
University of North Dakota

UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2018

Interfacing The CFD Code MFiX With The PETSc
Linear Solver Library To Achieve Reduced
Computation Times
Lauren Clarke

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been

accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact

zeineb.yousif@library.und.edu.

Recommended Citation
Clarke, Lauren, "Interfacing The CFD Code MFiX With The PETSc Linear Solver Library To Achieve Reduced Computation Times"
(2018). Theses and Dissertations. 2189.
https://commons.und.edu/theses/2189

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F2189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2189?utm_source=commons.und.edu%2Ftheses%2F2189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu

INTERFACING THE CFD CODE MFIX WITH THE PETSC LINEAR SOLVER LIBRARY TO

ACHIEVE REDUCED COMPUTATION TIMES

by

Lauren Elizabeth Clarke

Bachelor of Science, University of North Dakota, 2016

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

In partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

May

2018

ii

Copyright © 2018 Lauren Elizabeth Clarke

iv

PERMISSION

Title: Interfacing the CFD Code MFiX with the PETSc Linear Solver Library

 to Achieve Reduced Computation Times

Department: Chemical Engineering

Degree: Master of Science

 In presenting this thesis in partial fulfillment of the requirements for a graduate

degree from the University of North Dakota, I agree that the library of this University shall

make it freely available for inspection. I further agree that permission for extensive copying

for scholarly purposes may be granted by the professor who supervised my thesis work, or

in his absence, by the Chairperson of the department or the dean of the School of Graduate

Studies. It is understood that any copying or publication or other use of this thesis or part

thereof for financial gain shall not be allowed without my written permission. It is also

understood that due recognition shall be given to me and the University of North Dakota in

any scholarly use which may be made of any material in my thesis.

 Lauren Elizabeth Clarke

 May 2018

v

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES... xii

NOMENCLATURE ...xiii

ACKNOWLEDGEMENTS .. xvii

ABSTRACT ... xviii

CHAPTER

 1. INTRODUCTION .. 1

 1.1 Motivation ... 1

 1.2 Objectives .. 3

 1.3 Thesis Outline .. 3

 2. BACKGROUND .. 5

 2.1 Multiphase Flows ... 5

 2.2 Two-Fluid Model .. 6

 2.3 Partial Differential Equations .. 7

 2.3.1 Conservation of Mass ... 7

 2.3.2 Conservation of Momentum .. 7

 2.3.3 Conservation of Species Mass ... 8

 2.3.4 Conservation of Energy ... 9

 2.3.5 Discretization of Convection-Diffusion Terms10

vi

 2.3.6 MFiX Solution Procedure ..13

 2.3.7 Pressure Correction Equation ...17

 2.4 Numerical Methods ...18

 2.4.1 Linear Algebra ...18

 2.4.2 Linear Systems ..23

2.4.3 Iterative Methods ...24

2.4.4 Stationary Iterative Methods ..24

2.4.5 Krylov Subspace Methods ..25

 2.4.6 Preconditioning ..27

 2.4.7 Convergence ... 30

 2.5 Interfacing MFiX with PETSc ... 31

 3. BUILDING THE SOFTWARE ...33

 3.1 Native MFiX ..33

 3.2 Native PETSc ..33

 3.3 MFiX-PETSc Interface ...34

 3.3.1 leq_petsc.f ..34

 3.3.2 solve_lin_eq.f ..35

 3.3.1 Makefile ...35

 4. 3D, STEADY-STATE HEAT CONDUCTION ...37

 4.1 Problem Overview ...37

 4.2 Results ..39

 5. SINGLE-PHASE FLOW OVER A CYLINDER ..45

vii

 5.1 Problem Overview ...45

 5.2 Results ..47

 6. 3D FLULIDIZED BED ...58

 6.1 Problem Overview ...58

 6.2 Results ..59

 6.2.1 Glass Particles ...59

 6.2.2 Polypropylene Particles ..75

 7. 2D FLULIDIZED BED WITH FINE CENTRAL MESHING79

 7.1 Problem Overview .. 79

 7.2 Results ..81

 8. SUMMARY...85

 8.1 Conclusions ... 85

 8.2 Future Work ...87

REFERENCES ..89

APPENDIX ..92

viii

LIST OF FIGURES

Figure Page

2-1 A multiphase flow system with two solid particle types can be represented

 as a two-phase system or a three-phase system with the MFiX-TFM [8] 6

2-2 (a) A cube broken down into a 10x10x10 computational mesh, and (b) a

 single control volume defined by its node locations in the x-direction [2]....................10

2-3 Notation used for node locations in TVD schemes, based on flow direction [2]12

2-4 A two-dimensional representation of a control volume on a staggered grid

 which is used in the finite volume method for discretizing the transport

 equations [10] ..14

2-5 Multiplication of matrix A (2 × 3) with matrix 𝐵 (3 × 2) to get matrix C (2 × 2)22

2-6 A 16x16 square matrix distributed across two processors, with each

 containing a shaded local diagonal block [18] ..30

4-1 Geometry dimensions and boundary conditions used to carry out the 3D,

 steady-state heat conduction case ...37

4-2 Temperature distributions in the z-direction when x = 2.25 cm and y = 5 cm

 for Cases 1.1 – 1.3 and mesh sizes of (a) 20x20x20, (b) 60x60x60, and

 (c) 100x100x100...40

4-3 Percent errors for temperature in the z-direction when x = 2.25 cm and

 y = 5 cm for Cases 1.1 – 1.5 and mesh sizes of (a) 20x20x20, (b) 60x60x60,

 and (c) 100x100x100 ..42

4-4 Comparison of CPU time as a function of problem size for Cases 1.1 – 1.5, with

 standard deviation error bars ...43

ix

4-5 Comparison of temperature percent errors obtained for Case 1 using left-side

 (Cases 1.2 and 1.3) and right-side (Cases 1.6 and 1.7) preconditioning in

 MFiX-PETSc for an intermediate solver tolerance (10-4) and a fine mesh

 (100x100x100) ..44

4-6 Comparison of the CPU time required to solve Case 1 using left-side (Cases

 1.2 and 1.3) and right-side (Cases 1.6 and 1.7) preconditioning in MFiX-PETSc

 for an intermediate solver tolerance (10-4) and a fine mesh (100x100x100)44

5-1 The coarse mesh (120x80) and dimensions used to simulate Case 246

5-2 Surface points along the cylinder represented as angles ..48

5-3 Comparison of time-averaged pressure coefficients obtained with (a) MFiX’s

 line relaxation and (b) MFiX-PETSc’s left-side Block Jacobi preconditioners

 against experimental measurements from Norberg [20] using a coarse

 mesh (Case 2.1) ...49

5-4 Comparison of time-averaged pressure coefficients obtained with (a) MFiX’s

 line relaxation and (b) MFiX-PETSc’s left-side Block Jacobi preconditioners

 against experimental measurements from Norberg [20] using an intermediate

 mesh (Case 2.2) ...50

5-5 Comparison of the (a) pressure and (b) y-velocity contours between F.O.U.P.

 and van Leer discretization schemes at 100 seconds using left-side Block

 Jacobi preconditioning in MFiX-PETSc and diagonal scaling preconditioning

 in the native MFiX solver ...51

5-6 Comparison of time-averaged pressure coefficients obtained in Case 2.3

 against previous experimental measurements from Norberg [20] for

 F.O.U.P. discretization ...52

5-7 Comparison of time-averaged pressure coefficients obtained in Case 2.3

 against previous experimental measurements from Norberg [20] for

 Superbee discretization ...53

5-8 Comparison of time-averaged pressure coefficients obtained in Case 2.3

 against previous experimental measurements from Norberg [20] for

 van Leer discretization ...53

5-9 CPU time as a function of problem size for Case 2 using the F.O.U.P.

 discretization scheme ...55

x

5-10 CPU time as a function of problem size for Case 2 using the Superbee

 discretization scheme ...56

5-11 CPU time as a function of problem size for Case 2 using the van Leer

 discretization scheme ...56

5-12 Average pressure solver iterations required throughout Cases (a) 2.1, (b) 2.2,

 and (c) 2.3 (with standard deviations) ...55

6-1 Dimensions and central jet location of the 3D rectangular fluidized bed58

6-2 Comparison of power spectra obtained using (a) left and (b) right

 preconditioning in MFiX-PETSc against native MFiX for an outer tolerance of

 10-1, a solver tolerance of 10-1, and F.O.U.P. discretization (Case 3.1)62

6-3 Comparison of power spectra obtained using (a) left and (b) right

 preconditioning in MFiX-PETSc against native MFiX for an outer tolerance of

 10-1, a solver tolerance of 10-3, and F.O.U.P. discretization (Case 3.2)63

6-4 Comparison of power spectra obtained using (a) left and (b) right

 preconditioning in MFiX-PETSc against native MFiX for an outer tolerance of

 10-3, a solver tolerance of 10-3, and F.O.U.P. discretization (Case 3.3)64

6-5 Comparison of pressure fluctuations for different preconditioners employed

 in Case 3.3 which indicates a fluidization regime transition occurred65

6-6 Comparison of power spectra obtained using (a) left and (b) right

 preconditioning in MFiX-PETSc against native MFiX for an outer tolerance of

 10-1, a solver tolerance of 10-1, and van Leer discretization (Case 3.4)67

6-7 Comparison of power spectra obtained using (a) left and (b) right

 preconditioning in MFiX-PETSc against native MFiX for an outer tolerance of

 10-1, a solver tolerance of 10-3, and van Leer discretization (Case 3.5)68

6-8 Comparison of power spectra obtained using (a) left and (b) right

 preconditioning in MFiX-PETSc against native MFiX for an outer tolerance of

 10-3, a solver tolerance of 10-3, and van Leer discretization (Case 3.6)69

6-9 An example of the pressure fluctuations obtained with F.O.U.P. versus van

 Leer discretization schemes using the same tolerance levels and

 preconditioning method ..70

xi

6-10 CPU time ratios (MFiX-PETSc CPU time / native MFiX CPU time) for (a)

 F.O.U.P. and (b) van Leer discretization schemes employed throughout Cases

 3.1 – 3.6 ...71

6-11 Comparison of the average iterations (with standard deviations) required by

 each preconditioner-solver combination to solve the pressure-correction

 equation when (a) F.O.U.P. and (b) van Leer discretization schemes were

 employed throughout Cases 3.1 – 3.6 ...72

6-12 Comparison of power spectra obtained for Case 3.7, which used a 20 m/s jet............73

6-13 The (a) CPU time ratios and (b) average solver iterations with standards

 deviations for Case 3.7, which used a 20 m/s jet ...74

6-14 Comparison of power spectra for Cases (a) 4.1 and (b) 4.2 ...76

6-15 CPU time ratios (MFiX-PETSc CPU time / native MFiX CPU time) for Cases 4.1

 and 4.2 ...77

6-16 Average solver iterations, with standard deviations, for Cases 4.1 and 4.278

7-1 Case 5: (a) Dimensions of the rectangular fluidized bed (2D); (b) Mesh size79

7-2 Comparison of power spectra obtained for Cases (a) 5.1 and (b) 5.281

7-3 The (a) CPU time ratios and (b) average number of solver iterations with

 standard deviations over 10 seconds of fluidized bed simulations (Case 5)83

7-4 The (a) number of time steps and (b) number of outer iterations over 10

 seconds of fluidized bed simulations (Case 5) ..84

xii

LIST OF TABLES

Table Page

4-1 Summary of grid dimensions, meshing, tolerances, solvers, and

 preconditioners employed in Case 1 ...39

5-1 Summary of grid dimensions, meshing, time steps, tolerances, solvers,

 discretization schemes, and preconditioners (P.C.) employed in Case 247

6-1 List of material properties used for glass particles throughout Case 359

6-2 Summary of grid dimensions, meshing, time steps, tolerances, inlet velocities,

 solvers, discretization schemes, and preconditioners (P.C.) employed in Case 360

6-3 List of material properties used for polypropylene particles throughout Case 475

6-4 Summary of inlet velocities, meshing, time steps, tolerances, solvers,

 Discretization schemes, and preconditioners (P.C.) employed in Case 475

7-1 Summary of fluidization materials, meshing, time steps, tolerances, solvers,

 Discretization schemes, and preconditioners employed in Case 580

xiii

NOMENCLATURE

 𝐴 area of a control volume face, m2 𝑨 matrix defining a linear system 𝑎 coefficients containing flow properties from discretized equations 𝑏 source term 𝒃 right-hand side vector of a linear system 𝐶𝑝 pressure coefficient 𝐶𝑝𝑔 specific heat of the fluid-phase 𝐶𝑝𝑚 specific heat of the 𝑚𝑡ℎ solids phase 𝐶, 𝐷, 𝑈, 𝑓 locations for TVD schemes 𝑫 diagonal matrix 𝒟 diffusion coefficient 𝑑𝑤𝑓 downwind weighting factor for TVD schemes −𝑬 lower triangular matrix −𝑭 upper triangular matrix 𝐹 interface transfer coefficient 𝑓 fluid flow resistance due to porous media 𝑔 acceleration due to gravity, m2/s 𝐻 total rate of enthalpy change

xiv

𝐼 momentum transfer between two phases 𝒦𝑚 𝑚𝑡ℎ Krylov subspace 𝑴 preconditioning matrix 𝑳 sparse lower triangular matrix for ILU 𝑃 pressure 𝑞 conductive heat flux 𝑅 mass transfer of a chemical species due to reactions or other phenomena ℛ mass transfer between two phases 𝑹 residual matrix for ILU 𝒓 residual vector 𝑡 time, s 𝑡 temperature, K 𝑈 velocity component, m/s 𝑼 sparse upper triangular matrix for ILU 𝑢 x-velocity component, m/s 𝑉 volume, m3 𝑥, 𝑦, 𝑧 coordinate directions 𝒙 solution vector of a linear system 𝑋 species mass fraction

xv

Greek symbols 𝜀 volume fraction κ condition number of a matrix 𝜌 density, kg/m3 𝜏 stress tensor 𝜔 relation factor for pressure correction equation 𝝎 relaxation parameter for the SOR preconditioner 𝛾 heat transfer coefficient Ф general representation of a variable being solved

Subscripts 𝑐 close packed regions 𝑒 east control volume face comparative to 𝑝 𝐸 East control volume central point comparative to 𝑃 𝑔 fluid-phase 𝑖, 𝑗, 𝑘 vector direction components 𝒋 iteration number 𝑚 solids phase 𝑛 general phase number (fluid or solid) or species number 𝑛𝑏 neighbor control volume faces or central points 𝑃 control volume central point at which a scalar variable is being solved

xvi

𝑝 control volume face at which velocity component is being solved 𝒑 search direction vector 𝑤 west control volume face comparative to 𝑝 𝑊 west control volume central point comparative to 𝑃 ∞ inlet air stream conditions ′ correction term for pressure or velocity ∗ intermediate term for pressure or velocity or upwind biased estimate ̃ normalized value

Superscripts 𝑇 transpose of a matrix −1 inverse of a matrix

xvii

ACKNOWLEDGEMENTS

 I would first like to thank my academic advisor for the past six years, Dr. Gautham

Krishnamoorthy. As a freshman in my undergraduate career at UND, he helped make my

transition from high school to college less overwhelming. He also encouraged me to apply

for the combined BS-MS degree program, which is the reason I pursued my master’s degree
and have completed this thesis! I am very thankful that I have been able to come to him for

any questions I have had, whether it be for class, research, or other personal decisions.

Without his guidance and support, completion of this research would not have been possible.

 I must also thank my professors and committee members Dr. Frank Bowman and Dr.

Michael Mann. They have both been very helpful in reviewing my thesis, setting up my

defense date, and offering any advice.

 I would not have made it to this point today without my fellow undergraduate and

graduate students at UND, as well as the Chemical Engineering department faculty. I have

learned a great deal from my peers and professors throughout all of the courses I have

taken. Lastly, I would like to thank my parents for continually motivating and encouraging

me throughout my education, as well as my brothers for their wonderful support. Without

the love and help of my family, none of this would have been possible!

xviii

ABSTRACT

 A computational bottleneck during the solution to multiphase formulations of the

incompressible Navier-Stokes equations is often during the implicit solution of the pressure-

correction equation that results from operator-splitting methods. Since density is a

coefficient in the pressure-correction equation, large variations or discontinuities among the

phase densities greatly increase the condition number of the pressure-correction matrix and

impede the convergence of iterative methods employed in its solution. To alleviate this

shortcoming, the open-source multiphase code MFiX is interfaced with the linear solver

library PETSc. Through an appropriate mapping of matrix and vector data structures

between the two software, the access to a suite of robust, scalable, solver options in PETSc is

obtained.

 Verification of the implementation of MFiX-PETSc is demonstrated through predictions that are identical to those obtained from MFiX’s native solvers for a simple heat

conduction case with a well-known solution. After verifying the framework, several cases

were tested with MFiX-PETSc to analyze the performance of various solver and

preconditioner combinations.

 For a low Reynolds number, flow over a cylinder case, applying right-side Block

Jacobi preconditioning to the BiCGSTAB iterative solver in MFiX-PETSc was 28-40% faster than MFiX’s native solver at the finest mesh resolution. Similarly, the left-side Block Jacobi

xix

preconditioner in MFiX-PETSc was 27–46% faster for the same fine meshing. Further

assessments of these preconditioning options were then made for a fluidized bed problem

involving different bed geometries, convergence tolerances, material densities, and inlet

velocities.

 For a three-dimensional geometry with uniform meshing, native MFiX was faster than

MFiX-PETSc for each simulation. The difference in speed was minimized when a low density

fluidization material (polypropylene) was used along with a higher order discretization

scheme. With these settings, MFiX-PETSc was only 2-6% slower than native MFiX when

right-side Block Jacobi preconditioning was employed. The fluidized bed was then

represented by a two-dimensional geometry with fine meshing towards the center. When

this bed was filled with glass beads, right-side Block Jacobi was 28% faster than MFiX’s
native solver, which was the largest speedup encountered throughout this 2D case.

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

 Although multiphase flows have been encountered in industry for decades, there still

exists a lack of understanding in the effect of hydrodynamics for these flows. The recent

advancements of CFD modeling have helped researchers better comprehend the relationship

between hydrodynamics and other phenomena (such as reactions). However, to have a more

significant impact in the design of multiphase flow technologies, the computational efficiency

and scalability of CFD software must improve.

 The inherently transient nature of most multiphase flows in conjunction with the

large density variations among the phases, make them very difficult to simulate. For instance,

in gas-solid contactors, the phase densities may vary by more than a factor of 1000. In the

Two-Fluid Model (TFM) framework for simulating multiphase flows, the fluid and solids

phases are treated as interpenetrating continua, for which all phases are represented by the

Navier-Stokes equations. The coupling between these different phases is achieved through

an appropriate modeling of the interaction and source terms in the respective phase

equations [1].

 Solution of the incompressible Navier-Stokes equations for the different phases is

then undertaken using a semi-implicit method where a pressure-correction equation is

2

formulated implicitly, requiring the solution of a linear system at each time step. The

pressure-correction equation takes the form of a discrete Poisson equation with

discontinuous coefficients [2]. This means that the matrix of the linear system representing

the pressure equation should be symmetric and diagonally dominant. Although the operator

is typically symmetric, the solution to this equation consumes the bulk of the computational

time in multiphase simulations. This is because density is a coefficient in the pressure-

correction equation and large variations or discontinuities among the phase densities

greatly increase the condition number of the pressure-correction matrix and impede the

convergence of iterative methods employed in its solution [3].

 The computational bottleneck associated with the solution to the pressure-correction

equation for the incompressible Navier-Stokes Equations has long been recognized. In

single-phase fluid simulations, this bottleneck has been overcome by interfacing

Computational Fluid Dynamic (CFD) codes with linear solver libraries in PETSc [4] and

HYPRE [5] to achieve good scaling performance on a large number of cores [6]. The Portable,

Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and

routines which can be used in largely parallel environments to obtain solutions to systems

modeled with partial differential equations. The PETSc [4] library is particularly interesting

since it allows for the transparent use of various Krylov subspace solvers and preconditioner

options in large-scale parallel environments without the need to write specialized code to

access them. PETSc could have a promising application in solving the pressure-correction

equation associated with multiphase flows to potentially reduce the computational cost

associated with modeling these types of systems.

3

1.2 Objectives

 This work was focused on achieving two mains objectives. The first objective was to

build a robust, well-abstracted, interface to the PETSc linear solver library from the CFD code

MFiX. Multiphase Flow with Interphase eXchange (MFiX) is an open-source software

developed by the National Energy Technology Laboratory (NETL) to model fluid-solid flows.

The MFiX-PETSc interface was tested by carrying out a simple heat conduction problem for

which the results could be validated by comparing against an established analytical solution.

 The second objective was to gain an understanding of the most effective solvers and

preconditioners offered in PETSc for resolving the pressure-correction equation. The

framework was tested on both single- and multi-phase transient problems. Pressure results

were compared against published experimental data to analyze the accuracy achieved with

these solver options. Furthermore, the computation time and average iterations were

compared with native MFiX to gain insight into the speed and efficiency of each

preconditioner/solver combination

 The overall goal of these objectives was to create a framework between MFiX and

PETSc that can be efficiently scaled to a parallel framework, where it will be most effective,

with future work. Then this research aimed to create an understanding of best solver and

preconditioning practices to resolve multiphase flows in order to guide this future work as

well.

1.3 Thesis Outline

 The rest of this thesis is structured as follows:

4

Chapter 2: Relevant background information for understanding the formation and solution

of equations to model multiphase flows, including the conservation equations, equation

discretization, solution procedure, linear algebra, and iterative methods.

Chapter 3: A brief explanation of building the software that was necessary in carrying out

this study.

Chapter 4: Verification of the MFiX-PETSc interface with a simple, steady-state heat

conduction problem.

Chapter 5: An investigation of pressure coefficient, CPU timing, and iteration results

obtained with MFiX-PETSc for a problem characterized by single-phase flow over a cylinder.

Chapter 6: An investigation of pressure power spectra, CPU timing, and iteration results

obtained with MFiX-PETSc for simulations of a 3D fluidized bed filled with either glass beads

or polypropylene beads.

Chapter 7: An investigation of pressure power spectra, CPU timing, iteration, and time-step

results obtained with MFiX-PETSc for simulations of a 2D fluidized bed filled with either

glass beads or polypropylene beads.

Chapter 8: The overall conclusions of this thesis are discussed, as well as suggestions for

future work.

Appendix: A list of the specific MFiX input files (mfix.dat) that were used to carry out the

problems presented in Chapters 4 - 7.

5

CHAPTER 2

BACKGROUND

2.1 Multiphase Flows

 A multiphase flow is defined as the simultaneous flow of materials with multiple

phases or components. Flows with these properties have a wide application in industry, as

they are found in slurries, cavitating flows, aerosols, debris flows, and fluidized beds, along

with others. Due to this, nearly every process unit operation will have to handle multiphase flows, whether it’s the flow of a slurry through piping or the gasification of coal particles in

a reactor. Thus, being able to predict the fluid flow behavior of these multiphase processes

is crucial to process efficiency and effectiveness [7].

 One of the strategies used to model and predict these flows is a computational

approach. Multiphase Flow with Interface eXchange (MFiX) is an open-source code

developed with a purpose of computationally understanding the hydrodynamics, heat

transfer, and chemical reactions of multiphase flows. MFiX currently offers Eulerian-

Eulerian and Eulerian-Lagrangian approaches for solving fluid-solid flow problems. The

Eulerian-Eulerian methodology, otherwise known as the Two-Fluid Model (TFM), describes

both the fluid and solid phases as interpenetrating continua represented by the Navier-

Stokes equations. Contrarily, the Eulerian-Lagrangian approach models only the fluid phase

as a continuum while the position and trajectory of each solids particle is tracked [8].

6

 Using the Lagrangian solids model does result in fewer and much simpler closures in

comparison to the TFM which is why this model is considered to comprise of more certainty.

However, considering that systems can contain millions or even billions of particles, it is easy

to see how this type of approach can become computationally intensive, which is why it is

generally limited to small-scale devices [8]. Due to this, the Two-Fluid Model is more

commonly used for these types of applications, especially for the pilot- or industrial-scale

systems.

2.2 Two-Fluid Model

 The TFM represents both solids and fluids (gas or liquid) as interpenetrating continua

with one fluid phase and one or more solids phases. Solids of one phase are assumed to move

collectively, which is represented by the motion of a continuum. Particles with different

sizes, densities, or compositions may be designated as a separate solids phase depending on

the goals of the computational study. Figure 2-1 shows how a fluid-solids system can be

represented as a two-phase or multiple-phase system using the MFiX-TFM [8].

Figure 2-1. A multiphase flow system with two solid particle types can be represented as a

two-phase system or a three-phase system using the MFiX-TFM [8].

7

 Describing solids as a continuum avoids having to track the motion and collisions of

each individual particle, which significantly reduces the computational cost. Consequently,

this approach decreases the simulation resolution and constitutive equations must be

included such as gas-solids drag to compensate. Listed below are the basic conservation

equations implemented in the MFiX-TFM.

2.3 Partial Differential Equations

 2.3.1 Conservation of Mass

 The conservation of mass for the fluid and solids phases is represented respectively

as follows [8]:

𝜕𝜕𝑡 𝜀𝑔𝜌𝑔 + 𝜕𝜕𝑥𝑗 (𝜀𝑔𝜌𝑔𝑈𝑔𝑗) = ∑ 𝑅𝑔𝑛𝑁𝑔𝑛=1 (2.1)

𝜕𝜕𝑡 𝜀𝑚𝜌𝑚 + 𝜕𝜕𝑥𝑗 (𝜀𝑚𝜌𝑚𝑈𝑚𝑗) = ∑ 𝑅𝑚𝑛𝑁𝑚𝑛=1 (2.2)

where 𝜀𝑔 is the fluid volume fraction, 𝜀𝑚 is the volume fraction of the 𝑚𝑡ℎ solids phase, 𝜌𝑔 is

the fluid-phase density, 𝜌𝑚 is the density of the 𝑚𝑡ℎ solids phase, 𝑈𝑔𝑗 is the 𝑗𝑡ℎ velocity

component of the fluid-phase, and 𝑈𝑚𝑗 is the 𝑗𝑡ℎ velocity component of the 𝑚𝑡ℎ solids phase.

The right-hand term denotes interphase mass transfer due to chemical reactions or physical

phenomena.

 The fluid density (ρg) can be set to a constant value, representing an incompressible

fluid, or can change according to the ideal gas law. The solids densities can also remain

constant or vary as chemical reactions occur.

 2.3.2 Conservation of Momentum

 For fluid phases, the momentum balance is [8]:

8

𝜕𝜕𝑡 (𝜀𝑔𝜌𝑔𝑈𝑔𝑖) + 𝜕𝜕𝑥𝑗 (𝜀𝑔𝜌𝑔𝑈𝑔𝑗𝑈𝑔𝑖) = (2.3)

−𝜀𝑔 𝜕𝑃𝑔𝜕𝑥𝑖 + 𝜕𝜏𝑔𝑖𝑗𝜕𝑥𝑗 ∑[ℛ𝑚𝑔𝑈𝑚𝑖 − ℛ𝑔𝑚𝑈𝑔𝑖 − 𝐼𝑔𝑚𝑖]𝑀
𝑚=1 + 𝑓𝑔𝑖 + 𝜀𝑔𝜌𝑔𝑔𝑖

where 𝑃𝑔 is the fluid-phase pressure, 𝜏𝑔𝑖𝑗 is the stress tensor of the fluid-phase, ℛ𝑔𝑚 is mass

transfer from the fluid-phase to the 𝑚𝑡ℎ solids phase, ℛ𝑚𝑔 is mass transfer from the 𝑚𝑡ℎ

solids phase to the fluid-phase, 𝐼𝑔𝑚𝑖 represents momentum transfer between the fluid and

the 𝑚𝑡ℎ solids phase caused by interphase forces, 𝑓𝑔𝑖 is fluid flow resistance due to porous

media, and 𝑔𝑖 is acceleration due to gravity.

 The momentum balance for the solids phase is represented similarly as [8]:

𝜕𝜕𝑡 (𝜀𝑚𝜌𝑚𝑈𝑚𝑖) + 𝜕𝜕𝑥𝑗 (𝜀𝑚𝜌𝑚𝑈𝑚𝑗𝑈𝑚𝑖) = (2.4)

−𝜀𝑚 𝜕𝑃𝑔𝜕𝑥𝑖 − 𝜀𝑚 𝜕𝑃𝑐𝜕𝑥𝑖 + 𝜕𝜏𝑚𝑖𝑗𝜕𝑥𝑖 ∑[ℛ𝑙𝑚𝑈𝑙𝑖 − ℛ𝑚𝑙𝑈𝑚𝑖 − 𝐼𝑚𝑙𝑖]𝑀
𝑚=1 + 𝜀𝑔𝑚𝜌𝑚𝑔𝑖

where 𝑃𝑐 is solids-phase pressure in close packed regions, 𝜏𝑚𝑖𝑗 is the stress tensor of the 𝑚𝑡ℎ

solids phase, ℛ𝑙𝑚 is mass transfer from the 𝑙𝑡ℎ phase to the 𝑚𝑡ℎ phase, ℛ𝑚𝑙 is mass transfer

from the 𝑚𝑡ℎ phase to the 𝑙𝑡ℎ phase, and 𝐼𝑚𝑙𝑖 represents momentum transfer between the 𝑚𝑡ℎ phase and the 𝑙𝑡ℎphase caused by interphase forces.

 2.3.3 Conservation of Species Mass

 Multiple chemical species can make up the fluid and solids phases. For the fluid-phase,

the mass conservation of each species is represented as [8]:

𝜕𝜕𝑡 𝜀𝑔𝜌𝑔𝑋𝑔𝑛 + 𝜕𝜕𝑥𝑗 (𝜀𝑔𝜌𝑔𝑈𝑔𝑗𝑋𝑔𝑛) = 𝜕𝜕𝑥𝑗 (𝒟𝑔𝑛 𝜕𝑋𝑔𝑛𝜕𝑥𝑗) + 𝑅𝑔𝑛 (2.5)

9

where 𝑋𝑔𝑛 is the mass fraction of the 𝑛𝑡ℎ chemical species in the fluid-phase, 𝒟𝑔𝑛 is diffusion

coefficient of the 𝑛𝑡ℎ chemical species in the fluid-phase, and 𝑅𝑔𝑛 is the rate of formation or

destruction of the 𝑛𝑡ℎ chemical species in the fluid-phase. Similarly, the mass conservation

of each species in the solids phases is [8]:

𝜕𝜕𝑡 𝜀𝑚𝜌𝑚𝑋𝑚𝑛 + 𝜕𝜕𝑥𝑗 (𝜀𝑚𝜌𝑚𝑈𝑚𝑗𝑋𝑚𝑛) = 𝑅𝑚𝑛 (2.6)

where 𝑋𝑚𝑛 is the mass fraction of the 𝑛𝑡ℎ chemical species in the 𝑛𝑡ℎ solids phase and 𝑅𝑚𝑛 is

the rate of formation or destruction of the 𝑛𝑡ℎ chemical species in the 𝑛𝑡ℎ solids phase.

 2.3.4 Conservation of Energy

 The energy conservation equations in MFiX are solved in terms of temperature. The

conservation of energy for the fluid-phase is [8]:

𝜀𝑔𝜌𝑔𝐶𝑝𝑔 [𝜕𝑇𝑔𝜕𝑡 + 𝑈𝑔𝑗 𝜕𝑇𝑔𝑥𝑗] = − 𝜕𝑞𝑔𝑗𝜕𝑥𝑗 + ∑ 𝛾𝑔𝑚(𝑇𝑚 − 𝑇𝑔)𝑀𝑚=1 + 𝛾𝑅𝑔 (𝑇𝑅𝑔4 − 𝑇𝑔4) − 𝐻𝑔 (2.7)

where 𝑇𝑔 is the temperature of the fluid-phase, 𝐶𝑝𝑔 is the specific heat of the fluid-phase, 𝑞𝑔𝑗
is the conductive heat flux in the fluid-phase, 𝛾𝑔𝑚 is the heat transfer coefficient between the

fluid and the 𝑚𝑡ℎ solids phase, 𝑇𝑚 is the temperature of the 𝑚𝑡ℎ solids phase, 𝛾𝑅𝑔 is the

radiative heat transfer coefficient for the fluid-phase, 𝑇𝑅𝑔 is the background temperature of

the fluid-phase in a radiation model, and 𝐻𝑔 is the total rate of enthalpy change in the fluid-

phase due to chemical reactions and phase changes. The solids-phase energy conservation

equation is represented as [8]:

𝜀𝑚𝜌𝑚𝐶𝑝𝑚 [𝜕𝑇𝑚𝜕𝑡 + 𝑈𝑚𝑗 𝜕𝑇𝑚𝑥𝑗] = − 𝜕𝑞𝑚𝑗𝜕𝑥𝑗 − 𝛾𝑔𝑚(𝑇𝑚 − 𝑇𝑔) + 𝛾𝑅𝑚(𝑇𝑅𝑚4 − 𝑇𝑚4) − 𝐻𝑚 (2.8)

for which 𝐶𝑝𝑚 is the specific heat of the 𝑚𝑡ℎ solids phase, 𝑞𝑚𝑗 is the conductive heat flux in

the 𝑚𝑡ℎ solids phase, 𝛾𝑅𝑚 is the radiative heat transfer coefficient for the 𝑚𝑡ℎ solids phase,

10

𝑇𝑅𝑚 is the background temperature of the 𝑚𝑡ℎ solids phase in a radiation model, and 𝐻𝑚 is

the total rate of enthalpy change in the 𝑚𝑡ℎ solids phase due to chemical reactions and phase

changes.

 2.3.5 Discretization of Convection-Diffusion Terms

 The conservation equations include a combination of convection and diffusion terms

of the form [2]:

 𝜌𝑢 𝜕ф𝜕𝑥 − 𝜕𝜕𝑥 (Г 𝜕ф𝜕𝑥). (2.9)

The way in which these terms are discretized can have a significant impact on the stability

and accuracy of the numerical method. In CFD, a finite volume method is typically used to

discretize these convection and diffusion terms. In this technique, the conservation laws are

enforced within a small control volume. All of these small control volumes grouped together

is defined as the computational mesh. Figure 2-2 (a) shows an example of a cube broken

down into a computational mesh with 10x10x10 control volumes, while Figure 2-2 (b)

defines a single control volume and its node locations in the x-direction.

(a) (b)

Figure 2-2. (a) A cube broken down into a 10x10x10 computational mesh, and (b) a single

control volume defined by its node locations in the x-direction [2].

11

 Integration of this convection-diffusion term over a control volume in the x-direction

gives us [2]:

 ∫ [𝜌𝑢 𝜕ф𝜕𝑥 − 𝜕𝜕𝑥 (Г 𝜕ф𝜕𝑥)] 𝑑𝑉 = [𝜌𝑢ф𝑒 − (Г 𝜕ф𝜕𝑥)𝑒] 𝐴𝑒 − [𝜌𝑢ф𝑤 − (Г 𝜕ф𝜕𝑥)𝑤] 𝐴𝑤. (2.10)

The convection and diffusion terms are then accounted for in separate substeps. Solving for

the diffusive fluxes at the control volume faces is straightforward, and can be calculated with

a second-order accuracy as follows [2]:

 (Г 𝜕ф𝜕𝑥)𝑒 = Г𝑒 ф𝐸−ф𝑃𝛿𝑥𝑒 + 𝑂(𝛿𝑥2). (2.11)

 Discretizing the convection term requires interpolating the face-centered velocity

terms to their cell-centered values, and there are several methods to do so. The stability and

accuracy of the numerical method can be strongly determined by the discretization strategy

employed. This work incorporates one first-order scheme, and two higher-order schemes to

discretize this convection term. In the first-order upwind (F.O.U.P.) scheme, face-centered

velocity values are directly interpolated to their cell-centered values as [2]:

 ф𝑒 = {ф𝑃, 𝑢 ≥ 0ф𝐸 , 𝑢 < 0 (2.12)

 When flows are transient, multi-dimensional, or contain strong sources, first-order

schemes may not provide enough accuracy. Higher-order discretization schemes for

convection can help increase accuracy, but they can also create issues with overshoots and

undershoots near discontinuities, known as oscillations. This can create problems with

convergence and physically unrealistic intermediate solutions [2].

 Total variation diminishing (TVD) schemes have been developed to resolve

discontinuities without producing these oscillations. These techniques employ a limiter

12

which bounds the value of ф. This limiter is defined using the notations for the node locations

portrayed in Figure 2-3, which are based on the flow direction. The notation D represents

downwind, U represents Upwind, C is the central point of the control volume, and f is the face

of the control volume.

Figure 2-3. Notation used for node locations in TVD schemes, based on flow direction [2].

 The limiter is expressed as a function of the normalized value of ф, which is defined

as [2]:

 ф̃ = ф−ф𝑈ф𝐷−ф𝑈. (2.13)

TVD schemes bound ф with this limiter when the variation in ф is monotonic, which occurs

when 0 ≤ ф̃𝐶 ≤ 1. The overall goal is to calculate values at the control volume face (ф𝑓)

based on the specific bounds that have been employed. There are four conditions which

define how the limiter bounds ф𝑓, which are described by Syamlal [2].

 A down-wind factor formulation for discretization, proposed by Leonard and

Mokhtari [9], has been adopted into several existing codes due to its ability to retain the

traditional septa-diagonal matrix structure in linear systems. This formulation applies the

following steps [2]:

1. Calculate a high-order, multidimensional, upwind biased estimate of ф𝑓∗ .

2. Calculate a preliminary downwind weighting factor (𝑑𝑤𝑓∗):

13

 𝑑𝑤𝑓∗ = ф𝑓−ф𝐶ф𝐷−ф𝐶 = ф�̃�−ф�̃�1−ф�̃� . (2.14)

3. Obtain 𝑑𝑤𝑓 by limiting 𝑑𝑤𝑓∗ to the monoatomic region.

4. Calculate the new estimate of ф𝑓 as:

 ф𝑓 = 𝑑𝑤𝑓ф𝐷 + (1 − 𝑑𝑤𝑓)ф𝐶. (2.15)

 The TVD schemes differ by how they calculate their downwind weighting factor in

step 3. For all schemes, 𝑑𝑤𝑓 is equal to 0 if ф�̃� is less than 0 or greater than 1. Inside of these

bounds however, if θ is a factor calculated as [2]:

 𝜃 = ф�̃�1−ф�̃� (2.16)

then the downwind factor is equal to
12𝑚𝑎𝑥[0,𝑚𝑖𝑛(1,2𝜃),𝑚𝑖𝑛(2, 𝜃)] for the Superbee

discretization scheme and ф�̃� for the van Leer scheme.

 2.3.6 MFiX Solution Procedure

 MFiX uses a semi-implicit scheme, with automatic time-stepping to sequentially solve

the discretized transport equations. The first step of the solution procedure involves

discretizing the governing equations based on the schemes described in section 2.3.5. The

finite volume method, which has been previously introduced, is applied with a staggered grid

to discretize the governing equations. Using this approach, scalar values (i.e. fluid-pressure)

are computed at the center of the control volume whereas velocity components are

calculated along the faces of the control volume. Figure 2-4 shows how control volume

centers and faces are defined for a two-dimensional grid in order to solve for scalar and

vector values. This concept can be extended to a three-dimensional grid by envisioning that

the center of a control volume coming out of the paper, adjacent to 𝑃, is labeled 𝑇 for top and

14

a control volume going into the paper is labeled 𝐵 for bottom. Furthermore, the face between 𝑇 and 𝑃 is the top face 𝑡, and the face between 𝐵 and 𝑃 is the bottom face 𝑏.

Figure 2-4. A two-dimensional representation of a control volume on a staggered grid which

is used in the finite volume method for discretizing the transport equations [10].

 Discretization of scalar transport equations for all phases can be represented as [2]:

 (𝑎𝑛)𝑃(ф𝑛)𝑃 = ∑ (𝑎𝑛)𝑛𝑏(ф𝑛)𝑛𝑏 +𝑛𝑏 𝑏𝑛 + 𝛥𝑉 ∑ 𝐹𝑙,𝑛𝑀𝑙=0 [(ф𝑙)𝑃 − (ф𝑛)𝑃] (2.17)

for which coefficient 𝑎 contains flow properties from the discretized equations, ф is a given

scalar value such as temperature, 𝑏 is a source term, and 𝐹𝑙,𝑛 is the interface transfer

coefficient between phases 𝑙 and 𝑛. Subscript 𝑛 represents the phase undergoing calculation,

subscript 𝑃 is the central point of the scalar quantity undergoing calculation, and subscript 𝑛𝑏 denotes its neighbor central points (E, W, N, S, T, and B).

15

 Discretization of the momentum equations for the fluid and solids phases results in

similar expressions. The discretized x-momentum equations for the gas and solids phases

respectively are [2]:

 (𝑎𝑔)𝑒(𝑢𝑔)𝑒 = ∑ (𝑎𝑔)𝑛𝑏(𝑢𝑔)𝑛𝑏 +𝑛𝑏 𝑏𝑔 (2.18)

−𝐴𝑒(𝜀𝑔)𝑃 [(𝑃𝑔)𝑃 − (𝑃𝑔)𝐸] + 𝛥𝑉∑𝐹𝑔𝑙𝑀
𝑙 [(𝑢𝑙)𝑒 − (𝑢𝑔)𝑒]

 (𝑎𝑚)𝑒(𝑢𝑚)𝑒 = ∑ (𝑎𝑚)𝑛𝑏(𝑢𝑚)𝑛𝑏 +𝑛𝑏 𝑏𝑚 − 𝐴𝑒(𝜀𝑚)𝑃 [(𝑃𝑔)𝑃 − (𝑃𝑔)𝐸] (2.19)

−𝐴𝑒[(𝑃𝑚)𝑃 − (𝑃𝑚)𝐸] + 𝛥𝑉∑𝐹𝑙𝑚𝑀
𝑙 [(𝑢𝑙)𝑒 − (𝑢𝑚)𝑒]

where 𝑎𝑔 is a coefficient similar to Equation (2.17) that contains flow properties for the fluid-

phase, 𝑎𝑚 is a coefficient that contains flow properties for the 𝑚𝑡ℎ solids phase, 𝑢𝑔 is the x-

velocity of the fluid-phase, 𝑢𝑚 ix the x-velocity of the 𝑚𝑡ℎ solids phase, 𝑏𝑔 is the source term

for the fluid-phase, and 𝑏𝑚 is the source term for the 𝑚𝑡ℎ solids phase. Since velocity is a

vector, subscript 𝑒 describes face between control volumes 𝑃 and 𝐸, subscript 𝑛𝑏 denotes

neighbor faces. The y- and z-momentum equations are discretized in the same fashion.

 After the transport equations are discretized, they are rearranged to yield a system

of linear equations with large, sparse, septa-diagonal matrices that must be solved

iteratively. When flow is incompressible, challenges arise in computing the fluid flow field.

As shown in Equations (2.1) through (2.4), The velocity field can be computed from the

momentum equations; however, the pressure field, which shows up in the momentum

equation, cannot be solved directly from the continuity equation [11]. This results in a

16

strong, implicit coupling between the pressure and velocity fields. In MFiX, the solids-phase

pressure is resolved with a volume fraction correction equation and the fluid-phase pressure

field is resolved with a fluid-pressure correction equation [8].

 The SIMPLE algorithm is an operator-splitting numerical procedure that is widely

employed in CFD to solve the discretized Navier-Stokes equations for incompressible

systems. MFiX employs an extended version of the SIMPLE algorithm developed by Patankar

[10] to account for multiphase systems. An outline of the steps followed during each time

step is represented as follows [8]:

1. The time step starts. Physical properties and exchange coefficients are

calculated.

2. Momentum equations are solved to obtain velocity fields using pressure and

volume fractions from previous iteration.

3. Continuity equations for the solids phase are solved.

4. The gas-phase volume fraction is computed from the determined solids

volume fraction.

5. The pressure of the solids phase is calculated using the solids volume fraction.

6. The face centered densities are computed.

7. The fluid-pressure correction equation is solved and the corrections are used

to update the gas pressure and velocity fields.

8. Material densities and face-centered mass fluxes are resolved.

9. The scalar equations are solved (e.g. species mass, energy).

17

10. The normalized residuals are computed and used to assess convergence. If the

convergence criterion is met, the time-step is advanced, otherwise another

iteration is performed (back to step 1).

The number of times these ten steps are repeated represents the number of outer iterations

per time-step.

 2.3.7 Pressure Correction Equation

 As described in section 2.3.6, the first step of each iteration involves solving the

discretized momentum equations using the pressure field and volume fractions from the

previous iteration. These intermediate values for pressure and velocity are represented by P* and u* respectively. The relationship between the intermediate value (ф*) and the actual value (ф) for these parameters is denoted as ф = ф* + ф’, where ф’ is the correction value.
 Derivation of the fluid-pressure correction equation first requires replacing pressure

(P) and velocity (u) terms in the discretized fluid-phase momentum equation with

intermediate pressure (P*) and velocity (u*) terms. Then, the P* = P – P’ and u* = u – u’
expressions are substituted into this equation. The original discretized gas momentum

equation, with actual pressure and velocity values, is subtracted to yield an expression only containing velocity (u’) and pressure (P’) correction terms. After several simplifications and
rearrangements are made, the resultant fluid-pressure correction equation becomes [2]:

 (𝑎𝑔)𝑃(𝑃𝑔′)𝑃 = ∑ (𝑎𝑔)𝑛𝑏(𝑃𝑔′)𝑛𝑏 +𝑛𝑏 𝑏𝑔. (2.20)

The pressure correction terms calculated using Equation (2.20) are then used to calculate

the actual gas-phase pressure [2]:

 (𝑃𝑔)𝑃 = (𝑃𝑔∗) + 𝜔𝑃𝑔(𝑃𝑔′)𝑃 (2.21)

18

for which 𝜔𝑃𝑔 is a relation factor. This pressure correction is also used to update the gas-

phase velocity [2]:

 (𝑢𝑔)𝑒 = (𝑢𝑔∗)𝑒 + (𝑑𝑔)𝑒 [(𝑃𝑔′)𝑃 − (𝑃𝑔′)𝐸] (2.22)

where 𝑑𝑔 is an interphase mass transfer factor.

2.4 Numerical Methods

 2.4.1 Linear Algebra

 Understanding linear algebra theory and operations is important when trying to learn

and apply different numerical methods to solve the discretized transport equations in CFD.

The objective of this section is to introduce the basic linear algebra concepts that will be used

throughout section 2.4 to describe various iterative techniques.

 Matrices and vectors form the foundation of linear algebra. A vector can be defined

as a one-dimensional sequence of elements. An important operation with vectors is known

as the dot product, or the Euclidean inner product. If 𝒙 and 𝒚 are vectors of the real

coordinate space of 𝑛-dimensions (ℝ𝑛), then the dot product is commonly denoted as 𝒙 · 𝒚

or (𝒙, 𝒚), and can be calculated as:

 𝒙 · 𝒚 or (𝒙, 𝒚) = ∑ 𝑥𝑖𝑦𝑖𝑛𝑖=1 = 𝑥1𝑦1 + 𝑥2𝑦2 +⋯+ 𝑥𝑛𝑦𝑛. (2.23)

By this definition, the dot product of a vector with itself can be expressed as:

 𝒙 · 𝒙 = ∑ 𝑥𝑖2𝑛𝑖=1 = 𝑥12 + 𝑥22 +⋯+ 𝑥𝑛2 (2.24)

which is also equal to the length of the vector squared. Furthermore, the square root can be

taken to obtain the vector length or Euclidean norm:

 ‖𝒙‖ = √𝒙 · 𝒙 = √𝑥12 + 𝑥22 +⋯+ 𝑥𝑛2. (2.25)

19

The Euclidean norm is also referred to as the 𝒍𝟐-norm of a vector.

 A vector space contains a set 𝑉 of vectors that can be added together or multiplied by

a scalar. For all vectors 𝒖, 𝒗, and 𝒘 in 𝑉, the vector addition operation must adhere to the

following axioms:

1. Closure: 𝒖 + 𝒗 also belongs to 𝑉

2. Communicative Law: 𝒖 + 𝒗 = 𝒗 + 𝒖

3. Associative Law: 𝒖 + (𝒗 + 𝒘) = (𝒖 + 𝒗) + 𝒘

4. Additive Identity: There is a zero vector 𝟎 in 𝑉 such that 𝟎 + 𝒗 = 𝒗 and

 𝒗 + 𝟎 = 𝒗

5. Additive Inverses: For each vector 𝒖 in 𝑉, there is an additive inverse

 denoted −𝒖 such that 𝒖 + (−𝒖) = 𝟎

Furthermore, multiplication of vectors with scalars 𝑐 and 𝑑 must satisfy these axioms:

6. Closure: 𝑐 · 𝒗 also belongs to 𝑉

7. Distributive Law: 𝑐 · (𝒖 + 𝒗) = 𝑐 · 𝒖 + 𝑐 · 𝒗

8. Distributive Law: (𝑐 + 𝑑) · 𝒗 = 𝑐 · 𝒗 + 𝑑 · 𝒗

9. Associative Law: 𝑐 · (𝑑 · 𝒗) = (𝑐𝑑) · 𝒗

10. Unitary Law: 1 · 𝒗 = 𝒗

 A subset is a set of vectors from a vector space that do not need to follow any

conditions. A subspace on the other hand is a set of vectors from a vector space that do need

to adhere to certain conditions. A subspace is always a subset, but a subset is not necessarily

a subspace. If 𝑊 is a subset of 𝑉, then 𝑊 is also a subspace of 𝑉 if:

1. 𝑊 is nonempty, meaning that at least the zero vector belongs to 𝑊.

20

2. If 𝒖 and 𝒗 are in 𝑊, then 𝒖 + 𝒗 is also in 𝑊.

3. If 𝒗 is a vector in 𝑊, and 𝑐 is any real number, then 𝑐 · 𝒗 is also in 𝑊.

Overall, a subspace can be thought of as a vector space contained within another vector

space.

 A set of vectors is said to be linearly independent when none of the vectors can be

defined as a linear combination of the others. Given vector space 𝑉, a basis is a subset of 𝑉

that contains a set of linearly independent vectors of 𝑉. A vector space can have various sets

of basis vectors, but each must have the same number of elements which is known as the

dimension of the vector space. In general, a vector space can be thought of as a linear

combination of the basis vectors.

 The set of all linear combinations of a vector set 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏 is known as the span of

the vectors, denoted 𝑠𝑝𝑎𝑛{𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏}. For a subset 𝑆 of vector space 𝑉, 𝑠𝑝𝑎𝑛{𝑆} is a

subspace of 𝑉.

 A matrix is defined as a rectangular array of elements arranged into rows and

columns. Matrices can be denoted with a capital 𝑨 and subscripts 𝑖𝑗, where 𝑖 represents the

row number, and j represents the column number. If matrix 𝑨𝑖𝑗 is an 𝑖 × 𝑗 matrix, then:

 𝑨𝑖𝑗 = (𝑎11 ⋯ 𝑎1𝑗⋮ ⋱ ⋮𝑎𝑖1 ⋯ 𝑎𝑖𝑗) (2.26)

where 𝑎 is each element of the matrix. When the number of rows is equal to the number of

columns, it is called a square matrix, which can be denoted by 𝑨𝑖𝑖.
 Matrices can be defined by their structure in several ways, which can be useful for

computational purposes. The elements of a diagonal matrix are 0 when 𝑖 ≠ 𝑗. These

matrices can be represented as 𝑨 = 𝑑𝑖𝑎𝑔(𝑎11, 𝑎22, … , 𝑎𝑛𝑛). For an upper triangular matrix,

21

𝑎𝑖𝑗 = 0 below the matrix diagonal, or in other words when 𝑖 > 𝑗 using the notation in

Equation (2.26). In opposition, 𝑎𝑖𝑗 = 0 above the matrix diagonal (𝑖 < 𝑗) for a lower

triangular matrix. A block diagonal matrix is a generalization for a diagonal matrix. It

replaces each diagonal element with a smaller matrix, and is represented as 𝑨 =𝑑𝑖𝑎𝑔(𝑨11, 𝑨22, … , 𝑨𝑛𝑛).
 The Navier-Stokes equations are typically discretized in a way to form tridiagonal

matrices (1-D problems), pentadiagonal matrices (2-D problems), and septadiagonal

matrices (3-D problems). These types of matrices can be defined as:

 Tridiagonal Matrix (1-D problem)

o 𝑎𝑖𝑗 = 0 for 𝑗 ≠ 𝑖 or |𝑗 − 𝑖| > 1

 Pentadiagonal Matrix (2-D problem with an 𝑚 × 𝑛 mesh)

o 𝑎𝑖𝑗 = 0 for 𝑗 ≠ 𝑖 or |𝑗 − 𝑖| ≠ 1 or |𝑗 − 𝑖| ≠ 𝑛

 Septadiagonal Matrix (3-D problem with an 𝑚 × 𝑛 × 𝑜 mesh)

o 𝑎𝑖𝑗 = 0 for 𝑗 ≠ 𝑖 or |𝑗 − 𝑖| ≠ 1 or |𝑗 − 𝑖| ≠ 𝑛 or |𝑗 − 𝑖| ≠ 𝑚 × 𝑛

All three of these matrix types can be considered diagonally dominant matrices.

 Matrix multiplication involves the dot product of rows of one matrix with columns

of a second matrix. If 𝑨 is a 2 × 3 matrix, and 𝑩 is a 3 × 2 matrix, these two can be multiplied

to yield a 2 × 2 product vector 𝑪. The first step is to take the dot product between the first

row of 𝑨 and the first column of 𝑩 and place it into the product matrix at 𝑪11. Furthermore,

the dot product of the second row of 𝑨 and the first column of 𝑩 can be placed into 𝑪21, and

so on. An example solution to matrix multiplication is shown in Figure 2-5.

22

 𝑩 = (1 21 45 2)

 𝑨 = (1 0 −43 4 0) 𝑪 = (−19 −67 22)

Figure 2-5: Multiplication of matrix 𝑨 (2 × 3) with matrix 𝑩 (3 × 2) to get matrix C (2 × 2).

 In iterative methods, multiplication of a matrix by a vector is very common. This

operation can be explained the same way as matrix-matrix multiplication, except one of the

matrices has dimensions of (𝑛 × 1) or (1 × 𝑛), and the solution is a vector.

 An important concept pertaining to matrices is an identity matrix (𝑰), where the

diagonal entries are equal to 1 and all other entries are equal to 0. Furthermore, the

inverse of a matrix (𝑨−1) is a similar idea to finding the reciprocal of a number. Putting

these two concepts together, the inverse of matrix 𝑨 has to satisfy:

 𝑨 × 𝑨−1 = 𝑨−1 × 𝑨 = 𝑰. (2.27)

A matrix is considered nonsingular if and only if it can admit an inverse.

 The transpose of a matrix 𝑨𝑖𝑗 can be expressed by:

 𝑨𝑖𝑗𝑇 = 𝑨𝑗𝑖 (2.28)

where the rows of 𝑨𝑖𝑗 are the columns of 𝑨𝑖𝑗𝑇 . A symmetric matrix is a special case where

the transpose of a matrix is equivalent to the original matrix. When a linear system consists

of a symmetric matrix, it can be solved using different iterative techniques than one with a

non-symmetric matrix.

23

 The norm of a matrix can be defined in many different ways, similar to a vector norm.

If 𝑨 is a matrix with 𝑀 rows and 𝑁 columns, then the Euclidean norm of the matrix (𝑙2-

norm) is:

 ‖𝑨‖2 = √∑ ∑ |𝑎𝑖𝑗|2𝑁𝑗=1𝑀𝑖=1 . (2.29)

 2.4.2 Linear Systems

 As previously described, discretization of the transport equations leads to a system

of linear equations, 𝑨𝒙 = 𝒃, defined as follows:

 [𝑎11 ⋯ 𝑎1𝑖⋮ ⋱ ⋮𝑎𝑖1 ⋯ 𝑎𝑖𝑖] [𝑥1⋮𝑥𝑖] = [𝑏1⋮𝑏𝑖] (2.30)

where 𝑨 is an 𝑛 × 𝑛 square matrix of coefficients (𝑎), b is the right-hand side vector

containing source terms, and 𝒙 is the unknown solution vector. In CFD, the number of

columns and rows for the 𝑨 matrix are both equal to the grid size (i.e. multiplication of the

dimensions 𝐼 × 𝐽 × 𝐾).

 For solving a linear system, the condition number can give insight as to how

inaccurate the solution (𝒙) will be after it is approximated. A linear problem with a low

condition number is said to be well-conditioned, whereas one with a high condition number

is ill-conditioned. Linear systems with ill-conditioned matrices are more difficult to solve

are prone to giving unreliable solutions. The condition number is relative to how the matrix

norm is calculated. In general, the condition number (κ) of a linear system can be computed

as:

 κ = ‖𝑨‖‖𝑨−1‖ (2.31)

24

where ‖𝑨‖ is any given method of calculating a matrix norm, such as the 𝑙2-norm described

with Equation (2.29).

 2.4.3 Iterative Methods

 In general, iterative methods start with an initial guess to the solution, 𝒙, and repeat

a certain algorithm to keep getting better and better solutions with a goal of minimizing the

solution residual. The residual gives the error of the solution vector, and it is calculated at

each iteration step, 𝒋, as [13]:

 𝒓𝒋 = 𝒃 − 𝑨𝒙𝒋. (2.32)

 There are two main types of iterative methods commonly used to solve large linear

systems: stationary iterative methods and Krylov subspace methods.

 2.4.4 Stationary Iterative Methods

 Stationary iterative methods are some of the oldest and simplest iteration techniques

for indirectly solving linear systems. This class gets its name since the data in the equation

to solve for the solution at each iteration remains fixed. The idea behind these methods is to

split the 𝑨 matrix into a sum of two matrices, 𝑨 = 𝑀 −𝑁, for which 𝑀 must be easily

invertible. By doing this, we can derive:

 𝑨𝒙 = 𝒃 → (𝑀 − 𝑁)𝒙 = 𝒃 → 𝑀𝒙 = 𝑁𝒙 + 𝒃 → 𝒙 = 𝑀−1𝑁𝒙 +𝑀−1𝒃⏞ . (2.33)

Using the final form of Equation (2.33), a stationary iteration takes the general form [13]:

 𝒙𝒋+𝟏 = 𝑀−1𝑁𝒙𝒋 +𝑀−1𝒃 (2.34)

where the multiplication product of 𝑀−1𝑁 is known as the iteration matrix. The matrix 𝑀−1𝑁 and the vector 𝑀−1𝒃 do not change as the iterations proceed. Overall, stationary

iteration methods differ by how 𝑀 and 𝑁 are defined.

25

 2.4.5 Krylov Subspace Methods

 Krylov subspace methods are forms of nonstationary iterative methods where the

data changes at each iteration step. They are considered some of the most important iterative

methods for solving large linear systems. Given a matrix 𝑨 and a vector 𝒗, the 𝑚𝑡ℎ Krylov

subspace can be represented by [14]:

 𝒦𝑚(𝑨, 𝒗) = 𝑠𝑝𝑎𝑛{𝒗, 𝑨𝒗, 𝑨2𝒗,… , 𝑨𝑚−1𝒗}. (2.35)

For each of these methods, an approximate solution is found within 𝒦𝑚(𝑨, 𝒗), and

sometimes with another Krylov subspace 𝒦𝑚(𝑨𝑇 , 𝒘). The 𝒗 and 𝒘 vectors are typically

dependent on the initial residual vector, 𝒓𝟎 = 𝒃 − 𝑨𝒙𝟎. In general, Krylov subspace iterations

take the form [13]:

 𝒙𝒋+𝟏 = 𝒙𝒋 + 𝜶𝒋𝒑𝒋 (2.36)

where 𝒑𝒋 is known as the search direction vector and 𝜶𝒋 the step length.

 Krylov subspace methods generally will follow one of two common procedures: The

Arnoldi [15] iteration or the Lanczos biorthogonalization [16] iteration. Krylov subspace

methods that are based on Lanczos Biorthorgonalization are significant due to their ability

to solve linear systems with non-symmetric matrices, such as those produced in MFiX. The

Biconjugate Gradient (BCG) algorithm is based on the method by Lanczos, and it solves both

the linear system, 𝑨𝒙 = 𝒃, and a dual linear system that includes the transpose, 𝑨𝑇𝒙∗ = 𝒃∗.
Each step of the BCG method requires a matrix-vector product with both matrix 𝑨 and its

transpose, 𝑨𝑇 . The Conjugate Gradient Squared (CGS) algorithm was created to avoid

performing operations with the transpose at each step as well as to gain faster convergence

26

using approximately the same computational cost as BCG. In the CGS method, the residual

vector at step 𝑗 is calculated as [13]:

 𝒓𝒋 = ф𝑗2(𝑨)𝒓𝟎 (2.37)

for which ф𝑗 is a specific polynomial of degree 𝑗 that satisfies ф𝑗(0) = 1.

 Although the CGS algorithm works well in many cases, the squaring of the polynomial, ф𝑗, can potentially lead to a large build-up of rounding errors, and possibly overflow. The

Biconjugate Gradient Stabilized (BiCGSTAB) solver is a method that was established by van

der Vorst [17] to prevent the error build-up and overflow phenomenon that can occur with

CGS. The residual vector for the BiCGSTAB solver instead takes the form [13]:

 𝒓𝒋 = 𝜓𝑗(𝑨)ф𝑗(𝑨)𝒓𝟎 (2.38)

where ф𝑗 is the same polynomial defined for the CGS method, and 𝜓𝑗 is a different

polynomial which is redefined every step to smooth convergence. Furthermore, the search

direction vector is defined as:

 𝒑𝒋 = 𝜓𝑗(𝑨)𝜋𝑗(𝑨)𝒓𝟎 (2.39)

for which 𝜋𝑗 is a different 𝑗-degree polynomial.

 BiCGSTAB was used throughout this study due to its ability to solve matrices of a non-

symmetric structure and alleviate the build-up of rounding errors, which can become

problematic with multiphase flows. Overall, the BiCGSTAB algorithm adheres to the

following framework [13]:

 1. Calculate 𝒓𝟎 = 𝒃 − 𝑨𝒙𝟎, and arbitrarily choose 𝒓𝟎∗ such that 𝒓𝟎∗ · 𝒓𝟎 ≠ 0

 2. Set 𝒑𝟎 = 𝒓𝟎

 3. For j = 0, 1, … , until convergence, Do:

27

 4. 𝛼𝒋 = (𝒓𝒋,𝒓𝟎∗)(𝑨𝒑𝒋,𝒓𝟎∗) (where 𝛼𝒋is a scalar)

 5. 𝒔𝒋 = 𝒓𝑗 − 𝛼𝑗𝑨𝒑𝑗
 6. 𝜔𝒋 = (𝑨𝒔𝒋,𝒔𝒋)(𝑨𝒔𝒋,𝑨𝒔𝒋) (where 𝜔𝒋 is a scalar)

 7. 𝒙𝒋+𝟏 = 𝒙𝒋 + 𝛼𝒋𝒑𝒋 + 𝜔𝒋𝒔𝒋
 8. 𝒓𝒋+𝟏 = 𝒔𝒋 − 𝜔𝑗𝑨𝒔𝒋
 9. 𝛽𝑗 = (𝒓𝒋+𝟏,𝒓𝟎∗)(𝒓𝒋,𝒓𝟎∗) × 𝛼𝑗𝜔𝑗 (where 𝛽𝒋 is a scalar)

 10. 𝒑𝒋+𝟏 = 𝒓𝒋+𝟏 + 𝛽𝒋(𝒑𝒋 − 𝜔𝒋𝑨𝒑𝒋)
 11. End Loop

 12. Set solution 𝒙 = 𝒙𝒋+𝟏

For this algorithm, 𝜔𝒋 is a stabilizing parameter defined to minimize the 𝑙2-norm of the

residual vector, 𝒓𝒋+𝟏.

 2.4.6 Preconditioning

 For many cases, stationary iterative methods have been replaced by Krylov subspace

methods due to the sophistication of these techniques. However, these classical methods still

find a role in numerical methods as preconditioners. Preconditioning is used to transform a

linear system into one with the same solution, yet it becomes easier to solve using an

iterative method. Preconditioners can do this by reducing the condition number of a given

linear system. Overall, preconditioners can improve both the efficiency and the robustness

of iterative numerical methods.

 The first step of using preconditioning techniques is to identify a preconditioning

matrix, 𝑴. This matrix should be nonsingular, and it should be close to the original matrix,

28

𝑨, in some way. In addition, the preconditioner should be chosen to solve linear systems

efficiently. After identifying the preconditioning matrix, there are three ways to apply this

matrix to a linear system: from the left, from the right, and in a factored form. However, when

a linear system is non-symmetric, the preconditioner should only be applied from the left or

the right. Applying a preconditioner from the left to a linear system will yield [13]:

 𝑴−1𝑨𝒙 = 𝑴−1𝒃, (2.40)

And the Krylov subspace takes the form 𝒦𝑚(𝑴−1𝑨,𝑴−1𝒃). Preconditioning can also be

performed from the right [13]:

 𝑨𝑴−1𝒖 = 𝒃, (2.41)

where 𝒙 = 𝑴−1𝒖, and the Krylov subspace takes the form 𝒦𝑚(𝑨𝑴−1, 𝒃).
 While it is true that left- and right-side preconditioners have similar asymptotic

behavior, they can actually behave differently depending on the linear system. The

termination criterion of Krylov subspace methods is generally related to the residual norm

of the preconditioned system. When preconditioning is applied from the left, the

preconditioned residual, defined as ‖𝑴−1𝒓𝒋‖, can greatly differ from the true residual ‖𝒓𝒋‖

if the ‖𝑴−1‖ value is far from 1. Unfortunately, this can be a common problem when applying

left preconditioning to large linear systems. On the other hand, right preconditioners use the

unaltered, true residual with an insignificant increase in computational cost. Right

preconditioners should not lead to large solution errors, unless the preconditioning

matrix, 𝑴, is extremely ill-conditioned [14] .

 Four preconditioning methods were focused on throughout this thesis: line

relaxation, diagonal scaling, successive over relaxation (SOR), and Block Jacobi. Line

29

relaxation and diagonal scaling are the only two preconditioners available in MFiX. On the

other hand, PETSc offers several preconditioning options, but only SOR and Block Jacobi

were tested within this work.

 Some preconditioners can be formulated by decomposing matrix 𝑨 into 𝑨 = 𝑫− 𝑬 −𝑭, where 𝑫, −𝑬, and −𝑭 are the diagonal, lower triangular , and upper triangular matrices.

When the preconditioner, 𝑴, is equivalent to the matrix diagonal, 𝑫, then this method is

known as diagonal scaling (i.e. Jacobi). If instead 𝑴 = 1𝜔 (𝑫 − 𝜔𝑬), for which 𝜔 is the

relaxation parameter, then this is the SOR preconditioner [13].

 Matrix 𝑨 can also be decomposed into submatrices and subvectors as follows:

 𝑨 = (𝑨11 ⋯ 𝑨1𝑛⋮ ⋱ ⋮𝑨𝑛1 ⋯ 𝑨𝑛𝑛), 𝒙 = (𝜉1⋮𝜉𝑛), 𝒃 = (𝛽1⋮𝛽𝑛) (2.42)

where the submatrices 𝑨𝑖𝑖 are consistent with the subvectors 𝜉𝑖 and 𝛽𝑖. Similar to before,

matrix 𝑨 can be partitioned as 𝑨 = 𝑫 − 𝑬 − 𝑭, where 𝑫, −𝑬, and −𝑭 contain submatrices

along the diagonal, submatrices in the lower triangular region, and submatrices in the upper

triangular region. These block preconditioning methods typically use the submatrices along

the matrix diagonal as the preconditioner for the linear system [13].

 One standard approach is to formulate these submatrices (i.e. blocks) by breaking

down the matrix and vectors by whole lines of the simulation mesh. For example, a 2D mesh

can be partitioned by its columns or rows, which is known as line relaxation. Additionally,

the submatrices can contain multiple consecutive columns or rows, or the submatrices and

subvectors could overlap. Block Jacobi preconditioners are methods of block

preconditioning geared towards parallel environments. Traditional Block Jacobi

30

preconditioning employs a domain decomposition with no overlap. Figure 2-6 shows a

16x16 square matrix distributed across two processors, 𝑨1(0) and 𝑨2(0) [18]. In this example,

each processor contains a local diagonal block, which is portrayed by the shaded regions.

Figure 2-6. A 16x16 square matrix distributed across two processors, with each containing

a shaded local diagonal block [18].

 The Block Jacobi preconditioners in PETSc are obtained by applying incomplete LU

factorizations with zero-fill in (ILU(0)) on each processor’s local diagonal blocks. In general,

the ILU factorization process formulates a sparse lower triangular matrix 𝑳 and a sparse

upper triangular matrix 𝑼 which have the same nonzero structure as the lower and upper

sections of 𝑨. These matrices are computed so that 𝑹 = 𝑳𝑼 − 𝑨, the residual matrix, satisfies

a certain constraint. For the ILU(0) method, this constraint is having zero entries in certain

locations. This technique aims to define a preconditioner 𝑴 = 𝑳𝑼 such that the elements of

the residual matrix are zero in the locations that the 𝐴 matrix is non-zero [13].

 2.4.7 Convergence

 By default, both PETSc and MFiX test for convergence based upon the 𝑙2-norm of the

residual vector (𝒓𝒋). In PETSc, convergence is detected at iteration 𝒋 if [12]:

 ‖𝒓𝒋‖2 < 𝑚𝑎𝑥(𝑟𝑡𝑜𝑙 ∗ ‖𝒃‖2, 𝑎𝑡𝑜𝑙) (2.43)

31

where 𝑟𝑡𝑜𝑙 is the decrease of the residual norm relative to the norm of the right hand side, 𝑎𝑡𝑜𝑙 is the absolute size of the residual norm, and 𝑑𝑡𝑜𝑙 is the relative increase in the residual.

The 𝑟𝑡𝑜𝑙, 𝑎𝑡𝑜𝑙, and 𝑑𝑡𝑜𝑙 parameters can be set by the user.

2.5 Interfacing MFiX with PETSc

 The PETSc suite of solvers consists of the following sub-components: Vectors,

Matrices, Distributed Arrays, Preconditioners, Krylov Subspace Solvers, Non-Linear Solvers,

Index Sets, and Time-steppers. PETSc allows for easy customization and extension to these

components. Additionally, a comprehensive suite of data structures for parallel matrix and

vector storage as well as unified interfaces to linear solvers and preconditioners are offered

in PETSc for the purpose of achieving scalable, parallel computation. The matrices are

computed and distributed among all processors involved in the simulation. PETSc enables

us to work only with global indices even though, internally, local indices are used for

accessing the distributed data structures. Moreover, PETSc provides various sparse matrix

storage formats all of which have a uniform interface to the matrix operations [12].

 With this work, the multiphase CFD code MFiX has been interfaced with the PETSc

linear solver library to gain access to this suite of robust, scalable solver options available in

PETSc. This framework allows the solver and preconditioner to be selected from a variety of

options based upon the specific problem. The abstract solver interface for solving the generic

linearized system, 𝑨𝒙 = 𝒃, includes:

1. Problem Setup: Functionality for setting PETSc solver parameters such as solver

tolerances, maximum number of iterations, and preconditioners as dictated by

derived solver types.

32

2. Solver Setup: Solver object creation (allocation of 𝑨, 𝒙, and 𝒃) initialization methods.

3. Communication Linear System: Handshake function for passing the linear system

coefficients (𝑨) and right-hand-side values (𝒃) in the current native MFiX data-

structure and subsequent conversion to the solver-specific types for PETSc.

4. Solve System: Using PETSc’s native solver types, this function will compute the
solution (𝒙) to the linear system.

5. Return/Copy Solution: Conversion of the solver type solution (𝒙) to the current,

native MFiX type.

6. Cleanup: De-allocation and destruction of PETSc solver objects.

33

CHAPTER 3

BUILDING THE SOFTWARE

3.1 Native MFiX

 MFiX version 2016.1 was used to conduct studies with native MFiX and to create the

MFiX-PETSc interface. In the home “mfix-2016.1” directory, the “configure_mfix” script

should be run to create a “Makefile". The following command was used throughout this

study:

 ./configure_mfix FC=gfortran FCFLAGS=’-O3 –g –fbacktrace’
 With this, the Fortran compiler is specified as gfortran by passing the FC argument to the “configure_mfix” script. Then, the script will test the compiler with certain flags specified with “FCFLAGS”. The “-g” flag is used to produce debugging information. The “-O3” flag refers
to an optimization level, and “-fbacktrace’ provides a full backtrace when a runtime error is
detected during debugging.

 After creating the Makefile, the following command will build the MFiX executable:

 make

3.2 Native PETSc

 The version of PETSc that was used throughout this work was 3.7.2. To configure PETSc without MPI, the following command can be used from the “petsc-3.7.2” directory:

34

 ./configure –with-mpi=0 –download-fblaslapack

Once PETSc is successfully configured, the code will walk you through the steps to build the

program.

3.3 MFiX-PETSc Interface

 The serial version of the MFiX-PETSc interface was successfully built and run on two

different Linux operating systems. One of these was a Linux Ubuntu 17.10 system with a

single-core. The second was a High Performance Computing (HPC) Linux cluster, that

employed the Red Hat Enterprise Linux 7.3 distribution.

 The first step of interfacing was to successfully configure and build PETSc. Then, MFiX

was configured to create a Makefile. After these steps, three files from the MFiX code were

altered to allow these two programs to talk with one another before building the interface

executable.

 3.3.1 leq_petsc.f

 The “.f” files located in the MFiX “model” subdirectory contain modules, functions, and

subroutines to carry out tasks such as placing the discretized equations into a linear system,

calculating coefficients, applying solvers to linear systems, and many others. To create the interface, a new file had to be created in this subdirectory called “leq_petsc.f”. This file

contained a subroutine “LEQ_PETSC” which called out to PETSc in order to access its solvers

and preconditioners to solve a given linear system.

 First, this file reads in the coefficients for the matrix and right-hand side vector that

have been created by MFiX for a given equation, such as the pressure-correction equation.

New matrices and vectors are constructed using specific PETSc commands. Then, these

35

coefficients are placed into the new matrix and vectors by employing a certain mapping

function between the MFiX and PETSc matrix/vector indices.

 After the linear system has been re-created, the solver is constructed and settings

such as tolerance and preconditioner are specified. Once the solver is created, it is used to

iteratively solve the linear system. Finally, the solution vector is passed back to MFiX to

continue on with computation.

 3.3.2 solve_lin_eq.f

 The “solve_lin_eq.f” file redirects each equation to the respective solver. A command
was added into this file to pass the following elements to the “LEQ_PETSC” subroutine:

 Name of the variable to be solved for (such as fluid pressure)

 Number denoted in MFiX for the variable (fluid pressure = 1)

 Current solution vector, 𝒙

 Coefficient matrix, 𝑨

 Right-hand side vector, 𝒃

 3.3.3 Makefile

 When MFiX is built, object files denoted with “.o” and dependencies denoted with “.d”
files are generated from the “.f” files. A few lines of code were added into the “Makefile” so that these files would be generated for “leq_petsc.f” as well.
 Paths to the PETSc “include” subdirectories also had to be added to the Makefile.
Then, the following environment variables were added to the Makefile as well:

 “PETSC_DIR” – points to the petsc-3.7.2 directory

36

 “PETSC_ARCH” – points to the subdirectory “arch-linux2-c-debug” which
contains a specific set of libraries depending on the compiler and machine type

 “PETSCLIB_DIR” – points to the “lib” subdirectory which contains variables,
rules, and more

37

CHAPTER 4

3D, STEADY-STATE HEAT CONDUCTION

4.1 Problem Overview

 The first case carried out using MFiX-PETSc was heat conduction throughout a three-

dimensional cube at steady-state. Temperature boundary conditions were set at the top and

bottom walls, while the other four walls were adiabatic. This problem was chosen as the

initial case since the solution is well-known, therefore it was used to test the interface

framework. Theoretically, at steady-state conditions, there should be a linear temperature

profile between the top and bottom walls. Figure 4-1 shows the dimensions and temperature

boundary conditions used throughout Case 1.

Figure 4-1: Geometry dimensions and boundary conditions used to carry out the 3D, steady-

state heat conduction case.

10 cm

10 cm

10 cm

At z = 0 cm

T = 1,000 K

At z = 10 cm

T = 300 K

38

 Simulating this case only required solving the energy conservation equation. The

medium inside of the geometry was chosen as air, since the material should not affect the

temperature profile at steady-state. For each simulation, the viscosity, density, and

molecular weight of air were 10-2 g/(cm·s), 2.5 g/cm3, and 29 g/mol respectively.

Additionally, the gas conductivity was 1.0 cal/(s·cm·K) and the heat capacity was 1.0

cal/(g·s·K). The mfix.dat input file for this case can be found in the Appendix.

 For both native MFiX and the MFiX-PETSc Interface, the BiCGSTAB solver was used

to solve the energy equation with an outer iteration tolerance of 10-4. In native MFiX, line

relaxation preconditioning was applied to BiCGSTAB with a solver (inner iteration)

tolerance of 10-4. The maximum number of inner iterations for solving the energy equation

in MFiX is set to 15 by default. This maximum value was increased to 10,000, which allowed

the solution to converge due to the residual norm rather than by reaching a maximum

iteration value. Using MFiX-PETSc, SOR and Block Jacobi preconditioning were applied from

both the left- and right-side. Solver tolerances of both 10-4 and 10-7 were tested with the

interface, while the maximum number of solver iterations was also set to 10,000.

 The meshes used varied from 8,000 elements (20x20x20) to 1,000,000 elements

(100x100x100). Table 4-1 summarizes all of the simulations tested throughout Case 1. The

main goal of this exercise was to verify that the MFiX-PETSc interface was working correctly

by comparing the solutions obtained with MFiX-PETSc against native MFiX and theoretical

results. An additional objective was to make an initial assessment of the preconditioners and

solver settings offered in PETSc. To do this, CPU times and solution accuracy were compared

between the different preconditioners.

39

Table 4-1. Summary of grid dimensions, meshing, tolerances, solvers, and preconditioners

employed in Case 1.

Case 1: 3D, Steady-State Heat Conduction

Case Dimensions Solver Tolerance Preconditioner Mesh

1.1

10x10x10 cm3 BCGS

Outer: 10-4

Solver: 10-4

MFiX:

Line

1. 20x20x20

2. 40x40x40

3. 60x60x60

4. 80x80x80

5. 100x100x100

1.2
MFiX-PETSc:

SOR (left)

1. 20x20x20

2. 40x40x40

3. 60x60x60

4. 80x80x80

5. 100x100x100

1.3
MFiX-PETSc:

Block Jacobi (left)

1. 20x20x20

2. 40x40x40

3. 60x60x60

4. 80x80x80

5. 100x100x100

1.4

Outer: 10-4

Solver: 10-7

MFiX-PETSc:

SOR (left)

1. 20x20x20

2. 40x40x40

3. 60x60x60

4. 80x80x80

5. 100x100x100

1.5
MFiX-PETSc:

Block Jacobi (left)

1. 20x20x20

2. 40x40x40

3. 60x60x60

4. 80x80x80

5. 100x100x100

1.6
Outer: 10-4

Solver: 10-4

MFiX-PETSc:

SOR (right)
1. 100x100x100

1.7
MFiX-PETSc:

Block Jacobi (right)
1. 100x100x100

4.2 Results

 For each simulation, the fluid temperature was recorded in the z-direction (from 0 to

10 cm) when x = 2.25 cm and y = 5 cm. The temperature profiles were then compared against

theoretical values. The plots in Figure 4-2 show these temperature distributions for a solver

tolerance of 10-4 (Cases 1.1-1.3) for the following meshes: (a) 20x20x20, (b) 60x60x60, and

(c) 100x100x100. At this intermediate solver tolerance (10-4), it’s evident that the left-side

preconditioning options in PETSc became less accurate as the problem size was increased.

40

(a)

(b)

(c)

Figure 4-2. Temperature distributions in the z-direction when x = 2.25 cm and y = 5 cm for

Cases 1.1-1.3 and mesh sizes of (a) 20x20x20, (b) 60x60x60, and (c) 100x100x100.

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10

T
 (

K
)

z (m)

MFiX (Line)
MFiX-PETSc (SOR - left)
MFiX-PETSc (BJACOBI - left)
Theory

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10

T
 (

K
)

z (m)

MFiX (Line)
MFiX-PETSc (SOR - left)
MFiX-PETSc (BJACOBI - left)
Theory

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10

T
 (

K
)

z (m)

MFiX (Line)

MFiX-PETSc (SOR - left)

MFiX-PETSc (BJACOBI - left)

Theory

41

 Based upon these results, the solver tolerance for MFiX-PETSc was refined to (10-7)

in Cases 1.4 and 1.5. Then, the temperature distributions obtained using an intermediate

solver tolerance (10-4) and a refined solver tolerance (10-7) were compared by calculating

percent errors from the theoretical solution. Figures 4-3 (a, b, c) compare these temperature

percent errors for mesh sizes of (a) 20x20x20, (b) 60x60x60, and (c) 100x100x100. Similar

to the results shown throughout Figure 4-2, temperature results obtained with MFiX-PETSc’s
preconditioners using an intermediate solver tolerance (10-4) resulted in more error when

compared to native MFiX at the same tolerance. This error generally increased at points

further away from the boundary conditions (employed at z = 0 and 10). As the solver

tolerance of MFiX-PETSc was refined to 10-7, the error became minimal for both Block Jacobi

and SOR preconditioners. Therefore, implementation of the MFiX-PETSc code has been

verified by obtaining identical results to native MFiX and well-known theory.

 Each simulation was repeated ten times to collect timing data. Figure 4-4 compares

CPU time as a function of problem size (number of unknowns) for Cases 1.1-1.5. Overall,

native MFiX with line relaxation preconditioning was significantly faster than any of the

preconditioners tested in MFiX-PETSc for this steady-state problem. Additionally, refining

the solver tolerance within the interface resulted in slower simulations, as expected. The

interface was at best 168% slower than MFiX’s native solver to obtain the same accuracy at

a fine mesh resolution (100x100x100).

42

(a)

(b)

(c)

Figure 4-3. Percent errors for temperature in the z-direction when x = 2.25 cm and y = 5

cm for Cases 1.1-1.5 and mesh sizes of (a) 20x20x20, (b) 60x60x60, and (c) 100x100x100.

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10

P
e

rc
e

n
t

E
r

ro
r

(%
)

z (m)

MFiX (Line) - solver tol 1e-4

MFiX-PETSc (SOR - left) - solver tol 1e-4

MFiX-PETSc (SOR - left) - solver tol 1e-7

MFiX-PETSc (BJACOBI - left) - solver tol 1e-4

MFiX-PETSc (BJACOBI - left) - solver tol 1e-7

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

P
e

rc
e

n
t

E
r

ro
r

(%
)

z (m)

MFiX (Line) - solver tol 1e-4

MFiX-PETSc (SOR - left) - solver tol 1e-4

MFiX-PETSc (SOR - left) - solver tol 1e-7

MFiX-PETSc (BJACOBI - left) - solver tol 1e-4

MFiX-PETSc (BJACOBI - left) - solver tol 1e-7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10

P
e

rc
e

n
t

E
r

ro
r

(%
)

z (m)

MFiX (Line) - solver tol 1e-4
MFiX-PETSc (SOR - left) - solver tol 1e-4
MFiX-PETSc (SOR - left) - solver tol 1e-7
MFiX-PETSc (BJACOBI - left) - solver tol 1e-4
MFiX-PETSc (BJACOBI - left) - solver tol 1e-7

43

Figure 4-4. Comparison of CPU time as a function of problem size for Cases 1.1-1.5, with

standard deviation error bars.

 It is known that the application of a preconditioner from the left and the right can

behave differently depending on the system being solved. For left preconditioning, the

calculated residual can greatly differ from the true residual since it is computed based on the

preconditioned system. This issue can escalate as the problem size increases. As

demonstrated with this problem, the SOR and Block Jacobi preconditioners applied from the

left-side became less accurate as the problem size was increased from 8,000 to 1,000,000

unknowns. Theoretically, if this loss in accuracy is related to how the residual is being

calculated, applying these preconditioners from the right-side should alleviate this problem

to achieve more accurate solutions. Cases 1.6 and 1.7 explore right-side SOR and right-side

Block Jacobi preconditioning respectively, with an intermediate solver tolerance (10-4) and

a fine mesh (100x100x100). Figure 4-5 compares the temperature percent errors obtained

using right-side preconditioning versus left-side preconditioning in MFiX-PETSc. The

0

10

20

30

40

50

60

70

80

90

100

0.E+00 2.E+05 4.E+05 6.E+05 8.E+05 1.E+06

C
P

U
 T

im
e

 (
s)

Unknowns

MFiX (Line) - solver tol 1e-4

MFiX-PETSc (SOR - left) - solver tol 1e-4

MFiX-PETSc (SOR - left) - solver tol 1e-7

MFiX-PETSc (BJACOBI - left) - solver tol 1e-4

MFiX-PETSc (BJACOBI - left) - solver tol 1e-7

44

temperature profiles achieved with right-side preconditioning did not follow expectations.

Even more error was introduced into this system when Block Jacobi, and especially SOR,

were applied from the right-hand side. Moreover, the CPU times required to solve the system

were similar for left and right preconditioning, as demonstrated in Figure 4-6.

Figure 4-5. Comparison of temperature percent errors obtained for Case 1 using left-side

(Cases 1.2 and 1.3) and right-side (Cases 1.6 and 1.7) preconditioning in MFiX-PETSc for an

intermediate solver tolerance (10-4) and a fine mesh (100x100x100).

Figure 4-6. Comparison of the CPU time required to solve Case 1 using left-side (Cases 1.2

and 1.3) and right-side (Cases 1.6 and 1.7) preconditioning in MFiX-PETSc for an

intermediate solver tolerance (10-4) and a fine mesh (100x100x100)

0

10

20

30

40

50

60

70

C
P

U
 T

IM
E

 (
S

)

MFiX-PETSc (SOR - left)
MFiX-PETSc (SOR - right)
MFiX-PETSc (BJACOBI - left)
MFiX-PETSc (BJACOBI - right)

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

P
e

rc
e

n
t

E
r

ro
r

(%
)

z (m)

MFiX-PETSc (SOR - left) - solver tol 1e-4

MFiX-PETSc (SOR - right) - solver tol 1e-4

MFiX-PETSc (BJACOBI - left) - solver tol 1e-4

MFiX-PETSc (BJACOBI - right) - solver tol 1e-4

45

CHAPTER 5

SINGLE-PHASE FLOW OVER A CYLINDER

5.1 Problem Overview

 The second case investigated the isothermal, unsteady flow of air with a low Reynolds

number past a cylindrical boundary on a two-dimensional domain. This is a well-studied

problem dating back to the 1950’s both experimentally and numerically due to its relevance

in engineering applications. Obtaining an accurate numerical solution for this case can be

challenging since the location of flow separation from the cylinder surface is only influenced

by the flow regime and/or the upstream conditions [19].

 This problem was simulated with three different meshes: a coarse mesh (120x80), an

intermediate mesh (240x160), and a fine mesh (480x320). This was done to analyze the

effect of meshing on the performance MFiX-PETSc. Figure 5-1 displays the coarse mesh that

was used throughout Case 2 along with the cylinder and flow-field dimensions used for all

levels of meshing. An inlet of ambient air was placed along the left side of the geometry, where x is equal to 0. The velocity of the inlet was set to 3 cm/s resulting in a Reynold’s
number (Re) of 200. The initial condition of the inlet air was set to 0 Pa, representing the

gauge pressure. Additionally, the viscosity and density of air were assumed to remain

constant at 1.8 x 10-5 Pa·s and 1.2 kg/m3 respectively.

46

Figure 5-1. The coarse mesh (120x80) and dimensions used to simulate Case 2.

 Simulating this case required solving the momentum conservation equation in both

the x- and y- directions as well as the fluid pressure-correction equation. First-Order Upwind

(F.O.U.P.), Superbee, and van Leer discretization schemes were applied to these equations to

monitor their effect on pressure solutions and CPU time.

 With native MFiX, line relaxation and diagonal scaling preconditioners were applied

to BiCGSTAB to solve the pressure-correction equation. In the MFiX-PETSc solver, Block

Jacobi and SOR preconditioning were applied on both sides (left and right) individually. The

solver tolerance for all equations was set to 10-4, and the maximum number of iterations to

solve the pressure equation was 10,000 for both native MFiX and MFiX-PETSc to ensure that

the linear solver for the pressure-correction equation did reach the specified tolerance every

time. Table 5-1 summarizes the simulations run in Case 2 along with their settings. These

simulations were each run for 300 seconds of simulation time with a constant time step of

0.25 seconds. The mfix.dat input file for this case can be found in the Appendix.

600 cm

4
0

0

cm

Cylinder radius located

at x=200 cm, y=200 cm

10 cm diameter

x

y

47

Table 5-1. Summary of grid dimensions, meshing, time steps, tolerances, solvers,

discretization schemes, and preconditioners (P.C.) employed in Case 2.

Case 2: 2D Flow Over a Cylinder

Case
Dimensions +

Mesh

Time

Step
Tolerance Solver Scheme P.C.

2.1
6x4 m2

120x80
DT: 0.25

Outer: 10-6

Solver: 10-4
BCGS

1. F.O.U.P.

2. Superbee

3. van Leer

1. MFiX Line

2. MFiX Diag

3. Interface SOR (left)

4. Interface SOR (right)

5. Interface BJACOBI (left)

6. Interface BJACOBI (right)

2.2
6x4 m2

240x160
DT: 0.25

Outer: 10-6

Solver: 10-4
BCGS

1. F.O.U.P

2. Superbee

3. van Leer

1. MFiX Line

2. MFiX Diag

3. Interface SOR (left)

4. Interface SOR (right)

5. Interface BJACOBI (left)

6. Interface BJACOBI (right)

2.3
6x4 m2

480x320

DT: 0.25

Outer: 10-6

Solver: 10-4
BCGS

1. F.O.U.P.

2. Superbee

3. van Leer

1. MFiX Line

2. MFiX Diag

3. Interface SOR (left)

4. Interface SOR (right)

5. Interface BJACOBI (left)

6. Interface BJACOBI (right)

5.2 Results

 Pressure data was collected along the surface of the cylinder by representing surface

points as angles, which is illustrated in Figure 5-2. The pressure data was recorded at 11

surface points and then transformed into the Pressure Coefficient (𝐶𝑝) as follows [20]:

 𝐶𝑝 = 𝑃− 𝑃∞12𝜌∞𝑈∞2 (5.1)

where P is the time-averaged surface pressure, P∞ is the constant pressure of the inlet air

stream, ρ∞ is the constant density of the inlet air stream, and U∞ is the constant velocity of

the inlet air stream. The surface pressure measurements were averaged after steady-state

fluctuations were observed.

48

Figure 5-2. Surface points along the cylinder represented as angles.

 Time-averaged pressure coefficients along the cylinder surface obtained using native

MFiX and MFiX-PETSc were compared against experimental measurements from Norberg

[20]. Figure 5-3 shows these pressure coefficient results achieved with (a) MFiX’s line

relaxation preconditioner and (b) MFiX-PETSc’s left-side Block Jacobi preconditioner for a

coarse mesh (Case 2.1). Similarly, Figures 5-4 (a, b) compare these two preconditioning

methods for an intermediate mesh (Case 2.2). Results from the other MFiX-PETSc

preconditioning options mentioned in Table 5-1 were exactly identical to those from the

Block Jacobi (left) preconditioner and are not shown for brevity. First off, it is evident that

the results obtained with MFiX-PETSc’s left-side Block Jacobi preconditioner are identical to the results from MFiX’s line relaxation preconditioner at the coarse and intermediate

meshing levels. Therefore, with coarse and intermediate meshing, good agreement was

demonstrated between native MFiX and MFiX-PETsc. Figures 5-3 and 5-4 also show how the

higher-order discretization schemes (van Leer, Superbee) result in more accurate pressure

predictions compared to the first-order upwind (F.O.U.P.) scheme with its results improving

at higher mesh resolutions. A visual representation of these predictions is shown in Figure

5-5 where pressure and velocity contours of the different discretization and preconditioning

options are compared for the coarse mesh simulations. Again, F.O.U.P. results in contours

ϴ = 0˚ ϴ ϴ = 180˚

Air Stream

49

that are diffuse while the higher order schemes are able to better represent the fine vortical

structures behind the cylinder.

(a)

(b)

Figure 5-3. Comparison of time-averaged pressure coefficients obtained with (a) MFiX’s line

relaxation and (b) MFiX-PETSc’s left-side Block Jacobi preconditioners against experimental

measurements from Norberg [20] using a coarse mesh (Case 2.1).

-1.5

-0.5

0.5

1.5

0 40 80 120 160

Cp

ϴ (˚)

Norberg exp. (2002)

MFiX-PETSc (BJACOBI - left) FOUP

MFiX-PETSc (BJACOBI - left) Superbee

MFiX-PETSc (BJACOBI - left) van Leer

-1.5

-0.5

0.5

1.5

0 40 80 120 160

Cp

ϴ (˚)

Norberg exp. (2002)

MFiX (Line) FOUP

MFiX (Line) Superbee

MFiX (Line) van Leer

50

(a)

(b)

Figure 5-4. Comparison of time-averaged pressure coefficients obtained with (a) MFiX’s line

relaxation and (b) MFiX-PETSc’s left-side Block Jacobi preconditioners against experimental

measurements from Norberg [20] using an intermediate mesh (Case 2.2).

-1.5

-0.5

0.5

1.5

0 40 80 120 160

Cp

ϴ (˚)

Norberg exp. (2002)

MFiX-PETSc (BJACOBI - left) FOUP

MFiX-PETSc (BJACOBI - left) Superbee

MFiX-PETSc (BJACOBI - left) van Leer

-1.5

-0.5

0.5

1.5

0 40 80 120 160

Cp

ϴ (˚)

Norberg exp. (2002)

MFiX (Line) FOUP

MFiX (Line) Superbee

MFiX (Line) van Leer

51

 (a)

 (b)

Figure 5-5. Comparison of the (a) pressure and (b) y-velocity contours between F.O.U.P. and

van Leer discretization schemes at 100 seconds using left-side Block Jacobi preconditioning

in MFiX-PETSc and diagonal scaling preconditioning in the native MFiX solver.

MFiX – PETSc (BJacobi - left) FOUP

MFiX – PETSc (BJacobi - left) van Leer

MFiX (Diag) FOUP

MFiX (Diag) van Leer

MFiX – PETSc (BJacobi - left) FOUP

MFiX – PETSc (BJacobi - left) van Leer

MFiX (Diag) FOUP

MFiX (Diag) van Leer

52

 As the meshing was refined even more in Case 2.3, the preconditioning techniques

had an effect on the pressure coefficient solutions. Figures 5-6, 5-7, and 5-8 show the time-

averaged pressure coefficients as a function of the surface angle for F.O.U.P., Superbee, and

van Leer discretization schemes employed throughout Case 2.3 respectively. For all types of

discretization at this fine meshing level, both right- and left-side Block Jacobi, as well as left-

side SOR agreed well with the experimental results. In opposition, both of the

preconditioners offered in MFiX and right-side SOR from MFiX-PETSc were not able to

achieve these high levels of accuracy as the mesh was refined.

Figure 5-6. Comparison of time-averaged pressure coefficients obtained in Case 2.3 against

previous experimental measurements from Norberg [20] for F.O.U.P discretization.

-1.5

-0.5

0.5

1.5

0 40 80 120 160

Cp

ϴ (˚)

Norberg exp. (2002)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

53

Figure 5-7. Comparison of time-averaged pressure coefficients obtained in Case 2.3 against

previous experimental measurements from Norberg [20] for Superbee discretization.

Figure 5-8. Comparison of time-averaged pressure coefficients obtained in Case 2.3 against

previous experimental measurements from Norberg [20] for van Leer discretization.

-1.5

-0.5

0.5

1.5

0 40 80 120 160

Cp

ϴ (˚)

Norberg exp. (2002)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

-1.5

-0.5

0.5

1.5

0 40 80 120 160

Cp

ϴ (˚)

Norberg exp. (2002)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

54

 Back in Case 1, the heat conduction problem, different behavior was observed when

Block Jacobi and SOR were applied from the left-side versus the right-side. For that specific

problem, preconditioning from the left was significantly more accurate. For this case, that

trend remained when SOR was applied from the right-side; however, left-side and right-side

Block Jacobi both yielded accurate pressure solutions. These findings support the idea

presented in section 2.5.2 that applying preconditioning from the left or the right can exhibit

extremely different performance depending on the linear system.

 For the fine mesh used in Case 2.3, applying MFiX’s preconditioners with a constant

time step caused convergence issues, with the exception of line relaxation combined with

Superbee discretization. When the diagonal scaling preconditioner was used, the results

immediately diverged due to extremely high velocity values near the inlet. The constant time

step setting was relaxed with diagonal scaling to allow these cases to reach 300 seconds of

simulation time. As these simulations approached steady pressure fluctuations, the time step

approached 0.9 seconds, which was larger compared to the constant 0.25 second time step

used in the other cases. Applying line relaxation with the F.O.U.P. and van Leer discretization

schemes diverged after 296 and 235 seconds of simulation time respectively. Pressure and

timing results were still analyzed for these simulations up until the divergence errors.

 Figures 5-9, 5-10, and 5-11 compare the CPU time as a function of problem size for

F.O.U.P., Superbee, and van Leer discretization respectively. The line relaxation

preconditioning option which is the default in native MFiX was significantly slower than the

other preconditioning options explored in this study. While switching over to MFiX’s
diagonal scaling preconditioner did speed up the time to solution, the right- and left-side

Block Jacobi (BJACOBI) preconditioning options (to the BiCGSTAB solver) in MFiX-PETSc

55

emerged as the faster solver-preconditioner combination for this test problem. Altogether,

right-side Block Jacobi was 40%, 30% and 28% faster than native MFiX’s diagonal scaling for
the F.O.U.P., Superbee, and van Leer discretization schemes respectively. Moreover, left-side

Block Jacobi was 46%, 27%, and 31% faster than MFiX’s diagonal scaling for F.O.U.P.,
Superbee, and van Leer discretization schemes respectively.

 Figure 5-12 compares the average number of iterations (with standard deviations) to

solve the pressure-correction equation in Cases (a) 2.1, (b) 2.2, and (c) 2.3. The Block Jacobi

preconditioner in MFiX-PETSc required a lower number of solver iterations compared to the

other preconditioners across all mesh sizes and discretization schemes. Consequently, these

also translate to the trends in CPU time observed in Figures 5-9 – 5-11. Overall, Block Jacobi

preconditioning from both the left and right was faster, more accurate, and exhibited better convergence properties than MFiX’s preconditioning options for 2D flow past a cylinder.

Figure 5-9. CPU time as a function of problem size for Case 2 using the F.O.U.P. discretization

scheme.

0.1

1

10

100

0.E+00 5.E+04 1.E+05 2.E+05

C
P

U
 T

im
e

 (
h

)

Unknowns

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

56

Figure 5-10. CPU time as a function of problem size for Case 2 using the Superbee

discretization scheme.

Figure 5-11. CPU time as a function of problem size for Case 2 using the van Leer

discretization scheme.

0.1

1

10

100

0.E+00 5.E+04 1.E+05 2.E+05

C
P

U
 T

im
e

 (
h

)

Unknowns

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

0.1

1

10

100

0.E+00 5.E+04 1.E+05 2.E+05

C
P

U
 T

im
e

 (
h

)

Unknowns

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

57

(a)

(b)

(c)

Figure 5-12. Average pressure solver iterations required throughout Cases (a) 2.1, (b) 2.2,

and (c) 2.3 (with standard deviations).

0

200

400

600

800

1000

F.O.U.P Superbee van Leer

A
V

G
. S

O
L

V
E

R
 I

T
E

R
A

T
IO

N
S

MFIX (Line) MFiX (Diag)

MFiX-PETSc (SOR - left) MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - left) MFiX-PETSc (BJACOBI - right)

0

500

1000

1500

2000

F.O.U.P Superbee van Leer

A
V

G
. S

O
L

V
E

R
 I

T
E

R
A

T
IO

N
S

MFIX (Line) MFiX (Diag)

MFiX-PETSc (SOR - left) MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - left) MFiX-PETSc (BJACOBI - right)

0

500

1000

1500

2000

2500

3000

F.O.U.P Superbee van Leer

A
V

G
. S

O
L

V
E

R
 I

T
E

R
A

T
IO

N
S

MFiX (Line) MFiX (Diag)

MFiX-PETSc (SOR - left) MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - left) MFiX-PETSc (BJACOBI - right)

58

CHAPTER 6

3D Fluidized Bed

6.1 Problem Overview

 For the third and fourth cases presented in Chapter 6, MFiX-PETSc was used to solve

the pressure-correction equation for a three-dimensional, rectangular fluidized bed

operated with a central jet. The geometry of the bed and simulation settings were based on

a previous study performed by Utikar and Ranade [21]. Figure 6-1 shows the dimensions of

the bed and central jet used to carry out this study. The 20x100x2 cm3 bed geometry was

broken down into a 40x250x10 mesh to carry out simulations.

Figure 6-1. Dimensions and central jet location of the 3D rectangular fluidized bed.

fluidization jet

9 cm 2 cm 9 cm

1
0

0
 cm

fluidization

59

 The bed was filled with spherical beads at a height to diameter ratio (H/D) of 1. Beads

of two different materials, glass (Case 3) and polypropylene (Case 4), were tested separately.

Additionally, two different air inlets were used: air through the central jet at velocities of 5

and 20 m/s and air at the minimum fluidization velocity from the bottom of the bed. The air

was assumed to have constant density of 1.2 kg/m3 and viscosity of 1.8x10-5 Pa·s.

6.2 Results

 6.2.1 Glass Particles

 In Case 3, the fluidized bed was filled with glass particles at a H/D of 1. Table 6-1

contains the material properties used to represent the glass particles.

Table 6-1. List of material properties used for glass particles throughout Case 3.

Glass Particle Properties

Density (kg/m3) 2545

Coefficient of Restitution 0.9

Angle of Internal Friction 30˚ Diameter (μm) 425

Minimum Fluidization Velocity (m/s) 0.30

 Similar to Case 2, the line relaxation and diagonal scaling preconditioners in native

MFiX, and the Block Jacobi and SOR preconditioners in MFiX-PETSc were applied to the

BiCGSTAB solver in Case 3. Block Jacobi and SOR were applied from both the left- and right-

hand side in MFiX-PETSc. Throughout this case, three different tolerance combinations were

tested: an outer tolerance of 10-1 with a solver tolerance of 10-1, an outer tolerance of 10-1

with a solver tolerance of 10-3, and an outer tolerance of 10-3 with a solver tolerance of 10-3.

Additionally, both the F.O.U.P. and van Leer discretization schemes were used. Table 6-2

60

summarizes the various settings applied to different simulations for Case 3. The mfix.dat

input file for this case can be found in the Appendix.

Table 6-2. Summary of grid dimensions, meshing, time steps, tolerances, inlet velocities,

solvers, discretization schemes, and preconditioners (P.C.) employed in Case 3.

Case 3: 3D Fluidized Bed with Glass Particles

Case
Dimensions +

Mesh

Time

Step
Tolerance Uin Solver Scheme P.C.

3.1
20x100x2 cm3

40x250x10

Max: 10-1

Min: 10-6

Outer: 10-1

Solver: 10-1
5 m/s BCGS F.O.U.P.

1. MFiX Line

2. MFiX Diag

3. PETSc SOR (left)

4. PETSc SOR (right)

5. PETSc BJACOBI (left)

6. PETSc BJACOBI (right)

3.2
20x100x2 cm3

40x250x10

Max: 10-1

Min: 10-6

Outer: 10-1

Solver: 10-3
5 m/s BCGS F.O.U.P.

1. MFiX Line

2. MFiX Diag

3. PETSc SOR (left)

4. PETSc SOR (right)

5. PETSc BJACOBI (left)

6. PETSc BJACOBI (right)

3.3
20x100x2 cm3

40x250x10

Max: 10-1

Min: 10-6

Outer: 10-3

Solver: 10-3
5 m/s BCGS F.O.U.P.

1. MFiX Line

2. MFiX Diag

3. PETSc SOR (left)

4. PETSc SOR (right)

5. PETSc BJACOBI (left)

6. PETSc BJACOBI (right)

3.4
20x100x2 cm3

40x250x10

Max: 10-1

Min: 10-6

Outer: 10-1

Solver: 10-1
5 m/s BCGS

van

Leer

1. MFiX Line

2. MFiX Diag

3. PETSc SOR (left)

4. PETSc SOR (right)

5. PETSc BJACOBI (left)

6. PETSc BJACOBI (right)

3.5
20x100x2 cm3

40x250x10

Max: 10-1

Min: 10-6

Outer: 10-1

Solver: 10-3
5 m/s BCGS

van

Leer

1. MFiX Line

2. MFiX Diag

3. PETSc SOR (left)

4. PETSc SOR (right)

5. PETSc BJACOBI (left)

6. PETSc BJACOBI (right)

3.6
20x100x2 cm3

40x250x10

Max: 10-1

Min: 10-6

Outer: 10-3

Solver: 10-3
5 m/s BCGS

van

Leer

1. MFiX Line

2. MFiX Diag

3. PETSc SOR (left)

4. PETSc SOR (right)

5. PETSc BJACOBI (left)

6. PETSc BJACOBI (right)

3.7
20x100x2 cm3

40x250x10

Max: 10-1

Min: 10-6

Outer: 10-1

Solver: 10-3
20 m/s BCGS

van

Leer

1. MFiX Diag

2. PETSc BJACOBI (left)

3. PETSc BJACOBI (right)

61

 Pressure fluctuations were measured at a bed height of 15 mm above the central jet.

The pressure data was then normalized after 2 seconds of simulation time by using the

standard deviation of the fluctuations. Estimates of the power spectral density (PSD) of the

normalized pressure fluctuations were made using the Fast Fourier Transform (FFT)

method. The power spectra predicted by MFiX-PETSc were compared against native MFiX

for each case. Figures 6-2 (a, b), 6-3 (a, b), and 6-4 (a, b) show the PSD plots for Cases 3.1,

3.2, and 3.3 respectively. All three cases employed a 5 m/s central jet and F.O.U.P.

discretization.

 When both the outer and solver tolerance were 10-1 (Case 3.1), all preconditioners

besides right-side SOR followed similar trends and predicted a dominant frequency of 5.1

Hz. As the solver tolerance was decreased to 10-3 in Case 3.2, two main peaks started to

appear at approximately 5.1 and 5.9 Hz. Additionally, results obtained with all

preconditioning methods agreed well. Finally, Case 3.3 refined the outer tolerance to match

the solver tolerance at 10-3. The power spectra still exhibited two peaks; however, the PSD

trends captured using these different preconditioners were not as similar compared to Case

3.2, which employed a higher outer tolerance. This observation can be explained by looking

at the pressure fluctuations. The pressure data captured between 2- 10 seconds for each of

the preconditioners in Case 3.3 is shown in Figure 6-5. These images indicate that the bed

was undergoing a transition between fluidization regimes. Therefore, simulations should

have been run longer than 10 seconds for a lower outer tolerance level, as was used in Case

3.3. Overall, power spectra predicted by MFiX-PETSc agreed fairly well with native MFiX

considering the complexity of the case compared with the heat conduction and 2D flow

problems.

62

(a)

(b)

Figure 6-2. Comparison of power spectra obtained using (a) left and (b) right

preconditioning in MFiX-PETSc against native MFiX for an outer tolerance of 10-1, a solver

tolerance of 10-1, and F.O.U.P. discretization (Case 3.1).

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (BJACOBI - left)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - right)

63

(a)

(b)

Figure 6-3. Comparison of power spectra obtained using (a) left and (b) right

preconditioning in MFiX-PETSc against native MFiX for an outer tolerance of 10-1, a solver

tolerance of 10-3, and F.O.U.P. discretization (Case 3.2).

0.0

0.2

0.4

0.6

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (BJACOBI - left)

0.0

0.2

0.4

0.6

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - right)

64

(a)

(b)

Figure 6-4. Comparison of power spectra obtained using (a) left and (b) right

preconditioning in MFiX-PETSc against native MFiX for an outer tolerance of 10-3, a solver

tolerance of 10-3, and F.O.U.P. discretization (Case 3.3).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (BJACOBI - left)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - right)

65

Figure 6-5. Comparison of pressure fluctuations for different preconditioners employed in

Case 3.3 which indicates a fluidization regime transition occurred.

1.030E+05

1.034E+05

1.038E+05

1.042E+05

2 3 4 5 6 7 8 9 10

P
re

ss
u

re
 (

P
a

)

time (s)

MFiX-PETSc (SOR - right)

1.030E+05

1.034E+05

1.038E+05

1.042E+05

2 3 4 5 6 7 8 9 10

P
re

ss
u

re
 (

P
a

)

time (s)

MFiX-PETSc (SOR - left)

1.030E+05

1.034E+05

1.038E+05

1.042E+05

2 3 4 5 6 7 8 9 10

P
re

ss
u

re
 (

P
a

)

time (s)

MFiX-PETSc (BJACOBI - right)

1.029E+05

1.033E+05

1.037E+05

1.041E+05

1.045E+05

2 3 4 5 6 7 8 9 10

P
re

ss
u

re
 (

P
a

)

time (s)

MFiX-PETSc (BJACOBI - left)

1.030E+05

1.034E+05

1.038E+05

1.042E+05

2 3 4 5 6 7 8 9 10

P
re

ss
u

re
 (

P
a

)

time (s)

MFiX (Diag)

1.030E+05

1.034E+05

1.038E+05

1.042E+05

2 3 4 5 6 7 8 9 10

P
re

ss
u

re
 (

P
a

)

time (s)

MFiX (Line)

66

 Figures 6-6 (a, b), 6-7 (a, b), and 6-8 (a, b) show the PSD plots for Cases 3.4, 3.5, and

3.6 respectively. These simulations employed a 5 m/s central jet and van Leer discretization.

Looking at the power spectra of these cases, it is evident that the PSD trends are less smooth

than those observed for F.O.U.P. discretization. For Case 3.4, which uses an outer and solver

tolerance of 10-1, the dominant frequency predicted using left-side Block Jacobi was 8.8 Hz.

This value is significantly higher than the peak frequencies achieved with the other

preconditioning techniques, which ranged from 3.5 – 5.5 Hz. In Case 3.5, when the solver

tolerance was reduced to 10-3, the dominant frequency predicted with left-side Block Jacobi

became more reasonable. Overall, peak frequencies of these simulations in Case 3.5 ranged

from 4.3 - 6.1 Hz. Lastly, the outer tolerance was decreased to 10-3 in Case 3.6. The trends of

the power spectra were similar to Cases 3.4 and 3.5 in that there was a lot of noise in the data

and there was a range of dominant frequencies, which was 3.7 – 6.1 Hz for this specific case.

 To gain insight into why the PSD plots were less smooth, Figures 6-9 shows an

example comparison of the pressure fluctuations captured using F.O.U.P. against van Leer

discretization using the same tolerance levels and preconditioning method. While a pattern

develops after about 6 seconds with F.O.U.P. discretization, there is no evident pattern in the

fluctuations when van Leer is used. This indicates that simulations might have needed to be

run longer than 10 seconds for a pattern to be observed. For example, pressure signals were

recorded for 200 seconds in the Utikar and Ranade [21] experiments. However, since these

cases were run in a serial fashion, the computation time needed to run simulations for more

than 10 seconds would have been too large for the purposes of this study.

67

(a)

(b)

Figure 6-6. Comparison of power spectra obtained using (a) left and (b) right

preconditioning in MFiX-PETSc against native MFiX for an outer tolerance of 10-1, a solver

tolerance of 10-1, and van Leer discretization (Case 3.4).

0.0

0.1

0.2

0.3

0.4

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (BJACOBI - left)

0.0

0.1

0.2

0.3

0.4

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - right)

68

(a)

(b)

Figure 6-7. Comparison of power spectra obtained using (a) left and (b) right

preconditioning in MFiX-PETSc against native MFiX for an outer tolerance of 10-1, a solver

tolerance of 10-3, and van Leer discretization (Case 3.5).

0.0

0.1

0.2

0.3

0.4

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (BJACOBI - left)

0.0

0.2

0.4

0.6

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - right)

69

(a)

(b)

Figure 6-8. Comparison of power spectra obtained using (a) left and (b) right

preconditioning in MFiX-PETSc against native MFiX for an outer tolerance of 10-3, a solver

tolerance of 10-3, and van Leer discretization (Case 3.6).

0.0

0.1

0.2

0.3

0.4

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (BJACOBI - left)

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - right)

70

Figure 6-9. An example of the pressure fluctuations obtained with F.O.U.P. versus van Leer

discretization schemes using the same tolerance levels and preconditioning method.

 Figures 6-10 (a, b) compare the CPU time ratios (MFiX-PETSc CPU time / MFiX CPU

time) for the F.O.U.P. and van Leer discretization cases respectively. In computing these

ratios, the CPU time utilizing MFiX’s default line preconditioning method was used since it is

the default method. The CPU times achieved with the diagonal scaling and line relaxation

preconditioners were similar; therefore, the choice did not significantly affect the time ratios.

For all simulations employing a central jet of 5 m/s (Cases 3.1 – 3.6), native MFiX was faster

than MFiX-PETSc, resulting in a CPU time ratio greater than one. However, this case still

provided insight into the performance of MFiX-PETSc’s preconditioners.
 For a solver tolerance of 10-1, which was applied in Case 3.1 (F.O.U.P.) and Case 3.4

(van Leer), preconditioning from the left was faster for both SOR and Block Jacobi. As the

solver tolerance was tightened to 10-3 in Cases 3.2 and 3.3 (F.O.U.P.) and Cases 3.5 and 3.6

(van Leer), right preconditioning became significantly more efficient. With F.O.U.P.

discretization and a lower solver tolerance (10-3), right-side SOR preconditioning was 37-

1.030E+05

1.034E+05

1.038E+05

1.042E+05

2 3 4 5 6 7 8 9 10

P
re

ss
u

re
 (

P
a

)

time (s)

F.O.U.P.

1.030E+05

1.034E+05

1.038E+05

1.042E+05

2 3 4 5 6 7 8 9 10

P
re

ss
u

re
 (

P
a

)

time (s)

van Leer

71

43% slower than MFiX’s line relaxation preconditioner. Similarly, right-side Block Jacobi

preconditioning was 38-42% slower. With a higher-order discretization scheme (van Leer)

at this low tolerance level, right-side SOR was 32-35% slower than MFiX’s line relaxation,
while right-side Block Jacobi was 21-29% slower. Therefore, at a low solver tolerance level,

the timing differences between MFiX-PETSc and native MFiX were minimized by employing

right-side Block Jacobi with a higher-order discretization scheme.

(a)

(b)

Figure 6-10. CPU time ratios (MFiX-PETSc CPU time / native MFiX CPU time) for (a)

F.O.U.P. and (b) van Leer discretization schemes employed throughout Cases 3.1 - 3.6.

0

1

2

Case 3.1 Case 3.2 Case 3.3

C
P

U
 T

IM
E

 R
A

T
IO

MFiX-PETSc (SOR - left)
MFiX-PETSc (SOR - right)
MFiX-PETSc (BJACOBI - left)
MFiX-PETSc (BJACOBI - right)

F.O.U.P.

0

1

2

Case 3.4 Case 3.5 Case 3.6

C
P

U
 T

IM
E

 R
A

T
IO

MFiX-PETSc (SOR - left)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

van Leer

72

 Figures 6-11 (a, b) show the average solver iterations (with standard deviations)

required to solve the pressure-correction equation for the F.O.U.P. and van Leer cases. An

important trend shown in these figures is that for the cases with a lower solver tolerance

(Cases 3.2, 3.3, 3.4, and 3.5), right-side preconditioning results in fewer average iterations,

which correlates with the timing results portrayed throughout Figure 6-10.

(a)

(b)

Figure 6-11. Comparison of the average iterations (with standard deviations) required by

each preconditioner-solver combination to solve the pressure-correction equation when (a)

F.O.U.P. and (b) van Leer discretization schemes were employed throughout Cases 3.1 – 3.6.

0

50

100

150

200

Case 3.1 Case 3.2 Case 3.3

A
V

G
. S

O
L

V
E

R
 I

T
E

R
A

T
IO

N
S

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

F.O.U.P.

0

50

100

150

200

250

300

Case 3.4 Case 3.5 Case 3.6

A
V

G
. S

O
L

V
E

R
 I

T
E

R
A

T
IO

N
S

MFiX (Line)

MFiX (Diag)

MFiX-PETSc (SOR - left)

MFiX-PETSc (SOR - right)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

van Leer

73

 Since Block Jacobi was shown to be a more efficient preconditioning technique

compared to SOR, specifically for a higher-order discretization scheme, it was further tested

with an inlet velocity of 20 m/s in Case 3.7. For these simulations, van Leer was used as the

discretization scheme, the outer tolerance was 10-1, and the solver tolerance was 10-3. Then,

the PSD, timing, and iteration results achieved with right- and left-side Block Jacobi were

compared against native MFiX. At this increased velocity, line relaxation did not converge

well using these settings; therefore, diagonal scaling was used as the preconditioner in MFiX

for Case 3.7. Figure 6-12 shows the power spectra for Case 3.7 obtained with both MFiX and

MFiX-PETSc. At this higher inlet velocity, the PSD results using van Leer discretization were

more smooth compared to a 5 m/s inlet velocity. It can clearly be seen that the power spectra

trends captured by using both left-side and right-side Block Jacobi preconditioning are in

agreement with MFiX’s diagonal scaling.

Figure 6-12. Comparison of power spectra obtained for Case 3.7, which used a 20 m/s jet.

0.0

0.1

0.2

0.3

0.4

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Diag)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

74

 The CPU time ratios (MFiX-PETSc CPU time / MFiX CPU time) are shown in Figure 6-

13 (a) for Case 3.7. With a higher inlet velocity of 20 m/s, the CPU time ratios were greater

than one showing that native MFiX was still faster than the MFiX-PETSc solver. Applying

Block Jacobi from the right-side was significantly faster than from the left, which supports

previous results found with an inlet velocity of 5 m/s. Overall, using right-side Block Jacobi

resulted in a simulation that was 22% slower than using MFiX’s diagonal scaling
preconditioner. Therefore, inlet velocity did not significantly affect the timing difference

between MFiX and MFiX-PETSc. Figure 6-13 (b) shows the average iterations (with standard

deviations) required to solve the pressure-correction equation for each preconditioner

tested in Case 3.7. Right-side Block Jacobi preconditioning resulted in a lower number of

iterations required, which correlates with the CPU times shown in Figure 6-13 (a).

(a) (b)

Figure 6-13. The (a) CPU time ratios and (b) average solver iterations with standard

deviations for Case 3.7, which used a 20 m/s jet.

0

1

2

Case 3.7

C
P

U
 T

IM
E

 R
A

T
IO

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

0

50

100

150

200

250

300

350

400

450

Case 3.7

A
V

G
. S

O
L

V
E

R
 I

T
E

R
A

T
IO

N
S

MFiX (Diag)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

75

 6.2.2 Polypropylene Particles

 Case 4 used polypropylene beads in the 3D fluidized bed with a H/D of 1. Table 6-3

lists the material properties that were used for polypropylene.

Table 6-3. List of material properties used for polypropylene particles throughout Case 4.

 In Case 3, it was shown that Block Jacobi was faster than SOR for a higher-order

discretization scheme. Furthermore, line relaxation and diagonal scaling in MFiX were

similar in terms of efficiency. Due to these findings, the number of simulations carried out in

Case 4 was reduced by only looking at line relaxation in MFiX and Block Jacobi (left- and

right-side) in MFiX-PETSc. These preconditioners were applied with van Leer discretization,

an outer tolerance of 10-1, and a solver tolerance of 10-3. Additionally, inlet velocities of 5 and

20 m/s were both tested. Table 6-4 outlines all of the simulations that were run in Case 4,

along with their settings. The mfix.dat input file for this case can be found in the Appendix.

Table 6-4. Summary of inlet velocities, meshing, time steps, tolerances, solvers,

discretization schemes, and preconditioners (P.C.) employed in Case 4.

Polypropylene Particle Properties

Density (kg/m3) 900

Coefficient of Restitution 0.6

Angle of Internal Friction 30˚ Diameter (μm) 425

Minimum Fluidization Velocity (m/s) 0.11

Case 4: 3D Fluidized Bed with Polypropylene Particles

Case Uin
Dimensions +

Mesh

Time

Step
Tolerance Solver Scheme P.C.

4.1 5 m/s 20x100x2 cm3

40x250x10

Max: 10-1

Min: 10-6

Outer: 10-1

Solver: 10-3
BCGS

van

Leer

1. MFiX Line

2. PETSc BJACOBI (left)

3. PETSc BJACOBI (right) 4.2 20 m/s

76

 Figures 6-14 (a, b) show the power spectra for Cases 4.1 and 4.2 respectively. With a

lower inlet velocity (Case 4.1), the PSD plots from both the left- and right-side Block Jacobi

preconditioner agreed well with the native MFiX power spectrum using line relaxation

preconditioning. As the inlet velocity was increased to 20 m/s in Case 4.2, left-side Block

Jacobi preconditioning yielded a power spectrum much different from MFiX while Block

Jacobi from the right maintained agreement.

(a)

(b)

Figure 6-14. Comparison of power spectra for Cases (a) 4.1 and (b) 4.2.

0.0

0.4

0.8

1.2

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

0.0

0.2

0.4

0.6

0 5 10 15P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

77

 Figure 6-15 shows the CPU time ratios for Cases 4.1 and 4.2. Left-side Block Jacobi

preconditioning was 31% slower than native MFiX for a 5 m/s inlet velocity and 37% slower

for a 20 m/s inlet velocity. As Block Jacobi preconditioning was switched from left- to right-

side, the CPU times obtained with MFiX-PETSc approached those of MFiX. Right-side Block

Jacobi was 6% slower than MFiX with an inlet velocity of 5 m/s and only 2% slower for a 20

m/s inlet. When comparing these results to Case 3, it appears that the timing differences

between MFiX-PETSc and native MFiX were minimized when a lower density fluidization

material (polypropylene) was used.

Figure 6-15. CPU time ratios (MFiX-PETSc CPU time / native MFiX CPU time) for Cases 4.1

and 4.2.

0

1

2

Case 4.1 Case 4.2

C
P

U
 T

IM
E

 R
A

T
IO

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

78

 Figure 6-16 shows the average iterations (with standard deviations) required to solve

the pressure-correction equation for Cases 4.1 and 4.2. As was found previously, right-side

Block Jacobi results in fewer solver iterations when compared to left-side Block Jacobi. This

also correlates with the timing results presented in Figure 6-15.

Figure 6-16. Average solver iterations, with standard deviations, for Cases 4.1 and 4.2.

0

30

60

90

120

150

180

Case 4.1 Case 4.2

A
V

G
. S

O
L

V
E

R
 I

T
E

R
A

T
IO

N
S

MFiX (Line)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

79

CHAPTER 7

2D FLUIDIZED BED WITH FINE CENTRAL MESHING

7.1 Problem Overview

 The same fluidized bed problem as presented in Cases 3 and 4 was represented by a

two-dimensional geometry with fine meshing towards the center. This fine central meshing

was used since the jet is in the center and thus this is where the major pressure fluctuations

occurred. Figure 7-1 shows the 2D bed geometry (20x100 cm2) and the computational mesh

(56x250) that was used throughout this study.

(a) (b)

Figure 7-1. Case 5: (a) Dimensions of the rectangular fluidized bed (2D); (b) Mesh size

80

 For this study the domain was filled with glass and polypropylene particles separately

at a H/D of 1, and the same properties presented in Tables 6-1 and 6-3 were used to

represent these materials. Again, two different air inlets were used: air through the central

jet at a velocity of 5 m/s and air at the minimum fluidization velocity (0.11 or 0.3 m/s) from

the bottom of the bed. Air was assumed to have constant density of 1.2 kg/m3 and viscosity

of 1.8x10-5 Pa·s. The numerical simulation parameters specified in this investigation are

summarized in Table 3. The mfix.dat file for Case 5 can be found in the Appendix.

Table 7-1. Summary of fluidization materials, meshing, time steps, tolerances, solvers,

discretization schemes, and preconditioners employed in Case 5.

 Similar to Cases 3 and 4, pressure was monitored 15 mm above the central jet. The

normalized pressure fluctuations were transformed into Power Spectral Density (PSD) plots

via the Fast Fourier Transform (FFT) method. Additionally, CPU times and average solver

iterations (with standard deviations) were compared between the preconditioners. Case 5

also monitored the total number of time steps and total number of outer solver iterations

required to complete 10 seconds of simulation time. Looking at these two properties helped

indicate which preconditioning method resulted in the largest time step, which generally

leads to lower CPU times.

Case 5: 2D Fluidized Bed with Fine Central Meshing

Case Particle
Dimensions +

Mesh

Time

Step
Tolerance Solver Scheme P.C.

5.1 Glass
20x100 cm2

56x250

Max: 10-3

Min: 10-6

Outer: 10-3

Solver: 10-3
BCGS

van

Leer

1. MFiX:

Line

2. MFiX-PETSc:

 BJACOBI (left)

3. MFiX-PETSc:

 BJACOBI (right)
5.2 P.P.

81

7.2 Results

 Figure 7-2 (a) shows the PSD trends predicted in Case 5.1 for glass particles, while

Figure 7-2 (b) shows these trends predicted in Case 5.2 for polypropylene particles. As was

seen in the 3D fluidized bed cases, the power spectra predicted with van Leer are not very

smooth for 10 seconds of simulation. The results obtained by the MFiX-PETSc solver for

polypropylene particles are fairly similar to native MFiX. For glass particles however, no

conclusions can clearly be drawn regarding power spectra similarities between the different

preconditioners.

(a)

(b)

Figure 7-2. Comparison of power spectra obtained for Cases (a) 5.1 and (b) 5.2.

0.0

0.1

0.2

0.3

0.4

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

0.0

0.1

0.2

0.3

0.4

0 5 10 15

P
o

w
e

r
 S

p
e

c
tr

a
l

D
e

n
si

ty

Frequency (Hz)

MFiX (Line)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

82

 Figure 7-3 (a) shows the CPU time ratios relative to that of the native MFiX solver

(MFiX-PETSc CPU time / native MFiX CPU time) to simulate 10 seconds of fluidization in

Case 5. For a high density fluidization material (glass), MFiX-PETSc was 2% faster than

native MFiX when left-side Block Jacobi preconditioning was employed, and 28% faster

with right-side Block Jacobi preconditioning. When a low density fluidization material was

used (polypropylene), MFiX-PETSc was 25% and 20% faster than native MFiX with left-

side Block Jacobi and right-side Block Jacobi respectively.

 Figure 7-3 (b) shows the average iterations required to solve the pressure-

correction equation, with standard deviations, for each preconditioning method throughout Case 5. When compared to MFiX’s native solver, Block Jacobi (both left and
right) takes less iterations to converge to the specified tolerance and thereby causes the

CPU times to be lower than those of native MFiX. Additionally, for both Cases 5.1 and 5.2,

right-side Block Jacobi resulted in fewer solver iterations compared to left-side Block

Jacobi. This trend correlates with the CPU timing difference between left and right

preconditioning that was observed for glass particles. However, it was surprising for Case

5.2 (P.P.) that while left-side Block Jacobi is faster overall, the average number of solver

iterations is higher than that of right-side Block Jacobi preconditioning. This may be

attributed to the number of times the solution to the linear pressure-correction system is

invoked over the 10 seconds of simulation time, which is determined by the number of “outer iterations”.
 Figure 7-4 (a) shows the total number of outer iterations when employing different

preconditioner options for both Cases 5.1 (glass) and 5.2 (P.P.). The CPU time is in general

proportional to the product of: number of outer iterations and the number of solver

83

iterations for the pressure correction equation. For glass beads, the difference in total outer

iterations between preconditioning methods is insignificant. Therefore, right-side Block

Jacobi emerged as the best preconditioner option solely due to its reduced solver

iterations, as shown in Figure 7-3 (b). With polypropylene particles, Block Jacobi (left-side)

resulted in significantly fewer outer iterations when compared to native MFiX and right-

side Block Jacobi. Overall, this reduction in outer iterations proved to be the factor making

left-side Block Jacobi the fastest preconditioning option throughout Case 5.2 (P.P.).

 The number of time-steps to achieve 10 seconds of simulation time are shown in

Figure 7-4 (b). For Case 5, we see that there is a good correlation between the total number

of outer iterations and the number of time steps.

(a) (b)

Figure 7-3. The (a) CPU time ratios and (b) average number of solver iterations with

standard deviations over 10 seconds of fluidized bed simulations (Case 5).

0.0

0.5

1.0

Case 5.1 (glass) Case 5.2 (P.P.)

C
P

U
 T

IM
E

 R
A

T
IO

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

0

50

100

150

200

Case 5.1 (Glass) Case 5.2 (P.P.)

A
V

G
. S

O
L

V
E

R
 I

T
E

R
A

T
IO

N
S

MFiX (Line)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

84

(a) (b)

Figure 7-4. The (a) number of time steps and (b) number of outer iterations over 10

seconds of fluidized bed simulations (Case 5).

0.E+00

3.E+05

6.E+05

9.E+05

1.E+06

Case 5.1 (glass) Case 5.2 (P.P.)

T
o

ta
l

O
u

te
r

It
e

ra
ti

o
n

s

MFiX (Line)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

Case 5.1 (glass) Case 5.2 (P.P.)
T

o
ta

l
T

im
e

 S
te

p
s

MFiX (Line)

MFiX-PETSc (BJACOBI - left)

MFiX-PETSc (BJACOBI - right)

85

CHAPTER 8

SUMMARY

8.1 Conclusions

 With this work, we were able to interface the MFiX multiphase flow software with the

PETSc linear solver library for serial execution. This interface was successfully implemented

and verified by comparing its predictions against those obtained from MFiX’s solver options
for a simple heat conduction problem, as well as a class of single-phase and multiphase flow

problems. Different preconditioning methods were applied to the BiCGSTAB solver to carry

out this study.

 For a steady-state heat conduction case, MFiX-PETSc was at best 168% slower than MFiX’s native solver to obtain the same accuracy with a fine mesh resolution. Furthermore,

preconditioning the conduction case from the right-side resulted in significantly more error

compared to the left-side.

 The second case was the single-phase flow of air past a cylinder, and it was found that

applying Block Jacobi from both the left- and right-side was more accurate and faster than MFiX’s preconditioning options as the meshing was refined. For the finest mesh, left-side

Block Jacobi was 27-46% faster than the diagonal scaling preconditioner in MFiX, while

right-side Block Jacobi was 28-40% faster. It was found that Block Jacobi preconditioning

86

(both left and right) required fewer solver iterations compared to other methods, which

correlates with the lower CPU times.

 As the problem changed to a multiphase system, significant differences in the speeds

of the preconditioning options offered in MFiX-PETSc were observed as the simulation

settings were altered. First, a fluidized bed with a central jet was represented using a 3D

geometry with a uniform mesh in Cases 3 and 4. Although native MFiX was faster than MFiX-

PETSc for every simulation, this case gave us insight into the performance of MFiX-PETSc’s
preconditioners based on settings such as solver tolerance, fluidization material, and

discretization schemes. First off, with a high solver tolerance (10-1), left-side preconditioning

was significantly faster than right-side preconditioning for both SOR and Block Jacobi. As the

solver tolerance was reduced (10-3), right-side preconditioning resulted in lower CPU times

compared to the left-side. This can be attributed to a fewer number of solver iterations when

right-side preconditioning is employed at this low tolerance level. Furthermore, the timing

differences between MFiX and MFiX-PETSc were reduced when a higher order discretization

scheme was used (van Leer). With a low solver tolerance and van Leer discretization, right-

side Block Jacobi was the fastest preconditioner in MFiX-PETSc. This preconditioning

method was 21-25% slower than MFiX for a high density material (glass) and only 2-6%

slower for a low density material (polypropylene).

 The fluidized bed was then represented by a 2D geometry with fine central meshing

in the fifth case. Unlike the 3D case, preconditioning options in MFiX-PETSc proved to be faster than MFiX’s native line relaxation preconditioner. With glass as the fluidization

material, right-side Block Jacobi preconditioning was 28% faster than MFiX’s default solver,
whereas left-side Block Jacobi was only 2% faster. When the material was changed to

87

polypropylene, Block Jacobi was 25% faster than native MFiX when applied from the left-

side, and 20% faster from the right. This result was surprising since right-side Block Jacobi

required fewer iterations to solve the pressure-correction equation. However, it was found

that for this specific case, left-side Block Jacobi resulted in a lower number of outer iterations,

which also impacts the CPU time.

 By considering all of these cases, preconditioning with MFiX-PETSc’s Block Jacobi was

shown to be the best option with an application to the pressure-correction equation.

Choosing between left- and right-side Block Jacobi was proven to be case dependent.

Therefore, these results demonstrate the importance of having multiple solvers and

preconditioners available, as their performance and accuracy strongly depend on the linear

system at hand.

8.2 Future Work

 The main objective for future studies will be creating a parallelized version of the

MFiX-PETSc interface. The PETSc linear solver library is best known for its scalable

computation and thus, the interface software will be most beneficial in a parallel

environment. With a new parallel framework, various timing studies can be performed with

these same cases. Additionally, the interface can be tested on combustion or other reactions

for which the solution to the fluid-phase temperature equation is a computational

bottleneck.

 Overall, PETSc contains 39 Krylov subspace methods and 14 preconditioners. Testing

different combinations of solvers and preconditions for different types of systems would be

valuable for any future work with the MFiX-PETSc interface. The end goal for this research

88

would be a successful implementation of a parallelized MFiX-PETSc interface with a written

manual describing solver and preconditioning options that work most effectively based

upon properties of the system.

89

REFERENCES

1. M. Syamlal, W. Rogers, and T.J. O’Brien, “MFIX documentation: Theory guide,” U.S. Dept.

of Energy, Office of Fossil Energy, Technical Note No. DOE/METC-94/1004 (1993).

2. M. Syamlal, "MFIX documentation: Numerical technique," National Energy Technology

Laboratory, U.S. Dept. of Energy, Technical Note No. DOE/MC31346-5824 (1998).

3. H. Jinsong and J. Lou. "Numerical simulation of bubble rising in viscous liquid," Journal of

Computational Physics 222, no. 2 (2007): 769-795.

4. S. Balay, W.D. Gropp, L.C. McInnes, and B.F. Smith, “The Portable Extensible Toolkit for Scientific Computing (PETSc),” version 28, (2000).

5. R.D. Falgout, J.E. Jones, and U.M. Yang. “The design and implementation of hypre, a library of parallel high performance preconditioners”, In: Numerical Solution of Partial

Differential Equations on Parallel Computers, pages 267–294. Springer-Verlag, (2006).

6. J. Schmidt, J. Thornock, J. Sutherland, and M. Berzins. "Large scale parallel solution of

incompressible flow problems using uintah and hypre," Technical Report UUSCI-2012-

002, Scientific Computing and Imaging Institute, (2012).

7. C. E. Brennan, “Fundamentals of multiphase flow,” Cambridge Univ. Press, (2005).
8. M. Syamlal, J. Musser, J. F. Dietiker, “The two-fluid model in MFIX,” in: Multiphase Flow

Handbook, 2nd ed., Boca Raton, FL: Taylor & Francis Group, LLC, (2017), pp. 242-275

90

9. B. P. Leonard, S. Mohktari, “Beyond first-order upwinding: the ultra-sharp alternative for

non-oscillatory steady-state simulation of convection,” Int. J. Numer. Methods Eng., 30,
729 (1990).

10. S. V. Patankar, “Numerical heat transfer and fluid flow,” New York: Hemisphere
Publishing Corporation, (1980).

11. F. Moukalled, L. Mangani, and M. Darwish, “Fluid flow computation: Incompressible flows,” In: The Finite Volume Method in Computational Fluid Dynamics, Springer

International Publishing Switzerland, (2016), pp. 561-654.

12. S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, et al., “PETSc users manual,”
Technical Report, ANL-95/11, Rev. 3.8, Argonne National Laboratory, Lemont, IL, (2017).

13. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and

Applied Mathematics, (2013).

14. A. Ghai, C. Lu, and X. Jiao, “A comparison of preconditioned krylov subspace methods for
large-scale nonsymmetric linear systems,” (2017).

15. W. E. Arnoldi, “The principle of minimized iteration in the solution of the matrix eigenvalue problem,” Quart. Appl. Math., 9 (1951), pp. 17-29.

16. C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators,” Journal of Research of the National Bureau of
Standards, 45 (1950), pp. 255-282.

17. H. A. van der Vorst, “BiCGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comp., 13(2): pp. 631-644,

(1992).

18. “Sparse linear algebra,” In: NAG Parallel Library Manual.

91

19. M. Rahman, M. Karim, A. Alim, “Numerical investigation of unsteady flow past a circular
cylinder using 2-d finite volume method,” Journal of Naval Architecture and Marine
Engineering, 4(2007). pp. 27-42.

20. C. Norberg, “Pressure distributions around a circular cylinder in cross-flow,” In:
Hourigan, K., Leweke, T., Thompson, M.C., Williamson, C.H.K. (Eds.), Symposium on Bluff

Body Wakes and Vortex-Induced Vibrations (BBVIV3), 17–20 Dec. 2002, Port Arthur,

Queensland, Australia, 2002. Monash University, Melbourne, Australia, pp. 1–4.

21. R. P. Utikar, V. V. Ranade, “Single jet fluidized beds: experiments and CFD simulations with glass and polypropylene particles,” Chemical Engineering Science 62 (2007), pp.
167-183.

APPENDIX

MFIX.DAT FILES

A.1 CASE 1

Conduction in a 3D cube

Run-control section

 RUN_NAME = 'COND01'

 DESCRIPTION = 'Steady conduction'

 RUN_TYPE = 'new'

 UNITS = 'cgs'

 LEQ_METHOD(6) = 1 ! Comment out if using native MFiX

 LEQ_IT(6) = 10000 ! Comment out if using MFiX-PETSc

 LEQ_TOL(6) = 1.0d-4 ! comment out if using MFiX-PETSc

 MAX_NIT = 500

 ENERGY_EQ = .TRUE.

 SPECIES_EQ = .FALSE. .FALSE.

 MOMENTUM_X_EQ = .FALSE. .FALSE.

 MOMENTUM_Y_EQ = .FALSE. .FALSE.

 MOMENTUM_Z_EQ = .FALSE. .FALSE.

Geometry Section

 COORDINATES = 'Cartesian'

 XLENGTH = 10.0 IMAX = 100

 YLENGTH = 10.0 JMAX = 100

 ZLENGTH = 10.0 KMAX = 100

Gas-phase Section

 RO_g0 = 2.5

 MU_g0 = 0.01

 MW_avg = 29.

 GRAVITY = 0.0

 K_g0 = 1.0

 C_pg0 = 1.

Solids-phase Section

 MMAX = 0

Initial Conditions Section

 IC_X_w = 0.0

 IC_X_e = 10.0

 IC_Y_s = 0.0

 IC_Y_n = 10.0

 IC_Z_b = 0.0

 IC_Z_t = 10.0

 IC_EP_g = 1.0

 IC_U_g = 0.0

 IC_V_g = 0.0

 IC_W_g = 0.0

 IC_T_g = 300.

Boundary Conditions Section

 ! bottom Top

 BC_X_w = 0.0 0.0

 BC_X_e = 10.0 10.0

 BC_Y_s = 0.0 0.0

 BC_Y_n = 10.0 10.0

 BC_Z_b = 0.0 10.0

 BC_Z_t = 0.0 10.0

 BC_TYPE = 'NSW' 'NSW'

 BC_EP_g = 1.0 1.0

 BC_U_g = 2*0.0

 BC_V_g = 2*0.0

 BC_W_g = 2*0.0

 BC_Tw_g = 1000.0 300.

Output Control

 RES_DT = 0.01

 OUT_DT = 10.

! Interval at which .SPX files are written

 SPX_DT(1) = 0.10 ! EP_g

 SPX_DT(2) = 0.10 ! P_g, P_star

 SPX_DT(3) = 0.10 ! U_g, V_g, W_g

 SPX_DT(4) = 0.10 ! U_s, V_s, W_s

 SPX_DT(5) = 100. ! ROP_s

 SPX_DT(6) = 100. ! T_g, T_s

 SPX_DT(7) = 100. ! X_g, X_s

 SPX_DT(8) = 100. ! theta

 SPX_DT(9) = 100. ! Scalar

 NLOG = 25

 FULL_LOG = .TRUE.

 RESID_STRING = 'T0'

DMP control

 NODESI = 1 NODESJ = 1 NODESK = 1

A.2 CASE 2

Single-phase flow past a cylinder

Run-control section

 RUN_NAME = 'CYL'

 DESCRIPTION= 'Flow over a Cylinder , Re = 200'

 RUN_TYPE = 'new'

 UNITS = 'SI'

 TIME = 0.0

 TSTOP = 300.0

 DT = 0.25

 ENERGY_EQ = .FALSE.

 SPECIES_EQ = .FALSE. .FALSE.

 DT_FAC = 1.0

 DETECT_STALL = .FALSE.

 GRAVITY = 0.0

 LEQ_METHOD(1) = 1 ! Comment out if using native MFiX

 LEQ_IT(1) = 10000 ! Comment out if using MFiX-PETSc

 DISCRETIZE(1) = 2

 DISCRETIZE(3) = 2

 DISCRETIZE(4) = 2

 DEF_COR = .TRUE.

 FPFOI = .FALSE.

 TOL_RESID = 1.0E-6

 NORM_g = 0.0

 MOMENTUM_X_EQ(1) = .FALSE.

 MOMENTUM_Y_EQ(1) = .FALSE.

!===

==========

! Cartesian Grid - Quadric definition:

! Quadric surface Normal form :

! f(x,y,z) = lambda_x * x^2 + lambda_y * y^2 + lambda_z * z^2 + d = 0

! Regions where f(x,y,z) < 0 are part of the computational domain.

! Regions where f(x,y,z) > 0 are excluded from the computational domain.

!

! Predefined quadrics: set QUADRIC_FORM to one of the following:

! Plane: 'PLANE'

! Cylinder (internal flow): 'X_CYL_INT' or 'Y_CYL_INT' or 'Z_CYL_INT'

! Cylinder (external flow): 'X_CYL_EXT' or 'Y_CYL_EXT' or 'Z_CYL_EXT'

! Cone (internal flow): 'X_CONE' or 'Y_CONE' or 'Z_CONE'

!===

==========

 CARTESIAN_GRID = .TRUE.

 N_QUADRIC = 1

 QUADRIC_FORM(1) = 'Z_CYL_EXT'

 RADIUS(1) = 0.05

 t_x(1) = 2.0

 t_y(1) = 2.0

 BC_ID_Q(1) = 12

 PRINT_WARNINGS = .TRUE.

 PRINT_PROGRESS_BAR = .TRUE.

 WRITE_DASHBOARD = .TRUE.

!===

==========

! VTK file options

!===

==========

 WRITE_VTK_FILES = .TRUE.

 TIME_DEPENDENT_FILENAME = .TRUE.

 VTK_DT = 0.5

! Available flags for VTK_VAR are :

! 1 : Void fraction (EP_g)

! 2 : Gas pressure, solids pressure (P_g, P_star)

! 3 : Gas velocity (U_g, V_g, W_g)

! 4 : Solids velocity (U_s, V_s, W_s)

! 5 : Solids density (ROP_s)

! 6 : Gas and solids temperature (T_g, T_s1, T_s2)

! 7 : Gas and solids mass fractions (X_g, X_s)

! 8 : Granular temperature (G) ! 11 : Turbulence quantities (k and ε)

! 12 : Gas Vorticity magnitude and Lambda_2 (VORTICITY, LAMBDA_2)

!100 : Processor assigned to scalar cell (Partition)

!101 : Boundary condition flag for scalar cell (BC_ID)

 VTK_VAR = 2 3 12

! Geometry Section

 COORDINATES = 'cartesian'

 XLENGTH = 6.0 ! length

 YLENGTH = 4.0 ! height

 IMAX = 120 ! cells in i direction

 JMAX = 80 ! cells in j direction

 NO_K = .TRUE.

! Using Control points to define grid spacing

 CPX = 1.90 2.10 6.00

 NCX = 20 40 60

 LAST_DX(1) = -1.0 ! Match Last DX from segment 1 with First DX of segment 2

 FIRST_DX(3) = -1.0 ! Match First DX from segment 3 with Last DX of segment 2

 CPY = 1.90 2.10 4.00

 NCY = 20 40 20

 LAST_DY(1) = -1.0 ! Match Last DY from segment 1 with First DY of segment 2

 FIRST_DY(3) = -1.0 ! Match First DY from segment 3 with Last DY of segment 2

! Gas-phase Section

 ! Gas-phase Section

 MU_g0 = 1.8E-5 !constant gas viscosity

 RO_g0 = 1.2 !constant gas density

! Solids-phase Section

 MMAX = 0

! Initial Conditions Section

IC_X_w(1) = 0.0

IC_X_e(1) = 6.0

IC_Y_s(1) = 0.0

IC_Y_n(1) = 4.0

IC_EP_g(1) = 1.0

IC_U_g(1) = 0.0

IC_V_g(1) = 0.0

! Boundary Conditions Section

! Inlet

BC_X_w(1) = 0.0

BC_X_e(1) = 0.0

BC_Y_s(1) = 0.0

BC_Y_n(1) = 4.0

BC_TYPE(1) = 'MI'

BC_Ep_g(1) = 1.0

BC_U_g(1) = 0.03

BC_V_g(1) = 0.0

BC_P_g(1) = 0.0

! Outlet

BC_X_w(2) = 6.0

BC_X_e(2) = 6.0

BC_Y_s(2) = 0.0

BC_Y_n(2) = 4.0

BC_TYPE(2) = 'PO'

BC_P_g(2) = 0.0

! Top wall

BC_X_w(3) = 0.0

BC_X_e(3) = 6.0

BC_Y_s(3) = 4.0

BC_Y_n(3) = 4.0

BC_TYPE(3) = 'FSW'

! Bottom wall

BC_X_w(4) = 0.0

BC_X_e(4) = 6.0

BC_Y_s(4) = 0.0

BC_Y_n(4) = 0.0

BC_TYPE(4) = 'FSW'

! cut-cell boundary condition

 BC_TYPE(12) = 'CG_NSW'

!

! Output Control

!

 OUT_DT = 10. !write text file CYL.OUT every 10 s

 RES_DT = 100.0 !write binary restart file CYl.RES every 100.0 s

 NLOG = 25 !write logfile CYL.LOG ever 25 time steps

 FULL_LOG = .TRUE. !display residuals on screen

 Resid_string = "P0", "U0", "V0"

SPX_DT = 100. 0.1 0.1 0.1 100. 100. 100. 100. 100.

! The decomposition in I, J, and K directions for a Distributed Memory Parallel machine

 NODESI = 1 NODESJ = 1 NODESK = 1

! Sweep Direction

 LEQ_SWEEP(1) = 'ISIS'

 LEQ_SWEEP(2) = 'ISIS'

 LEQ_SWEEP(3) = 'ISIS'

 LEQ_SWEEP(4) = 'ISIS'

 LEQ_SWEEP(5) = 'ISIS'

 LEQ_SWEEP(6) = 'ISIS'

 LEQ_SWEEP(7) = 'ISIS'

 LEQ_SWEEP(8) = 'ISIS'

 LEQ_SWEEP(9) = 'ISIS'

A.3 CASE 3

3D Fluidized Bed

Glass Particles

Run-control section

 RUN_NAME = 'BUB02'

 DESCRIPTION = 'Bubbling Fluidized Bed Simulation'

 RUN_TYPE = 'new'

 UNITS = 'SI'

 TIME = 0.0

 TSTOP = 10.0

 DT_MAX = 1.0E-1

 DT = 1.0E-3

 DT_MIN = 1.0E-6

 ENERGY_EQ = .FALSE.

 SPECIES_EQ = .FALSE. .FALSE.

Numerical Section

 MAX_NIT = 100

 TOL_RESID = 1.0d-3

 LEQ_IT(1) = 10000 ! Comment out if using MFiX-PETSc

 LEQ_TOL(1) = 1.0d-3 ! Comment out if using MFiX-PETSc

 LEQ_METHOD(1) = 1 ! Comment out if using native MFiX

 DISCRETIZE(1) = 7

 DISCRETIZE(3) = 7

 DISCRETIZE(4) = 7

Geometry Section

 COORDINATES = 'cartesian'

 XLENGTH = 0.2 IMAX = 40

 YLENGTH = 1.0 JMAX = 250

 ZLENGTH = 0.02 KMAX = 10

Gas-phase Section

 MU_g0 = 1.8E-5

 RO_g0 = 1.2

Solids-phase Section

 RO_s0 = 2545.0

 D_p0 = 4.25E-4

 C_E = 0.9

 Phi = 30.0

 EP_star = 0.45

Initial Conditions Section

 ! Bed Freeboard

 IC_X_w = 0.0 0.0

 IC_X_e = 0.2 0.2

 IC_Y_s = 0.0 0.2

 IC_Y_n = 0.2 1.0

 IC_Z_b = 0.0 0.0

 IC_Z_t = 0.02 0.02

 IC_EP_g = 0.45 1.0

 IC_U_g = 0.0 0.0

 IC_V_g =@(0.3/0.45) 0.3

 IC_W_g = 0.0 0.0

 IC_U_s(1,1) = 0.0 0.0

 IC_V_s(1,1) = 0.0 0.0

 IC_W_s(1,1) = 0.0 0.0

 IC_P_star = 0.0 0.0

 IC_T_g = 300.0 300.0

Boundary Conditions Section

 ! Fluidization Jet Exit

 BC_X_w = 0.0 0.11 0.09 0.0

 BC_X_e = 0.09 0.2 0.11 0.2

 BC_Y_s = 0.0 0.0 0.0 1.0

 BC_Y_n = 0.0 0.0 0.0 1.0

 BC_Z_b = 0.0 0.0 0.0 0.0

 BC_Z_t = 0.02 0.02 0.02 0.02

 BC_TYPE = 'MI' 'MI' 'MI' 'PO'

 BC_EP_g = 1.0 1.0 1.0

 BC_U_g = 0.0 0.0 0.0

 BC_V_g = 0.3 0.3 5.0

 BC_W_g = 0.0 0.0 0.0

 BC_P_g = 1.013d+5 1.013d+5 1.013d+5 1.013d+5

 BC_T_g = 300.0 300.0 300.0

Output Control

 RES_DT = 0.01

 SPX_DT = 0.01 0.01 0.1 0.1 100. 100. 100. 100.0 100.0

 NLOG = 100

 full_log = .true.

A.4 CASE 4

3D Fluidized Bed

Polypropylene Particles

Run-control section

 RUN_NAME = 'BUB02'

 DESCRIPTION = 'Bubbling Fluidized Bed Simulation'

 RUN_TYPE = 'new'

 UNITS = 'SI'

 TIME = 0.0

 TSTOP = 10.0

 DT_MAX = 1.0E-1

 DT = 1.0E-3

 DT_MIN = 1.0E-6

 ENERGY_EQ = .FALSE.

 SPECIES_EQ = .FALSE. .FALSE.

Numerical Section

 MAX_NIT = 100

 TOL_RESID = 1.0d-3

 LEQ_IT(1) = 10000 ! Comment out if using MFiX-PETSc

 LEQ_TOL(1) = 1.0d-3 ! Comment out if using MFiX-PETSc

 LEQ_METHOD(1) = 1 ! Comment out if using native MFiX

 DISCRETIZE(1) = 7

 DISCRETIZE(3) = 7

 DISCRETIZE(4) = 7

Geometry Section

 COORDINATES = 'cartesian'

 XLENGTH = 0.2 IMAX = 40

 YLENGTH = 1.0 JMAX = 250

 ZLENGTH = 0.02 KMAX = 10

Gas-phase Section

 MU_g0 = 1.8E-5

 RO_g0 = 1.2

Solids-phase Section

 RO_s0 = 900.0

 D_p0 = 4.25E-4

 C_E = 0.6

 Phi = 30.0

 EP_star = 0.45

Initial Conditions Section

 ! Bed Freeboard

 IC_X_w = 0.0 0.0

 IC_X_e = 0.2 0.2

 IC_Y_s = 0.0 0.2

 IC_Y_n = 0.2 1.0

 IC_Z_b = 0.0 0.0

 IC_Z_t = 0.02 0.02

 IC_EP_g = 0.45 1.0

 IC_U_g = 0.0 0.0

 IC_V_g =@(0.11/0.45) 0.11

 IC_W_g = 0.0 0.0

 IC_U_s(1,1) = 0.0 0.0

 IC_V_s(1,1) = 0.0 0.0

 IC_W_s(1,1) = 0.0 0.0

 IC_P_star = 0.0 0.0

 IC_T_g = 300.0 300.0

Boundary Conditions Section

 ! Fluidization Jet Exit

 BC_X_w = 0.0 0.11 0.09 0.0

 BC_X_e = 0.09 0.2 0.11 0.2

 BC_Y_s = 0.0 0.0 0.0 1.0

 BC_Y_n = 0.0 0.0 0.0 1.0

 BC_Z_b = 0.0 0.0 0.0 0.0

 BC_Z_t = 0.02 0.02 0.02 0.02

 BC_TYPE = 'MI' 'MI' 'MI' 'PO'

 BC_EP_g = 1.0 1.0 1.0

 BC_U_g = 0.0 0.0 0.0

 BC_V_g = 0.11 0.11 5.0

 BC_W_g = 0.0 0.0 0.0

 BC_P_g = 1.013d+5 1.013d+5 1.013d+5 1.013d+5

 BC_T_g = 300.0 300.0 300.0

Output Control

 RES_DT = 0.01

 SPX_DT = 0.01 0.01 0.1 0.1 100. 100. 100. 100.0 100.0

 NLOG = 100

 full_log = .true.

A.5 CASE 5

2D Fluidized Bed

Glass or Polypropylene Particles

Run-control section

 RUN_NAME = 'BUB02'

 DESCRIPTION = 'Bubbling Fluidized Bed Simulation'

 RUN_TYPE = 'new'

 UNITS = 'SI'

 TIME = 0.0

 TSTOP = 10.0

 DT_MAX = 1.0E-3

 DT = 1.0E-3

 DT_MIN = 1.0E-6

 ENERGY_EQ = .FALSE.

 SPECIES_EQ = .FALSE. .FALSE.

Numerical Section

 MAX_NIT = 1000

 TOL_RESID = 1.0d-3

 LEQ_METHOD(1) = 1 ! Comment out if using native MFiX

 LEQ_IT(1) = 10000 ! Comment out if using MFiX-PETSc

 LEQ_TOL(1) = 1.0d-3 ! Comment out if using MFiX-PETSc

 DISCRETIZE(:) = 7

Geometry Section

 COORDINATES = 'cartesian'

 XLENGTH = 0.2 IMAX = 56

 YLENGTH = 1.0 JMAX = 250

 NO_K = .TRUE.

 DX(0) = 0.01

 DX(1) = 0.01

 DX(2) = 0.01

 DX(3) = 0.01

 DX(4) = 0.01

 DX(5) = 0.01

 DX(6) = 0.01

 DX(7) = 0.01

 DX(8) = 0.001

 DX(9) = 0.001

 DX(10) = 0.001

 DX(11) = 0.001

 DX(12) = 0.001

 DX(13) = 0.001

 DX(14) = 0.001

 DX(15) = 0.001

 DX(16) = 0.001

 DX(17) = 0.001

 DX(18) = 0.001

 DX(19) = 0.001

 DX(20) = 0.001

 DX(21) = 0.001

 DX(22) = 0.001

 DX(23) = 0.001

 DX(24) = 0.001

 DX(25) = 0.001

 DX(26) = 0.001

 DX(27) = 0.001

 DX(28) = 0.001

 DX(29) = 0.001

 DX(30) = 0.001

 DX(31) = 0.001

 DX(32) = 0.001

 DX(33) = 0.001

 DX(34) = 0.001

 DX(35) = 0.001

 DX(36) = 0.001

 DX(37) = 0.001

 DX(38) = 0.001

 DX(39) = 0.001

 DX(40) = 0.001

 DX(41) = 0.001

 DX(42) = 0.001

 DX(43) = 0.001

 DX(44) = 0.001

 DX(45) = 0.001

 DX(46) = 0.001

 DX(47) = 0.001

 DX(48) = 0.01

 DX(49) = 0.01

 DX(50) = 0.01

 DX(51) = 0.01

 DX(52) = 0.01

 DX(53) = 0.01

 DX(54) = 0.01

 DX(55) = 0.01

Gas-phase Section

 MU_g0 = 1.8E-5

 RO_g0 = 1.2

Solids-phase Section

 RO_s0 = 2545.0 ! Comment out if using polypropylene particles

! RO_s0 = 900.0 ! Comment out if using glass particles

 D_p0 = 4.25E-4

 C_E = 0.9 ! Comment out if using polypropylene particles

! C_E = 0.6 ! Comment out if using glass particles

 Phi = 30.0

 EP_star = 0.45

Constants to ensure correct drag correlation

 drag_c1 = 0.771

 drag_d1 = 2.8781

Initial Conditions Section

 ! Bed Freeboard

 IC_X_w = 0.0 0.0

 IC_X_e = 0.2 0.2

 IC_Y_s = 0.0 0.2

 IC_Y_n = 0.2 1.0

 IC_EP_g = 0.45 1.0

 IC_U_g = 0.0 0.0

 IC_V_g =@(0.3/0.45) 0.3 ! Comment out if using polypropylene particles

! IC_V_g =@(0.11/0.45) 0.11 ! Comment out if using glass particles

! IC_W_g = 0.0 0.0

 IC_U_s(1,1) = 0.0 0.0

 IC_V_s(1,1) = 0.0 0.0

! IC_W_s(1,1) = 0.0 0.0

 IC_P_star = 0.0 0.0

 IC_T_g = 300.0 300.0

Boundary Conditions Section

 ! Fluidization Jet Exit

 BC_X_w = 0.0 0.11 0.09 0.0

 BC_X_e = 0.09 0.2 0.11 0.2

 BC_Y_s = 0.0 0.0 0.0 1.0

 BC_Y_n = 0.0 0.0 0.0 1.0

! BC_Z_b = 0.0 0.0 0.0 0.0

! BC_Z_t = 0.02 0.02 0.02 0.02

 BC_TYPE = 'MI' 'MI' 'MI' 'PO'

 BC_EP_g = 1.0 1.0 1.0

 BC_U_g = 0.0 0.0 0.0

 BC_V_g = 0.3 0.3 5.0 ! Comment out if using polypropylene particles

! BC_V_g = 0.11 0.11 5.0 ! Comment out if using glass particles

 BC_P_g = 1.013d+5 1.013d+5 1.013d+5 1.013d+5

 BC_T_g = 300.0 300.0 300.0

Output Control

 RES_DT = 0.01

 SPX_DT = 0.01 0.01 0.1 0.1 100. 100. 100. 100.0 100.0

 NLOG = 100

 full_log = .true.

	University of North Dakota
	UND Scholarly Commons
	January 2018

	Interfacing The CFD Code MFiX With The PETSc Linear Solver Library To Achieve Reduced Computation Times
	Lauren Clarke
	Recommended Citation

	signed approval page
	Thesis

