
University of North Dakota

UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2018

Study Of Physical And Chemical Properties Of
Iridium Modified Nanostructures Formed On
Silicon (110) Surface
Rasika Mohottige

Follow this and additional works at: https://commons.und.edu/theses

This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been

accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact

zeineb.yousif@library.und.edu.

Recommended Citation
Mohottige, Rasika, "Study Of Physical And Chemical Properties Of Iridium Modified Nanostructures Formed On Silicon (110)
Surface" (2018). Theses and Dissertations. 2288.
https://commons.und.edu/theses/2288

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F2288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2288?utm_source=commons.und.edu%2Ftheses%2F2288&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu


STUDY OF PHYSICAL AND CHEMICAL PROPERTIES OF IRIDIUM MODIFIED 

NANOSTRUCTURES FORMED ON SILICON (110) SURFACE 

 

by  

 

Rasika Nishantha Mohottige 
Bachelor of Science, Open University of Sri Lanka, 2007 

Master of Philosophy in Physics, Open University of Sri Lanka, 2012 
 

 

 

A Dissertation 

Submitted to the Graduate Faculty 

of the 

University of North Dakota 

in partial fulfillment of the requirements 

 

 

for the degree of 

Doctor of Philosophy 

 

 

Grand Forks, North Dakota 
May 
2018 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2018 Rasika Nishantha Mohottige 
 





iv 
 

PERMISSION 
 

Title Study of physical and chemical properties of nanostructures formed on Ir 
modified Si (110) surface 

 
Department  Physics and Astrophysics 
 
Degree Doctor of Philosophy 
 
 
 In presenting this dissertation in partial fulfillment of the requirements for a graduate 
degree from the University of North Dakota I agree that the library of this University shall 
make it freely available for inspection. I further agree that permission for extensive copying 
for scholarly purposes may be granted by the professor who supervised my dissertation work 
or in his absence by the chairperson of the department or the dean of the Graduate School. 
It is understood that any copying or publication or other use of this dissertation or part 
thereof for financial gain shall not be allowed without my written permission. It is also 
understood that due recognition shall be given to me and to the University of North Dakota 
in any scholarly use which may be made of any material in my dissertation. 
 
 
 
 
 
        Rasika N Mohottige 
        May 12, 2018 
 
 
 

 

 

 

 

 



v 
 

TABLE OF CONTENTS 

LIST OF FIGURES ...................................................................................................................... vii 

LIST OF ACRONYMS ................................................................................................................. xi 

ACKNOWLEDGEMENTS ........................................................................................................... xii 

ABSTRACT .............................................................................................................................. xiv 

CHAPTER I ................................................................................................................................ 1 

INTRODUCTION ........................................................................................................................ 1 

1.1: Silicon (Si) and Silicon surfaces ..................................................................................... 2 

1.2: Silicon (Si [110]) surfaces .............................................................................................. 5 

1.3: Iridium silicide nanowires on Si (110) surface .............................................................. 8 

CHAPTER II EXPERIMENTAL METHODS .................................................................................. 10 

2.1: Ultra high vacuum (UHV) system and Components ................................................... 10 

2.2: Theory of STM ............................................................................................................. 11 

2.3: Low Energy Electron Diffraction (LEED) ...................................................................... 14 

2.4: X-Ray Photoelectron Spectroscopy (XPS) ................................................................... 17 

2.5: Transmission Electron Microscopy (TEM)................................................................... 21 

CHAPTER III ............................................................................................................................ 26 

IRIDIUM SILICIDE NANOWIRES ON SILICON (110) SURFACE ................................................. 26 

3.1: Introduction ................................................................................................................ 26 

3.2: Experimental and Methods ........................................................................................ 28 

3.3: Results and Discussion ................................................................................................ 29 

3.4 Conclusions .................................................................................................................. 36 

CHAPTER IV ............................................................................................................................ 38 

COULOMB BLOCKADE AND NEGATIVE DIFFERENTIAL RESISTANCE AT ROOM 

TEMPERATURE: ...................................................................................................................... 38 

SELF ASSEMBLED IRIDIUM QUANTUM DOTS ON SILICON (110) SURFACE ........................... 38 

 



vi 
 

4.1 Introduction ................................................................................................................. 38 

4.2 Experimental and Methods .......................................................................................... 40 

4.3 Result and Discussion ................................................................................................... 41 

4.4 Conclusions .................................................................................................................. 52 

CHAPTER V ............................................................................................................................. 53 

CROSS SECTIONAL ANALYSIS OF IRIDIUM SILICIDE NANOWIRES ON SILICON (110) SURFACE

 ............................................................................................................................................... 53 

5.1 Introduction ................................................................................................................. 53 

5.2 Experimental and Methods .......................................................................................... 55 

5.3 Results and Discussion ................................................................................................. 56 

5.4 Conclusion .................................................................................................................... 62 

CHAPETER VI .......................................................................................................................... 63 

CONCLUSIONS ........................................................................................................................ 63 

REFERENCES ........................................................................................................................... 66 

 

 

 

 

 

 

 

 

 

 



vii 
 

 

LIST OF FIGURES 

FIGURE                                  PAGE

             

 1.1  A model of a bulk Si crystal .............................................................................................. 3 

 

1.2  A unit cell of bulk Silicon ..................................................... Error! Bookmark not defined. 

 

1.3  (a) Si (110) plane (side view) (b)Front view of Si (110) ..................................................... 5 

 

1.4  Topographic images of a clean Si (110). (a) A wide scan image (90 nm × 90 nm) ;(b) An      
enlarged image (17 nm × 17 nm) showing the pentagon structure ........................................ 7 

 

1.5  Proposed “tetramer Interstitial” model ........................................................................... 7 

 

2.1  UHV system setup with sample preparation chamber with STM and LEED .................. 11 

 

2.2  Schematic diagram of STM ............................................................................................. 12 

 

2.3  1D representation of potential barriers. (a) Non-interacting system with energy EVAC. 

(b) Tip and sample in equilibrium with common Fermi energies and the difference between 

work functions is depicted as an electric field in the gap. (c) An applied voltage promotes 

tunneling between tip and sample where the energies in the gray area can contribute to 

tunneling. ............................................................................................................................... 13 

 

2.4  (a) Schematic of LEED setup with sample. (b) Ewald construction of surface scattering 

where diffraction pattern is the rods vertical to the surface. ............................................... 16 

 

…………………………………………4 



viii 
 

2.5  (a) UHV set up with LEED (b) LEED screen ...................................................................... 16 

 

2.6  Main components of XPS ................................................................................................ 21 

 

2.7  Schematic diagram of TEM ............................................................................................. 23 

 

2.8  Main components of TEM .............................................................................................. 25 

 

3.1  a and b are the STM images of clean Si (110) annealed at 600 °C and 800 °C 

respectively. The arrows indicate the high symmetry directions of the “16×2” domains. The 
sample bias and the tunneling current for the STM image in a (b) are -1.2 V (-1 V) and 0.2 

nA (0.2 nA). ............................................................................................................................ 29 

 

3.2  (a) is a 400 nm × 400 nm and (b) is a 100 nm × 100 nm STM images of Ir modified Si 

(110) surface. Ir silicide nanowires grow along [001] direction ............................................ 31 

 

3.3  Top A schematic diagram of domain A (left) and domain B (right) of the superstructure 

is presented. 𝑥 and 𝑦  are basis vectors of Si (110) lattice pointing along [1-10] and [001] 

directions. Bottom: An STM image of the terrace showing the two B-type domains (green 

rectangles) separated by a domain wall ................................................................................ 33 

 

3.4  (a) LDOS graph measured on pristine Si (110) “16 × 2” surface. (b) LDOS graphs 
measured on Ir-silicide nanowires (black) and terrace surrounding the nanowires (red). (c) 

dI/dV graph measured on Ir-silicide nanowires that shows a gap of about 0.5 eV. ............. 34 

 

4.1  (a) is 0.52 μm × 0.52 μm STM image tunneling voltage/current are -1.48 V and 0.47 nA 

(b) 57 nm × 57 nm STM image tunneling voltage/current are -1.97 V and 0.30 nA and (c) 13 

nm × 13 nm STM image tunneling voltage/current are -1.93 V and 0.24 nA. The green and 

blue arrows indicate high symmetry directions of the underlying Si(110) surface .............. 43 



ix 
 

 

4.2  (a) and (b) are I(V) curves measured on terrace and on a QD respectively. (c) and (d) 

are dI/dV curves numerically calculated from the I(V) curves in (a) and (b). In (b) and (d) 

NDR is indicated with an arrow. Red lines in (d) is to guide the eye for Coulomb gap......... 45 

 

4.3  Top: Measured I(V) curve shown between -1 V to 1 V, Middle and bottom: Simulated 

I(V) curves with fractional charge 0 and 0.5e, respectively. ................................................. 48 

 

4.4  (a) and (b) show Si 2p peak measured on sputter cleaned Si (110) and QDs/Si (110) 

samples respectively. (c) Raw data measured on sputter cleaned Si (110) and QDs/Si (110)

 ............................................................................................................................................... 50 

 

4.5  (a) Ir 4f peaks measured on QDs/Si (110) sample. (b) Table summarizing shifts in Ir 4f 

and Si 2p peaks in various Ir-silicides. 1Ref [23]2Ref [24] 3Ref [25] 4This work. ..................... 51 

 

5.1  (a) a top view of the Si (110) surface with high symmetry directions. (b) an STM image 

of a Ir-silicide nanowire. The arrow indicates [001] direction. ............................................. 56 

 

5.2  (a) shows a cross-sectional image of a NW grown under similar conditions. (b) and (c) 

are higher resolution images of the same NW. (d) shows a higher resolution image of the Si 

(111). Inset: is a model of the bulk Si oriented towards (111) direction. (e) Shows a cross-

section of another nanowires top-left part of the nanowire has another phase and the rest 

of the top part looks amorphous. .......................................................................................... 57 

 

5.3  Bulk structure of fluorite-type IrSi2.  Blue/yellow atoms are Si/Ir. ................................. 58 

 

 

 



x 
 

5.4  A schematic to show both cut direction on a hypothetical nanowire. Red triangle is on 

(001) plane and green triangle is on (111) plane. The two facets observed on the TEM 

images are indicated on the green triangle. (b) is an atomic model showing what we would 

have seen if the sample were cut along (001) direction. ...................................................... 59 

 

5.5  (a) (b) (c) and (d) are dI/dV curves calculated from the measured I(V) curves over 

nanowires with various widths. As the width of the nanowires grow wider the valence band 

edge moves away from the Fermi level. ............................................................................... 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

LIST OF ACRONYMS 

1D  One Dimensional 

ARPES  Angle Resolve Photoemission Spectroscopy 

EF  Fermi Energy 

HOMO  Highest Occupied Molecular Orbital 

LDOS  Local Density of States 

LEED  Low Energy Electron Diffraction 

LUMO  Lowest Occupied Molecular Orbital 

MBE  Molecular Beam Epitaxy 

ML  Monolayer 

NW  Nanowires 

QD  Quantum Dot 

RHEED  Reflection High Energy Electron Diffraction 

STM  Scanning Tunneling Microscopy 

STS  Scanning Tunneling Spectroscopy 

TEM  Transmission Electron Microscopy 

UHV  Ultra High Vacuum 

XPS  X-Ray Photoelectron Spectroscopy 

 



xii 
 

ACKNOWLEDGEMENTS 

 

I wish to express my sincere appreciation for my research advisor Associate 

Professor.Dr. Nuri Öncel; his fair approach to both life and work has undoubtedly been the 

reason that I learned and succeeded as much as I have. I also take this opportunity to express 

my gratitude for how much time and effort that he has spent one-on-one with me to show 

and teach me everything about solid-state physics research and at times life in general. 

As for my graduate studies, I would like to thank Dr. Kanishka Marasinghe Dr. Mark 

Hoffmann Dr.Yen Lee Loh and Dr.Graeme Dewar for serving in my dissertation committee. I 

would also like to thank the rest of the Department of Physics faculty for their constant 

support throughout my graduate studies and Rob Czapiewski for his talents and hard work 

to help maintain our laboratory equipment. 

Finally, I would like to thank all my colleagues for their friendship and vital research 

contributions to each project in this dissertation and Dr.Soumya Bernerjee who made 

suggestions and comments on my dissertation to make it better. 

 

 

 

 



xiii 
 

 

 

 

 

 

 

 

 

 

 

I would like to dedicate this dissertation to my ever-loving grandmother Anulawathi Sedar 

Mohottige my son Chamathka and Senul Sedar Mohottige my loving wife Indu Mohottige 

and my parents Nimal and Kusumlatha Sedar Mohottige. 

 

 

 

 

 

 

 

 

 



xiv 
 

ABSTRACT 

 

Scanning Tunneling Microscopy and Spectroscopy (STM/STS), Transmission Electron 

Microscopy (TEM), and X-Ray Photoelectron Spectroscopy (XPS) studies were performed to 

characterize the morphology, electronic properties, and chemical properties of the Iridium 

(Ir) induced nano-structures formed on clean Si (110) surface. It was found that the 

deposition of Ir in the sub-monolayer and monolayer (ML) regime on clean Si (110) ``16 × 2’’ 

surface produces Ir-silicide nano-structures, as this surface is suitable for growing 

nanostructures because of its inherent structural asymmetry. STM shows that nanowires 

with an average length and width of 100 nm and 21 nm, respectively, were grown on clean 

Si (110) surface when 0.25 ML of Ir was deposited. Statistical analysis of STM images of Ir-

silicide nanowires show that the length and the width of the nanowires are correlated. TEM 

results show that there are two different regions across the nanowires, one close to the Si 

substrate which is made of IrSi2 and other close to the nanowire surface which is possibly 

made of amorphous Ir. STS indicates that the nanowires have different electronic properties. 

The smaller nanowires are metallic based on size, but the bigger nanowires are 

semiconducting with a band gap of  0.34 eV. 

STM images indicate that 2 ML of Ir deposition produces Ir covered flat terraces on 

clean Si (110). The interface between the Ir and substrate is Ir-silicide. 
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In addition, quasi periodic Ir quantum dots (QDs) appear on Ir terraces. Quantum dots 

are loosely bound to the terraces as they tend to move around if the STM tip comes close to 

them. STS indicates that Ir-QDs exhibit Coulomb blockade and a negative differential 

resistance at room temperature. Coulomb blockade and a negative differential resistance in 

the dI/dV plot indicates a Coulomb gap of   0.7 eV. 

 XPS data shows that the binding energy of both Ir modified Si 2p3/2 and Si modified 

Ir 4f7/2 peaks shift towards higher energy with respect to pure Si and Ir which indicates that 

the interface between Ir terrace and the Si substrate has a Si rich silicide layer. 
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CHAPTER I 

INTRODUCTION 

 

Surface science studies physics and chemistry at the interface of two phases including 

solid-liquid solid-gas solid-vacuum and liquid-gas interfaces. Over the years many different 

surface science techniques have developed and a vast amount of knowledge about surface 

science has been accumulated1. Due to countless possibilities for various device applications 

surfaces and interfaces have always drawn attention from scientists coming from various 

disciplines ranging from basic to applied sciences. By looking at how electronics evolve it is 

safe to claim that importance of surfaces and interfaces will keep growing. Soon we will 

reach to a level where we will be building devices that solely rely on physical and electronic 

properties of structures that have a thickness of up to a few-nanometers. In fact, Intel’s 14 

nm process and lead system-on-a-chip product have already been qualified and in volume 

production with fabs in Oregon (2014) Arizona (2014) and Ireland (2015)2.  

According to Moore’s law the number of transistors on an integrated circuit doubles 

every eighteen months. This kind of progress is possible if the size of individual transistors 

can be scaled down in a cost-efficient way. However, this trend cannot continue forever. 

There are two important obstacles that can prevent further scaling down.  

 



2 
 

 

The first one is about physical limitations such as nano-scale variations in dopant 

concentrations enhanced leakage at short gate lengths etc. The second one is the lack of new 

technologies to manufacture well defined and well-organized components in nanometer 

size. Therefore, a new approach is required to overcome all these limitations. This new 

approach is called bottom-up approach which utilizes the concepts of self-assembly to build 

individual components of an integrated circuit. In my thesis I focused on two types of self-

assembled structures nanowires and quantum dots. I used various characterization 

techniques such as Scanning Tunneling Microscopy/Spectroscopy (STM/STS) X-ray 

Photoelectron Spectroscopy (XPS) and Low Energy Electron Diffraction (LEED) to study 

physical and electronic properties of these systems.  

1.1: Silicon (Si) and Silicon surfaces 

 

Si has 14 electrons ten of which fill the first three orbitals (1s 2s 2p) and the remaining 

four electrons partially occupy 3s 3p orbitals. The 3s and 3p orbitals are hybridized to form 

four tetrahedral sp3 orbitals.  
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In bulk each Si atom has four nearest neighbors and the lattice constant of the crystal is 5.431 

Å. The space lattice of silicon like diamond is face-centered cubic. The primitive basis of 

silicon contains two identical atoms at coordinates 000 and 
14 14 14 with respect to fcc lattice 

points. The conventional fcc lattice contains 4 lattice points therefore conventional unit cube 

of silicon contains 8 atoms.  

 

 

 

 

 

 

 

 

Figure 1.1 A model of a bulk Si crystal 
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Each covalent bond has two spin paired electrons. Therefore, when a surface is prepared by 

cutting the crystal in a specific orientation depending on the specific direction of cutting and 

the position of the atom one or two bonds of a surface Si atom become free which is called 

dangling bond. Dangling bonds increases surface energy via reconstruction Si atoms come 

together and make new bonds to reduce the number of dangling bonds on the surface. 

During the relaxation and reconstruction surface atoms are displaced from their bulk 

position but it preserves the periodicity or symmetry of the surface. Different surfaces of a 

crystal have different surface free energies depending on their orientations. The most stable 

surface is the one which exhibits the lowest surface free energy.  

Figure 1.2 A unit cell of bulk Silicon 
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1.2: Silicon (Si [110]) surfaces 

In comparison of other silicon surfaces such as Si (111) and Si (001) Si (110) surface 

has received the least amount of attention because of the difficulty of preparing highly 

anisotropic surface of Si (110). However recently CMOS transistor built on the Si (110) 

surface received some attention due to the higher hole mobility3. In addition to that surfaces 

with high anisotropy is a good template to grow nanowires which made Si (110) surface an 

ideal substrate to grow nanowires of different materials4,5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3(a) Si (110) plane (side view) (b)Front view of Si (110) 
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Various surface reconstruction was observed on clean Si (110) surface such as “1 × 2” “2 × 

1” ”1 × 5” “5 × 4” and “16 x 2” 6. Among those structures “16 × 2’’ is the most famous one. 

The “16 × 2’’ structure was found in 1980 by using reflection high-energy electron diffraction 

(RHEED)7. 

Ampo et al. made a step structure model for the “16 × 2” structure based on analysis 

of the LEED pattern. Van Loenen Dijkkamp and Hoeven confirmed it by STM observation. 

STM observations on Si (110) -(16 × 2) show two predominant patterns one is alternating up 

and down steps one atomic layer high and ∼5 nm wide running in the [-112] or [1-12] 

direction8,9 and a pair of pentagons on both the upper and lower terraces10. Several models 

for the structure of the pentagon have been proposed11 - 14. Among them “tetramer-

Interstitial” model [Fig1.4] shows that the pentamer is stabilized by the surface self-

interstitial. This model clearly shows the pentagon structure consists of tetramer (A and B 

adatoms) and a substrate atom (open circle labeled as “C”). The atom C protrudes towards 

the vacuum in the presence of the six-fold coordinated interstitial.  
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Figure 1.4 Topographic images of a clean Si (110). (a) A wide scan image (90 nm × 90 nm) ;(b) 
An enlarged image (17 nm × 17 nm) showing the pentagon structure 

 

C  A B 

Figure 1.5 Proposed “tetramer Interstitial” model 
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1.3: Iridium silicide nanowires on Si (110) surface 

 

The transition metal-silicon interface is important both from fundamental science 

and technological application perspectives. From the fundamental science perspective 

transition metal-silicon systems provide unique opportunities to investigate heteroepitaxial 

thin films. Previous studies on various transition metal-silicon systems reveal that these 

interfaces can exhibit rather novel physical properties such as giant Rashba split bands 

quantum confinement Peierls instability and Tomonaga-Luttinger liquid. From the 

technological application perspective metal-semiconductor interfaces are rectifying 

junctions with various Schottky barrier heights. Among metal-semiconductor interfaces the 

Ir/Si interface is special because it has the lowest (highest) Schottky barrier for holes 

(electrons). The initial stages of metal growth are vital for device performance since the 

Schottky barrier height strongly depends on the interface states between metal and 

semiconductor. Although there is an extensive literature on the initial stages of growth for 

almost all metal/silicon systems Ir growth on semiconductor surfaces have not been studied 

in detail. Our group investigated various Ir modified Si surfaces over the years. 

 In chapter 3 and 4 I will discuss in detail physical and chemical properties of Ir-silicide 

nanowires grown on Si (110) surface. As mentioned above Si (110) surface has not been as 

popular as the other cuts of Si surface but at the same time due to its asymmetric nature Si 

(110) surface offers unique opportunities to grow nanowires. Nanowires will play an 

essential role in the future of semiconductor technologies. They will provide connection 

between individual components of an integrated circuit. There are already some studies on  
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various materials and fabrication methods that can be used today17,18. We want to look 

beyond what is out there today and focus on what will be needed in the future. We believe 

that in the future self-assembled nanowires grown on silicon surfaces can be used for various 

optoelectronic applications.  

In chapter 5 metallic Ir quantum dots grown on Ir modified Si (110) will be discussed. 

A quantum dot is a confined space surrounded by tunneling barriers in all three dimensions. 

Quantum dots similar to atoms exhibit discrete spectra of energy levels. Therefore, they are 

also named as artificial atoms. Quantum dots can be metals or semiconductors19 - 23. 

Quantum dots can function like a single electron transistor and exhibit Coulomb blockade. 

Quantum dots can also be implemented as qubits for quantum computers. We are 

particularly interested in metallic quantum dots. A relatively high electron density large 

effective mass and short phase coherence length of a metallic quantum dot allow us to 

consider only the charging energy of Single Electron Tunneling (SET) to/from the metallic 

quantum dot. 
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CHAPTER II 

EXPERIMENTAL METHODS 

All the experiments in this thesis have been carried out using Scanning tunneling 

microscopy (STM) X-ray photoemission microscopy (XPS) low energy electron diffraction 

(LEED) and transmission electron microscopy (TEM) systems and under Ultra-High Vacuum 

(UHV) conditions. STM LEED and XPS systems are located at UND we traveled to Oak Ridge 

National Laboratory for TEM experiments. This chapter is an overview of experimental 

techniques and theoretical background of the experimental methods. 

 

2.1: Ultra high vacuum (UHV) system and Components  

 

While studying the properties of a surface the composition of the surface should 

remain constant throughout the experiment which means that the rate of arrival of reactive 

species from the surroundings should be low otherwise sample will be contaminated. To 

achieve this, it is a common practice to perform experiments under UHV conditions. In order 

to reach UHV we use various pumps. Both XPS and STM systems have turbo pumps backed 

by rough pumps and ion pumps equipped with Ti sublimation. Both systems are kept at 

about 2 × 10−10 𝑚𝑏𝑎𝑟 pressure. After venting the system for routine maintenance and 

repair we bake the systems at 140 0C for 24 hours to achieve UHV conditions within a 

reasonable amount of time (2- 3 days).  
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After a typical bake we performed routine degassing and conditioning of filaments and 

evaporation sources. A picture of STM / LEED in UHV system is shown in Figure 2.1. 

 

 

 

 

 

 

 

 

2.2: Theory of STM  

 

Scanning Tunneling Microscopy (STM) images do not just provide atomic resolution 

images of surfaces but also it can function as a spectroscopy tool which enable us to study 

local electronic properties of surfaces with atomic precision. The most crucial part of the 

STM is the probe tip that is attached to a piezo electric material which consist of three 

mutually perpendicular piezoelectric transducers in x y z coordinates.  

 

STM 

LEED 

Figure 2.1 UHV system setup with sample preparation chamber 
with STM and LEED 
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This piezoelectric transducer contract or expand as a function of applied voltage (V) allowing 

STM tip to move on the surface with sub-angstrom precision. We electrochemically etch 

tungsten to prepare sharp metallic tips for scanning. The figure 2.2 shows the schematic 

diagram of STM device. 
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Figure 2.2 Schematic diagram of STM 
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The basic physics behind the STM is quantum tunneling. In a UHV system potential barrier is 

the vacuum gap between the tip and the sample. Schematic diagram of the STM in fig (2.2) 

shows the potential barrier between the sample and the tip. A schematic tip sample electron 

tunneling in one dimensional system is shown in following figure (2.3). 

 

 

 

Using Fermi’s golden rule, we can write the current flowing from the tip to the sample and 

from the sample to the tip as follows 

𝐼𝑡→𝑠 = 2𝜋𝑒ℏ  ∫ |𝑀𝑡𝑠|2𝑁𝑡(𝐸 − 𝑒𝑉)𝑁𝑠(𝐸)𝑓𝑡(𝐸 − 𝑒𝑉)[1 − 𝑓𝑠(𝐸)]𝑑𝐸    (2) 

𝐼𝑠→𝑡 = 2𝜋𝑒ℏ  ∫ |𝑀𝑡𝑠|2𝑁𝑡(𝐸 − 𝑒𝑉)𝑁𝑠(𝐸)[1 − 𝑓𝑡(𝐸 − 𝑒𝑉)]𝑓𝑠(𝐸)𝑑𝐸    (3) 

𝑓(𝐸) = [exp (𝐸 − 𝐸𝐹𝑘𝐵𝑇 ) + 1]−1 = Fermi − Dirac distribution 

ɸ 

Evac 

EF 

E 

Sample Vacuum 

E 

EF 

Evac 

EF + eV 

Sample
Tip 

Vacuum 

ɸ 
ɸ 

E 

Evac 

EF 

Sample Tip 

Vacuum 

Figure 2.3 1D representation of potential barriers. (a) Non-interacting system with energy EVAC. (b) 
Tip and sample in equilibrium with common Fermi energies and the difference between work 
functions is depicted as an electric field in the gap. (c) An applied voltage promotes tunneling 
between tip and sample where the energies in the gray area can contribute to tunneling. 
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N(E) denotes the Density of States. The occupied states (Nt ft) can tunnel into unoccupied 

sample states (Ns [1 - fs]). The common energy scale is selected to be that of the sample and 

thus the tip energy scale is shifted by ∆E = eV. 

The total current flowing from the tip to the sample can be written as 

𝐼 =  𝐼𝑡→𝑠 − 𝐼𝑠→𝑡 =  − 2𝜋𝑒ℏ ∫ |𝑀𝑠𝑡|2𝑁𝑡(𝐸 − 𝑒𝑉)𝑁𝑠(𝐸)[𝑓𝑠(𝐸) − 𝑓𝑡(𝐸 − 𝑒𝑉)]𝑑𝐸  (4) 

To analyze electronic properties of the surface we need to get the Local Density of 

States(LDOS). The LDOS is derived from the STS data that we collected during the 

measurements. We calculate LDOS by getting the derivative of the tunneling current with 

respect to sample bias voltage (dI/dV) divided by the absolute value of the conductance (I/V). 

LDOS is given by 

𝐿𝐷𝑂𝑆 = 𝑑𝐼𝑑𝑉| 𝐼𝑉| = 𝑑𝐼𝑑𝑉 |𝑉𝐼 |          (5) 

2.3: Low Energy Electron Diffraction (LEED) 

 

 Low energy electron diffraction (LEED) is one of the most powerful technique used 

in surface analysis. This technique widely used in surface science and material science to 

study surface structure. This technique operates by sending a collimated beam of electrons 

from the electron gun to the surface of the sample being tested. An electron gun consists of 

a heated electron generator (cathode) and set of focusing lenses to send the electron 

towards the sample surface. Once electrons hit the sample surface they diffract in various  



15 
 

 

direction according to the surface crystallography of the sample. After electrons diffract from 

the surface electrons go back towards the three grids followed by a phosphorous screen. The 

first grid is grounded and serves as a shield which protects the second grid because of its 

negative potential. The second grid act as a filter which allows only elastically backscattered 

electrons to pass through. All inelastic electrons are blocked because they create blurred 

images. Once elastically backscattered electrons pass through the second grid they reach to 

third grid which separates the negative grid from the phosphorous screen which carries 

positive charge. As the electrons hit the phosphorous screen electrons create a glowing on 

the screen. The pattern of the glow represents the atomic arrangement of the crystal 

structure. Schematic diagram of the LEED is shown below figure (2.4). 
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Figure 2.4(a) Schematic of LEED setup with sample. (b) Ewald construction of surface 
scattering where diffraction pattern is the rods vertical to the surface. 

Figure 2.5 (a) UHV set up with LEED (b) LEED screen 
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To get the diffraction pattern of the crystal surface Laue condition should be satisfied with 

incident electrons with wave vector k0 = 2π / λ0 and the scattered wave vector k = 2π / λ. So, 

the constructive interference and the diffraction is given by  

𝑘 −  𝑘0 = 𝐺ℎ𝑘𝑙          (6) 

Where (hkl) is a set of integers and 𝐺ℎ𝑘𝑙 is a vector of the reciprocal lattice. 

 

2.4: X-Ray Photoelectron Spectroscopy (XPS) 

 

  Photoelectron spectroscopy is a general term that refers to all those techniques 

based on the application of the photoelectric effect originally explained by Albert Einstein. 

When light shines on a sample an electron can absorb a photon from the light and escape 

from the material with some kinetic energy. XPS is a relatively simple technique which we 

can get vast amount of information about the sample being tested including chemical 

composition and chemical states. XPS is based on two processes which result due to 

interaction between x-rays and electrons. The first step is Compton scattering. An incident 

x-ray collides with a core electron. The collision causes the electron to be ejected from the 

electronic shell. The electron is released with certain kinetic energy that is directly related to 

the binding energy of the electron to the atom. The ejection of the inner core electron leads 

to the second processes that the missing inner core electron represents an unstable hole in 

the electronic shell. An electron from the valance shell then fills the newly formed hole 

causing an Auger electron to be emitted from the valance shell to conserve energy.  
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Again, the kinetic energy of the emitted electron is directly related to the binding energy of 

the electron to the atom. These two processes are used to identify the elements in the 

sample since the binding energies of the electrons are unique for every element. To 

determine the binding energies, we first need to measure the kinetic energies of the emitted 

electrons. Once the analyzer collects the data we can calculate the binding energies of the 

electrons if we know the wavelength of the incident x-rays. 

𝐵𝐸 = ℎʋ − 𝐾𝐸 − ɸ𝑠𝑝𝑒𝑐         (7) 

ʋ = 𝑐𝜆            (8)

  

Equations given above show the relationship between the kinetic energy of the emitted 

electron (KE) and the binding energy (BE) of that particular electron to the atom. The 

frequency of the incident x-ray (ν) is related to the wavelength (λ) of the x-ray and the speed 

of light (c) and ɸ𝑠𝑝𝑒𝑐 is the work function of the spectrometer. 

When analyzing data, we need to specify energy scale. XPS analyzer measure the kinetic 

energy of the electrons. But XPS systems can have different x-ray sources so incident x-ray 

energy is not the same. Therefore, it is not wise to compare kinetic energy of the electrons 

because it will change with the energy of the incident x-ray. Therefore, it is common practice 

to use binding energy of the emitted electrons which is unique to the elements being tested. 
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One important factor that needs to be remembered is the spin-orbit splitting. Spin orbit 

coupling causes splitting of the binding energy peaks for electron orbitals other than the s 

orbital. Spin-orbit coupling occurs when the electron shell is partially full due to the unstable 

nature of the configuration. However, the spin and orbital momentum couple together to 

arrange the electrons into stable states. For each orbital shell p d and f there are two stable 

configurations; one for a shell that is more than half full and one for a shell that is less than 

half full. Table 1 documents the orbital and the common spin-orbital coupling configurations. 

Table: 1 Spin-Orbital coupling configuration 

Orbital < Half Fill >Half Fill 

p 1/2 3/2 

d 3/2 5/2 

f 5/2 7/2 

 

Different element has different split in the binding energy peaks but for a given element it is 

constant. This means that if the there is an energy shift due to electronegativity the 

difference between the split orbital peaks will remain the same.  
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Also, for the split orbital peaks the configuration with the highest coupled momentum will 

have the lowest binding energy. When the orbital is more than half fill the coupled 

momentum will be greater than the momentum of an orbital that is less than half fill.  

Finally, the most important thing of the XPS is determine the chemical composition of the 

sample. This can be done from the electron binding energy peaks. The area under the binding 

energy curve is proportional to the number of atoms that emit the electrons at that binding 

energy. Therefore, if we take the ratio of the area under the binding energy curve for each 

element we can determine the composition of the samples surface. However, a sensitivity 

factor must be introduced for each element in this ratio. All XPS systems have different 

sensitivity factors making it difficult to obtain a precise composition without knowing the 

exact sensitivity factors. Following image shows (see figure 2.6) the main components of the 

XPS which we have in our laboratory. 
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2.5: Transmission Electron Microscopy (TEM) 

 

The TEM has the ability to determine the atomic positions inside a crystal lattice. 

Therefore, TEM is widely used in nanophysics and nanotechnology research and 

development in many fields such as semiconductor devices for photonics and electronic. 

There are mainly four parts of TEM electron source electromagnetic lens system sample 

holder and the imaging system. 

 

 

Analyzer 
X-ray Source 

Figure 2.6 Main components of XPS 
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Working principle of the transmission electron microscopy (TEM) is similar to optical 

microscopy but the difference is TEM is used electrons beams instead of photons in optical 

microscopy to form images of the sample being tested. Since the wave length of electrons 

are much smaller than the visible light TEM can achieved greater resolving power than the 

optical microscope. Usual resolving power of electron microscope is around 0.2 nm and 

magnification up to 2 × 106.  

In TEM a tungsten (W) filament which is located at the top of the cylindrical column (Figure 

2.7) is used to produce electron beams to illuminate the sample. The whole system is 

enclosed in vacuum with pressure around 10-4 Pa. Air and the other particles should be 

pumped out from the column to avoid collision of air molecules with electrons to avoid 

scattering of electrons. 
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Along the long cylindrical type column at certain locations magnetic coils are placed to focus 

the electron beam. These magnetic coils act as electromagnetic condenser lens system. The 

sample stained with an electron dense material and is placed in the vacuum. Electron beams 

passes through the sample and scattered by the internal structures. 

 

 

Figure 2.7 Schematic diagram of TEM 
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Electrons emitted by the heated filament in the electron gun travel towards the anode which 

is at positive voltage. Electrons travelling speed can be increased by increasing anode 

voltage. Faster the electrons move the smaller de Broglie wavelength they attain (λ=h/mv).  

λ is de Broglie wavelength h is plank’s constant m is electronic mass and v is speed of 

electrons. The resolution power is related with the wave length of the travelling electrons so 

shorter the wave length higher the resolving power. Therefore, the resolution of the TEM is 

increased if the accelerating voltage of the electron beam is increased. 

The beam of electron that has been partially transmitted through the very 

thin sample carries information about the structure of the sample. The spatial variation in 

this information (the "image") is then magnified by a series of magnetic lenses until it is 

recorded by hitting a fluorescent screen photographic plate or light sensitive sensor like CCD 

(charge-coupled device) camera. The image detected by the CCD may be displayed in real 

time on a monitor or computer. 
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Figure 2.8 Main components of TEM 
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CHAPTER III 

IRIDIUM SILICIDE NANOWIRES ON SILICON (110) SURFACE 

 

3.1: Introduction 

 

We studied physical and electronic properties of iridium silicide nanowires grown on 

the Si (110) surface with the help of scanning tunneling microscopy and spectroscopy. The 

nanowires grow along the [001] direction with an average length of about 100 nm. They have 

a band gap of  0.5 eV and their electronic properties show similarities with the iridium 

silicide ring clusters formed on Ir modified Si (111) surface. 

Ir (Iridium)-silicides have the lowest (highest) Schottky barrier for holes (electrons) 

which can be used in various device applications on silicon. For example, among silicides Pt 

(Platinum)-silicide/p-doped Silicon (Si) diodes are employed in large focal plane arrays for 

detection in the medium-wavelength infrared light (3–5 µm)24. The Schottky barrier height 

between Pt-silicide and p-doped Si (001) is about 0.23 eV corresponding to a cutoff 

wavelength of 5.4 µm 25. In order to extend the cutoff wavelength, it is necessary to choose 

interfaces with lower Schottky barrier height. The Schottky barrier height between Ir-

silicide/p-doped silicon is approximately 0.17 eV corresponding to a cutoff wavelength of 7 

µm which makes Ir-silicide a promising material for infrared detector applications 26. 
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As continuous miniaturization challenges lithography techniques in electronics self-

assembly based processes become more attractive. One particularly important self-

assembled component is metal silicide nanowires. These nanowires can function as low 

resistance interconnects as fins in FinFET27 devices and as nano-electrodes for attaching 

small electronic components within an integrated circuit. It has already been shown that a 

variety of metals form self-assembled silicide nanowires on the surface of flat and/or vicinal 

Si substrates 28 - 32. Nanowires can be made up of various elements ranging from Bi 33 and 

rare-earth metals 34-36 to transition metals 37,38. In comparison to Si (111) and Si (001) surfaces 

Si (110) surface has received relatively less attention because the surface reconstruction is 

complicated, and it is difficult to grow single large domains. However higher hole mobility in 

devices fabricated on Si (110) surface and the possibility of employing self-assembled 

nanowires in various applications have recently increased number of studies on these 

systems 39 -41. Unlike 4-fold symmetric Si (001) surface Si (110) surface is two-fold symmetric 

which can lead to formation of nanowires along the same direction. Various studies have 

already reported the existence of metal silicide nanowires on Si (110) 42-47. In this chapter we 

explain the formation of Ir-silicide nanowires and how growth temperature coverage and 

annealing time effect on the nanowires. 
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3.2: Experimental and Methods 

 

The Si (110) samples used in the Scanning Tunneling Microscopy/Spectroscopy 

(STM/STS) experiments were cut from nominally flat 76.2 mm by 0.38 mm single side 

polished n-type (phosphorous doped R=1.0-10.0 Ohm-cm) wafers. The samples were 

mounted on molybdenum holders and contact of the samples to any other metal during 

preparation and experiment was carefully avoided. The STM/STS studies have been 

performed by using an ultra-high vacuum system (UHV) with a base pressure of 2 × 10-10 

mbar equipped with an Omicron Variable Temperature STM. Before introducing Si (110) 

samples into the UHV chamber samples were washed with isopropanol and dried under the 

flow of nitrogen gas. Si (110) samples were degassed extensively and after that flash-

annealed at 1250 °C. Then the samples were annealed at various temperatures to obtain 

various reconstructions of pristine Si (110) and Ir-silicide nanowires. (See details below) The 

sample temperature was measured with a pyrometer. The quality of the clean Si (110) 

samples was confirmed with STM prior to Ir deposition. Ir was deposited over the clean Si 

(110) surface from a current heated Ir wire (99.9 %). All the STM experiments were 

performed at room temperature. I-V curves measured while measuring high resolution STM 

images of the surface. Then the measured I-V curves were averaged. The local density of 

states curves (LDOS) were calculated out of the I-V curves 48. 
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3.3: Results and Discussion 

 

Figure 3.1a and 3.1b show two STM images of pristine Si (110) surface before Ir 

deposition. It has been shown that the reconstruction of Si (110) surface depends strongly 

on the annealing temperature 49. Annealing the sample at 600 0C leads to the formation of 

well-defined “16×2” domains however annealing at and above 800 0C disordered phase 

forms. (see Figure 3.1a and 3.1b) So far different structures have been proposed to explain 

Si (110) “16×2” structure 50-52. The ad-atom-tetramer-interstitial (ATI) is the most accepted 

of them53,54. According to this model four ad-atoms of the top layer and one first layer atom 

come together and form a pentagon that surrounds an interstitial atom at its center. 

 

 

 

 

 

 

 

 

Figure 3.1 a and b are the STM images of clean Si (110) annealed at 600 °C and 800 °C 
respectively. The arrows indicate the high symmetry directions of the “16×2” domains. 
The sample bias and the tunneling current for the STM image in a (b) are -1.2 V (-1 V) and 
0.2 nA (0.2 nA). 
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After depositing 0.25 ML of Ir on the surface the sample was annealed at 800 0C for two 

minutes while keeping the pressure below 2 × 10-10 mbar. Figure 3.2a shows a large scale 

STM image of the surface where several nanowires are visible. The nanowires grow along 

the [001] direction. Figure 3.2d shows a line scan graph measured on the nanowire shown in 

Figure 3.2b. The average height length and width of nanowires are 1.76 nm ± 0.32 nm 106.27 

nm ± 21.76 nm and 14.63 nm ± 2.97 nm respectively. The variances in length and width are 

correlated since the values closely follow the equation 

𝜎𝐴2 = 〈𝑊〉2𝜎𝐿2 + 〈𝐿〉2𝜎𝑊2 + 2〈𝑊 ∙ 𝐿〉 𝜎𝐿𝑊       (9) 

Where 𝜎𝐴 𝜎𝐿 𝜎𝑊 are standard deviations of the area the length and the width of the 

nanowires. 〈𝑊〉 〈𝐿〉 stand for expectation value of the width and the length of the 

nanowires. represent covariance of the width and the length of the nanowires. The strong 

correlation between the width and the length of a nanowire indicates that the length and 

the width must be physically coupled via strain diffusion and etc. 

High resolution STM images similar to Figure 3.2b show that the terraces on which nanowires 

form have a superstructure that looks rather different than the pristine Si (110) surface. The 

superstructure has two equivalent domains that are rotated with respect to each other. (See 

Figure 3.3) Empty state image of the same region does not show any clear periodic structure.  
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(Figure 3.2c) With the help of the matrix notation the unit cell of the superstructure can be 

defined as (for domain A see Figure 3.3) 

𝑀𝑡𝑒𝑟𝑟𝑎𝑐𝑒 = (−4 −1−2 3 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 (a) is a 400 nm × 400 nm and (b) is a 100 nm × 100 nm STM images of Ir 
modified Si (110) surface. Ir silicide nanowires grow along [001] direction 
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A careful analysis of STM images revealed that there are domain walls even within a single 

domain of the superstructure. (See Figure 3.3) These walls separate well defined periodic 

regions marked by the green rectangles. The domain walls are even thicker than the domains 

themselves indicating that the corrugation of the superstructure/substrate potential is 

significantly small compared to the lateral interactions between the constituents of this 

superstructure 55. 
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Figure 3.3 Top A schematic diagram of domain A (left) and domain B (right) of the 
superstructure is presented. 𝑥ො and 𝑦ො  are basis vectors of Si (110) lattice pointing along 
[1-10] and [001] directions. Bottom: An STM image of the terrace showing the two B-type 
domains (green rectangles) separated by a domain wall 
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Figure 3.4 (a) LDOS graph measured on pristine Si (110) “16 × 2” surface. (b) LDOS graphs 
measured on Ir-silicide nanowires (black) and terrace surrounding the nanowires (red). 
(c) dI/dV graph measured on Ir-silicide nanowires that shows a gap of about 0.5 eV. 
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Kim et. al. studied the electronic structure of Si (110) “16 × 2” surface with angle 

resolved photoemission spectroscopy (ARPES) 56. Their data show that there are four surface 

states located at -0.2 eV (S1) -0.4 eV (S2) -0.75 eV (S3) and -1.0 eV (S4). Later with the help 

of STS measurements the state at -0.2 eV was assigned to the pentagons and the rest of the 

states were attributed to the surface states at the step edges 57. 

Figure 3.4a shows the LDOS curve we measured. The LDOS curve reproduced most 

of the states below the Fermi level. One important difference is that the LDOS curve has a 

just single peak located at -0.3 eV instead of two peaks at -0.2 eV and -0.4 eV as measured 

with ARPES. This can be due to the broadening of the STS peaks. The broadening corresponds 

to approximately 0.1 eV at room temperature 57. LDOS data published by Setvín et. al. also 

shows a single peak albeit their peak is located at 0.2 eV 58. On the other hand, the LDOS 

graph has a shoulder at 0.3 eV and two well resolved peaks at 0.75 eV and 1.3 eV which are 

also attributed to pentagons on the surface. 

Figure 3.4b shows two LDOS curves measured on Ir-silicide nanowires (black) and the 

terrace (red) surrounding them. The nanowires and the terrace have band gap of about 0.5 

V (see Figure 3.4c) which is significantly wider than the band gap of “16 × 2” domains (~ 0.2 

eV). Both LDOS curves have one well-resolved peak below the Fermi level. The peak 

coincides well with a well-known projected bulk band. However, it can still have some 

surface contribution. Previously we studied Ir ring clusters on Si (111) surface extensively 

59,60. Ab-initio density functional theory calculations performed on this surface revealed that  
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below the Fermi level there is a state associated with Ir atoms embedded in the ring clusters. 

The position of this state in the spectrum almost perfectly matches with the peaks observed 

on the Ir-silicide nanowires and the underlying terrace. Above the Fermi level the LDOS 

curves in Figure 3.4b look different. The terrace has a broader feature originating from 

conduction band. On the other hand, the nanowires have two well-resolved states located 

at 0.75 eV and 1.4 eV. The position of these peaks are comparable to the position of peaks 

measured on Ir ring clusters. On Ir ring clusters we determined that these peaks belong to Ir 

atom and six Si adatoms that constitute the rings. Similarities on the electronic properties 

between the two surfaces suggest that the building blocks of these nanowires may resemble 

Ir-ring clusters. 

3.4 Conclusions 

 

In summary we report the formation of Ir – silicide nanowires on Si (110) surface. The 

average length of a nanowire is about 100 nm. Statistical analysis of the size distribution 

reveals that the length and the width of the nanowires are correlated. This provides an 

opportunity to adjust the dimensions of these nanowires by changing growth parameters for 

the specific application. Ir– silicide nanowires are semiconductor with a band gap of about 

0.5 eV. The position of the electronic states is similar to the Ir-ring cluster of Ir modified Si 

(111) surface. Although we could not obtain a ST M image that shows internal structure of 

the makings of the nanowires and the underlying superlattice the similarities of the 



37 
 

electronic properties between Ir–silicide nanowires and Ir-ring clusters suggest that the 

chemical composition of both surfaces may be similar. 
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CHAPTER IV 

COULOMB BLOCKADE AND NEGATIVE DIFFERENTIAL RESISTANCE AT ROOM 

TEMPERATURE: 

SELF ASSEMBLED IRIDIUM QUANTUM DOTS ON SILICON (110) SURFACE 

 

4.1 Introduction 

 

We recently showed that Ir-silicide nanowires would grow on Si (110) surface after 

depositing a quarter of a monolayer of Ir and annealing the sample at 800 °C. The nanowires 

grow along [001] direction and have a band gap of about 0.5 eV .61 However, when the 

amount of Ir coverage on the surface is increased to two monolayers large relatively flat 

terraces start to grow. A closer look at these terraces reveals that these terraces are not 

atomically flat but corrugated with quasi-periodic metallic Quantum Dots (QDs). It has been 

known that by controlling the deposition and annealing temperatures small islands of 

different sizes and symmetries can form on closely packed surfaces of noble metals.62 For 

example, during epitaxial growth on Ag (111) surface at room temperature Ag atoms form 

islands that are one-atom thick. 63,64 Another example is the growth of the second layer of 

Na atoms on Cu (111) surface grows via island formation.65-67 The final morphology of the 

surface depends strongly on the interaction of adatoms with the substrate as well as 

parameters of the growth process such as evaporation rates, temperature, pressure, and 

etc.68-70  



39 
 

By designing surfaces with a certain strain-relief pattern, it is possible to form ordered 

arrays of equally spaced monodispersed quantum dots by atom diffusion and deposition.71 

Therefore, observed quasi periodic lattice of Ir-QDs suggests that on this surface there must 

be a certain strain-relief process which limits adatom diffusion along certain direction and 

limits the size of QDs’ reaching beyond certain limit. 

In general, QDs can be metallic or semiconductor. In a semiconductor QD electrons 

are confined in all three dimensions down to a length scale in the order of Fermi wavelength 

therefore the energy spectrum of a QD becomes discrete. Because of that the semiconductor 

QDs may also be called as artificial atoms. In metallic QDs the electrons have relatively high 

density large effective mass and short phase coherence length which magnifies the 

importance of the charging energy associated with Single Electron Tunneling (SET) to/from 

the QDs while downplaying the quantized energy spectrum. In a large metal island charging 

effects due to the transfer of a single electron across a junction is negligible and usually 

associated with shot noise.72 However for sufficiently small islands charging starts to play a 

significant role in the tunneling spectrum.73-77 An activation energy is required to overcome 

the electrostatic force between electron tunneling to/from the island and the charge of the 

island.78 Due to this activation energy it is not possible to pass current when the bias across 

the tunnel junction is lower than certain threshold value. In analogy with the opening of a 

band gap of a semiconductor this reduction in the conductivity around zero bias is called 

Coulomb blockade. To observe Coulomb blockade the total capacitance of the QDs should 

be smaller than 𝑒2 2𝑘𝑇⁄  and the resistances of the tunnel junctions should be larger than 

the resistance quantum ℎ 2𝑒2⁄ . 79 
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In this chapter we report Scanning Tunneling Microscopy/Spectroscopy (STM/STS) data to 

reveal structure and electronic properties of Ir-QDs which exhibit both Coulomb blockade 

and negative differential resistance at room temperature. We also present X-ray 

Photoelectron Spectroscopy (XPS) data to discuss chemical composition of the surface.  

4.2 Experimental and Methods 

 

The Si (110) samples used in this paper were cut from nominally flat 50.8 mm × 0.5 

mm double side-polished n-type (phosphorous doped R=0.05-0.5 Ohm-cm) wafers. The 

samples were mounted on Mo holders and contact of the samples to any other metal during 

preparation and experiment was carefully avoided. The STM/STS studies have been 

performed by using an ultra-high vacuum system (UHV) with a base pressure of 2 × 10−10 𝑚𝑏𝑎𝑟. The XPS experiments were conducted in a PHI-5400 XPS system with a 

base pressure of 2 × 10−10 𝑚𝑏𝑎𝑟. The XPS system also has Ar+ ion sputter gun. Before 

introducing Si (110) samples into the UHV chamber samples were washed with isopropanol 

and dried under the flow of nitrogen gas. Si (110) samples were degassed extensively and 

after that flash-annealed at 1250 °C. Sample temperature was measured with a pyrometer. 

The quality of the clean Si (110) samples was confirmed with STM prior to Ir deposition. Ir 

was deposited over the clean Si (110) surface from a current heated Ir wire (99.9 %). All the 

STM experiments were performed at room temperature. I(V) curves measured at every point 

of the image while measuring an STM images of the surface.  
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Then the measured I(V) curves were averaged. The dI/dV curves were calculated from the 

measured I(V) curves.80 Once the samples were prepared in the STM chamber they were 

quickly transferred to the XPS chamber with 2 × 10-10 mbar base pressure. The samples were 

sputtered for 8 mins with 1 KeV Ar+ ions. The samples were measured by an Al Kα (1486.6 

eV) X-ray source with a pass energy of 89.5 eV (1 eV/step) and 8.95 eV (0.025 eV/step) for 

survey and high-resolution scans respectively. We analyzed all the XPS core-level spectra 

with least-squares minimization curve fitting program. Si (Ir) core-level peak was fitted using 

a symmetric (asymmetric) Gaussian instrument response function convolved with Lorentzian 

core-level line shape (GL).  

For both Ir 4f and Si 2p peaks the secondary electron background was subtracted using a 

Shirley function.81 

4.3 Result and Discussion 

 

Figure 4.1a shows a 0.52 μm × 0.52 μm STM image of the Ir modified Si (110) surface 

after depositing two monolayers of Ir on atomically clean Si (110) surface and subsequently 

annealing the sample at 800 °C for 2 minutes. As shown in Figure 4.1a and 4.1b the surface 

was partially covered with flat terraces. The high symmetry directions of the underlying Si 

(110) surface are shown by green and blue arrows in Figure 4.1. Figure 4.1b is a 57 nm × 57 

nm image of the surface showing that the terraces are not actually atomically flat but 

covered with QDs. Si surface visible through the gaps between the islands do not exhibit an  
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ordered structure. Figure 4.1c is a higher resolution STM image measured on one of these 

terraces. The QDs on the islands form a quasi-periodic structure on the surface. The average 

distance between the QDs was calculated by taking the fast Fourier transform of the 

measured line scans across the surface. (not shown) The average distance between QDs was 

about 1.53 nm along [001] direction and 1.0 nm along [1-10] direction. The average diameter 

of QDs was about 0.8±0.2 nm. We tried measuring STM images at various sample 

bias/tunneling current combinations however it was possible to obtain decent images only 

when high voltage/low tunneling current setting were used. This setting translates into 

larger tip/sample separations. We attributed unstable tunneling conditions for smaller 

tip/sample separation to the fact that QD’s were loosely attached to the surface and the 

electric field between the tip and sample was strong enough to move them around.  
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Figure 4.1 (a) is 0.52 μm × 0.52 μm STM image tunneling voltage/current 
are -1.48 V and 0.47 nA (b) 57 nm × 57 nm STM image tunneling 
voltage/current are -1.97 V and 0.30 nA and (c) 13 nm × 13 nm STM image 
tunneling voltage/current are -1.93 V and 0.24 nA. The green and blue 
arrows indicate high symmetry directions of the underlying Si (110) surface 
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To study electronic properties of the surface we measured the I(V) curves (Figure 4.2) 

on both the QD’s and the terrace and then calculated the dI/dV curves. The dI/dV curves 

measured on the terrace show non-zero conductance indicating metallic nature of the 

terraces. On the other hand, the dI/dV curves measured on the QD’s has suppressed 

conductance around the Fermi level. Suppressed conductance around the Fermi level is a 

well-known signature of Coulomb blockade.  
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Figure 4.2 (a) and (b) are I(V) curves measured on terrace and on a QD 

respectively. (c) and (d) are dI/dV curves numerically calculated from the I(V) 

curves in (a) and (b). In (b) and (d) NDR is indicated with an arrow. Red lines in 

(d) is to guide the eye for Coulomb gap. 
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Experimental I(V) curve is almost linear characteristic of ohmic behavior between -1 

V to 1 V which allows us to use orthodox theory of single electron tunneling.82 According to 

this theory the system at hand can be considered as two tunnel junctions connected in series. 

The first tunnel junction is located in between the STM tip and the QD and the second tunnel 

junction is between the QD and the substrate. Each tunnel junction leaks slowly via 

tunneling. QDs are directly on top of the terraces with no insulating layer in between which 

suggests strong coupling and low resistance. However, to observe Coulomb gap the 

tunneling resistance of each tunnel junction must be high enough (𝑅 ≫ ℎ𝑒2 ≅ 26 𝑘Ω) to trap 

charges in the QD for long enough to create Coulomb repulsion for the incoming electrons. 

Another important point to note is the absence of Coulomb staircase indicating that the 

resistance and capacitance of the tunnel junctions are approximately the same. By using 

orthodox theory of single electron tunneling as described in reference 82. we calculated I(V) 

curves to predict the total resistance capacitance of the tunnel junctions and the fractional 

charge on the QD’s. The equivalent resistance and capacitance of the circuit are 2 × 1010Ω 5 × 10−19𝐹 respectively. Because of the fractional charge on the QD I(V) curve 

has non-zero slope around the Fermi level. I(V) curve calculated for a fractional charge of 

0.5e (Figure 4.3) is the best to represent the experimental data. While keeping resistance 

and capacitance of the double junction the same and reducing the fractional charge on the 

QD to zero makes the slope of the I(V) curve zero around the Fermi level.  
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Another important feature on the experimental dI/dV curve is the presence of Negative 

Differential Resistance (NDR) measured at around 1.5 V. NDR is a decrease in the tunneling 

current with increasing voltage which has been observed on QDs and molecular electronics.  
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Figure 4.3 Top: Measured I(V) curve shown between -1 V to 1 V, Middle 
and bottom: Simulated I(V) curves with fractional charge 0 and 0.5e, 
respectively. 
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With STM/STS we studied the morphology of the surface and its electronic 

properties. However, STM/STS do not offer much information about the chemical properties 

of the surface. To study that we performed XPS measurements. On the pristine Si (110) 

sample the binding energy of the Si 2p peak was measured at 99.9 eV (Figure 4.4a) which is 

0.6 eV above the bulk Si 2p peak reported in the literature.83 The shift indicates that the 

surface defects created during sputtering pinned the surface Fermi level above the edge of 

the bulk valence band. To equilibrate the Fermi levels of the bulk and the surface the 

electrons from the bulk donor level was transferred to the empty surface states creating a 

depletion layer and band bending. On the other hand, the XPS data of Si 2p peak of QD 

sample had two peaks (Figure 4.4b). One of them was originating from the bulk Si atoms and 

it was located at 99.57 eV. In comparison to pristine Si (110) sample the Si 2p peak was 

shifted to a lower binding energy. This was expected when Si and a high work function metal 

(such as Ir) are in contact the surface Fermi level pins closer to the valence band edge of Si 

which reduces the band bending and shifts the binding energy of Si peaks to lower values. 

We attributed the second peak in XPS spectra of Si to the Ir-silicide formed at the interface. 

The binding energy of this peak was at 100.19 eV which indicates a chemical shift of 0.62 eV 

towards the higher binding energy. Table in Figure 4.5b summarizes Si 2p peak positions with 

the various bulk Ir-silicide compounds reported previously.84-86 Among the known Ir-silicides 

the shift in Si 2p peak is closer to IrSi1.6.  
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Figure 4.4 (a) and (b) show Si 2p peak measured on sputter cleaned Si (110) and QDs/Si (110) 

samples respectively. (c) Raw data measured on sputter cleaned Si (110) and QDs/Si (110)  
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Figure 4.5a shows Ir 4f peaks measured on a QD sample. The peak exhibits a clear 

spin-orbit splitting fitted with four GL peaks to represent the two doublets originating from 

Ir bulk and Ir-silicide. Both the energy difference and the area of the 4f5/2 peaks (peak 2 & 4) 

were fixed with respect to the 4f7/2 peaks (peak 1 & 3). The binding energy of the 4f5/2 peaks 

were set 2.98 eV higher than that of the 4f7/2 peaks and the area ratio between them were 

kept 3:4. The binding energy of bulk Ir 4f7/2 peak (1st peak) was at 61 eV which is in line with 

the literature for pristine Ir suggesting that terraces are made out of Ir.87 On the other the 

4f7/2 peak (3rd peak) associated with silicide formation was located at 61.69 eV. Although the 

shift in this Ir peak is relatively large compared to the shift measured in the bulk Ir-silicides a 

quick comparison of the position of Ir 4f peak in various bulk Ir-silicides reveal that the shift  

 

Figure 4.5 (a) Ir 4f peaks measured on QDs/Si (110) sample. (b) Table summarizing shifts in Ir 4f 
and Si 2p peaks in various Ir-silicides. 1Ref [23]2Ref [24] 3Ref [25] 4This work. 
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gets larger as the Si content of the Ir-silicide gets higher as expected. In this study Ir was 

deposited on Si (110) surface and at the interface on average Ir atoms may be surrounded 

by more Si atoms than the reported bulk Ir-silicides causing a higher shift in the binding 

energy of Ir 4f peak.  

4.4 Conclusions 

 

We performed extensive STM/STS and XPS measurements on metallic QDs formed 

on Ir modified Si (110) surface. The QDs were weakly adsorbed on the surface and formed 

quasi periodic superstructure on the terraces. The dI/dV curves measured on QDs showed 

opening of a Coulomb gap around the Fermi level indicating that STM tip/QDs/terrace 

formed a double junction system. XPS data shows that at the interface between the Ir 

terraces and Si substrate silicide layer forms. Both Ir 4f and Si 2p peaks associated with the 

silicide shifted to higher binding energies. Out of known bulk Ir-silicides the shifts in Ir 4f and 

Si 2p peak were closer to Si-rich silicides i.e. IrSi1.6 and/or IrSi3.  
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CHAPTER V 

CROSS SECTIONAL ANALYSIS OF IRIDIUM SILICIDE NANOWIRES ON SILICON (110) 

SURFACE 

 

5.1 Introduction 

 

At certain stage lithography-based techniques will not be able to meet the challenges 

faced by the electronics industry and we need to develop processes based on self-assembly. 

Self-assembled metal-silicide nanowires have the potential to play a key role in this 

transition. These nanowires can be used not only low-resistance interconnects but also fins 

in FinFET (Fin field effect transistors)88 devices and as nano-electrodes for attaching small 

electronic components within an integrated circuit. A variety of self-assembled metal-silicide 

nanowires have been shown to form on the surface of flat and/or vicinal Si substrates.89-93 

Metals in these nanowires can range from Bi94 and rare earth metals95-97 to transition 

metals.98,99 Although Si (110) has complicated surface reconstruction, higher hole mobility 

and growth of self-assembled nanowires have recently increased the number of studies on 

this surface.100-102 

Unreconstructed Si (001) surface is four-fold symmetric. However unreconstructed 

Si (110) surface has two-fold symmetry leading to the formation of nanowires growing along 

the same direction. 
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 The formation of metal-silicide nanowires on Si (110) have been reported before. 103-108 The 

formation of nanowires on Ir modified Si (110) have been discussed in the previous chapters 

however the presented STM data has limited information regarding the actual crystal 

structure of the nanowires. In order to reveal the true structure of these nanowires we 

measured High-Resolution Transmission Electron Microcopy (HR-TEM) of the cross section 

of the nanowires. Cross-sectional TEM images of the Ir-silicide nanowires were taken at the 

Oak Ridge National Laboratory (ORNL) in collaboration with Dr. Karren More. (see Figure 5.1) 

Nanowire samples were prepared at UND and thin slices of cross-sections of these samples 

were prepared at ORNL. TEM images were analyzed using ImageJ software.103 To make the 

models of the crystals we used VESTA software. 
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5.2 Experimental and Methods 

 

The Si (110) samples were cut from nominally flat 76.2 mm by 0.38 mm single side-

polished n-type (phosphorous doped R=1.0-10.0 Ohm-cm) wafers. The samples were 

mounted on molybdenum holders and contact of the samples to any other metal during 

preparation and experiment was carefully avoided. The STM/STS studies have been 

performed by using an ultra-high vacuum system (UHV) with a base pressure of 2 × 10−10 𝑚𝑏𝑎𝑟. Before introducing Si (110) samples into the UHV chamber samples were 

washed with isopropanol and dried under the flow of nitrogen gas. Si (110) samples were 

degassed extensively and after that flash-annealed at 1250 °C. The sample temperature was 

measured with a pyrometer. The quality of the clean Si (110) samples was confirmed with 

STM prior to Ir deposition. Ir was deposited over the clean Si (110) surface from a current 

heated Ir wire (99.9 %). All the STM experiments were performed at room temperature. I-V 

curves measured while measuring high resolution STM images of the surface. Then the 

measured I-V curves were averaged. The derivative of the I-V curves were calculated 

numerically. 
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5.3 Results and Discussion 

 

Figure 5.1a shows high symmetry directions of Si (110) surface. By comparing high 

symmetry directions of pristine Si (110) surface with the nanowire directions we concluded 

that the nanowires grow parallel to [001] direction. Figure 5.2 shows TEM images of cross 

section of a nanowire. Ir-silicide nanowires grow into the substrate. This type of growth is 

called endotaxial growth. The term “endotaxy” refers to the growth of implanted species in 

a bulk matrix with interfaces coherently surrounding the new species.104 Interesting and 

useful structures can be formed by endotaxy as in thermoelectric or magnetic systems.105-106  

 

 

 

 

 

 

 

 

 

 

Figure 5.1 (a) a top view of the Si (110) surface with high symmetry directions. (b) an STM 
image of a Ir-silicide nanowire. The arrow indicates [001] direction. 
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Figure 5.2 (a) shows a cross-sectional image of a NW grown under similar conditions. (b) 
and (c) are higher resolution images of the same NW. (d) shows a higher resolution image 
of the Si (111). Inset: is a model of the bulk Si oriented towards (111) direction. (e) Shows a 
cross-section of another nanowires top-left part of the nanowire has another phase and the 
rest of the top part looks amorphous. 
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By analyzing the distance between the crystal planes of the nanowires and comparing it with 

the known crystal phases of Ir-silicides we concluded that the nanowires are made out of 

IrSi2. (see Figure 5.2a-c) IrSi2 crystalizes in the cubic structure (space group Fm-3m a fluorite 

structure) with the lattice constant 𝑎 = 5.65 Å. (See Figure 5.3) IrSi2 bulk is metallic.107 

Formation of IrSi2 has been observed on Ir films grown on Si (001) surface but it has not been 

reported as one of the stable bulk phases. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Bulk structure of fluorite-type IrSi2.  Blue/yellow atoms are Si/Ir. 
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Analysis of the TEM images of Si surface showed that the sample was cut perpendicular to 

the [111] direction of the Si crystal. (see Figure 5.2d) In other words the cuts we have is not 

perpendicular cross section of the nanowires instead there is an angle of approximately 55° 

between (111) and (001) planes of the nanowires. The measured facet orientations of 

nanowires are {21-1} and {011} directions respectively. In order to reveal true view of the 

nanowires when cut perpendicular to [001] direction we rotated both facets 55° around 

[110] direction and calculated orientation of the facets (see Figure 3a and 3b)  

 

 

 

 

 

 

 

 

 

 

Figure 5.4 A schematic to show both cut direction on a hypothetical nanowire. Red triangle is on 
(001) plane and green triangle is on (111) plane. The two facets observed on the TEM images are 
indicated on the green triangle. (b) is an atomic model showing what we would have seen if the 
sample were cut along (001) direction. 
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dI/dV curves measured on nanowires with various widths showed a curious trend (see Figure 

5.5). Although dI/dV curves show quite similar features above the Fermi level below the 

Fermi level valence band edges shift as a function of the width of the nanowires. The thinner 

nanowires (width= 5.4 nm) are metallic however the thicker nanowires (width= 22 nm) have 

sizable band gap. For thickest nanowires the size of the band gap is equal to the band gap of 

the terrace on which nanowires grow. In other words, as the nanowires get thicker a band 

gap opens up around the Fermi level. This indicates that there is a change in the structure of 

the nanowires as they grow wider. This structural change can be due to increased stress at 

the interface between nanowires and Si bulk or it could be a new phase of the Ir-silicide that 

forms. A similar trend has been reported before when at higher Ir coverage the 

semiconducting Ir3Si5 phase replaces IrSi2 phase. Ir3Si5 crystallizes in the monoclinic structure 

(space group P21/c) with the following lattice constants: a = 6.406 Å b = 14.162 Å c = 11.553 

Å β = 116.69°.108 The origin and stability of the phase is attributed to its semi-coherent 

growth on Si substrate and non-hydrostatic plain strain. In addition to that a bulk phase of 

Ir3Si5 has been successfully grown before. Therefore, for nanowires beyond certain size the 

part of the nanowire above the surface can be in a semiconductor phase like Ir3Si5 or 

amorphous. This idea is actually supported by some of the TEM images we measured at 

ORNL. Figure 5.2e shows a TEM image of a cross section of a nanowire of approximately 18 

nm wide. The part of the nanowire that grew into the bulk Si are well-defined crystals 

however above the surface the top left corner of the nanowire seems to have another crystal 

phase. The rest of the top portion of the nanowire looks amorphous. 
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Figure 5.5 (a) (b) (c) and (d) are dI/dV curves calculated from the measured I(V) curves over 
nanowires with various widths. As the width of the nanowires grow wider the valence band 
edge moves away from the Fermi level. 
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5.4 Conclusion 

In conclusion we performed HR-TEM measurements to investigate cross-section of 

Ir-silicide nanowires. Nanowires are mainly made of IrSi2 which is metallic. However, dI/dV 

curves measured on wider nanowires showed that the nanowire has a band gap of about 

0.34 eV which is approx. equal to the band gap of the terrace that the nanowires form. Ir3Si5 

is the only semiconducting phase of Ir-silicides. Previous research on Ir grown on Si (001) 

surface has shown that for higher Ir concentrations it is possible to grow Ir3Si5 alongside of 

IrSi2. We speculate that the wider nanowires have together with endotaxially grown IrSi2 

phase some Ir3Si5 and amorphous parts that grow above the surface.  
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CHAPETER VI 

CONCLUSIONS 

 

6.1 CONCLUSION 

This dissertation investigates the structural and electronic properties of metal 

induced nanostructures on Si (110) surface. Among low index surfaces of Si, Si (110) is the 

least investigated and understood, probably because of its enormous and complex 

reconstructed unit cell. Difficult preparation technique of clean single domain Si (110)-

``162” is also a reason this particular surface was not studied thoroughly. However, recently 

Si (110) surface has attracted a great deal of attention as MOSFET built on Si (110) has higher 

mobility than Si (100) or (111). Clean Si (110) “162” is a great template to grow 

nanostructure as it has inherent structural asymmetry. Nanostructures may exhibit exciting 

electronic and optical properties due to quantum confinement, which arises from their 

physical structure. For example, metal induced atomic chains can sometimes show 1D 

behavior in the band structure and their transport behavior is unique as electron cannot 

avoid each other. With the help of STM, XPS and TEM, Ir nanostructures on clean Si (110) 

were studied to reveal their atomic structures, electronic and chemical properties. 
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At the beginning of the project atomically clean Si (110) ``162” surface was obtained 

through high temperature flash-annealing and low temperature annealing. Upon 

confirmation of cleanliness and formation of well-ordered structure on Si (110) surface with 

STM, Ir was deposited in sub-ML regime to obtain nanowires. Nanowires on clean Si (110) 

were then investigated by STM/STS and TEM to reveal their structural and electronic 

properties. It is realized that the length and width of nanowires are coupled with each other 

and they can be grown up to  100 nm in length along [001] direction with average width of 

 21 nm but increasing Ir coverage makes nanowires wider. HRTEM images showed that for 

low coverage of Ir, nanowires were grown endotaxially and the crystal structure of the 

nanowires close to substrate were determined as IrSi2 with the help of structural modelling 

in VESTA. Most importantly, STS measurements revealed that narrower nanowires are 

metallic but wider nanowires have band gap of  0.34 eV. 

When Ir coverage is increased up to 2 ML, the Si substrate surface is partially covered 

with flat terraces of Ir. High resolution STM images showed that terraces are covered with 

quasi periodic Ir quantum dots loosely bound to terrace as they can be moved by STM tip 

when tip is brought to their close vicinity. According to the STS measurements, both terraces 

and the quantum dots have metallic properties and QDs showed the Coulomb blockade and 

the negative differential resistance at the room temperature. The dI/dV curves measured on 

QDs showed opening of a Coulomb gap of 0.7 eV around the Fermi level which indicates that 

STM tip, QD and terrace forms a double junction system. XPS measurements show that the  
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interface between the Ir terrace and the Si substrate is made of Si rich silicide like IrSi1.6 or 

IrSi3. 

In conclusion, Ir nanowires and quantum dots were successfully grown on clean and 

well-ordered Si (110)-``16×2” surface and they were characterized to reveal their unique 

structural and electronic properties which can be used for various electronic devices. 
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