation of an object that is digitally defined in a CAD program. The 

object is saved as a stereolithography file or .stl file that essentially “slice” the object into ultra-

thin layers. The information from this file guides the nozzle or print head with precise motions 

along a specific path to deposit material layer-by-layer until a completed part is achieved, or with 
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selective laser melting/sintering a laser or electron beam selectively melts or partially melts in a 

bed of powdered material. As the materials cool or cure, depending on the type of AM, they fuse 

together to form a 3-dimensional structure. [33] 

The term additive manufacturing encompasses a variety of different processes and is 

typically used interchangeably with the term 3D printing. These processes include material 

extrusion, directed energy deposition, material jetting, binder jetting, sheet lamination, vat 

photopolymerization and powder bed fusion. There are many different applications of AM. AM is 

well suited for the production of light-weight, complex geometric designs for applications in the 

aerospace industry. They also have applications in the automotive industry by printing aluminum 

alloys to produce exhaust pipes and pump parts and with various polymers to produce bumper 

parts. Some medical applications of 3D printing include printing of bone grafts and synthetic 

organs. [33] 

Material extrusion is one of the most well-known AM techniques. This process functions 

by drawing material through a nozzle mounted on a moveable arm. The material is deposited on a 

moveable platform, where it is built up layer-by-layer, with the nozzle moving in a horizontal 

motion and the moveable platform moving vertically and, in some cases, horizontally. Layer 

adhesion occurs by temperature control and in some cases chemical bonding agents are used. [33] 

Fused Deposition Modeling (FDM), a type of material extrusion, builds 3D objects by 

selective deposition of melted material in a pre-determined path layer-by-layer. Typically, 

thermoplastic polymer filaments are the material used for this manufacturing technique. Some 

advantages of this type of AM are that it is a cost-effective method to produce custom parts and 

prototypes, there is a high availability of the technology so lead times are short, and a wide range 

of thermoplastic filaments are available. There are also disadvantages of using this type of AM. 
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Some disadvantages include the lowest dimensional accuracy and resolution when compared to 

other 3D printing technologies, parts made by FDM are likely to have visible layer lines, so post 

processing is needed to obtain a smooth finish, and their layer adhesion makes the FDM parts 

anisotropic, so this method of AM is not recommended for mechanically critical components.  [34, 

35] 

Material Jetting, another a type of AM, is a process in which material is jetted onto a build 

platform using either a continuous or Drop on Demand (DOD) approach. DOD is a method of 

material jetting in which each layer is allowed to dry before depositing an additional layer. Layers 

are either allowed to cool and harden or are cured by UV light. Some post processing is usually 

required to remove support material. Typically, photopolymer resin is used with this 

manufacturing technique. An important advantage of material jetting is its ability to produce highly 

accurate multi-material and multi-color prints and, in some cases, can be post processed to 100% 

transparency. It can also simulate injection-molded parts. The printing process is also sterilizable 

which is highly advantageous for medical applications. [36]. The rest of the thesis is organized 

into three chapters: (a) Chapter II is focused with designing PLA-Lignin composites by using 

“drop on demand” 3D printing process,  (b) Chapter III is focused on designing novel MAX/MAB-

PLA composites by FDM, and (c) Chapter IV focuses on future work and recommendations as a 

result of this thesis. 
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CHAPTER II 

LIGNIN/PLA AM COMPOSITES 

This work was included in the patent application titled “Method of Fabricating Lignin 

Based Polymeric Systems”. File date: February 16, 2018, Application No. 15/932,226. K&L File 

No. U66-012062, UND File No.: UND 16-09. US Patent Application of Surojit Gupta et al. 

2.1 Introduction 

Cost-effective, reliable methods for the conversion and application of lignin are technically 

challenging due to lignin’s recalcitrant nature but used in small amounts it can be utilized as a filler 

in various polymer matrices. This presents an opportunity to utilize a readily available material as 

a cost effective and environmentally friendly filler in a polymer matrix such as Polylactic acid 

(PLA), a biodegradable polymer made from corn.  

In particular, lignin can be used to create a “green” or environmentally friendly polymer 

composite using a non-polar polymer matrix and as-received lignin particulates with no chemical 

treatments or additives to create polymer-lignin composite layers formed using three-dimensional 

printing technology. For instance, a prepared PLA-lignin composite solution can be loaded into a 

three-dimensional printer and additively manufactured into the desired shape or layer.  
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2.2 Experimental 

In order to manufacture the lignin/PLA composites, a liquid mixture of the two was made. 

This mixing process was accomplished by using a volatile solvent to dissolve the PLA to allow 

the lignin to become well mixed in the PLA matrix. The process of making this mixture included 

using 50 wt% untreated lignin powder to 50 wt% PLA pellets (a product from Filabot, PLA 

supplier is NatureWorks) for a total of 10 grams (5 g of lignin and 5 g of PLA). The two were 

combined in a mixing container with 50 mL of dichloromethane (DCM). A magnetic stir bar was 

placed in the mixing container and the container was sealed with a lid. The mixing container was 

placed on a magnetic stir plate and stirred at room temperature for 2 hours at a set speed. After the 

mixing was completed, the mixture was then loaded into the printer and the printing process was 

started.  

The printer that was used in this experiment was a Hyrel engine SR- standard resolution 

3D printer. The printer head was a VOL-25 extruder, capable of heating up to 100 °C, with an 

anodized aluminum syringe with a 25-cc capacity. The nozzle diameter on the syringe was 1.5-

mm. Print speed was 600 mm/min and layer thickness was 0.5 mm. Some of the tech specs include:  

 Build volume: x-axis 225 mm, y-axis 200 mm, z-axis 200 mm 

 Positional accuracy: x-axis ± 50 μm, y-axis ± 150 μm, z-axis ± 10 μm 

 Positional resolution: x-axis 5 μm, y-axis 5 μm, z-axis 1 μm 

 Chassis: Powder-coated Steel & Anodized Aluminum (no enclosure) 

 Motion control: 

o Precision Ball Screw in X, Y, and Z Axes 

o Precision Linear Bearing System in X, Y, and Z Axes 
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 Electronics: 

o State-of-the-art 150+ MHz 32-bit ARM processor 

o Modular, micro-stepping motor-drivers with closed-loop encoding 

o Integrated, Dual CAN-bus architecture 

o “Smooth Move” motion control technology firmware 

o Integrated camera [37] 

A preprogrammed STL file was used for the prints. It was a rectangular prism, with the x and y 

directions being equal and the z direction being much smaller. The print dimensions that were 

made include: (X, Y, and Z directions respectively)  

 50 mm x 50 mm x 2 mm 

 50 mm x 50 mm x 4 mm 

 50 mm x 50 mm x 6 mm 

 75 mm x 75 mm x 2 mm 

 100 mm x 100 mm x 2 mm 

Figure 2.1 depicts, (a) the printer in the middle of a print and (b) a completed 3D printed sample. 

The printed samples were cured on the print stage overnight and were then oven dried at 100°C 

for 24 hours to remove any remaining DCM. Tensile test coupons were cut from the dried samples 

for testing. Tensile tests were performed with a Shimadzu Universal Testing Machine (Shimadzu 

AG-IS UTM, Shimadzu Scientific Instruments Inc., Columbia, MD). A 5 kN load cell was used 

for testing with a test speed of 5 mm/min. 
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Figure 2.1: Schematics of, (a) a 3D printer printing PLA-50 wt% Lignin composition, and (b) a 

PLA-50 wt% Lignin 3D printed sample. 

Throughout the printing experiment, several issues were encountered. One of the issues 

included the samples sticking to the glass sample stage. This issue was never fully resolved, but 

several attempts were made to alleviate this problem. Some attempts at resolving it included 

cleaning the glass with acetone prior to printing (with no success), using water to remove the 

sample after it had dried overnight (one of the more effective attempts, worked better with thicker 

samples), and using a releasing agent on the glass prior to printing (unsuccessful in aiding the 

sample removal). If further experiments of this type are done in the future, another method of 

removal to attempt would be putting the glass that the samples were stuck to in the drying oven to 

test if it was the residual DCM that was causing the samples to adhere to the glass sample stage.  

(a) (b) 
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Another problem that was encountered was syringe under- or over-extrusion. For a few of 

the print attempts, over-extrusion of the print material occurred causing the print to fail as the 

amount of material extruded was not held constant. Also, with other attempts, problems with 

under-extrusion occurred, where the print material was not coming out in enough volume to make 

a new layer. Initially, these were thought to be an issue with the viscosity of the print material, so 

the ratio of solvent to solute was changed to increase or decrease the viscosity. There was no 

success with changing the viscosity of the print material. It was later discovered that after several 

uses, the O-ring that seals the syringe had been partially torn from repeated use. Once the O-ring 

was replaced, the issues with under- or over-extrusion were resolved.  

2.3 Results and Discussion 

 The 3D printed samples were compared with solvent-cast samples. The tensile data from 

the 3D printed and solvent-case samples is compared in Figure 2.2. From the tensile stress vs 

displacement plot, it can be seen that the 3D printed samples behave similarly to the solvent-cast 

samples. All 3D printed PLA-lignin composite samples exhibited similar behavior, which is 

summarized in Table 2.1. 
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Figure 2.2 Tensile Stress vs Displacement of 3D Printed and Solvent-Cast PLA-Lignin 
Composites. 

 

Table 2.1 Summary of the Tensile Strengths of 3D printed PLA-lignin composites 

Sample 3D Printing Size Average Tensile Strength 

PLA 50 wt% lignin 50 mm x 50 mm x 0.5 mm 4.34 MPa 

PLA 50 wt% lignin 100 mm x 100 mm x 1 mm 3.40 MPa 

PLA 50 wt% lignin 100 mm x 100 mm x 0.5 mm 5.07 MPa 

 

2.4 Conclusions 

 A novel method of manufacturing 3D printed samples by using liquid inks based of PLA 

was developed. The mechanical behavior of the PLA-Lignin composites were studied. It was 

observed that the 3D printed samples performed similarly to as-cast samples of the same 

composition. Also, some of the 3D printed samples had a much longer plastic region than the as-
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cast samples. Further studies are needed to determine if the print dimension plays a significant role 

on the plastic behavior of the 3D printed samples.  
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CHAPTER III

SYNTHESIS AND CHRACTERIZATION OF NOVEL MAX/MAB 

POLYMER COMPOSITES BY FUSED DEPOSITION MODELLING 

(FDM)  

 

3.1 Introduction 

This chapter describes the synthesis and characterization of MAX-PLA composites and 

MAB-PLA composites. As a nomenclature, MAXPOLs are composite materials composed of 

MAX phases dispersed in a polymer matrix base.  Similarly, MABPOLs are composed of MAB 

phases dispersed in polymer matrix. If the volume concentration of MAX or MAB phases are less 

than 30 vol% then they will be described as MAX reinforced polymers (MRPs) or MAB reinforced 

polymers (MBRPs). Please note, MRPs or MBRPs are a sub-category of MAXPOLs or 

MABPOLs, respectively. In the rest of thesis, the composites designed during study will be 

referred to as MRPs or MBRPs. 

3.2 Experimental 

Filaments composed of various MAX and MAB phases incorporated into the PLA matrix 

were synthesized. Nine compositions of filament were made in this study. The compositions and 

nomenclature used are shown in Table 3.1.  
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Table 3.1 Materials extruded along with their composition and nomenclature used. 

Material Extruded Composition Nomenclature 

Pure PLA 100 wt% PLA PLA 

MoAlB/PLA 
1 wt% (0.19 vol%) MoAlB-99 wt% (99.81 vol%) PLA 

5 wt% (0.97 vol%) MoAlB-95 wt% (99.03 vol%) PLA 

PLA-1 wt% MoAlB 

PLA-5 wt% MoAlB 

Ti
3
AlC

2
/PLA 

1 wt% (0.3 vol%) Ti
3
AlC

2
-99 wt% (99.70 vol%) PLA 

5 wt% (1.5 vol%) Ti
3
AlC

2
-95 wt% (98.50 vol%)  PLA 

PLA-1 wt% Ti
3
AlC

2
 

PLA-5 wt% Ti
3
AlC

2
 

Ti
3
SiC

2
/PLA 

1 wt% (0.28 vol%) Ti
3
SiC

2
-99 wt% (99.72 vol%) PLA 

5 wt% (1.43 vol%) Ti
3
SiC

2
-95 wt% (98.57 vol%)  PLA 

PLA-1 wt% Ti
3
SiC

2
 

PLA-5 wt% Ti
3
SiC

2
 

Cr
2
AlC/PLA 

1 wt% (0.24 vol%) Cr
2
AlC-99 wt% (99.76 vol%) PLA 

5 wt% (1.24 vol%) Cr
2
AlC-95 wt% (98.76 vol%) PLA 

PLA-1 wt% Cr
2
AlC 

PLA-5 wt% Cr
2
AlC 

 

The PLA used in this study was pulverized PLA-4043D obtained from Filabot located in 

Barre, VT. Ti3SiC2 powder (-325 mesh) was obtained from Kanthal, Hallstahammar, Sweden. The 

MoAlB powders (-325 mesh) [38], Cr2AlC powder (-325 mesh) [39] and Ti3AlC2 powders (-325 

mesh) [40] were fabricated in-house. Each batch of filament was made by first preparing 100 g 

batches of each composition. Due to size limitations of the ball mill mixing containers, the 100 g 

batches were made in four 25 g portions. The 25 g mixtures are as follows: the 1 wt% mixture 

consisted of 0.25 g of MAX or MAB powder and 24.75 g of the pulverized PLA powder and the 

5 wt% mixtures consisted of 1.25 g of MAX or MAB powder and 23.75 g of the pulverized PLA 

powder. Polymethyl methacrylate (PMMA) mixing containers and three PMMA mixing balls per 

container were used to mix the 25 g powder mixtures. The powders were mixed by dry ball milling 

(8000 M mixer Mill, SPEX SamplePrep, Metuchen, NJ) for 5 minutes. The 100 g mixtures were 

stored in plastic containers until they were ready to be extruded.   
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An extruder (Filabot EX2 extruder, Filabot, Barre, VT) was used for making the filament 

in this set of tests. The extruder was set to 175 °C to extrude pure PLA powder. Approximately 

100 g of useable PLA filament was made before using the MAXPOL or MABPOL mixtures to 

ensure there was enough useable PLA filament for any test coupons to be printed. Before a new 

composition was run through the extruder, any remaining powder from the previous composition 

was vacuumed out of the hopper and any powder that the vacuum could not get was wiped out 

with a slightly damp paper towel. Then the hopper was filled ¼ or ¾ full, depending on what the 

previous composition was, with PLA pellets to flush out the previous composition in the extruder. 

The hopper was filled ¼ full for cleaning between compositions of the same powder type to 

distinguish the transition to the new filament composition and ¾ full between compositions of 

different powder type to ensure the previous powder was flushed out of the system. PLA pellets 

were used for this cleaning process to save the pulverized PLA powder for the powder 

mixtures. The powder and pellets were of the same type (product number 4043D, Filabot, Barre, 

VT).   

When extruding, the filament comes out very hot and the force of gravity combined with 

the weight of the filament can stretch the filament thinner than the required 1.75mm±0.05mm 

filament diameter range. To control this, the drop height of the filament and cooling fan placement 

height were crucial to optimize. The drop height is the height of the extruder at table height, 98.5 

cm (38 ¾ in), minus the stand height. The fan height is the height taken from the bottom of the fan 

to the floor or is stated as the fan sitting directly on top of the stand making the stand height and 

fan height the same. The drop height and fan height were different between the compositions 

extruded, and it should be noted that the additives lowered the extrusion temperature of PLA.  
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Initially, boxes were used to obtain optimal drop heights, but an adjustable stand was made 

so that an easily adjustable platform was available for the filament to land on. An easily adjustable 

stand allowed for the drop height to be optimized for each type of filament being extruded. The 

adjustable stand was made from ½ inch PVC pipe, 4-½ inch corner connectors for the PVC pipe, 

5 clamps (4 for holding the platform and 1 for holding the fan), 1 flat 12”x12” piece of wood to 

act as the surface for the filament to land on. The square piece of wood was covered with mylar 

tape to prevent the filament from singeing or sticking to the surface of the wood. Figure 3.1 is a 

schematic of the extruder set up (image of extruder from Filabot) [41].  

 

Figure 3.1: Schematics of the extruder used for designing filaments for 3D printing. 

 

The temperatures were optimized for each filament based on the appearance of the filament 

at the varying temperature settings. The first composition to be tested for temperature optimization 

was 1 wt% MoAlB. During this process, the mixture was first extruded at 175°C, but the 

temperature was decreased in 5°C increments until the temperature was optimized at 165°C. The 
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higher temperatures were not suitable for this mixture because the consistency of the filament 

was fluidic, and the filament exhibited bubbling which is an indication that the temperature is set 

too high. This same process was repeated for each of the filaments until each of their individual 

settings were determined.   

The stand height settings were done by guessing a height setting and checking if the 

filament was within the right range. This was done by choosing a height and allowing the filament 

to coil into 3 to 4 coils, turning off the extrude switch and measuring the filament diameter. When 

the stand height was set higher, the filament diameter increased, since it was closer to the extruder. 

When the stand height was set lower, the filament diameter decreased, since it was farther from 

the extruder. Stand height settings were measured during experimentation and drop height was 

calculated from the total height of the extruder (height from the extruder nozzle to the floor) minus 

the stand height. 

It should be noted that the pure PLA filament that was extruded was done before drop 

height measurements were taken, but 100 g of useable filament was obtained. The temperature for 

pure PLA extrusion was optimal at 175°C. Filament optimization for the various filaments is 

shown in Table 3.2. 
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Table 3.2 Optimized settings for various filament compositions.   

Composition Fan Height 

(cm) 

Stand Height 

(cm) 

Drop Height* 

(cm) 

Temperature 

(°C) 

PLA N/A N/A N/A 175 

PLA-1wt% Ti3SiC2 49.5 49.5 49 175 

PLA-5wt% Ti3SiC2 63.5 63.5 35 165 

PLA-1wt% MoAlB 63.5 63.5 35 165 

PLA-5 wt% MoAlB 63.5 63.5 35 165 

PLA-1wt%Ti3AlC2 63.5 63.5 35 165 

PLA-5wt% Ti3AlC2 63.5 63.5 35 165 

PLA-1wt%Cr2AlC 63.5 63.5 35 165 

PLA-5wt%Cr2AlC 63.5 63.5 35 165 

*Total height was 98.5 cm, total height – stand height = drop height 

The 3D printer used to manufacture the test coupons was a FDM type printer (H400 3D 

printer, Afinia, Chanhassen, MN). Figure 3.2 is a picture of the printer used during this study. The 

filament size that is compatible with this printer must be 1.75±0.05mm in diameter. Since this is 

such a tight range, it was important to measure the filament diameter properly to prevent damaging 

the printer head. To ensure that the prints were successful, every inch of filament was measured 

with multiple measurements done at the same points to ensure that the diameter was within the 

range.  
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Figure 3.2: Afinia H400 3-D printer [42] 

 

All prints used the following settings: infill of 99%, layer thickness of 0.2 mm, quality set to 

normal, unsolid model, no raft and no support. STL files made by a previous student were used to 

print the test coupons. [43] The two coupon types were tensile coupons for tensile tests and 

cylindrical coupons for various surface tests. The dimensions of printing are shown in Figure 3.3. 

   

Figure 3.3 Sample dimensions for 3D printed testing coupons (a) tensile test coupon (dimensions 
in mm) (b) cylindrical test coupon [43] 
 

To prepare the printer for printing the samples, mylar tape was place on the printing 

platform to help sample adhesion, to prevents sample warping during printing and to help with 

removal after the print is complete. The printer platform was preheated for 30 mins before printing 

(a) (b) 
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or until it was preheated to 60°C. The filament was loaded into the printer head while the platform 

preheated (when printing duplicates the filament was kept in the head). The STL files were loaded 

on the print program while waiting for the printer to preheat so that printing could being as soon 

as the print platform was heated sufficiently. The print was started once the print bed reach a 

sufficient temperature. The tensile coupons used approximately 1g of filament and the cylindrical 

coupons used approximately 3.5g of filament. After the print was completed, excess filament 

attached to the sample was removed. Three cylindrical samples were printed per composition and 

five tensile coupons were printed per composition. 

The dimensions of the cylindrical samples were taken using a Vernier caliper. Three 

measurements of height and diameter at three different points were done. Mass measurements 

were taken with an analytical balance. Density (ρE) and porosity were calculated from the mass 

and volume measurements. Theoretical calculations of density (ρTh) of composites was calculated 

by using rule of mixture calculations from theoretical density of the individual components. The 

porosity of the samples are determined from the following equation. 

                            𝑃(%) = (1 − ρE𝑝𝑇ℎ)  --------------------------- (III a)                           

Tensile tests were done with a Shimadzu Universal Testing Machine (Shimadzu AG-IS 

UTM, Shimadzu Scientific Instruments Inc., Columbia, MD). A 5 kN load cell was used for testing 

with a test speed of 5 mm/min. Hardness of the cylindrical samples was measured with a Vicker’s 

micro-hardness indenter (Mitutoyo HM-112, Mitutoyo Corporation, Aurora, IL). A load of 4.9 N 

was applied for 15 s. The cylindrical samples were also used for wettability and tribology testing 

All the samples were characterized by JEOL JSM-6490LV Scanning Electron Microscope (JEOL 

USA, Inc., Peabody, Massachusetts.) in Secondary electron (SE) and Backscattered Electrons 

(BSE) mode. X-ray information was also determined by using a Thermo Nanotrace Energy 
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Dispersive X-ray detector with a NSS-300e acquisition engine. If a region is delineated to be 

chemically uniform in the micron level then it will be identified with two asterisks as 

*microconstituent*. It is critical to note and emphasize that this region is not necessarily single 

phase and measurement is for qualitative comparison. The accuracy of measuring C is quite low 

during chemistry analysis by X-ray detector in SEM, thus the presence of C in microconstituents 

will be designated as {Cx}. 

The contact angle analysis was performed on the polished samples until ~1 μm finishing. 

For each composition, a set of 3 tests were performed on randomly chosen spots by using an angle 

analyzer (FTÅ 125, First Ten Angstroms, Inc., Portsmouth, VA). During testing, a sessile drop of 

deionized (DI) water was deposited on each spot from a needle (CAD7932-12EA, Sigma-Aldrich, 

gauge 20), and a snapshot was taken after 10 s. For each drop the baseline and the curve fitting 

was done manually, thereafter, the contact angle was measured by using the software FTA32.  

Thermal behavior was studied by Differential Scanning Calorimetry (DSC  Q1000,   TA 

Instruments, New Castle, DE 19720). During DSC, samples were heated at 20 oC/min from RT to 

200 oC (first cycle) then cooled to RT, thereafter it was again heated at 20 oC/min to 200 oC (second 

cycle). In this chapter, the DSC results are reported for second cycle.  

The tribological behavior of the samples were investigated by using a pin-on-disc 

tribometer (CSM Instruments SA, Peseux, Switzerland) by using 100Cr6 stainless steel balls 

against the 3D printed disc. The experimental conditions used during these studies were 5 N, ~50 

cm/s linear speed, ~10 mm track radius, and a sliding distance of 2000 m, respectively. All the 3D 

printed discs were also polished to a ~1 µm finishing which were confirmed by using a surface 

profilometer (Surfcom 480A, Tokyo Seimitsu Co. Ltd., Japan). In this thesis, the µmean of the 

results is reported which calculated by taking average of mean friction coefficients of three data 
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sets of similar compositions. The WR was calculated by measuring the mass of the stainless steels 

balls and 3D printed samples before and after the testing by using a weighing scale (Model 

XA82/220/2X, Radwag Balances and Scales, Poland). The specific wear rate (WR) was calculated 

from: 

                                     WR = (mi – mf)/(ρ.N.d) --------------------------- (IIIb) 

where, mi is the initial mass, mf is the final mass, ρ is density of the composite, N is the applied 

load, and d is the total distance traversed by the sample during the tribology testing [3-7]. The total 

WR from both the counterparts is reported in the text. After tribological testing, the discs were 

then coated with Au/Pd by using a Balzers SCD 030 sputter coater (BAL-TEC RMC, Tucson AZ 

USA). The coated samples were then mounted on aluminum mounts for investigations by 

microscopy. 

3.3 Results and Discussion 

Figure 3.4 shows the microstructure of extruded filaments after 3D printing. In all cases, 

MAX or MoAlB particulates are well dispersed in the matrix. Figure 3.5 summarizes the 

microstructure of the 3D printed samples. In all the samples MAX or MoAlB particulates are well 

dispersed in the microstructure. Interestingly, on closer inspections pore and/or voids were 

observed in the 3D printed samples (for example, Figs. 3.5 b, d, and f). These results were further 

corroborated as all the 3D printed samples were porous, for example 3D printed PLA samples 

were ~90% dense as compared to PLA-1wt%Ti3SiC2 and PLA-5wt%Ti3SiC2 which were ~93% 

dense (Fig. 3.6).  Comparatively, PLA-MoAlB and PLA-Ti3AlC2 had similar porosity as PLA, 

whereas PLA-1wt%Ti3AlC2 and PLA-5wt%Ti3AlC2 had slightly higher porosity of ~13.5% and 

~12.2%, respectively.  
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The hardness of PLA was ~160 MPa, and it marginally increased to ~167 MPa, ~171 MPa, 

and ~171 MPa in PLA-5wt%MoAlB, PLA-5wt%Ti3SiC2, and PLA-5wt%Ti3AlC2, respectively. 

However, PLA-5wt% Cr2AlC had similar value of ~161 MPa. Figure 3.7 summarizes the DSC 

profile of PLA and its composites during second heating cycle. PLA showed predominantly 

amorphous behavior with Tg (glass transition temperature) at ~63 oC and melting point (MP) at 

~150 oC. The addition of all the MAX phases promoted crystallization except PLA-1wt%Ti3SiC2 

which was predominantly amorphous. In addition, a sharp crystallization temperature (Tc) peak 

was observed at ~105 oC except PLA-1wt%Ti3SiC2. Due to crystallization, the melting point of 

MRPs also increased to ~169 oC as compared to PLA. Comparatively, the addition of MoAlB did 

not change the characteristics of PLA, and MBRPs showed similar characteristics as PLA. Based 

on these results, it can be summarized that MAX Phases are promoting heterogenous 

crystallization of PLA matrix. In literature, Bindhu et al. [44] have also seen heterogenous 

crystallization in PLA matrix by adding ultrasonically exfoliated Boron Nitride (BN). 
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Figure 3.4: SEM micrographs of extruded filaments of, (a) PLA in SE,  and BSE images of, (b) 
BSE of (a), (c) PLA-1wt% MoAlB, (d) PLA-5wt% MoAlB, (e) PLA-1wt% Ti3SiC2, (f) PLA-
5wt% Ti3SiC2, (g) PLA-1wt% Ti3AlC2, (h) PLA-5wt%Ti3AlC2, (i) PLA-1wt%Cr2AlC, and (j) 
PLA-5wt%Cr2AlC 

500 µm 100 µm 

100 µm 100 µm 

100 µm 100 µm 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 3.4: SEM micrographs of extruded filaments of, (a) PLA in SE,,  and BSE images of, (b) 
BSE of (a), (c) PLA-1wt% MoAlB, (d) PLA-5wt% MoAlB, (e) PLA-1wt% Ti3SiC2, (f) PLA-
5wt% Ti3SiC2, (g) PLA-1wt% Ti3AlC2, (h) PLA-5wt%Ti3AlC2, (i) PLA-1wt%Cr2AlC, and (j) 
PLA-5wt%Cr2AlC 

 

Figure 3.8 shows a typical stress versus displacement plot of 3D printed PLA. The ultimate 

strength at which the material fractures is defined as Ultimate Tensile Strength (UTS). It is 

interesting to note that yielding was observed in the 3D samples. Rodríguez-Panes et al. [45] have 

observed similar yielding in 3D printed PLA samples. They also observed that thickness of layers, 

infill, and orientation had an impact on 3D printed PLA samples. In this Chapter, the infill and 

layer thickness were set at 99% and 0.2 mm, respectively. It is recommended that the effect of 

infill and layer thicknesses can be further studied in these composites. 

100 µm 50 µm 

50 µm 50 µm 

(g) (h) 

(i) (j) 



32 
 

 

Figure 3.5: SEM micrographs of 3D printed, (a) PLA in SE,,  and BSE images of, (b) BSE of (a), 
(c) PLA-1wt% MoAlB, (d) PLA-5wt% MoAlB, (e) PLA-1wt% Ti3SiC2, (f) PLA-5wt% Ti3SiC2, 
(g) PLA-1wt% Ti3AlC2, (h) PLA-5wt%Ti3AlC2, (i) PLA-1wt%Cr2AlC, and (j) PLA-
5wt%Cr2AlC. 
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100 µm 100 µm 
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Figure 3.5: SEM micrographs of 3D printed, (a) PLA in SE,,  and BSE images of, (b) BSE of (a), 
(c) PLA-1wt% MoAlB, (d) PLA-5wt% MoAlB, (e) PLA-1wt% Ti3SiC2, (f) PLA-5wt% Ti3SiC2, 
(g) PLA-1wt% Ti3AlC2, (h) PLA-5wt%Ti3AlC2, (i) PLA-1wt%Cr2AlC, and (j) PLA-
5wt%Cr2AlC. 
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Figure 3.6: Plot of, (a) porosity, and (b) hardness versus MAX or MAB content in the PLA 
matrix. 
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3.7: DSC analysis of, (a) PLA, (b) PLA-1 wt% MoAlB, (c) PLA-5 wt% MoAlB, (d) PLA-1wt% 
Ti3SiC2, (e) PLA-5 wt% Ti3SiC2, (f) PLA-1 wt% Ti3AlC2, (g) PLA-5 wt% Ti3AlC2, (h) PLA-1 
wt% Cr2AlC, and (i) PLA-5 wt% Cr2AlC. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Plot of tensile stress versus displacement of 3D printed PLA. 
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Figure 3.9: Plot of tensile stress versus displacement of, (a) PLA-MoAlB, (b) PLA-Ti3SiC2, (c) 
PLA-Ti3AlC2, and (d) PLA-Cr2AlC. 

 

Figure 3.9 shows the tensile stress versus displacement plot of different PLA based 

composites.  In general, all the compositions failed at lower strength than PLA. Figure 3.10 

summarizes the UTS as function of MAX or MoAlB concentration. All the compositions showed 

a drop in UTS after the addition of 1 wt% MAX or MoAlB which corresponds 0.2-0.3 vol% of 

these phases (Table 3.1). Based on these results, we can conclude that PLA matrix is sensitive to 

these phases and can affect the mechanical behavior of these composites. Interestingly, the addition 
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of 5 wt% MAX phases improved the UTS of these composites, for example, PLA-5wt%Ti3SiC2, 

PLA-5wt%Ti3AlC2 and PLA-5wt%Cr2AlC had a UTS of ~39 MPa, ~30.5 MPa, and ~38.7 MPa 

as compared to ~41.5 MPa in pure PLA. Comparatively, PLA-5wt%MoAlB had a UTS of ~23.2 

MPa. By analyzing these results, it can be summarized that certain crystalline PLA-MAX 

composites like PLA-Ti3SiC2 and PLA-Cr2AlC have higher strength as compared to PLA-Ti3AlC2. 

Comparatively, amorphous PLA-MoAlB composites were not able to recover their strength. 

Detailed studies are recommended for correlating the effect of, (a) higher volume fractions, (b) 

crystallization, and (c) crystal chemistry on the mechanical strength of these novel composites.  

Figure 3.11 shows the variation of µmean and WR as function of MAX phases or MoAlB 

content. PLA had µmean and WR of 0.34±0.04 and 7.7 x 10-5 mm3/Nm, respectively. In all cases, 

µmean decreased by ~76% of µmean in PLA after the addition of 1 wt% particulates to ~0.27, ~0.26, 

~0.26, and ~0.26 in PLA-1wt%MoAlB, PLA-1wt%Ti3SiC2, PLA-1wt%Ti3AlC2, and PLA-

1wt%Cr2AlC, respectively. It retained similar value in all the compositions after the addition of 5 

wt% particulates except PLA-5wt%Ti3AlC2 where it increased marginally to ~0.30. The WR 

marginally decreased in PLA-1wt%Cr2AlC to ~2.2 x 10-5 mm3/Nm or retained similar values of 

7.72 x 10-5 mm3/Nm and 5.28 x 10-5 mm3/Nm in PLA-1wt%MoAlB and PLA-1wt%Ti3AlC2, 

respectively, and increased to ~1.6 x 10-4 mm3/Nm in PLA-1wt%Ti3SiC2. After the addition of 5 

wt% particulates, the WR of all compositions increased to ~3 x 10-4 mm3/Nm, ~1.4 x 10-4 mm3/Nm, 

and ~1.8 x 10-4 mm3/Nm in PLA-5wt%MoAlB, PLA-5wt%Ti3SiC2, and PLA-5wt%Ti3AlC2, 

respectively except PLA-5wt%Cr2AlC where it retained similar value of ~8.3 x 10-5 mm3/Nm, 

respectively. By inspecting the data, it can be surmised that Cr2AlC is performing better as a solid 

lubricant as compared to the other phases. Figures 3.12 a-b show the tribosurfaces of PLA (Fig. 

3.12a), and the corresponding stainless-steel surface (Fig. 3.12b). Ligaments of PLA fragments 
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can be observed on the stainless-steel surface. Similarly, Figs. 3.12 c-d show tribosurfaces of PLA-

5wt%Cr2AlC and the corresponding stainless-steel surface. Wear track was observed on the PLA-

5wt%Cr2AlC surface (Fig. 3.12c). Ligaments of polymers wear debris was observed on the 

stainless surface (Fig. 3.12e). On further investigation, polymer wear debris reinforced with 

partially oxidized Cr2AlC particulates was observed (Fig. 3.12f). These micrographs give further 

evidence that Cr2AlC particles are effective solid lubricants by intermingling with the base 

polymer and proving a robust interfacial layer which decreased µmean without compromising the 

WR. In future, it would be interesting to study etching or other mechanical treatments to increase 

the attachment of interfacial layers to the substrates. At this juncture, it is also not clear why 

Cr2AlC is behaving better than the other systems which were testing during this study. More 

studies are needed to understand the effect of MAX or MoAlB on the interfacial layers. 

Figure 3.13 shows the wettability profile of all the composites. PLA and all the 3D printed 

composites were hydrophilic (Fig. 3.14). 

 

 

 

 

 

 

 

 

Figure 3.10: Plot of tensile strength versus MAX or MoAlB additions in the PLA matrix. 
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Figure 3.11: Plot of, (a) friction coefficient, and (b) WR versus MAX or MAB additions in PLA 
matrix. 
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Figure 3.12: SEM micrographs of, (a) PLA in SE, (b) BSE image of the 100 Cr6 Stainless steel 
surface, (c) PLA-5wt%Cr2AlC in BSE, (d) higher magnification of PLA-5wt%Cr2AlC in BSE, 
(e) Stainless steel surface in BSE, and (f) BSE of the region marked in (e) after tribological 
testing. 
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Figure 3.13: Wettability profile of, (a) PLA, (b) PLA-1wt%Ti3SiC2, (c) PLA-5wt%Ti3SiC2, (d) 
PLA-1wt%MoAlB, (e) PLA-5 wt% MoAlB, (f) PLA-1wt% Ti3AlC2, (g) PLA-5wt% Ti3AlC2, (h) 
PLA-1 wt% Cr2AlC, and (i) PLA-5 wt%Cr2AlC. 

 

 

 

 

 

 

 

 

 

Figure 3.14: Plot of contact angle as a function of MAX or MoAlB content.  
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3.4 Conclusions 

MAX-reinforced polymer matrix composites were successfully designed by 3D printing. 

From the results, it can be concluded that MAX Phases changed the crystallinity of the base PLA 

matrix and increased the melting temperature to ~170 °C from ~150 °C in the base PLA 

composition. More studies are needed to understand the exact mechanisms of crystallization in the 

PLA matrix by using MAX phases. The MAX Phase powders acted as a solid lubricant by 

decreasing the friction coefficient for all cases. In addition, it was also observed that the addition 

of 1 wt% decreased the WR for all compositions except Ti3SiC2 but the WR then increased at 5 

wt% additions for all the compositions except Cr2AlC. 
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

4.1 Future Studies on Lignin-PLA Composites 

 It is highly recommended that PLA-Lignin composites should be made with Fused 

Deposition Modelling (FDM). Preliminary studies showed that it is tedious to incorporate as-

received lignin in the PLA matrix 

4.2 Experimental 

 As-received lignin powder was added to the PLA polymer matrix in 1 and 5 wt% 

compositions. This was done by mixing the two powders (lignin and pulverized PLA) in a 

polymethyl methacrylate (PMMA) mixing container with 3 PMMA mixing balls for 5 minutes. 

The powders were then extruded from the extruder (Filabot EX2 Extruder, Filabot, Barre, VT). 

Attempts to extrude this mixture into uniform filament were unsuccessful due to bubble formation 

in the filament. Even after systematic efforts to troubleshoot the problem by adjusting temperature 

by 5°C increments until 155°C but it did not ameliorate the situations, and the bubbling in the 

filaments persisted.  We focused on addressing the problem by heat treating lignin at different 

temperatures.  

 Currently, we are exploring heat treatment of the lignin powder. Initially, lignin was heat 

treated at 300°C for 1 hour in an Ar atmosphere. The heat-treated lignin was then crushed to a fine 

powder using a SS container and two SS balls in a ball mill for 10 minutes. The fine powder was 
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then sieved for 1 hour into -325 mesh. The -325 mesh fraction was used for mixing with the 

pulverized PLA powder. Thereafter, 1 and 5 wt% of these powders were then mixed with PLA by 

using the method described in the previous paragraph. The heat-treated lignin-PLA powder 

mixture was extruded from the extruder at 170°C.  Currently, dog-bone and cylindrical samples of 

the same dimensions as the MAXPOL test coupons were printed with the Afinia H400 3D printer. 

The samples printed have yet to be tested. 

4.3 Concluding Remarks 

Heat treatment of the lignin aided in the incorporation of lignin to the PLA polymer matrix. 

Extrusion of heat-treated lignin and PLA mixture was successful, and the filament produced was 

successfully printed into test coupons. It is also planned to heat treat the lignin powders to 500°C, 

700°C, and 900°C to determine the effect of heat treatment on the 3D printed composites.  
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