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ABSTRACT 

 

     A superconducting tunnel junction with two-gap superconductors, such as MgB2 and 

iron-based superconductors, can lead to more interesting phase dynamics than those with 

one-gap superconductors. The phase dynamics in a long Josephson junction (LJJ) may be 

described by using the sine-Gordon equation. The difference in the phase dynamics 

between the LJJ with two-gap superconductors and that with the one-gap 

superconductors arises due to the presence of multiple tunneling channels between the 

superconductor (S) layers and the inter-band Josephson effect within the same S layer.  

The inter-band Josephson effect leads to both spatial and temporal modulation of the 

critical current between the two adjacent S layers.  In this work, the effects of critical 

current modulation on the trajectories of the single Josephson vortex (i.e., fluxon) and the 

current-voltage characteristics of the two-gap superconductor-based LJJ are estimated.  

Also, the possibility of a broken time-reversal symmetry state ground state of a single LJJ 

due to the presence of additional tunneling channels is investigated by using a 

microscopic model for two-gap superconductors.  The consequence of this broken time 

reversal ground state is discussed.   Finally, the equation of motion for fluxon for coupled 

LJJs interacting via both the magnetic induction effect and charging effect is investigated. 

As the inter-band Josephson effect is found to affect the dynamics of a single fluxon in a 

single LJJ, this effect is explicitly taken into account for a two-coupled LJJ stack.  This 
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equation of motion is expected to be an excellent starting point for exploring interesting 

LJJ properties such as collective dynamics of fluxons as well as fractional fluxons.  
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CHAPTER I 

INTRODUCTION 

1.1 Josephson Effect 

 

        Tunneling of electron pairs between two superconductors across an insulator is 

essential for electronics application of superconductors.  In 1962, Josephson predicted a 

phenomenon of Cooper pair tunneling in a superconductor junction.  This junction 

consists of two superconductor (S) layers that are separated by an insulating material.  

The tunneling phenomenon is called the Josephson effect, which was confirmed by 

Anderson and Rowell in 1963.  In the absence of a bias voltage between the two S layers, 

the tunneling of a Cooper pair through the insulator in the junction leads to Josephson 

current.  The Josephson current density at zero bias voltage is given by 

                                                                                                                             (1.1) 

where    is the critical current density which depends on the physical properties of the 

junction, and         is the phase difference between the order parameter of the two 

superconductor layers.  Here    denotes the phase of the order parameter for l-th 

superconductor layer.  Note that the superconductor order parameter is represented by a 

complex variable    (i.e.,                , where      is the amplitude).  The 

phenomenon described by the current-phase relation of Eq. (1.1) is called the DC 

Josephson effect.   In other words, this effect represents a nonlinear current flow across 

the junction in the absence of bias voltage.   
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     When a bias voltage is applied across the junction, a normal current begins to flow.  

The applied bias voltage is related to the temporal dependence of the phase difference. 

Applying a constant DC bias voltage V across the junction, the temporal dependence of 

the phase difference   may expressed as  

                                                                       ,                                                      (1.2) 

where        ⁄  is the magnetic flux quantum.  This relation between the voltage and 

phase difference indicates that the Josephson current oscillates with the frequency       ⁄ .  The phenomenon described by the voltage-phase relation of Eq. (1.2) is called 

the AC Josephson effect. 

     In device applications, the Josephson junctions may be separated into two types, 

depending on their length.  The junction is either short or long depending on the size of 

the system relative to the Josephson magnetic length    . This length     √         𝑑  characterizes the scale in which an external magnetic field can yield 

a spatial variation in the phase difference.  Here,    is the magnetic permeability of free 

space and 𝑑  is an effective thickness of the superconducting electrodes.  Note that 

Josephson magnetic length    is different than the London penetration depth   .  The 

London penetration depth is the length scale over which an external magnetic field can 

penetrate into the superconducting layer.  If the length of the junction     is much shorter 

than the Josephson length (i.e.,      ), then only the temporal dependence of the phase 

difference between the superconducting order parameters is important.  This type of 

junction is called short Josephson junction (SJJ).  Among many device applications of the 

SJJ, the superconducting quantum interference device (SQUID) is one of the well-known 

examples.   The SQUID is used to measure very weak magnetic field of order of 
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hundredth of pico-tesla (i.e., 10
-14

 T) in a living organism.  On the other hand, when the 

length    is much longer than the Josephson length (i.e.,      ), then the spatial 

dependence of the phase difference is important in determining the junction property in a 

magnetic field.  This type of junction is called long Josephson junction (LJJ).   Among 

many device applications of LJJs, the Josephson vortex quantum bit may serve as a good 

candidate for realizing quantum computers [52] due to its long decoherence time.  LJJs 

may be used in integrated digital circuits for fast digital information processing due to 

low heat generation.   Also, Josephson flux-flow transistors and ultra-fast switches are 

other applications for LJJs.    

 

 

Figure 1. The effect of magnetic field on the tunneling currents in a uniform LJJ is schematically   

                 illustrated.  Arrows indicate the strength and direction of Josephson currents. 

 

 

 

      When an external magnetic field is applied in a LJJ, a super-current flows on the 

surface of the superconductor layers to screen out the field.  On the other hand, the 
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Josephson current flows across the junction through the insulator.  The applied magnetic 

field affects this tunneling current because the phase difference between the two 

superconducting layers varies with the position.  The effect of magnetic field on the 

tunneling currents in a LJJ is illustrated in Fig. 1.  The figure illustrates the spatial 

variation of the Josephson current in an external magnetic field.    The Josephson current 

and the super-current are combined to form a current loop as shown below in Fig. 2.  This 

current loop, which is called Josephson vortex or fluxon, contains one unit of magnetic 

flux quantum (i.e.,    .       
   

  

 

Figure 2. A schematic diagram of a long Josephson junction showing a circulating current loop due to 

super-current in the superconductor (S) layers and Josephson current in the insulator layer, 

forming a Josephson vortex is illustrated.  The cross inside the circle indicates that the magnetic 

field is pointing into the page.     and    are London penetration depth and Josephson length, 

respectively. 

 

     For fabrication of a LJJ, various superconductors such as niobium [56], aluminum, 

MgB2 and iron-pnictides may be used.  As the junction property depends on the 

superconducting state, the nature of superconductivity in these materials can strongly 

influence the phase dynamics of a LJJ.  This suggests that a LJJ with one-gap 

superconductors will have a different junction property that with two-gap 
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superconductors. In next section, the differences between the one-gap and two-gap 

superconductors as well as LJJ with these two types of superconductors are discussed.  

Also, the microscopic theory of the superconductivity for both one-gap and two-gap 

superconductors will be discussed.   

 

1.2 BCS Theory: One-Gap and Two-Gap Superconductors 

 

     A single energy gap is present in one-gap superconductors.  Hence, one gap 

superconductors have only one electronic band participating in superconductivity. Here, 

one-gap refers to the fact that there is only one type of superconducting condensate in the 

system, resulting in only one energy gap in the quasi-particle excitation spectrum.  In 

general, for a superconductor that has one energy gap, the critical temperature (i.e., 

superconducting transition temperature) is lower than that for a multi-gap 

superconductor.  The phase dynamics of a LJJ with one-gap superconductors, such as 

aluminum and lead, had been extensively studied by many authors [2, 40, 45, and 60].  

For the LJJ with the one gap superconductors, there exists one possible tunneling channel 

between the two S layers.  Therefore, a LJJ exhibits the conventional Josephson effect.   

Physics involving the fluxon dynamics in the LJJ has been studied extensively for the 

conventional one-gap superconductors.  However the phase dynamics of LJJ with multi-

gap superconductors has been much less studied [4, 5, 6].  

     As a way to understand the remarkable phenomenon of the sudden disappearance of 

electrical resistivity of a material at low temperature, the pairing theory for electrons was 

proposed.   The temperature at which the electrical resistivity drops to zero is called the 



6 

 

critical temperature.  At this temperature, the material changes its ground state from the 

normal to superconducting phase as the temperature is decreased. The critical 

temperature of a superconductor depends on the nature of the pairing interaction. The 

critical temperature of mercury, a well-known one-gap superconductor, is 4.1 K.  

Recently discovered multi-gap superconductors such as MgB2 and iron-pnictides have a 

much higher critical temperature than that of the conventional S-wave one-gap 

superconductor.  

     Theoretical [50, 51, 58, 59, 64, 65, 66, 67] and experimental studies [49]  suggest that 

a strongly anisotropic electron-phonon interaction for high density (E2g) phonon.  These 

specific modes couple strongly to the electrons in the -bands, rather than those in the π-

bands, and play an important role in the superconducting state of MgB2.  From these 

studies indicate the evidence of two stable energy gaps.  Note that the two-gap 

superconductivity allows the critical temperature to remain large.  This useful property 

may be exploited in the device applications involving LJJs.  Both MgB2 and iron-

pnictides have multiple gap energies, reflecting the presence of multiple condensates. 

Here the two-gap superconductor refers to the fact that the two electronic bands are 

participating in superconductivity.  In Fig. 3, the electronic bands that participate in 

superconductivity are schematically illustrated as those crossing the Fermi energy   .  

When one band crosses the Fermi energy as shown in Fig. 3a, only one condensate is 

form in the superconducting state.  However, when two bands cross the Fermi energy as 

shown in Fig. 3b, two condensates are formed.  Each condensate is represented by an 

order parameter.   Hence MgB2 and iron-pnictides have two-pseudo order parameters.  
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Figure 3. Energy spectrum  of a single electron as a function of wave vector for (a) one-gap and (b) two-

gap superconductor are schematically illustrated.     

                                                                              

      

       A microscopic description of the superconducting state for both one-gap and two-gap 

superconductors is possible by extending the theory of superconductivity, which is 

known as BCS theory, developed by Bardeen, Cooper, and Schrieffer in 1957 [28].  This 

BCS theory was used to model the property of type-I superconductors successfully.  

According to the BCS theory, electrons that are close to the Fermi-level form into pairs 

known as Cooper pair.  The pairing interaction between the electrons is mediated by the 

crystal lattice vibration (i.e., phonon).  Due to the interaction between electrons and 

phonons, an effective attractive interaction between electrons appears.  Although 

electrons are fermions and obey the Pauli’s exclusion principle, the Cooper pairs behave 

like bosons are therefore they can condense into the same lowest energy state.   

     For an one-gap superconductor, the BCS Hamiltonian for a type-I superconductor in 

the momentum-space representation is given by 

                      ̂    ∑            ∑                                                            (1.3)             
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where       is the pairing matrix element.  Here,           ⁄      is the kinetic 

energy.   The second term in Eq. (1.3) is the pairing interaction Hamiltonian, which 

indicates that two electrons with an up-spin in the –k’ state and a down-spin in the k’ state 

are destroyed, while two electrons with a down-spin in the k state and an up-spin in the –k 

states are created.  Note that      
 and     denote, respectively, an operator which creates 

and destroys an electron with the momentum k and spin  .  These fermion operators obey 

the anti-commutation relation 

                           {          }                              ,                                   (1.4) 

and 

                                       {          }  {            }   .                                              (1.5) 

The particle number operator     is given by             .  Within the BCS theory, 

one can obtain the ground state energy and quasi-particle energy spectrum of the system.  

The mean-field theory of the BCS model can be solved by making a rotational 

transformation to diagonalize the Hamiltonian.   This rotation of the Hamiltonian is called 

Bogoliubov transformation. 

      The BCS theory can be extended to multi-band systems. Applying the Bogoliubov 

transformations, Suhl et al. obtained the critical temperature for multi-band systems. In a 

two-gap superconductor, there are two types of superconducting condensates in the 

system, yielding two pseudo-order parameters.   Hence, the BCS model for a one-gap 

superconductor must be extended to account for these two condensates. The BCS 

Hamiltonian for the two-gap superconductor is given by 

                                               ̂     ∑                 ̂                                                (1.6) 
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where i = s, d denotes that electronic bands that participate in pairing interaction.  Here 

the pair interaction contribution to the Hamiltonian is given by 

      ̂                                                              (                           )      (1.7) 

Here, for definiteness, the superscripts s and d are used to represent the two electronic 

bands.    The last term of Eq. (1.7) accounts for the pair interaction between electrons in 

the s and d bands.  Here the                        term indicates that a Cooper pair in the s-band 

of the l-th S layer is destroyed while another Cooper-pair is created in the same band.  

Similarly, the                        term represents creation of a Cooper pair by destroying 

another Cooper pair in the same d-band.  Also, the                        term represents tunneling 

of a Cooper from the d-band to s-band and depends on the phase of the two condensates. 

 
 

Figure 4:  A schematic diagram for a LJJ with two-gap superconductors is illustrated. 

 

       The inter-band phase difference in the two-gap superconductors can lead to a 

different tunneling property than that for one-gap superconductors.  This difference is 
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attributed to the two tunneling channels for electrons in two-gap superconductor 

junctions due to the presence of two condensates.  This internal freedom reflects the 

number of electronic bands participating in superconductivity.  Therefore, the phase 

dynamics of the order parameters for the two-gap superconductor tunnel junction, as 

illustrated in Fig. 4, differs from that of the one-gap superconductor junction.  In Fig. 4, a 

LJJ with a two-gap superconductor, represented by two pseudo-order parameters                 and               , is shown schematically.  Here, Lx and Ly denote the 

dimensions of the junction in the x- and y- direction, respectively.  Note that J
B
 is the bias 

current density and B is the externally applied magnetic field.  The thickness of both the 

S and I layer are denoted by dS and dI, respectively.  There are two tunneling channels 

between the two superconducting layers.  One channel is between the two s-bands of two 

adjacent layers and other is the channel between the s-band of one layer and d-band of the 

other layer.  When an electron tunnels leaving one band, a hole is created in that band.  

The presence of two tunneling channels in the LJJ shows that there are two types of 

relative phase dynamics.  These phase dynamics are due to the interplay between the 

inter-band Josephson effect and the conventional Josephson effect.  The inter-band 

Josephson effect describes tunneling between two electronic bands in the same S layer.  

This effect determines the dynamics of the phase difference between the two 

condensates.  On the other hand, the conventional Josephson effect describes tunneling 

between two adjacent S layers. This effect determines the dynamics of the phase 

difference across two adjacent S layers.  The effects due to two tunneling channels in a 

LJJ, as shown in Fig. 4, may appear in measurable physical quantities such as changes in 
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the macroscopic quantum tunneling rate and the presence of extra step structure [17], in 

addition to the conventional Shapiro steps, in the current voltage (I-V) characteristics.   

     The phase dynamics of a LJJ may depend on the symmetry of the superconducting 

order parameter.  As suggested by Ota and coworkers, the gap symmetry can affect [12] 

the Josephson current across the grain boundaries in poly-crystalline samples as well as 

the current-voltage (I-V) characteristics of the multi-gap intrinsic LJJ stacks.  In the two-

gap superconductor based LJJ, multiple channels are expected for superconducting 

tunneling current between the two superconducting electrodes.  Two-gap superconductor 

has two types of pairing symmetry.  The ground state of the system is the phase-locked 

state.   If the two S-wave pseudo-order parameters have the same phase in  - and   -

band, then there will be 0-phase locked between holes and electrons.  This is the S++ 

pairing symmetry.  Similarly, if the two bands are in opposite phase, then there will be  -

phase locked between the electrons and holes.  This is the     pairing symmetry.   

      The fluctuations about the phase-locked state of the two condensates can arise.   When 

these fluctuations are small, the inter-band Josephson effect can yield collective 

excitation [5].  In a multi-gap superconductor, there are two small phase oscillation 

modes: the in-phase and out-of-phase mode.  The out-of phase mode is called the 

Josephson-Leggett (JL) mode, and the in-phase mode is called the Josephson-plasma 

mode.  Blumberg and coworkers observed the JL mode in MgB2, using Raman scattering 

[4].  Theoretical studies of a hetero-Josephson junction suggest that the phase dynamics 

of a LJJ are affected by the JL mode since the total energy of the two-gap 

superconductors depends on the relative phase of the two condensates as well as the 

relative density of electrons.  
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           Figure 5.   Relative phase difference   of two pseudo-order parameters is plotted as a function of     

                              position x to illustrate the single-kink solution. 

 

      Fluctuations about the phase-locked state may not necessarily remain small, but they 

may become large.  Tanaka and coworkers claim that when the amplitude of relative 

phase fluctuation grows to the non-linear region and becomes stabilized, excitation of an 

i-soliton can change the amplitude of the critical current density [21].      Results of the 

magnetic response of a superconducting ring experiment with two pseudo-order 

parameters by H. Bluhm and co-workers indicate that a stable soliton-shaped phase 

difference   between the two condensates is attainable [18].  This result supports the 

suggestion that the phase fluctuations can grow and produce a 2π-phase texture [19].  The 
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i-soliton is the topological excitation of the phase fluctuation in which the inter-band 

phase difference rotates by 2π, as shown in Fig. 5.  The i-soliton does not carry a 

magnetic flux.  The excitation of i-soliton represents the phase fluctuations due to the 

inter-band Josephson effect which is the hallmark of multi-gap superconductors. 

      Kupulevaksky and coworkers explored soliton states in two-gap superconductors in 

mesoscopic thin-walled cylinders in external magnetic fields by using the Ginzburg-

Landau approach [22]. Tanaka and coworkers [21] suggested that a phase domain 

surrounded by i-soliton wall, can arise in two dimensions since an i-soliton may be 

considered as a one-dimensional quantum phase dislocation.  Also, an i-soliton wall may 

carry a fractional flux quantum when one end of the soliton wall is terminated by the 

fractional vortex while the other end is attached to a sample edge [21]. A vortex-molecule 

may be formed when two fractional vortices, with a unit fluxoid quantum as the total 

magnetic flux, are connected by an i-soliton bond [23].  These fractional vortices have 

been observed in a multi-layered superconductor by using both magnetic force and 

scanning Hall probe microscopy [31].  

       The i-solitons are different than the fluxons (i.e., Josephson vortices).  A Josephson 

vortex arises due to the tunneling of Cooper pair between two separate superconductors, 

but the i-soliton arises due to the interaction between particles within the same 

superconductor.  Also, the fluxons have one unit of magnetic flux quantum, but the i-

solitons do not carry any magnetic flux.  Hence, they do not interact with either magnetic 

field or super-currents.  However, an i-soliton may be formed and driven by a non-

equilibrium charge density or by sufficiently strong superconducting currents.  From the 

study of phase texture in a weakly coupled multilayer structure and two-gap 
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superconductors, Gurevich and Vinokur suggested that spontaneous appearance of a 

soliton-like phase texture represents the breakdown of phase-locked state. This 

breakdown can arise when the applied current density along the superconductor layers 

exceeds the critical value [24].  

 

 

 

Figure 6. Formation of phase texture in current carrying bi-layer [24] is shown schematically.  The bold 

line indicates the interlayer Josephson contact and the gray rectangles represent the current  leads. 

 

 

       The effects of phase fluctuations may appear as either additional resonances in the 

AC Josephson effect or a static 2π-kink in the phase difference.  If the 2π-phase texture 

exists in each S layer, then this i-soliton may change the phase dynamics of the LJJ by 

inducing a critical current density modulation [68].  In Fig. 6, the formation of phase 

textures in current-carrying bi-layer is illustrated.  Here, the bold line indicates the 

interlayer Josephson contact and the gray rectangles represent the current leads.  Previous 

studies [6, 23, 24, 25, 48, 69] show that a moving fluxon can radiate electromagnetic 

(EM) waves when its speed varies due to the bias current larger than the critical 
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(threshold) value.  The interference between the emitted EM waves can rise to clearly 

discernible steps in the I-V characteristics.  This suggests that, if the critical current 

modulation is generated by large fluctuations of the phase difference, this may affect the 

properties of the junction due to change in the phase dynamics.  

 

1.3 Broken Time Reversal Symmetry State 

 

          The dynamics of the relative phase of the two condensates may produce an 

interesting phenomenon in the ground state of the system.  One of these interesting 

properties is a broken time reversal symmetry state.  In the absence of external magnetic 

field, there are no net currents in the ground state of a LJJ.  However, in the LJJ with one-

gap and two-gap superconductor layer, the ground state satisfies the condition of no net 

current density via maintaining the inter-band phase difference of either 0 or π.  This state 

is called the time-reversal symmetry invariant (TRSI) state.  On the other hand, if the 

phase difference between the two condensates differs from either 0 or π, then system is 

said to have phase frustration.  When the phase frustration is maintained, the ground state 

may have non-zero current density in the absence of an external magnetic field while 

satisfying the condition of zero net current flow.  This ground state is called the broken 

time-reversal symmetry (BTRS) state.  Theoretical studies of superconductor-insulator-

superconductor (hetero-Josephson) junctions between one- and two-gap superconductors 

suggest that the [15] the time-reversal symmetry is violated in the ground state. 

       The relative phases of the condensates in the ground state reflect the time-reversal 

symmetry of the junction.  To study the TRSI and BTRS state, one needs to focus on the 
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phase frustration.  The time-reversal symmetry breaking within two-gap superconductors 

was studied by Tanaka et al. [32] and Lin et. al. [33].   They realized that when the inter-

band interaction is very weak compared with the intra-band interaction, it can break time-

reversal symmetry as a result of competition between inter-band Josephson and 

biquadratic interaction.   The inter-band Josephson interaction tends to lock the relative 

phase to either 0 or π, while the biquadratic interaction tends to lock the relative phase to    ⁄ .  Tanaka and coworkers claim that when the inter-band coupling   is greater than 

zero (i.e.    > 0), the Josephson interaction in the    -symmetry state will lock the 

relative phase   to 0.  However, when     , the Josephson interaction in the     -

symmetry state will lock the relative phase to π.    If the phase difference between two 

condensates differs from the phase-locked value of either 0 or  , then there is phase 

frustration which breaks the time-reversal symmetry in the ground state. 

 

 

Figure 7: Josephson junction between two-gap superconductors with (a)     and (b)     pairing symmetry 

and s-wave one-gap superconductor [33]. 

 

       Phase frustration may also occur in a Josephson junction.  This situation is similar to 

a two-gap superconductor with both inter-band Josephson and biquadratic interaction.  A 
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junction between a two-gap superconductor with either the     or    -symmetry and a 

conventional S-wave superconductor may yield a different behavior due to either absence 

or presence of phase frustration, respectively.  In Fig. 7a, the Josephson junctions 

between two-gap superconductor with the      pairing symmetry (i.e.,    )  and one-

gap S-wave superconductor is illustrated.  In this case the effective interaction between 

condensates is attractive, and they have the same phase (i.e.,         ). This means 

that there is no phase frustration, and the time-reversal symmetry is preserved.  Similarly, 

a junction between a two-gap superconductor with the    -symmetry (   )  and a one-

gap S-wave superconductor is illustrated in Fig. 7b.  The effective interaction between 

condensates is repulsive, and their phases  are not the same in the ground state.  

        The phase frustration and the BTRS state can also be described in terms of boundary 

conditions in the junction interface.  Boundary conditions in the junction interface are 

described in terms of current density of the individual condensate.  When the non-zero 

individual currents satisfy the condition of zero net current flow in the ground state, the 

system is strongly frustrated, resulting in broken time-reversal symmetry state.  In 

Chapter III, the time reversal symmetry invariant and broken time-reversal symmetry 

state in junction with two-gap superconductors will be investigated.  

 

1.4 Coupled Long Josephson Junctions 

 

     Another interesting aspect of a LJJ is the phase dynamics of coupled junctions.  When 

a multiple number of coupled junctions are stacked vertically, the single LJJ property 

which was discussed above may be enhanced.   For one-gap superconductors, there have 
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been numerous studies of phase dynamics in a stack of long Josephson junctions [34, 36, 

37, 38, 57].  Machida et al. proposed [34] a theoretical model for describing the 

superconducting phase and charge dynamics in intrinsic LJJ stacks.  Starting with a BCS 

Hamiltonian and using functional integral formalism and accounting for the low energy 

fluctuations in the very thin superconductor layers, Machida et al. obtained the effective 

action for the system. Using the Euler-Lagrange equation for relevant variables, they 

derived the equations of motion for the relative phases.  In a stack of LJJs, conventional 

Josephson tunneling as well as magnetic induction interaction between the junctions 

determines the dynamics of the phase difference.  Here, the magnetic induction coupling 

arises as the induced magnetic field of the super-current in one S layer affects the 

magnetic field of the adjacent S layers.  The magnetic induction coupling between the 

junctions induces the collective dynamics of the fluxons in the presence of the bias 

current.  If the thickness of the superconductor layers is comparable to the charge 

screening length, then the charging effect is not negligible.  In this case, the capacitive 

coupling between junctions may also have to be accounted for.  Machida et al.[34] and 

Sakai et al. [35-36] obtained the set of coupled equations of motion for the phases by 

using two different approaches.  These two approaches had been shown to yield an 

identical result when the charging effect is neglected.   

 

 The outline of the remainder of this dissertation work is as follows.  In Chapter II, 

fluxon dynamics in a LJJ with two-gap superconductors is discussed.  In Chapter III, the 

time reversal symmetry invariance and broken time-reversal symmetry state in the 

ground state of a single LJJ with two superconductors is reported.  In Chapter IV, the 
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magnetic induction coupling effect is used to derive the equation of motion for a fluxon 

in coupled LJJs with two-gap superconductors.  The result of this work is discussed in 

Chapter V.  Finally, the conclusions of the dissertation work are presented in Chapter VI. 
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CHAPTER II 

 

FLUXON DYNAMICS OF LJJS WITH TWO-GAP SUPERCONDUCTORS 

 

 

     In this chapter, the equation of motion for the phase difference is derived by starting 

from the microscopic model for two-gap superconductors.  Namely, the phase dynamics 

in the long Josephson junction (LJJ) is described by using BCS theory.  For LJJ, with 

two-gap superconductors, variation in the relative phase of condensates in the two 

electronic bands plays an important role in characterizing the junction property.  To study 

the effect of inter-band Josephson effect in the fluxon dynamics, the equation of motion 

for the inter-band phase difference is derived.    Also, the effect of large fluctuations in 

the relative phase on the phase dynamics is discussed.  

 

2.1 Theoretical Model for Phase Dynamics 

 

     In this section, a microscopic model is used to describe the LJJ.  Namely, the 

superconductor layers are described by the BCS Hamiltonian while the dissipation and 

boundary effects of the junction are neglected for simplicity.  In Chapter V, these effects, 

which account for realistic LJJs, are included in numerical calculations.  The model 

Hamiltonian  ̂ for describing superconductivity in each superconductor (S) layer is 

expressed as a sum of two contributions:  ̂   ̂      ̂ .  The Hamiltonian  ̂     
denotes the contribution due to two-gap superconductivity while the Hamiltonian  ̂  
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accounts for electron tunneling between the two adjacent S layers.  One may write the 

Hamiltonian   ̂     for the two-gap superconductor as 

                                    ̂     ∫𝑑 (∑                 ̂     ) ,                                         (2.1) 

where    is the energy of electrons in the i-band (i = s, d) about the Fermi energy.  For 

definiteness, it is assumed that s and d are the two electronic bands that participate in 

superconductivity. The Hamiltonian  ̂     accounts for the pairing interaction between 

electrons in the l-th S layer and may be written as           ̂                                                              (                           )       (2.2) 

where     is the pairing interaction matrix element for the electrons in i and j-bands.   

Also,       
 and       denote the creation and annihilation operators for an electron with spin    in i-band. The Hamiltonian  ̂  describes the electron tunneling between the two 

adjacent S layers and is expressed in terms of tunneling matrix element     for an electron 

from   to  -band as  
                                       ̂  ∑ (                   )                                    (2.3) 

In the discussion below, theses Hamiltonians  ̂     and  ̂  are used to account for 

interesting phase dynamics in LJJ with two-gap superconductors. 

      One interesting hallmark of two-gap superconductivity is an inter-band Josephson 

effect between electrons in the two different electronic bands within the same S layer.  

The inter-band pairing interaction describes the Josephson effect due to tunneling of the 

condensates between the two bands.  The presence of inter-band Josephson effect in a 

multi-gap superconductor had been suggested by Leggett.  By following Leggett [5],  one 



22 

 

can see that the eigenvalues of the pairing operator  ̂   may be introduced to express the 

free energy contribution from the two-band Hamiltonian    ̂     as 

                   ̂                    (      )               |   |   ,                   (2.4) 

where     (      ) corresponds to the kinetic energy of electrons in the i-band.  The 

complex pseudo-order parameter     for a two-gap superconductor is given by 

                                                     |   |     .                                                               (2.5) 

In Eq. (2.4), the   term accounts for the contribution from inter-band Josephson-coupling.  

This contribution arises as a result of the pairing interaction between the electrons in s 

and d electronic bands which are participating in superconductivity.  This term depends 

explicitly on the relative phase of the two pseudo-order parameters.   The inter-band 

Josephson-coupling term is given by 

                                                  (               )                                                        

                                                          |   |      ,                                                  (2.6) 

where            is the phase difference between the pseudo-order parameters 

representing two superconducting condensates.  It is straightforward to see that when 

there is no inter-band pairing interaction between electrons (i.e.,      ), the order 

parameters which minimize the free energy of Eq. (2.4) can be considered as being 

independent.  However, the non-zero inter-band interaction between electrons in the two-

bands of the same S layer will be considered in this work.  

     The conditions for minimizing the free energy yield the coupled gap equations of the 

form 

                                              ∑          .                                                        (2.7) 
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It is straightforward to see that the relative phase    for the non-trivial solutions of this 

coupled gap equations are either     or .  These solutions      and   represent the 

phase-locked states and correspond to the     (for      ) and     (for      ) 

pairing symmetry state, respectively.  

      Due to the presence of various other interactions in the system, small as well as large 

phase fluctuations about the phase-locked state can occur in the two-gap superconductors.  

These fluctuations can yield small phase oscillations when the amplitude is small and can 

lead to 2-phase textures which may appear as kinks in    when the amplitude is large.   

These phase textures can modify the phase dynamics of LJJ by causing resonances in the 

AC Josephson effect when two electronic bands are not in equilibrium.  The effects of the 

phase textures can be examined by using the functional integral formulation. The 

partition function Z for the LJJ in the presence of electromagnetic field is given by 

                                                            ,                                                  (2.8) 

where       and   is the absolute temperature.  For simplicity, the fundamental 

constants are set to unity:             The Hamiltonian  ̂ of Eq. (2.1) is used to 

derive the Ginzburg-Landau free energy for the two-gap superconductor by writing the 

partition function Z in terms of Grassmann variables   ̅     and       as 

                            ∫   ̅        ̅          ̅      ̅     ,                                  (2.9) 

where the action S is given by  

                              ∫ 𝑑 [∑ (  ̅           )       ]                                       (2.10) 

where        .  The momentum-space representation of the BCS Hamiltonian for the 

two-gap superconductor in terms of Grassmann variables is given by 
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          ∑  (      ̅                 ̅           )    

  ∑         ̅     ̅                           ∑         ̅     ̅                         
                                   ∑        (  ̅     ̅                        )                         (2.11) 

where       
is the pairing interaction matrix element for the i- and j-band electrons. For 

describing the pairing interaction between electrons, it may be convenient to introduce 

the Nambu representation: 

                                        ̅  (  ̅            ) ,  and         (        ̅    )  . 

 In this representation, the pair fields  ̅    and     are expressed as  

                                               ̅     ̅      ,                                                    (2.12) 

                                                    ̅                                                            (2.13) 

by using Pauli matrices.  Here               and three Pauli matrices are given by 

                                                            (    ), 

                                                            (     ),  

                                                            (     ). 

Substituting   ̅   and      into Eqs. (2.12) and (2.13), one can obtain the pair fields  ̅    and     as 

                                                ̅     ̅   ̅  ,                                                    (2.14) 

                                                         .                                                     (2.15) 

In the Nambu representation, one can rewrite the partition function Z as 
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                          ∫   ̅        ̅          ̅      ̅     ,                              (2.16) 

where the action S is given by  

            ∫ 𝑑   ∑ [  ̅                  ̅ (         )   ]                    

              ∫ 𝑑   ∑ [       ̅               ̅               ̅        ̅       ]    .                (2.17) 

Here, the interaction contributions in the action S represent the two-body Coulomb 

interaction.  As a way to reduce the two-body interaction terms, one needs to introduce 

the Hubbard-Stratonovich transformation.  Before making this transformation, it is 

convenient to write the action S as 

                       ∫ 𝑑    ∑ [  ̅                  ̅ (         )   ]     

                                     ∫ 𝑑     ∑   ̅   ̅       (      )                                             (2.18)    

                

where         is the pairing interaction matrix   

                                                  (            ) .                                                       (2.19) 

The Hubbard-Stratonovich transformation maps the two-body interaction terms into non-

interacting terms by introducing an auxiliary field (i.e., the Hubbard-Stratonovich field) 

representing electron pairing.   For complex auxiliary fields          and  ̅        , it is straightforward to see that 

                                            ∫𝑑  𝑑                   , 

indicating that unity may be express in terms of these complex fields as  

                                                       ∫   ̅           ̅     .                                                (2.20) 

This relation, along with the transformations 
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                                        ̅    ̅   ̅   ,   and       (      ) , 

may be used to rewrite the partition function Z and the action S as  

                                           ∫   ̅      ̅        ̅    ̅                                          (2.21) 

and 

                        ∫ 𝑑  {∑ [  ̅                  ̅ (         )   ]    

                                                      ∑   ̅         ̅           },                           (2.22) 

respectively. By shifting the auxiliary fields   and  ̅ (i.e.,  ̅   ̅   ̅    and            ), one can rewrite the action S as  

         ∫ 𝑑 [∑   ̅ (         )    ∑   ̅          ̅     ̅            ]  .       (2.23) 

Here,   and  ̅ represent the two-component auxiliary fields 

                                      ̅    ̅   ̅      and       (      ) . 

The inverse of the interaction matrix, V
-1

, may be written as  

                                               (   ) (               ) .                                     (2.24) 

Hence, one can express the  ̅        term in the action of Eq. (2.23) as 

           ̅                  ̅                 ̅                ( ̅        ̅      )       

                              ̅           ̅                   ( ̅        ̅      )                                   (2.25) 

where  𝑑                      ⁄  is the determinant of the matrix V,     𝑑        ⁄ ,     𝑑        ⁄ , and     𝑑                ⁄ .   By substituting Eq. 

(2.25) into Eq. (2.23), one may evaluate the partition function of Eq. (2.16).  The fermion 

freedom in the functional integral may be integrated out by performing Grassmann 
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integration.  When the fermion degrees are integrated out, the effective action Seff  may be 

written as 

                   ∫ 𝑑 ∑ [∑  ̅                  ( ̅        ̅      ) ]  ∑                      (2.26)     

Similarly the effective action for the LJJ with two-gap superconductors can be expressed 

as 

                                                             ̂  , 

where the actions      and         are the contribution from the pairing energy 

represented by the pseudo-order parameters and electromagnetic field, respectively. The 

fermion contribution of the    ̂   term is obtained by carrying out the functional integral 

over the Grassmann variables  ̅ and  .  Here the inverse Green function  ̂   is a     

matrix which consists of a     matrix for each two-gap superconductor layer.  One can 

extract the contribution to the action S involving the superconducting phase degree of 

freedom by doing the unitary transformation on the Green function and by taking only 

second order tunneling contributions [47, 48].  The phase contribution        to the 

effective action       can be obtained by using the imaginary-time functional integral 

approach [34].  As the phase contribution        may be written as  

                                                   ∫𝑑  ∫ 𝑑 ⃗          
one can obtain the Lagrange density Lphase of the system from Eq. (2.26).  A detailed 

discussion on the expansion of the ∑           term of Eq. (2.26) may be found in 

appendix A.  The phase contribution        to the effective Lagrange density is needed to 

obtain the equation of motion for the fluxon.   The Lagrange density Lphase  (see appendix 

A) for describing the phase dynamics can be expressed as  
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       𝑑      ∑ [     (            )      (            ) ]     
                                              ∑            𝑠     ∑          𝑠                                      
where e*=2e is the charge of Cooper pair and 𝑑  is thickness of the l-th superconductor 

layer. Here,    √           denotes the charge screening length, and    
√              denotes the magnetic penetration depth in the S layer.  Here,      
√         is the Thomas-Fermi screening length,    is dielectric constant of the S layer,    is Bohr’s radius, and    is the Fermi vector.  Also,     is the critical current density 

between the electronic bands (i-th and j-th) of the adjacent S layers and     is the inter-

band Josephson critical current density between the two bands of the same S layers.  The 

phase difference of the order parameter in a magnetic field is denoted by                     , where        ∫        𝑑 .  The inter-band critical current density between 

the two bands within the same S layer is given by  

                                                                        (   )  .   
The critical current density between the i-th and j-th electronic bands in the two S layers 

is given by [34, 40, 47] 

                            ∫𝑑 ∑        ∑                      {         (        )     [ (   )   (    )] 
                        (        )     [   (   )   (    )]},                       (2.28) 

where           is the Matsubara frequency.   Here,             , and     
(        )    is the quasiparticle energy in the superconducting state, and      is the 
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Fermi function. The electromagnetic field contribution     to the Lagrange density Lphase 

is  

                                                   [  (       )  (       ) ],                                   (2.29) 

where   is the dielectric constant and 𝑑  is the thickness of the insulator layer.  Also,         and        
 denote electric and magnetic field in the insulator between the two 

adjacent S layers.  

          The equation of motion for the phase difference may be obtained by minimizing 

the action.  As in classical mechanics, this minimization procedure leads to the Euler-

Lagrange equation.  The Euler-Lagrange equations for the variables    ,    ,    ,    ,      ,                and     take the following form: 

                                                 
       ̇                       ,                                          (2.30) 

where  ̇   and      denote the derivative of the phase     with respect to time and position, 

respectively.  Note that     represents the phase of the pseudo-order parameter for the 

condensates in the i- band in l-th S layer.  As the equations of motion may be described in 

terms of the phase differences         and   , it is be useful to define the following 

phase differences of l-th two-gap S layer: 

                                                     , 

                                                             ,  

                                                             .  

and 

                                                              . 
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Euler-Lagrange equations for different variables can be combined to obtain the coupled 

equation involving three phase variables.  After some substitutions, one can show that 

this coupled equation has three contributions.  One is contribution of phase difference 

between the two adjacent S layers    and other two are the contributions due to the 

relative phases    and    within the S layer.  Therefore, the coupled equation can be 

represented as the sum of three parts as  

                                                           ,                                                       (2.31) 

where                                                                                 

                                                                                                        (2.32) 

Note that Eq. (2.32) accounts for the contribution of phase difference between the two 

adjacent S layers    .  From this equation it is clear that the contribution of      in the 

equation of motion is affected by inter-band Josephson effect.  Other two contributions 

are    

                                                                                   ,                                (2.33) 

and  

                                                                                    .                               (2.34)  

Note that P2 and P3 denote the phase difference equation for the pseudo-order parameters 

in the first and second S layer, respectively.   Here, the constants   and   are given by 

                           (       )               and                    (       )         ,                 (2.35)      
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The critical current density     (   ) denotes the tunneling between two s (d)-bands of 

two adjacent S layers.  The inter-band current density     accounts for the interaction 

between electrons in the two electronic bands of the same S layer.  Note that due to 

creation and destruction of pair of particles in each electronic band, this process appears 

as if there is current density    , but this is not a physical current density.                    

     In writing the equation of motion, it would be convenient to work with the 

dimensionless coordinates.  Hence, for convenience, one can introduce new temporal and 

spatial coordinates as 

                                          ̅   [         (       )               ]  ,                                     (2.36a) 

 and    

                                          ̅   [         (       )              ]  .                                      (2.36b) 

Two other dimensionless coordinates used in the discussion below for convenience can 

be defined as follows: 

                                (      )    ̅,    and       (      )    ̅, 
and 

                           (             )    ̅,    and       (              )    .̅ 
For simplicity, one may make an assumption that the relative phase in each 

superconductor is the same (i.e.,        ).  This assumption implies that the phase 

differences    and     between the superconductor layers are the same (i.e.,        ).  With this assumption, one can simplify Eq. (2.31) by making simple substitutions 



32 

 

and one can obtain a coupled equation of motion for the phases in the dimensionless 

coordinates as  

                            
                    [            ]        

                                              +                            .                                      (2.37)  

The equation of motion of (2.37) shows that if one can obtain the sine-Gordon equation 

for relative phase    phase dynamics in the LJJ becomes simpler.    This is one of the 

important result of the present work. 

 

                                            2.2 Inter-band Josephson Effect 

 

     In this section, the equation of motion for the relative phase   of the two condensates 

is shown to be described by the sine-Gordon equation.  Note that this interesting point is 

due to the fact that the inter-band Josephson effect is present in the two-gap 

superconductors.  As the sine-Gordon equation has a kink-solution, the single kink 

solution for the relative phase represents an i-soliton.  

     As a way to derive the sine-Gordon equation for the relative phase of two condensates, 

one may start with the two-band BCS Hamiltonian in the momentum-space [5] 

representation as  

                 ̂     ̂        ∑ (                                             )       

                                                                                                                         (2.38) 

where  ̂  denotes the BCS Hamiltonian for both s and d band electrons 

                              ∑                 ∑                                                
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                                  ∑                 ∑                                                        (2.39) 

The     term in Eq. (2.38) denotes the contribution from the charge imbalance between 

the two condensates. This contribution depends on both the number of electrons in two 

condensates N and the equilibrium number N
o
.  This contribution can be written as 

               ̂   [( ̂     )  ( ̂     )] ,     (2.40) 

where  ̂ is the relative density fluctuation operator of the system  

                                           ̂  ( ̂     )    ̂      . 
The number operator for the electrons in the s and d-bands are denoted by  ̂   and  ̂ , 

respectively.  Here,     and     denotes the number of electrons in s and d-band at 

equilibrium, respectively.   The number of electrons in the s and d-band is determined by 

assuming that there is no tunneling between the electronic bands.  Note that         ⁄          ⁄   where    and    are the densities of state for the s and d-band 

electrons at the Fermi energy, respectively.  By noting that the total number of electrons 

of the system remains conserved (i.e.,        ) and by using the Ginzburg-Landau 

free energy obtained from the BCS Hamiltonian, one may write the Hamiltonian of the 

system in terms of the pseudo-order parameter   as  [6] 

                    ∑ [  |        |                        ]                            

                                         cos                ,                                 (2.41) 

where    is the phase of the pseudo-order parameter, and    is a constant which depends 

on the i-band parameters.  Here, the vector potential A is set to zero (i.e., A=0) by 

assuming the absence of an external magnetic field.  The relative density fluctuation ( ̂) 
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of the system is obtained by using the following two relations: i) the number-phase 

uncertainty relation  

                                                  [ ̂   ̂   ̂  ]      ,                                              (2.42) 

and  ii) the Heisenberg equation of motion for the phase difference 

                                            ( ̂   ̂ )     [( ̂   ̂ )  ̂]                                   (2.43) 

Here, the phase difference  ̂   ̂  commutes with other terms of the Hamiltonian 

except   ̂ .   This indicates that 

       
   ( ̂   ̂ )     [( ̂   ̂ )   ̂],                               (2.44) 

and  

                                             ̂         ( ̂   ̂ ) .  
Hence, by substituting the expression for K and by using Eq. (2.41), one may obtain the 

Gibb’s free energy for the superconducting state of the two-gap superconductor as 

                        ∑ [  |      |                   ]                         
                                             cos       (    )                                                (2.45) 

where        . The Gibb’s free energy of Eq. (2.45) may be minimized by 

setting     ⁄    and by noting that 

                                                                
, 

and 

                                                |     |  |  | (     ) . 

Also, by using the condition  

        ∑     |  |       =0                                                  (2.46) 
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that the super-current vanishes in the bulk superconductor, it is straightforward to 

relate   ’s as 

                                      {       |  |                          |  |                                                      (2.47) 

Noting that the relative phase of the two condensates is             ,  it is helpful 

to denote that   =0 for       (i.e.,    -symmetry) and that      for       (i.e.,     -symmetry).   After some simplification, one may obtain the sine-Gordon equation  

                           
               |       |                        |  |                ,            (2.48) 

for describing the dynamics of the relative phase  .  As discussed above, it is convenient 

to write the equation of motion in dimensionless coordinates.  Hence, one may introduce 

the following dimensionless coordinates: 

                                                [       |  |             |  | ]  ⁄   ,                                    (2.49) 

                                                                    .                                          (2.50) 

The equation of motion for the relative phase   written in terms of these dimensionless 

condensates yields the usual sine-Gordon equation  

                                          
                        .                                 (2.51) 

A general single-soliton solution of Eq. (2.51) may be written as  

                             [   (          √      )]                               (2.52) 

where    is the speed of the soliton. This kink solution, which is known as the i-soliton, 

is identical to the functional form of the unperturbed fluxon.  However, the property of an 
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i-soliton is different than that of the fluxon.   Unlike i-solitons, each fluxon carries a unit 

of magnetic flux quantum and can be driven by the Lorentz force of the bias current. 

Note that the i-soliton cannot be driven by the bias current.  The i-soliton solution 

describes the perturbation effect in the two-gap superconductor system where it may 

yield large amplitude fluctuations in the relative phase   of the condensates. 

      The equation of motion of q. (2.51) for the relative phase   indicates that Eq. (2.37) 

which describes the phase dynamics of the LJJ may be simplified.  By substituting Eqs. 

(2.51) and (2.52) into Eq.  (2.37), one may see that  

                             
                    [            ]         ,                (2.53) 

indicating that the inter-band Josephson effect induces modulation in the critical current 

density.  The critical current density modulation has two main effects.  First, the shape of 

the fluxon may change, but for small modulation this effect is negligible. Second, the 

speed of the fluxon becomes modified because the critical current density modulation 

behaves as a scattering potential for fluxons.  To make progress, one may substitute Eq. 

(2.52) into Eq. (2.37) by writing      ,                     and              √     ⁄   to obtain equation of motion in   the dimensionless 

coordinates as 

    
                    [        (                   )]         .             (2.55) 

where     (     v),              and   is the speed of the unperturbed fluxon.   

Here, the constants    and    depend on the speed    of the i-soliton as               𝑑  𝑑      √      and                   𝑑 𝑑      √      . Noting that                 ), one can see that Eq. (2.55) indicates that the i-soliton 
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excitation in the two-band superconductor can lead to both spatial and temporal 

modulation of the critical current density  across the LJJ.  A variation in the critical 

current density with respect to both position and time can influence the fluxon dynamics.  

     A soliton in a LJJ behaves as a relativistic particle when its speed approaches the 

Swihart velocity.  The sine-Gordon equation is invariant under a Lorentz transformation. 

Hence, one may perform the Lorentz transformation,                and                  and obtain                       where              and             .  Here,              and   is the speed of the unperturbed fluxon. 

Noted that the fluxon in both the s and d bands are similar (i.e.,         .  By making 

the Lorentz transformation and by considering the phase dynamics in a moving reference 

frame, one can rewrite the sine-Gordon equation of Eq. (2.53) as 

        
                    [        (                   )]                    (2.56) 

Although Eq. (2.56) is a good starting point for describing the LJJ property, one needs to 

add few more phenomenological terms to account for the effects of dissipation and bias 

current in realistic systems. 

      To estimate the phase dynamics for a realistic LJJ, one may include additional terms 

which describe bias current    and dissipation terms          ⁄  and               ⁄  

to account for the dissipative interaction between the fluxon and the environment.  The 

bias current in the LJJ acts as a driving force for the fluxon, and the dissipative effects 

tend to damp the fluxon motion in the LJJ.  Accounting for both effects of dissipation and 

bias current, one may obtain a sine-Gordon equation of      

    
                               .                                       (2.57) 
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Assuming that     , perturbation terms in            are given by 

                                                                                     (2.58)    

Hence, one may account for these realistic junction effects by writing the equation of the 

motion for a fluxon in a LJJ as 

                         
                    [        (            )]                 

                                                                    ,                                                (2.59) 

where     is the inter-band Josephson current, and    and    are small parameters 

associated with the dissipative terms.  Assuming that the perturbation effects are small, 

one may consider the solution to the perturbed sine-Gordon equation of Eq. (2.59) as the 

sum of unperturbed fluxon motion in the LJJ and the perturbation effects on the junction 

experienced by the fluxon. Thus one can write the unperturbed part of the sine-Gordon 

equation of Eq. (2.58) as  

               
                            ,                                             (2.60) 

assuming that each perturbation term in F is small. The single-fluxon solution to the sine-

Gordon equation of (2.60) is given by 

          [   (        ∫           √         )].                           (2.61) 

Here, the fluxon speed       accounts for the time dependence of fluxon motion induced 

by the critical current modulation.   The solution of the unperturbed sine-Gordon equation 

represents a solitary wave (i.e., kink) propagating with the speed       and is similar to 

the curve shown in Fig. 5.  Here, the solitary wave is representing the changes in the 

phase     either from 0 to    (soliton) or from    to 0 (anti-soliton) and is traveling with 
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the speed       .  The solitary wave can propagate for a long time without changing its 

shape. The   sign in Eq. (2.61) indicates the propagation direction of fluxon. The + sign 

indicates that the fluxon moves to the right and the – sign denotes that the fluxon moves 

to the left.  The fluxon moving to the left is generally called an anti-fluxon.   

To examine the trajectories of the fluxon in a LJJ, one may follow McLaughlin 

and Scott     .  According to McLaughlin and Scott, for a single fluxon under the 

perturbation, the equation of motion for the modulated waveform can be expressed as a 

pair of first order differential equations.  These two equations describe the velocity and 

position of the fluxon.  By carrying out numerical integration of the sine-Gordon equation 

of Eq. (2.53), one may write the second order differential equation of Eq. (2.53) as two 

first order differential equation describing velocity   and the position     of the fluxon     , respectively, as 

                                          
            ∫ 𝑑                     ,                          (2.62) 

                                      
           √    ∫ 𝑑                     ,                    (2.63) 

where 

                                                        ∫  (  )          √        .                          (2.64) 

Equations (2.62) and (2.63) describe the fluxon trajectories in the (     ) phase plane.  

The fluxon trajectories in the presence of perturbation terms F may be determined by 

computing the fluxon speed and the position as a function of time   .   The perturbation 

terms modulate the unperturbed wave form of Eq. (2.61) and yield the time dependence 

of fluxon speed.   Equations (2.62) and (2.63) describing the fluxon dynamics can be 

rewritten as  
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                                                     ∫ 𝑑                  ,     (2.65) 

and           

                            
                     (   ∫ 𝑑                ) ,                           (2.66) 

where 

                             (√       )        (√       )  

and 

                                               ∫ 𝑑                 . 
Velocity of the fluxon far away from the region of the critical current modulation is 

determined from 

                              
                                      .      (2.67) 

The power-balance velocity    of a single fluxon which is far away from the critical 

current modulation is determined by setting 𝑑  𝑑    .  The fluxon speed may be 

obtained by solving the cubic equation of  

                  [             ]    (          )    (           )                      (2.68) 

which may be written as 

                                                          ∑           ,                (2.69) 

where           ⁄ ,         ⁄            ⁄          ⁄              ⁄       and                .   Here, the solution is bounded by the condition that       , since the power-balance velocity is given in units of the Swihart velocity.   

       Solving Eq. (2.67) numerically, one may find the velocity   as a function of position.  

By substituting this result into the perturbed sine-Gordon equation, one may compute the 
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trajectories of the fluxon.   The fluxon trajectories indicate that the fluctuations of the 

relative phase lead to formation of an i-soliton in the LJJ which affects the fluxon 

dynamics.  One of the effects of i-soliton on the fluxon dynamics is the emission of EM 

wave by a decelerating fluxon. 

 

2.3 Effects of i-soliton on Phase Dynamics 

 

     In this section, the effects of large fluctuations in the relative phase of the s and d 

condensates on the fluxon dynamics are examined.  According to Tanaka [21], when the 

amplitude of phase fluctuation grows to the non-linear region and becomes stabilized, a 

2p-phase texture representing an i-soliton may be excited.  Excitation of an i-soliton can 

change the amplitude of the critical current density.   Equation (2.37) describes the effects 

of i-soliton excitation on the phase dynamics of the LJJ.  From Eq. (2.51) one can obtain 

that  

               
                                                                 (2.70) 

where      ⁄                          ̅      ̅  is the normalized critical current,                      𝑑 𝑑     ,                         𝑑 𝑑     ,  and     is the 

critical current density in the absence of the inter-band Josephson effect (i.e.,       ).  

This equation (2.70) indicates that an i-soliton, representing a moving   -phase texture,  

yields both spatial and temporal dependent modulation of the critical current.  For 

simplicity, only the spatial modulation of the critical current density is considered here. 
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Figure 8. Amplitude modulation of the Josephson current due to an i-soliton representing   -phase texture 

                 with its center at x = 0 for       ⁄        (solid curve) and       ⁄        (dashed curve). 

 

 

 

To examine the spatial variation of the critical current       ⁄ , the plot of      ⁄  as a 

function of dimensionless position x for         = 0.10 (solid curve) and       ⁄         (dashed curve) are shown in Fig. 8.  The curves illustrate the effects of a single i-

soliton excitation in the      and     -symmetry superconductor, respectively. These 

curves show that the shape of the critical current modulation depends on the symmetry of 

the order parameter.   However, for          , the symmetry of the order parameter 

does not affect the fluxon motion significantly. 
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 The critical current modulation induced by the inter-band Josephson effect 

influences the fluxon motion in two main ways.  First, the shape of the fluxon may 

become deformed.  Second, the speed of the fluxon becomes modified since the critical 

current modulation behaves as an effective potential.  However, only small fluxon 

potential modulation is taken into account here since the deformation on the shape of 

fluxon is negligible. In the region of critical current modulation, the fluxon speed may 

become significantly changed from its unperturbed value. These changes may cause the 

emission of the electromagnetic waves by a moving fluxon when it decelerates.  

 To examine the effects of critical current modulation on the emission of EM 

waves, the perturbation method is used.  The calculation is carried out in an inertial 

reference frame which is moving with the speed of the unperturbed fluxon.  This 

approach is similar to the rest frame of the fluxon [45, 46] considered by Fogal and 

coworkers. In this approach, one performs the Lorentz transformation  ̅   ̅    ̅√         and        ̅   ̅    ̅√    ,                                 (2.71) 

where   is the speed of the unperturbed fluxon. Using this transformation, one can write 

the sine-Gordon equation of Eq. (2.70) as 

      
       ̅          ̅     ̅                                           (2.72) 

 

where       ⁄                           ̅      ̅   ,               √    , 

and              √    .  When the inter-band Josephson effect is weak (i.e.,          ), the solution of Eq. (2.72) may be written as 

                                                                          .                                   (2.73) 
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Note that a new notation   ̅   ̅         is used in Eq. (2.73).  The         term is the 

unperturbed part and the                ⁄  term is the leading order correction term of the 

solution for the unperturbed sine-Gordon equation.  Substituting Eq. (2.73) in the sine-

Gordon equation of (2.72), one can express it as 

               
                              [               ]     

                                    
      (                   )     [               ]           .            (2.74)    

Note that when           one can approximate  

                                            [               ]                  

and 

                                    [               ]       [               ]     
 With this approximation, Eq. (2.74) is separated into the unperturbed and correction 

terms. The unperturbed part of the sine-Gordon equation is given by 

                                                    
                              .                                   (2.75) 

A solution to this unperturbed sine-Gordon equation is  

                                                                        .  
The spatial and temporal dependence of correction term of      due to the critical current 

modulation may be separated as 

                                                                         .                                         (2.76) 

The separation of variables for the perturbation contribution      in the rest frame of the 

fluxon (i.e.    ) leads to an eigenvalue equation for      as                          

                                       [                  ]            .                         (2.77) 
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The eigenvalue problem of Eq. (2.77) yields one bound state with        and a 

continuum of scattering states with            . The corresponding normalized 

eigenfunctions are  

                                                                                                              (2.78) 

for     , and  

                                                                √                                                (2.79) 

for      .  Here the subscripts   and   denote the bound state and continuum of the 

scattering state  , respectively.  The bound state       is associated with the Goldstone 

translation mode of the fluxon, while the continuum eigenfunctions        represent the 

radiation modes.  Eigen functions of Eqs. (2.78) and (2.79) indicate that the first-order 

correction           due to the critical current modulation may be separated into two 

parts as  

                                                                         .                                  (2.80) 

Here,          and        represent the bound and continuum eigenstate contribution, 

respectively.  The bound state contribution          may be written as  

                                                                          .                                        (2.81) 

 The amplitude         of the bound state is determined straightforwardly from the 

equation of  

                                      
              ∫ 𝑑                             ,                           (2.82) 

where             .  The solution to Eq. (2.81) may be obtained as  

                                                        (  ∫ 𝑑                         ) .                         (2.83) 
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Note that         may be used to evaluate the translation mode contribution              .  
This contribution has no effect on the motion of the fluxon center.  The continuum 

eigenstate contribution, representing the radiation modes, is given by 

                                                            ∫ 𝑑                .                            (2.84) 

The amplitude        is determined from  

                                              
                               ,         (2.85) 

where  

                                    ∫ 𝑑                                   .                      (2.86) 

The contribution to the radiation mode of      may be estimated by solving Eq. (2.85). 

For a single modulation of the critical current density a solution to Eq. (2.85) can be 

obtained more easily by using the relation, 

                                                  ∫                      ,                                (2.87) 

which is the Fourier representation of the critical current variation. Using this 

substitution, one can rewrite        by integrating the right-hand side of Eq. (2.86) over   and one can obtain  

                                    √        {              

                                          ∫ 𝑑                                         },                    (2.88) 

where          κ⁄k  .  The solution        may be written as  

                                             ∫                           ,                                           (2.89) 

where        ∫𝑑                   .  One can evaluate the integration over    
and  , and write the solution        as                                        
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                      √        [        ∫ 𝑑                                                    ] .           (2.90) 

However, as indicated in Eq. (2.84), one needs to integrate over the continuum variable   

to compute            .  This integral may be evaluated by using the contour integration 

method.  

 

 

Figure 9. The pole structure for the radiation contribution of Eq. (2.84) to         for a fixed k is shown 

schematically.  The solid circles represent the poles yielding the exponentially localized 

contribution.  The open circles are in the location of    as the fluxon velocity   changes from        to        the shift direction for the pole    is indicated by the arrows.  
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The radiation contribution             of Eq. (2.84) indicates that all the poles are simple, 

and the residue of each pole may be evaluated separately.  The position of the poles that 

are shown in Fig. 9 are given as follows:  

                                           
                                        √          

                                               , 
and  

                                                   ,  
where             The residues of the poles structure yield two types of contribution: 

(i) an exponentially localized contribution around the fluxon center and (ii) a linear 

traveling wave contribution. Hence, the radiation mode        may be decomposed into 

the exponentially localized            
 and traveling wave             contributions:                                .  Note that the exponentially localized contribution             

 does not 

produce a true radiative correction.  Only the traveling wave              gives rise to a true 

radiative contribution.  

 The poles that give rise to the traveling wave contribution to the radiation 

correction are examined below.  As indicated by Fourier components of the critical 

current modulation described by the              factor in Eq. (2.86), the condition 

for the traveling wave radiative contribution depends on  . For fixed          , the 

pole at    lies on the imaginary axis.  However, as the fluxon speed   increases, the pole    moves down the imaginary axis. At the critical value      , the pole    lies in the 

complex plane and it becomes real for      .  The changes in the radiation contribution 

in Eq. (2.86) from this pole may be easily identified by the contour integration since it is 
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not exponentially localized around the fluxon center but oscillates with  .  The oscillatory 

contribution only arises when      .  This leads to a radiative contribution of  

                         ∫                            [                                            ],         (2.91) 

where                ⁄    √         , and           ⁄  .  Equation (2.91) 

indicates that, for a fixed  , this radiation correction is the superposition of two linear 

traveling waves with different amplitudes. The two waves travel in opposite directions. 

The threshold velocity     for the fluxon is given by  

                                                                      (       )   .                                        (2.92) 

The dependence of    on the  -solition velocity   indicates that, for the case of static 

spatial variation of the phase (i.e.,      , EM radiation may be emitted by the fluxon 

whenever it passes through a region where the critical current is affected by the inter-

band Josephson effect.  Hence, when an array of static  -solitions is excited to yield a 

spatially periodic modulation of the critical current density, the threshold velocity     

becomes finite. This radiative threshold is similar to that found in earlier studies [26, 28, 

29].  

      The effects of  -solitions on the LJJ was discussed in Chapter II.  This revels that the 

two-gap superconductor has an interesting property.   Another interesting property of a 

LJJ with two-gap superconductors is the appearance of the broken time reversal 

symmetry state as the ground state of the LJJ.  A possibility of phase frustration and the 

presence of broken time-reversal symmetry ground state of the LJJ is examined in 

Chapter III. 
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CHAPTER III 

 

BROKEN TIME REVERSAL-SYMMETRY STATE IN A LJJ 

 

 

 

     In this chapter, the relationship between phase frustration and the broken time-reversal 

symmetry state in a LJJ with two-gap superconductors is discussed.  To understand the 

time-reversal symmetry invariant (TRSI) and broken time-reversal symmetry state 

(BTRS) in the LJJ based on two-gap superconductors, one can first review the TRSI and 

BTRS state in the tunnel junction between the two-gap and one-gap superconductors [9-

15].  Finally, the ground state of the LJJ with two-gap superconductors is examined by 

using the free energy obtained from the BCS model.  By minimizing this free energy, the 

conditions for the phase frustration for two different S-wave symmetries are obtained.  

Based on the ground state conditions for the current densities, the TSRI state and BTSR 

state for Josephson junction with two-gap superconductors are discussed.  

 

3.1 Review of Possibility of Phase Frustration  

 

 

      In this section, the possibility of phase frustration in a two-gap superconductor is 

reviewed by computing the free energy of the system.  Earlier studies [9, 10, 11, 12, 13, 

14, 15] indicate that phase frustration and the appearance of broken time reversal 

symmetry state in a tunnel junction between two-gap and one-gap superconductors are 

closed related.  
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     The ground state of the junction may be examined by computing the free energy.  The 

free energy for the two-gap superconductor in the absence of an external magnetic field 

[15] is given by  

                         ̃                           ̃                      

                                                                            ,                                       (3.1) 

where the pseudo-order parameters     and     are non-zero and           Note that two 

pseudo-order parameters are coupled by the inter-band Josephson coupling J, 

representing interactions between electrons in the s- and d-bands.  From Eq. (3.1), 

for    , it is clear that the free energy becomes a minimum for      .   However, for    , the free energy becomes a minimum for        .  Thus, there is no phase 

frustration in two-gap superconductors for either      or      
     The situation is different in the tunnel junction involving a two-gap superconductor 

and a one-gap superconductor.  Ng and Nagaosa [15] suggested that the free energy 

density for a Josephson junction [15] is given by 

                         [   ̃              ̃         ̃       ]      
                                ̃            ̃            
                               ̃       ̃ ,                                            (3.2) 

where  ̃             ,   ̃           ,  ̃           ,  ̃         ,  ̃ is the part of 

free energy that is independent of phase angle, and the index   𝑠 𝑑 denotes electronic 

bands in the two-gap superconductor.  Here,    represents the coupling between the one-

gap superconductor and the electronic bands of the two-gap superconductor. To study a 

deviation from the phase-locked state, one needs to minimize the free energy with respect 
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to the phase variables.  By minimizing the free energy with respect to the phase of the 

one-gap superconductor, one can obtain 

         ̃         ( ̃        ̃      ).                 (3.3) 

Here, the phase variable   is set to zero (i.e.,    ) as a convenient reference point to 

measure the phases    .  Note that Eq. (3.3) becomes 

                                                               ̃    = 0 

away from the junction interface (i.e., x 0).  The solution of this equation may be written 

as 

                                                                    . 

Similarly, for the phases of the two pseudo-order parameters, one may obtain the 

following equations of motion: 

                                                            ̃ ̃             ,                                  (3.4) 

  and 

                                                            ̃ ̃             .                  (3.5) 

By subtracting Eq. (3.5) from Eq. (3.4),  one can easily obtain the equation of motion for 

the relative phase         as  

                                                               
              ,                                                 (3.6) 

where     | ̃|   ̃   ̃   ̃  ̃ ⁄ .  A single soliton solution to the steady state sine-

Gordon equation of (3.6) is given by 

                                                                      (     ),                                     (3.7) 

where a is a constant which is determined by the boundary conditions.  Therefore, one 

may decomposed the solution of Eq. (3.7) and write     and    as 
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                                                  ̃  ̃   ̃      (     ),             (3.8) 

and 

                                                  ̃  ̃   ̃      (     ),      (3.9) 

respectively.  The current density in a weak electromagnetic field is given by 

                                                              ⃗           ,                                                   (3.10) 

where     is a magnetic flux quantum,          ,    is the number density of the 

particle.  The current density may also be obtained by using the relation 

                                                                 ⃗        ,                                                     (3.11) 

The current density computed from the above two relations satisfies the boundary 

conditions at the junction interface. Similarly, one may compute 𝑑  𝑑   for     at the 

junction  interface (i.e., x=0)  and obtain the current densities for the s and d bands.  By 

substituting Eq. (3.8) and Eq. (3.9) into the expression for 𝑑  𝑑  , one can obtain  

                                 
        ̃         ̃    (     ̃  ̃   ̃       ) ,                     (3.12) 

                                 
        ̃         ̃    (       ̃  ̃   ̃       ).             (3.13)  

By matching the boundary condition to reflect the requirement that the current density is 

conserved at the junction interface, one can get 

                       ̃        ̃                   ̃                  ,        (3.14) 

where      ̃   ̃   ̃   ⁄   and       ̃   ̃   ̃  ⁄ . 

     In the ground state, the Josephson junction does not introduce any additional bulk 

energy to the system.  This condition implies that there is no net current flow in the 
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ground state of the system. Therefore, one can set     .  Now Eq. (3.14) indicates that 

one can obtain 

                                               ̃        ̃         

when a=0.   This implies that      or  .  On the other hand, when    , but a is 

small, one may write Eq. (3.12) as 

                                    ̃                                
                                                ̃                              .                     (3.15) 

Equation (3.15) indicates that    must be different than either 0 or .  If the phase 

difference between the two condensates becomes something other than 0 or π, then 

system is said to have phase frustration.  The ground state of the junction with phase 

frustration has non-zero current flow, which breaks the time-reversal symmetry.  For LJJ 

with two-gap and one-gap superconductor, the net current in the Josephson junction is 

zero (i.e.,        ) in the ground state.  The time-reversal symmetry invariant state is 

represented by the trivial solutions of Eqs. (3.14) and (3.15).   These solutions are      

or  and    , indicating that        . Also, there are non-trivial solutions          , representing the broken time-reversal states.  These solutions are degenerate.  

The      solutions correspond to two degenerate time-reversal pairs [15].  In the 

BTRS state, the current loop circulates through the junction in momentum-space, and not 

in real space.  

 

3.2 Broken Time-Reversal Symmetry State in the Two-gap LJJ  

 

     The broken time-reversal symmetry (BTRS) states in the Josephson junction with two-

gap superconductors are examined by using the free energy derived from the BCS 
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Hamiltonian.  By minimizing the free energy with respect to phase variables, one can 

determine the conditions for phase frustration, yielding the broken time-reversal 

symmetry state.  As in the section 2.1 of Chapter II, the BCS Hamiltonian extended for 

two-gap superconductors is rewritten as  ̂   ̂      ̂  .  The Hamiltonians  ̂     and  ̂  account for the contribution due to two-gap superconductivity and electron tunneling 

between the two adjacent superconductor (S) layers.  The two-gap Hamiltonian   ̂     
may be written in terms of Grassmann variables as 

                                ̂     ∫𝑑 (∑          ̅          ̂     ) ,                                     (3.16) 

where    is the energy of electrons in the i-band (i = s, d) about the Fermi energy. The 

pairing interaction between electrons in the l-th S layer is given by           ̂            ̅     ̅             -      ̅     ̅                 (  ̅     ̅                  )         (3.17) 

where     is the pairing interaction strength between electrons in the i and j bands and   ̅    

and        are the Grassmann variables.  The Hamiltonian  ̂  due to tunneling of an 

electron between the two adjacent S layers is given in terms of the tunneling matrix 

element     as 

                                                ̂  ∑ (     ̅             )                                             (3.18) 

To obtain the free energy, one may start with the BCS Hamiltonian for a two-gap 

superconductor and carry out a number of steps as discussed in appendix A.  First, one 

may use the Nambu notation and Hubbard-Stratonovich transformation to simplify the 

partition function.  Also, by using the Grassmann integrals to integrate the fermion fields, 

one can obtain the effective action for the system.   

     The free energy F of the system may be obtained from the effective action as 
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                                                                ,                                                    (3.19)  

where    is the Hubbard-Stratonovich field.  Here the components of the auxiliary field  

                                         ̅    ̅   ̅      and       (      ), 

where             
.  Using the effective action derived in appendix A, one can write the 

free energy  

                     ∑ {∫ 𝑑    [|   |     |   |                          ] 
                                            ∫ 𝑑   ∑ [                  (             ) ] }        
                                 {∫       (        )   ∫       ∫ 𝑑       }                         (3.20) 

where            and     is the second order tunneling contribution to free energy 

defined in appendix A.  Also the phase difference between two S layers in the presence of 

an external magnetic field is   

                                                  ̃                  ,                                       (3.21)  

and  

                                                  ⃗         (          ⃗ ),                                (3.22) 

is superfluid velocity. For simplicity, one can make the local approximation for the 

integral kernel  ̃         in     by writing 

                                        ̃           ̃               .  
Within this local approximation, noting that the Ohmic quasi-particle contributions   ̃                          in     do not depend on the phases, one may write       
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                      ∑ {∫ 𝑑    [|   |     |   |                          ]  
                                        ∫ 𝑑   ∑ [                  (             ) ] }        
                                 {    ∫ 𝑑   (        )      ∫ 𝑑     }     .                             (3.23)  

Note that, under local approximation,     becomes 

                         ̃          ̃          ̃          ̃  .             (3.24) 

In the steady state, the free energy of the system in the absence of magnetic field is         

        ∑ {|   |     |   |                             

                                                               (    ) }          ,                  (3.25) 

where 

                                        (       )        (       ) ,    (3.26)             and             .  In the remainder of Chapter III, the phase 

configuration that minimizes the free energy is discussed.  In the steady state, the phase 

part of the free energy          of the LJJ based on two-gap superconductors is  

                           ̅                  ̅                                                                          
                                          ̅ [   (       )     (       )]                                 (3.27)         

where  ̅                   ⁄ ,           , and           .  Note that one may 

set that   ̅     𝑑 ⁄     𝑑 ⁄   and    ̅     𝑑 ⁄     𝑑 ⁄  for simplicity.  Here    is 

the part of the free energy density which is independent of the   ’s.  Note that      𝑑        ⁄ ,     𝑑        ⁄ , and     𝑑                ⁄ , where   is given in 

Eq. (2.18).  To examine the phase configurations which minimize the free energy density, 
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the first derivative of     with respect to phase variables is set to zero.  The extrema of 

the free energy function  (               )                   may be found by using 

the two sets of conditions.  The first set of conditions is  

(i)               

(ii)                
(iii)  ̅                           (    ̅              ̅          )      .                          

The second set of conditions is  

(i)                   
(ii)       (      )        (      )   ,  

(iii)  ̅                                    (   ̅              ̅          )      
(See appendix A for a detailed discussion.)  Using the conditions for minimum free 

energy, Eq. (3.59) is solved for z = 0 numerically.  To study the phase frustration in the 

ground state of the LJJ, the free energy        is plotted in the Fig. 10 as a function of 

inter-band relative phase for (a)      ̅          ,       ̅         ,         

(b)                ,          and  (c)           ,         ,        .  Also, 

in Fig. 11, the free energy contours are plotted as a function of relative phase for the same 

set of parameters as used in Fig. 10.  These free energy plots indicate that the value of 

relative phases (   ,    ) for the free energy minimum depends on    .  From the free 

energy contour plot of Fig. 11, one can easily see that the ground state value for (   ,    ) 

is (0, 0), when the phase difference     across the two adjacent layers is zero (i.e.,      ).  However, when      , the free energy minimum occurs for    =-1.0 and 
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   =1.0 at a non-zero value of (   ,    ), indicating the appearance of phase frustration in 

the ground state.  This dependence on     may be seen easily in Fig. 10c.  Similarly for    = -1.0,     =1.0, and    = 0.0, the free energy surface and contours in the (  ,   ) 

space is shown in Figs. 10b and 11b, respectively. 

 

Figure 10. The free energy        is plotted as a function of inter-band relative phase difference    and    

for (a)      ̅𝑠𝑑  𝑠𝑠     ,      ̅𝑠𝑑  𝑠𝑠     ,       (b)        ,        ,        and  (c)           ,         ,        . These free energy surfaces illustrate the 

dependence of the ground state phase configuration on the parameters     ,      , and    . 
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Figure 11: The free energy        is plotted as a function of inter-band relative phase difference    and    

for (a)      ̅𝑠𝑑  𝑠𝑠     ,      ̅𝑠𝑑  𝑠𝑠     ,       (b)        ,       ,        and  (c)           ,         ,        . These free energy contours illustrate 

the location of the minimum free energy and to estimate the coordinates (     ) for given 

parameters    ,     , and     . 
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     One may estimate the phase frustration in the ground state from the phase equation of 

motion derived from the free energy of Eq. (3.27).  One uses the Euler-Lagrange 

equations for different phase variables to obtain the equations of motion.  For an 

example, for the     variable, the equation of motion is given by 

                     
                                  (       )  

                                           [        (       )          (       )]     .                (3.28) 

Similar equations of motion can be obtained for the phase variables    ,    , and    .  

When the Euler-Lagrange equations for     and     are added, one can obtain  

                                   
                  (           )    (       )                   (3.29) 

for    .   Noting that           , one can write Eq. (3.30) as 

                                                                     ,                                             (3.30) 

where 

                    (           ). 

A single-soliton solution to the sine-Gordon equation of Eq. (3.30) for the relative phase    is given by 

                                                             (       ) .                                        (3.31) 

One can decompose Eq. (3.31) and obtain the expression for     and     as 

                                               (       ),                   (3.32) 

and 

                                             (       ) ,                         (3.33) 
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respectively.  Similarly, one may add the Euler-Lagrange equation for     and     to 

obtain the sine-Gordon equation for            (i.e., for    ).   By following the 

decomposition approach for    , one can write the phase variables    and     as 

                                             (       ),                     (3.34) 

and 

                                           (       ),                            (3.35) 

respectively.  The current density  ̃             ⁄  for l=1, 2 at     leads to  

        ̃      [                                   ] ,                            (3.36)  

and 

                               ̃      [                                    ] ,                        (3.37) 

Similar relation for  ̃   and  ̃   can be obtained easily. Also, noting that the current density 

is given by 

 ⃗             𝑑 𝑑   
one may write for   

                               ̃                             
                                    =                                       
                                                                                 ,              (3.38) 

where             denotes the relative phase constant which does not depend on 

position,                           ⁄  and                          ⁄  .  For the 

simple case of        and     , one can obtain  
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                                       .                                (3.39) 

This means that when       and              , the ground state is time-reversal 

symmetry invariant since   ̃     and  ̃    .  On the other hand, when       and     , but both      and     are small, one may expand 

                                                                           . 

and write Eq. (3.40) as 

               
                  

                                                                             ,       (3.40) 

indicating the relations between the constants    ,    ,   , and   . 

  

 

 

 

Figure 12. Boundary conditions for current density in the ground state of LJJ are schematically illustrated.  

A LJJ with two layers of two-gap superconductors which are separated by an insulator in the z-

direction is shown.  The l=2 and l=1 superconductor layers are above (   ) and below (   ) the junction interface.  

 

          At the junction interface (i.e., z =0), the current density is conserved (Fig. 12). This 

boundary condition for the current densities may be summarized as  
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 ̃    ̃     ̃    ̃   .                                  (3.41) 

One may see how this boundary condition may lead to phase frustration by first 

evaluating the current densities at     as   

                          ̃              [                          (       )],                   (3.42) 

                          ̃              [                                   ] ,               (3.43) 

                          ̃               [                                   ] ,               (3.44) 

and                    

                          ̃               [                          (       )].             (3.45)  

Now, one can impose the boundary condition of Eq. (3.44) at    .  Applying the 

boundary condition, one can show that   ̃     when      ,          and               .  This means that  ̃    ̃    ̃    ̃   0, indicating that there is no net 

current flowing through the system in the ground state.  This solution obeys the time-

reversal symmetry.   Another solution that satisfies the boundary condition at z = 0 may 

also be found.   The solution  ̃    ̃     (and  ̃    ̃      indicates that the net current 

density is zero when  ̃     ̃   (and   ̃     ̃   .  This solution breaks time-reversal 

symmetry. 

      The appearance of the BTRS state in the ground state is indicated by the non-zero 

value of the relative phase constant            .  This constant may be computed by 

evaluating the phases at the junction interface (i.e., z = 0).  At  z = 0, the phases can be 

obtained using Eqs. (3.37) and (3.38) as 

                                                                               ,                               (3.46) 
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and 

                                                                             .                                      (3.47) 

Subtracting Eq. (3.46) from Eq. (3.47), one can obtain 

                                                            .                               (3.48) 

Now, the relative phase constant             indicating that the ground state breaks 

the time-reversal symmetry is obtained by imposing the boundary conditions   ̃     ̃   

and    ̃     ̃  .    By using Eqs. (3.46) and (3.47), one can obtain  
              {                                                                                                                                               },     (3.49) 

where      is the relative phase of the two condensates of l-th S layer in the ground state 

where the system has minimum free energy.  From Eq. (3.44) it is clear that           

when the relative phases for both the S layers are zero.  Similarly, when two relative 

phases are equal, but have opposite signs (i.e.        and        ), one can obtain 

                    [                                                                           ].                            (3.50) 

To study the variation of phase constant              as a function of    , the relative 

phases at the minimum free energy was obtained by plotting free energy as a function of 

relative phase as shown in Fig. 13.  For a given value of      the phase configuration (  ,   ) which corresponds to the ground state (       ) is determined.   This value is 

substituted into Eq. (3.50) to calculate      numerically.  In Fig. 13, a plot 

of     versus      is shown to illustrate the dependence on   .   The three lines 

corresponds to         (solid line),         (dashed line), and         (dot-

dashed line).  The curves in Fig. 13 show that the relative phase constant    in the 
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ground state varies linearly with     .  Also, one can see from Fig. 14 that the rate of 

variation     of for         is higher than that for         and          This 

dependence on    indicates that greater charge imbalance between the charge densities of 

the s and d-band present in the system leads to stronger frustration in the ground state 

phase configurations.   

 

 
 

 
Figure 13. The phase constant     for the ground state is plotted as a function of     for three different 

values of     0.49 (solid line), 0.47 (dashed line), and 0.45 (dot-dashed line).  These curves 

illustrate the effect of relative phase on the phase constant.  
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Figure 14: The current density    in the ground state is plotted as a function of    .  The curve illustrates 

the effect of relative phase on the current density at the junction interface (   ). 

                   

 

 

     In Fig. 14 the current density J =       at the junction interface (i.e., z = 0) is plotted as 

a function of the phase difference     .   The curve indicates clearly that current density 

varies as the sine function with the phase difference. The results of phase frustration in 

the ground state of the Josephson junction with two-gap superconductors and its 

consequences are discussed in Chapter V.    
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CHAPTER IV 

 

FLUXON DYNAMICS IN TWO COUPLED LJJS 

 

  

       In this chapter, the equation of motion for a fluxon in the two-coupled LJJs with two-

gap superconductors is derived from the microscopic Hamiltonian.  This equation of 

motion can serve as a starting point for investigating the phase dynamics of two coupled 

LJJs in future work.  As a way to derive the equation of motion, the effective action for a 

stack of LJJs is obtained by starting with the BCS model.   Equations of motion for 

different phase variables in the LJJ are obtained by using Euler-Lagrange equations.  

These Euler-Lagrange equations are expressed as a set of coupled sine-Gordon equations.  

 

4.1 Effective Action for Two-Coupled LJJs  

 

      A system of two vertically stacked LJJs that are based on two-gap superconductors 

will interact with each other via the charging effect and magnetic induction effect.  These 

two coupled LJJs may have interesting phase dynamics due to the magnetic induction 

effect between junctions.   In this junction, each superconducting layer is represented by 

two pseudo-order parameters                 and                 .  For the two coupled LJJs, 

there are three superconductor layers as shown schematically in Fig. 15.   Here, Lx and Ly 

denote the dimensions in x- and y- direction, respectively.  The external magnetic field B 

is applied in the y-direction.  Here 𝑑  and 𝑑  denote the thickness of the superconductor 
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(S) and insulator (I) layer, respectively.  In this LJJ system, there are three types of 

interactions: i) the conventional Josephson interaction between two adjacent S layers, ii) 

the inter-band Josephson effects between two condensates in the same S layer, and iii) the 

interaction between the Josephson vortices of the two LJJs via the magnetic induction 

effect.                                                                                                                                                                         

 

Figure 15.  A Schematic diagram illustrating two coupled LJJ with two-gap superconductors is shown. 

 

     One may include these three types of interactions in the LJJ and examine the phase 

dynamics by using the functional integral approach.  By using the BCS model for two-

gap superconductors, one may write the partition function Z  for the system of coupled 

LJJs.  In this functional integral approach, the fermion fields are represented by 
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Grassmann variables due to its anti-commutation property.   The partition function Z is 

given by         

            ∏ ∫    ̅           ⃗                      ̅          ⃗                                    (4.1) 

where         ∫   𝑑         and    is the z-component of the vector potential in the 

insulator between the (l+1)-th and l-th S layers.  Here,     and    are the vector potential 

and scalar potential in the l-th S layer, respectively.  The Euclidean action S includes 

three contributions:                      .  The action        accounts for the 

electromagnetic field contribution 

                                      ∑ ∫  ∫𝑑 ⃗     [ (       )  (       ) ],                           (4.2) 

where the electric field         and magnetic field        
 in the I layer are given by 

                                                            ,                                           (4.3) 

                                                     .                                       (4.4) 

The action      which accounts for the gap energy contribution is given by 

                      ∑ ∫  ∫𝑑 ⃗ [                                (    ̅    ̅     )] .                      (4.5) 

This action may be rewritten in terms of the phase as 

                              ∑ ∫  ∫𝑑 ⃗ [                                         (       )]          (4.6) 

where the first two terms of Eq. (4.6) are due to the energy gap contributions in the s- and 

d-band of l-th S layer.  Here,     𝑑        ⁄ ,     𝑑        ⁄ ,     𝑑                ⁄ , and the pairing matrix   is defined in Eq. (2.18).  Note that the     ̅   term accounts for the contribution from the process of a Cooper pair creation in the 
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d-band and a Cooper pair destruction in the s-band of l-th S layer. Similarly, the   ̅      

term describes the process of a Cooper pair creation in the s-band and Cooper pair 

destruction in the d-band of l-th S layer.  Finally, the action          accounts for the 

contributions from the matter field.  The action          for the two-gap superconductors 

based LJJ is given by 

               ∑ ∫𝑑 ∫𝑑 ⃗  {  ̅                   ̅   [    (     ⃗ )    ]     }     

                                               + ∑ ∫𝑑 ∫𝑑 ⃗ [ ̅                 ̅     ̅    ]    

                                     ∑ ∫𝑑 ∫𝑑 ⃗       (                    ̅              ) ,                  (4.7) 

where     annihilates and   ̅   creates a Cooper pair in the i-band of l-th S layer.  The first 

two terms of Eq. (4.7) represent the non-interacting Hamiltonian contribution.  The pair 

interaction term,   ̅           , denotes the destruction of two electrons while creating a 

Cooper pair in the same i-electronic band of l-th S layer.  Similarly, the      ̅     ̅     term 

denotes the destruction of a Cooper pair while creating two electrons in the i-th electronic 

band of l-th S layer.   The last two terms of Eq. (4.7) represent the contribution from 

tunneling between the two adjacent S layers.  For example, the   ̅          term represents 

destruction of an electron in the i-band of l-th S layer and creation of an electron in the j-

th band of (l+1)-th S layer.   The hermitian conjugate of the   ̅          term represents 

destruction of an electron in the i-band of (l+1)-th S layer and creation of an electron in 

the j-band of l-th S layer of the system.  Here, the tunneling matrix         
 describes the 

amplitude of electron tunneling between the two adjacent S layers. 
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      The matter field contribution          to the action S may be simplified by 

introducing the Nambu representation.  In this representation, the fermion fields are 

written as 

                                     ̅  (  ̅            ) ,    and        (        ̅    ) . 

The pair fields  ̅    and    which represent creation and destruction of a Cooper pairs, 

respectively, are written as operators.  These operators may be written in terms of the 

Pauli matrices as 

                                          ̅     ̅      ,                                                           (4.8) 

                                               ̅                                                                   (4.9) 

where               and the three Pauli matrices are 

                                                          (    ), 

                                                          (     ),  

                                                          (     ). 

By substituting    ̅  ,        and Pauli matrices into Eqs. (4.8) and (4.9), one can show that 

                                          ̅     ̅      ̅    ,                                                         (4.10) 

                                                        .                                                         (4.11) 

Similarly, the Nambu representation may be expanded to include both s- and d-band 

electrons as 

                                   ̅  (  ̅             ̅          )   and     ( 
       ̅         ̅   ) 

 
. 
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By following Machida et al. [34], one can write the matter field contribution to the action 

in a matrix form as  

                                             ∑ ∫𝑑 ∫𝑑 ⃗ { ̅    }.                                           (4.12) 

The action          may be written more explicitly as 

                      ∑ ∫𝑑 ∫𝑑 ⃗ 
{  
  
   ̅












































0000

TGT0

0TGT

0000

*

1l,l

1

l

*

l,1l

l,1l

1

1l1l,2l  
}  
  
  

,         (4.13) 

where the electron  Green function    is given by  

               ( 
         ̅                                  ̅      ) 

 
.                               (4.14) 

Here, the matrix elements of the Green function     are 

                                                      (      ⃗ )     ,                          (4.15) 

                             (      ⃗ )     ,                           (4.16) 

                             (      ⃗ )     ,                          (4.17)  
                             (      ⃗ )     ,                          (4.18) 

and the     ’s are the chemical potential of the i-band of the l-th S layer.  Similarly, the 

tunneling matrix  ̂       for the electrons is given by 
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
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
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l,1l

l,1l

eT000

0eT00

00e*T0

000eT

T


.   (4.19) 

The fermion contribution in the         must be integrated out to obtain the effective 

action      which includes the phase contribution.  

     To obtain the effective action     , one writes the partition function Z for the stack of 

two LJJs as 

                         ∏ ∫   ̅     ⃗                     ̅     ⃗⃗⃗⃗                     .               (4.20) 

Integrating out the fermion degrees (i.e.,  ̅  and   ) in the functional integral by using 

Grassmann integration, one may simplify the partition function Z as 

                           ∏ ∫  ⃗                            (           )   .                 (4.21) 

Equation (4.21) indicates that the effective action      of the LJJ system may now be 

written as  

                                                                    .                                    (4.22) 

To obtain an explicit expression for the effective action, one needs to evaluate the last 

term of Eq. (4.22).   The trace of the logarithm of inverse Green’s function 

(i.e.,        ) may be evaluated by making a unitary transformation (i.e.,    ̂   ̂   ).  The unitary transformation matrix  ̂  is written as 
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
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,                           (4.23) 

and the inverse of the transformation matrix is given by 
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U
                                (4.24) 

As the Green function   can be decomposed into the non-interacting part    and the 

interaction contribution   , one may write                  By taking the trace of 

logarithm of    , one may write the last term of Eq. (4.24) as 

                                                 [ ̂             ̂   ]              
                                                          [ ̂               ] ̂                             (4.25) 

One can simplify Eq. (4.24) by expanding the logarithm of     as 

 

                                 ( ̂      ̂   )      ̂          ̂    

 

                                        [( ̂    ̂    ̂      ̂   )( ̂    ̂    ̂      ̂   )] .        (4.26) 

 

Here one may write       and      more explicitly as 
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and  
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Multiplying these matrices, one can obtain the expression for the unitary transformation  

of    as  
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Here, the matrix elements  ̂      ̂    are obtained by carrying out simple matrix 

multiplications as 

                                   ̂      ̂    ( 
         ̅                                  ̅      ) 

   ̂      ̂   , 

 the first term does not affect the phase dynamics.   Here,       is given in Eq. (4.15)-Eq. 

(4.18).  The second term of   ̂      ̂    is given by 
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              ̂      ̂    ( 
 

4G000

03G00

002G0

000G1

) 
    and     ( ̂     ̂ ̂  ̂  ) ,               (4.30) 

where the diagonal elements of the matrix   ̂      ̂    are  

                                     ⃗⃗       ⃗     ⃗,  

                                    ⃗⃗       ⃗     ⃗,  

                                     ⃗⃗       ⃗     ⃗,  

                                    ⃗⃗       ⃗     ⃗, 

 and            ⁄        ⁄        Here, the superfluid velocity  ⃗    at the i-band is 

                                   ⃗        (         ⃗   ).                                               (4.31) 

The non-interacting Green function     is given by                           

                                          (                                    ),                                          (4.32) 

 

where D is the determinant of the matrix      which may be written as  

                                            ̅   (             ̅  ), 

                                                               ̅  , 

                                            ̅                  ̅    
                                           ̅      ̅    ̅      ̅    
                                                               ̅  , 

                                                           ̅      .  



78 

 

                                                           ̅     ,  

                                                    ̅       ̅   ̅  ,  

and 

                                                           ̅      .  

Combining these results, one can obtain the explicit expression for the      ( ̂      ̂   ) 

term as 

               ( ̂      ̂   )       𝑑  ⃗          𝑑  ⃗     

                                                 (              )            (              )  .                (4.33) 

Note that the calculation of both matrices,   ̂   ̂    and   ̂     ̂   , involve 

multiplications of      matrices since the  ̂ is a     unitary matrix.  From the 

calculation, one can show that     ̂    ̂    ̂      ̂     .  The last term of Eq. (4.25) 

may be computed as follows.   First, one needs to calculate the matrix  ̂    ̂    ̂      ̂    for time   and   .  Second, one needs to multiply the two matrices 

evaluated at different times.  Finally, one needs to take the trace of the product of the two 

matrices.   This procedure allows one to obtain the result 

       [( ̂    ̂    ̂      ̂   )       ( ̂    ̂    ̂      ̂   )(    )]   

    ̃           [ ̃              ̃       (    ) ]   ̃           [ ̃              ̃       (    ) ] 
   ̃           [ ̃              ̃       (    ) ]   ̃           [ ̃              ̃       (    ) ] 
  +  ̃           [ ̃              ̃       (    ) ]   ̃           [ ̃              ̃       (    ) ]  
    ̃           [ ̃              ̃       (    ) ]   ̃           [ ̃              ̃       (    ) ],   (4.34)  
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where the derivation of the coefficients  ̃         and  ̃         is discussed in 

appendix B.  Hence the effective action      is given by  

                                 ( ̂      ̂   )       ̂          ̂    

 

                                        [( ̂    ̂    ̂      ̂   )( ̂    ̂    ̂      ̂   )] .         (4.35) 

 

Substituting Eqs. (4.33) and (4.34) into Eq. (4.35), one may obtain the effective action      as 

             ∑ ∫𝑑 ∫𝑑 ⃗  {|   |     |   |                          (       )  
                                     ∑ ∫𝑑  [     𝑑  ⃗            (             ) ]                                             
                                      ∑ ∫𝑑      [  ̃                 ̃               ]},    (4.36)  

where                       ̃              ̃               ⁄    Note that Eq. (4.36) 

includes both the Josephson current ( ̃  ) and the quasi-particle current ( ̃  ) contribution 

in the junction.  The effective action      obtained for the system of coupled LJJs with 

two-gap superconductors can now be used to derive the equation of motion for the 

fluxon.   

 

4.2   Equation of Motion for Two-Coupled LJJs 

 

    In this section, the equation of motion for the phases in the LJJ will be derived from 

the effective action      discussed in the previous section.  It is straightforward to obtain 

the equation of motion from the effective action      by applying the calculus of 

variation.  The variations of effective action      with respect to different phase variables 
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are equivalent to the Euler-Lagrange equations.  Noting that the effective action      may 

be used to obtain the phase contribution        and thereby the phase part of the 

Lagrange density L via the relation 

                                                       ∫𝑑  ∫ 𝑑 ⃗         , 
one can obtain the phase contribution to the Lagrange density as  

                 ∑ {                          ∑ [     𝑑  ⃗            (             ) ]  

                             ∑ ∫𝑑      [  ̃                 ̃               ]} ,            (4.37)  

where              One can minimize the action      with respect to variation of the 

phase variable      (i.e.,          ⁄   ) to obtain the familiar equation of motion 

             (       ̇                  )         ,                                         (4.38)  

where  ̇   and      denote the time and spatial derivative of    , respectively.  By following 

this approach, one can minimize the action with respect to the phase variable     (i.e.,          ⁄   ) and obtain the equation of motion for    .  The Euler-Lagrange equation 

for the phase variable      may be written as 

                                         (       ̇                  )          .                                   (4.39) 

 

The Euler-Lagrange equation of the phase variable     may be obtained as 

 

                            (              )            (             )            
 

                                                                                                     .               (4.40) 

 

where        (            )       and 

                                                    ∫𝑑                     . 
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Similarly, the equation of motion for the phase variable     can be obtained by 

taking          ⁄   .  This leads to the Euler-Lagrange equation for    as 

                                      (       ̇                  )          .                                     (4.41) 

The equation of motion for      may be expressed as 

                    
          (              )            (             )      sin    

                                                                                                      ,             (4.42) 

where      𝑑                 ⁄ .  The equation of motion for the phase variables       

and       in the ( +1)-th S layer can be obtained by following the same procedure as 

above and by setting            ⁄    and            ⁄   . By computing both             ⁄    and            ⁄   , one can obtain the following equation of motion 

for the phase variables      and       as 

          
          (                  )            (                 )               

 

                                                                                                        ,    (4.43)       

                  

and 

 

          
          (                  )            (                 )                    

 

                                                                                                         ,    (4.44) 

 

respectively.  These four equations of motion (i.e., Eqs (4.40), (4.42), (4.43), and (4.44)) 

may be combined to obtain the equation for phase dynamics of the junction.  To obtain 

the coupled equation of motion for the stacked LJJs, one computes 

                     
         (                      )  (                      )            .                             (4.45) 
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By substituting Eqs. (4.40) - (4.44) into Eq. (4.45), one may obtain the following 

equation of motion 

       ∑ (               ̃                         ̃                   ̃                   (         )  )         

                                                                             
 

                                                                                                         (4.46) 

 

 

where                                       , 
 

         (                                   )  (                                   ).                            (4.47) 

                                             (                                   ),                               (4.48) 

         (                                             )  (                                             ),       (4.49)  

                                                                                                 
,                    (4.50) 

and 

                                                        (                                             ).          (4.51) 

One may now simplify the equation of motion of Eq. (4.45) by recognizing that  

                             ̃                             ̃                                      (4.52) 

Note that    denotes the relative phase between two condensates in the same S layer.  By 

making use of the fact that the phase difference (i.e.,  ̃       ) between the d-band of two 

adjacent S-layers can be expressed in terms of that between two s-bands (i.e.,  ̃       ) via Eq. 

(4.52), one can write the sine-Gordon equation as  

                                [ ̃           ̃        (        )  ̃       ]           ̃                
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                                   [                  (        )          ] 
 

                                                                                      

  

                           +
                          (       )                                       (4.53) 

where            ⁄         ⁄                  ,                              , and      s are defined in Eqs. (4.47) - (4.51)   The equation of motion of (4.51) for stacked LJJs 

with two-gap superconductors can now serve as the starting point for describing the 

phase dynamics of a two coupled LJJ.   
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CHAPTER V 

RESULTS AND DISCUSSION 

5.1 Single LJJ with Two-Gap Superconductors 

 

     In this dissertation work, the phase dynamics of a single LJJ with two-gap 

superconductors was studied.  This investigation was carried out by extending the BCS 

Hamiltonian to describe the two-gap superconductivity.  Also, the functional integral 

formalism had been applied to obtain the effective action for the LJJ system.  This 

effective action approach allowed the derivation of the perturbed sine-Gordon equations 

for describing the dynamics of phase differences.  The derivation of the equation of 

motion was carried out analytically.  From this analysis, the phase dynamics of a two-gap 

superconductor based LJJ is found to be more complex than that for the usual LJJ with 

one-gap superconductors.  The complexity of the two-gap superconductor based LJJ 

arises from the presence of an inter-band Josephson current which passes from one-band 

to the other band in the same S layer.  This inter-band Josephson effect is found to yields 

a soliton-like excitation (i.e., i-soliton) representing a 2-phase texture.   

     In the LJJ, a circulating current loop which extends within the superconductor (S) 

layer is modified by the inter-band Josephson current.   The excitation induced by the 

inter-band Josephson effect can lead to a large stable variation of the relative phase 

between the two condensates.  This large amplitude fluctuation in the relative phase is 
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described as soliton-like excitations.  The soliton-like excitations in the S layer can lead 

to a spatial modulation in the critical current density between two adjacent S layers.  

Accounting for these excitations, one can find that the fluxon dynamics in the LJJ is 

influenced by the modulation of critical current density.  The soliton-like phase texture  

plotted in Fig. 4 represents a single-kink solution of the unperturbed sine-Gordon 

equation.  This plot illustrates the variation of phase of the order parameter as a function 

of the position along the I layer.  The solitary wave represents a kink which changes the 

Josephson phase either from 0 to    (soliton) or from     to 0 (anti-soliton).  The 

modulation of critical current within a region induced by the soliton-like excitations can 

lead to a modulation of the fluxon velocity.   Hence, the fluxon can become accelerated 

and, as a result, it emits radiation during the deceleration phase of fluxon motion.  

However, when the moving fluxon is located beyond the range of critical current 

modulation, its velocity remains constant.  Therefore, in this region, beyond the range of 

the critical current modulation, the moving fluxon emits no radiation. 

     To estimate the effects of bias current        on the fluxon trajectories in the velocity-

position phase plane, the fluxon trajectories were obtained by numerically integrating the 

equations representing velocity and position modulation.  In Fig. 16, position X of the 

fluxon is plotted as a function of velocity   for          .  The solid curves represent 

the inter-band Josephson current density             for three different values of              0.02, and 0.04.  Similarly the dashed curves represent the inter-band 

Josephson current density              for three different values of              0.02, and 0.04.  Here,    is the uniform initial speed of the fluxon at a position far 
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away from the region of    phase texture which is centered at X=0.  The values of      
depends on        . 

 

 

Figure 16. Fluxon trajectories in the        phase plane for           and        are plotted to illustrate 

their dependence on the strength of both the bias current     ⁄  and Josephson current        ⁄ .  

Three curves, from left to right, correspond to      ⁄              and 0.04 for        ⁄      

(solid) and        ⁄       (dashed).  The vertical dotted lines represent the uniform fluxon 

speed in the absence of critical current modulation. 

 

 

From Fig. 16, it is clear that the curves show that when the bias current is small, the 

fluxon almost becomes pinned due to pinning effects of the critical current modulation.  
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For      ⁄       speed becomes zero at       for       ⁄      and        for       ⁄      .  However, for the higher value of the bias current,     ⁄        the 

driving force for the fluxon becomes stronger than the pinning force due to critical 

current modulation.  This indicates that with a high bias current the fluxon can absorb this 

energy and can be accelerated.  However, the fluxon can radiate energy during the 

decelerate phase of the motion.  The curves also show that the variation in fluxon speed 

decreases with the increase of bias current density.  The variation of fluxon speed from 

the vertical straight line also depends on the Josephson current density        ⁄ .  The 

curves show that the variation of fluxon speed increases with increasing         ⁄     When 

there is no current density (i.e.,       ⁄   ), there is no critical current modulation.   

Hence, the speed remains constant.  From Eq. (2.61), one may see clearly that the bias 

current in a LJJ depends on the Josephson current and on the dissipation parameters   and   .  It indicates that for a given value of parameters, there exists a certain cut-off 

for the bias current.  This indicates that the bias current density must be larger than the 

threshold value      in order for the fluxon to pass through the region of critical current 

modulation. 

      The variation of the velocity (i.e., voltage) of a single fluxon with the bias current 

depends on the modulation of the critical current density and dissipation parameters   and    .   However, the cut-off current density is the same for a given value of        ⁄ .  

In Fig. 17, the bias current is plotted as a function of voltage for       ⁄  = 0.1 (dotted 

line) and       ⁄      (solid line) to illustrate the dependence of the threshold bias 

current      on the Josephson current       ⁄ .  Here the dissipation parameters are set as           .  The curves show that the threshold bias current increases with       ⁄    



88 

 

As the critical current modulation plays the role of an effective potential for the fluxon, a 

larger bias current needed to overcome the pinning effect as       ⁄  increases.  Hence the 

threshold bias current is similar to the minimum current density needed to overcome the 

pinning force. From Fig. 17 it is clear that the voltage increases steadily with increasing 

bias current.               

 

 

Figure 17. The current-voltage curves for       ⁄ = 0.1 (dotted line) and       ⁄  0.2 (solid line)  

illustrate the dependence of the threshold bias current on the Josephson current.  Here, the 

dissipation parameters are    = 0.1, and    = 0.1. 
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Figure 18. Variation of threshold bias current density as a function of the inter-band   Josephson current 

density (    ) for                  (dark-solid line, dashed line, light solid, respectively) for                       , to illustrate the minimum bias current density necessary to overcome 

the pinning effect of the critical current modulation. 

 

 

 

     To illustrate the dependence of the threshold bias current on the inter-band Josephson 

effect the threshold bias current is plotted as a function of Josephson current density in 

Fig. 18.  The curves indicate that the threshold bias current increases linearly with the 

Josephson current.  This indicates that, as the critical current modulation increases, a 



90 

 

stronger driving force must be provided by the bias current density to pass the fluxon 

through the region of an i-soliton excitation. 

 

 

5.2 Phase Frustration and Broken Time Reversal-Symmetry State 

 

     To understand the time-reversal symmetry invariant (TRSI) and broken time-reversal 

symmetry (BTRS) state in a Josephson junction with two-gap superconductors, the 

ground state phase configuration was investigated.  The ground state phase configuration 

was obtained by minimizing the free energy of the LJJ with respect to phase variables in 

the absence of an external magnetic field.  The boundary conditions were obtained at the 

junction interface.  Applying the boundary conditions, the conditions for TRSI and BTRS 

state were obtained.  When the current density in the s and d electronic bands in the 

ground state are zero, the ground state corresponds to TRSI state.  In this case, the 

relative phase constants attain the values either 0 or  .  Although the net current density 

in the ground state is zero, the individual currents can be non-zero.  In this case,  ̃     ̃   

and the relative phase constants are different than either 0 or  .  This solution breaks 

time-reversal symmetry.  The relative phase in the ground state was numerically 

calculated.  The phase configuration of the ground state was determined from the free 

energy calculation as a functions of relative phases (  ,   ) for different values of inter-

band current and Josephson current.  When the ground state corresponds to the BTRS, the 

relative phase constant     computed as a function of phase difference     showed 

linearly dependence.  The variation of current density ⌊   ⌋ with the phase difference     

behaves as the sine-curve. 
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5.3 Two Coupled LJJ with Two-Gap Superconductors 

 

     The system of two coupled long Josephson junctions that are based on two-gap 

superconductors has interesting phase dynamics due to the magnetic induction effect 

between junctions.  For the two coupled LJJs, there are three superconductor (S) 

separated by insulators.  In this LJJ system, there are three types of tunneling interactions: 

i) the conventional Josephson interaction between the adjacent superconducting layers, ii) 

the inter-band Josephson effects between the two condensates of the same S layer, and 

iii) the interaction between the Josephson vortices of the two LJJs. The phase dynamics 

of two coupled LJJs that are based on the two-gap superconductors are studied by 

deriving the equation of motion.  As a way to obtain the equation of motion, the effective 

action was obtained starting with the BCS model.   Equations of motion for different 

variables were obtained by using Euler-Lagrange equations, which are expressed as a set 

of two coupled sine-Gordon equations. The coupled sine-Gordon equation for the two 

coupled LJJ based on two-gap superconductor shows that the dynamics of the fluxon in 

such a system is influenced by the inter-band Josephson effect in the superconducting 

layers. 
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CHAPTER VI 

CONCLUSION 

 

     The present dissertation work is focused on the following three aspects of long 

Josephson junction (LJJ) with two-gap superconductors: i) inter-band Josephson effect 

and  excitation of i-soliton, ii) the ground state which breaks the time-reversal symmetry, 

and iii)  the equation of motion for the two-coupled LJJ stack. 

      The present investigation shows that the fluxon dynamics of LJJ with two-gap 

superconductors is influenced by the inter-band Josephson current.  Due to the presence 

of two superconducting pseudo-order parameters, when the fluctuations in the relative 

phases become large, a 2 -phase texture may appear in each S layer.  Accounting for the 

charge imbalance effect between two electronic bands, the equation of motion expressed 

as the sine-Gordon equation for relative phase was obtained for the large amplitude 

fluctuations.  This equation is similar to that describing the motion of fluxon in the LJJ.  

The single-kink solution (i-soliton) for the equation of motion for the relative phase and 

the usual fluxon solution have the same functional form.   However, they have a different 

physical interpretation because only the fluxon can carry a magnetic flux quantum.  

Excitation of an i-soliton which represents a large stable fluctuation in the relative phase 

can lead to a modulation of the critical current density in a LJJ.  A modulation of critical 

current behaves as an effective pinning potential for the fluxon, modifying the fluxon 
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trajectories.  When the bias current is applied to drive the fluxon in a dissipative 

environment, the fluxon motion was found to be uniform far away from the region of 

critical current modulation.  However, the motion of a fluxon becomes non-uniform in 

the critical current modulation region.  This allows the fluxon to be accelerated and then 

decelerated.  During the deceleration phase of the motion, the fluxon can emit EM 

radiation.  However, if the applied bias current is less than the threshold value, the speed 

of the fluxon may reduce to zero, thereby trapping the fluxon.  The threshold value for 

the bias current density increases with increasing the inter-band Josephson current. 

       In the ground state of LJJ, phase frustration and broken time-reversal symmetry state 

are closely related and are an interesting property of LJJs with two-gap superconductors. 

Minimizing the steady state free energy with respect to phase variables, one can compute 

the current density associated with the s- and d-condensates at the junction interface as a 

function of parameters such as     and   .  From both analytical and numerical 

calculations, the possibility of the phase frustration in the LJJ was studied.  The 

conditions at which the solution breaks the time-reversal symmetry were obtained.  The 

computed free energy as a function of relative phase indicates that the ground state phase 

configurations can have frustration, similar to a frustrated spin system. When the phase 

variables in a LJJ are frustrated, the relative phases which minimize the free energy can 

leads to the TRSB state.  The numerically computed relative phase constant in the ground 

state varies linearly with relative the phase difference    .  Also the ground state current 

density contribution from either s- or d-condensates at the junction interface satisfies that 

there is no net current but varies with the relative phase as a sine-function. 
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       Also, the equation of motion for studying the phase dynamics of two coupled LJJs 

that are based on two-gap superconductors was derived. As a way to derive this equation 

of motion, the effective action was obtained from the BCS model and obtained through 

Euler-Lagrange equations for the phase variables equations, which are in turn expressed 

as a set of two coupled sine-Gordon equations. The coupled sine-Gordon for the two 

coupled LJJs based on a two-gap superconductor indicates that the dynamics of the 

fluxon can be influenced by the inter-band Josephson effect.  This suggests that the 

nature of bunched fluxons in a coupled LJJs, originally is investigated for a single-gap 

superconductor, is modified.  Hence, the inter-band Josephson effect studied in the 

present work can affect the collective excitation of fluxons in the intrinsic Josephson 

junction as well as the “Cherenkov” radiation emitted by the fluxon. 

     As shown in the present dissertation work, the fluxon dynamics of a LJJ with two-gap 

superconductors leads to a more interesting junction property than that with one-gap 

superconductors.  Similarly, fluxon dynamics of LJJs with three-gap superconductors 

may even lead to an even more interesting junction property than that described in this 

dissertation work.  Although the present research work shows that an unexpected 

property such as the BTRS state in the ground state can appear in a LJJ with two-gap 

superconductors, further investigation in clearly needed in future.   Many other 

interesting properties of two-gap superconductors based LJJ, such as the presence of in-

gap state at the junction interface and a formation of fractional fluxon has, not been 

investigated.  A derivation of the equation of motion for the two-coupled LJJs with two-

gap superconductors presented in the current dissertation work and can be taken as an 

excellent starting point for future research. 
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APPENDIX A 

 Ginzburg-Landau Free Energy  

 

     The BCS model Hamiltonian for a long Josephson junction (LJJ) with two-gap 

superconductors may be expressed as the sum of two contributions:  ̂   ̂      ̂ . 

Here, the Hamiltonian  ̂     accounts for the interacting electrons in the two-gap 

superconductor, and  ̂  accounts for electron tunneling between the two adjacent 

superconducting (S) layers.  Starting with the BCS Hamiltonian one can obtain the 

partition function and effective action as discussed in Chapter III.  In using the Nambu 

notation in Grassmann variables and passing through the Hubbard-Stratonovich identity 

one may write the partition function Z to  

                                           ∫   ̅      ̅        ̅    ̅                                           (A.1)   

where the action S is given by 

  ∫ 𝑑   {∑[  ̅                  ̅ (         )   ]     
  

                                                          ∑   ̅         ̅           }                        (A.2) 

By shifting the auxiliary fields    and  ̅ ,  ̅   ̅   ̅    and            one 

may simplify the action S as  

          ∫ 𝑑 [∑   ̅ (         )    ∑ ( ̅         ̅     ̅    )       ]   ,        (A.3) 

where    ̅  and    are the two component auxiliary field 
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                                              ̅    ̅   ̅     and     (      ) . 

The inverse of the pair interaction matrix V is given by  

                                               (   ) (               ),                                       (A.4) 

where  𝑑                    ⁄  is the determinant of V.  The  ̅        term can 

be expressed as 

      ̅                  ̅                 ̅                ( ̅        ̅      )                   (A.5)  

                          ̅           ̅                   ( ̅        ̅      )                                         (A.6) 

where      𝑑        ⁄ ,     𝑑        ⁄ , and     𝑑                ⁄ .  By 

substituting Eq. (A.6) into Eq. (A.3) and by removing the fermion fields via the 

Grassmann integration of the fermion part, one obtains the effective action S as 

               ∫ ∑ [∑  ̅                  ( ̅        ̅      ) ]  ∑                                  
(A.7)     

where the inverse Green function                    is given by 

                                                   (           ̅        ), 

                                                   (          ̅        ).                                           (A.8) 

After Grassmann integration, the partition function Z of the system is given by   

         ∏ 𝑑        ∫   ̅   ∑      ∫ [ ̅           ̅                   ( ̅        ̅      )]    ,            (A.9) 

where                    .  The partition function of the system can be expressed in 

terms of the effective thermodynamic potential as 
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              ∫   ̅       [ ̅  ].                      (A.10) 

From Eq. (A.9) and Eq. (A.10) it is clear that effective thermodynamic potential   is 

given by the relation 

                       ̅    ∫ 𝑑 [ ̅          ̅                  ( ̅       ̅     )]             
                                                                                                                      (A.11) 

 

One can now simplify   of Eq. (A.10) by writing the pairing fields as 

                                             
,            

,  

                                  ̅           
,  ̅           

.  

Noting that   ̅            ,  ̅            , and   ̅       ̅                       , 
one can obtain the effective thermodynamic potential as  

           ∫ 𝑑 [                                              ]     ∑                    (A.12)                                

Note that the last two terms of Eq. (A.12) can be evaluated by expanding them as  

                                          [(          ̅        )] 
                                                  [      (      ̅   )]  .  
Here, the inverse of the non-interacting Green function       has been factored out.  In 

the expansion, it is useful to know that 

                                                (      ̅   )    . 

This allows one to simplify the expansion as 

                                                      [   (      ̅   )]   .              (A.13)                  
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where  

                                  (              )  ([     ]    [     ]  )  . 

Here, the superscripts p and h denote particle and hole, respectively. The second term of 

Eq. (A.11) is evaluated as 

             ̃    [   (      ̅   )]    (              ̅          ̅          ) .         (A.14) 

A further simplification of Eq. (A.14) may be made by assuming that the pairing field is 

time independent and by using the momentum variables  ⃗  ( ⃗⃗   ⃗⃗ )    and  ⃗   ⃗⃗   ⃗⃗  
(i.e.,  ⃗⃗   ⃗   ⃗  , and  ⃗⃗   ⃗   ⃗  ).  These simplifications lead to  

             ̃       ∑ ∑          ⃗   ⃗⃗      (   )   [   ⃗⃗   (                  )  

                                  ⃗   ⃗  (  (       )   (       )       (   ) )   ]          (A.15) 

where the  ⃗    ⁄ [(       )   (       )  ]/     (   )   term can be neglected 

in the high density limit. Therefore, by noting   ⃗   ⃗   ∑           , and by taking the 

angular average of          ⃗   , one may write   ⃗   ⃗    ⃗   ⃗       This result may 

be used to rewrite Eq. (A.33)  a 

    ̃       ∑ ∑           (   )  ⃗   ⃗⃗   {   ⃗   ⃗⃗     [  (       )    (       )       (   ) ]} .     (A.16) 

One may now convert the summation over  ⃗ into an integral and obtain the following 

result: 

        
  ∑ ∫    ⃗          (   )         ̃     ,                              (A.17) 
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  ∑ ∫    ⃗      (    (   ) )        ̃      ,                              (A.18) 

     ∫ 𝑑        (    (   ) )         ,                               (A.19) 

and  

                                                ∫ 𝑑       (   ) (    (   ) )         ,                                     (A.20) 

where             and      . These results allow one to simplify the express for  ̃  as 

 

                        ̃          ̃    ∑ |   |        ̃            ∑  ⃗  |   |  .                  (A.21) 

Also, noting that  

                                                  ∑ |   |      ∫𝑑  ⃗ |   |         

and 

                                                    ∑  ⃗  |   |      ∫𝑑  ⃗ |    |  , 

where    is the volume of the junction.  One may write 

                            ̃          ̃               ̃            ∫𝑑  ⃗ |    |  .               (A.22) 

Combining the result, one can again rewrite Eq. (A.13) as 

                                           ∑                [   (      ̅   )] .          (A.23) 

The fourth order contribution for the uniform pairing field     may be written as  

                           
 ̃             [   (      ̅   )]  
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                                      ̅      ∑ ∫    ⃗⃗      [    (   ) ]         ̃               ̅     .                     (A.24) 

The thermodynamic potential in the normal state    is given by 

                                                         
.                                             (A.25) 

This indicates that the Ginzburg-Landau free energy of the system may be written as 

          ∫𝑑  ⃗ [ ̅          ̅                  ( ̅       ̅     )] 
                                          [   (      ̅   )]       [   (      ̅   )]  

                                    + 
    [   (      ̅   )]       [   (      ̅   )]                (A.26) 

   
Now by combining the result into Eq. (A.26), one can obtain the Ginzburg-Landau free 

energy of the system as  

          ∫𝑑  ⃗ { ∑ [               ̃              |     |        ̃               |      | ]         
                                                       ̅           ̅          }.                         (A.27) 

where          ⁄      [    ̃          ⁄ ].   
Similarly, one may consider a LJJ with two layers of two-gap superconductors 

separated by an insulator in the z-direction.  Assuming that l=2 layer of superconductor is 

above the junction (   ) and l=1 layer is below the junction (   ). Therefore the 

Ginsburg-Landau free energy for such a system may be written as 

                      ,                                       (A.28)  

and then 
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         ∑ {∫ 𝑑  
      [          |   |                        (       )] 

     ∫ 𝑑   [     (     )        (             )       (     )        (             ) ]} 

                        {∫       (        )   ∫       ∫ 𝑑    (       )}                        (A.29) 

where       ̃                           ̃                                 
                      ̃                           ̃                                  
                      ̃                           ̃                          
              ̃                           ̃                         ,           (A.30)  

where                  ̃              ̃               ⁄ .  Here, the coefficients  ̃   and  ̃   are given is given by 

                               ̃                                                 , 
                               ̃                           (                 ) , 

                               ̃         |        |         

                               ̃                           (                    )    

                               ̃                    ̅               ,  

                                ̃                    ̅               , 

                                ̃                    ̅               ,  
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and  

                                ̃                    ̅               .                         

The free energy density which depends on the   ’s is given by 

                             (       )                     (       )             

                                                            (       ) 

                                          (       )          (       ) .                                  (A.31) 

To examine the phase configurations which minimize the free energy density, first the 

derivative of     with respect to phase variables is set to yield 

              (       )                            (       )   , 

                (       )          (       )                     , 

             (       )                            (       )   , 

                (       )          (       )          (       )   ,                     (A.32) 

where we denote                                   ,           ,           
  , and               Substituting these to Eq. (3.32), one can get a set of four 

equations.  Next subtracting the third part of Eq. (3.32) from the fourth part, one can 

obtain the following relation 

   
                                                               .   (A.33) 

One can write a set of three equations in the exponential form using the relation             as 
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                           [                                          ]   ,                         (A.34) 

                                     [                                 ]   ,                           (A.35) 

                        [(                                         )     ]   .                   (A.36) 

Suppose one write Eq. (A.37) as 

      [             (                                                 )]       (A.37) 

One can consider a simple case in which         and        . By taking the                      factor out of Eq. (A.37), one can write 

                           (         ) [      (      )        (      )]   .               (A.38) 

If         (      )        (      )    then the following condition must be satisfied: 

                                                (         )    .   

This implies that            ⁄            .  Now, by adding Eqs. (A.35) and 

(A.36), one can obtain 

                                      (                              )   .                 (A.39) 

Thus for the minimum of the free energy, the free energy function  (               )                 satisfies the following two set of conditions.  The first set of conditions 

is given by 

(i)             

(ii)               
(iii)                          
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                                        (                              )     
The second set of conditions is given by 

(i)                 
(ii) 

                               ,  

(iii)                          
                     +               (                              )      .  

These are the conditions for the minimum free energy of the system.  This is useful to 

estimate phase configuration of the ground state of the system. 
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APPENDIX B 

Two Coupled LJJs With Two-Gap Superconductors 

 

      In this appendix, a derivation of the equation of motion from the effective action      for the system of two coupled LJJs with two-gap superconductors is discussed.  The 

effective action obtained from the functional integral representation of the partition 

function after integrating out the fermion field is given by 

                                                                      

                                   ( ̂      ̂   )     ̂          ̂     

                               ( ̂    ̂    ̂      ̂   )( ̂    ̂    ̂      ̂   ) ,                      (B.1) 

From the discussion presented in Chapter IV, it is useful note that  

                     ( ̂      ̂   )   ∑ [     𝑑  ⃗            (              ) ] ,                     (B.2) 

 

and  

                                                    ̂    ̂      ̂     .                                               (B.3) 

 Also, it is useful to note that the second order terms in the expansion may be written as      ( ̂    ̂    ̂      ̂   )( ̂    ̂    ̂      ̂   )            

                   ̃                           ̃                                 
                 ̃                           ̃                                  
                 ̃                           ̃                          
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                 ̃                           ̃                                    (B.4)  

where                  ̃              ̃               ⁄ .  Here, the coefficients  ̃   and  ̃   are given is given by 

                              ̃           ∑                                             ,                                  

                                  ̃            ∑                  (                 )     , 

                               ̃           ∑ |        |        (                     )     

                               ̃            ∑                  (                     )                                   

                               ̃           ∑            ̅                   ,  

                                ̃           ∑            ̅                   , 

                                ̃           ∑            ̅                   ,  

and  

                                ̃           ∑            ̅              (     )          .                                   (B.5) 

Hence, the effective action is given by  

                             

        ∑ ∫  ∫𝑑 ⃗  {[|   |     |   |                          (       )]  
                                      ∑ [     𝑑  ⃗            (              ) ]                               (B.6) 

                                     ∑ ∫𝑑  [  ̃                 ̃               ]}   .     
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 One may now use the effective action to find the equation of motion by finding the 

minimum of free energy with respect to a variation in the phase variable.     One can find 

to minimum of the action by setting          ⁄   . This yields the Euler-Lagrage 

equation of  

      
                               .                                 (B.7) 

By using the Lagrange density L obtained from the effective action, the Euler-Lagrange 

equation of Eq. (B.7) for the phase variable     may be obtained as   

                   
          (              )            (             )             

                                                                                                                       (B.8)  

where            denotes the relative phase of the condensates and      𝑑                ⁄  is the inter-band current density.  The electric field of   ⃗    ⃗⃗       ⁄     ⁄  may be written as 

               ⃗     ∑             [                      ]  (          ) .                   (B.9) 

Similarly, one may find the minimum of the action with respect to a variation of the 

phase variable      from the condition           ⁄   .  This condition yields the Euler-

Lagrange equation for     which may be written as 

                 
          (              )            (             )                      

                                                                                                                      (B.10) 

One may carry out a similar calculation for the phase variables      and       for the 

( +1)-th S layer.   By setting the conditions              ⁄  and               ⁄ , one 

can obtain the Euler-Lagrange equation for      and       as 
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                                    ,                                        (B.11)     

              
          (                  )            (                 )               

                                                                                                       ,      (B.12) 

and  

 
          (                  )            (                 )              

                                                                                                     ,       (B.13) 

respectively.  One may now combine the Euler-Lagrange equation for the phase variables    ,          and      to obtain the equation of motion for the coupled LJJs.   One may 

calculated  

     
         (                      )  (                      )            ,                                  (B.14) 

 

by substituting the result from above and  obtain the equation of motion as 

           {    [     (         )             ]       [     (         )             ]} 
         + 

   {    [     (         )              ]     [     (         )              ]}    
                                                                               
                           [(                                   )  (                                   ) 

           (                                                  )  (                                             )] 
                         [(                                   )  (                                   ) 

    (                                             )  (                                             )]          (B.15) 

The equation of motion of (B.15) can be simplified by using the following relations:   
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    ∑       ̃              ∑ (         )  [                    ]∑       ,              (B.16)                     

                                (      ̃          𝑑        )          (     𝑑        ) .            (B.17)     

The magnetic and electric field in the insulator layer between  –th and ( +1)-th S layer 

are given by 

                               (                      )                                                    (B.18)  

                                                        . 

By using the above result, one may rewrite Eq.  (B.15) as 

          ∑         ̃                  ∑   ̃                                     [       ∑       ̃                ∑  (         )    ]        
                                                                 (           ) 

           [                                             ]                                                

              +                                   (       )                      ,            (B.19) 

by noting that the Maxwell’ equation    ⃗⃗        ⁄        may be written as 

 

                                
                         ∑ (                     )    .                               (B.20) 

One may now use the fact that the phase difference between the d-bands (i.e.,  ̃       ) of the 

two adjacent S layers may be written in terms of that between the two s-bands (i.e.,  ̃       )  

as 

                    ̃                             ̃                   
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where            is the relative phase difference between the two condensates of the 

same S layer.   This substitution allows one to obtain the sine-Gordon equation for the phase 

difference  ̃        which can be written as 

             
                 [ ̃           ̃        (        )  ̃       ]           ̃                

 

                                    [                  (        )          ] 
 

                                                                                        

  

                       + 
                          (       )                                              (B.21) 

where             ⁄         ⁄                 and                                 .   
Here, the Josephson current density           

 and the quasi-particle current density           
 to 

define the following current density terms in the phase equation of motion: 

         (                                   )  (                                   ).                                (B.22) 

                                             (                                   ),                                   (B.23) 

         (                                             )  (                                             ),           (B.24) 

                                                                                                
,                         (B.25) 

and 

                                                       (                                             ).               (B.26) 

Note that the equation of motion of Eq. (B.21) may be used to account for the phase 

dynamics in the two-coupled LJJs by considering only  =1 and  =2 superconducting layers. 
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